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The Resource Constraint Project Scheduling Problem (RCPSP) is a complex dis-
crete optimization problem. Tt covers a wide range of applications from project
planning to machine scheduling (Brucker et. al [1999], Hartmann [1999], Neumann
et al. [2003]). In Brucker & Knust [2000] the RCPSP with time-dependent resource
availabilities has been introduced and used to model timetabling problems. Based on
these concepts we have implemented local search methods and genetic algorithms
to solve specific school- and university timetabling problems as well as job-shop
scheduling problems with limited machine availabilities. The purpose of this paper
is to document these results. This documentation is organized as follows. Firstly, we
present a mathematical model for the RCPSP with time-dependent resource avail-
abilities. A characteristic of this model is that it contains strong and weak resource
constraints. Based on this model local search methods for solving the problem are
introduced. These methods use certain list representations of schedules. For a given
list a corresponding schedule can be constructed and evaluated. Representations and
evaluations are discussed in Section 2. The last sections are devoted to applications.
We show how the methods described in the first two sections can be applied to a
school timetabling problem, a university course scheduling problem, and a job-shop
problem with limited machine availabilities. Corresponding computational results
are presented.

Mathematical model

The RCPSP with time-dependent resource availabilities can be formulated as fol-
lows. We are given a time interval [0, T[, a set of activities 1,... ,n and a set of
resources 1,...,r. The availability of the resources is limited. For a resource k
there are Ry(f) units available in the interval [t,# + 1[ for + = 0,..., T — 1. We
distinguish between two kinds of resources. Resources with R () € {0,1} are called
disjunctive, whereas other resources with Ri(#) € {0,1,2,...} are called cumulative.



Activity 7 must be processed for p; time units without interruption and requires r
units of resource k for all k = 1,... ,r during its processing. Additionally, arbitrary
precedence constraints with possibly positive time-lags may be given. A precedence
constraint is given by a relation 2 — j, where 1 — j means that activity j cannot
be started before activity ¢ has finished. If additionally a time-lag d;; > 0 between
» and j is given, the earliest starting time of j is d;; time units after the completion
of 7. If there is not time-lag we set d;; = 0. The time-lag d;; may depend on the
completion time of activity 7. It is convenient to add a dummy start activity 0 with
po=10,0— 7 and d,;; = 0 for all activities j.

Let S, denote the starting time of activity j. Then C; := S; + p, 1s the comple-
tion time of activity j. The problem is to determine intervals [S;, S; + p;[ for the
processing of each activity j such that the following conditions hold:

(1) in each time period [t,# + 1] the total resource demand is less or equal to the
availability R(#) of each resource k, and

(2) all precedence constraints and time-lags are fulfilled.

A solution is called feasible, if conditions (1) and (2) hold and all activities are
completed before time T'.

The problem of finding a feasible solution is NP-complete, as this problem gener-
alizes the classical RCPSP. We want to apply various local search methods to find
feasible solutions if they exist. Therefore we have to modify the problem in order
to have a representation of infeasible solutions. We introduce two modifications of
the problem. Both modifications are based on the idea, that we are able to obtain
infeasible solutions but every infeasibility is penalized by a positive cost term in an
objective function. By trying to minimize the objective function we try to get rid
of these penalties and therefore of infeasibility.

As a first modification we add a overflow period [T, T + L[ after the time period
[0, T[, where L is the length of the longest path in the activity-on-node networks
in which the arcs (7, 7) between activities 7 and j are evaluated by p; 4+ d;;. During
this overflow period the availabilities of all resources are assumed to be sufficiently
large to supply all activities at the same time. Therefore activities which cannot
be scheduled in [0, T[ can be scheduled in the overflow period. If an activity j is
scheduled in the overflow period a penalty cost w; occurs in the objective function.

As a second modification we introduce weak resources. Requirements of weak re-
sources may be relaxed to zero, whereas the requirements of the other (hard) re-
sources have to be fulfilled in any timetable. If the request for a weak resource is not,
respected, we penalize this by adding a positive cost term to the objective function.
If for activity 7 the requirement of the weak resource k is relaxed to zero, a penalty
cost wji occurs in the objective function.

Additionally, we may introduce some more penalties in the objective function in
order to model a variety of different constraints. The problem of finding a feasible



solution with respect to the described weak and additional constraints leads to the
problem of finding a solution with minimal objective value.

Representation and Evaluation of Solutions

Solutions are presented by priority lists which are compatible with the given prece-
dence constraints, i.e. if + — j then activity 7 appears earlier in the list than j.

Given a list a corresponding schedule is constructed by scheduling activities one after
the other in the list order. Each activity is scheduled as early as possible respecting
all resource availabilities. Tf an activity cannot be planned in the given time period
[0, T (infeasible solution), we try to relax the problem by deleting requirements of
weak resources for a set of activities in order to obtain feasibility.

Before defining the algorithm we introduce some notations. By K, we denote the
set of all resources which are required for the processing of activity j. This set is
divided into the hard resources ‘H; and the weak resources W;. Starting with a given
priority list for an instance of the RCPSP with time dependent resource profiles we
apply the following procedure Farliest Start Schedule.

Procedure Earliest Start Schedule
1. WHILE an activity exists which is not scheduled DO
BEGIN
2. Let j be the first activity in the list which is not scheduled;
ti=max;_ ;{5 + pi +dij};
4. WHILE a resource k € K; exists with rjx > Ri(7) for a 7 € [t, 1+ p;[ DO
BEGIN
5. Compute minimal time #;, > ¢, such that 5 can be scheduled

b

in [ty 1 4 p;[, if only resource k is considered and set ¢ := #;;
6. IF (t+p; > T) AND rj; < Ri(7) for all k € K, and 7 € [t,t + pj|
AND W, # () THEN

BEGIN
7. Delete a set of weak resources from W; for a set of activities 1;
8. t:= ma,X,;_>j{S,; + P + (],7},
END
END

9. Schedule j in [t,t + p;[ and update the resource
profiles Ri(t) in [t,t + p;[ for all resources k € K
END

For the dummy activity (0 we set Sp = 0. Because ) — j for all activities ;7 we always
have + > 0 in steps 3 and 8.

We applied local search methods like simulated annealing, tabu search, and a genetic
algorithm with the set of all lists compatible with the precedence constraints as



search space. Neighborhoods have been defined by interchange and shift operators.
For crossover we used one-point crossover, order crossover, and linear crossover which
are known to be compatible with the precedence constraints (Hartmann [1999]).

Applications

The method has been applied to the following problems:

e A school timetabling problem with data from a high-school in Osnabrueck.

e A university timetabling problem for the faculty of mathematics and infor-
matics at the University of Osnabrueck.

e A job-shop problem with restricted machine availabilities.

A full description of these problems, implementation results of the corresponding
solvers, and of the computational experiments with these solvers can be found in
the full version of the paper.
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