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Abstract. We examine sports tournaments where the number of games
that can be played in a time slot is limited. It is always possible to
schedule such tournaments, and we show how to do so while minimizing
the gap between consecutive games for any team.

1 Introduction

Consider creating a sports league schedule for 2n teams over k time slots, where
the schedule must satisfy the following:

(P1) Teams play in pairs.
(P2) No team plays more than once in any time slot.
(P3) Every pair of teams plays exactly once over the course of the schedule.

If we add the restriction that every team plays in every time slot, then we
have the standard round-robin scheduling problem, dating back to at least Kirk-
man’s 1847 paper [4]. But it is common in practice for there to be limits on the
number of games that can be played in each slot. For instance, there may be a
limited number of courts on which to play, or the availability of courts may vary
depending on the day of the week the time slot occurs. If these limits allow less
than n games in a time slot, standard round-robin schedules do not necessarily
apply.

Suppose slot ¢ has a limit of b; < n games to be played, where Zle b; =
@. The Court Constrained Tournament Array Problem is a schedule satis-
fying P1, P2, and P3 and satisfying P4:

(P4) Exactly b; games are scheduled in each slot i.

The case where b; = n for all 7 is the standard round-robin scheduling prob-
lem, while the case where b; = ¢ for a fixed constant ¢ is called the Tournament
Array problem TA(2n,c) [5]. In that paper, Mendelsohn and Rodney give a con-
struction that not only creates the tournament, but also balances the appearance
of each team on each court (where each of the ¢ games in a slot is interpreted
as being on a particular playing court). Since our problem is a generalization
of the Tournament Array problem, we will denote instances of our problem as
TA(2n,b) where b is the vector of game limits.

Example: TA(4,[1,2,1,2]) has solution



One important characteristic of a tournament array is the “evenness” of play:
does any team go a long period without playing? We say that a tournament array
T has gap g if, for some team j, there are consecutive time slots [s..t] such that
(1) j does not play in [s..t], and (2) 3._, b; = g. The gap for a tournament array
is the maximum such g for which this occurs.

We show that there is a solution to the Court Constrained Tournament Array
Problem for every choice of b, and we construct a solution with gap no more than
n, which is the best possible result.

In Section 2, we outline some methods for solving the standard round robin
scheduling problem, and, based on these, give two methods for solving the Tour-
nament Array problem. In section 3 we analyze the gaps that result from these
constructions. The final section gives some future directions for this work.

2 Constructing Tournament Arrays

2.1 Standard Round Robin Tournaments

The first construction of round robin tournaments appears to be due to Kirk-
man [4]. To schedule the standard round robin tournament (TA(2n,n) in our
notation), his approach was to take teams 1,2,...,2n and order the pairs (i, j)
in their lexicographic order, so that (7,j) is before (i,k) for j < k and (3, j)
before (k,1) for i < k. The slots are then considered in cyclic order. Games are
assigned “greedily” in the cyclic order: start by assigning (1,2) to the first slot.
Subsequent games are assigned to the next slot (considered cyclically) to which
the game can be legally assigned. So, for n = 6, we get the tournament (reading
left to right, top to bottom in the order the algorithm assigns the games):

1/(1,2) (3,5) (4,6)
2/(1,3) (2,6) (4,5)
3|(1,4) (2,3) (5,6)
4/(1,5) (2,4) (3,6)

5/(1,6) (2,5) (3:4)

Andersen[2] gives a nice proof that this approach does give a correct round
robin tournament.

Kirkman’s approach does not work, however, for the tournament array prob-
lem. Consider TA(4,[1,2,1,2]). The greedy approach leads to the partial sched-
ule:

1(1,2)
2|(1,3) (2,4)
3|(1,4)
4/(2,3) X



where the remaining game (3,4) cannot be assigned to the remaining position
“X” A

Andersen [1] proved that Kirkman’s construction is equivalent to what is now
the “standard” construction: Label the 2n teams 1,2,..., 2n and create the first
round schedule

(2n,1), (2,2n — 1), (3, 2n — 2),... (n,n + 1)

For subsequent rounds, add 1 (mod 2n—1) to each number except 2n (treating
0 as 2n — 1). So the next round would be

(2n,2), (3,1), 4, 2n—1),...(n+ 1,n + 2)

For this construction, slot ¢ consists of the games (2n,i) and (k,!) where
k+1=2i mod 2n — 1. For 2n = 8 we get the schedule
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While this schedule is equivalent to Kirkman’s construction (after suitable
permutations of the rows and teams, see [1]), there exist multiple non-equivalent
tournaments. For instance, starting with

1/(8,1) (2,4) (3,7) (5,6)

results in an inequivalent tournament [3] (check!).

2.2 Tournament Array Scheduling

With a round robin schedule, we can now construct a tournament array TA (2n,b)
for any vector b of game limits. We give two constructions: the first only works
when starting with the “standard” round robin schedule, while the second works
with any round robin schedule.

Kirkman Tournament Array Given the standard round robin schedule with
initial slot
(2n,1), (2,2n —1), (3, 2n — 2),... (n,n+ 1)

we say that a game (k,[) is game m in slot 4 if it occurs in the mth column of
slot 4. For instance, (3,2n — 2) is game 3 in slot 1. The key insight is that if team
j plays in game m in slot 4, then it plays in either slot m —1, m, or m +1 in slot
i+ 1. This implies that if we order all the pairs first by rounds, then by games
within rounds, any n — 1 consecutive games do not repeat a team. For our 8
team example, the ordering gives



(8,1) (2,7) (3,6) (4,5) (8,2) (3,1) (4,7) (5,6) (83) (4
(6,2) (7,1) (8,5) (6,4) (7,3) (1,2) (8,6) (7,5) (1,4) (2,3)

and no 3 consectutive pairs repeats a team.

Call a slot with b; = n a “full slot”; any other slot is a “partial slot”. If
we begin by filling in the full slots, then the partial slots can be filled in with
the ordering given above without fear of having a team play twice in the same
slot. So our algorithm for creating TA(2n,b) based on the standard round robin
schedule is
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Step 1. Beginning with the first slot of the standard round robin schedule,
schedule all full slots by assigning the games in the first slots of the round robin
schedule. If there are & full slots, the first k& slots of the round robin schedule are
then used.

Step 2. Order the remaining pairs of the round robin schedule first by slots,
then by games. Assign pairs to the partial slots in that order.

For example, to create TA(8,[3,3,4,3,3,4,3,2,3]), we do the following:

Step 1. Schedule the full slots:

(8,1) (2,7) (3,6) (4,5)

(8,2) (3,1) (4,7) (5,6)
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Step 2. Schedule the partial slots. The first partial slot becomes:

(8,3) (4,2) (5,1)

(8,1) (2,7) (3,6) (4,5)

(8,2) (3,1) (4,7) (5,6)
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The rest then becomes
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To prove correctness of this algorithm, we need only show that team j does
not appear twice in any slot.

Matching Based Tournament Array An alternative approach begins with
any round robin schedule (not just the standard one). This approach relies on
the following theorem:

Given 2n teams, matching My on those teams with ki edges, and perfect
matching My on those teams (hence with n edges), for any ko, k1 < ka < n,
there is a matching M C My UM, such that |M| = ky and (M1 UMs)/M is also
a matching.

With this theorem, we begin with the games in the first slot of the round
robin tournament and assign them to the first slot of the tournament array. We
then move to the second slot of the tournament array. If we have enough games
remaining from the current slot of the round robin tournament to schedule the
tournament array, we do so. If not, then we set M; to be the remaining games
from the round robin slot and let My be the matching in the next slot of the
round robin. We then invoke the theorem to extract a matching from the union of
M; and M of size equal to the b; of the tournament array, leaving a matching
to continue the algorithm. At every step we have a partial matching, so the
algorithm works by induction.

3 Gaps

In most real schedules, it is important that every team plays regularly: long
periods without games makes for a poor schedule. We can measure the number
of games played between consecutive games for a given team and define the gap
of a tournament array to be the maximum such value for all teams.

For the Kirkman Tournament Array, the gap is less than or equal to n. For
the Matching-based Tournament Array, the gap is less than or equal to 3n/2.

4 Conclusion and Future Directions

We have shown that it is possible to find tournament arrays for arbitrary TA(2n,b)
and have given two construction algorithms. The gaps for these tournament ar-
rays are small.



It would be interesting to look at optimization versions for this problem,
where there is a cost of ¢(i, j, k) of having teams ¢ and j play in slot k. Trick [6]
looked at such a problem for round-robin scheduling, and compared integer and
constraint programming approaches for the problem.

Another interesting direction would be to balance the courts or other venues
used by the teams. Suppose each game position had a venue associated with it.
Can games be assigned so as to balance team use of the venues? Mendelsohn
and Rodney [5] showed that is the case for TA(2n,c) for a constant c; it would
be interesting to explore this generalization.

Acknowledgement

I thank Larry Waldman for bringing this problem to my attention.

References

1. Anderson, I. 1991. “Kirkman and GK,n”, Bulletin of the I.C.A., 3: 111-112.

2. Anderson, I. 1997. Combinatorial Designs and Tournaments, Oxford University
Press.

3. Horton, J.D. 1989/90. “Orthogoanl starters in finite abelian groups”, Discrete Math-
ematics, 79:, 265-278.

4. Kirkman, T.P. 1847. “On a problem in combinations”, Cambridge and Dublin Math-
ematics Journal, 5: 255-262.

5. Mendelsohn, E. and P. Rodney 1994. “The existence of court balanced tournament
designs”, Discrete Mathematics, 133: 207-216.

6. Trick, M.A., “Integer and constraint programming approaches for round robin tour-
nament scheduling” ,to appear, Springer Series on Computer Science.



