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Abstract. In the current work we describe a model for representing
non-deterministic schedules to match multiple instantiations of workflow
schemes. Furthermore we describe an algorithm to optimize such sched-
ules using heuristic search as a basis.
We conclude that using workflow as a guideline for scheduling instead
of as a constraint reduces the size of the search space during schedule
optimization. We also conclude that not all cases of workflow scheduling
benefit from optimization, depending on the length of resource require-
ment of the concurrent workflow scheme instantiations.
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1 Introduction

Recently, workflow engines have increasingly been making appearances
in the regulation of applications in environments with well-defined work
processes. The current work focuses on the scheduling of tasks repre-
sented in a flowchart. Our main inspiration is the medical world, since it
contains a large amount of guidelines and protocols where scheduling is
crucial.
There is a lot of work in the field of guideline modeling (Tu and Musen,
1999; Elkin et al, 2000; Wang et al, 2001) but generally there is no clear
consensus on which representation to use. Another pitfall is the fact that
even the medical knowledge in guidelines isn’t standardized, since differ-
ent hospitals have different guidelines. For these reasons, we choose to
work on an abstract problem in the current work. We hope our work will
become applicable in the future, when there is a more standard repre-
sentation for medical guidelines.
The main issue we want to tackle is optimizing a schedule for concurrent
instances of (possibly different) workflow schemes. This problem could be
likened to the flowshop scheduling problem (Watson et al, 1999; Baptiste
et al, 1997). However there is a factor that strongly differentiates both
problems, namely that workflow branches, while flowshop does not. This
alters schedule representation, since we need a non-deterministic sched-
ule, and makes mapping flowshop scheduling solutions to our problem
non-trivial.
While flowshop problems are mostly solved by some form of stochastic
search through permutations, we choose discrete optimization. We be-
lieve that the ordering of tasks inherent in the workflow can be used to
greatly reduce the search space. Another reason for choosing this ap-
proach is the fact that in medical environments the amount of workflow
schemes that will need to be scheduled at the same time should always
be small and the schedules shallow. There can’t be thousands of patients
coming in at once and there’s no point in scheduling tasks that have a
very low chance of ever having to be performed, or are too far in the
future.
In Section 2 we give a clear definition of the problem, in Section 3 we
describe our non-deterministic schedule representation and in Section
4 we propose a discrete optimization algorithm to solve our scheduling
problem. We discuss some aspects of our approach in Section 5.

2 Problem Definition

We use an abstract problem instead of a concrete medical problem in
the current work. The reason being that medical workflow is not stan-
dardized and incomplete. We believe that using simple abstract examples
instead of made up medical scenarios will make our work easier to un-
derstand.
We represent workflow as simplified Petri nets (Petri 1962; Peterson 1981;
Jensen 1992; Van der Aalst 1996). We show such a workflow scheme in
Figure 1. A workflow scheme is made up of places. In our simplification
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each place only holds one required resource. The resource requirement
can be for any amount of time. If the time isn’t specified it’s required for
one timeslot.

Fig. 1. A simple branching workflow scheme. The flow is read left-to-right. In the first
place, resource A is required, then either B or C will be required, and finally it converges
to the last place where D is required.

Now we can get to the actual problem definition. Our goal is to optimally
schedule multiple instantiations of (possibly different) workflow schemes.
There is no timelimit or urgency to the tasks. To solve this problem
we represent the non-deterministic schedule as a tree and use discrete
optimization guided by heuristics to build the schedule.

3 Solution representation

In Figure 2 we show a schedule-tree for a simple branching workflow
scheme.

Fig. 2. A scheduletree for an instantiation of the workflow scheme at the top. Each node
in the scheduletree holds slots where the index at the slot determines the timestamp.

We choose to represent our solution as a tree. The schedule-tree has the
following properties.

– Each node of the schedule-tree holds a finite number of timeslots
with their assigned resources.
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– A branch in the tree means that at that point there are two possible
schedules.

– Assume Node A is higher up in the schedule-tree than Node B, then
all timeslots included in Node A have timestamps that are earlier in
time than all timeslots included in Node B.

4 Exhaustive heuristic search

The algorithm we propose is a basic discrete optimization algorithm
building a searchtree (Russel and Norvig 2003; Nilsson 1980). The rootn-
ode of the searchtree holds an empty schedule, and each subsequent node
in the tree will hold its own schedule.
We follow a “moves” approach from game theory to grow the tree. A
move can be made at each step in time. We define the moves in terms of
assigning resources to timeslots in the schedule. Each different possible
way of assigning resources at this particular time is therefore a move. We
describe the possible moves below.
– Schedule a resource. This is the most straightforward move. At each

step several arrangements of resource schedulings can be possible.
Each of them is a new move.

– Do nothing. Sometimes it can be better to wait for a task to finish
instead of greedily assigning new resources. This waiting step can
only occur in case there are still unfinished tasks. In case all tasks
are finished there is nothing to be waiting for.

When all tasks are finished no further moves are made. When no nodes
can make further moves the scheduler is done.
Discrete optimization of a schedule is a tough problem with regards to
performance. There are some tricks we can use to ensure some perfor-
mance though. First of all, instead of trying to enforce the constraints
specified by the workflow process definitions (more specifically the order
in which things are supposed to happen), we can use those constraints
to significantly narrow down the search space of schedules. Instead of
looking through all possible schedules and looking for ones that match
the order specified by the workflow, we can gradually build the schedules
and optimize them along the way. This amounts to interweaving the dif-
ferent processes so that they all fit in the schedule, and makes our search
much easier.
Secondly, we use a heuristic also known in parallel computing. While
we can’t directly map flowshop and parallel computing solutions to our
problem, we can nevertheless use this heuristic: schedule short tasks
first(Hameurlain and Morvan 1993; Rys and Weikum 1994; Hart et al
1968; Pearl 1984; Dechter and Pearl 1984).

5 Results

We examine the usefulness of our method with regards to discrepance in
length of resource requirement between two instances of different work-
flow schemes using the same resources, as shown in Figure 3.
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Fig. 3. A very simple workflow scheme. In the first place A is used for a variable amount
of time, and in the second place B is used for a variable amount of time.

A1 B1 A2 B2 Best solution size Avg. solution size

1 1 1 1 3 3

1 2 2 1 4 4.5

1 3 3 1 5 6

1 4 4 1 6 7.5

2 4 4 2 8 9

3 4 4 3 10 10.5

Table 1. A1 is the time the resource A is required in the first instance of the scheme,
A2 is the time the resource A is required in the first instance of the scheme, and so
on... The best solution size is how much timeslots the optimal solution takes up (this
is the solution computed by our algorithm), and the Avg. solution size is just what it
says.

The results indicate that optimization doesn’t benefit cases where the
time requirements for each resource are similar.

6 Conclusion

We proposed a way to represent non-deterministic schedules to match in-
stantiations of concurrent workflow schemes. We ensured that this sched-
ule is consistent at all times by representing it as a tree where branches
in the tree represent branches in the general execution path of the com-
bined workflow instances.
By using the constraints imposed by the workflow schemes instead of
trying to enforce them, we manage to significantly reduce the search
space for our scheduling algorithm. We deviced a discrete optimization
algorithm that exploits the workflow schemes.
Our results also show a property of optimization in such a setting, that
can be translated into a heuristic. Short tasks should be scheduled first
so that they don’t hamper concurrence. This property is also found in
parallel computing.
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