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1 Introduction

We consider the well known NP–hard teacher/class timetabling problem [1].
Variable neighborhood search and tabu search heuristics are developed to find
near optimal solutions to this problem. The heuristics are based on two types
of solution representation. For each of them we consider two families of neigh-
borhoods. The first family uses swapping of time periods for teacher (class)
timetable. The second family bases on the idea of large Lin–Kernighan neigh-
borhoods. Computation results for difficult random test instances show high
efficiency of the proposed approach.

2 Problem Formulation

In the teacher/class timetabling problem we are given the following finite sets: J
is the set of subjects, K is the set of classes, L is the set of teachers, T is the set of
time periods. These periods are distributed in 6 week days. By Tl ⊆ T we denote
the set of time periods which are available for teacher l. We suppose that classes
are disjoint sets of students, students in a chosen class have the same subjects,
and correspondence between subjects and teachers for a chosen class is one–to–
one. The number of lessons per week for each class and each teacher is known in
advance. We say that a timetable S is feasible if the following requirements are
satisfied:
a) a teacher l has at most one lesson at a time period t if t ∈ Tl and no lessons
otherwise;
b) a class k has at most one lesson at a time period t;
c) each teacher must fulfill his (her) weekly number of lessons.

The objective function F (S) is a penalty function for the following soft con-
straints:
1. each teacher has no time gaps;
2. each teacher has lessons in the most convenient time periods;
3. each class has no double lessons.
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More exactly, we wish to minimize the following objective function:

F (S) =
∑
l∈L

6∑
d=1

αldf
1
ld(S) +

∑
l∈L

∑
t∈T

βltf
2
lt(S) +

∑
k∈K

6∑
d=1

γkdf
3
kd(S),

where positive α, β, and γ are the penalties and f i(S) is the number of violations
of soft restriction i, i = 1, 2, 3. The optimization problem is NP–hard. Moreover,
the decision problem on existence of a feasible solution is NP–complete. So, we
introduce semifeasible solutions to enlarge the search space and apply meta-
heuristics for this space to find near optimal feasible solutions.

3 Solution Representations

We introduce two types of semifeasible solutions.

Definition 1. A timetable Sa is a semifeasible solution of the type a if it satisfies
the restrictions b and c.

Definition 2. A timetable Sb is a semifeasible solution of the type b if it satisfies
the restrictions a and c.

It is convenient to represent an arbitrary timetable Sa as a K×T matrix (Sa
kt),

K = |K|,T = |T |, with values in {0, 1, . . . ,J}, J = |J |, where the k-th row
is a timetable for the k-th class. Nonzero entries of the row mean subjects for
the class k at the time period t; Sa

kt = 0 means free time. In a similar way we
represent Sb as a L×T matrix (Sb

lt), L = |L|, with values in {−1, 0, 1, . . . ,K}.
Entries of the matrix mean classes for the teacher l at the time period t if
Sb

lt > 0, and free time if Sb
lt ≤ 0. The case Sb

lt = −1 means that the time period
t is unavailable for the teacher l. The advantage of this representation is that it
eliminates conflicts for teachers. The occurrence of conflicts in column happens
when in a given period t more than one teacher is allocated to a class. A solution
Sb is feasible if and only if each column has not conflicts. An arbitrary feasible
solution S can be easily represented by (Sa

kt) and (Sb
lt) matrices. In order to

evaluate the semifeasible solutions we introduce the following function

F (S) = F (S) +
∑
l∈L

∑
t∈T

λltf
4
lt(S) +

∑
k∈K

∑
t∈T

µktf
5
kt(S),

where min(λ, µ) > max(α, β, γ) and f4(S), f5(S) are some penalty functions for
the restrictions a and b. Obviously, F (S) = F (S) if S is a feasible solution. It is
easy to realize a transition from a semifeasible solution Sa to Sb and back such
that the number of positive items in F (S)− F (S) does not increase.

4 Neighborhoods

Now we introduce four families of neighborhoods:
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– Ni(Sa), i ≥ 1, denote swap neighborhoods of a semifeasible solution Sa;
– Ni(Sb), i ≥ 1, denote swap neighborhoods of a semifeasible solution Sb;
– LKi(Sa), i > 1, denote Lin–Kernighan neighborhoods of Sa;
– LKi(Sb), i > 1, denote Lin–Kernighan neighborhoods of Sb.

The neighborhood N1(Sa) consists of neighboring solutions which are obtained
from Sa by swapping two different values of a given row in the matrix (Sa

kt). Each
element in this neighborhood is associated with a triplet 〈k, t′, t′′〉, where t′ and
t′′ are the time periods, k is the class, and Sa

kt′ and Sa
kt′′ are the interchanged

subjects. For i > 1, Ni(Sa) are formed of solutions which are obtained by a
sequence of interchanges with triplets {〈k, t′j , t

′′
j 〉}j≤i, k ∈ K is fixed. Families

Ni(Sb) are defined in a similar way. Moreover, only non-negative values of the
matrix (Sb

lt) can be interchanged. We note that arbitrary feasible solution can
be reached with the use of an appropriate sequence of neighboring solutions for
the neighborhoods N1(Sa) or N1(Sb). A Lin–Kernighan neighborhood LKi(Sa)
consists of i elements and can be described by the following steps [3].

1. Choose a triplet 〈k, t′, t′′〉 such that the corresponding neighboring solution
S′ ∈ N1(Sa) is the best even if it is worse than Sa.

2. Put Sa := S′.
3. Repeat steps 1, 2 i times; if a triplet was used at steps 1 or 2 of previous

iterations, it can not be used any more.

The sequence of triplets {〈kj , t
′
j , t

′′
j 〉}j≤i defines i neighbors Sj of the solution

Sa. We say that Sa is a local minimum with respect to the LKi–neighborhood
if F (Sa) ≤ F (Sj) for all j ≤ i. A local minimum with respect to the LKi–
neighborhood is a local minimum with respect to N1 and is not necessary a local
minimum with respect to Ni, i > 1. Family LKi(Sb) is defined similarly.

5 Variable Neighborhood Search

We adjust the framework of the VNS metaheuristic [2] for our problem as follows.

1. Initialization. Find an initial semifeasible solution S; choose a stopping con-
dition and sizes of neighborhood families imax, jmax.

2. Repeat the following sequence until the stopping condition is met:
(a) Set i← 1; if F (S) = 0 then STOP, return the optimal solution S.
(b) Repeat the following steps until i = imax:

i. Shaking. Generate a solution S′ at random from the Ni(S).
ii. Local search. Use a local descent algorithm with respect to N1 with

S′ as the initial solution; denote the obtained local minimum as S′′.
iii. Move or not. If F (S′′) < F (S) then put S ← S′′ and goto 2(a);

otherwise, set i← i + 1.
(c) i. Large neighborhood search. Use a local descent algorithm with re-

spect to neighborhood LKjmax
with S as the initial solution; denote

the obtained local minimum as S′′.
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ii. Change representation. If F (S′′) < F (S) then put S ← S′′, other-
wise change the solution representation; goto 2(a).

At the initial step 1 we generate S by a polynomial time heuristic. It has T
stages. At each stage we solve an assignment problem.

6 Computational Results

We test the VNS algorithm on random instances with T = 6 × 5 and α =
1 + α′, β = 3 + β′, γ = 5 + γ′, λ = 10 + λ′, µ = 10 + µ′, where α′, β′, γ′, λ′, µ′

are random noise, 0 < α′, β′, γ′, λ′, µ′ � 1. This rule removes plateaus and
improves the landscape for local search methods. Each class has T lessons. Each
teacher l ∈ L has Tl/5 inconvenient time periods. The VNS algorithm produces
50 KT moves from a solution to a neighboring one. Table 1 presents average
values of the objective function for the best found solutions in 50 trials. Each
row of the table corresponds to one instance. For all instances VNS finds feasible
solutions in all trials. For comparison, we present the results for a tabu search

n L K J
∑

l
Tl TS TSR VNS VNSR

1 14 6 83 210 32.9 27.7 30.3 27.0
2 16 8 120 336 21.6 15.7 17.9 15.1
3 23 12 195 552 82.3 67.5 65.5 64.2
4 31 13 207 558 70.1 66.9 67.4 66.3

Table 1. Average values of F (S)

method with and without changing the solution representation (columns TSR
and TS). Table 1 shows that change of the solution representation is a useful idea
for both methods. We hope it may be successfully applied for other approaches
as well.
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