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1 Introduction

1.1 Iterated Local Search

Iterated Local Search (Lourenco et al., 2003), hientteto be referred to as ILS, is &
metaheuristic that has been used successfully twe smany combinatorial
optimisation problems, producing competitive resultThe technique essentially
consists of two phases: a local improvement phdsehsMeads monotonically to a
local optimum and another very short phase whicly take one of a number of
forms, often involving a small number of moves @mgartly or wholly at random.
The technique then iterates between these phasissomie stopping criterion is
satisfied.

1.2 Problemswith many objectives

Problems involving several distinct objectives afien formulated so that there is ¢
single objective function formed by a linear conation of subcosts, each subcos
relating to one of the many objectives. Howeveldymetaheuristic methods for the
solution of such problems can prove very difficatachieve, partly because of thi
often highly complex nature of the solution spac®me metaheuristic technique:
aim to address this issue by modifying the weigliitthe objectives at various times
during the search, thus reshaping the new solwmace. Such methods includ
Noising (Charon and Hudry, 1993) and SAWing (Eiber aan Hemert, 1999),
which have achieved some successes.

1.3 This paper

This paper reports the results of experiments ava technique which combines bott
of the ideas outlined above. The problem addreissedports rostering problem.
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2 A cricket umpirerostering problem

The problem addressed by this work is that of roxgesricket umpires for the Devon
Cricket League in England. This has been solved deeral years using a form of
Simulated Annealing (SA). However, the problena igseful test bed for new ideas
since it is sufficiently large and complex (with képarate objectives) to be ai
interesting challenge, yet not so large as to medErimentation excessively time-
consuming. A full description of the problem haseady been published (Wright,
2006).

3 ThedoublelLStechnique

Using intuitive methods for forming an initial stlkn and defining
neighbourhoods, the solution method continuesguaifiorm of Double ILS, since
there are two loops which use ILS in different waysl for different purposes. It
proceeds according to the following pseudo-code.

r epeat
set counter =0
r epeat
undert ake Local Inmprovenent (LI) to a local optinmum
set counter = counter + 1
if counter < N then make X perturbations
until counter = N
change subcost wei ghts
until total nunber of iterations during LI phases > Z
return to best solution found, reset weights to
original values and carry out final L

The inner loop is a simple form of ILS, while theteuloop is a very different
form of ILS (suitable only for problems with many jettives). This is why the
technigue has been named "Double ILS".

An iteration is defined as the process of calcntptthe change in cost of a
perturbation, whether or not that perturbationcisepted as a result.

The "best" solution means the best using the ofigineaghts.

Specifying Z ensures that fair comparisons betwegperimental runs can be
made, since the value of Z effectively indicatesdbmnputational effort.

3.1 ThelLocal Improvement phase

The LI technique systematically searches through paksible perturbations,
accepting any solution found that has lower cast tthe current solution. A device i<
used to identify perturbations that could not pagsimprove the solution; such
perturbations are not made, hence reducing thettiken.
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3.2 Changing weights

There are two input parameters (H and L). Initi#ilg weights used are the "real
weights and the "control parameter” C is set etubl. When it is required to change
weights, first C is set equalto H - ((H — L Y}/ Z, where | is the number of
iterations to that point, and then the weightsciui@nged as follows:

Method 1: for each subobjective separately, if its cost &aggr than or equal to its
value the previous time weights were changed, piulits weight by R (a random
number between 1 and C); otherwise divide its widighR.

Method 2: decide at random (probability 0.5) whether to npljtior divide the
weight by R.

3.3 Experimental results

Experiments to date have N = 1 (and thus X is imrie}eand Z = 500,000 or
2,000,000. They show that Method 1 outperforms M@t2 to a small but
statistically significant extent; that values obletween 4 and 8, and L between 2 ar
4, appear to work best; that the method is alrdadiy close to being competitive
with SA; and that it is considerably better thapeated LI.

Full results will be presented at the conferencevémious values of N and X, and
for different ways of choosing the X perturbatiomsluding totally at random. The
overall aim is to find robust values for H, L, N aXdwhich obviate the need for
tuning parameters anew for every application.
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