
Queen’s University Belfast, Northern Ireland, 10th - 13th August 2010
8th International Conference on the Practice and Theory of Automated Timetabling

PATAT 2010

CO
NF

ER
EN

CE
 P

RO
CE

ED
IN

GS

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

PATAT 2010

Proceedings of the 8th International Conference

on the Practice and Theory of Automated

Timetabling

10 - 13 August 2010 (Queen’s University of Belfast)

Edited by:

Barry McCollum, Queen’s University Belfast, UK

Edmund Burke, University of Nottingham, UK

George White, University of Ottawa, Canada

ISBN 08-538-9973-3

Published by Queen’s University Belfast

i

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Preface

On behalf of the Steering Committee and the Programme Committee of the

PATAT (Practice and Theory of Automated Timetabling) series of conferences,

we would like to welcome you to the eighth conference here in Belfast. The

PATAT conferences, which are held every two years, bring together researchers

and practitioners in all aspects of computer-aided timetable generation and related

issues. This includes personnel rostering, school timetabling, sports scheduling,

transportation timetabling and university timetabling. It is worthy pointing out

that this conference is being held at a time when the current world wide economic

downturn is fueling the need for innovative approaches to the management and

planning of resources. Fostering the development of leading edge research

techniques in underpinning innovate timetabling approaches has always been a

fundamental aspect of the PATAT mission in bridging the gap between

practitioners and researchers in this increasingly important field.

An addition to the PATAT Conference this year is the inclusion of a number of

key note addresses from practitioners. The conference organisers believe that this

is an important initiative in addressing the well recognised gap which exists

between the practice and theory of automated timetabling. The idea is that the

practitioners stream should integrate with the conference theory sessions in an

attempt to bring both practitioners and theoreticians together. It is intended that

this will be a springboard which will help future PATAT conferences to continue

to integrate and combine both the research and practice agendas across all areas of

timetabling.

The programme of this year’s conference features 73 presentations which

represent the state-of-the-art in automated timetabling: there are 4 plenary papers,

31 full papers, 28 extended abstracts, 2 system demonstrations and 8 key note

practitioner talks. It is encouraging to see the number of submissions which are

orientated towards timetabling systems which draw upon leading edge

approaches. As was the case in Montreal in 2008, a post-conference volume of

selected and revised papers is to be published in Annals or Operational Research.

Authors of full papers and extended abstracts are encouraged to submit to this

special issue after the conference.

We would like to express our gratitude to the large number of individuals who

have helped organise the conference. We thank the members of the Steering

Committee who continue to ensure the ongoing success of the series and the

members of the Programme Committee who have worked hard to referee the

conference submissions. As always we are grateful to all authors and delegates.

We would particularly like to thank Dr Pat Corr, Director of the INTO Centre at

Queen’s University for hosting the conference. We hope you will agree that the

surroundings lend themselves very well to the running of an intimate and

successful conference. Special thanks go to the organising committee especially

Evelyn Milliken and Brian Fleming for their organisational skills and tireless help

ii

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

and support in ensuring that the conference runs to the highest possible standard.

Finally we would like to thank our sponsors who not only have helped fund the

conference but are also all making a valuable contribution in terms of

presentations.

We are delighted to welcome you all to the Queens University of Belfast. We

hope you enjoy the conference talks and networking opportunities provided. As

another first for the conference, it is our intention to survey all participants after

the conference to learn how we can continue to improve on the progress made by

the series of conferences to date.

Barry McCollum and Edmund Burke

iii

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

PATAT 2010 Conference Program Committee

Abdullah, Salwani

Alfares, Hesham

Bardadym, Viktor

Bean, James

Brucker, Peter

Burke, Edmund

Cowling, Peter

De Causmaecker, Patrick

Dowsland, Kathryn

Erben, Wilhelm

Di Gaspero, Luca

Gendreau, Michel

Hertz, Alain

Kendall, Graham

Kingston, Jeffrey

Kwan, Raymond

Lewis, Rhyd

Meisels, Amnon

McMullan, Paul

Murray, Keith

Ozcan, Ender

Paechter, Ben

Parkes, Andrew

Pesant, Gilles

Petrovic, Sanja

Potvin, Jean-Yves

Qu, Rong

Rousseau, Louis-Martin

Ribeiro, Celso C.

Rudova, Hana

Schaerf, Andrea

Schreuder, Jan

Thompson, Jonathan

Toth, Paolo

Trick, Michael

Van Hentenryck, Pascal

Vanden Berghe, Greet

Voss, Stefan

De Werra, Dominique

White, George

Wright, Michael

Yellen, Jay

iv

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

PATAT Steering Committee

Edmund K.Burke (Chair) University of Nottingham, UK

Ben Paechter (Treasurer) Napier University, UK

Patrick De Causmaecker K.U.Leuven and KaHo St.-Lieven, Belgium

Wilhelm Erben University of Applied Sciences Konstanz, Germany

Michel Gendreau Université de Montréal, Canada

Jeffrey H. Kingston University of Sydney, Australia

Barry McCollum Queen's University Belfast, Northern Ireland, UK

Amnon Meisels Ben-Guron University, Beer Sheva, Israel

Hana Rudova Masaryk University, The Czech Republic

George White University of Ottawa, Canada

v

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Table of Contents

Plenary Papers

Scheduling English Football Fixtures: Consideration of Two

Conflicting Objectives.

Graham Kendall , Barry McCollum, Frederico Cruz and Paul

McMullan

1

Estimating the limiting value of optimality for very large

NP problems

George White

16

Timetable Construction: The Algorithms and Complexity Perspective

Jeffrey H. Kingston

26

Solution Method and Decision Support System Framework

David M. Ryan and Natalia J. Rezanova

37

Full Papers

Curriculum-based Course Timetabling with SAT and MaxSAT

Roberto Asín Achá and Robert Nieuwenhuis.

42

A Combination of Metaheuristic Components based on Harmony

Search for The Uncapacitated Examination Timetabling

Mohammed Azmi Al-Betar, Ahamad Tajudin Khader and J. Joshua

Thomas

57

Bridging the Gap between Self Schedules and Feasible Schedules in

Staff Scheduling

Eyjólfur Ingi Ásgeirsson

81

An Evolutionary Algorithm in a Multistage Approach for an Employee

Rostering Problem with a High Diversity of Shifts

Zdenek Baumelt, Premysl Sucha and Zdenek Hanzalek

97

vi

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Network Flow Models for Intraday Personnel Scheduling Problems

Peter Brucker and Rong Qu.

113

Round-Robin Tournaments with homogenous rounds

Bregje Buiteveld, Erik Van Holland, Gerhard Post and Dirk Smit

122

Adaptive Selection of Heuristics for Improving Constructed Exam

Timetables

Edmund Burke, Rong Qu and Amr Soghier

136

Iterated Heuristic Algorithms for the Classroom Assignment Problem

Ademir Constantino, Walter Marcondes Filho and Dario Landa-Silva

152

A Variable Neighborhood Search based Matheuristic for Nurse

Rostering Problems

Federico Della Croce and Fabio Salassa

167

On-line timetabling software

Florent Devin and Yannick Le Nir

176

Soccer Tournament Scheduling Using Constraint Programming

Mike DiNunzio and Serge Kruk

193

Truck Driver Scheduling and Australian Heavy Vehicle Driver Fatigue

Law

Asvin Goel

201

Distributed Scatter Search for the Examination Timetabling Problem

Christos Gogos, George Goulas, Panayiotis Alefragis, Vasilios

Kolonias and Efthymios Housos

211

A Comparison of Heuristics on a Practical Case of Sub-Daily Staff

Scheduling

Maik Güenther and Volker Nissen

224

The Bi-Objective Master Physician Scheduling Problem

Aldy Gunawan and Hoong Chuin Lau

241

vii

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Combining VNDS with Soft Global Constraints Filtering for Solving

NRPs

Jean-Philippe Métivier, Patrice Boizumault and Samir Loudni

259

An efficient and robust approach to generate high quality solutions for

the Travelling Tournament Problem

Douglas Moody, Amotz Bar Noy and Graham Kendall

273

Youth Sports League Scheduling

Douglas Moody, Amotz Bar Noy and Graham Kendall

283

A Novel Event Insertion Strategy for Creating Feasible Course

Timetables

Moritz Mühlenthaler and Rolf Wanka

294

Choquet Integral for Combining Heuristic Values for Exam

Timetabling Problem

Tiago Pais and Edmund Burke

305

An Overview of School Timetabling Research

Nelishia Pillay

321

Evolving Hyper-Heuristics for a Highly Constrained Examination

Timetabling Problem

Nelishia Pillay

336

An XML Format for Benchmarks in High School

Gerhard Post, Jeffrey H. Kingston, Samad Ahmadi, Sophia Daskalaki,

Christos Gogos, Jari Kyngas, Cimmo Nurmi, Haroldo Santos, Ben

Rorije and Andrea Schaerf

347

A Construction Approach for Examination Timetabling based on

Adaptive Decomposition and Ordering

Syariza Abdul Rahman, Edmund Burke, Andrzej Bargiela, Barry

McCollum and Ender Ozcan

353

New Era for Timetable is Timetable Hub

Amir Nurashid Mohamed Said

373

viii

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Cross-Curriculum Scheduling with Themis - A Course-Timetabling

System for Lectures and Sub-Events

Heinz Schmitz and Christian Heimfarth.

385

The Perception of Interaction on the University Examination

Timetabling Problem

J. Joshua Thomas, Ahamad Tajudin Khader, Mohammed Azmi Al-

Betar and Bahari Belaton

392

A 5.875-Approximation for the Traveling Tournament Problem

Stephan Westphal and Karl Noparlik

417

Comparison of Algorithms solving School and Course Time Tabling

Problems using the Erlangen Advanced Time Tabling System

(EATTS)

Peter Wilke and Helmut Killer

427

Walk Up Jump Down - a new Hybrid Algorithm for Time Tabling

Problems

Peter Wilke and Helmut Killer

440

The Erlangen Advanced Time Tabling System (EATTS) Unified XML

File Format for the Specification of Time Tabling Systems

Peter Wilke and Johannes Ostler

447

Extended Abstracts

Assigning referees to a Chilean football tournament by integer

programming and patterns

Fernando Alarcón, Guillermo Durán and Mario Guajardo

466

Tabu assisted guided local search approaches for freight service

network design

Ruibin Bai and Graham Kendall

468

The Relaxed Traveling Tournament Problem

Renjun Bao and Michael Trick

472

ix

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Modelling issues in nurse rostering

Burak Bilgin, Patrick De Causmaecker and Greet Vanden Berghe

477

Semidefinite Programming Relaxations in Timetabling

Edmund K. Burke, Jakub Marecek and Andrew J. Parkes

481

A general approach for exam timetabling: a real-world and a

benchmark case

Peter Demeester, Greet Vanden Berghe and Patrick De Causmaecker

486

A Hybrid LS-CP Solver for the Shifts and Breaks Design Problem

Luca Di Gaspero, Johannes Gaertner, Nysret Musliu, Andrea Schaerf,

Werner Schafhauser and Wolfgang Slany

490

Diamant

Ruben Gonzalez-Rubio

493

First International Nurse Rostering Competition 2010

Stefaan Haspeslagh, Patrick De Causmaecker, Martin Stolevik and

Andrea Schaerf

498

A Weighted-Goal-Score Approach to Measure Match Importance in

the Malaysian Super League

League Nor Hayati Abdul Hamid, Graham Kendall and Naimah Mohd

Hussin

502

Swiss National Ice Hockey Tournament

Tony Hürlimann

507

An Approximation Algorithm for the Unconstrained Traveling

Tournament Problem

Shinji Imahori, Tomomi Matsui and Ryuhei Miyashiro

508

Data Formats for Exchange of Real-World Timetabling Problem

Instances and Solutions

Jeffrey H. Kingston

513

Solving the General High School Timetabling Problem

Jeffrey H. Kingston

517

x

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

Towards an Integrated Workforce Management System

Dario Landa-Silva, Arturo Castillo, Leslie Bowie and Hazel Johnston

519

The Home Care Crew Scheduling Problem

Jesper Larsen, Anders Dohn, Matias Sevel Rasmussen and Tor

Justesen

524

University course scheduling problem with traffic impact

considerations

Loo Hay Lee, Ek Peng Chew, Kien Ming NG, Hui-Chih Hung, Jia

Wang and Hui Xiao

527

Ground Crew Rostering with Work Patterns at a Major European

Airline

Richard Lusby, Anders Dohn, Troels Range and Jesper Larsen

529

Properties of Yeditepe Examination Timetabling Benchmark Instances

Andrew J. Parkes and Ender Ozcan

531

Combined Blackbox and AlgebRaic Architecture (CBRA)

Andrew J. Parkes

535

Solving the Airline Crew Pairing Problem using Subsequence

Generation

Matias Sevel Rasmussen, David M. Ryan, Richard M. Lusby and

Jesper Larsen

539

Grouping Genetic Algorithm with Efficient Data Structures for the

University Course Timetabling Problem

Felipe A. Santos and Alexandre C. B. Delbem

542

Modelling and Solving the Generalised Balanced Academic

Curriculum Problem with Heterogeneous Classes

Andrea Schaerf, Marco Chiarandini and Luca Di Gaspero

547

Modeling and Optimizing a real Railway Corridor

Thomas Schlechte, Ralf Borndoerfer, Elmar Swarat and Thomas

Graffagnino

551

xi

Practice and Theory of Automated Timetabling (PATAT 2010), 11-13 August 2010, Queen’s University, Belfast, UK

A hyper-heuristic approach for assigning patients to hospital rooms

Wim Vancroonenburg, Mustafa Misir, Burak Bilgin, Peter Demeester

and Greet Vanden Berghe

553

The Design and Implementation of an Interactive Course-

Timetabling System

Anthony Wehrer and Jay Yellen

556

The Erlangen Advanced Time Tabling System (EATTS) Version 5

Peter Wilke

559

Timetabling the major English cricket fixtures

Mike Wright

566

System Demonstrations

System Demonstration: Timetabling a University Dental School

Hadrien Cambazard, Barry O'Sullivan, John Sisk, Robert McConnell

and Christine McCreary

569

System Demonstration of Interactive Course Timetabling

Tomáš Müller, Keith Murray and Hana Rudová

573

Plenary Presentations

1

Scheduling English Football Fixtures: Consideration of
Two Conflicting Objectives

Graham Kendall · Barry McCollum ·
Frederico Cruz · Paul McMullan

Abstract In previous work the distance travelled by UK football clubs, and their

supporters, over the Christmas/New Year period was minimised. This is important as

it is not only a holiday season but, often, there is bad weather at this time of the year.

Whilst searching for good quality solutions for this problem, various constraints have

to be respected. One of these relates to clashes, which measures how many paired teams

play at home on the same day. Whilst the supporters have an interest in minimising

the distance they travel, the police also have an interest in having as few pair clashes

as possible. This is due to the fact that these fixtures are more expensive, and difficult,

to police. However, these two objectives (minimise distance and minimise pair clashes)

conflict with one another in that a decrease in one intuitively leads to an increase in the

other. This paper explores this question and shows that there are compromise solutions

which allow fewer pair clashes but does not statistically increase the distance travelled.

This paper provides a more comprehensive study of the initial results presented at

the previous PATAT conference. We present a more detailed set of computational

experiments, along with a greater number of datasets. We conclude that it is sometimes

possible to reduce the number of pair clashes whilst not significantly increasing the

overall distance that is travelled.

Keywords Sport · Football · Scheduling · Multiobjective

Graham Kendall
School of Computer Science, University of Nottingham, NG8 1BB, UK
Tel.: +44 (0) 115 846 6514
Fax: +44 (0) 115 951 4254
E-mail: gxk@cs.nott.ac.uk

Barry McCollum
School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, BT7 1NN, UK

Frederico Cruz
Departamento de Estatstica - ICEx - UFMG, Av. Antnio Carlos, 6627, 31270-901 - Belo Hor-
izonte - MG, Brazil

Paul McMullan
School of Electronics, Electrical Engineering and Computer Science, Queen’s University
Belfast, BT7 1NN, UK

2

1 Introduction

The English Premier League is one of the most high profile, and successful, football

(soccer in the USA) leagues in the world. It comprises 20 teams which have to play

each other both home and away (i.e. a double round robin tournament), resulting in

380 fixtures that have to be scheduled. The other three main divisions in England (the

Championship, League One and League Two) each have 24 teams, resulting in 552

fixtures having to be scheduled for each division. Therefore, for the four main divisions

in England 2036 fixtures have to be scheduled every season. The divisions operate a

system of promotion and relegation such that the teams in each division changes each

year so it is not possible to simply use the same schedule every time.

Of particular interest are the schedules that need to be generated for the Christ-

mas/New Year period. At this time of the year it is a requirement that every team

plays two fixtures, one on Boxing Day (26th December) and one on New Years Day (1st

January). Whilst scheduling these two sets of fixtures the overriding aim is to minimise

the total distance that has to be travelled by the supporters. An analysis of the fixtures

that were actually used, and also following discussions with the football authorities,

confirm that this is a real world requirement and that the distances travelled by the

supporters are the minimum when compared against other fixtures when all teams

play. In addition, there are various other constraints that have to be respected, which

are described in sections 3 and 4.

The problem we tackle in this paper is to attempt to minimise two competing

objectives to ascertain if there is a good trade off between them. The objectives we

minimise are the distances travelled by the supporters and the number of pair clashes.

Pairing matches two (or more) teams and dictates that these clubs should not play at

home on the same day. If they do, this is termed a pair clash. In fact, a certain number

of pair clashes are allowed. The exact number is taken from the number that were

present in the published fixtures for a given season. Importantly, paired teams cannot

play each other on the two days in question. This is treated as a hard constraint. It is

this constraint that causes a problem. If we allow Liverpool and Everton (for example)

to play each other, one set of supporters would only travel four miles. If these teams

are paired (as they are) then they cannot play each other so the distances are likely to

increase as either Liverpool or Everton would have to travel more than four miles. As

pair clashes usually involve teams which are geographically close this gives rise to the

conflicting objectives.

In [19], an initial study of the problem considered the 2003-2004 football season,

suggesting that it may be possible to minimise both of these competing objectives but

still produce results which are acceptable to both the supporters (who are interested in

minimising the amount they travel) and the police (who are interested in having fewer

pair clashes). In this paper, we carry out a more in depth study by considering more

seasons and carrying out statistical analysis of the results in order to draw stronger

conclusions.

2 Related Work

Producing a double round robin tournament is relatively easy in that the algorithms are

well known, with the polygon construction method being amongst the most popular

[9]. The problem with utlising such an algorithm is that the fixtures it generates,

3

although being a valid round robin tournament, will not adhere to all the additional

constraints for a particular problem. Moreover, every problem instance will be subtly

different and, often, a bespoke algorithm is required for each instance. This is even the

case when faced with seemingly the same problem. For example, the English Football

League consists of four divisions and 92 teams. It would be easy to assume that once

an algorithm has been developed it can be used every season. This may indeed be

the case but due to the promotion/relegation system the problem changes year on

year and, perhaps, there are additional features/constraints in one season that were

not previously present. Rasmussen and Trick [21] provide an excellent overview of the

issues, methods and theoretical results for scheduling round robin tournaments.

The Travelling Tournament Problem (TTP) [11] is probably the most widely used

test bed in sports scheduling. The problem was inspired by work carried out for Major

League Baseball [11]. The aim of the TTP is to generate a double round robin tourna-

ment, while minimising the overall distance travelled by all teams. Unlike the problem

studied in this paper, it is possible to minmise the overall travel distance as teams go

on road trips so, with a suitable schedule, the length of these trips can be reduced.

The TTP is further complicated by the introduction of two constraints. The first says

that no team can play more than three consecutive home or away games. The second

stipulates that if team i plays team j in round, r, then team j cannot play team i in

round r+1. These constraints add sufficient complexity to the problem so as to make

it challenging, but it still does not reflect all the constraints that are present in the real

world problem.

The TTP has received significant research attention. Some of the important papers

being [12,2,8,22,25]. A recent annotated bibliography of TTP papers can be found

in [18]. An up to date list of the best known solutions, as well as details of all the

instances, can be found at the web site maintained by Michael Trick [23].

With respect to minimising travel costs/distances, previous studies have considered

a variety of sports. Campbell and Chen [6] and Ball and Webster [3] both studied

basketball, attempting to minimise the distance travelled. Bean and Birge [4] also

studied basketball, attempting to minimise airline travel costs. Minimising travel costs

was also the focus of [5], for baseball. Minimising travel distances for hockey [16]

and umpires for baseball [15] have also been studied. Wright [28], as one part of the

evaluation function, considered travel between fixtures for English cricket clubs. Costa

[7] considered the National Hockey League, where minimisation of the distance travelled

by the teams was just one factor in the objective function.

Urrutia and Ribeiro [24] have shown that minimising distance and maximising

breaks (two consecutive home games (home break) or two consecutive away games

(away break)) is equivalent. This followed previous work by de Werra [26,27] and Elf

et al. [14] who showed how to construct schedules with the minimum number of breaks.

The scheduling problem that we are considering in this paper is minimising the

distance travelled for two complete fixtures (a complete fixture is defined as a set of

fixtures when every team plays) while, at the same time, minimising the number of pair

clashes. These two complete fixtures can then be used over the Christmas holiday period

when, for a variety of reasons, teams wish to limit the amount of travelling undertaken.

Note, that this is a different problem to the Travelling Tournament Problem as the TTP

assumes that teams go on road trips, and so the total distance travelled over a season

can be minimised. In English football, there is no concept of road trips. Therefore, over

the course of a season, the distance cannot be minimised. However, we can minimise the

distance on particular days. Kendall [17] adopted a two-phase approach to produce two

4

complete fixtures for this problem. A depth first search was used to produce fixtures for

one day, for each division. A further depth first search created another set of fixtures for

the second day. This process produced eight separate fixtures (two sets of fixtures for

each division) which adhered to some of the constraints (e.g. a team plays at home on

one day and away on the other) but had not yet addressed the constraints with regards

to pair clashes (see [17] for a detailed description). The fixture lists from the depth first

searches were input to a local search procedure which aimed to satisfy the remaining

constraints, whilst attempting to minimise the overall distance travelled. The output

of the local search, and a post-process operation to ensure feasibility, produced the

results presented in the paper.

Overviews of sports scheduling can be found in [13,9,10,21,29,20,18].

3 Problem Definition

In previous work [17] the only objective was to minimise the total distance travelled by

the teams/supporters. The aim of that study was to investigate if we were able to gen-

erate better quality solutions than those used by the football league. We demonstrated

that it was possible. As stated in the Introduction, the police also have an interest

in the fixtures that are played at this time of the year. If we are able to generate

acceptable schedules, with fewer pair clashes then the policing costs would be reduced.

The purpose of this paper is to investigate if there is an acceptable trade off between

the minimisation of distance and the minimisation of pair clashes. In order to do this

we will utilise a multi-objective methodology.

4 Experimental Setup

We use a two stage algorithm. In [17] a depth first search (DFS) was used, followed

by a local search. DFS was used as we wanted to carry out a preliminary study just

to see if this area was worthy of further study. As we were able to produce superior

solutions to the published fixtures we have now decided to utilise more sophisticated

methods, due to the large execution times of DFS which were typically a few hours for

each division. In this work we utilise CPLEX as a replacement for DFS and simulated

annealing [1] as a replacement for the local search. This reduces the overall execution

time from tens of hours to a few minutes.

4.1 Phase 1: CPLEX

The first phase uses CPLEX to produce an optimal solution to a relaxed version of the

problem. In generating relaxed optimal solutions we respect the following constraints,

whilst minimizing the overall distance.

1. Each of the 92 teams has to play on two separate days (i.e. 46 fixtures will be

scheduled on each day).

2. Each team has to play at home on one day and away on the other.

3. Teams are not allowed to play each other on both days.

4. A team is not allowed to play itself.

5

The CPLEX model is executed four times. Each run returns the Boxing Day and

New Years Day fixtures for a particular division. Each run takes less than 10 seconds.

In solving the CPLEX model we do not take into account many of the constraints

that ultimately have to be respected. For example, pair clashes, geographical con-

straints such as the number of London or Manchester clubs playing at home on the

same day etc. (see [17] for details).

4.2 Phase 2: Simulated Annealing

The schedules from CPLEX are input to the second phase, where we utilise simulated

annealing. This operates across all the divisions in order to resolve any hard constraint

violations whilst still attempting to minimise the distance.

The simulated annealing parameters are as follows:

Start Temperature = 1000 The same value is used across all seven datasets and

was found by experimentation. We could have used different values for each dataset

but we felt that it was beneficial to be consistent across all the datasets.

Stop Temperature The algorithm continues while the temperature is > 0.1.

Cooling Schedule CurTemp = CurTemp * 0.95.

Number of Iterations 2000 iterations are carried out at each temperature.

4.3 Evaluation Function

The evaluation function we use for simulated annealing is dynamic in that the hard

constraint violations are more heavily penalised as the search progresses. This enables

more exploration at the start of the search, which gets tighter as the temperature is

reduced. The objective function is formulated as follows:

f(x) = d fb + d fy + w × penalty (1)

where:

d fb = total distance travelled by teams on Boxing Day.

d fy = total distance travelled by teams on New Years Day.

w = is a weight for the penalty (see below). It is given by (Start Temperature -

CurTemp). Start Temperature is the maximum temperature for the simulated

annealing algorithm. CurTemp is the current temperature of the simulated an-

nealing algorithm. As the simulated annealing algorithm progresses, the weight of

the penalty gradually increases, driving the search towards feasible solutions, but

allowing it to search the infeasible region at the start of the search.

penalty = This is given by a summation of the following terms (the limits referred

to are available in [17] and represent the values found by analyzing the published

fixtures):

ReverseFixtures The number of reverse fixtures (the same teams cannot meet

on both days).

Boxing Day Local Derby Clashes The number of paired teams playing each

other on Boxing Day.

6

New Years Day Local Derby Clashes The number of paired teams playing

each other on New Years Day.

Boxing Day London Clashes The number of London clubs playing at home on

Boxing Day, which exceed a given limit.

New Years Day London Clashes The number of London clubs playing at home

on New Years Day, which exceed a given limit.

Boxing Day Greater Manchester Clashes The number of Greater Manchester

based clubs playing at home on Boxing Day, which exceed a given limit.

New Years Day Greater Manchester Clashes The number of Greater Manch-

ester based clubs playing at home on New Years Day, which exceed a given limit.

Boxing Day London Premier Clashes The number of Premiership London clubs

playing at home on Boxing Day, which exceed a given limit.

New Years Day London Premier Clashes The number of Premiership Lon-

don clubs playing at home on New Years Day, which exceed a given limit.

Boxing Day Clashes The number of Boxing Day clashes greater than an allow-

able limit.

New Years Day Clashes The number of New Years Day clashes greater than

an allowable limit.

4.4 Perturbation Operators

Simulated annealing often has a single neighborhood operator but we have defined six-

teen operators in order to match the hard constraints within the model. The operators

are as follows:

1. Examines the Boxing Day fixtures and if the number of clashes exceeds an upper

limit, randomly select one of the clashing fixtures and swap the home and away

teams.

2. Same as 1 expect that it considers New Years Day fixtures.

3. Examines the Boxing Day fixtures and if the number of London based clubs exceeds

an upper limit, randomly select one of the fixtures that has a London based club

playing at home and swap the home and away teams.

4. Same as 3 except that it considers Greater Manchester based clubs.

5. Same as 3 except that it considers London based premiership clubs.

6. Same as 3 except that it considers the New Years Day fixtures.

7. Same as 4 except that it considers the New Years Day fixtures.

8. Same as 5 except that it considers the New Years Day fixtures.

9. Examines the Boxing Day and New Years Day fixture lists, returning the number

of reverse fixtures (where team i plays team j and team j plays team i). While

there are reverse fixtures, one of the reverse fixtures on Boxing Day is chosen and

the home team is swapped with a randomly selected home team, with the condition

that the swaps must be made between teams in the same division. This operator

iterates until all reverse fixtures have been removed from the fixture list.

10. Same as 9 except the swaps are made in the New Years Day fixtures.

11. This operator examines the Boxing Day and New Years Day fixture lists, returning

the number fixtures where paired teams are playing each other. While this is the

case, one of the Boxing Day fixtures is chosen and the home team is swapped with

a randomly selected home team in the Boxing Day fixtures, with the condition that

7

the swaps must be made between teams in the same division. This operator iterates

until all local pair clashes have been removed from the fixture lists.

12. Same as 11 except the swaps are made in the New Years Day fixtures.

13. This operator chooses a random fixture from a candidate list (we use a candidate list

size of 250) which represents the potential fixtures that have the shortest distances.

Swaps are carried out in the Boxing Day fixtures in order to allow the two teams

from the selected item in the candidate list to play each other. The necessary swaps

are also done in the New Years Day fixture to ensure feasibility.

14. Same as 13 except that it considers the New Years Day fixtures.

15. Selects a random fixture in the Boxing Day fixture list and swaps the home and

away teams.

16. Same as 15, but swaps a random fixture in the New Years Day fixture list.

At each iteration, one of the sixteen operators is chosen at random. Start Temperature

is initially set to enable infeasible solutions during the early stages of the algorithm,

but they are more heavily penalised at lower temperatures (eq. 1), ensuring that the

final solution is feasible.

4.5 Experimental Methodology

We are investigating this problem from a multi-objective perspective but rather than

using a multi-objective algorithm we run the same algorithm a number of times, adjust-

ing the parameters for each run. As an example, for the 2002-2003 season the number of

pair clashes, in the published fixtures, was 10 and 8 for Boxing Day and New Years Day

respectively. We denote this as 10-8 in the tables below. Therefore, the first experiment

fixes the values as 10 and 8 as the number of pair clashes that cannot be exceeded. In

this respect, these values represent hard constraints. The next experiment reduces one

of these values so that the next experiment uses 10-6. We then reduce the other value

to run a further experiment using 8-8. There are two points worthy of note. Firstly, we

reduce the value by two as a pair clash of, say, Everton and Liverpool actually counts

as two pair clashes as both teams are considered to be clashing. Secondly, we do not

reduce the total number of pair clashes below 16.

5 Results

Tables 1 thru 7 shows the results of each of the seven seasons that we use. The Clashes

column shows the number of pair clashes (see section 4.5 for the notation that we use).

Min represents the best solution found. Max is worst solution found and Average and

Std Dev are self-explanatory. All experiments were runs 30 times.

Table 1 2002-2003: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-8 5243 6786 5630 288.46
10-6 5674 7222 6183 410.71
8-8 5562 6797 6070 309.50

8

Table 2 2003-2004: Summary of results from 30 runs

Clashes Min Max Average Std Dev

8-14 5464 6173 5698 165.46
8-12 5412 6519 5827 228.66
8-10 5511 7093 6053 417.00
8-8 5887 7674 6535 433.83
6-14 5550 6334 5805 176.02
6-12 5559 6587 6036 289.75
6-10 5898 7416 6454 395.37
4-14 5592 6911 6059 274.61
4-12 5886 7848 6635 484.59
2-14 6028 7704 6704 448.87

Table 3 2004-2005: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-10 5365 6986 5644 318.33
10-8 5345 6348 5727 259.17
10-6 5812 7714 6431 421.63
8-10 5443 6982 5923 469.01
8-8 5645 7612 6428 550.67
6-10 5810 7824 6486 487.26

Table 4 2005-2006: Summary of results from 30 runs

Clashes Min Max Average Std Dev

12-14 5234 6046 5575 184.74
12-12 5335 6002 5596 153.90
12-10 5240 6511 5641 238.58
12-8 5334 6423 5754 231.81
12-6 5481 6958 6010 339.63
12-4 6041 6989 6468 271.99
10-14 5171 6683 5606 304.33
10-12 5308 6322 5610 204.96
10-10 5460 6674 5846 359.65
10-8 5595 6380 5872 216.82
10-6 6027 7561 6660 421.25
8-14 5335 6674 5680 286.00
8-12 5334 6133 5722 211.02
8-10 5608 7078 5979 356.15
8-8 6146 7277 6587 302.48
6-14 5500 6694 5843 254.23
6-12 5528 6655 5951 233.54
6-10 5884 7291 6529 382.80
4-14 5713 7391 6161 331.25
4-12 6032 7904 6662 434.72
2-14 6084 7551 6682 399.34

In tables 8 and 9 we analyse the results from table 1. Table 8 shows the results

of independent two-tailed t-tests (at the 95% confidence level) to compare the means

of each experiment against every other experiment for that season. Where two exper-

iments are statistically significant the relevant cell shows “Yes”, otherwise the cell is

9

Table 5 2006-2007: Summary of results from 30 runs

Clashes Min Max Average Std Dev

14-8 5713 7040 6077 300.71
14-6 5735 7065 6117 270.59
14-4 5872 7000 6259 227.84
14-2 6110 7778 6741 402.35
12-8 5721 6784 6084 244.28
12-6 5714 6894 6234 326.99
12-4 6195 7546 6791 405.86
10-8 5762 7671 6209 411.02
10-6 5894 7376 6618 423.94
8-8 6071 6958 6513 251.33

Table 6 2007-2008: Summary of results from 30 runs

Clashes Min Max Average Std Dev

14-10 5366 5902 5595 145.26
14-8 5403 5975 5674 152.93
14-6 5425 7172 5870 372.17
14-4 5690 6995 6172 364.78
14-2 5905 7856 6698 435.98
12-10 5370 6506 5736 294.88
12-8 5321 7139 5850 338.15
12-6 5625 7394 6084 365.93
12-4 5961 7580 6575 411.41
10-10 5340 6552 5754 228.71
10-8 5616 6365 5944 183.52
10-6 6101 7468 6619 369.10
8-10 5536 7081 6056 369.47
8-8 6091 7884 6725 402.08
6-10 5951 7709 6647 381.12

Table 7 2008-2009: Summary of results from 30 runs

Clashes Min Max Average Std Dev

10-10 5564 6806 5833 246.11
10-8 5574 6235 5829 140.52
10-6 5736 6523 6106 208.78
8-10 5581 6817 5936 281.83
8-8 5790 6900 6148 230.42
6-10 5809 7194 6208 274.67

empty. As an example, if we compare 10-8 (column) with 10-6 (row) in table 8 we see

that the means (i.e. the travel distances from 30 independent runs) are statistically

different. By comparing the means in table 1, 5630 and 6183 respectively, we conclude

that reducing the number of pair clashes from 18 (10-8) to 16 (8-8) the travel distances

for the clubs/supporters increases by a significant amount. Looking at 10-6 and 8-8,

there is no statistical difference. However, as both of these experiments represent 16

pair clashes it is, perhaps, not surprising that the average distance travelled over the

30 runs is (statistically) the same.

Table 9 summarises the results from table 8 by only showing those experiments

where there are statistical differences, AND when the total number of pair clashes is

different (i.e. it will ignore 10-6 and 8-8). We can see from table 9 that there are no

experiments where we can reduce the number of pair clashes that leads to no statistical

difference in the distance travelled.

Tables 10 and 11 show similar analysis for the 2003-204 season. Again, it is not

possible to reduce the number of pair clashes without an (statistically) increase in the

distance travelled.

Tables 12 and 13 are more interesting. Table 12 shows that there is no statistical

difference between the 10-10 (20 pair clashes) experiment and the 10-8 (18 pair clashes)

experiment. Removing all the noise from the table (see table 13) we can see that it is

possible to reduce the number of pair clashes from 20 to 18 without a significant rise

in the distance travelled (the respective means from table 3 are 5644 and 5727).

For the remaining four seasons, we only present the summary tables. Where a“Yes”

appears in these tables (tables 14 thru 17) it indicates that it is possible to reduce the

number of pair clashes and not have an (statistical) increase in travel distance. The

tables show that there are a number of opportunities to reduce policing costs. We

are probably most interested in the top rows as they represent the fixtures that were

actually used.

Table 8 2002-2003: Are the Results Statistically Different?

Clashes 10-8 10-6 8-8

10-8 X Yes Yes
10-6 X
8-8 X

Table 9 2002-2003: Are different total clashes significantly different?

Clashes 10-8 10-6 8-8

10-8 X
10-6 X
8-8 X

10

11

Table 10 2003-2004: Are the Results Statistically Different?

Clashes 8-14 8-12 8-10 8-8 6-14 6-12 6-10 4-14 4-12 2-14

8-14 X Yes Yes Yes Yes Yes Yes Yes Yes Yes
8-12 X Yes Yes Yes Yes Yes Yes Yes
8-10 X Yes Yes Yes Yes Yes
8-8 X Yes Yes Yes
6-14 X Yes Yes Yes Yes Yes
6-12 X Yes Yes Yes
6-10 X Yes Yes
4-14 X Yes Yes
4-12 X
2-14 X

Table 11 2003-2004: Are different total clashes significantly different?

Clashes 8-14 8-12 8-10 8-8 6-14 6-12 6-10 4-14 4-12 2-14

8-14 X
8-12 X
8-10 X
8-8 X
6-14 X
6-12 X
6-10 X
4-14 X
4-12 X
2-14 X

Table 12 2004-2005: Are the Results Statistically Different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes Yes Yes Yes
10-8 X Yes Yes Yes
10-6 X Yes
8-10 X Yes Yes
8-8 X
6-10 X

Table 13 2004-2005: Are different total clashes significantly different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes
10-8 X
10-6 X
8-10 X
8-8 X
6-10 X

12

T
a
b
le

1
4

2
0
0
5
-2

0
0
6
:

A
re

d
iff

eren
t

to
ta

l
cla

sh
es

sig
n

ifi
ca

n
tly

d
iff

eren
t?

C
la

sh
es

1
2
-1

4
1
2
-1

2
1
2
-1

0
1
2
-8

1
2
-6

1
2
-4

1
0
-1

4
1
0
-1

2
1
0
-1

0
1
0
-8

1
0
-6

8
-1

4
8
-1

2
8
-1

0
8
-8

6
-1

4
6
-1

2
6
-1

0
4
-1

4
4
-1

2
2
-1

4

1
2
-1

4
X

Y
es

Y
es

Y
es

Y
es

Y
es

1
2
-1

2
X

Y
es

Y
es

Y
es

1
2
-1

0
X

Y
es

Y
es

Y
es

1
2
-8

X
Y

es
1
2
-6

X
Y

es
1
2
-4

X
1
0
-1

4
X

Y
es

Y
es

Y
es

1
0
-1

2
X

1
0
-1

0
X

Y
es

Y
es

Y
es

Y
es

1
0
-8

X
Y

es
1
0
-6

X
8
-1

4
X

Y
es

8
-1

2
X

8
-1

0
X

Y
es

8
-8

X
6
-1

4
X

Y
es

6
-1

2
X

6
-1

0
X

4
-1

4
X

4
-1

2
X

2
-1

4
X

13

Table 15 2006-2007: Are different total clashes significantly different?

Clashes 14-8 14-6 14-4 14-2 12-8 12-6 12-4 10-8 10-6 8-8

14-8 X Yes Yes Yes Yes
14-6 X Yes Yes
14-4 X
14-2 X
12-8 X Yes
12-6 X
12-4 X
10-8 X
10-6 X
8-8 X

Table 16 2007-2008: Are different total clashes significantly different?

Clashes 14-10 14-8 14-6 14-4 14-2 12-10 12-8 12-6 12-4 10-10 10-8 10-6 8-10 8-8 6-10

14-10 X
14-8 X Yes
14-6 X Yes Yes Yes
14-4 X
14-2 X
12-10 X Yes Yes
12-8 X Yes
12-6 X
12-4 X
10-10 X
10-8 X
10-6 X
8-10 X
8-8 X
6-10 X

Table 17 2008-2009: Are different total clashes significantly different?

Clashes 10-10 10-8 10-6 8-10 8-8 6-10

10-10 X Yes Yes
10-8 X
10-6 X
8-10 X
8-8 X
6-10

6 Conclusion

We have demonstrated that it is sometimes possible to reduce the number of pair

clashes without a statistical difference to the distance that has to be travelled by the

14

club/supporters. This provides the police with the ability to reduce their costs for

these two days, which might have included paying overtime. We hope that we are able

to discuss these results with the football authorities and the police in order for them

to validate our work and to provide us with potential future research directions. We

already recognise that some pair clashes might provide the police with more problems

than others and it might be worth prioritising certain clashes so that these can be

removed, rather than removing less high profile fixtures. As a longer term research

aim, we would like to include in our model details about public transport as some

routes might be more difficult than other routes, even if they are shorter. We also plan

to run our algorithms for every future season, as well as for previous seasons. Executing

the algorithm is not the main issue. Data collection provides the real challenge due to

the distance data that has to be collected. To date, this has been carried out manually

by using motoring organisation’s web sites but we have recently started experimenting

with services such as Google MapsTMand Multimap which will speed up the data

collection.

References

1. Aarts, E., Korst, J., Michels, W.: Simulated annealing. In: E.K. Burke, G. Kendall
(eds.) Search Methodologies: Introductory Tutorials in Optimization and Decision Sup-
port Methodologies, 1st edn., chap. 7, pp. 97–125. Springer (2005)

2. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing
approach to the traveling tournament problem. Journal of Scheduling 9, 177–193 (2006)

3. Ball, B.C., Webster, D.B.: Optimal scheduling for even-numbered team athletic confer-
ences. AIIE Transactions 9, 161–169 (1977)

4. Bean, J.C., Birge, J.R.: Reducing travelling costs and player fatigue in the national bas-
ketball association. Interfaces 10, 98–102 (1980)

5. Cain, W.O.: The computer-aided heuristic approach used to schedule the major league
baseball clubs. In: S.P. Ladany, R.E. Machol (eds.) Optimal Strategies in Sports, pp.
33–41. North Holland, Amsterdam (1977)

6. Campbell, R.T., Chen, D.S.: A minimum distance basketball scheduling problem. In: R.E.
Machol, S.P. Ladany, D.G. Morrison (eds.) Management Science in Sports, Studies in the
Management Sciences, vol. 4, pp. 15–25. North-Holland, Amsterdam (1976)

7. Costa, D.: An evolutionary tabu search algorithm and the NHL scheduling problem. IN-
FOR 33, 161–178 (1995)

8. Di Gaspero, L., Schaerf, A.: A composite-neighborhood tabu search approach to the trav-
eling tournament problem. Journal of Heuristics 13, 189–207 (2007)

9. Dinitz, J.H., Fronček, D., Lamken, E.R., Wallis, W.D.: Scheduling a tournament. In: C.J.
Colbourn, J.H. Dinitz (eds.) Handbook of Combinatorial Designs, 2nd edn., pp. 591–606.
CRC Press (2006)

10. Drexl, A., Knust, S.: Sports league scheduling: Graph- and resource-based models. Omega
35, 465–471 (2007)

11. Easton, K., Nemhauser, G.L., Trick, M.A.: The travelling tournament problem: Description
and benchmarks. In: T. Walsh (ed.) Principles and Practice of Constraint Programming,
Lecture Notes in Computer Science, vol. 2239, pp. 580–585. Springer (2001)

12. Easton, K., Nemhauser, G.L., Trick, M.A.: Solving the travelling tournament problem:
A combined integer programming and constraint programming approach. In: E. Burke,
P. de Causmaecker (eds.) The 4th International Conference on the Practice and Theory
of Automated Timetabling, Lecture Notes in Computer Science, vol. 2740, pp. 100–109.
Springer (2003)

13. Easton, K., Nemhauser, G.L., Trick, M.A.: Sports scheduling. In: J.T. Leung (ed.) Hand-
book of Scheduling, pp. 52.1–52.19. CRC Press (2004)

14. Elf, M., Jnger, M., Rinaldi, G.: Minimizing breaks by maximizing cuts. Operations Re-
search Letters 31(3), 343–349 (2003)

15. Evans, J.R.: A microcomputer-based decision support system for scheduling umpires in
the American Baseball League. Interfaces 18, 42–51 (1988)

15

16. Ferland, J.A., Fleurent, C.: Computer aided scheduling for a sport league. INFOR 29,
14–25 (1991)

17. Kendall, G.: Scheduling English football fixtures over holiday periods. Journal of the
Operational Research Society 59, 743–755 (2008)

18. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers & Operations Research 37, 1–19 (2010)

19. Kendall, G., While, L., McCollum, B., Cruz, F.: A multiobjective approach for UK football
scheduling. In: E.K. Burke, M. Gendreau (eds.) Proceedings of the 7th International
Conference on the Practice and Theory of Automated Timetabling (2008)

20. Knust, S.: Classification of literature on sports scheduling (2010). Available online at
http://www.inf.uos.de/knust/sportssched/sportlit class/, last visited 15th July 2010

21. Rasmussen, R.V., Trick, M.A.: Round robin scheduling – A survey. European Journal of
Operational Research 188, 617–636 (2008)

22. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Eu-
ropean Journal of Operational Research 179, 775–787 (2007)

23. Trick, M.: Traveling tournament problem instances (2010). Available online at
http://mat.gsia.cmu.edu/TOURN/, last accessed 15th July 2010

24. Urrutia, S., Ribeiro, C.: Minimizing travels by maximizing breaks in round robin tourna-
ment schedules. Electronic Notes in Discrete Mathematics 18-C, 227–233 (2004)

25. Urrutia, S., Ribeiro, C.C., Melo, R.A.: A new lower bound to the traveling tournament
problem. In: Proceedings of the IEEE Symposium on Computational Intelligence in
Scheduling, pp. 15–18. IEEE, Honolulu (2007)

26. de Werra, D.: Scheduling in sports. In: P. Hansen (ed.) Studies on Graphs and Discrete
Programming, pp. 381–395. North Holland, Amsterdam (1981)

27. de Werra, D.: Some models of graphs for scheduling sports competitions. Discrete Applied
Mathematics 21, 47–65 (1988)

28. Wright, M.: Timetabling county cricket fixtures using a form of tabu search. Journal of
the Operational Research Society 45, 758–770 (1994)

29. Wright, M.: 50 years of OR in sport. Journal of the Operational Research Society 60,
S161–S168 (2009)

16

Estimating the limiting value of optimality for very large

NP problems

George M. White

Abstract The search for better solutions to large NP-hard problems such as timetabling,

personnel scheduling, resource allocation, etc., often requires approximation methods.

These methods can often yield solutions that are often “very good”, although it is gen-

erally impossible to say just how good these solutions are. Not only do we not know

what the best solutions are, we also don’t know how far away we are from the optimum

solution - we may be very close but we may also be quite far. This paper describes a

method of using historical data to estimate the limiting optimality of the solution to a

problem if the problem arises from a situation taken from the real world and there is

sufficient historical data about proposed solutions. Knowledge of the limiting optimal-

ity can provide guidance in estimating just how far a “very good” solution lies from

the best solution, even when we don’t know what the best solution is.

Keywords NP-hard problems · examination scheduling · penalty estimation

1 Introduction

If you are reading this text, you are likely very familiar with the difficulties of solving

large scale problems. These are problems that are commonly known by names such as

the travelling salesman problem, the graph (or vertex) colouring problem, examination

scheduling, staff scheduling and the like.

Our challenge is nearly always to find a solution to these problems that is in some

sense “the best”, a concept that is more easily stated than defined. Most attempts to

define just what is meant by “the best” are very context-sensitive but one that seems

satisfactory in many circumstances is based upon the principle of utility proposed

by Jeremy Bentham, that the right way to act is the way that causes ”the greatest

good for the greatest number of people”. Thus the best solution is usually the one that

G.M. White
School of Information Technology and Engineering
University of Ottawa
Ottawa K1N 6N5 Canada
Tel.: +613-562-5800 x6677
Fax: +613-562-5664
E-mail: white@site.uottawa.ca

17

causes the least expense to travelling salesmen, uses the fewest colours to colour a map,

minimizes the misery of exam writing students, or minimizes the complaints from staff

when the teaching schedule, nursing schedule, employee roster ,..., is published.

When such problems are solved on our computers, this principle is used to formulate

a mathematical expression strongly dependent on the exact nature of the problem, as

is the method used to extract it. Our interest here is focussed on a class of problems

known as non-deterministric, polynomial time hard problems (NP-hard), sometimes

defined informally as those problems as hard as the hardest problems in NP. A much

more detailed and precise definition and discussion is found in the classic book (Garey

and Johnson (1979)).

Dispite their complexity some NP-hard problems have been solved to completeness.

The travelling salesman problem, TSP, has been studied since at least 1832. Provably

optimal solutions to this problem can be obtained by a variety of techniques entailing

a prodidgeous amounts of computer time.

Examination scheduling problems have been in existance ever since there were

examinations. Casting these schedules has evolved from a chore to be done by hand with

pencils, paper and large erasers to a programming exercise to be solved by computer.

Sports scheduling has resisted computerization for a long time but is now slowly

and with some reluctance being increasingly done by machine (Easton et al (2003)).

A discussion of the possibility of predicting future results based on the analysis

of past results appears in the next section along with two examples of its potential

in elite speed sports. The logistic equation is a potential candidate for obtaining this

prediction and appears in section 3. The TSP and examination scheduling are developed

in sections 4 and 5. Conclusions are found in section 6.

2 Is prediction possible?

Investigators working on the difficult problems discussed earlier continue to make

progress year after year because of improvements to both hardware and software:

– processor speed

– algorithm used

– initial conditions

– parameter tuning

– manpower available

Similar conditions are true in elite sporting events. The goal is to produce a supe-

rior outcome and to achieve this goal choices must be made from a wide number of

variables such as training, genetics, health, equipment, weather conditions, altitude,

environment, diet, etc.

One example that can be cited is the men’s 100 metre sprint. Whoever is the

current record holder is often referred to as “The World’s Fastest Man”. A plot of the

progressive world record in this event and the year in which it was achieved is shown in

figure 1. The curved line is an attempt to fit the points to an equation and the dashed,

straight line near the bottom of the graph is the asymptotic value of the curve.

A second example is the men’s 5000 metre speed skate. The records for the fastest

man on ice are shown in figure 2. For sporting events it is evident that although the

times required to establish a new record are always being reduced, they will never

be reduced to zero. In the case of sprinting, the dashed line represents an asymptotic

18

Fig. 1 Progressive record for men’s 100 metre sprint

Fig. 2 Progressive record for men’s 5000 metre skate

limiting value of the “ultimate” speed record and is suggested by the flattening of

the curve at time goes on. For the skating event, the curve is steepening rather than

flattening and suggests that there is some distance to go before the records converge

on some limiting value. The analysis of curves such as this will be discussed in the next

section.

19

This approach to records can analgously be applied to similar records in the area

of large NP-hard problems touched on earlier. Perhaps a quantitative analysis can give

some insight into the TSP problem and the examination problem. We may be able to

predict future records, given a date, and perhaps also to estimate limiting values.

There is some evidence that other problems arising from the real world exhibit a

similar behaviour.

3 The Logistic Curve

The shape of the curve that describes the experimental running best value leads to the

conclusion that, at some time in the future, the best values will reach a limit. i.e.

lim
t→∞

dP (t)

dt
= 0 (1)

where P (t) is the penalty obtained at time t. Since the exam scheduling problem is

known to be NP-hard, the form of the derivative dP/dt is unknown, but it is reasonable

to assume that it is some function of the current best penalty.

dP

dt
= f(P) (2)

Expanding this as a Maclaurin series yields

dP

dt
= f(P) = a0 + a1P + a2P 2 + a3P 3 + ... (3)

To simplify the form of the equation we might first try to approximate it as dP/dt = a0.

Then when P attains its limiting value, we have dP/dt = 0 and therefore a0 = 0.

This cannot possibly be the case. The next form to consider is dP/dt = a1P which

equals 0 only if P = 0; this is probably not the case. The next simplest form is
dP

dt
= a1P + a2P 2 = P (a1 + a2P) This has the desired properties. Recall that when P

takes its limiting value, dP/dt = 0. It follows that a1+a2Plimit = 0 or Plimit = −a1/a2.

In the literature, this equation often appears in the form

dP

dt
= rP −

rP 2

k
= rP (1 −

P

k
) (4)

This is a differential equation whose solution is

P (t) =
kP0ert

k + P0(ert
− 1)

(5)

where P (t) is the penalty obtained at time t and r, k and P0 are adjustable parameters.

When t = 0, P (t) = P (0) = P0. As t → ∞, P (t) → k.

A sketch of this equation in the form P (rt) with k set equal to 5 ∗ P0 and r = 1

is shown in figure 3. This equation is used to describe birth-death processes and race

results among other applications. Here we will use it to analyse some published NP-

hard results.

20

Fig. 3 Sketch of P (rt) vs rt

4 The Travelling Salesman Problem (TSP)

The TSP is a real-world problem that has many practical applications and has therefore

been intensively studied ever since it was introduced. The volumous history of the

problem and its literature has been reviewed in several books (see for example the

books by Lawler et al (1985); Applegate et al (2006)).

A book published in Germany in the 1830s described the problem in the context

of actual travelling salemen who were wanting to cover their territory in the shortest

possible time, but did no mathematical analysis. The first investigator to treat the

problem in a mathematical setting was an Irishman, Sir William Rowan Hamilton,

who studied the problem in the 1850s. Exact solutions to non-trivial problems were

slow to appear because of the amount of calculation that had to be done but, by 1954,

Danzig, Fulkerson and Johnson pubished the results for a 49 city instance, the capitals

of the lower 48 United States plus Washington.

Since then the size of successfully solved TSP problems has grown steadily with the

present record holder being D. Applegate and 6 colleagues, (Applegate et al (2006))

who solved a 85900 city instance in 2006. A graph of the sizes of solved instances and

the year they were obtained is shown in figure 4.

The plot on the right shows the size of the successful instances vs. the year published

(large points) and the best fitted curve of P (t) to these points. Because of the large

range of values, the same data has been plotted on a semi-log scale on the right. The

smooth curve is a plot of equation 5 fitted by the Solver tool of Microsoft Excel to the

data points. The fit is remarkable considering the passage of time between the first

and the last points (about 36 years) and the variety of computers and software used

to perform the calculations.

21

Fig. 4 Progressive record for TSP solved problem instances

5 The Examination Scheduling Problem

Examination scheduling is one of the earliest applications of computer technology to an

academic problem. The possibility of finding new methods to study the problem, the

promise of a useful application and the availability of real data from real sources, gave a

strong impetus for academics to study the problem. Accordingly computer researchers

started investigating this problem (see Broder (1964); Peck and Williams (1966)) and

a few programs were written and used in practice (White and Chan (1979); Carter

(1983)).

Researchers have employed many techniques in order to find better solutions. Dis-

cussions of methods and summaries of progress have been well treated in Qu et al

(2009).

A feasible exam timetable is one in which no student is required to sit for more

than one exam at a time. Although any feasible timetable will work, some of these

timetables are worse than others. Several measures of the “badness” of a timetable

have been proposed, such as

– the total number of consecutive exams a student must write

– the total number of consecutive exams plus the total number of exams separated

by exactly one free timeslot

In 1996, a seminal paper (Carter et al (1996, 1997)) proposed a penalty, based on some

earlier work, that is equal to the weighted sum of course pair penalties (Laporte and

Desroches (1984)). Two exams taken by one student separated by n timeslots incurs

a penalty pn. The number of such penalties incurred by all the students is wn. The

penalty of the entire timetable is then defined to be

5
∑

i=1

piwi (6)

where p1 = 16, p2 = 8, p3 = 4, p4 = 2, p5 = 1, and the summation is calculated

over all students involved. The penalty so obtained is then divided by the number of

students involved to get a standard penalty. The authors also referenced a depository

of 13 data sets taken from real institutions that they used to test their algorithms.

The benchmarks that resulted have been used ever since as a basis of comparison.

22

Some problems in the original data sets have been detected and corrected (see Qu et al

(2009)).

Progress during this time has been made by many researchers who have employed

many different approaches with a view to lowering the standard penalty when using

new algorithms with the same data. The results are not unlike those obtained in track

and field events where athletes attempt to lower the time required to cover a spec-

ified distance, say 100 metres, where basic conditions are unchanged. The outcomes

of a foot race depend on a large number of variables: the individual racer, training,

genetics, health, equipment, weather conditions, altitude, environment, diet, and the

use of banned substances, among other things. The outcomes of experiments that cast

examination timeables likewise depend on a large set of variables such as the algorithm

used, initial conditions, parameter tuning, manpower available, processor speed, etc.

An examination of the recent timetabling literature shows that a wide variery of

techniques has indeed been used and many researchers have published tables of their

best results for the Toronto data base. A plot of the published values of the standard

penalty against the year in which this result was published for the data set yor-f-83 is

shown in figure 5 (left). The running best penalty of a schedule for a given year is just

Fig. 5 Data points available for the data set yor-f-83

that value, obtained in that year, that had the lowest value. The set of running best

penalties obtained yet for that data set at a given year is formed by choosing only those

values that are better than any preceding lowest value. A plot of these best values is

shown in figure 1 (right). Note that the axes of this graph have been rescaled.

Most of the data sets for which sufficient data is available show the same general

tendency exhibited by the yor-f-83 set. The data is sparse as of this writing but the

behaviour of the best points for each year appears to indicate a trend. The improvement

in later years is smaller than it was in earlier years and it is very unlikely that the value

of the penalty will ever reach zero. This suggests that the best penalty points for each

year may fall along a smooth curve that starts with some initial value, decreases slowly

over the years and approaches some asymptotic non-zero positive value. This raises the

question as to whether past performance can be used to forecast future results. If this

is true, then perhaps an analytical study of past attempts to obtain lower standard

penalties can be used to predict future lower standard penalties.

The problem of finding the best schedule arises from the sheer size of the solution

space and the fact that the problem itself is NP-hard. For the yor-f-83 or yor83 I

data, the problem involves (a) partitioning the 181 exams into 21 timeslots and then

23

(b) permuting the order of these timeslots in order to find the resulting schedule having

the lowest penalty.

The number of ways of partitioning n exams into k timeslots is given by a Stirling

Number of the second kind
{

n

k

}

=

{

n − 1

k − 1

}

+ k

{

n − 1

k

}

(7)

with
{

n

1

}

=

{

n

n

}

= 1 (8)

Each set of partitions can be arranged in k! ways.

Thus for the yor83 I data, there are

{

181

21

}

= 4.09 × 10219 ways to partition

and 21! = 5.11 × 1019 permutations of these partitions giving a total solution space

of 2.09 × 10239 entries. As a basis of comparison, the total number of protons in the

universe has been estimated to be roughly 1080.

For the data set yor-f-83, the progressive “world record” was tabulated along with

the year in which the work was published (see figure 5 right). The records correspond

to the best result (if any) published during the corresponding calendar year. If the

record was broken more than once during the year, the best result was taken.

The original data points obtained by Carter et al (1996) were not used in the anal-

ysis because it was the first time that the data and the penalty used were presented

to the research world. The long time before the next result was published is not repre-

sentative of the interval separating the next improvements. The logistic curve (6) was

fitted to the remaining data points using the Solver tool in Microsoft Excel. The goal

of the solver was to minimize the squared deviations between the published results and

the fitted equation while adjusting the constants k, P0 and r. When this is done, the

limiting value of the standard penalty is calculated to be 32.44. A graph of the best

fitted logistics curve, the data points and the limiting value Plim is shown in figure 6.

The same procedure was followed for some of the other data sets. The results obtained

by this analysis is shown in table 1.

Table 1 Limiting penalty values

data set no. points Plim std.dev. notes

car-f-92 5 3.82 0.08 1
tre-s-92 5 7.30 0.20
ute-s-92 5 23.08 0.57
yor-f-83 6 32.44 0.30

The meaning of the first two columns of this table is obvious. Column three lists

the limiting value of the penalty, Plim = k, as calculated by the least squares fit.

Column four, labelled std.dev, is a measure of the expected deviation of this limit and

is calculated as:
√

1

n − 1

∑

(Pi − yi)2 (9)

where

24

Fig. 6 The points, the best fit and the limiting value for the data set yor-f-83

– Pi is the value of the fitted curve for the year in question (referred to as P (t) in

the continuous domain of equation (6)).

– yi is the value of the corresponding best penalty found in that year (if any).

– n is the number of points.

The column marked notes refers to the explanatory caveat listed below.

1. One paper, published in 2001, reports solution values that could be interpreted as

being too good, too soon (see example in figure 1 (left)). This may be because of

an error in the authors’ calculations or it may be because of the superiority of their

algorithms. In our calculation the reported value was omitted and the best value

for that year was taken from the remaining values.

6 Conclusions

The data available for the TSP is far larger than the data for examination scheduling.

The goodness of fit as defined by equation (9) equals 32.9, a value that is very small

in comparison to the size of the problems now being successfully solved.

The numerical values of the limiting penalty given in table 1 should be used with

caution. They are based on small amounts of data and their values will change as better

solutions with smaller penalties emerge. The largest number of points available for any

of the data sets is 6. The smallest number is 5; only just large enough for a curve to be

fitted but not large enough to inspire great confidence in the result. Most of the data

sets have few values in their running “best value” sets. One data set, pur-s-93, has so

few results available that we were unable to even begin an analysis.

It must be realized that the values are asymptotic. Solutions having the limiting

penalty will never be realised in finite time.

25

Not all the data sets yield a curve fit as well as does yor-s-83 (see figure 6). The

standard deviation, calculated as 0.030, is very good in this case. Values of accuracy

that are not so good demonstrate either that the logistics curve is not a good description

of the data or that the numerical parameters were badly fitted. This situation may be

improved as more data becomes available.

There is no underlying theory developed as yet that supports the behaviour of the

running best penalties observed over time. The basic examination scheduling problem

is NP-hard and the best solution can be obtained only by exhaustive search.

The values observed and the limiting values calculated cannot be used in reverse to

determine the schedule that produced them, i.e. there is no bijective relation between

the solution space and the penalty space.

The x axis of the graphs corresponds to the year in which the data was published,

not the year in which it was first obtained. This results in an uncertainty in these

values. Also various publications use different accuracies in their reporting of the best

penalties obtained. The difference in these accuracies may result in too many or too

few data points selected in the list of best current values for a given year.

The limiting value cannot be used to rank solution methods. The fact that a cer-

tain algorithm yielded the latest best solution does not imply that a solution having

that limiting penalty could be generated using that algorithm, or any other known

algorithm.

However, the calculations can be used to estimate how close a given penalty is to

a plausible minimum. This knowledge may then be used to calculate if the solution in

question is “good enough” to use in practice. The best estimates of limiting values can

be incorporated into algorithms and used as part of a stopping criterion.

They may also be used to estimate whether a penalty instance is reasonable, given

the other penalties and the dates when they were obtained.

References

Applegate DL, Bixby RE, Chvatal V, Cook WJ (2006) The Travelling Salesman Problem: A
Computational Study. Princeton University Press

Broder S (1964) Final examination scheduling. Communications of the ACM 7:494–498
Carter M, Laporte G, Lee S (1996) Examination timetabling: Algorithmic strategies and ap-

plications. Journal of the Operational Research Society 47:373–383
Carter M, Laporte G, Lee S (1997) Corrigendum. Journal of the Operational Research Society

48:225
Carter MW (1983) A decomposition algorithm for practical timetabling problems. Working

Paper 83-06, Industrial Engineering, University of Toronto
Easton K, Nemhauser G, Trick M (2003) Solving the traveling tournament problem: A com-

bined integer and constraint programming approach. In: Burke E, De Causmaecker P (eds)
PATAT IV: Lecture Notes in Computer Science, Springer, Berlin, vol 2740, pp 63–77

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the Theory of NP-
completeness. Freeman

Laporte G, Desroches S (1984) Examination timetabling by computer. Computers and Oper-
ations Research 11:351–360

Lawler E, Lenstra J, Kan AR, Shmoys D (1985) The Travelling Salesman Problem: A Guided
Tour of Combinatorial Optimization. John Wiley and Sons

Peck JEL, Williams MR (1966) Algorithm 286: Examination scheduling. Communications of
the ACM 9:433–434

Qu R, Burke EK, McCollum B, Merlot LTG, Lee SY (2009) A survey of search methodologies
and automated system development for examination timetabling. J Scheduling 12(1):55–89

White GM, Chan PW (1979) Towards the construction of optimal examination schedules.
INFOR 17(3):219–229

26

Timetable Construction: The Algorithms and Complexity
Perspective (Plenary Talk)

Jeffrey H. Kingston

Abstract This paper advocates approaching timetable construction from the algorithms and
complexity perspective, in which analysis of the specific problem under study is used to
find efficient algorithms for some of its aspects, or to relateit to other problems. Examples
are given of problem analyses leading to relaxations, phased approaches, very large-scale
neighbourhood searches, bipartite matchings, ejection chains, and connections with standard
NP-complete problems.

Keywords Timetabling· Algorithms· NP-completeness

1 Introduction

When tackling a problem, a researcher utilizes a certain perspective, or set of techniques,
which he or she understands and has experience with. There isa tendency to stay within
one’s own perspective, which, though natural, may not be themost scientific thing to do.

One of the strengths of the PATAT conference series is that its contributors bring a vari-
ety of perspectives to the timetabling problems they study,thereby exposing its participants
to healthy doses of unfamiliar techniques. Judging by the contributions to the most recent
conference (Burke and Gendreau 2008), the field is strongly dominated by local search,
especially simulated annealing (Dowsland 1993; Kirkpatrick et al. 1983) and tabu search
(Glover and Laguna 1998); but there are also papers written from the operations research
perspective, and indeed their number is growing as integer programming packages improve.
Other perspectives are also represented, although on a smaller scale: constraint program-
ming, machine learning, and cooperating agents are three examples.

Some of the most interesting papers apply techniques from one perspective to problems
that had previously been studied only from another. For example, the Travelling Tournament
Problem (Easton et al. 2003) was formulated by researchers associated with the operations
research perspective, but good solutions were later obtained with local search (Ribeiro and

Jeffrey H. Kingston
School of Information Technologies
The University of Sydney, NSW 2006, Australia
http://www.it.usyd.edu.au/~jeff

E-mail: jeff@it.usyd.edu.au

27

Urrutia 2004). And, in the reverse direction, two simplifieduniversity course timetabling
data sets, compiled by researchers who typically use local search, were recently solved to
optimality using an integer programming package (Burke et al. 2008).

This paper advocates thealgorithms and complexity perspective on timetable construc-
tion. In general terms, a researcher who utilizes the algorithms and complexity perspective
will devote considerable time to analysing the specific problem under study. The outcome
of thisproblem analysis might be the discovery that some aspect of the problem is amenable
to efficient solution, leading to the design of an algorithm which exploits that fact. In other
cases, the outcome might be the discovery of a close connection with another NP-complete
problem, which can be helpful in pointing to a body of relevant prior work.

Although problem analysis is practised by all researchers,it is less emphasized within
the dominant perspectives. Researchers who use local search, for example, typically devote
most of their time to empirical work and parameter tuning. Indeed, a major advantage of
local search is the ease with which it can be applied to a wide range of problems. The idea
of basing a solution approach on detailed properties of the problem under study may even
be deprecated, as tying the algorithm too closely to specificconditions that could change.

Operations researchers tend to concentrate on modelling, leaving the algorithmic aspects
to software packages. Nevertheless a great deal of interesting problem analysis has been
carried out by operations researchers over the years, leading to redundant but beneficial
additional constraints, or to phased approaches, Lagrangean relaxation (see below), and so
on. A major advantage of the operations research approach isits emphasis on lower as well
as upper bounds: either an optimal solution is found, or a lower bound is produced which
gives some indication of how close to optimality the solution lies.

It is emphatically not the aim of this paper to show that algorithms and complexity
techniques will always be superior, or even that they will always yield anything useful. They
are too dependent on specific properties of particular problems for that. Instead, this paper
offers some examples where the techniques are useful, enough, I hope, to show that they
are worth adding to the mental toolkit of the timetabling researcher. The topics covered are
relaxation, the phased approach, very large-scale neighbourhood search, bipartite matching,
ejection chains, and NP-completeness analysis. Although this paper includes a few original
constructions and experiments, it is offered more as a tutorial than as a research contribution.

2 Relaxation

One way to find problems of low complexity within an NP-complete problem is torelax the
NP-complete problem: loosen some of its constraints, or discard them altogether. Although
the solution of the resultingrelaxed problem is not usually a solution of the original problem,
it may contain useful information. In particular, the badness of an optimal solution of the
relaxed problem is a lower bound on the badness of any solution of the original problem.

Finding relaxations requires problem analysis. On the one hand, the relaxed problem
must be sufficiently close to the original for its solution tobe relevant; on the other, it must
be efficiently solvable, since otherwise nothing is gained by using it.

Relaxation is an important tool for researchers using the operations research perspec-
tive. The archetypal relaxation replaces theintegrality constraints of an integer program
(specifying that each variablexi must be assigned an integer in some rangeai...bi) with lin-
ear constraints (specifying that each variablexi must be assigned some value in the range
ai ≤ xi ≤ bi, with fractional values allowed), replacing an integer program, which in general
describes an NP-complete problem, by a linear program whichcan be solved in polynomial

28

time. Another technique well known to operations researchers is Lagrangean relaxation
(Beasley 1993), in which different versions of the relaxed problem are solved repeatedly.

Relaxation is useful for determining whether a problem is likely to have a feasible solu-
tion. For example, the nurse rostering problem has many complex constraints on the layout
of each nurse’s shifts. Discarding them leaves a much simpler problem, solvable by bipartite
matching (Sect. 5), which checks whether there are enough nurses of the right kinds to cover
the required work. There is little point in starting a long solution process if not.

3 The phased approach

Thephased approach divides the problem into parts, calledphases, and solves them one by
one. Each phase has only limited information about the otherphases, so there is little hope
of the overall solution being optimal. A few scattered examples exist where the results of a
later phase are fed back to a subsequent run of an earlier phase.

Problem analysis is needed to find a decomposition into phases which are efficiently
solvable separately, and independent enough to satisfy concerns about the loss of optimality.

Large timetabling problems, such as whole-university course timetabling and student
sectioning problems, are typically solved in phases (Carter 2000; Murray et al. 2007). A key
module in a student sectioning system is a branch-and-boundalgorithm for finding the best
possible timetable for one student, holding the rest of the timetable fixed. One run of such
an algorithm constitutes one phase.

In unpublished work by staff of the University of Sydney morethan a decade ago, after
timetabling each student in this way, a second pass over the student list was made, and each
student was removed and re-timetabled. This introduces thefeedback mentioned above, as
well as being an example of very large-scale neighbourhood search, to be described next.

4 Very large-scale neighbourhood search

Very large-scale neighbourhood (VLSN) search (Ahuja et al.2002) is a form of local search.
To move from one solution to its neighbour, a large piece of the solution is deassigned, then
reassigned in a different and hopefully improved way.

Although the reassignment stage can be carried out by any simple constructive heuristic,
the method is particularly interesting when problem analysis identifies a piece to deassign
whose reassignment may be carried out optimally.

Several examples of the application of VLSN search to timetabling problems are given
in Meyers and Orlin (2007). The point is made there that in some cases where other local
search methods proceed by swaps, a more general and potentially more effective VLSN
search based on the ‘cyclic exchange neighbourhood’ is possible. This author has used this
neighbourhood in high school teacher assignment, to permute the assignments at a given
set of times among the available teachers, and found it effective in removing certain kinds
of bad split assignments (Kingston 2008). For variety, thispaper offers a different example,
again from teacher assignment.

The literature contains a smattering of timetabling paperswhich improve their resource
assignments by deassigning all the work assigned to two resources and then reassigning that
work to those same two resources. This clearly qualifies as VLSN search, and when the
resources are high school teachers, the reassignment can bedone to optimality in practice.

Take the example of teachersArt01 andArt02 in Fig. 1. These make good candidates

29

Avail W1 W2 R1 R2 M8 F5 M3 M4 W5 W6 R8 F2 T3 T4 R5 R6 W8 F3

Art01 0 12-3A-P 7CKO2- 12-3A-Photograph 7AS2-1 History 8CKO2-1 8CKO4-2

Art02 4 7CKO2- 11-3A/1 11-3A/12-3A-Cera 10-4-Art 12-1-VisualArts

Art03 0 7CKO1-1 7AS1-1 8CKO1-1 8CKO3-2

Unassigned

M1 M2 T5 T6 W7 F4 M5 M6 T1 T2 R7 F1 W3 W4 R3 R4 M7 T7 F6 F7 F8 T8

Art01 11-4-VisualArt 12-2-Photography-2U 11-6-Photography Sport StaffMe

Art02 8AS3-3 7AS3-3 9-4Art-1 9-4Art-1 7CKO4-2 10-4-Art 10-4-Art 8AS2-1

Art03 7CKO3-2 8AS1-1

Unassigned 12-4B-VisualDesig 12-4B-V

Fig. 1 Part of a high school timetable, showing the assignments of theschool’s three Art teachers. Each
teacher occupies one row, with a fourth row holding one Art class which failed to be assigned. Each column
holds one of the 40 times of the cycle, except the column adjacent to the teachers’ names, which shows the
remaining available workload of the teachers.

12-3A 7AS2 8CK02 8CK04 11-4 12-2 Sport

7CK02 10-4 12-1 8AS3 7AS3 9-4 8AS2

11-3A 11-6 7CK04

Fig. 2 The clash graph for the meetings assigned to teachersArt01 andArt02 in Fig. 1, slightly simplified,
and showing one 2-colouring.

for deassignment and reassignment, because they are qualified to teach similar kinds of
classes, and they share a split assignment (occupying timesW1 andW2), whose removal
is desirable. Deassign all their work and build its clash graph, in which each deassigned
meeting is a node and two nodes are joined by an edge whenever their meetings share at
least one time (Fig. 2). Now a clash-free reassignment is a 2-colouring of this graph. Each
of the graph’sK connected components can be coloured independently, and has two distinct
2-colourings; in various special cases there are fewer, making at most 2K distinct colourings
altogether. In practice,K is small enough to permit an exhaustive search for a colouring
that does not exceed the teachers’ workload limits. For safety, the author’s implementation
imposes a fixed upper limit on the number of colourings tried.

On real instances this method runs quickly, but its results are disappointing, averaging
only about one improvement per instance. Still, it might be useful in other resource assign-
ment problems, such as nurse rostering, where similarly qualified resources work together.

5 Bipartite matching

A bipartite graph is an undirected graph whose nodes may be divided into two sets, such
that every edge connects a node of one set to a node of the other. A matching in an undirected
graph (bipartite or otherwise) is a subset of the edges such that no two edges touch the same
node. Amaximum matching is a matching containing as many edges as possible (Fig. 3). The
bipartite matching problem is the problem of finding a maximum matching in a bipartite

graph. There is a standard polynomial-time algorithm for this problem, used in timetabling
for more than forty years (Csima and Gotlieb 1964; Gotlieb 1962; de Werra 1971).

30

Fig. 3 A bipartite graph (left), and the same graph with a maximum matching, shown in bold (right).

Clashes

0 20 40 60 80 100
0

200

400

600

Thousands of moves

Fig. 4 Performance of tabu search on a bipartite matching problem with 3686 demand nodes and 5378 supply
nodes, taken from a real instance of a high school timetablingproblem, whose optimal solution is known (by
applying the standard polynomial-time algorithm) to have 5 unmatched demand nodes, or equivalently (if
every demand node is assigned) 5 clashes. After 100000 moves, starting from an initial greedy solution with
585 clashes, the best solution found had 11 clashes. The neighbourhood was all single moves of a demand
node’s assignment from one supply node in its domain to another. A move was tabu if it involved a demand
node that had been moved recently; the tabu list length was 1500 demand nodes. About ten values for tabu
list length were tried; results improved as the length was increased to 1500, and then worsened.

In timetabling, it is usual for one of the two sets of nodes to represent variables (or slots,
meetings, etc.) demanding something to be assigned to them,while the other set represents
entities (times, resources, etc.) which are available to supply these demands. Accordingly,
these two sets will be referred to as thedemand nodes and thesupply nodes. A maximum
matching assigns supply nodes to as many demand nodes as possible, under the restrictions
that each demand node requires one supply node from the set ofsupply nodes it is connected
to, and that each supply node may be assigned to at most one demand node.

One application of bipartite matching to timetabling is in the assignment of rooms to
meetings after the meetings’ times are fixed. At each time, build a bipartite graph with one
demand node for each demand for a room at that time, and one supply node for each room
which is available at that time, and connect each demand nodeto those supply nodes repre-
senting rooms which are qualified to satisfy the demand (rooms which are large enough and
contain the appropriate facilities). Then a maximum matching gives an optimal assignment
of rooms at that time.

Fig. 4 documents a case where a standard local search method (tabu search) could not
find an optimal solution to a large, real instance of the bipartite matching problem, even
when several settings of its parameters were tried and ampletime was allowed. Thus, when
instances of bipartite matching problems lie within timetabling problems, it may be advanta-
geous to solve them directly using the polynomial-time algorithm, as was done, for example,
by the winning entry in the First International TimetablingCompetition (Kostuch 2005).

The performance of tabu search on this problem raises a question: if the problem is
difficult, then how can the standard algorithm solve it to optimality so quickly? Can that

31

Fig. 5 Augmenting paths (at left) and the effect of applying them (atright). The first augmenting path carries
out a simple assignment; the second carries out two assignmentsand one deassignment; and so on. In each
case the size of the matching increases by one. No matching edgemay initially touch the first or last node.

algorithm be applied to other problems, perhaps to NP-complete problems? To answer these
questions it is necessary to examine the standard algorithmin detail.

The algorithm is called theaugmenting path method. Starting at each unmatched de-
mand node in turn, it searches the graph for a path from that node to a supply node, from
there back to the demand node currently assigned that supplynode, from there to a differ-
ent supply node, and so on, ending at a currently unmatched supply node. Then making
each non-matching edge on the path into a matching edge, and each matching edge on the
path into a non-matching edge, increases the size of the matching by one (Fig. 5). A theo-
rem guarantees that each node has to be searched through onlyonce, so the cost of finding
an augmenting path is bounded above by the total size of the graph; and another theorem
guarantees that after each unmatched demand node has been taken as the starting point, the
matching is maximum.

To dispel any idea that this algorithm is difficult to implement, here is the key procedure,
for searching for an augmenting path out of a given demand node, and applying it if found:

bool Augment(DEMAND_NODE demand_node, int visit_num)

{

int i; SUPPLY_NODE supply_node;

for(i = 0; i < demand_node->domain_size; i++)

{

supply_node = demand_node->domain[i];

if(supply_node->visit_num < visit_num)

{

supply_node->visit_num = visit_num;

if(supply_node->supply_asst == NULL ||

Augment(supply_node->supply_asst, visit_num))

{

supply_node->supply_asst = demand_node;

demand_node->demand_asst = supply_node;

return true;

}

}

}

return false;

}

Other code is needed for initialization and trying each demand node in turn.

32

Path length

0 1000 2000 3000 4000
0

2

4

6

Augmenting path

Fig. 6 This graph shows how the length of augmenting paths increasesas the bipartite matching algorithm
proceeds. The bipartite graph from Fig. 4 was used. For each value ofk from k = 1 to 3686−5, the length of
the longest of the firstk augmenting paths found is shown, defining length to be the number of demand nodes
on the path. At first, the paths are short (at most 2 demand nodes), but by the end of the algorithm they have
length 4 or 5. Breadth-first search was used to find these paths, so this shows that some steps near the end
requireat least 4 or 5 reassignments of demand nodes in order to improve solutionquality.

The secret of the success of this algorithm is revealed in Fig. 6. At first, it finds very
short augmenting paths, such as any local search algorithm could easily find. But towards
the end, the paths become longer, until, on large examples such as the one used in the figure,
at least 4 or 5 coordinated reassignments of demand nodes to supply nodes are required to
improve the solution. This is difficult for local search algorithms based on simple moves and
swaps: they become trapped in what seem to them to be large, featureless plateaus.

6 Ejection chains

It is not hard to see how to apply the augmenting path method ofthe previous section to
assignment-type problems other than bipartite matching. Start at any point where an assign-
ment is required but is currently missing. Mark all elementsof the instance unvisited. Try to
assign a valid value at the starting point. If that can be donedirectly, do it; otherwise, find all
ways in which a valid value can be assigned, at the cost of one deassignment at some other
point. For each of these ways, make the indicated deassignment and assignment, mark the
elements involved as visited to ensure that they will not be touched again during the current
search, and continue trying to reassign the deassigned element, using the same method re-
cursively. If the search ever reaches an element that can be assigned directly, it does so and
terminates, having completed a chain of assignments and deassignments which amount to
an augmenting path. Repeat until no further progress occurs.

This idea was given the nameejection chains by Glover (the inventor of tabu search),
who applied it successfully to the travelling salesman problem (Glover 1996). Similar ideas
had probably been used earlier. For example, the widely usedKempe chain method from
graph colouring, dating from the work of A. B. Kempe in 1879, could be described as an
ejection chain method, although it differs in detail from the method presented here. An
accessible account appears in Dowsland (1993).

In general, theorems which guarantee effectiveness (as in the bipartite matching case)
will not be available; nevertheless, ejection chains preserve the other virtue of the augment-
ing path method, namely its ability to explore large plateaus.

A key restriction of the ejection chain method as formulatedhere is that only one deas-
signment is permitted for each assignment, ensuring that the structures searched are limited
to paths. Although more complex augmenting structures, such as trees, could be permitted,

33

Badness

0 10 20 30 40
0

20

40

60

80

Hundreds of moves

Fig. 7 Performance of tabu search on a typical teacher assignment problem (bghs93 from Kingston 2008)
with 305 teacher slots totalling 1275 times. The badness measure was the total number of clashes and hard
workload limit overloads. After 4000 moves, starting from an initial greedy solution with badness 79, the
best solution found had badness 23. The neighbourhood was all moves of one assignment from one qualified
teacher to another. A move was tabu if its slot had been moved recently; the tabu list length was 50, which
gave the best result of about ten values tried.

they complicate the implementation and seem less likely to pay off than paths. See M̈uller
et al. (2005) for a simple method which can explore such structures.

This author has used ejection chains to improve the assignment of teachers to meetings
in high school timetabling problems, after the meetings’ times are assigned. Each meeting
may contain several time blocks spread through the week, andmay request a teacher of a
particular kind. Vertex colouring may be embedded in this problem, making it NP-complete.

First, an initial assignment is made by taking each teacher in turn and applying a branch-
and-bound tree search (with a fixed upper limit on the number of nodes searched, for safety)
to pack as much workload as possible into the teacher, assigning only meetings for which
the teacher is qualified, and avoiding clashes and hard workload limit overloads. Next, from
each unassigned meeting the algorithm searches for ejection chains as described above.
Finally, split assignments are introduced, in which the classes of unassigned meetingsare
split between two or more qualified teachers. Split assignments are undesirable, so it is
important to minimize the number of unassigned meetings at the point they are resorted to.
A full description has been given elsewhere (Kingston 2008).

It is interesting to compare the performance of this algorithm with a standard local search
(tabu search). It is not clear how to do so fairly, however, since the author’s algorithm never
introduces a clash or a hard workload limit overload, preferring to leave a slot unassigned,
whereas tabu search assigns every slot, at the cost of some clashes and hard workload limit
overloads. There is no simple and fair means of interconversion as there was for the bipartite
matching problem studied earlier.

When run on a typical instance, the author’s algorithm produced a resource assignment
in which there were 22 unassigned meetings after the initialassignment, and 15 after the
ejection chain phase. This was a significant improvement, since it meant that 7 fewer meet-
ings required split assignments. For comparison only, thissolution was extended greedily
to one in which every slot had an assignment, and that solution had 34 clashes and hard
workload limit overloads.

The best run of tabu search (Fig. 7) on the same instance produced 23 clashes and hard
workload limit overloads. Again for comparison only, this solution was reduced greedily to
one in which there were no clashes or hard workload limit overloads, and that solution had
22 unassigned meetings. Even if we call these results a draw,the ejection chain method still
has considerable advantages: it runs much faster, and thereare no parameters to tune.

34

3

3

4

4

0

0

3
3

1

1

0

0

4

4

1

1

0

0

2

2

3

3

4

4

0

0

3
3

1

1

0

0

4

4

1

1

0

0

2

2

Fig. 8 A clash graph, showing a minimum matching (left), and a travelling salesman path (right).

7 NP-completeness analysis

Sometimes the outcome of problem analysis is not an idea for an efficient algorithm, but
instead the discovery of a connection with another NP-complete problem. Even this appar-
ently negative result may be useful, however, in suggestingthat prior work on the other
problem may be relevant, either directly or with some adaptations.

Two examples of this occur in examination timetabling, one well-known, the other less
so. The well-known example is the connection with vertex colouring. Algorithms from the
vertex colouring literature, such as the saturation degreeheuristic and Kempe chains, have
been adapted to examination timetabling in many papers.

To uncover the less well-known connection, it is necessary first to dispose of the ‘no-
clashes’ constraint that points to vertex colouring. This may be done, for example, by a
phased approach whose first phase clusters examinations so that there are as many clusters
as time slots. For simplicity, this discussion will assume from now on that there are as many
examinations as time slots, and that the aim is to assign one examination to each time slot.

With clashes out of the way, the remaining problem is to minimize cases of students hav-
ing examinations too close together in time. This requirement can be formalized in several
ways, two of which will be examined here.

Construct the familiarclash graph, in which each examination (or cluster of examina-
tions) is represented by a node, and each pair of nodes is joined by an edge weighted by the
number of students who attend the examinations of both nodes. One formulation is to have
two examination time slots on each day, and aim to minimize the number of cases of stu-
dents attending two examinations on the same day. This corresponds to finding a maximum
matching of minimum total weight in the clash graph, which can be done in polynomial time.
Another formulation does not consider the division of time slots into days, but merely their
sequencing in time, and aims to minimize the number of cases of students having consecu-
tive examinations. This corresponds to finding a travellingsalesman path (like a travelling
salesman tour, but with no requirement to end at the startingpont) in the clash graph. These
constructions are illustrated in Fig. 8.

It is not suggested that these ideas provide an immediate solution to the examination
timetabling problem. Rather, they make connections with other work that might bear fruit
when suitably adapted. For example, to the author’s knowledge, no attempt has been made
to adapt the work of Glover (1996) on ejection chain neighbourhoods for the travelling
salesman problem to examination timetabling.

35

8 Conclusion

This paper has highlighted the algorithms and complexity perspective on timetable construc-
tion, and shown by example that its use can be beneficial.

It is difficult to offer guidance in the application of the techniques advocated here, since
they must be adapted to specific details of the problems understudy. Familiarity with the
list of standard algorithms and NP-complete problems is a prerequisite. In searching for
algorithmic ideas, a focus on sets of related variables is often rewarding: the schedules of
all sports teams in a given local area, the room requirementsfor all meetings at a given
time, and so on. Indeed, where algorithms and complexity techniques have advantages, these
seem to be due to their ability to handle sets of related variables together, rather than one by
one as local search and integer programming solvers do. Thispoint is illustrated repeatedly
throughout this paper.

There is no practical barrier to combining algorithms and complexity techniques with
other perspectives in timetabling research; the possibilities are limited only by our ingenuity.
There is however one point of philosophical disagreement which should not be glossed over.

Metaheuristics aregeneral approaches to optimization problems, easily applied to any
problem. Integer programming, too, is a general approach. From the algorithms and com-
plexity perspective, generalization is bad, not good, because it brings with it a corresponding
weakening of the tools available to solve the problems. For example, the consequences of
treating the bipartite matching problem as a general optimization problem were demon-
strated in Sect. 5. Thus, the algorithms and complexity perspective will tend to lead towards
specific details, while the other perspectives lead in the opposite direction.

Problem analysis is a very hit-and-miss process, but it doeshave the advantage of being
open-ended. One can always hope to find a new algorithm, or a new connection with another
problem. And when something does turn up, the payoff can be large. For these reasons, the
algorithms and complexity perspective will continue to have a place in timetabling research.

References

Ahuja R, ErgunÖ, Orlin J, Punnen A (2002) A survey of very large-scale neighbourhood
search techniques. Discrete Applied Mathematics, 123:75–102

Beasley JE (1993) Lagrangean relaxation. In Reeves CR (ed.), Modern Heuristic Techniques
for Combinatorial Problems, Blackwell

Burke EK, Gendreau M (2008) Proceedings, PATAT2008 (Seventh international conference
on the Practice and Theory of Automated Timetabling, Montreal)

Burke EK, Marecek J, Parkes AJ, Rudová H (2008) A branch-and-cut procedure for Udine
course timetabling. In: Proceedings, PATAT2008 (Seventh international conference on the
Practice and Theory of Automated Timetabling, Montreal)

Carter MW (2000) A comprehensive course timetabling and student scheduling system at
the University of Waterloo. In Practice and Theory of Automated Timetabling III (Third
International Conference, PATAT2000, Konstanz, Germany,Selected Papers), Springer
Lecture Notes in Computer Science 2079:64–81

Csima J, Gotlieb CC (1964) Tests on a computer method for constructing school timetables.
Communications of the ACM 7:160–163

Dowsland KA (1993) Simulated annealing. In Reeves CR (ed.),Modern Heuristic Tech-
niques for Combinatorial Problems, Blackwell

36

Easton K, Nemhauser G, Trick M (2003) Solving the travellingtournament problem: a com-
bined integer programming and constraint programming approach. In: Practice and The-
ory of Automated Timetabling IV (Fourth International Conference, PATAT2002, Gent,
Belgium, August 2002, Selected Papers), Springer Lecture Notes in Computer Science
2740:100-109

Glover F (1996) Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems. Discrete Applied Mathematics 65:223–253

Glover F, Laguna M (1998) Tabu Search, Kluwer
Gotlieb CC (1962) The construction of class-teacher timetables. Proc. IFIP Congress, 73–77
Kingston JH (2008) Resource assignment in high school timetabling. In: PATAT2008 (Sev-

enth international conference on the Practice and Theory ofAutomated Timetabling,
Montreal)

Kirkpatrick S, Gellat CD, Vecchi MP (1983) Optimization by simulated annealing. Science
220:671–680

Kostuch P (2005) The university course timetabling problemwith a three-phase approach.
In: Practice and Theory of Automated Timetabling V (5th International Conference,
PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Computer Science 3616:109–
125

Meyers C, Orlin JB (2007) Very large-scale neighbourhood search techniques in timetabling
problems. In: Practice and Theory of Automated TimetablingVI (Sixth International Con-
ference, PATAT2006, Brno, Czech Republic), Springer Lecture Notes in Computer Sci-
ence 3867:24–39

Müller T, Rudov́a H, Bart́ak R (2005) Minimal perturbation problem in course timetabling.
In: Practice and Theory of Automated Timetabling V (5th International Conference,
PATAT 2004, Pittsburgh, PA), Springer Lecture Notes in Computer Science 3616:126–
146

Murray K, Müller T, Rudov́a H (2007) Modeling and solution of a complex university course
timetabling problem. In: Practice and Theory of Automated Timetabling VI (Sixth In-
ternational Conference, PATAT2006, Brno, Czech Republic), Springer Lecture Notes in
Computer Science 3867:189–209

Ribeiro CC, and Urrutia S (2004) Heuristics for the mirroredtravelling tournament problem.
In: Proceedings, PATAT 2004 (5th International Conferenceon the Practice and Theory
of Automated Timetabling, Pittsburgh, PA), 323–341

De Werra D (1971) Construction of school timetables by flow methods. INFOR – Canadian
Journal of Operations Research and Information Processing9:12–22

37

The Train Driver Recovery Problem – Solution
Method and Decision Support System Framework

David M. Ryan
The Department of Engineering Science

The University of Auckland, New Zealand
e-mail: d.ryan@auckland.ac.nz

Natalia J. Rezanova
DTU Management Engineering

Technical University of Denmark, Denmark
e-mail: natalia.rezanova@gmail.com

Every railway operator experiences disruptions during the daily operations.
Danish railway operator DSB S-tog A/S is no exception. DSB S-tog A/S oper-
ates on an urban train network with at least 6 trains per hour in each direction
departing from every station of the network and up to 30 trains per hour in each
direction departing from the Copenhagen central station. Minor train delays on
the network are recovered by re-establishing the original plan using the slack time
built into the timetable or delaying other trains. Major disruptions in the train
schedule are recovered by re-routing or cancelling trains. A train is re-routed if
it is turned back before reaching the end terminal station or driven through some
stations without stopping. A cancellation is applied either to a single train task or
to a whole train line, resulting in cancellations of all train tasks of a particular line
for a certain period of time.

Disruptions in the train timetable affect the train driver schedule. When a train
is delayed, re-routed or cancelled, a driver might be late for the next scheduled train
task of the duty. If the driver is not available in due time for a train departure, the
train task is assigned to another driver. If there is no available driver to cover the
train task, the train is delayed or cancelled, causing a propagation of disruptions in
the schedule. At the present time the operational re-scheduling process of disrupted
train driver duties is conducted manually. If the disruption is severe and many train
driver duties are disturbed, this is a very complicated task to carry out.

The interest of the passenger railway operator DSB S-tog A/S in introducing
automated decision support for the train driver dispatchers is a key motivation
for this project. The project has been a part of a Ph.D.-study [4] at Operations
Research section of the Department of Management Engineering at the Technical
University of Denmark in 2006 – 2009, and is now handed over to the Analysis
Group of the Planning Department at DSB S-tog A/S.

38

The train driver re-scheduling has received a very limited attention by Opera-
tions Research practitioners. An integer programming approach to a simultaneous
train timetable and crew roster recovery problem, tested on the New Zealands
Wellington Metro line, is presented in [8]. The crew re-scheduling problem for train
driver duties disrupted due to the maintenance work on train tracks is solved by
[2] for the largest passenger railway operator in The Netherlands, while [3] present
an algorithm for operational re-scheduling of the train drivers on the Dutch rail-
way network. The review paper [1] describes the topic of crew recovery within the
airline industry.

We propose an optimization-based solution method for solving the Train Driver
Recovery Problem (TDRP) and a prototype for the decision support system for the
train driver dispatchers. The optimization framework is based on solving restricted
TDRP instances with a rolling time horizon, aiming to modify the original duty
schedule as little as possible. For a particular disruption we identify a disruption
neighbourhood, which is a part of the driver schedule characterized by a set of train
tasks and a set of train drivers. The initial disruption neighbourhood is identified
by a set of drivers, who’s duties contain train tasks which are known to be disrupted
within a certain recovery period, a time period within which a recovery solution
is aimed to be found. A train task is disrupted if it is delayed, cancelled, re-
routed or uncovered, i.e. assigned to an absent driver. All train tasks belonging
to the initial set of drivers within the recovery period are included into the initial
disruption neighbourhood. The Train Driver Recovery Problem (TDRP) aims at
finding a set of feasible train driver recovery duties for drivers within the disruption
neighbourhood with minimum modification from the original train driver schedule,
such that all train tasks within the recovery period are covered and the driver duties
outside the recovery period and duties of drivers not included in the disruption
neighbourhood are unchanged. If a feasible recovery solution is not found withing
a certain disruption neighbourhood, the disruption neighbouhood is expanded by
either adding more train drivers or expanding the recovery period of the problem.

The TDRP is formulated as a set partitioning problem, where variables represent
recovery duties of train drivers. The set of generalized upper-bound train driver
constraints ensure that each train driver is assigned to exactly one recovery duty
in the schedule. The train task constraints have a set partitioning structure and
ensure that each train task in the recovery schedule is covered exactly once. It
is observed in [7] that the linear programming relaxation of the set partitioning
formulation of the crew rostering problem, which has a similar structure to the
TDRP, possesses strong integer properties due to the existence of the generalized
upper-bound crew constraints, which contribute to the perfect structure of the
submatrix, corresponding to each crew member.

The solution method for solving the Train Driver Recovery Problem is based on
solving the TDRP-LP and finding an integer solution with a constraint branching
strategy. Since the cost of the recovery is not determined by a physical cost of
the driver schedule (the drivers are already paid to be at work), but rather by the
fictitious cost which expresses how attractive each recovery duty is, the optimality
of the solution is not as important as the feasibility of the solution. The TDRP-LP
is solved with a column generation method based on a limited subsequence strat-
egy, where recovery duties with negative reduced costs are generated by limiting

39

the number of tasks (subsequences) a driver can perform after finishing any task in
the duty. Starting with a small number of subsequences, it is gradually increased,
allowing to consider less attractive subsequent tasks for recovery duties. When a
feasible solution to the TDRP-LP is found, we consider the problem solved. If the
initial number of drivers is not enough to cover all train tasks in the initial dis-
ruption neighbourhood, the disruption neighbourhood is expanded in two possible
ways: either the number of drivers in the disruption neighbourhood is increased
by adding available stand-by drivers or the recovery period is extended, including
more train tasks from the involved drivers’ duties. If the problem remains infeasible
due to uncovered train tasks when there are no more available drivers to add to
the disruption neighbourhood, the decision support system sends an infeasibility
message to the dispatcher specifying which train tasks are uncovered and hence
have to be delayed or cancelled.

If the solution to the TDRP-LP is fractional, a constraint branching strategy
similar to the one described in [6] is applied in order to find an integer solution.
Since every train driver submatrix in the set partitioning formulation of the problem
is perfect, the fractions occur in the TDRP-LP only across train drivers’ blocks of
columns. It is therefore sensible on 1-branches of the Branch & Bound tree to
force one driver r to cover a train task s, which also appears in another driver’s
optimal recovery duty while forbidding other drivers to include s in their recovery
duties. On the 0-branch we forbid the driver r to cover the train task s. A depth-
first search on 1-branches of the Branch & Bound tree is implemented and the
branching procedure is terminated as soon as the first integer solution is found.

Real-life operational data is provided by DSB S-tog A/S in order to test the im-
plemented solution method. Based on the computational experiments, we conclude
that the proposed approach is indeed applicable for implementation in a decision
support system for train driver dispatchers in practice. DSB S-tog A/S is working
on using the research results obtained during this thesis and the programming code
of the prototype to develop and implement the train driver decision support system
in their operational environment.

References

[1] J. Clausen, A. Larsen, J. Larsen, N. J. Rezanova, Disruption management in
the airline industry–Concepts, models and methods, Computers and Operations
Research, 37 (2010), pp 809–821.

[2] D. Huisman, A column generation approach for the rail crew re-scheduling
problem, European Journal of Operational Research, 180 (2007), pp 163–173.

[3] D. Potthoff, D. Huisman, G. Desaulniers, Column Generation with Dynamic
Duty Selection for Railway Crew Rescheduling., accepted for publication in
Transportation Science, 2010.

[4] N. J. Rezanova, The Train Driver Recovery Problem – Solution Method and
Decision Support System Framework, Ph.D.-thesis, Department of Manage-
ment Engineering, Technical University of Denmark, 2009.

40

[5] N. J. Rezanova, D. M. Ryan, The train driver recovery problem–A set parti-
tioning based model and solution method, Computers and Operations Research,
37 (2010), pp 845–856.

[6] D. M. Ryan, The solution of massive generalized set partitioning problems in
aircrew rostering, The Journal of the Operational Research Society, 43 (1992),
pp 459–467.

[7] D. M. Ryan, J. C. Falkner, On the integer properties of scheduling set par-
titioning models, European Journal of Operational Research, 35 (1988), pp
442–456.

[8] C. G. Walker, J. N. Snowdon, D. M. Ryan, Simultaneous disruption recovery
of a trian timetable and crew roster in real time, Computers and Operations
Research, 32 (2005), pp 2077–2094.

Papers

41

Curriculum-based Course Timetabling with SAT and
MaxSAT

Roberto Aśın Achá · Robert Nieuwenhuis

Abstract We introduce novel and strong techniques based on propositional satisfiabil-

ity (SAT) solvers and optimizers (MaxSAT solvers) for handling the Curriculum-based

Course Timetabling problem.

Out of 32 standard benchmark instances derived from the last International Time-

tabling Competition, our techniques improve the best known solutions for 10 of them

(4 of these 10 being optimal), and for another 9 we match the best known solution (8

of them to optimality).

There is still much room for improvement in the encodings we use as well as in the

underlying general-purpose SAT and MaxSAT solvers.

Keywords Timetabling · SAT · MaxSAT

1 Introduction

The problem of deciding the satisfiability of propositional formulas (SAT) does not only

lie at the heart of the most important open problem in complexity theory (P vs. NP),

it is also at the basis of many practical applications in such areas as Electronic Design

Automation, Verification, Artificial Intelligence and Operations Research. Thanks to

recent advances in SAT-solving technology, propositional solvers are becoming the tool

of choice for attacking more and more practical problems by encoding them into SAT.

Example 1 The propositional clause set { ¬x1 ∨ ¬x2 ∨ ¬x3, x1, x2 ∨ ¬x3 } is

satisfiable: the assignment {x1, x2,¬x3} is a model of it. If the clause ¬x1∨x3 is added,

the set of clauses becomes unsatisfiable. A (complete) SAT solver is a tool that, given

a set of clauses, either finds a model for it or reports its unsatisfiability. ut

There exist several optimization versions of the SAT problem. In MaxSAT the aim

is to find a model that maximizes the number of satisfied clauses. In Partial MaxSAT

the input consists of two sets of clauses, the hard ones and soft ones, and the problem

Both authors address: Technical University of Catalonia, Barcelona, www.lsi.upc.edu/~rasin
and ~roberto. Both are partially supported by Spanish Min. of Educ. and Science through the
LogicTools-2 project (TIN2007-68093-C02-01).

42

is to find a model for the hard clauses that maximizes the number of satisfied soft

clauses. In Weighted (Partial) MaxSAT each soft clause has a weight and the aim is

to minimize the sum of the weights of the falsified soft clauses.

Here we apply novel SAT, Partial MaxSAT, and Weighted (Partial) MaxSAT encod-

ings for handling the Curriculum-based Course Timetabling problem. For this purpose

we have used our own general-purpose Barcelogic SAT and Partial MaxSAT solvers,

as well as several other solvers for (Weighted) Partial MaxSAT. We emphasize that

these solvers are based on complete search, that is, they always terminate (when given

sufficient resources), in SAT returning a model or an unsatisfiability answer, and in

MaxSAT, they always find the optimal solution.

Out of 32 standard benchmark instances derived from the last International Time-

tabling Competition (Di Gaspero et al (2007)), our techniques improve the best known

solutions for 10 of them (4 of these 10 being optimal), and for another 9 we match

the best known solution (8 of them to optimality). These facts can be checked at the

website http://tabu.diegm.uniud.it/ctt. There is still much room for improvement

in the encodings we use as well as in the underlying general-purpose SAT and MaxSAT

solvers.

This paper is structured as follows. In Section 2 we give basic definitions and back-

ground about SAT and SAT solvers, MaxSAT and MaxSAT solvers, about encoding

cardinality constraints into (Max)SAT, and we define the Curriculum-based Course

Timetabling problem.

In Section 3 we give a first encoding into SAT, where also the soft constraints of the

timetabling problem are made hard. Therefore, for those timetabling instances where

our Barcelogic SAT solver finds a model, this provides a zero-cost solution. Surprisingly

it turns out that this is indeed the case in six of the 32 instances, and in less than 10

seconds.

In Section 4 we give MaxSAT encodings where different soft constraints of the

timetabling problems are made soft, and we report on the corresponding experiments.

Section 5 summarizes all our results, and in Sections 6,7 and 8 we discuss related

and future work and conclude.

2 Preliminaries

2.1 SAT and SAT Solvers

Let X be a fixed finite set of propositional variables. If x ∈ X , then x and ¬x are

literals of X . The negation of a literal l, written ¬l, denotes ¬x if l is x, and x if l is

¬x. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A (total truth) assignment A is

a set of literals such that exactly one of {x,¬x} is in A for each x in X . A literal l

is true in A if l ∈ A and is false in A if ¬l ∈ A. A clause C is true in A (or satisfied

by A) if at least one of its literals is true in A. An assignment A is a model of a set

of clauses S if it satisfies all clauses in S. The problem of finding out whether a given

clause set S has any model (i.e., is satisfiable) is known as SAT. A (complete) SAT

solver is a system that, given a clause set S, always terminates returning a model of S

or (correctly) reports its unsatisfiability.

Most state-of-the-art SAT solvers (Moskewicz et al, 2001; Goldberg and Novikov,

2002; Een and Sorensson, 2003; Ryan, 2004; Biere, 2008) use Conflict-driven Clause

Learning, and are originally based on the Davis-Putnam-Logemann-Loveland (DPLL)

43

Fig. 1 Sorting network with input 〈a1 . . . a8〉 and output 〈c1 . . . c8〉

procedure (Davis and Putnam, 1960; Davis et al, 1962) (see, e.g., (Nieuwenhuis et al,

2006) for details and more references).

2.2 Encoding cardinality constraints into SAT

Although attempts have been made (see e.g., Cadoli and Schaerf (2005)) to define

a problem-specification language for automatically generating a SAT encoding, this

kind of experiences have shown to be limited in practice. For a given problem many

different encodings into propositional clauses may exist, and SAT solvers can behave

very differently on each one of them (see Hertel et al (2007)). Specialized encodings for

a given problem may perform very well and even become a state-of-the-art technique

for the problem, whereas generic ones may not even find a solution. Still, a lot of effort

has been put in finding cheap and efficient ways of encoding constraints that appear

in many real-world problems.

In particular, this is the case for cardinality constraints, saying that (at least, at

most or exactly) k of a given set of n literals must be true. The natural straightforward

encoding for this kind of constraints is exponential. For example, the following 10

clauses encode that at most 2 of a set {x1, x2, x3, x4, x5} of variables are true:

¬x1 ∨ ¬x2 ∨ ¬x3 ¬x1 ∨ ¬x2 ∨ ¬x4 ¬x1 ∨ ¬x2 ∨ ¬x5 ¬x1 ∨ ¬x3 ∨ ¬x4
¬x1 ∨ ¬x3 ∨ ¬x5 ¬x1 ∨ ¬x4 ∨ ¬x5 ¬x2 ∨ ¬x3 ∨ ¬x4 ¬x2 ∨ ¬x3 ∨ ¬x5
¬x2 ∨ ¬x4 ∨ ¬x5 ¬x3 ∨ ¬x4 ∨ ¬x5

On the other hand, the following ones express at least 2 :

x1 ∨ x2 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x3 ∨ x5 x1 ∨ x2 ∨ x4 ∨ x5
x1 ∨ x3 ∨ x4 ∨ x5 x2 ∨ x3 ∨ x4 ∨ x5

The exponential blowup can be avoided by using auxiliary variables. For example,

encodings inspired by BDDs , adder networks, and sorting networks have been proposed

(Aloul et al, 2002; Bryant, 1986; Bailleux and Boufkhad, 2003).

For the encodings in this paper we have used Cardinality Networks (Aśın et al,

2009), an improvement over sorting networks, that require n log2 k extra-variables and

n log2 k clauses and have very good propagation properties. The basic idea is that the

n input variables are seen as inputs of a circuit (encoded by clauses with auxiliary

44

variables) that sorts them into n output variables, i.e., all 1s of the input come first in

the output, and then all 0s. In this way, to express that at least k input variables are

true, it suffices to force the kth output variable to 1. Similarly, for “at most k”, the

k + 1-th output variable is set to 0 (see figure 1; we refer to Aśın et al (2009) and its

references for all details, that cannot be included here).

2.3 MaxSAT and core-based MaxSAT solvers

The input to a Weighted Partial MaxSAT problem consists of a set of soft clauses,

each one of them with a real number called its weight, and a set of hard clauses. The

aim is to find a model of the hard clauses that minimizes the sum of the weights of the

falsified soft clauses. Here the word “Weighted” is dropped if all soft clauses have the

same weight, and the word “Partial” is dropped if there are no hard clauses (note that

hard clauses can also be seen as soft clauses with infinite weight).

The state of the art in MaxSAT solvers is still seeing rapid development. The im-

provements in recent solvers are largely due to new algorithms based on unsatisfiable

cores. The idea is (very roughly) the following. A (standard) SAT solver can be adapted

to return, in case of unsatisfiabilty, a small (or even minimal, wrt. set inclusion) unsat-

isfiable subset of the initial set of clauses (Zhang and Malik, 2003). Such subsets, called

(unsatisfiable) cores, are obviously useful (in applications like planning) for generating

a small explanation why no feasible solution exists.

For solving (unweighted) MaxSAT, a SAT solver is run on the clause set. If a model

is found, then a zero-cost solution has been found. Otherwise, a core is generated, an

additional fresh relaxation variable is added to each soft clause in the core, and a

cardinality constraint is added saying that at most one of the relaxation variables can

be true, i.e., at most one of the clauses in the core is allowed to become false. Then

the SAT solver is restarted on this extended clause set. This process is iterated until a

model is found, which is then provably optimal. Many variants and improvements on

this technique exist (that cannot be covered in this paper; see e.g., Fu and Malik (2006);

Marques-Silva and Planes (2008); Ansótegui et al (2009); Manquinho et al (2009)). In

particular, our new Barcelogic solver we use here for Partial MaxSAT uses a novel

concept of core clusters to improve the pruning power of the cardinality constraints

and never add more than one relaxation variable to any clause.

2.4 The Curriculum-based Course Timetabling Problem

The Curriculum-based Course Timetabling Problem was defined for track 3 of the 2nd

International Timetabling Competition (ITC) held in 2007 and its complete description

can be found in (Di Gaspero et al, 2007). Briefly, this problem deals with the following

objects:

Courses: A course is composed of a defined number of lectures on some subject. Each

course is associated to one teacher, a number of students and a minimum number

of days over which its lectures may be spread. For example, there may exist a 50-

student course c1, taught by teacher t1, consisting of 5 lectures to be spread over

at least 3 distinct days of the week.

Curriculums: A curriculum is a set of courses that may share students. For example,

curriculum k1 may consist of four courses: c1, c2, c3 and c4.

45

Rooms: Rooms are the spaces in which courses take place. Each room has an associated

capacity (number of students, typically from 20 to 1000).

Days and hours: The courses are taught weekly on some day and hour. Each day con-

sists of a specified number of lecture hours in which a course can take place.

The problem is to find an assignment of courses to rooms and hours in such a way

that the following hard (necessary) and soft (desirable) constraints are satisfied.

Hard Constraints:

Curriculum clashes: No two courses belonging to the same curriculum may be sched-

uled at the same time.

Teacher clashes (Hard): No two courses taught by the same teacher may occur at the

same time.

Room clashes: No room must be used for more than one course at the same time.

Hour availability: Teachers may declare themselves as not available for certain hours.

Number of lectures: Exactly the specified number of lectures of every course must be

scheduled.

Soft Constraints:

Room capacity: No course may be scheduled to a room with less capacity than the one

needed by the course. Each violation of this constraint has a cost of 1 per student

that does not fit into the room.

Min working days: The lectures of a given course must be spread over a given minimal

number of days. Each day less than the minimum for a course has a cost of 5.

Isolated lectures: Lectures belonging to a curriculum should be adjacent to another

lecture of the same curriculum. Each time a lecture belonging to one curriculum is

isolated, this violation has cost 2.

Room stability: All lectures of a given course should be scheduled to the same room.

Each extra room needed for a course has cost 1.

3 Our Basic SAT encoding

Here we give a first encoding into SAT. All other encodings in this paper are only very

slight variants over this (two-page) basic encoding.

In this first encoding also the soft constraints of the timetabling problem are made

hard. Therefore, for those timetabling instances where the SAT solver finds a model,

this provides a zero-cost solution. Surprisingly it turns out that this is indeed the case

in six of the 32 instances, and in less than 10 seconds. In this section we have used

our Barcelogic SAT solver, that ranked third in the last SAT Race (2008, Guangzhou,

China, see baldur.iti.uka.de/sat-race-2008), and first on unsatisfiable problems

which is what matters most for optimisation applications.

We define the following propositional variables:

– chc,h: “course c occurs in hour h”

– cdc,d: “course c occurs in day d”

– crc,r: “course c occurs in room r”

– khk,h: “curriculum k occurs in hour h”

46

Once these propositional variables are defined, for the encoding to be correct, that

is, admit all correct solutions, and only these ones, we must carefully express every

relation between the facts these variables represent.

Relation between ch and cd:

– If some course occurs in hour h, it also occurs in the day corresponding to h.

So, for each course c and hour h, the following two-literal clause is needed:

¬chc,h ∨ cdc,day(h)

– If some course occurs in a day d, it must also occur in some of the hours of d.

So, for each course c and day d consisting of hours h1, h2, . . . hn, the following

clause is needed:

¬cdc,d ∨ chc,h1
∨ . . . ∨ chc,hn

Relation between ch and kh:

– If some course c occurs in hour h, all the curricula k1, k2, . . . , knk, to which c

belongs occur in h. So, for each course c, hour h and curricula k1, k2, . . . , kn
that include c, the following clauses are needed:

¬chc,h ∨ khk1,h

¬chc,h ∨ khk2,h
...

¬chc,h ∨ khkn,h

– If some curriculum k occurs in hour h, then at least one of the courses belonging

to k must also occur in h. So, for every hour h and curriculum k consisting of

courses c1, c2, . . . , cn, the following clauses are needed:

¬ctk,h ∨ chc1,h ∨ . . . ∨ chcn,h

We now encode the constraints of the timetabling problem. Here we abstract

away the concrete encoding of cardinality constraints by simply denoting them by

at most(k, S), at least(k, S) and exactly(k, S), where k ∈ N and S is a set of literals.

Such an expression represents a set of clauses that are satisfied if, and only if at least

(at most, or exactly) k of the nc variables of S are true.

Curriculum clashes: No two courses c and c′ belonging to the same curriculum may

be scheduled at the same hour. So, for each hour h and for each pair of distinct

courses c, c′ belonging to the same curriculum, we have:

¬chc,h ∨ ¬chc′,h

Teacher clashes: No two courses c and c′ with the same teacher may be scheduled to

the same hour. So, for each hour h and for each pair of distinct courses c, c′ such

that teacher(c) = teacher(c′), we have:

¬chc,h ∨ ¬chc′,h

Room clashes: No two courses c and c′ may be scheduled to the same room at the

same hour. So, for each room r, hour h, and pair of distinct courses c, c′, we need:

¬chc,h ∨ ¬chc′,h ∨ ¬crc,r ∨ ¬crc′,r

47

Hour availability: For each course c with forbidden hours h1, h2, . . . , hn, we have the

following one-literal clauses:

¬chc,h1

¬chc,h2

...

¬chc,hn

Number of lectures: For each course c exactly hours(c) of the set chc,h1
, chc,h2

, . . . , chc,hn

must be true:

exactly(hours(c), {chc,h1
, chc,h2

, . . . , chc,hn
})

Room capacity: Each course must be scheduled to a room in which it fits. So, for each

course c with number of students ns and for every room r with capacity cr such

that cr < ns, we have:

¬crc,r

Min working days: For each course c, at least working days(c) literals of the set

cdc,d1
, cdc,d2

, . . . , cdc,d5
should be true:

at least(working days(c), {cdc,d1
, cdc,d2

, . . . , cdc,d5
})

Isolated lectures: If some curriculum k occurs in hour h, then k must also occur in an

hour before or after in the same day. For each curriculum k:

– For each first hour of a day h:

¬ktc,h ∨ ktk,h+1

.

– For each last hour of a day h:

¬ktc,h ∨ ktk,h−1

– For each hour h that is not the first nor the last of a day:

¬ktc,h ∨ ktk,h−1 ∨ ktk,h+1

Room stability: Each course must be scheduled to exactly one room. So, if there are

rooms r1, . . . , rn, for each course c we have1:

exactly(1, {crc,r1 , . . . , crc,rn})

1 Note that, by including here only the rooms with sufficient capacity, the Room Capac-
ity constraint would get subsumed. Here we have not done this becuase later on the latter
constraint will become soft.

48

Table 1 Solving Times for basic encoding

dataset vars clauses result time

comp01 12886 62877 - TO
comp02 110288 575890 UNSAT 2.0
comp03 72749 456172 UNSAT 0.8
comp04 92209 560109 UNSAT 0.6
comp05 34053 179043 UNSAT 0.2
comp06 105728 936770 UNSAT 0.6
comp07 214603 1803516 UNSAT 5.8
comp08 115353 708140 UNSAT 2.3
comp09 105952 603965 UNSAT 0.7
comp10 147673 1211016 UNSAT 3.9
comp11 12537 71919 SAT(=) 1.2
comp12 81659 470203 UNSAT 0.2
comp13 111401 626315 UNSAT 0.7
comp14 113180 675440 UNSAT 0.8
comp15 72749 456172 UNSAT 0.7
comp16 148258 1248224 UNSAT 0.8
comp17 144334 924138 UNSAT 0.6
comp18 40444 174369 UNSAT 0.2
comp19 109236 525817 UNSAT 0.3
comp20 116149 1184210 UNSAT 4.4
comp21 129565 926364 UNSAT 1.0
DDS1 900167 2588788 UNSAT 1.5
DDS2 137688 667470 SAT(=) 1.7
DDS3 60968 305601 SAT(=) 1.1
DDS4 1356276 12842169 UNSAT 25.7
DDS5 556569 3372803 SAT(=) 8.9
DDS6 125029 1001737 SAT 10.3
DDS7 124330 612475 SAT(=) 2.4
test1 19406 182328 UNSAT 0.4
test2 34748 213222 UNSAT 0.6
test3 63534 271811 UNSAT 0.2
test4 67539 293208 UNSAT 0.4

3.1 Experiments with the basic SAT encoding

We have tested this encoding over the full set of benchmarks presented in the ITC2007

track3 organizers’ web site (http://tabu.diegm.uniud.it/ctt). All instances labeled

with comp# are competition benchmarks, while the DDS# are bigger ones added after

the competition. The test# examples were given for testing. They are small but hard.

The web site allows researchers to compare on these benchmarks with the best known

results and report new ones that are automatically checked for correctness and cost.

All experiments in this paper are on a 2100Mhz AMD-Opteron with 10000s timeout

(TO) and 2GB memory-out (MO). We never include encoding time since it is negligible.

Table 1 lists our results on these benchmarks for the basic SAT encoding: number

of variables and clauses, the output SAT/UNSAT, and the time used by our Barcelogic

SAT solver. In six instances a model, and thus a zero-cost solution, is found (in 1.1, 1.2,

1.7, 2.4, 8.9, and 10.3 seconds respectively). For five of them, a solution of the same

cost (in this case, zero) was already known. In all tables in this paper this is indicated

with an = sign. In addition, in very little time (10.3 seconds), we also obtain a new

zero-cost solution (DDS6) beating all the reported results over this benchmark.

49

Table 2 Results for relaxing “isolated lectures” as Partial-MaxSAT

dataset vars clauses cost barcelogic time PM2 time

comp01 12886 62877 - TO TO
comp02 110288 575890 24 3719.0 TO
comp03 72749 456172 - TO TO
comp04 92209 560109 36 13.2 60.2
comp05 34053 179043 ∞ 131.3 89.5
comp06 105728 936770 28 540.5 270.7
comp07 214603 1803516 6 9625.0 MO
comp08 115353 708140 38 18.1 91.2
comp09 105952 603965 - TO TO
comp10 147673 1211016 4 145.8 226.6
comp11 12537 71919 0(=) 0.5 2.8
comp12 81659 470203 - TO TO
comp13 111401 626315 62 68.8 153.2
comp14 113180 675440 54 111.7 95.3
comp15 72749 456172 - TO TO
comp16 148258 1248224 22 24.7 84.6
comp17 144334 924138 60 700.8 7817.9
comp18 40444 174369 - TO TO
comp19 109236 525817 58 173.1 372.4
comp20 116149 1184210 4 2305.6 674.4
comp21 129565 926364 86 8874.2 TO
DDS1 900167 2588788 ∞ 1.4 5.3
DDS2 137688 667470 0(=) 0.8 3.0
DDS3 60968 305601 0(=) 0.4 1.9
DDS4 1356276 12842169 - TO MO
DDS5 556569 3372803 0(=) 10.4 17.9
DDS6 125029 1001737 0(=) 15.0 14.4
DDS7 124330 612475 0(=) 1.3 4.9
test1 19406 182328 - TO MO
test2 34748 213222 16(=) 123.4 59.3
test3 63534 271811 ∞ 0.3 0.6
test4 67539 293208 - TO MO

4 MaxSAT encodings

4.1 Relaxing “isolated lectures” as Partial-MaxSAT

Here we turn the “isolated lectures” constraint into a soft constraint. In the basic

SAT encoding, each clause for this constraint encoded exactly one violation of the

constraint. So here each one of these clauses that is not satisfied has cost 2: we use a

Partial MaxSAT solver that considers these clauses as soft ones, and then each model

found represents a solution with as cost twice the number of unsatisfied soft clauses.

Table 2 lists results using our own first partial-maxsat-solver prototype (Barcel-

ogic) and also with PM2 (Ansótegui et al (2009)), the winner of the Industrial Partial

MaxSAT track in the latest MaxSAT competition (www.maxsat.udl.cat/09). A cost

of ∞ indicates that there is no solution if only the isolated lectures constraint is made

soft. With respect to the SAT encoding where everything was hard, the number of

instances for which we can give a solution grows from 6 to 20. Of the 14 new ones, 8

(indicated in bold) improve the previous best cost reported by the community.

Note that also the 6 zero-cost results of the previous section are obtained with

this method and that we also match the best resported result (cost 16) for the test2

instance. In all tables, if the name of the instance is given in bold, this means that our

solution is known to be optimal (the website also reports lower bounds).

50

Table 3 Results for relaxing “min working days” as Weighted-Partial-MaxSAT

dataset vars clauses cost WPM1 time MSUNCORE time

comp01 13864 64189 - TO TO
comp02 111869 578209 - MO TO
comp03 74178 458243 - MO TO
comp04 93497 562036 35(=) 7518 TO
comp05 34902 180478 - MO MO
comp06 107670 939713 - MO TO
comp07 216804 1806892 6(=) MO 6442
comp08 116948 710560 37(=) 4455 TO
comp09 107448 606143 - MO TO
comp10 149513 1213821 4(=) 62 57
comp11 13511 73276 0(=) 1 0.8
comp12 83492 473168 - MO TO
comp13 113012 628743 - MO TO
comp14 114680 677720 - TO TO
comp15 74178 458243 - MO TO
comp16 150222 1251187 18 615.3 391.6
comp17 146057 926721 - MO TO
comp18 41185 175639 - TO TO
comp19 110890 528176 - MO TO
comp20 118188 1187337 4(=) 325.8 193.3
comp21 131373 929034 - MO TO
DDS1 903884 2594511 48 645.0 1629.4
DDS2 137850 667646 0(=) 2.6 3.6
DDS3 62282 307644 0(=) 1.7 2.4
DDS4 1360646 12848872 - MO MO
DDS5 558714 3376303 0(=) 14.5 22.3
DDS6 126753 1004376 0(=) 22.4 14.5
DDS7 125311 614021 0(=) 4.2 5.0
test1 21022 184475 - MO MO
test2 36375 215426 16(=) 27.5 32.3
test3 65415 274319 - TO TO
test4 69420 295717 - TO TO

4.2 Relaxing “min working days” as Weighted-Partial-MaxSAT

Here we describe a very efficient way of relaxing, in addition to the “isolated lectures”

constraint, also the “min working days” constraint. In the basic SAT encoding, we

used cardinality networks to encode for each course c the min working days constraint

at least(working days(c), {cdc,d1
, cdc,d2

, . . . , cdc,d5
}). For instance, if working days(c)

is 4, then we set the fourth output out4 of the network to 1. In order to make this soft,

and such that each day less than four has cost 5, we create one soft one-literal clause

out4 with weight 5, and two more weight-5 one-literal clauses for out3 and out2.

Table 3 shows results with two state-of-the-art Weighted-Partial MaxSat solvers

that did very well in the last MaxSAT competition. . . msuncore (Manquinho et al,

2009) and WPM1 (Ansótegui et al, 2009) (our Barcelogic solver cannot handle weighted

MaxSAT yet). The winner of the industrial division SAT4J behaved much worse on

these problems. With any of the two solvers, this encoding allows us to again improve

the best known cost on two more instances (comp16 and DDS1). We also match the

best solutions on two more (comp04 and 08). These solutions are moreover optimal for

DDS1, comp04 and comp08.

51

Table 4 Results for Weighted-Partial-MaxSAT as Partial-MaxSAT

dataset vars clauses cost PM2 time

comp01 13864 65025 - TO
comp02 111869 580927 - TO
comp03 74178 460787 - TO
comp04 93497 564285 35(=) 111.3
comp05 34902 186066 - TO
comp06 107670 942715 27 4194.4
comp07 216804 1810289 - MO
comp08 116948 713049 37(=) 158.7
comp09 107448 608874 - TO
comp10 149513 1216744 4(=) 135.8
comp11 13511 74249 0(=) 1.3
comp12 83492 6479436 - TO
comp13 113012 631309 59(=) 1867.9
comp14 114680 680244 51(=) 545.5
comp15 74178 460787 - TO
comp16 150222 1254202 18(=) 143.7
comp17 146057 929587 - TO
comp18 41185 178063 - TO
comp19 110890 530718 - TO
comp20 118188 1190643 4(=) 542.4
comp21 131373 932016 - TO
DDS1 903884 2603332 48(=) 748.2
DDS2 137850 668420 0(=) 3.1
DDS3 62282 308551 0(=) 2.5
DDS4 1360646 12855538 - MO
DDS5 558714 3380575 0(=) 16.9
DDS6 126753 1007166 0(=) 25.8
DDS7 125311 616673 0(=) 5.2
test1 21022 185639 - MO
test2 36375 216742 16(=) 59.3
test3 65415 276191 - MO
test4 69420 297864 - TO

4.3 Weighted-Partial-MaxSAT as Partial-MaxSAT

Instead of using Weighted MaxSAT, one can also replicate each soft clause as many

times as the cost related with it, and use a solver for unweighted MaxSAT. It turns

out that this works very well on these problems because all weights are small. This

can be observed in table 4: besides keeping the previous results, we beat one previ-

ously improved example’s cost (comp06) and achieve another two best reported costs

(comp13 and comp14). We did not use our Barcelogic solver because it has no support

for replicated clauses.

52

Table 5 Results summary over the curriculum-based timetabling problem

dataset Author previously best Method previous cost our cost

comp01 Andrea Schaerf (+ others) Various 5 -
comp02 Lu And Hao Tabu Search 29 24
comp03 Tomas Muller Local Search 66 -
comp04 Tomas Muller Local Search 35 35(=)
comp05 Lu And Hao Tabu Search 292 -
comp06 Tomas Muller Local Search 37 27
comp07 Tomas Muller Local Search 7 6
comp08 S. Abdullah, H. Turabieh Other 37 37(=)
comp09 Lu And Hao Tabu Search 96 -
comp10 Tomas Muller Local Search 7 4
comp11 Andrea Schaerf (+ others) Various 0 0(=)
comp12 Lu And Hao Tabu Search 310 -
comp13 Lu And Hao Tabu Search 59 62
comp14 Gerald Lach Mathematical Progr. 51 51(=)
comp15 Andrea Schaerf (+ others) Various 66 -
comp16 Lu And Hao Tabu Search 23 18
comp17 Lu And Hao Tabu Search 69 60
comp18 Lu And Hao Tabu Search 65 -
comp19 Tomas Muller Local Search 57 58
comp20 Gerald Lach Mathematical Progr. 17 4
comp21 Tomas Muller Local Search 89 86
DDS1 Gerald Lach Mathematical Progr. 83 48
DDS2 Andrea Schaerf (+ others) Various 0 0(=)
DDS3 Andrea Schaerf (+ others) Various 0 0(=)
DDS4 S. Abdullah, H. Turabieh Evolutionary Comp. 30 -
DDS5 Andrea Schaerf Tabu Search 0 0(=)
DDS6 Gerald Lach Mathematical Progr. 4 0
DDS7 Andrea Schaerf (+ others) Various 0 0(=)
test1 Lu And Hao Tabu Search 224 -
test2 Andrea Schaerf (+ others) Various 16 16(=)
test3 S. Abdullah, H. Turabieh Other 67 -
test4 Lu And Hao Tabu Search 73 -

5 Results summary

Table 5 gives a summary of our achievements in encoding the curriculum-based course

timetabling problem into different versions of SAT/MaxSAT. In the column “our cost”

all figures in bold indicate costs where we have inproved the best known solution (10 of

the 32 instances). In the column “previous cost” one can see the previously known best

costs, which in some case we improve importantly: for example in DDS1 we improve

from cost 83 to 48, which is moreover known to be optimal. For another 9 instances

we match the best known solution (8 of them to optimality: again the names of the

benchmarks are in bold if the best solution found is known to be optimal).

In the table We also indicate the author of the previously best known costs, the first

one in obtaining the result (as it appears on the web site) and add the label (+others)

to clarify that others also reached the same results. The column method indicates the

technique used to obtain these previously best known results.

Altogher, out of 32 instances, we obtained 19 of the current best known results, 10

of which were improvements over the past known ones.

53

6 Related work

As it can be seen in Table 5 (see Lü and Hao (2010)) and in the algorithms specifications

of the solvers that participated in the two timetabling competitions held until now

(see, for example, Kostuch (2004) and Muller (2005)), the timetabling research field

has been mostly dominated by local search techniques. In recent years, nevertheless,

other techniques like Constraint Programming or Mathematical Programming have

been presented with some success. On the other hand, in the specific case of SAT

technologies applied to timetabling problems, not much work has been done. In fact,

we are not aware of any work on timetabling using MaxSAT.

Using pure SAT some non-competitive (in expressivity and solving time) techniques

are described in the two master thesis (Chin-A-Fat, September 2004; Hartog, 2007).

The unpublished manuscript (Marić, 2008) deals with non-standard and hence hard-to-

compare benchmarks, and uses more naive encodings (e.g., quadratic-size cardinality

constraints).

7 Future Work

A lot of room for improvement exists in MaxSAT solvers for this kind of problems. We

plan to work on our own solvers, improving our beta Partial MaxSAT and developing

a new Weighted version of it. Also, to encourage the MaxSAT community to work on

larger and more practically “industrially”-oriented benchmarks, we plan to contribute

our encoded instances to the MaxSAT competition.

We also plan to work on new ways for efficiently encoding (and relaxing) some

typical constraints in timetabling problems, like “Room allocation” and “Room stabil-

ity”. Furthermore, in instance “comp01” we found that inside timetabling problems,

pigeon-hole-like problems can appear. As it is well known in the SAT community, these

problems are very difficult to handle for SAT Solvers (which is the case of this partic-

ular instance). We also plan to search for ways of dealing with this type of constraints,

possibly as a theory in the SAT Modulo Theories framework (Nieuwenhuis et al, 2006).

8 Conclusions

In this paper we have tackled the curriculum-based course timetabling problem. We

have presented several encodings for the problem from pure SAT to Partial and Weighted-

Partial MaxSAT. Each encoding has been tried on 32 instances corresponding to those

shown in http://tabu.diegm.uniud.it/ctt/ that belong to the 3rd track of the last

International Timetabling Competition. We have tested several current-state-of-the-art

SAT an MaxSAT solvers with good results, achieving 19 out of 32 of the current best

known results, 10 of which were improvements over the past known ones.

This shows that using SAT and MaxSAT for timetabling is feasible and productive

and encourages us to keep working in two main directions: i) to search for better suited

MaxSAT solving techniques and ii) to find better encodings for this kind of problems.

Acknowledgements We want to thank Carlos Anstegui for his advise and help providing us
access to his PM2 and WPM1 solvers.

54

References

Aloul FA, Ramani A, Markov IL, Sakallah KA (2002) Generic ilp versus specialized

0-1 ilp: an update. In: Pileggi LT, Kuehlmann A (eds) ICCAD, ACM, pp 450–457

Ansótegui C, Bonet ML, Levy J (2009) Solving (weighted) partial maxsat through

satisfiability testing. In: Kullmann (2009), pp 427–440

Aśın R, Nieuwenhuis R, Oliveras A, Rodŕıguez-Carbonell E (2009) Cardinality net-

works and their applications. In: Kullmann (2009), pp 167–180

Bailleux O, Boufkhad Y (2003) Efficient cnf encoding of boolean cardinality constraints.

In: Rossi F (ed) CP, Springer, Lecture Notes in Computer Science, vol 2833, pp 108–

122

Biere A (2008) PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and

Computation Submitted

Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE

Trans Comput 35(8):677–691

Cadoli M, Schaerf A (2005) Compiling problem specifications into SAT. Artificial In-

telligence 162(1-2):89–120

Chin-A-Fat K (September 2004) School timetabling using satisfiability solvers. Master’s

thesis, Technical University Delft, The Netherlands

Davis M, Putnam H (1960) A computing procedure for quantification theory. Journal

of the ACM 7:201–215

Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving.

Comm of the ACM 5(7):394–397

Di Gaspero L, McCollum B, Schaerf A (2007) The second international timetabling

competition (itc-2007): Curriculum-based course timetabling (track 3). Tech. rep.,

University of Udine

Een N, Sorensson N (2003) An extensible sat-solver. In: Proceedings of the Sixth In-

ternational Conference on Theroy and Applications of Satisfiability Testing (SAT),

pp 501–518

Fu Z, Malik S (2006) On solving the partial max-sat problem. In: Theory and Appli-

cations of Satisfiability Testing, SAT, vol LNCS 4121, pp 252–265

Goldberg E, Novikov Y (2002) BerkMin: A fast and robust SAT-solver. In: Design,

Automation, and Test in Europe (DATE ’02), pp 142–149

Hartog J (2007) Timetabling on dutch high schools: Satisfiability versus gp-untis. Mas-

ter’s thesis, Technical University Delft, The Netherlands

Hertel A, Hertel P, Urquhart A (2007) Formalizing dangerous sat encodings. In:

Marques-Silva J, Sakallah KA (eds) SAT, Springer, Lecture Notes in Computer Sci-

ence, vol 4501, pp 159–172

Kostuch P (2004) The university course timetabling problem with a three-phase ap-

proach. In: Burke EK, Trick MA (eds) PATAT, Springer, Lecture Notes in Computer

Science, vol 3616, pp 109–125

Kullmann O (ed) (2009) Theory and Applications of Satisfiability Testing - SAT 2009,

12th International Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009.

Proceedings, Lecture Notes in Computer Science, vol 5584, Springer

Lü Z, Hao JK (2010) Adaptive tabu search for course timetabling. European Journal

of Operational Research 200(1):235–244

Manquinho VM, Silva JPM, Planes J (2009) Algorithms for weighted boolean opti-

mization. In: Kullmann (2009), pp 495–508

55

Marić F (2008) Timetabling based on sat encoding: a case study, faculty of Mathemat-

ics, University of Belgrade, Serbia

Marques-Silva J, Planes J (2008) Algorithms for maximum satisfiability using unsatis-

fiable cores. In: Proceedings of Design, Automation and Test in Europe (DATE 08),

pp –

Moskewicz MW, Madigan CF, Zhao Y, Zhang L, Malik S (2001) Chaff: Engineering

an Efficient SAT Solver. In: Proc. 38th Design Automation Conference (DAC’01)

Muller T (2005) Constraint-based Timetabling. PhD thesis, PhD thesis, Charles Uni-

versity in Prague, Faculty of Mathematics and Physics, 2005

Nieuwenhuis R, Oliveras A, Tinelli C (2006) Solving SAT and SAT Modulo Theo-

ries: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T).

Journal of the ACM 53(6):937–977

Ryan L (2004) Efficient Algorithms for Clause-Learning SAT Solvers. Master’s thesis,

School of Computing Science, Simon Fraser University

Zhang L, Malik S (2003) Validating SAT Solvers Using an Independent Resolution-

Based Checker: Practical Implementations and Other Applications. In: 2003 Design,

Automation and Test in Europe Conference (DATE 2003), IEEE Computer Society,

pp 10,880–10,885

56

A Combination of Metaheuristic Components based on
Harmony Search for The Uncapacitated Examination
Timetabling

Mohammed Azmi Al-Betar · Ahamad

Tajudin Khader · J. Joshua Thomas

Abstract In this paper, we investigate the effectiveness of combining the key com-

ponents of the basic metaheuristic methods on the quality of solutions produced for

Uncapacitated Examination Timetabling Problem (UETP). These components are re-

combination, randomness, and neighbourhood structures. The Harmony search Algo-

rithm (HSA) is used to simulate different combinations of these components. It has

three main components: Memory Consideration analogous to recombination, Random

Consideration analogous to randomness and Pitch Adjustment analogous to neighbour-

hood structures. The combinations among metaheuristic components are evaluated us-

ing 17 different scenarios each of which reflects a combination of one, two or three

components. The results show that the system that combines the three components

(recombination, randomness, and neighbourhood structures) provides the best results.

Furthermore, the best results obtained from the convergence scenarios were compared

with 22 other methods that used a de facto dataset defined by Carter et al. (1996) for

UETP. The results excel those produced by the previous methods in 2 out 12 datasets.

Keywords Examination Timetabling · Harmony Search Algorithm · Metaheuristic-

based methods · Exploration · Exploitation

1 Introduction

Problem Background. Examination timetabling is a taxing administrative task that

is often repeated in academic institutions every course session. It is the process of

assigning a set of exams, each taken by a set of students, to a set of timeslots (and

rooms) according to a set of constraints. Two classes of constraints appeared in the

literature: hard and soft. The hard constraints must be satisfied to obtain a feasible

solution while soft constraints are desired but not essential. Although soft constraints

can be violated, the quality of solution is often evaluated against soft constraints ful-

Mohammed Azmi Al-Betar (B) · Ahamad Tajudin Khader · J. Joshua Thomas
School of Computer Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
E-mail: mohbetar@cs.usm.my, tajudin@cs.usm.my, joshopever@yahoo.com

57

fillment. The basic objective is to obtain a feasible solution with the least number of

soft constraint violations.

In computing terms, examination timetabling is a hard combinatorial optimisation

problem which belongs to an NP-hard class for most of its variations. This problem

normally has a huge and rugged search space with considerable local optimal solutions

(Ochoa et al. 2009). This makes it hard to lend itself to be tackled using classical

methods.

Previous Methods. An examination timetabling problem may be capacitated or un-

capacitated (Pillay and Banzhaf 2009). Uncapacitated Examination Timetabling Prob-

lem (UETP) is addressed in this paper. Over the last five decades, the Artificial In-

telligence and Operational Research communities have been developing a wide variety

of approximation methods to tackle UETP. An extensive and exhaustive summary of

these methods has been provided by Qu et al. (2009b). Earlier developments were

based on graph coloring heuristic methods that assigned exams to timeslots, one by

one, based on a difficulty level. A backtracking method is often used with these meth-

ods as a recovery approach to timetable with unscheduled exams. The main research

of UETP was initiated by Carter et al. (1996), who employed several graph coloring

heuristic methods to UETP. Other investigations employing graph coloring heuristic

methods for UETP include Burke and Newall (2004); Asmuni et al. (2005, 2009).

One of the most notable achievements for solving UETP has been the emergence

of metaheuristic-based methods. Metaheuristic-based methods are classified into local

search-based and population-based methods (Blum and Roli 2003). Local search-based

methods (e.g., Hill climbing, Simulated annealing, Tabu Search) consider one solution

at a time. The solution iteratively undergoes changes guided by an objective function

until a stationary point near the initial solution is reached. Several local search-based

methods that are tailored to UETP had been reported (Di Gaspero and Schaerf 2002;

Di Gaspero 2002; Paquete and Stutzle 2003; Burke and Newall 2003; Casey and Thomp-

son 2003; Merlot et al. 2003; Burke et al. 2004; Yang and Petrovic 2005; Burke et al.

2006; Abdullah et al. 2007). On the other hand, population-based methods (e.g., Ge-

netic Algorithm, Ant Colony Optimisation, Artificial Immune System, Harmony Search

Algorithm) consider a population of random solutions at a time. The characteristics

of the current population are iteratively recombined to generate a new one. Some

population-based methods tailored to UETP has been reported (Cote et al. 2005; Eley

2007).

Local search-based methods are able to explore the search space and find a local

optimal solution more structurally, precisely and quickly than population-based meth-

ods. However, they go through a trajectory without doing a wider scan of the entire

search space (Blum and Roli 2003). On the other hand, population-based methods are

able to explore several search space regions at the same time. However, they are unable

to find a precise local optimal solution to which they can converge (Fesanghary et al.

2008).

Hyper-heuristic methods have also been proposed for UETP. Normally, they have

a high-level heuristic to select from a set of low-level heuristics. Several applications of

hyper-heuristic for UETP have been reported (Kendall and Hussin 2005; Burke et al.

2007; Qu and Burke 2009; Pillay and Banzhaf 2009; Qu et al. 2009a).

The best solutions obtained for UETP were provided by metaheuristic-based meth-

ods, more precisely, by the hybrid metaheuristics (see Qu et al. 2009b). However, in-

depth investigation into the main components of these methods that lead to these

58

Table 1 Examples of intrinsic components of the basic metaheuristic-based methods

Metaheuristic
method

Neighborhood
structures

Recombination Randomness

Genetic Algorithm – crossover mutation

Memetic Algo-
rithm

Hill-Climbing opti-
mizer

crossover mutation

Harmony Search
Algorithm

pitch adjustment memory considera-
tion

random considra-
tion

Hill Climbing move, swap, ex-
change

– –

Simulated Anneal-
ing

move, swap,
kempe-chain

– cooling schedule

Tabu Search
shake, kicker,
s-chain

– short term memory
& aspiration crite-
rion

Large Neighbour-
hood Structure

move, swap, cyclic-
exchange, etc.

– –

successful outcomes is still lacking. In this paper, a preliminary investigation of the

combinations of the basic metaheuristic components,which includes recombination,

randomness, and neighbourhood structures are studied.

Metaheuristic Components. The common component among local search-based

methods has been the neighborhood structures which are able to explore the search

space using one or more local changes in the current solution. On the other hand, the

common component among population-based methods has been the recombination.

Recombination exploits the characteristics of the current population in the process

of producing a new population. Both local search-based and population-based meth-

ods may have a randomness component to diversify the search when and if necessary.

Some examples of the three metaheuristic components are provided in Table 1. More

metaheuristic components are provided by (Blum and Roli 2003).

The key research issue in applying metaheuristic or hybrid metaheuristic method

to any combinatorial optimisation problem is to strike a balance between exploration

and exploitation during the search (Qu et al. 2009b). Note that, during the exploration

stage, the search is encouraged to explore the not-yet-visited search space regions when

necessary. While during the exploitation stage, the search concentrates on the the

already-visited search space regions (Blum and Roli 2003). To put it simply, explo-

ration comes from an unguided search while exploitation comes from a guided search

carried out by an objective function of the current solution(s). However, in order to a

establish balance between exploration and exploitation, parameter settings (tuning or

adaptation) have to be studied. Naturally, the parameter values guide the components

of metaheuristics and can be classified into ‘exploration consideration’ components and

‘exploitation consideration’ components:

– Exploration consideration . The components that are concerned with exploration

rather than exploitation during the search (for example, mutation component in

Genetic Algorithm).

59

– Exploitation consideration . The components that are concerned with exploita-

tion rather than exploration during the search (for example, neighbourhood struc-

tures guided by objective function in Hill climbing and crossover guided by the

objective functions of the current population in Genetic Algorithm).

To elaborate, we can classify the metaheuristic components based on the source of

improvement into the following three types:

1. Local improvements: The improvements that result from the local changes on

the current solution. The main components that are responsible for this type of

improvement is neighbourhood structures.

2. Global improvements: The improvements that globally result from recombining

the characteristics of the current solutions. The main component responsible for

this type of improvement is recombination.

3. Random improvements: The improvements that randomly result from exploring

the search space using an unguided strategy. The main component responsible for

this type of improvement is randomness.

Harmony Search Algorithm. In this study, Harmony Search Algorithm (HSA) is

tailored to investigate the effectiveness of combining the metaheuristic components.

HSA is a new metaheuristic population-based method inspired by the musical impro-

visation process (Geem et al. 2001). It has been successfully applied to a wide vari-

ety of optimisation problems (Ingram and Zhang 2009) including University Course

Timetabling Problem (UCTP) (Al-Betar et al. 2008; Al-Betar and Khader 2009; Al-

Betar et al. 2010). HSA is an iterative improvement method initiated with a number

of provisional solutions stored in the ‘Harmony Memory (HM)’. At each iteration, a

new solution called ‘new harmony’ is generated based on three components: (i) ‘Mem-

ory Consideration’ which makes use of the characteristics of the solutions in HM; (ii)

‘Random Consideration’ which is used to diversify the new harmony, and (iii) ‘Pitch

Adjustment’, analogous to neighbourhood structures 1. A new harmony is then evalu-

ated using an objective function and it replaces the worst harmony stored in HM. This

process is repeated until a stop criterion is met.

Paper Contributions. The objectives of this study are as follows: (i) tailoring HSA

for the UETP, (ii) investigating the effectiveness of combining the meta-heuristic com-

ponents for producing high quality solutions to UETP.

Results. The HSA results are compared with other results produced by 22 published

methods using a de facto standard datasets defined by Carter et al. (1996). Although

other datasets exist (See de jure standard datasets defined in ITC-2007 2 (McCollum

et al. 2009)), the Carter dataset provides a suitable wide range of comparative methods

which the proposed method can be evaluated against.

Paper Organization. In order to present a self-explanatory paper, The UETP is de-

scribed in section. 2 . The way of tailoring HSA toward UETP is proposed in section.

3. A comparative evaluation and empirical study of combining meta-heuristic compo-

nents are presented in section. 4. The paper concludes with possible research directions

described in section. 5.

1 neighbourhood structures refer to the move operators in local-search based methods, such
as, move one exam from timeslot to another, swap the timesolts of two exams, etc.

2 Second International Timetabling Competition (http://www.cs.qub.ac.uk/itc2007/)

60

2 Problem description

2.1 Problem definition

The UETP variation is concerned with assigning a set of exams, each taken by a set

of students, to a set of timeslots with respect to hard (H1) and soft constraint (S1).

– H1: Exam clash. No student can sit for two exams at the same time.

– S1: Exams spread out. The exams taken by the same student should be spread

out across a timetable.

In UETP, the main objective is to minimise the proximity cost function of soft

constraint violations in a feasible timetable. The proximity cost function divides the

penalty of soft constraint violations by the total number of students. This function will

be described formally in the next section.

2.2 Problem formulation

The notation for UETP formulation is given in Table 2. A timetable solution is rep-

resented by a vector x = (x1, x2, . . . , xN) of exams, where xi is timeslot, t ∈ T , for

exam, i ∈ E .
The proximity cost function f(x) for The UETP is formulated in Eq.(1)

min f(x) =
1

M
×

N−1∑

i=1

N∑

j=i+1

ci,j × ai,j (1)

Where ci,j element contains the total number of students sharing exam i and exam

j, ai,j element contains the penalty value made based on the distance between exam

i and exam j. This provides the quality of a solution in terms of how well the exams

are spread. Note that the hard constraint H1 must be satisfied in the timetable x such

that

xi 6= xj ∀xi, xj ∈ x ∧ ci,j ≥ 1

The value of the proximity cost function f(x) is referred to as the Penalty Value

(PV) of a feasible timetable.

3 Proposed Method

The concepts of Harmony Search Algorithm (HSA) are described within the context of

creating a pleasing harmony within a musical context (Lee and Geem 2004, 2005; Lee

et al. 2005). Table 3 shows the relationship between the UETP terms and optimisation

terms in the musical context. In musical improvisation, a group of musicians improvise

the pitches of their musical instruments. From repeated practice sessions, a pleasing

harmony as decided by their own audio-aesthetic standard is sought. Similarly, in

the optimisation context, a set of decision variables is assigned with values. From

repeated iterations, an optimal solution as decided by an objective function is sought.

In the timetabling process, a set of exams is scheduled with timeslots. From repeated

61

Table 2 Notations used to formalise the UETP

Symbol Description

N The number of exams.
P The number of timeslots.
M The number of students.
E Set of exams, E = {1, 2, . . . , N}.
S Set of students, S = {1, 2, . . . ,M}.
T Set of timeslots, T = {1, 2, . . . , P}.
x A timetable is represented by x = (x1, x2, . . . , xN).
xi the timeslot of exam i.
ci,j Conflict matrix element: total number of students sharing exam i and exam j.

ci,j =
M∑

k=1

uk,i × uk,j ∀i, j ∈ E

ai,j Proximity coefficient matrix element: whether the timetable x is penalized based
on the distance between timeslot of exam i in timeslot of exam j.

ai,j =

{
25−|xi−xj | if 1 ≤ |xi − xj | ≤ 5.

0 otherwise.

ui,j Student-exam matrix element: whether student si is sitting for exam j

ui,j =

{
1 if student i sitting in exam j

0 otherwise.

Table 3 The UETP and Optimisation terms in the musical context

Musical Optimisation UETP

Improvisation ↔ Generation ↔ Scheduling
Harmony ↔ Solution vector ↔ Timetabling solution
Musician ↔ Decision variable ↔ Exam
Pitch ↔ Value ↔ Timeslot
Pitch Range ↔ Value Range ↔ Feasible timeslots
Esthetic standard ↔ Objective function ↔ Proximity cost function
Practice ↔ Iteration ↔ Iteration
Pleasing harmony ↔ Optimal solution ↔ Feasible timetable with the least num-

ber of soft constraint violations

iterations, a feasible timetable with the least weight of soft constraint violations as

decided by a proximity cost function is sought.

Algorithm 1 shows the pseudo-code of the HSA applied for UETP with five main

steps that will be described below:

Step 1. Initialize the problem and HSA parameters.

The solution is represented by a vector, x = (x1, x2, x3, . . . , xN), of exams. The value

of each exam xi is a timeslot. The possible range of each exam is the possible feasible

timeslots. The proximity cost function is utilized in HSA as formalised in Eq.(1).

62

Algorithm 1 The basic harmony search algorithm

STEP1 Initialize the problem and HSA parameters

1: Input data instance of the UETP.
2: Utilize UETP pacific knowledge: objective function and solution representation.
3: Set the HSA parameters (HMCR, PAR, NI, HMS).

STEP2 Initialise the harmony memory

1: Construct feasible timetables based on Saturation Degree (SD) stored in harmony
memory, HM = {x1, x2, . . . , xHMS}

2: Recognise the worst vector in HM,
xworst ∈ {x1, x2, . . . , xHMS} where f(xworst) ≥ f(xj) ∧ j ∈ {1, . . . ,HMS}

STEP3 Improvise a new harmony

1: x′ = φ // new harmony vector
2: for J = 1, · · · , N do
3: i ← Saturation-Degree (x′)
4: if (U(0, 1) ≤ HMCR) then

5: x′
i ∈ Qi {Qi = {xj

i |ti,xj
i
= 1 ∧ j ∈ 1, . . . ,HMS}}

6: if (Qi = φ) then
7: x′

i ∈ X
i
{ Xi = {d|ti,d = 1 ∧ d ∈ 1, . . . , P} }

8: if (Xi = φ) then
9: GOTO 1 { Restart }
10: end if
11: end if
12: p ← U(0, 1) {U(0, 1) Uniform generator number between 0 and 1}
13: if (p ≤ PAR1) then
14: Pitch adjustment Single-move (x′

i)
15: else if (p ≤ PAR2) then
16: Pitch adjustment Swap-timeslot (x′

i)
17: else if (p ≤ PAR3) then
18: Pitch adjustment Kempe-chain (x′

i)
19: end if
20: else
21: x′

i ∈ X
i
{ Xi = {d|ti,d = 1 ∧ d ∈ 1, . . . , P} }

22: if (Xi = φ) then
23: GOTO 1 { Restart }
24: end if
25: end if
26: end for

STEP4 Update the harmony memory

1: if (f(x′) < f(xworst)) then
2: Include x′ to the HM.
3: Exclude xworst from HM.
4: end if

STEP5 Check the stop criterion

1: while (not termination criterion is specified by NI) do
2: Repeat STEP3 and STEP4
3: end while

The parameters of the HSA required to solve the UETP are also set in this step:

1. The Harmony Memory Consideration Rate (HMCR), used in the improvisation

process to determine whether the value of a decision variable is to be selected from

the solutions stored in the Harmony Memory (HM).

2. The Harmony Memory Size (HMS) is similar to the population size in Genetic

Algorithm.

63

3. The Pitch Adjustment Rate (PAR), decides whether the decision variables are to

be adjusted to a neighbouring value.

4. The Number of Improvisations (NI) corresponds to the number of iterations.

These parameters will be explained in more detail in the next steps.

Step 2. Initialize the harmony memory.

The harmony memory (HM) is an augmented matrix of size N ×HMS which contains

sets of solution vectors determined by HMS (see Eq.2). In this study, the feasible

search space regions is only explored where the HM is initialized with random feasible

timetables using Saturation Degree (SD) (Brélaz 1979). The SD was widely used to

construct an initial solution for UETP. In SD, the exam that has the least number of

valid timeslots in the partial timetable is timetabled first.

HM =

x11 x12 · · · x1N
x21 x22 · · · x2N
...

...
. . .

...

xHMS
1 xHMS

2 · · · xHMS
N

 (2)

Algorithm 2 provides a high level schematic pseudo-code of building HM solution using

SD. Note that the objective function of each timetable in HM is calculated. The solu-

tions in HM are sorted in ascending order in terms of their objective function values,

such as, f(x1) ≤ f(x2) ≤ . . . ≤ f(xHMS).

Algorithm 2 Schematic pseudo-code of building HM solutions

1: for j = 1, · · · ,HMS do
2: xj = φ
3: k = 1
4: while (k < N) do
5: i= SaturationDegree(xi)

6: xj
i = h {h ∈ 1 . . . P ∧ h is feasible for xj

i}
7: end while
8: calculate f(xj)
9: store xj in the HM
10: end for

Step 3. Improvise a new harmony.

This is the main step in HSA for iterating towards an optimal solution in which this

process called ‘improvisation process’. In this step, the HSA will construct (or impro-

vise) a new harmony vector (timetabling solution) from scratch, x′ = (x′1, x
′
2, · · · , x′N),

based on three operators (or components): (i) memory consideration, (ii) random con-

sideration, and (iii) pitch adjustment.

In the timetabling domain, the process of constructing a feasible timetable (in our

case new harmony), x′ = (x′1, x
′
2, · · · , x′N), from scratch often requires an ordering

64

mechanism (Asmuni et al. 2009). As such, to preserve the feasibility during the impro-

visation process, the idea of Saturation Degree (SD) has been adopted for ordering the

exams as follows: exam i that has the least feasible timeslots to be timetabled in the

new harmony is selected first.

Formally let Trajectory matrix (T) of size N × P contain binary elements, i.e.,

(ti,j), which are assigned as follows:

ti,j ←
{
1 if exam i can be feasibly assigned with timeslot j

0 otherwise
(3)

Let ℘k =
∑P

j=1 tk,j be the total number of available timeslots for each exam k to

be timetabled in x′. SD iteratively selects exam i to be assigned in x′ where:

i = arg min
k=1...N

℘k (4)

Definition 1 Exam i can be feasibly assigned with timeslot j if and only if x′k 6=
j , ∀x′k ∈ x′ ∧ ci,k 6= 0 ∧ k ∈ E.

Memory consideration. Every exam i, selected by SD to be assigned with a timeslot

x′i, selects a feasible timeslot from corresponding timeslots, x′i ∈ {x1i , x2i , . . . , xHMS
i },

stored in HM vectors with probability (w.p.) HMCR where 0 ≤ HMCR ≤ 1. The

operation of this operator is similar to the recombination operator in other population-

based methods and is a good source of exploitation (Yang 2009).

Formally, let exam i be selected by SD to be timetabled with timeslot x′i, let set

Qi = {xji |ti,xj
i
= 1 ∧ j ∈ 1, . . . ,HMS} contain the feasible timeslots available for exam

i in HM solutions. The timeslot x′i of exam i will be randomly selected from Qi with

probability HMCR. In case the Qi = φ which means no feasible timeslot stored in the

HM vectors for x′i, the ‘Exceptional random consideration (ERC)’ will run. In

ERC, the random consideration operator described below attempts to assign the exam

i with timeslot x′i, as shown Algorithm 1, STEP 3, Line 7.

Random consideration. Exams that are not assigned with timeslots according to

memory consideration are randomly assigned according to their available timeslots by

random consideration with a probability of (1-HMCR). Formally, let exam i be selected

by SD to be assigned with a timeslot x′i, let set Xi = {d|ti,d = 1∧d ∈ 1, . . . , P} contain

all feasible timeslots for exam i. The timeslot x′i of exam i will be randomly selected

from Xi with probability (1-HMCR).

However, in case Xi = φ, the improvisation process will restart (Henceforth called

restart process), see Algorithm 1, STEP 3, Lines 9 and 23. In summary see Eq.(5).

x′i ←
{
x′i ∈ Qi w.p. HMCR

x′i ∈ Xi w.p. (1 - HMCR)
(5)

Random consideration is functionally similar to the mutation operator in Genetic Al-

gorithm which is a source of exploration in HSA (Yang 2009). The HMCR parameter

is the probability of assigning one timeslot x′i of exam i, based on historical timeslots

stored in the HM solutions.

Pitch adjustment. Every exam i assigned with a timeslot x′i in the new harmony

vector, x′ = (x′1, x
′
2, x

′
3, . . . , x

′
N), from memory consideration is pitch adjusted with the

probability of PAR (0 ≤ PAR ≤ 1) as follows:

65

Pitch adjust for x′i? ←
{
Yes w.p. PAR

No w.p. (1-PAR)
(6)

If PAR = 0.10, this means that the HSA modifies the existing timeslot of each

exam assigned by memory consideration with a probability of (PAR × HMCR), while

the timeslot with probability (HMCR× (1− PAR)) does not change.

For UETP, the pitch adjustment is a neighbourhood move based on 3 neighbor-

hoods, each of which is selected with equal probability as follows:

Adjust x′i ←

Single-move 0 ≤ p ≤ PAR1

Swap-timeslot PAR1 < p ≤ PAR2

Kempe-chain PAR2 < p ≤ PAR3

do nothing otherwise.

(7)

Where PAR1=PAR/3 and PAR1:PAR2:PAR3 is in the ratio of 1:2:3, and p ← U(0, 1)

is a uniform distribution function which generates a random number between 0 and

1. For each exam i timetabled with x′i based on memory consideration operator, x′i is
adjusted as follows:

– Pitch adjustment: Single-move. With probability range [0,PAR1], replace the

timeslot x′i of exam i by another feasible timeslot. Although this process is similar

to random consideration, it is guided by the objective function of the new harmony.

– Pitch adjustment: Swap-timeslot. With probability range of (PAR1,PAR2],exam

i and exam j swap their timeslots (x′i, x
′
j) while the feasibility is preserved.

– Pitch adjustment: Kempe-chain. With probability range (PAR2,PAR3], x′i is

adjusted as follows: (i) Select the timeslot x′i of exam i and randomly select another

timeslot p′. (ii) All exams that have the same timeslot x′i and conflict with one or

more exams timetabled in p′ are entered to Chain G where G = {j|x′j = x′i∧ tj,p′ =

0 ∧ ∀j ∈ E} (iii) All exams that have the same timeslot p′ and conflict with one

or more exams timetabled in x′i are entered to Chain G′ where G′ = {k|x′k =

p′ ∧ tk,x′
i
= 0 ∧ ∀k ∈ E}, (iv) simply assign the exams in G with p′ and the exams

in G′ with x′i.

In the original HSA proposed by Lee and Geem (2004), the pitch adjustment is

unguided by the objective function which can be considered a good source of explo-

ration (Yang 2009). For the purpose of this paper, this component has been modified

to be guided by the objective function as follows: the adjustment performed by any

pitch adjustment procedure in Eq (7) is accepted in the new harmony if the objective

function is not negatively affected, i.e., f(x′′) ≤ f(x′) where x′ is the new harmony

before the pitch adjustment while x′′ is the new harmony after it.

Step 4. Update the harmony memory.

If the new harmony vector, x′ = (x′1, x
′
2, · · · , x′N), is better than the worst harmony

vector in HM, the worst harmony vector is substituted with the new harmony vector .

66

Table 4 Characteristics of the Cater dataset

Datasets
Key

Institution timeslots exams students Density

CAR-S-91 Carleton University, Ottawa 35 682 16925 0.13
CAR-F-92 Carleton University, Ottawa 32 543 18419 0.14
EAR-F-83 Earl Haig Collegiate Institute,

Toronto
24 190 1125 0.27

HEC-S-92 Ecole des Hautes Etudes Commer-
cials, Montral

18 81 2823 0.42

KFU-S-93 King Fahd University, Dharan 20 461 5349 0.06
LSE-F-91 London School of Economics 18 381 2726 0.06
RYE-S-93 Ryeson University, Toronto 23 481 11,483 40.07
STA-F-83 St.Andrew’s Junior High School,

Toronto
13 139 611 0.14

TRE-S-92 Trent University Peterborough, On-
tario

23 261 4360 0.18

UTA-S-92 Faculty of Arts and Sciences, Univer-
sity of Toronto

35 622 21266 0.13

UTE-S-92 Faculty of Engineering, University of
Toronto

10 184 2750 0.08

YOR-F-83 York Mills Collegiate Institute,
Toronto

21 181 941 0.29

Step 5. Check the stop criterion.

Step 3 and step 4 of HSA are repeated until the termination criterion (maximum

number of improvisations) is met. This is specified by the NI parameter.

4 Computational experiments

The proposed method is programmed in Microsoft Visual C++ version 6 under Win-

dows XP. The experiments presented here ran on 16 heterogeneous computers with

different CPU and RAM capability over 15 days. Note that the total number of exper-

iments is 2040 (17 scenarios × 12 datasets × 10 runs). Thus the computational time

has been neglected. As proposed by Qu et al. (2009b); Abdullah et al. (2007), time is

not a major constraint as the timetabling problem does not require realtime solutions.

The proposed method is evaluated against de facto dataset released by (Carter et al.

1996) which were freely available3. Carter’s dataset comprises 12 datasets which varies

in size (number of exams, number of timeslots) and complexity . The characteristics

of Carter dataset are shown in Table 4. The conflict matrix density in the last column

refers to the ratio between the number of elements of value ci,j > 0 and the total

number of elements in the conflict matrix (Qu et al. 2009b). The main objective is to

find a conflict-free timetable with the least number of soft constraint violations. The

proximity cost function (see Eq.(1)) is used to calculate the Penalty Value (PV) for

each timetable obtained. Note that there are two versions of some of Carter dataset

(Qu et al. 2009b) and the annotation ‘I’ refers to which version is used (Pillay and

Banzhaf 2009).

3 http://www.asap.cs.nott.ac.uk/resources/data.shtml

67

Table 5 Convergence scenarios designed to simulate combinations among metaheuristic com-
ponents

HMS HMCR PAR Scenario No. Source of improvement
50 100% 0% 1 GIM

3% 2 GIM+LIM
30% 3 GIM+LIM

98% 0% 4 GIM+RIM
3% 5 GIM+LIM+RIM
30% 6 GIM+LIM+RIM

10 100% 3% 7 GIM+LIM
30% 8 GIM+LIM

98% 0% 9 GIM+RIM
3% 10 GIM+LIM+RIM
30% 11 GIM+LIM+RIM

1 100% 0% 12 No Improvement
30% 13 LIM

98% 0% 14 RIM
30% 15 LIM+RIM

75% 3% 16 RIM+LIM
30% 17 RIM+LIM

4.1 Empirical study in Combination of Meta-heuristic components based on HSA

4.1.1 Experimental design

An empirical study of combining the metaheuristic components was conducted using

17 convergence scenarios, each of which varies in parameter settings as shown in Ta-

ble 5. Each convergence scenario simulates one case of component combinations. The

three components are: (i) recombination represented by memory consideration which

is the source of Global IMprovement (GIM), (ii) the randomness is represented by

random consideration which is the source of Random IMprovement (RIM), (iii) the

neighbourhood structures are represented by pitch adjustment which is the source of

Local IMprovement (LIM). Each scenario ran 10 times. Note that the NI= 100,000 is

fixed for all experiments.

As shown in Table 5, the first 11 scenarios simulate the behaviour of population-

based methods, i.e., HMS ≥ 1. The remaining scenarios (i.e., 12-17) simulate the

behaviour of local search-based methods.

The value of HMCR determines whether the proposed method used only memory

consideration component (i.e., GIM) when HMCR =100% or memory consideration

(i.e., GIM) and random consideration (i.e., RIM) components when HMCR < 100%.

The value of PAR determines the rate of any gradient decent (LIM). when PAR=0, no

LIM is obtained. Larger PAR refers to the rate of using pitch adjustment procedures.

Note that PAR determines the values of PAR1, PAR2 and PAR3 (PAR1=PAR/3,

PAR2= 2PAR/3, and PAR3=PAR).

The combination of metaheuristic components based on the type of improvements

is shown in the last column of Table 5.

Analogies:

– Some scenarios combine GIM + RIM + LIM components (i.e., Scens. (5, 6, 10, 11))

in which the proposed method behaves similar to the Memetic Algorithm (MA)

(Establish a good balance between exploration and exploitation).

68

– Some scenarios combine GIM + RIM components (i.e., Scens. (4, 9)) in which the

proposed method behaves similar to Genetic Algorithm (GA) (Establish a balance

between exploration and exploitation).

– Some scenarios combine GIM + LIM components (i.e., Scens. (2, 3, 7, 8)) in which

the proposed method behaves similar to the MA without the mutation operator.

(Easily getting stuck in local optimal solution since there is no RIM component)

– Some scenarios combine LIM + RIM components(i.e.,Scens. (15, 16, 17)) in which

the proposed method behaves similar to the Simulated Annealing (SA) (Establish

a good balance between exploration and exploitation).

– Scen. (1) has only GIM component in which the proposed method behaves similar

to the GA without a mutation operator (This leads to a premature convergence

problem).

– Scen. (13) has only LIM component in which the proposed method behaves similar

to the Hill Climbing (Easily getting stuck in the local optimal solution).

– Scen. (14) has only RIM component which means the proposed method can be con-

sidered in this case a local search-based method (i.e.,HMS=1) but without neigh-

bourhood structures. The proposed method is able to improve the solution by an

iterative construction process.

Note that in Scen (12), the proposed method does not have any improvement

component which means that the initial solution will remain the same during the

search.

4.1.2 Experimental Results

Tables 6, 7 , and 8, summarise the results of the 17 scenarios on the penalty value of the

solution by recording the best, average, worst and standard deviation (std.dev.) over

10 runs. Note that the three tables are separated with reference to various HMS. The

best solution for each dataset is highlighted in bold. The results show that combining

GIM + LIM + RIM components (e.g., Scens. (5, 6, 10, 11)) in the same method in

general is promising.

4.1.3 Discussion

A closer look at Tables 6, 7 and 8, each scenario reflects the behaviour of the proposed

method when one, two or three components are combined. It has to be noted that

in HSA, the memory consideration is the source of GIM, random consideration is the

source of RIM, and the three pitch adjustment procedures are the source of LIM.

Observations:

– The best solutions are obtained from the scenarios that combine GIM + RIM + LIM

components. However, some scenarios that combine GIM + LIM components are

able to yield few number of the best solutions (see Scen (2, 3) for CAR-S-91-I and

UTA-S-92-I). Note that these scenarios might be affected with exceptional random

consideration (ERC) which diversify the search (see Sect. 4.2).

– The overall best results are obtained when the HMS = 50, this suggests that larger

HMS allow the HSA to explore multiple search space regions simultaneously which

may produce better quality solutions.

69

– The HMCR affects the balance between exploration and exploitation which means

that the larger HMCR leads to less exploration and the greater exploitation. For

example, the proposed method in Scen (16, 17) is concerned with exploration rather

than exploitation and thus the speed of convergence will be slow.

– The PAR is the rate of any gradient descent. Since it had the larger values, it

produced the best results. In other words, the larger the PAR values are, the more

rigorous is the fine-tuning of the search space region to which the HSA converges. It

is also noted from the comparative evaluation as will be shown in Sect. 4.3 that the

best cited results for Carter dataset come from local search-based methods. This

suggests that the components that are concerned with exploitation are more useful

than those concerned with exploration for UETP. In fact, this is one of the reasons

why the most timetabling researchers have lately turned to use local search-based

methods rather than population-based method in their timetabling problems.

– The HSA method produces the best results for some problem instances (see CAR-

S-91-I, EAR-F-83-I, LSE-F-91, STA-F-83-I) when the value of PAR is 3% while

the remaining best results are obtained when the value of PAR is 30%. Note that

the PAR is the rate of any gradient decent which indicates that some problem

instance can be efficiently tackled when the LIM is few in number while others can

be efficiently tackled when the LIM is great in number. In general, some search

space reigns of the timetabling problems are very rugged and need considerable

local changes until the local optimal solution is obtained.

– The results obtained by Scen. (13, 14, 15) worth considering. Scen (13) simulates a

local search-based method with only LIM component which similar to Hill Climbing

with three neighbourhood structures (move, Swap, and Kempe Chain). In contrast,

Scen. (14) simulates a local search-based method with only RIM component. The

best results are obtained from Scen. (15) where the HSA combines LIM + RIM

components. It is apparent that a local search-based method with an explorative

strategy is able to yield better results than those with no explorative strategy.

4.2 Analysis of the Exceptional Random Consideration (ERC) and the restart process

Using the memory consideration, the proposed method might be unable to assign some

exams with timeslots based on HM solutions (i.e., There are no feasible timeslots for

some exams in the HM solutions). Therefore, the exceptional random consideration

(ERC) attempts to assign these exams with timeslots from their available range (see

Algorithm 1, STEP 3, Line 7).

However, if the ERC or random consideration were unable to assign any exam with

a timeslot from their available range, the improvisation process would restart all over

again with a different random seed (restart process). (see Algorithm 1, STEP 3, Lines

9 and 23).

Table 9 shows statistical information on the effect of ECR and the restart process on

the behaviour of the proposed method with various HMS. Each number in C1 column

is to the average number of exams that are assigned with timeslots based on ERC per

100,000 iterations calculated as follows:

C1 =

∑NI
i=1 # exams assigned with timeslot using ERC

NI

70

Table 6 The Penalty Values obtained by the proposed HSA in different convergence scenarios
(Note that the HMS = 50)

Dataset SCEN.1 SCEN.2 SCEN.3 SCEN.4 SCEN.5 SCEN.6
CAR-S-91-I Best 5.91 4.99 5 5.25 5 5.04

Average 6.06 5.08 5.14 5.36 5.08 5.13
Worst 6.16 5.47 5.27 5.45 5.16 5.25
Std.dev. 0.08 0.14 0.1 0.08 0.06 0.07

CAR-F-92-I Best 5.04 4.35 4.29 4.56 4.31 5.93
Average 5.22 4.43 4.44 4.76 4.38 6.1
Worst 5.37 4.48 4.59 4.88 4.43 6.23
Std.dev. 0.1 0.05 0.08 0.11 0.05 0.09

EAR-F-83-I Best 38.77 36.61 34.8 35.63 34.42 34.91
Average 39.91 37.36 35.34 36.56 35.51 35.33
Worst 40.91 38.21 35.76 37.93 36.58 35.94
Std.dev 0.851 0.584 0.337 0.825 0.674 0.459

HEC-S-92-I Best 11.8 11.1 11 11.1 10.6 10.4
Average 12.4 11.4 10.9 11.4 11 10.7
Worst 12.7 11.8 11.1 11.6 11.4 11
Std.dev. 0.33 0.24 0.14 0.2 0.24 0.19

KFU-S-93 Best 16.48 14.07 13.5 15.08 14 13.66
Average 17.24 14.34 14.02 15.28 14.42 13.78
Worst 18.13 14.58 14.46 15.68 14.82 13.94
Std.dev. 0.584 0.216 0.374 0.203 0.269 0.099

LSE-F-91 Best 13.06 10.96 10.6 11.39 10.48 10.69
Average 13.62 11.49 10.71 11.75 10.77 10.88
Worst 14.03 11.86 10.9 12.11 11.06 11.19
Std.dev. 0.265 0.32 0.113 0.248 0.214 0.163

RYE-S-93 Best 10.76 8.98 9.04 9.773 8.85 8.79
Average 11.22 9.16 9.16 10.03 9.07 8.94
Worst 11.51 9.31 9.27 10.2 9.46 9.17
Std.dev. 0.244 0.12 0.08 0.13 0.18 0.14

STA-F-83-I Best 157.92 157.16 157.2 157.19 157.04 157.12
Average 158.6 157.35 157.96 157.49 157.16 157.21
Worst 159.59 157.54 159.26 157.73 157.36 157.27
Std.dev. 0.5233 0.1446 0.7619 0.1662 0.0916 0.0351

TRE-S-92 Best 9.58 8.36 8.2 8.41 8.26 8.16
Average 9.65 8.52 8.32 8.75 8.35 8.32
Worst 9.73 8.71 8.42 9.07 8.43 8.46
Std.dev. 0.07 0.11 0.09 0.21 0.06 0.09

UTA-S-92-I Best 4.05 3.51 3.43 3.59 3.46 3.49
Average 4.11 3.55 3.51 3.73 3.52 3.55
Worst 4.16 3.62 3.59 3.83 3.55 3.61
Std.dev. 0.04 0.04 0.05 0.07 0.03 0.04

UTE-S-92 Best 27.1 25.75 25.6 25.66 25.3 25.09
Average 28.95 26.28 25.95 26.22 25.85 25.45
Worst 30.03 26.62 26.35 26.9 26.37 25.76
Std.dev. 0.836 0.298 0.231 0.483 0.329 0.21

YOR-F-83-I Best 39.79 37.35 36.13 37.73 36.32 35.86
Average 40.85 37.88 37.04 38.4 37.3 36.56
Worst 41.55 38.71 38.21 38.98 38.79 36.87
Std.dev. 0.668 0.377 0.671 0.392 0.74 0.31

71

Table 7 The Penalty Values obtained by the proposed HSA in different convergence scenarios
(Note that the HMS = 10)

Data set SCEN.7 SCEN.8 SCEN.9 SCEN.10 SCEN.11
CAR-S-91-I Best 5.02 5.09 5.2 5.19 5.17

Average 5.15 5.65 5.22 5.42 5.26
Worst 5.23 6.9 5.26 5.57 5.36
Std.dev. 0.07 0.75 0.03 0.12 0.06

CAR-F-92-I Best 4.52 5.91 4.69 4.47 4.75
Average 4.62 6.22 4.81 4.58 5.53
Worst 4.72 6.36 5.01 4.69 5.9
Std.dev. 0.08 0.13 0.12 0.09 0.38

EAR-F-83-I Best 36.1 37.21 35.72 34.91 34.93
Average 38.11 38.04 38.69 36.26 35.81
Worst 38.93 39.39 41.42 37.54 36.77
Std.dev 0.88 0.809 1.69 1.059 0.747

HEC-S-92-I Best 11.1 11 11.2 10.6 10.5
Average 11.6 11.3 11.7 11.1 10.7
Worst 11.8 11.8 12.2 11.5 10.8
Std.dev. 0.24 0.26 0.33 0.29 0.12

KFU-S-93 Best 14.25 13.77 14.88 13.93 13.56
Average 14.8 14.23 15.5 14.2 13.74
Worst 15.68 14.64 16.41 14.56 13.97
Std.dev. 0.489 0.302 0.423 0.188 0.153

LSE-F-91 Best 11.15 10.58 11.84 10.73 10.59
Average 11.63 11.16 12.29 11.29 11.14
Worst 11.98 11.59 12.72 12.02 11.94
Std.dev. 0.231 0.334 0.325 0.409 0.373

RYE-S-93 Best 9.09 9.01 10.4 8.86 8.84
Average 9.56 9.17 10.9 9.23 9.04
Worst 9.78 9.54 11.6 9.57 9.17
Std.dev. 0.21 0.15 0.37 0.26 0.15

STA-F-83-I Best 157.1 157.14 157.31 157.07 157.17
Average 157.23 157.28 157.66 157.21 157.28
Worst 157.5 157.44 157.97 157.44 157.38
Std.dev. 0.1449 0.106 0.2392 0.1481 0.0755

TRE-S-92 Best 8.68 8.55 9.09 8.43 8.27
Average 8.9 8.65 9.32 8.54 8.32
Worst 9.32 9.02 9.51 8.69 8.36
Std.dev. 0.19 0.14 0.13 0.09 0.03

UTA-S-92-I Best 3.89 3.56 3.68 3.62 3.54
Average 4 3.64 3.71 3.68 3.66
Worst 4.11 3.72 3.77 3.74 3.78
Std.dev. 0.07 0.06 0.03 0.04 0.06

UTE-S-92 Best 26.44 26.09 25.91 25.51 25.37
Average 27 26.49 26.94 25.91 25.76
Worst 27.92 26.91 28.49 26.55 26.49
Std.dev. 0.52 0.245 0.754 0.351 0.35

YOR-F-83-I Best 37.83 37.54 38.25 36.98 36.17
Average 39 38.01 40.3 37.65 37.3
Worst 40.03 38.38 41.96 38.46 38.32
Std.dev. 0.66 0.282 1.328 0.499 0.69

72

Table 8 The Penalty Values obtained by the proposed HSA in different convergence scenarios
(Note that the HMS = 1)

Data set SCEN.12 SCEN.13 SCEN.14 SCEN.15 SCEN.16 SCEN.17
CAR-S-91-I Best 8.28 5.52 6.19 5.49 7.58 7.64

Average 8.73 5.67 6.45 5.75 7.66 7.75
Worst 9.05 5.86 6.72 5.98 7.88 7.86
Std.dev. 0.24 0.11 0.17 0.17 0.1 0.08

CAR-F-92-I Best 7.42 4.65 5.2 4.45 6.22 6.3
Average 7.77 4.77 5.46 4.6 6.42 6.41
Worst 8.05 4.88 5.63 4.74 6.6 6.49
Std.dev. 0.21 0.08 0.14 0.09 0.12 0.08

EAR-F-83-I Best 53.92 38.32 39.99 35.27 44.08 42.71
Average 56.91 40.12 41.5 37.5 44.95 43.95
Worst 58.89 41.48 43.83 38.93 46.01 46.08
Std.dev 1.363 0.99 1.132 1.263 0.644 1.054

HEC-S-92-I Best 17 11.2 11.2 10.7 11.9 11.5
Average 19.1 11.6 11.8 11 12.4 11.9
Worst 22.3 11.9 12.5 11.4 12.8 12.2
Std.dev. 1.68 0.21 0.46 0.28 0.32 0.23

KFU-S-93 Best 23.99 14.49 15.05 14.24 19.09 16.66
Average 27.13 14.89 15.91 14.47 19.87 17.03
Worst 30.08 15.39 16.65 14.84 20.43 17.39
Std.dev. 1.793 0.265 0.547 0.193 0.37 0.247

LSE-F-91 Best 19.29 11.36 11.55 11.29 14.78 15.35
Average 21.27 11.83 12.01 11.7 15.47 15.87
Worst 22.35 12.4 12.38 12.4 15.85 16.48
Std.dev. 0.904 0.316 0.244 0.346 0.354 0.436

RYE-S-93 Best 19.4 9.51 11.1 10.2 14.7 14.4
Average 20.9 9.99 11.4 10.5 15 14.8
Worst 22.4 10.2 11.9 10.8 15.1 15.3
Std.dev. 0.98 0.22 0.34 0.24 0.13 0.32

STA-F-83-I Best 168.99 157.41 157.68 157.21 158.65 158.52
Average 177.73 158.13 157.9 157.35 159.64 159.06
Worst 185.87 158.39 158.3 157.44 160.59 159.77
Std.dev. 5.0913 0.3182 0.235 0.0831 0.6015 0.4025

TRE-S-92 Best 12.3 9 9.48 8.63 10.4 10.4
Average 13.3 9.26 9.75 8.97 10.7 10.7
Worst 14 9.53 10.1 9.13 11 11
Std.dev. 0.55 0.17 0.17 0.14 0.21 0.21

UTA-S-92-I Best 5.71 3.71 4.13 3.93 4.92 4.82
Average 6.16 3.8 4.32 3.99 5.02 4.91
Worst 6.6 3.91 4.57 4.06 5.14 5.05
Std.dev. 0.24 0.07 0.13 0.05 0.07 0.07

UTE-S-92 Best 38.88 27.54 26.47 25.7 29.55 29.91
Average 41.94 28.51 27.16 26.1 30.68 30.38
Worst 44.31 30.11 27.87 26.93 31.83 31.87
Std.dev. 1.48 0.741 0.425 0.389 0.724 0.569

YOR-F-83-I Best 50.42 39.46 40.47 38.59 43.71 43.96
Average 53.08 40.84 42.86 39.36 45.03 45.07
Worst 54.66 42.59 46.54 40.03 47.11 46.47
Std.dev. 1.306 1.103 1.695 0.412 1.051 0.812

73

Table 9 The numbers of using ERC and restart process on Carter dataset per 100,000 itera-
tions

Data set HMS=1 HMS=10 HMS=50
C1 C2 C1 C2 C1 C2

CAR-S-91-I 141.89 4 48.77 4 14.54 7
CAR-F-92-I 77.83 81 34.1 14 11.15 160
EAR-F-83-I 13.16 256 12.95 70 4.59 295
HEC-S-92-I 4.11 2602 4.03 2867 3.11 5188
KFU-S-93 21.36 1170 16.77 1568 4.16 2663
LSE-F-91 18.09 637 12.58 636 2.51 861
RYE-S-93 27.64 958 13.66 319 3.57 1175
STA-F-83-I 4.32 0 4.01 0 2.09 0
TRE-S-92 20.73 2 30.11 186 4.46 31
UTA-S-92-I 95.55 25 48.87 13 9.57 38
UTE-S-92 4.79 985 3.88 489 1.84 2581
YOR-F-83-I 22.78 1202 18.71 377 4.55 1588

Each number in C2 column is the total number of iterations skipped per 100,000

(restart process).

The results in C1 suggest that increasing the HMS value in general reduces the

number of exams assigned with timeslots using ERC per iteration. Although the results

in C2 are not related to the HMS values, larger size and complexity of Carter dataset

lead to a larger number of skipped iterations (restart process).

4.3 Comparative Evaluation and Analysis

The proposed Harmony Search Algorithm (HSA) is compared with some published

methods using the Carter datasets, known and available for the authors. This includes

a total of 22 comparator methods which comprise Local Search-based MetaHeuris-

tic Methods (LSMHM), Population-based MetaHeuristic Methods (PMHM), Heuristic

Methods (HM) and Hyper-Heuristic Methods (HHM) (See Table 10).

The results of the proposed method were compared with 22 comparative methods

as shown in Tables 11, 12 and 13. The numbers in these tables refer to the Penalty Value

(PV) calculated by Eq.(1). The indicator ‘-’ shows where the method did not guarantee

a feasible timetable (e.g, a hard constraint was not met) or the method did not test the

corresponding dataset. The numbers in bold show the best solution obtained for that

Carter dataset (lowest is best). The numbers in italic fonts indicate that a different

dataset version was used. Note that the results obtained by the proposed method were

collected from Tables 6, 7 and 8.

In the proposed method, the results outperformed those produced by heuristic and

hyper-heuristic methods in 8 out of 12 Carter datasets shown in Table 11. Clearly,

the heuristic and hyper-heuristic methods have not as yet measured up to the results

obtained by the metaheuristic-based methods in terms of solution quality.

Table 12 shows the results of the proposed method compared with local-search

based methods. The proposed method produces better overall results in 5 out of 11

comparative methods in all Carter dataset. Also the proposed method outperformed

the local-search based methods in 2 out 12 Carter datasets. It has to be noted that

these methods produced the best solutions cited above. Table 13 lists the results of the

proposed method in comparison with the population-based methods. Once again in 9

out of 12 Carter dataset, the proposed method achieved better results

74

Table 10 Key to the comparator methods

Method Class Reference

0 Harmony Search Algorithm PMHM < proposed method>
1 Graph Coloring Heuristic Methods HM Carter et al. (1996)
2 Tabu Search Algorithm LSMHM Di Gaspero and Schaerf (2002)
3 Tabu Search Algorithm LSMHM Di Gaspero (2002)
4 Tabu Search Algorithm LSMHM Paquete and Stutzle (2003)
5 Local Search-based Methods LSMHM Burke and Newall (2003)
6 GRASP local Search-based Method LSMHM Casey and Thompson (2003)
7 Simulated Annealing and Hill Climbing LSMHM Merlot et al. (2003)
8 Time-Predefined Great Deluge LSMHM Burke et al. (2004)
9 Adaption of Heuristic Orderings HM Burke and Newall (2004)
10 Similarity Measure for Heuristic Selection HM Yang and Petrovic (2005)
11 Fuzzy Multiple Heuristic Orderings HM Asmuni et al. (2005)
12 Tabu Search Hyper-Heuristic Approach HHM Kendall and Hussin (2005)
13 Multi-Objective Evolutionary Algorithm PMHM Cote et al. (2005)
14 Hybrid Variable Neighbourhood LSMHM Burke et al. (2006)
15 Ant Colony Algorithm PMHM Eley (2007)
16 Graph-Based Hyper-Heuristic HHM Burke et al. (2007)
17 Ahuja-Orlin’s Method LSMHM Abdullah et al. (2007)
18 Graph-Based Hyper-Heuristic HHM Qu and Burke (2009)
19 Local Search-based Methods LSMHM Caramia et al. (2008)
20 Graph-Based Hyper-Heuristic HHM Qu et al. (2009a)
21 Graph-Based Hyper-Heuristic HHM Pillay and Banzhaf (2009)
22 Fuzzy Multiple Heuristic Orderings HM Asmuni et al. (2009)

Finally, Table 14 shows the results of the proposed method in comparison with

the best overall results obtained by the 22 comparative methods in Table 10. The

differences between the results in the 3rd column indicate that the proposed method

is able to produce respectable solutions that are very much near the best solutions.

The last column in the Table 14 shows the ranking position of each result in a total of

22 comparative methods. For example, 5th position means that the result obtained by

HSA ranks 5th out of 23 methods (including the proposed method).

75

T
a
b
le

1
1
:
C
o
m
p
a
ri
so

n
w
it
h

h
e
u
ri
st
ic

a
n
d

h
y
p
e
r-
h
e
u
ri
st
ic

a
p
p
ro

a
ch

e
s

D
a
ta

se
t

<
p
ro

-
p
o
se
d

m
e
th

o
d
>

C
a
rt
e
r

e
t

a
l.

(1
9
9
6
)

B
u
rk

e
a
n
d

N
e
w
a
ll

(2
0
0
4
)

A
sm

u
n
i

e
t

a
l.

(2
0
0
5
)

K
e
n
d
a
ll

a
n
d

H
u
ss
in

(2
0
0
5
)

B
u
rk

e
e
t

a
l.

(2
0
0
7
)

Q
u

e
t

a
l.

(2
0
0
9
a
)

Q
u

a
n
d

B
u
rk

e
(2

0
0
9
)

P
il
la
y

a
n
d

B
a
n
z
h
a
f

(2
0
0
9
)

A
sm

u
n
i

e
t

a
l.

(2
0
0
9
)

C
A
R
-S

-9
1
-I

4
.9
9

7
.1

5
5
.1
9

5
.3
7

5
.3
6

5
.1
1

5
.1
6

4
.9

7
5
.2
9

C
A
R
-F

-9
2
-I

4
.2
9

6
.2

4
.3

4
.5
1

4
.6
7

4
.9
3

4
.3
2

4
.1

6
4
.8
4

4
.5
4

E
A
R
-F

-8
3
-I

3
4
.4

2
3
6
.4

3
6
.2

3
6
.6
4

4
0
.1
8

3
7
.9
2

3
5
.5
6

3
5
.8
6

3
6
.8
6

3
7
.0
2

H
E
C
-S

-9
2
-I

1
0
.4

1
0
.8

1
1
.6

1
1
.6

1
1
.8
6

1
2
.2
5

1
1
.6
2

1
1
.9
4

1
1
.8
5

1
1
.7
8

K
F
U
-S

-9
3

1
3
.5

1
4

1
5

1
5
.3
4

1
5
.8
4

1
5
.2

1
5
.1
8

1
4
.7
9

1
4
.6
2

1
5
.8

L
S
E
-F

-9
1

1
0
.4

8
1
0
.5

1
1

1
1
.3
5

-
1
1
.3
3

1
1
.3
2

1
1
.1
5

1
1
.1
4

1
2
.0
9

R
Y
E
-S

-9
3

8
.7
9

7
.3

-
1
0
.0
5

-
-

-
-

9
.6
5

1
0
.3
8

S
T
A
-F

-8
3
-I

1
5
7
.0

4
1
6
1
.5

1
6
1
.9

1
6
0
.7
9

1
5
7
.3
8

1
5
8
.1
9

1
5
8
.8
8

1
5
9

1
5
8
.3
3

1
6
0
.4
2

T
R
E
-S

-9
2

8
.1

6
9
.6

8
.4

8
.4
7

8
.3
9

8
.9
2

8
.5
2

8
.6

8
.4
8

8
.6
7

U
T
A
-S

-9
2
-I

3
.4
3

3
.5

3
.4

3
.5
2

-
3
.8
8

3
.2

1
3
.5
9

3
.4

3
.5
7

U
T
E
-S

-9
2

2
5
.0

9
2
5
.8

2
7
.4

2
7
.5
5

2
7
.6

2
8
.0
1

2
8

2
8
.3

2
8
.8
8

2
8
.0
7

Y
O
R
-F

-8
3
-I

3
5
.8

6
4
1
.7

4
0
.8

3
9
.7
9

-
4
1
.3
7

4
0
.7
1

4
1
.8
1

4
0
.7
4

3
9
.8

T
a
b
le

1
2
:
C
o
m
p
a
ri
so

n
w
it
h

lo
c
a
l
b
a
se
d

m
e
ta

h
e
u
ri
st
ic
-b

a
se
d

se
a
rc
h

a
p
p
ro

a
ch

e
s

D
a
ta

se
t

<
p
ro

-
p
o
se
d

m
e
th

o
d
>

C
a
ra

m
ia

e
t

a
l.

(2
0
0
8
)

(D
i
G
a
sp

e
ro

a
n
d

S
ch

a
e
rf

2
0
0
2
)

D
i
G
a
sp

e
ro

(2
0
0
2
)

P
a
q
u
e
te

a
n
d

S
tu

tz
le

(2
0
0
3
)

B
u
rk

e
a
n
d

N
e
w
a
ll

(2
0
0
3
)

C
a
se
y

a
n
d

T
h
o
m
p
-

so
n

(2
0
0
3
)

M
e
rl
o
t

e
t

a
l.

(2
0
0
3
)

B
u
rk

e
e
t

a
l.

(2
0
0
4
)

Y
a
n
g

a
n
d

P
e
tr
o
-

v
ic

(2
0
0
5
)

B
u
rk

e
e
t

a
l.

(2
0
0
6
)

A
b
d
u
ll
a
h

e
t

a
l.

(2
0
0
7
)

C
A
R
-S

-9
1
-I

4
.9
9

6
.6

6
.2

5
.7

-
4
.6
5

5
.4

5
.1

4
.8

4
.5

4
.6

5
.2

C
A
R
-F

-9
2
-I

4
.2
9

6
5
.2

-
-

4
.1

4
.4

4
.3

4
.2

3
.9

3
4

4
.4

E
A
R
-F

-8
3
-I

3
4
.4
2

2
9
.3

4
5
.7

3
9
.4

3
8
.9

3
7
.0
5

3
4
.8

3
5
.1

3
5
.4

3
3
.7

3
2
.8

3
4
.9

H
E
C
-S

-9
2
-I

1
0
.4

9
.2

1
2
.4

1
0
.9

1
1
.2

1
1
.5
4

1
0
.8

1
0
.6

1
0
.8

1
0
.8
3

1
0

1
0
.3

K
F
U
-S

-9
3

1
3
.5

1
3
.8

1
8

-
1
6
.5

1
3
.9

1
4
.1

1
3
.5

1
3
.7

1
3
.8
2

1
3

1
3
.5

L
S
E
-F

-9
1

1
0
.4
8

9
.6

1
5
.5

1
2
.6

1
3
.2

1
0
.8
2

1
4
.7

1
0
.5

1
0
.4

1
0
.3
5

1
0

1
0
.2

R
Y
E
-S

-9
3

8
.7
9

6
.8

-
-

-
-

-
-

8
.9

8
.5
3

-
8
.7

S
T
A
-F

-8
3
-I

1
5
7
.0

4
1
5
8
.2

1
6
0
.8

1
5
7
.4

1
6
8
.3

1
6
8
.7
3

1
3
4
.9

1
5
7
.3

1
5
9
.1

1
5
8
.3
5

1
5
9
.9

1
5
9
.2

T
R
E
-S

-9
2

8
.1
6

9
.4

1
0

-
9
.3

8
.3
5

8
.7

8
.4

8
.3

7
.9
2

7
.9

8
.4

U
T
A
-S

-9
2
-I

3
.4
3

3
.5

4
.2

4
.1

-
3
.2

-
3
.5

3
.4

3
.1

4
3
.2

3
.6

U
T
E
-S

-9
2

2
5
.0
9

2
4
.4

2
7
.8

-
2
9

2
5
.8
3

2
5
.4

2
5
.1

2
5
.7

2
5
.3
9

2
4
.8

2
6

Y
O
R
-F

-8
3
-I

3
5
.8

6
3
6
.2

4
1

3
9
.7

3
8
.9

3
7
.2
8

3
7
.5

3
7
.4

3
6
.7

3
6
.3
5

3
7
.2
8

3
6
.2

76

Table 13 Comparison with population based metaheuristic approaches

Data set < proposed
method>

Cote et al.
(2005)

Eley (2007)

CAR-S-91-I 4.99 5.4 5.2
CAR-F-92-I 4.29 4.2 4.3
EAR-F-83-I 34.42 34.2 36.8
HEC-S-92-I 10.40 10.4 11.1
KFU-S-93 13.5 14.3 14.5
LSE-F-91 10.48 11.3 11.3
RYE-S-93 8.79 8.8 9.8
STA-F-83-I 157.04 158.03 157.3
TRE-S-92 8.16 8.6 8.6
UTA-S-92-I 3.43 3.5 3.5
UTE-S-92 25.09 25.3 26.4
YOR-F-83-I 35.86 36.4 39.4

5 Conclusion and future work

In this paper, we have conducted a preliminary investigation of combining the key

metaheuristic components that lead to the best solutions for Uncapacitated Examina-

tion Timetabling Problem (UETP). Harmony Search Algorithm (HSA), tailored for the

purpose of this study, is iterated toward an optimal solution using three components:

Memory Consideration, Random Consideration, and Pitch Adjustment. The proposed

method has been evaluated against 12 datasets defined by Carter et al. (1996) and has

been able to obtain two best overall results when compared with those obtained by 22

comparative methods available to the researcher.

Three metaheuristic components have been investigated: recombination, random-

ness and neighborhood structures, that have been classified according to the types of

improvement provided: global improvement (GIM), random improvement (RIM), and

local improvement (LIM) respectively. we experimented with 17 convergence scenarios

each of which simulating a combination among those components. The results show

that the method combining GIM + RIM + LIM components can obtain high quality

solutions for for most test timetabling instances. This suggests that hybridization be-

Table 14 The comparison between the proposed method and the best cited results obtained
from approaches in Table 7, 8 and 9 of Carter benchmarks

Data set < proposed
method>

Best result
cited

differences position –
out of 23
methods

CAR-S-91-I 4.99 4.5 0.49 5th
CAR-F-92-I 4.29 3.93 0.36 7th
EAR-F-83-I 34.42 29.3 5.12 5th
HEC-S-92-I 10.4 9.2 1.2 4th
KFU-S-93 13.5 13 0.5 2nd
LSE-F-91 10.48 9.6 0.88 6th
RYE-S-93 8.79 6.8 1.99 5th
STA-F-83-I 157.04 157.2 -0.16 1st
TRE-S-92 8.16 7.9 0.26 3rd
UTA-S-92-I 3.43 3.14 0.29 8th
UTE-S-92 25.09 24.4 0.69 3rd
YOR-F-83-I 35.86 36.2 -0.34 1st
Total 316.45 305.17 11.28

77

tween the key components of local search-based methods and those of population-based

methods, is a promising research area which can produce good solutions for the most

difficult UETP instances.

The convergence scenarios can also be seen as a parameter sensitivity analysis for

the proposed HSA. Their results suggest that increasing HMS leads to increasing the

ability of the proposed method to explore multiple search space regions simultaneously.

Furthermore, the more the HCMR is, the less exploration and greater exploitation will

be. In the timetabling domain, exploitation is more useful than exploration due to

the structure of the search space. As such HMCR should be large enough to avoid

the random search. PAR is the rate of any gradient descent. Larger PAR leads to

rigorous fine-tuning in the search space region and more exploitation. In conclusion,

larger HMCR, PAR and HMS, lead to better results.

The combination of metaheuristics components using HSA as an optimisation

framework can inspire future researchers with food for thought. For example, the ac-

ceptance rule of Simulated Annealing can be combined with STEP 4 of the HSA.

References

Abdullah S, Ahmadi S, Burke EK, Dror M (2007) Investigating ahuja-orlin’s

large neighbourhood search approach for examination timetabling. OR Spectrum

29(2),351–372

Al-Betar MA, Khader AT (2009) A hybrid harmony search for university course

timetabling. In: Blazewicz J, Drozdowski M, Kendall G, McCollum B (eds) Proceed-

ings of the 4nd Multidisciplinary Conference on Scheduling: Theory and Applications

(MISTA 2009), Dublin, Ireland, pp 157–179

Al-Betar MA, Khader AT, Gani TA (2008) A harmony search algorithm for university

course timetabling. In: 7th International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2008), Montreal, Canada

Al-Betar MA, Khader AT, Liao IY (2010) A harmony search algorithm with multi-pitch

adjusting rate for university course timetabling. In: Geem Z (ed) Recent Advances

In Harmony Search Algorithm, Studies in Computational Intelligence (SCI), vol 270,

Springer-Verlag, Berlin, Heidelberg, pp 147–162

Asmuni H, Burke EK, Garibaldi JM, McCollum B (2005) Fuzzy multiple heuristic

orderings for examination timetabling. In: Proceedings of the 5th International Con-

ference onPractice and Theory of Automated Timetabling (PATAT2004), LNCS, vol

3616, Berlin: Springer-Verlag, Pittsburgh, PA, USA

Asmuni H, Burke EK, Garibaldi JM, McCollum B, Parkes AJ (2009) An investigation

of fuzzy multiple heuristic orderings in the construction of university examination

timetables. Computers & Operations Research 36(4),981–1001

Blum C, Roli A (2003) Metaheuristics in combinatorial optimization: Overview and

conceptual comparison. ACM Comput Surv 35(3),268–308

Brélaz D (1979) New methods to color the vertices of a graph. Commun ACM

22(4),251–256

Burke E, Newall J (2004) Solving examination timetabling problems through adaption

of heuristic orderings. Annals of Operations Research 129(1),107–134

Burke EK, Newall JP (2003) Enhancing timetable solutions with local search methods.

In: in Proceedings of the 4th International Conference on Practice and Theory of

78

Automated Timetabling (PATAT2002), LNCS, vol 2740, Berlin: Springer-Verlag,

KaHo St.-Lieven, Gent, Belgium, pp 195–206

Burke EK, Bykov Y, Newall J, Petrovic S (2004) A time-predefined local search ap-

proach to exam timetabling problems. IIE Transactions 36(6),509–528

Burke EK, Eckersley AJ, McCollum B, Petrovic S, Qu R (2006) Hybrid variable neigh-

bourhood approaches to university exam timetabling. Tech. Rep. Technical Report

NOTTCS-TR-2006-2, School of Computer Science, University of Nottingham, UK

Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-

heuristic for educational timetabling problems. European Journal of Operational

Research 176(1),177–192

Caramia M, Dell’Olmo P, Italiano G (2008) Novel local-search-based approaches to

university examination timetabling. Informs Journal on Computing 20(1),86–99

Carter MW, Laporte G, Lee SY (1996) Examination timetabling: Algorithmic strate-

gies and applications. Journal of the Operational Research Society 74,373–383

Casey S, Thompson J (2003) Grasping the examination scheduling problem. In: in

Proceedings of the 4th International Conference on Practice and Theory of Auto-

mated Timetabling (PATAT2002), LNCS, vol 2740, Berlin: Springer-Verlag, KaHo

St.-Lieven, Gent, Belgium, pp 232–244

Cote P, Wong T, Sabouri R (2005) Application of a hybrid multi-objective evolutionary

algorithm to the uncapacitated exam proximity problem. In: Proceedings of the

5th International Conference on Practice and Theory of Automated Timetabling

(PATAT2001), LNCS, vol 3616, Berlin: Springer-Verlag, pp 151–168

Di Gaspero L (2002) Recolour, shake and kick: A recipe for the examination timetabling

problem. In: in Proceedings of the 4th International Conference on Practice and

Theory of Automated Timetabling (PATAT2002), KaHo St.-Lieven, Gent, Belgium

Di Gaspero L, Schaerf A (2002) Tabu search techniques for examination timetabling.

In: Proceedings of the 3rd International Conference on Practice and Theory of Au-

tomated Timetabling (PATAT2001), LNCS, vol 3616, Berlin: Springer-Verlag

Eley M (2007) Ant algorithms for the exam timetabling problem. In: Proceedings of

the 5th International Conference on Practice and Theory of Automated Timetabling

(PATAT2001), LNCS, vol 3616, Berlin: Springer-Verlag, pp 364–382

Fesanghary M, Mahdavi M, Minary-Jolandan M, Alizadeh Y (2008) Hybridizing har-

mony search algorithm with sequential quadratic programming for engineering op-

timization problems. Computer Methods in Applied Mechanics and Engineering

197(33-40),3080–3091

Geem ZW, Kim JH, Loganathan GV (2001) A New Heuristic Optimization Algorithm:

Harmony Search. Simulation 76(2),60–68

Ingram G, Zhang T (2009) Overview of applications and developments in the harmony

search algorithm. In: Geem ZW (ed) Music-Inspired Harmony Search Algorithm,

Springer, Berlin, Heidelberg, pp 15–37

Kendall G, Hussin N (2005) A tabu search hyper-heuristic approach to the examination

timetabling problem at the mara university of technology. In: Proceedings of the

5th International Conference on Practice and Theory of Automated Timetabling

(PATAT2001), LNCS, vol 3616, Berlin: Springer-Verlag, pp 270–293

Lee K, Geem ZW, Lee Sh, Bae Kw (2005) The harmony search heuristic algorithm for

discrete structural optimization. Engineering Optimization 37(7),663–684

Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony

search algorithm. Computers and Structures 82(9-10),781 – 798

79

Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering

optimization: harmony search theory and practice. Computer Methods in Applied

Mechanics and Engineering 194(36-38),3902–3933

McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes A, Di Gaspero L, Qu

R, Burke EK (2009) Setting the Research Agenda in Automated Timetabling: The

Second International Timetabling Competition. INFORMS JOURNAL ON COM-

PUTING DOI 10.1287/ijoc.1090.0320

Merlot LT, Boland N, Hughes BD, Stuckey PJ (2003) A hybrid algorithm for the exam-

ination timetabling problem. In: in Proceedings of the 4th International Conference

on Practice and Theory of Automated Timetabling (PATAT2002), LNCS, vol 2740,

Berlin: Springer-Verlag, KaHo St.-Lieven, Gent, Belgium, pp 207–231

Ochoa G, Qu R, Burke EK (2009) Analyzing the landscape of a graph based hyper-

heuristic for timetabling problems. In: GECCO ’09: Proceedings of the 11th Annual

conference on Genetic and evolutionary computation, ACM, New York, NY, USA,

pp 341–348

Paquete L, Stutzle T (2003) Empirical analysis of tabu search for the lexicographic

optimization of the examination timetabling problem. In: in Proceedings of the

4th International Conference on Practice and Theory of Automated Timetabling

(PATAT2002), LNCS, vol 2740, KaHo St.-Lieven, Gent, Belgium, pp 413–420

Pillay N, Banzhaf W (2009) A study of heuristic combinations for hyper-heuristic

systems for the uncapacitated examination timetabling problem. European Journal

of Operational Research 197(2),482–491

Qu R, Burke E (2009) Hybridizations within a graph-based hyper-heuristic framework

for university timetabling problems. Journal of the Operational Research Society

60,1273–1285

Qu R, Burke EK, , McCollum B (2009a) Adaptive automated construction of hybrid

heuristics for exam timetabling and graph colouring problems. European Journal of

Operational Research 198(2),392–404

Qu R, Burke EK, McCollum B, Merlot LTG, Lee SY (2009b) A survey of search

methodologies and automated system development for examination timetabling.

Journal of Scheduling 12(1),55–89

Yang XS (2009) Harmony search as a metaheuristic algorithm. In: Geem ZW (ed)

Music-Inspired Harmony Search Algorithm, Springer, Berlin, Heidelberg, pp 1–14

Yang Y, Petrovic S (2005) A novel similarity measure for heuristic selection in exam-

ination timetabling. In: Proceedings of the 5th International Conference on Prac-

tice and Theory of Automated Timetabling (PATAT2001), LNCS, vol 3616, Berlin:

Springer-Verlag, pp 247–269

80

Bridging the gap between self schedules and feasible

schedules in staff scheduling

Eyjólfur Ingi Ásgeirsson

Abstract Every company that has employees working on irregular schedules must

deal with the difficult and time consuming problem of creating feasible schedules for

the employees. We introduce an algorithm that takes a partial schedule created by

requests from employees and creates feasible schedule where most of the employee’s

requests are unchanged, while still making sure that rules and regulations are not

violated. The algorithm is based on independent modules, which can be executed in

any order, and each module tries to emulate some action taken by a staff manager.

Our goal is to create a transparent and fair system that creates feasible schedules

of high quality, but also a system where the employees can get an explanation and

justification for every change that the algorithm makes to the employee requests. By

emulating the actions of staff managers, the algorithm is easily understood by staff

managers and, using detailed logs of any action, make any decision easy to explain to

the employees.

We will present the algorithm and show results from four real world companies

and institutions. The results show that a simple module based heuristic can get good

results and create fair and feasible schedules that encourage employees to participate

in the self-scheduling process.

Keywords Staff scheduling · Rostering · Heuristics · Local search

1 Introduction

Staff scheduling is a difficult and time consuming problem that every company or

institution that has employees working on shifts or on irregular workdays must solve.

A variant of the general staff scheduling problem focuses on scheduling the working

hours for nurses in the health industry, so called nurse rostering or nurse scheduling

Work done in collaboration with Vaktabestun ehf.

E. I. Ásgeirsson
Reykjavik University
School of Science and Engineering.
Menntavegur 1, 101 Reykjavik, Iceland.
E-mail: eyjo@ru.is

81

[6]. The nurse rostering problem is well known and has been studied for over 45 years.

The nurse rostering problem can include many types of constraints and covers a large

set of staff scheduling problems, so even though our work is not specific for hospitals

or nurses, most of the previous work focuses on nurse rostering.

There are three major approaches used in nurse rostering: cyclical scheduling [15],

self scheduling and preference scheduling [3]. In cyclical scheduling, several sets of

schedules are generated and then the nurses are assigned to a schedule that best fits

their preferences so that collectively they satisfy the manpower requirements. The

cyclical scheduling approach is rather rigid and therefore difficult to use in a flexible

and changing environment.

In preference scheduling, each employee gives a list of preferences to the personnel

manager who then creates a schedule that satisfies the demand for personnel and

work restrictions while trying to fulfill as many preferences as possible. Some form

of preference scheduling is widely used in real world environments and it has many

benefits, such as flexibility, individual tailoring of the schedule and so forth. The major

drawback to preference scheduling is the time required to create a high quality schedule

that fulfills as many preferences as possible.

The self scheduling approach moves the responsibility of creating a schedule to the

employees. The employees are given the required minimum and maximum number of

employees that should be on duty at each time. The employees are then asked to sign

up for the shifts that they want to work on, with the requirement that the resulting

schedule must be a feasible schedule. Pure self-scheduling is difficult to implement

fairly, in many instances it becomes easy for someone to manipulate the system, the

sign-up order is important, new employees are likely to be at a disadvantage due to

unfamiliarity with the system and, due to any number of reasons, some employees

might not sign up for any shifts. There are however potentially many motivational

benefits of self scheduling, such as improved co-operation, greater staff satisfaction

and commitment, and reduced staff turnaround [16]. In real-life, self-scheduling can

be implemented as a mixture of pure self-scheduling and preference scheduling. In this

approach the employees sign up for shifts, creating a preliminary schedule and the

staff manager then turns the preliminary schedule into an feasible staffing schedule,

making sure that no rules have been violated and the staffing load fits the manpower

need at each time. The final responsibility of creating a good schedule lies with the

staff manager, but the employees see the manpower need and the current staff levels

when signing up for shifts, so they share the responsibility of creating the schedule.

This approach can include an incentive scheme, such as priority on popular shifts, to

encourage the employees to create high quality preliminary schedules.

Mathematical programming techniques are in many cases too rigid to deal with

the multiple and often changing, objectives and goals of staff scheduling. The research

on staff scheduling is now mainly focused on more flexible metaheuristic approaches

such as genetic algorithms [1,2,13,18] and variable neighborhood search [7], with Tabu-

Search [5,12] and Simulated Annealing [4] being particularly successful [14]. Burke et.

al. [8] introduced a multi-criteria metaheuristic approach based on Tabu-search, which

is used in Belgian hospitals. Their system allows for user defined parameters, giving

the users the opportunity to adjust the algorithm to their need and to the specifics of

their problem.

There are two major problems with using black-box methods such as meta-heuristics

and mathematical programming methods with the self-scheduling scheme introduced

above. The first problem is that it is difficult to incorporate the experience and exper-

82

tise of the staff managers into such techniques [17]. Staff managers often have highly

valuable knowledge, experience, and detailed understanding of their specific staffing

problem, which will vary from company to company. The variation in the problem

specifics between the different companies makes it also difficult to incorporate a single

solution that fits all.

The second major problem is that the employees have spent time and effort into

creating the preliminary schedule, so they have an emotional attachment to their se-

lection. Since the staff manager has the final responsibility of the schedule, the staff

manager is also responsible to the employees for any changes that are made to the

preliminary schedule. The employees whose schedules are changed and whose wishes

are ignored will demand to know why. Having a black-box method makes it impossible

to see exactly why each choice is made, which makes it impossible to justify or explain

individual decisions made by the algorithm.

2 Staff Scheduling

The staff scheduling problem we look at is a mixture of self scheduling and preference

scheduling. The employees sign up for shifts and indicate periods where they cannot

work. During the selection process, every employee has full information of how many

employees are signed up for each shift and the required minimum and maximum staffing

levels. The resulting plan, or preliminary schedule, is then used by the management

as a foundation to create a feasible schedule. The quality of the preliminary schedule

determines how close we are to either pure self scheduling or preference scheduling.

If the preliminary schedule is close to feasible, then we have a self scheduling system,

but on the other hand, if the preliminary schedule is far from being feasible, then the

system is closer to preference scheduling, which entails the time consuming process of

creating a feasible schedule from the preliminary schedule.

Our goal is to automate the time consuming process of creating a feasible schedule

which is the drawback of preference scheduling systems. We will use a combination

of local search methods and heuristics to emulate the manual process of creating a

high quality schedule based on the preliminary schedule. The preliminary schedule is

unlikely to satisfy the minimum and maximum required number of employees on duty,

there might be some employees that have not signed up for any shifts or too few shifts

and there might even be employees with too many scheduled hours.

In the real world instances that we’ve analyzed, the schedules that are created

manually from the preliminary schedule are usually accepted as fair by the employees,

the problem is how time consuming the process is. Our system is designed to preserve

the perceived fairness of the current manual system, which we do by ensuring that the

decisions of the algorithm are transparent and easily justifiable using the available data.

There are no constrictions on the shifts that we use, each company or institution will

have a set of allowed shifts and the shifts can have different length, they can overlap

and different days of the week can have different set of allowed shifts.

We will present the algorithm and give results using real data to show how effec-

tively the local search methods and heuristics can create feasible schedules with high

quality, while still satisfying personnel preferences and preserving the trust that the

employees have in the current system.

83

3 Constraints

Staff scheduling problems have a large number of constraints, such as minimum or

maximum number of employee on duty at each time, the requests of employees, union

rules and other regulations that must be satisfied. We partition the constraints into

hard and soft constraints, where the hard constraints must always be satisfied while

we allow the soft constraints to be violated if necessary.

3.1 Hard Constraints

The hard constraints, i.e. the constraints that must be satisfied at all times, are mostly

based on union contracts and contracts with the employees. The system allows for hav-

ing different constraints for different employees. In our examples the main constraints

are usually the same for all the employees, with the exception of work limits. The hard

constraints that we use are the following:

– Restrictions on working hours and rest periods from employee contracts

and union regulations. Each employee can have restrictions on when they can

work, such as employees that will never work nights or weekends. Additionally,

there will be union regulations on rest periods, maximum lengths of continuous

work, minimum length of continuous rest between shifts and other limits.

– Vacation requests. We treat requests for vacations as hard constraints, so the

algorithm will never assign work duty to people on vacation.

– Working weekends. There can be limits on how many weekends particular em-

ployees are working. Common limits include working at most 2 or 3 out of every 4

consecutive weekends.

– Requests for time off. Each employee can have a some hours where they wish to

be off-duty. We treat such wishes as hard constraints, so the algorithm will never

violate such wishes. The number of such hours depends on the company and on

the employee contract.

– Special shifts, training sessions or meetings. In many instances, employees

have work related duties that are not flexible and are not necessarily included in

the number of people on duty. Such instances include training sessions, meetings or

other special functions. Since training sessions and meetings are often not flexible,

we make sure that the algorithm will not make any changes to such functions.

– Other limits on shifts or working hours, such as double shifts. Double

shifts are defined as two separate shifts in the same 24 hour period, where the

interval between the shifts is less than the minimum resting period between shifts.

The set of constraints that are used is flexible and different from one company

to the next. In one of our examples, the use of double shifts is not only allowed but

actually encouraged while other companies might consider schedules with double shifts

as infeasible.

To evaluate constraints such as working weekends or minimum rest, the actual

schedule from the previous period must be included in the input.

One of the problems with the hard constraints is that the employees are allowed

to be more flexible when they are creating their own schedule than staff managers or

improvement algorithms. For example, an employee might sign up for a 10 hour shift,

while a staff manager or an algorithm can only assign shifts of 8 hours or less to the

84

same employee. Since the employees have more flexibility, the preliminary schedules

often contain individual employee schedules that would be considered infeasible. To

make any improvements to such a schedule, the algorithm must accept the infeasibility

of the current schedule, but make sure that the proposed changes to the schedule do

not violate any hard constraints. We use a penalty score system to handle infeasible

schedules and to check if proposed changes are feasible. Each time an individual em-

ployee schedule violates a constraint, the schedule receives a penalty. If the cumulative

penalty is above a certain threshold then the schedule is considered infeasible. To han-

dle the fact that the schedules can be infeasible to start with, the penalty for any

schedule is calculated before and after a proposed change. If the penalty increase is

above the threshold, then the change is not allowed. Using a penalty for each constraint

violation and a threshold not only allows us to use requests that would be considered

infeasible, but it is also flexible since it allows us to specify exactly the number of times

a particular rule must be violated before the proposed schedule is considered infeasible.

3.2 Soft Constraints

The algorithm is designed so that the hard constraints are always satisfied. The soft

constraints can be broken at any time, and represent the goals of the scheduling process.

It is often impossible to satisfy all soft and hard constraints, so we must sometimes

settle for satisfying as many soft constraints as possible. The soft constraints we use

are the following:

– Minimum and maximum staff levels. An estimate for the demand for employ-

ees on duty at each time during the scheduling period is one of the prerequisites

of the scheduling process. Some companies use minimum and maximum number of

on-duty employees for each time slot in the scheduling period, while other compa-

nies simply state exactly how many employees should be on duty at each time. One

of the goals is to have the number of on-duty employees within the minimum and

maximum at all times, or as close to the exact number of employees that should be

on duty. Companies and institutions often use some type of forecasting to estimate

the required number of staff on duty, but the sophistication and the accuracy of

the demand predictions can vary greatly from one company to the next.

– Minimum and maximum number of on-duty hours for each employee.

Each employee is hired to work a specific number of hours per week, typically 40

hours per week for a full time employment. For each planning period, the number

of hours that the employee should sign up for is calculated, based on the number of

hours per week and the number of actual working hours in previous periods. Since

the employees are often working irregular hours, there must be some flexibility in

the system. For the scheduling period, each employee is assigned minimum and

maximum duty hours, and one of the goals of the rostering process is to make sure

that all employees are within the minimum and maximum duty hours.

– Employee requests for shifts. Before each scheduling period, the employees sign

up for shifts. One of the main goals of this project is to encourage employees to

create their own work schedules, so it is important to keep as much of the requests

as possible.

– Employees assigned to shifts on weekends adjacent to their vacations.

If an employee is starting his or hers vacation on a Monday, it is likely that the

85

employee wants the weekend free. We try to make sure that if an employee is on

a vacation on a Monday or Friday, the adjacent weekend will be free, unless the

employee has requested to work on that particular weekend.

Each company can have different priority rules for the soft constraints, which are

reflected in the order in which various modules and functions of the algorithm are

executed. A typical priority rule is that having all employees within minimum and

maximum duty hours takes highest priority, then the staff levels and finally the requests

of the employees.

4 The staff scheduling algorithm

The algorithm that we use is a collection of independent modules or functions, where

each module takes the current schedule and tries to improve it. We can call the mod-

ules in any order, here we present the order that we usually use, i.e. we first execute

Algorithm 1, then Algorithm 2 and so on. Some modules are executed more than once

with different input parameters, which we will elaborate on when we give detailed de-

scription of each module. Most of these algorithms are simple and some of them have

been introduced before, such as [10,11], but for completeness we will introduce and

explain all the algorithms.

Algorithm 1 RepairShifts

Input: set of employees E
Input: set of allowed shifts A
for all e ∈ E do

for all s ∈ e.shifts do

s← find closest shift to s from the shifts in A

end for

end for

Algorithm 1 is used to make sure that all employees are only working on shifts

that are allowed. The systems that the employees use to request shifts sometimes allow

the employees to sign up for any hours. However, the collaborating companies and

institutions restrict the employees to only work on certain shifts. The first step of

the algorithm is to take the preliminary input and make sure that all employees are

only signed up on shifts that are allowed. The variable e.shifts denotes the set of

shifts that employee e is signed up for. The distance between any two shifts s and t

is |s.start− t.start|+ |s.end − t.end|+ |s.length− t.length|, where s.start is the start

time of shift s, s.end is the end time of shift s and s.length is the length of shift s, and

similarly for shift t. The start and end times of the shifts are measured as the number

of hours from the start of the scheduling period while the length of a shift is measured

in hours. The length of a shift is included in the measure since we want to find an

allowed shift that is both similar to the chosen shift in time and length.

The module shown in Algorithm 2 uses a priority rule to determine which employee

is selected when the algorithm needs to remove an employee from an overstaffed shift.

The priority rule can be different from one company to the next, in the preliminary

version of the algorithm we use the number of working hours to determine which

employee should be removed from an overstaffed shift.

86

Algorithm 2 Overstaffing: Remove shifts from employees

Input: set of overstaffed shifts S
while S 6= ∅ do

s← select the maximum overstaffed shift from S

E(s)← {e ∈ E : s ∈ e.shifts}
e← select lowest priority employee from E(s)
e.shifts← e.shifts \ {s}
Update s

Update S

end while

Algorithm 3 Understaffing: Add shifts to employees

Input: Set of employees E

Input: Set of understaffed shifts S

while S 6= ∅ do

s← select the shift with the largest total understaffing from S

P (s)← select all employees that can work on shift s.
if P (s) 6= ∅ then

e← select the employee from P (s) with fewest scheduled working hours.
e.shifts← e.shifts ∩ {s}
Update S and E

else

S ← S \ {s}
end if

end while

The function described in Algorithm 3 tries to decrease understaffing by locating

understaffed shifts and then find employees that are available and can work on the shift.

We order the employees in ascending order of scheduled working hours to improve the

schedule of employees with too few scheduled hours.

Algorithm 4 Understaffing: Swap overlapping shifts

Input: Set of employees E

Input: Set of understaffed shifts S

for all e ∈ E do

for all s ∈ e.shifts do

O(s)← {s′ ∈ S : s′ ∩ s 6= ∅ ∧ e can work on shift s′}
if O(s) 6= ∅ then

s
∗ ← select the shift with the highest understaffing from O(s)

e.shifts← e.shifts \ s

e.shifts← e.shifts ∪ {s∗}
end if

end for

end for

Algorithm 4 is used to decrease understaffing while making only small changes

to the schedule. If we find an understaffed shift, we try to locate employees that are

working on shifts that overlap with the understaffed shift. If the understaffed hours are

not in the intersection of the two shifts, then moving the employee to the understaffed

shift can decrease understaffing.

After we run Algorithms 3 and 4 to improve the understaffing, we use Algorithms

5 and 6 to improve the individual schedules of employees that are below the minimum

87

Algorithm 5 Staff below working hours: Add shifts

Input: Set of employees with scheduled working hours below minimum duty hours, E

Input: Set of shifts with staffing levels below maximum staffing, S

for all e ∈ E do

for all s ∈ S do

if e can work on shift s then

e.shifts← e.shifts ∪ {s}
if Staffing level of s is at maximum staffing then

S ← S \ {s}
end if

end if

end for

end for

duty hours. Algorithm 5 selects an employee below duty hours and then tries to find a

feasible shift with enough space for the employee.

Algorithm 6 Move shifts from employees above duty hours to employees below duty

hours
Input: Set of employees with scheduled working hours above duty hours, Eabove

Input: Set of employees with scheduled working hours below duty hours, Ebelow

for all Pairs (ea, eb) : ea ∈ Eabove, eb ∈ Ebelow do

for all s ∈ ea.shifts do

if eb can work on shift s and ea can be removed from shift s then

ea.shifts← ea.shifts \ {s}
eb.shifts← eb.shifts ∪ {s}
if ea is at or below duty hours then

Eabove ← Eabove \ {ea}
end if

if eb is at or above duty hours then

Ebelow ← Ebelow \ {eb}
end if

end if

end for

end for

Algorithm 6 is used to improve the balance of the employees duty hours. We create

a set of employees above the duty hours and another set of employees that are below

their duty hours. Then we look at all pairs of employees and try to find a shift that we

can move from the above duty hours employee to the below duty hour employee. We

can run Algorithm 6 either by allowing the algorithm to modify the requested shifts, or

only allow modifications to shifts that were added by other modules of the algorithm.

If an employee is below duty hours, we can try to increase the number of working

hours by swapping shifts. Algorithm 7 looks at employees below the minimum duty

hours. For each employee, the module tries to swap an existing shift with a longer

overlapping shift. Since the employee is already working on this particular day, such

swaps are often feasible, assuming that the new shift has room for additional staff.

Algorithm 7 can be allowed to change requested shifts, or we can focus only on shifts

that have been added by other modules.

The experimental results in the next section are created by running Algorithms 1

to 7 in that order. Algorithms 6 and 7 were executed twice, first focusing only on shifts

88

Algorithm 7 Staff below working hours: Swap shifts to add working hours

Input: Set of employees with scheduled working hours below minimum duty hours, E

Input: Set of shifts with staffing levels below maximum staffing, S

for all e ∈ E do

for all s ∈ e.shifts do

O(s)← {s′ ∈ S : s
′ ∩ s 6= ∅ ∧ e can work on shift s

′}
if O(s) 6= ∅ then

s
∗ ← select the largest shift from O(s)

if |s∗| > |s| then

e.shifts← e.shifts \ {s}
e.shifts← e.shifts ∪ {s∗}
Update E

Update S

end if

end if

end for

end for

that had been added in previous steps, and then by allowing the modules to change

requested shifts.

5 Experimental Results

To evaluate the performance of our algorithm, we use actual data from four companies

and institutions. These companies and institutions include a nursing home, call centers

and airport services. We will present the details of each problem instance and show

examples of the preliminary schedule and the improved schedule. The scheduling period

is usually 6 weeks, but we will plot the preliminary schedule and the improved schedule

for only a single week for each problem instance. We tried to select a typical week for

each instance. For each employee we measure the percentage of requested hours that

are still in the improved schedule using the formula

Requested hours granted =

∑

t=N

t=1
Iprel(t) × Iimproved(t)
∑

t=N

t=1
Iprel(t)

where N is the number of time slots in the scheduling period, Iprel(t) = 1 if the

employee has requested to be working in time slot t, and 0 otherwise. Similarly the

indicator function Iimproved(t) is equal to 1 if the employee is working in time slot t

in the improved schedule and 0 otherwise. The percentage of requested hours is not

defined for the employees that do not make any requests, so those employees are not

included when we calculate the average requested hours granted.

We decided to use the number of hours instead of focusing on the shifts when mea-

suring how close the final schedule is to the requested schedule from the employees.

The reason is that we felt that if an employee has signed up for a 8 − 16 shift, and

we change it to 9 − 17, then the employee is getting a shift that’s very close to what

was requested. Therefore, measuring hours is in our mind often more fair than focusing

on shifts. However, this is not necessarily always the case, in some instances the mea-

sure should focus on the shifts instead of the hours. For the collaborating companies

and institutions, the requested hours granted measure was considered both fair and

appropriate.

89

Preliminary schedule Improved schedule
Scheduled hours 4669 5198
Man-hours overstaffed 478 220
Man-hours understaffed 777 21
Employees below minimum duty hours 3 0
Total unscheduled duty hours 905 545

Table 1 Results for the nursing home instance.

0 50 100 150 200 250 300
0

2

4

6

8

10

12
Preliminary schedule − Week 2

Time

E
m

p
lo

y
e

e
s
 o

n
 d

u
ty

0 50 100 150 200 250 300
0

2

4

6

8

10

12
Improved schedule − Week 2

Time

E
m

p
lo

y
e

e
s
 o

n
 d

u
ty

Fig. 1 Staffing levels for the nursing home problem instance. The gray area denotes the
number of employees on duty while the two lines denote the minimum and maximum required
staff on duty at each time.

Using the notation introduced by De Causmaecker [9], we can describe the following

problem instances as (AS|TVNO|PLGO).

5.1 Problem instance: Nursing home

The first problem instance comes from a nursing home with 55 employees. The schedul-

ing period is 6 weeks with 30 minute intervals. There are 1428 different shifts that are

allowed in the scheduling period. The length of each shift ranges from 4 hours up to 12

hours. If we sum up the total maximum working hours over the scheduling period, we

get that the maximum number of hours that we can assign, without any overstaffing,

is 5217 hours. However, the total duty hours of the employees is 5333 hours, so unless

we violate the overstaffing constraint, we can never satisfy all duty hour requirements

for the employees. The improved schedule has 5198 man-hours scheduled, not counting

vacations and shifts that do not contribute to the staffing requirements. The results

for the nursing home problem instance are shown in Table 1 while Figure 1 shows the

preliminary schedule and the improved schedule for a typical week in the scheduling

period.

The nursing home has the following hard constraints. An employee cannot work

on more than 6 consecutive days, the maximum length of a shift is 9 hours while the

minimum length of a shift is 4 hours. In any 24 hour period, each employee must get

at least 8 consecutive hours of rest, while the maximum number of working hours in

any 24 hour period is 9 hours.

90

Preliminary schedule Improved schedule
Scheduled hours 9424 11920
Man-hours overstaffed 390 791
Man-hours understaffed 1560 14
Employees below minimum duty hours 19 5
Total unscheduled duty hours 2108 234

Table 2 Results for call center A.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
Preliminary schedule − Week 4

Time

E
m

p
lo

y
e

e
s

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
Improved schedule − Week 4

Time

E
m

p
lo

y
e

e
s

Fig. 2 Staffing levels for call center A. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.

Figure 1 shows that the requirements for the minimum and maximum number of

employees on duty have a very regular pattern. The nightshifts require 2 persons, while

the mornings require between 8-10 people on duty. The number of on-duty employees

decreases over the weekend, while Mondays require the highest number of on-duty

employees. The preliminary schedule has both understaffing and overstaffing. However,

in the improved schedule, the overstaffing has been reduced from a total of 478 hours

to 220 hours, and the understaffing has gone from a total of 777 hours down to 21

hours. The average percentage of requested hours still in the improved schedule was

97.2%.

5.2 Problem instance: Call center A

The second problem instance is a call center. We have two call centers in our set of real

world data so we will refer to them as call center A and call center B. Call center A has

92 employees and the scheduling period is 6 weeks in 30 minute intervals. The number

of possible shifts in the scheduling period is 8863 and their lengths are from 4 hours up

to 11 hours. The total maximum required on-duty employees is 11582, while the total

duty hours for all employees is 12054, so it will be impossible to satisfy both the duty

hour constraints and the overstaffing constraints. In the end, we actually schedule

a total of 11920 hours, not including vacations and shifts that do not contribute to

the staffing, so this instance has some overstaffing. Table 2 shows the data from the

preliminary schedule and the results of the improved schedule. There are 5 employees

91

Preliminary schedule Improved schedule
Scheduled hours 6623 7554
Man-hours overstaffed 795 609
Man-hours understaffed 1306 189
Employees below minimum duty hours 15 7
Total unscheduled duty hours 1551 529

Table 3 Results for call center B.

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35
Preliminary schedule − Week 2

Time

E
m

p
lo

y
e

e
s

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35
Improved schedule − Week 2

Time

E
m

p
lo

y
e

e
s

Fig. 3 Staffing levels for call center B. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.

below the minimum duty hours in the improved schedule, but 3 of these employees are

less than two hours below the minimum, while the remaining 2 employees are 6 hours

and 22 hours below the minimum duty hours.

For call center A, the maximum number of consecutive working days is 6, the

maximum number of working hours in each 24 hour period is 9 hours and the maximum

length of a single shift is also 9 hours. In any 24 hour period, each employee must get

at least 11 consecutive hours of rest.

Figure 2 shows a typical week in the scheduling period for call center A. The

required number of on-duty employees peaks at around 30 − 35 during the afternoon

while the night shifts require only around 2 − 3 on-duty employees. The preliminary

schedule has both overstaffing and understaffing, while the improved schedule manages

to almost eliminate the understaffing problem. However, the total number of overstaffed

man-hours increases from 390 hours up to 791 hours. The increase in overstaffing is

not surprising since having employees within the minimum and maximum duty hours

has higher priority than overstaffing at this particular call center, and the call center

has more staff than it needs to satisfy the maximum required on-duty personnel.

5.3 Problem instance: Call center B

Call center B does the planning for only 4 weeks in advance, but the schedule is created

down to 15 minute intervals. This instance also does not use minimum and maximum

number of employees that should be on duty in each interval, but specifies only the

92

Preliminary schedule Improved schedule
Scheduled hours 3997 6670
Man-hours overstaffed 192 641
Man-hours understaffed 2464 517
Employees below minimum duty hours 23 0
Total unscheduled duty hours 2087 0

Table 4 Results for airport ground services.

exact number of employees that should be on duty at each time. Since there is no

flexibility in the required number of on-duty employees, the schedule is likely to have

both overstaffing and understaffing as the algorithm tries to fit the number of employees

to the exact number of required on-duty employees. The total number of employees

at call center B is 62. The call center is overstaffed, the total available man-hours for

the scheduling period is 8134 hours while the total required man-hours over the same

period is 7134 hours. Table 3 shows the difference between the preliminary schedule

and the improved schedule. In the improved schedule, there are still 609 man-hours of

overstaffing and 529 unscheduled duty hours. The majority of this overstaffing and the

unscheduled duty hours is due to the 1000 man-hour difference between the required

man-hours and the available man-hours.

The hard constraints that must be satisfied for call center B are that employees

cannot be working on more than 6 consecutive days, in every 24 hour period there must

be at least 11 consecutive hours of rest and at most 11 hours of work. The maximum

length of a shift is 11 hours while the length of a shift must be at least 4 hours.

Figure 3 shows a single week from the 4 week planning period. We see that there is

still much overstaffing and understaffing in the improved schedule, but the overstaffing

is more evenly distributed than in the preliminary schedule. One of the requests from

the call center was that if overstaffing is necessary then it should be distributed as

evenly as possible over the busiest periods. The improved schedule has problems with

understaffing, the nightshifts for the first two nights in this particular week do not

have anyone on duty, while the requirements call for at least one employee on duty at

all time. The average percentage of requested hours still in the improved schedule is

86%. The reason for the low ratio of requested hours still in the improved schedule is

mostly due to the fact that 12% of requested hours in the preliminary schedule were

overstaffed and had to be changed.

5.4 Problem instance: Airport ground service.

The fourth problem instance is an airport ground service company. The scheduling

period is six weeks in 30 minute intervals. The demand for on-duty employees depends

on the flight schedules at the airport. In this particular instance, there are many flights

that leave during the early morning, and then there is another concentration of flights

in the afternoon. Since there are almost no flights scheduled at any time apart from

the morning and afternoon busy periods, the requirements for employees peaks during

the two busy periods but drops sharply during other times. The airport ground service

has 53 employees. Due to the structure of the manpower requirements, the employees

often work a short morning shift and then another short afternoon shift with a few

hour break in-between. This problem instance is understaffed compared to the previous

93

0 50 100 150 200 250 300
0

5

10

15

20

25

30
Preliminary schedule − Week 3

Time

E
m

p
lo

y
e

e
s

0 50 100 150 200 250 300
0

5

10

15

20

25

30
Improved schedule − Week 3

Time

E
m

p
lo

y
e

e
s

Fig. 4 Staffing levels for the airport ground services problem instance. The gray area denotes
the number of employees on duty while the two lines denote the minimum and maximum
required staff on duty at each time.

examples, here the total maximum required man-hours is 8152 hours over the schedul-

ing period while the available man-hours is only 6350. Table 4 shows the results of the

improvements made to the preliminary schedule.

The hard constraints for the airport ground service are that there must be a mini-

mum continuous rest of 11 hours in any 24 hour period, each employee can not work

more than 5 consecutive days, employees cannot work more than 12 consecutive hours

while the number of working hours in any 24 hour period is also 12 hours.

Table 4 shows that there are 641 hours of overstaffing in the improved schedule,

even though the total available hours is much lower than the total maximum required

hours. Figure 4, which shows the preliminary schedule and the improved schedule for a

single week, gives an insight into why there is so much overstaffing. Due to the narrow

peaks of busy periods in the morning and the afternoon, it’s difficult to fit the employees

exactly to the manpower requirements. The hours between the busy periods are often

overstaffed due to employees working long shifts that cover both busy periods. The

average percentage of requested hours that are in the improved schedule is 94%.

Figure 4 shows that the preliminary schedule is very understaffed. One of the

reasons for the understaffing in the preliminary schedule is that out of 53 employees,

20 did not sign up for any shifts. However, the improved schedule does not have any

employees under the minimum duty hours, so the algorithm managed to create feasible

schedules for all the employees.

6 Conclusions

In this paper we have introduced an algorithm that is designed to emulate the behavior

of staff managers when creating a high quality feasible staff schedule from a partial

staff schedule based on requests from employees. Having a transparent system that the

employees can trust is important since it encourages the employees to complete their

own scheduling as well as possible, in the belief that the system will behave in a fair

manner, while also completing the schedules for the employees that haven’t completed

their schedule.

94

Using real data from four different companies and institutions, we have shown

that that the proposed algorithm does well in real world situations. The algorithm

manages to decrease understaffing and make sure that the working hours of almost all

employees are within the minimum and maximum bounds. Three of the examples that

we presented have the problem of having more staff than the manpower requirements

call for, so there is some overstaffing. The examples and the results demonstrate how

difficult the staff scheduling problem is and highlight the challenge of maintaining a

balance between overstaffing, understaffing, employee requests and the size of the staff

versus the demand for employees. The presented algorithm is simple, transparent and

easily understood, but still manages to perform well in our real world examples.

There is still more work that needs to be done, such as adding additional modules

to the algorithm and analyzing the order in which they are executed. An ideal system

based on this algorithm would have the option that each company would be able to

define exactly in which order the modules are executed, in order to emulate exactly

the behavior of the staff managers of the company. Being able to tailor-make the

software for individual companies would allow for seamless implementation of such a

staff scheduling system into companies that are currently spending time and effort into

finding manual solutions to the staff scheduling problem.

References

1. J. Ahmad, M. Yamamoto, and A. Ohuchi. Evolutionary algorithms for nurse scheduling
problem. Proceedings of CEC00, San Diego, pages 196–203, 2000.

2. U. Aickelin and K. Dowsland. Exploiting problem structure in a genetic algorithm ap-
proach to a nurse rostering problem. Journal of Scheduling, 3(3):139–153, 2000.

3. J. F. Bard and H. W. Purnomo. Preference scheduling for nurses using column generation.
European Journal of Operational Research, 164, 2005.

4. M. J. Brusco and L. W. Jacobs. Cost analysis of alternative formulations for person-
nel scheduling in continuously operating organisations. European Journal of Operational

Research, 86:249–261, 1995.
5. E. K. Burke, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search algorithm

for the nurse rostering problem. SEAL98, LNCS 1585, pages 187–194, 1999.
6. E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state

of the art of nurse rostering. Journal of Scheduling, 7:441–499, 2004.
7. E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Variable neigh-

borhood search for nurse rostering problems. Metaheuristics: computer decision-making,
pages 153–172, 2004.

8. E. K. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe. A memetic approach
to the nurse rostering problem. Applied Intelligence special issue on Simulated Evolution

and Learning, Springer, 15(3):199–214, 2001.
9. P. De Causmaecker and G. Vanden Berghe. Towards a reference model for timetabling

and rostering. Annals of Operations Research, 2010.
10. P. De Causmaecker, P. Demeester, and G. Vanden Berghe. Relaxation of coverage con-

straints in hospital personnel rostering. Proceedings of the 4th International Conference

on Practice and Theory of Automated Timetabling, pages 187–206, 2002.
11. P. De Causmaecker, P. Demeester, Y. Lu, and G. Vanden Berghe. Agent technology for

timetabling. Proceedings of the 4th International Conference on Practice and Theory of

Automated Timetabling, pages 215–220, 2002.
12. K. Dowsland. Nurse scheduling with tabu search and strategic oscillation. European

Journal of Operations Research, 106:393–407, 1998.
13. F. Easton and N. Mansour. A distributed genetic algorithm for employee staffing and

scheduling problems. Conference on Genetic Algorithms, San Mateo, pages 360–367,
1993.

14. A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research,
153(1):3–27, February 2004.

95

15. J. P. Howell. Cyclical scheduling of nursing personnel. Hospitals, 40(2):77–85, 1966.
16. R. Hung. Improving productivity and quality through workforce scheduling. Industrial

Management, 34(6), 1992.
17. S. Petrovic, G. Beddoe, and G Vanden Berghe. Storing and adapting repair experiences

in employee rostering. Selected Papers from PATAT, LNCS 2740. Springer-Verlag., pages
149–166, 2002.

18. J. Tanomaru. Staff scheduling by a genetic algorithm with heuristic operators. Proceedings

of CEC95, pages 456–461, 1995.

96

An Evolutionary Algorithm in a Multistage Approach for

an Employee Rostering Problem with a High Diversity of

Shifts

Bäumelt Zdeněk · Š̊ucha Přemysl ·

Hanzálek Zdeněk

Abstract This work deals with the problem of rostering employees at an
airport. There are about a hundred different shifts in order to handle the ir-
regular coverage constraints. Together, with the strict constraints, given by
the collective agreement, the problem becomes difficult to solve. Common one
stage algorithms, applied to this problem, produce rosters containing too many
isolated days-on and days-off which makes the roster unusable. This paper sug-
gests a three stage approach for the employees rostering problem where a set
of different shifts is needed to satisfy the coverage requirements. The solution
is based on the problem transformation to a simpler problem, thereupon, an
evolutionary algorithm is used to determine a rough position of the shifts in
the roster. The maximal weighted matching in the bipartite graph is used as
the inverse transformation of the problem and the final roster is obtained by
the optimization based on a Tabu Search algorithm.

Keywords high diversity of shifts · multistage approach · evolutionary
algorithm · employee rostering

1 Introduction

This paper deals with a problem from the traffic sphere belonging to the do-
main of employee timetabling/employee rostering/personnel scheduling prob-
lems (ETPs). The main difference to the classical Nurse Rostering Problem
(NRP) [1], [14] is in the shift coverage demand. A typical NRP considers a small
set of shifts, e.g. {day, night} [9] or {early, late, night} [13]. On the contrary, in

Z. Bäumelt · P. Š̊ucha · Z. Hanzálek
Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague
Technická 2, 166 27, Prague 6, Czech Republic
E-mail: baumezde@fel.cvut.cz, suchap@fel.cvut.cz, hanzalek@fel.cvut.cz

97

2

3

4

5

re
q
u
ir

ed
em

p
lo

y
ee

s/
n
u
rs

es

Airport Companies

Hospitals

6
9

12
15
18
21
24
27

hours3am 6am 9am 12am 3pm 6pm 9pm0am 0am

hours3am 6am 9am 12am 3pm 6pm 9pm 0am0am

workforce
over coverage

on-call
workforce
demand

workforce
demand

requirements

Fig. 1 The coverage function fC examples

the ETP, motivated by real problems from the public transport (e.g. airport
companies), the set of shifts can be quite large. This is caused by the fact
that the coverage constraints are given by a so called coverage function fC [6]
determining the number of employees required each hour (see Fig.1). The fC

reflects the changes in the workforce demand during the day, that are caused
by the traffic peaks and, in our case, it also fluctuates for different days and
different seasons of the year. There are two basic possibilities how to cover
peaks in the fC . Either it can be fit using the ‘classical’ set of shifts, or it can
be satisfied with an extended set of shifts with the size of dozens or hundreds
of shifts. The extended set of shifts consists, not only, of shifts with different
start and finish times, but also contains split shifts and on-call shifts. The split
shifts facilitate coverage of the traffic peaks during the day, while the on-call
shifts are used as an alternative for employees’ sick leaves and other unantici-
pated causes. This approach makes the ETP more difficult, but it allows one to
minimize the personnel expenses caused by the over coverage of the workforce.
Two examples of fC , corresponding to real data, are shown in Fig. 1. The first
one is fC typical for NRPs considering three shifts {early, late, night}. The
second one is fC typical for airport companies, where coverage requirements
are depicted by a dotted curve. A dashed line corresponds to the over coverage
of the workforce demand when a set of shifts with a small size is used. The
gray blocks at the second fC represent another feature – on-call hours. There
are also before shift on-calls, when the employee is on the phone and comes to
work one or two hours earlier if necessary. On the other hand, there are also
after shift on-calls where the head of the ward decides whether the employee
stays longer or leaves at the regular end of the shift. These before and after
on-calls can resolve unpredictable changes in the fC , e.g. traffic peak delays
caused by bad weather conditions.

It is obvious that a high diversity of shifts is needed to cover the fC in the
second problem depicted in Fig. 1. We denote this problem as the Employee
Timetabling Problem with a High Diversity of shifts (ETPHD).

The ETPHD is not only specific with a large variety of shifts but also
through its set of constraints. The constraints that make this problem more
complex are so called block constraints. These constraints are an extension

98

of the ‘classical’ constraints limiting the number of consecutive days and are
described in detail in Section 2.1.

1.1 Related Works

Summaries of the approaches for solving problems from the timetabling/ros-
tering domain are published in [1], [4]. The most reviewed part of the ETPs
belongs to the health care branch [2], [3]. In the ideal case, i.e. a small set of
shifts, a small set of employees and a simplified set of constraints, the problem
can be solved by Integer Linear Programming (ILP) [9] leading to the optimal
solution.

The ETPs can also be modeled as Constraints Satisfaction Problems (CSP),
solved by constraint programming techniques [8]. A hybrid approach from the
domain of the declarative programming was presented in [7] on a simplified
NRP where the authors proposed an automatically implied constraint gen-
eration. Through this hybrid technique, the ratio of the solved NRPs can
be increased. Furthermore, this approach allows one to discover non-solvable
problems before search, for some instances.

It is impracticable to use the optimal approaches like ILP when more dif-
ficult ETPs are considered. In this case, heuristic approaches are applied or
the solved ETP is separated into its subproblems. These two possibilities are
sometimes joined together to attain suboptimal solutions.

One of the most applied metaheuristic approaches for ETPs is a Tabu

Search Algorithm (TSA). A two stage approach is described in [10] where, in
the first step, a feasible solution with respect to hard constraints is found and,
in the second step, a TSA based optimization is used. Similar stage separation
is described in [5] where the comparison of two approaches (TSA and Memetic

Algorithm (MA)) for the optimization stage were introduced. In a general way,
TSA is faster than MA, but its computation time considerably depends on the
previous initialization stage.

The nearest problem to the problem described in this paper, from the cov-
erage constraints point of view, is described in [6]. The coverage is expressed
as a varying number of staff needed for each grade throughout the day. The
presented method is a two stage approach, previously described in [11] where a
MA is used in the initialization stage and a TSA is employed in the optimiza-
tion stage. The time interval coverage constraints are met by different combi-
nations of shifts applied in the second stage with TSA. However, the number
of shifts (not their combinations) considered in this work for one grade is less
than ten.

In terms of the NRP classification proposed in [12], the presented ETPHD
can be categorized as ASBI|TVNO|PLGM.

99

1.2 Contribution and Outline

In this paper, we introduced a multistage approach for handling the ETPHD
specified by the high diversity of shifts. The basic idea lies in a transforma-
tion of the extended set of shifts to a simpler one. The transformed timetable
is initialized by an evolutionary algorithm (the first stage) and the problem
instance is transformed back by an algorithm based on matching in the bipar-
tite graph (the second stage). The objective of these stages is to determine the
rough position of the blocks of shifts. The final roster is obtained during the
optimization based on the TSA (the third stage). This stage uses our adap-
tation of the TSA suggested in [5]. The contributions of the paper are: a) a
transformation allowing one to solve the ETPHD described in Sections 3 and
5, b) an ILP model presented in Section 3 and c) an algorithm for the first
stage based on a evolutionary algorithm (EA) shown in Section 4.

The paper is organized as follows: Section 2 outlines the motivation prob-
lem at the airport. Section 3 explains the problem transformation to a problem
with a reduced set of shifts and shows its ILP model. The transformed problem
is solved in Section 4 by an EA. The inverse transformation is described in Sec-
tion 5. Experiments and performance evaluation are summarized in Section 6
and the last section concludes the work.

2 Problem Statement

The problem solved in this paper is inspired by a real ETPHD from the traffic
sphere. This problem is outstanding through its extended set of shifts where
the shifts differ, not only, in the starting and finish times. There are also
different split shifts and shifts prolonged by several before and after on-call
hours.

The goal of the ETPHD is the same as in the NRP, to assign the requested
shifts from the set of shifts to the employees with respect to the given con-
straints that are discussed below in detail.

2.1 Constraints

Constraints considered in the ETPHD are divided into two groups. The first
group is stated as hard constraints that have to always be fulfilled. On the other
hand, soft constraints can be violated, but their non-fulfillment is penalized
in the objective function. Considering all mandatory rules of ETPHD, given
by the labour code and the collective agreement, as hard constraints makes
the problem over constrained. Therefore, the constraints separation is not firm
in our approach, i.e. some hard constraints are considered as soft constraints
with large penalties.

The hard constraints considered in this problem are:

(c1) An employee cannot be assigned to more than one shift per day.

100

(c2) Shifts requiring a certain grade has to be covered by employees with this
grade.

(c3) Over coverage of shifts is not allowed.
(c4) Under coverage of shifts is not allowed.
(c5) The minimal time gap of free between shifts must be kept.
(c6) Personnel requests must be considered – like fixed shift assignment, day-off

requests, partial day-off requests (e.g. an employee is able to work to 5pm).
(c7) The maximum and minimum number of consecutive days-on and maximum

hours have to be kept.
(c8) The minimal block rest between the blocks have to be fulfilled.
(c9) Valid blocks of shifts must be respected, e.g. no more than one split shift

is allowed in the block.
(c10) The minimal block rest after 2 consecutive night shifts must be kept, e.g.

70 hours free.

The constraint (c5), which is considered differently than normal is remark-
able for this restriction. It defines a minimal time gap between two shifts equal
to 12 hours. This minimal time gap can be shortened down to 10 hours subject
to a condition that the following minimal time gap will be prolonged by the
time equal to the previous shortage. The hard constraint (c6) keeps the fixed

shifts in the roster from unacceptable assignments, e.g. a planned business trip
or holidays must be respected.

What makes this ETPHD problem difficult are the hard constraints (c7)
and (c8) dealing with the so called block of shifts (c9). This block is defined
as a sequence of consecutive shifts where block rest between each two shifts
in the block does not exceed the defined minimal block rest covered by (c8),
e.g. 45 hours. The hard constraint (c7) defines that the count of working shifts
in each block is less than or equal to the maximal shift count. Likewise, the
number of working hours in the block is limited. The last block constraint
(c9) limits the number of certain shifts in the block. These constraints make
the situation more complex since the position of the blocks is crucial for the
quality of the resulting schedule. Therefore, in our opinion, it rules out the
majority of the single stage approaches since the rough position of the block
should be determined in the first stage respecting the fixed shifts in the roster
(e.g. planned holidays, planned business trips, etc.).

The soft constraints, considered in the ETPHD, are:

(c11) The maximum number of shifts of a given type performed in the planning
period should not be exceeded, e.g. a max. of 7 night shifts during 5 weeks.

(c12) Overtime hours should be balanced according to an employee workload.
(c13) Weekend and night working hours should be in balance according to an

employee workload.
(c14) Hours of a certain shift kind (early, late, night, split and on-call shifts)

should be balanced.

In order to simplify the benchmarks, only the constraints (c1), (c3)–(c9) and
(c12) are taken into account in the rest of the paper. The remaining constraints

101

(c2), (c10) and (c11) can be easily incorporated into the mathematical model
as well.

2.2 Problem Formalization

Let E be a set of employees, D represents a set of days from the whole planning
period and S denotes the extended set of shifts. Consequently, the roster is
represented by R, a binary matrix such that ∀i ∈ E,∀j ∈ D,∀s ∈ S

Rijs =

{

1, the shift s is assigned to the employee i on the day j

0, otherwise
(1)

When the roster contains a fixed shift s, defined due to (c6), the corresponding
Rijs = 1 is a constant and another shift can not be assigned to this position.

The coverage constraints (c3) and (c4) from Section 2.1 are expressed by a
binary matrix RS where RSsj = 1 iff the shift s ∈ S is required on the day
j ∈ D. Subsequently, in relationship to constraint (c5), we can define a binary
matrix with shift precedences SP so that

SPs1s2
=

{

1, the shift s1 can be followed by s2 on the subsequent day
0, otherwise

(2)
where s1, s2 ∈ S.

Even though there is a large number of different shifts, set S can still be
joined into groups given by a mapping M : S 7−→ K where K = {F ,H, E ,L,N ,

S,O} is a set of shift kinds. The set of shift kinds consists of {free F , required
free or holiday H, early shifts E , late shifts L, night shifts N , split shifts S

and on-call shifts O}. Let KW ,KF and KS be subsets of K defined as follows

KW = {E ,L,N ,S,O}

KF = {F ,H}

KS = {S,O}.

(3)

In other words, KW is a subset of working shift kinds, where KF represents
free shift kinds. The last subset KS consists of split shift kinds and on-call shift

kinds. Furthermore, for each k ∈ K, let Lk be an average shifts length of kind
k so that Lk = avgs∈S|M(s)=k |s| where |s| is the length of the shift s ∈ S.

Finally, workloads of all employees E are defined by a non-negative vector
W according to the length of planning period.

3 Mathematical Model of the Transformed Problem

The goal of the first stage of the algorithm is to design the rough position of
the blocks where the shifts should be placed in an accordance to the given
constraints. The rough blocks of shifts can be modeled as blocks of days-on
separated by days-off. The output of the first stage, presented in this paper,

102

gives extra information in the form of which kind of shift k ∈ K should be
assigned on which day in the block. The first stage is described in this and
the following section. This section presents a mathematical model based on a
transformation used in the first stage.

3.1 Transformation SK

Let SK be a transformation following from the mapping M : S 7−→ K. The

SK transforms the ETPHD to ETPHD
K

, specifically R to R
K

where R
K

ijk
= 1

iff the shift kind k is assigned to the employee i on the day j. In the same

way, RS becomes RS
K

where RS
K

kj
is number of required shifts of kind k for

the day j. Finally, SP becomes SP
K

such that SP
K

k1k2
expresses, whether the

shifts of kind k1 can be followed by the shifts of kind k2. The transformation
is defined by equations (4), (5) and (6).

R
K

ijk
=

{

1, ∃s ∈ S | Rijs = 1 ∧M(s) = k

0, otherwise
, ∀i ∈ E,∀j ∈ D,∀k ∈ K

(4)

RS
K

kj
=

∑

s∈S|M(s)=k

RSsj , ∀k ∈ K,∀j ∈ D (5)

SP
K

k1k2
=

−1, ∀s1, s2 ∈ S

SPs1s2
= 0

M(s1) = k1

M(s2) = k2

0, ∀s1, s2 ∈ S

SPs1s2
= 1

M(s1) = k1

M(s2) = k2

a, otherwise

, ∀k1, k2 ∈ K (6)

The positive penalty cost a of SP
K

k1k2
reflects the cases, when the prece-

dence of the shift kinds k1, k2 ∈ K is not obvious in general, but for most of
the combinations of shifts s1, s2 ∈ S | M(s1) = k1 ∧M(s2) = k2 is permitted,

e.g. SP
K

L,E
.

3.2 Integer Linear Programming Model of ETPHD
K

The roster formed by rough blocks can be stated by an ILP model. The model
uses a multicriteria objective function Z considering a linear combination of
the constraints (c3), (c4) and (c12) fulfillment, where α, β > 0 are weights of
the criterions. These criterions are evaluated by the piecewise linear functions
(e.g. absolute value function) penRS and penW. The penRS function reflects

103

the over and under coverage of the assigned shift kinds, while the penW func-
tion corresponds to the coverage of the employees’ workloads. These functions
are represented in the ILP model by a set of auxiliary variables that are not
incorporated into equations (7)–(13) in order to make the model more read-
able.

minZ = min

α ·
∑

k∈KW

∑

j∈D

penRS

(

RS
K

kj
−
∑

i∈E

R
K

ijk

)

+

β ·
∑

i∈E

penW

Wi −
∑

j∈D

∑

k∈K

Lk · R
K

ijk

(7)

subject to

∑

k∈K

R
K

ijk
= 1, ∀i ∈ E,∀j ∈ D (8)

R
K

ijk1
+ R

K

i,j+1,k2
− SP

K

k1k2
≤ 2, ∀i ∈ E,∀j = 〈1, |D| − 1〉,∀k1, k2 ∈ K (9)

t+BmaxL
∑

j=t

∑

k∈KW

R
K

ijk
≤ BmaxL, ∀i ∈ E,∀t = 〈1, |D| − BmaxL〉 (10)

∑

k∈KW

(

R
K

ijk
− R

K

i,j+1,k
+ R

K

i,j+t,k

)

≥ 0,

∀i ∈ E,∀t = 〈2, BminL〉,∀j = 〈1, |D| − t〉

(11)

∑

k∈KW

(

R
K

ijk
− R

K

i,j+t−1,k
+ R

K

i,j+t,k

)

≤ 1,

∀i ∈ E,∀t = 〈2, BRminL〉,∀j = 〈1, |D| − t〉

(12)

t+d
∑

j=t

∑

k∈KS

R
K

ijk
≤ 1 + M ·

t+d
∑

j=t

∑

k∈KF

R
K

ijk
,

∀i ∈ E,∀d = 〈BminL, BmaxL〉,∀t = 〈1, |D| − d〉

(13)

The constraints of the ILP model are stated by equations (8) – (13). The
first constraint equation (8) corresponds to the constraint (c1), i.e. one shift per
day is assigned. Similarly, equation (9) matches the constraint (c5) represented

by SP
K

k1k2
.

The constraints (c7), (c8) are given by (10), (11), (12). A maximal block
length BmaxL of the working shift kinds is constrained by (10), while the follow-
ing equation (11) considers the minimal length of the blocks BminL. The last
inequality from the block constraints (12) defines the minimal block rest length
BRminL between the block of shifts. Since the ILP model of the first stage
is formulated on shift kinds, constraints (10)–(12) consider the average shift

104

length Lk. Therefore, these equations limit the number of consecutive shift
kinds instead of the sum of hours. Typical values for (BmaxL, BminL, BRminL)

used in the solved ETPHD
K

are (5, 3, 2). In the last stage these constraints
(c7), (c8) are reflected in the complete form.

The last equation (13) stands for (c9) to avoid more shifts of the same
kind in one block, e.g. it is not feasible to have more than one split shift, i.e.

k ∈ KS , in one block. The term M ·
∑

t+d

j=t

∑

k∈KF
R

K

ijk
on the right side of

(13) eliminates the equation in effect, when d consecutive days contain a free
shift kind k ∈ KF , i.e. it is not a block of the consecutive shifts. M is a big
integer number.

4 Solution of the First Stage by an Evolutionary Algorithm

The transformation and the subsequent solution of the ILP model from Sec-
tio 3.2 is the output of the algorithm’s first stage. Due to enormous size of the
ILP model it is not possible to find its feasible solution in a reasonable amount
of time. Therefore, the solution of the first stage is found heuristically by the
EA described below.

The roster is represented in the EA so that a couple of consecutive days are
joined together. It reduces the overhead with the roster constraints’ verification
and the roster evaluation.

4.1 Modified Mathematical Model for the EA

The evolutionary algorithm, solving the first stage, uses the roster representa-
tion where the shift kinds assigned to the fixed number of consecutive days con-
stitute a gene. The number of days representing the gene is called a gene length

denoted as l. The consecutive genes are placed into gene slots GS indexed by
p such that p ∈ GS = {

j

l
| j ∈ D ∧ (j mod l) = 0}. Thereafter, the gene

R
K

[i, p] is a submatrix of R
K

given by R
K

[i, p] = R
K

ijk
| (p − 1) · l < j ≤ p · l.

Both soft and hard constraints are taken into account as penalties in the

objective function Z
E

.

min Z
E

= min

α ·
∑

k∈KW

∑

j∈D

penRS

(

RS
K

kj
−
∑

i∈E

R
K

ijk

)

+

β ·
∑

i∈E

penW

Wi −
∑

j∈D

∑

k∈K

Lk · R
K

ijk

+

γ ·
∑

i∈E

∑

p∈GS

penUnsuit
(

R
K

[i, p]
)

+

δ ·
∑

i∈E

∑

p∈〈1,|GS|−2〉

penPrec
(

R
K

[i, p] , R
K

[i, p + 1] , R
K

[i, p + 2]
)

(14)

105

The first two elements correspond to the objective function Z mentioned
in (7), i.e. penalties of the under and over coverage of the required shift kinds
and penalties of the unbalanced workload of the employees. The next two

terms follow from the roster encoding. The third element of Z
E

penalizes the

suitability of the gene R
K

[i, p] given by the constraints expressed in (10)–(13).
The last element is focused on the gene precedences. It is necessary to take

into account the borders of the genes after the recombination, i.e. the kind

precedences SP
K

and the block constraints related to the neighborhood genes
have to be checked and updated. Furthermore, the other constraints, e.g. (c10)
can be easily appended through this criterion.

4.2 Evolutionary Algorithm

The Preprocessing function of the EA (shown in Alg. 1) contains the de-
scribed transformation SK. Consequently, in the GeneratePopulation func-
tion, all permutations with a repetition of shift kinds k ∈ K of length l are
generated and evaluated with respect to the considered constraints. Similarly,
the precedences of genes are assessed with respect to (9)–(13). This static part

of EA accelerates the evaluation of Z
E

.
The roster R

K

containing the genes R
K

[i, p] represents an individual I of
a population P. The initial population P0, containing pSize0 individuals, is
created randomly by the GeneratePopulation function in the following way.
For each individual I ∈ P0, the employees i ∈ E are selected according to their
count of the fixed shifts. The selection itself is similar to the rank selection of

Input : ETPHD instance

Output: Roster R
K

0 ETPHD
K ← Preprocessing(ETPHD);

1 P0 ← GeneratePopulation(ETPHDK
, pSize0);

2 foreach I ∈ P0 do Evaluate(I);
3 P ← P0;
4 while stop condition is not met do

5 P ← Select(P, pSize); // select the pSize I ∈ P
6 PN ← ∅; // clear population PN

7 for i← 1 to oCount do // breed oCount offsprings

8 [I1, I2]← ChooseParents(P);
9 Iofs ← Crossover(I1, I2);

10 Iofs ← Mutate(Iofs) with probability pM ;
11 PN ← PN ∪ Iofs; // add offspring Iofs

12 end

13 foreach I ∈ PN do Evaluate(I); // evaluate PN

14 P ← P ∪ PN ; // merge populations

15 end

16 R
K
← I ∈ P with the lowest value of Z

E
;

17 return R
K

Algorithm 1: An Evolutionary Algorithm pseudo-code

106

the EA. The top employees have the higher probability to be selected earlier
than the others. When the employee is selected, it is necessary to choose the
gene slot p ∈ GS where the gene could be assigned. The gene slots selection
is similar to the employees selection, i.e. according to the position of the fixed

shifts in the slot R
K

[i, p].

The multicriteria objective function Z
E

, given by (14), is used in the
Evaluate function. The stop condition of the evolutionary algorithm is based

on the ratio of the Z
E

improvement to Z
E

during the last 20 populations. If
this ratio is under a given threshold, the algorithm stops.

The rank selection is used in the Select function to reduce the number
of individuals of P to pSize. Furthermore, the applied selection keeps the
population unique, i.e. ∀I1, I2 ∈ P holds I1 6= I2. Finally, the elitism set is
supplemented during the computation to keep the best I ∈ P alive.

There are two basic possibilities, how to perform the Crossover function

in the ETPHD
K

. A uniform crossover in a horizontal dimension, i.e. with the

certain probability pCH , the better roster of employee i with respect to Z
E

,
is chosen from the individuals I1, I2. A typical value of pCH = 0.6 makes
the better roster from two individuals more favorable. An advantage is that
there is no need to apply any repair operators for the horizontal crossover,
because the whole rosters of the employees are copied to the offspring, i.e.
all constraints related to precedences (kind precedence, gene precedence) are
satisfied. The influence of the crossover to the ‘vertical’ constraints, e.g. shift

kinds coverage, is incorporated to the objective function Z
E

.

On the contrary, for a vertical dimension, it is better to apply the 1-point
crossover instead of the uniform one. For each point of the crossover, it follows

that the objective function Z
E

increases rapidly due to precedence constraints
violations. Then, the repair mechanism has to be applied to these violations
at the point of the crossover. It is realized by the repeatedly applied mutation
in order to fix all violated precedences of the genes. This repair mechanism
is applied on each employee where the gene precedence is violated. Therefore
the crossover in the vertical dimension is noticeably time consuming in a com-
parison to the rest of the evolutionary algorithm. For that reason, this type of
crossover is suitable for the solution diversification only, when the algorithm
is caught in a local optima.

The mutation operator is applied on the offspring Iofs after the crossover a
with probability pM . The value of pM is typically 0.2. The mutation is focused
on randomly selected employees from the roster. For each employee, a few

genes R
K

[i, p] are changed in a random way, too.

5 The Second Stage – Inverse Transformation KS

The objective of the first stage is to determine the rough position of the blocks
and to assign a shift kind k ∈ K to each position of the block. The second
stage transforms the roster back when the shift kinds K are substituted by the

107

required shifts s ∈ S | RSsj = 1 for the day j ∈ D. This inverse transformation
is based on the maximum weighted matching in a bipartite graph Gj where
j ∈ D is an index of the day.

For a day j ∈ D, let Gj be a bipartite graph with bipartition V (Gj) =
S(j) ∪ E, where S(j) is a set of shifts required for the day j, so that S(j) =
{s ∈ S | RSsj = 1}. Furthermore, let c : E(Gj) → R be the weights on the

edges. There is an edge (i, s) ∈ E(Gj) with c
(

(i, s)
)

= 1 iff
(

R
K

ijk
= 1 | M(s) =

k ∧ k ∈ KW

)

∧
(

SPsprev,s = 1 | sprev ∈ S(j − 1) ∧ Ri,j−1,sprev
= 1

)

where
sprev is a shift assigned to i ∈ E on the previous day. Moreover, there are
also edges (i, s) ∈ E(Gj) with lower weight c

(

(i, s)
)

= ǫ(s, sprev) < 1 iff
(

∃k ∈

KW | R
K

ijk
= 1
)

∧
(

SPsprev,s = 1 | sprev ∈ S(j − 1) ∧ Ri,j−1,sprev
= 1
)

. These
edges represent an assignment which is still possible but it is not preferred,
i.e. M(s) is not the kind assigned to this position in the block. Thereafter,
the weight ǫ(s, sprev) reflects how the shift s fits into the block when sprev is
placed on the day before.

The algorithm of the inverse transformation consecutively, for j = 1 to
j = |D|, generates graphs Gj and looks for the maximal weighted matching
MW . When (i, s) ∈ MW the shift s ∈ S(j) is assigned to the employee i ∈ E

on the day j, i.e. Rijs = 1.

The result of the second stage (R) is optimized in the third stage which
can be based on common techniques, e.g. a Tabu Search algorithm [5] or other
heuristic approaches.

6 Experiments

The presented experiments show results obtained on real data from the air-
port. The three stage approach suggested in this paper is compared with a
one stage algorithm presented in [5]. Our implementation of the algorithm de-
scribed in [5] differs in the Tabu List implementation. In our realization the
neighborhood of the swaps was excluded from the Tabu List representation
since it does not provide better results on instances of ETPHD. The three
stage approach uses the same algorithm in the third stage, but its execution
is preceded by two initialization stages described in this paper. Weights in the
objective functions were the same in both approaches. Both algorithms were
implemented in C# and experiments were executed on a PC with Intel Core
2 at 2.4 GHz.

The mathematical model of the transformed problem contains |E| · |D| · |K|

binary and |K| · |D| + |E| continuous variables. Due to size of the model, the
problem solution can be found in reasonable time for up to |E| ≤ 3 using
non-commercial ILP solver GLPK [15] and up to |E| ≤ 5 using CPLEX [16].
Since the number of employees |E| in our problem instance is more than one
hundred the first stage cannot be directly solved by ILP.

The length of the gene used for our instances was tuned during the ex-
periments and the best results were reached with the gene length l = 4. This

108

value correlates with the constants BmaxL, BminL and BRminL of the block
constraints.

The computational results are summarized in Tab. 1. For each test period
the table shows the period length |D|, the number of employees |E|, the number
of shifts |S| considered in the period and the ratio of the fixed shifts F . The
approaches are compared on the number of unplaced shifts |S|, the number of
isolated days-on/days-off CS and the number of two consecutive days-on CD.
The overall objective function improvement is presented in the last column
∆Z.

The last instance in Tab. 1 with the largest set of shifts and employees is
remarkable. For this instance, a few of the shifts have not been assigned, but
in the objective function and all other measures point of view, the obtained
roster for this problematic planning period is much better. This period was
made more difficult by the additional mandatory courses (reflected in the value
of fixed assignments of shifts F) that all of the employees should have passed,
if at all possible, during this period.

The CPU time of the three stage approach is higher due to the first stage
of the algorithm where the EA determines the rough position of the shifts.
The average CPU time of the first stage is around 5 minutes depending on
the number of the fixed shifts. On the other hand, the extra 5 minutes given
to the algorithm used in the one stage approach does not lead to a significant
objective function improvement. The computation time of the second stage is
negligible with respect to the first stage and it is smaller than 6 seconds.

7 Conclusion

In this paper, we introduced a three stage heuristic algorithm for the employee
timetabling domain. The solved problem, motivated by a real employee ros-
tering at the airport, is characterized in that the coverage function typically
consists of two peaks and the level of the workforce demand differs from hour
to hour by up to five employees. In order to satisfy the coverage requirements
and to minimize the personnel expenses it is necessary to cover the require-
ments by an extended set of shifts. In our case, it is more than one hundred
shifts. This fact together with the strict roster constraints, given by the col-
lective agreement, makes the employee rostering very difficult. Therefore, the
problem solution was decomposed into three stages, where the first one de-

Table 1 Experiments

period |D| |E| |S| F [%]
1 stage approach 3 stage approach

∆Z[%]
|S| CS/CD |S| CS/CD

nov09 28 90 79 33.71 16 37/25 2 9/8 15.5
dec09 28 90 82 32.16 13 35/21 0 8/6 20.3
jan10 35 90 89 32.97 12 39/22 0 9/6 17.9
mar09 35 94 103 41.64 24 43/28 5 11/9 13.8

109

signs a rough position of the shift kinds (i.e. early shifts, late shifts, etc.), the
second stage assigns shifts into the roster and the final stage fine-tunes the
final roster.

The experiments have shown that the common single stage approaches are
not applicable on the ETPHD. The resulting roster suffers from the presence
of isolated days-on and days-off, which makes the roster unusable.

On the contrary, the improvement of the objective function reaches about
15 percent with the proposed three stage approach. The rosters produced by
our algorithm are more compact, the count of isolated days-on and days-off is
suitable and all the required shifts are assigned to the roster.

Acknowledgements This work was supported by the Ministry of Education of the Czech
Republic under the Research Programme MSM6840770038.

References

1. Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Landeghem, H.V.: The State of
the Art of Nurse Rostering. Journal of Scheduling 7(6), 441-499 (2004)

2. Hung, R.: Hospital Nurse scheduling. Journal of Nursing Administration, 25(7/8), 21-23
(1995)

3. Cheang, B., Li H., Lim A. and Rodrigues B.: Nurse Rostering Problems – A Bibliographic
Survey. European Journal of Operational Research, 151, 447-460 (2003)

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M. and Sier, D.: Staff Scheduling and Roster-
ing: A Review of Applications, Methods and Models. European Journal of Operational
Research, 153(1), 3-27 (2004)

5. Berghe, G.V.: An Advanced Model and Novel Meta-heuristic Solution Methods to Per-
sonnel Scheduling in Healthcare, PhD Thesis, 276, University of Gent (2002)

6. Burke, E.K., De Causmaecker, P., Petrovic, S., Berghe, G.: Metaheuristics for Handling
Time Interval Coverage Constraints in Nurse Scheduling. Applied Artificial Intelligence:
An International Journal, 20(9), 743-766 (2006)

7. Wong, G.Y.C., Chun, A.H.W.: Nurse Rostering Using Constraint Programming and
Meta-Level Reasoning. Engineering Applications of Artificial Intelligence, 17(6), 599-610
(2004)

8. Cheng, B.M.W., Lee, J.H.M. and Wu, J.C.K.: A Nurse Rostering System Using Con-
straint Programming and Redundant Modeling. IEEE Transactions on Information Tech-
nology in Biomedicine, 1, 44-54 (1997)

9. Azaiez, M.N., Al Sharif, S.S.: A 0-1 Goal Programming Model for Nurse Scheduling.
Computers & Operations Research, 32(3), 491-507 (2005)

10. Burke, E.K., De Causmaecker, P. and Berghe G. V.: A Hybrid Tabu Search Algo-
rithm for the Nurse Rostering Problem. In: B. McKay et al., Editors, Simulated Evolution
and Learning, Selected Papers from the 2nd Asia-Pacific Conference on Simulated Evolu-
tion and Learning, SEAL 98, Springer Lecture Notes in Artificial Intelligence, vol. 1585,
Springer, 187-194 (1999)

11. Burke, E.K., Cowling, P., De Causmaecker, P. and Berghe, G.V.: A Memetic Approach
to the Nurse Rostering Problem. Applied Intelligence 15, 199-214 (2001)

12. De Causmaecker, P.: Towards a Reference Model for Timetabling and Rostering. Pro-
ceedings of the 7th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2008)

13. Valouxis, C. and Housos, E.: Hybrid Optimization Techniques for the Workshift and
Rest Assignment of Nursing Personnel. Artificial Intelligence in Medicine, 20, 155-175
(2000)

14. Staff Rostering Benchmark Data Sets, http://www.cs.nott.ac.uk/∼tec/NRP/
15. GLPK (GNU Linear Programming Kit), http://www.gnu.org/software/glpk/
16. IBM ILOG CPLEX Optimizer, http://www.ilog.com/products/cplex/

110

List of Variables

fC coverage function
d, i, j, k, p, s, t indices
α, β, γ, δ positive weights of the objective function
Z objective function
S set of shifts
S(j) set of shifts required on the day j ∈ D

D set of days from the planning period
E set of employees
K set of shift kinds, i.e. early, late, night, etc.
Lk average shift length of shift kind k

BminL minimal block length (in days)
BmaxL maximal block length (in days)
BRminL minimal block rest length (in days)
M big M – big integer number
KW set of working shift kinds
KF set of non-working shift kinds
KS set of split shift kinds
W vector of employees workloads
R binary matrix representing the roster, where Rijs = 1

iff shift s ∈ S is assigned to the employee i ∈ E on day
j ∈ D

RS matrix of requested shifts, where RSsj = 1
iff the shift s ∈ S is requested on day j ∈ D

SP matrix of the shift precedences, so that SPs1s2
= 1

iff the shift s1 ∈ S can be followed by s2 ∈ S on the con-
secutive days

a penalty cost of shift precedence SP
K

k1k2

R
K

binary matrix representing the roster, where R
K

ijk
= 1

iff shift of kind k ∈ K is assigned to the employee i ∈ E on
day j ∈ D

RS
K

matrix of the requested shifts, where RS
K

kj
is the number

of the required shifts of kind k ∈ K on day j ∈ D

SP
K

matrix representing the feasibility of two consecutive shifts
precedence

R
K

[i, p] submatrix of R
K

– a gene
l gene length (in days)
P population in the evolutionary algorithm
pSize, pSize0 size of the population, size of the initial population
oCount count of the offsprings breed in each iteration of the EA
I individual of the population P

pCH probability of the better roster acceptance in the horizontal
crossover

pM probability of mutation

111

Gj bipartite graph
V (Gj) set of vertices of Gj

E(Gj) set of edges of Gj

c, ǫ weights of the edges E(Gj)
MW maximal weighted matching MW ⊆ E(Gj)
CS count of isolated days-on/days-off
CD count of two consecutive days-on
F ratio of the fixed shifts (count of fixed days divided by the

count of all days in the roster)
S set of unplaced shifts

112

Network Flow Models for Intraday Personnel
Scheduling Problems

Peter Brucker1 and Rong Qu2

1Universität Osnabrück, Albrechtstr. 28a, 49069 Osnabrück, Germany, e-mail:
pbrucker@uni-osnabrueck.de

2Automated Scheduling, Optimization and Planning (ASAP) Group, School of
Computer Science, University of Nottingham, NG8 1BB, UK

ABSTRACT: Personnel scheduling problems can be decomposed into two
stages. In the first stage for each employee the working days have to be fixed.
In the second stage for each day of the planning period an intraday scheduling
problem has to be solved. It consists of the assignment of shifts to the employees
who have to work on the day and for each working period of an employee a task
assignment such that the demand of all tasks for personnel is covered. Robinson
et al. [3] formulated the intraday problem as a maximum flow problem under
the following assumptions: employees are qualified for all tasks, their shifts are
given, and they are allowed to change tasks during the day.

We show that the network flow model can be extended to cover the case
in which employees are not qualified to perform all tasks. Further extensions
allow to calculate shifts of employees for the given day under the assumption
that an earliest starting time and a latest finishing time as well as a minimal
working time are given. Also labour cost can be taken into account by solving
a minimum cost network flow problem.

KEYWORDS: personnel scheduling, assignment problem, network flows

1 Introduction

A general personnel scheduling problem can be formulated as follows.
There is a planning horizon consisting of a number of consecutive days.

Associated with each day is a set of periods in which certain tasks have to be
performed. For each period of a day and task which has to be performed in this
period employees are needed.

The planning horizon has to be divided into working days and rest days for
each employee. A shift has to be assigned to each working day of an employee.
Shifts consist of a set of working periods possibly interrupted by breaks and idle
times which are part of the shift.

For each employee there is a set of tasks he can be assigned to.
A working pattern is defined by the set of working days and for each working

day a shift. A working pattern is feasible for an employee if it satisfies a number
of constraints.

One has to assign

113

• to each employee a feasible working pattern, and

• to each working period of this pattern a task to be performed by the
employee.

This has to be done in such a way that

• all tasks can be performed (i.e. the demand of tasks for employees is
satisfied), and

• corresponding costs are minimized.

The model has two levels which we denote by days scheduling and intraday
scheduling level. At the days level one has to assign working days to employees
while at the intraday level for each employee working on the day one has to
assign a shift and to each working period of this shift a task for which the
employee is qualified.

One can differentiate between preemptive and non-preemptive problems. In
a preemptive problem employees may change the working place during a shift.
This is not allowed in non-preemptive versions.

Robinson et al. ([3]) considered the personnel scheduling problem under the
assumption that

• preemption is allowed, and

• each employee can perform each task.

They applied tabu search to find good working patterns for the employees,
and given the working patterns they solved the problem of assigning tasks to
the active periods of each employee by maximum flow algorithms.

A network flow model for a special non-preemptive personnel scheduling
problem is discussed in [4].

This paper is organized as follows. The maximum flow model of Robinson et
al. ([3]) is presented in Section 2, followed by the extended network flow model
in Section 3. In Section 4 we present further extensions concerning demand
and supply sides of the network model we build in Section 3. The last section
contains concluding marks.

2 The maximum flow formulation of Robinson
et al.

The intraday personnel scheduling problem of Robinson et al. ([3]) can be
described as follows.

On each day a subset of employees is available. Each employee e working on
a fixed day is available during some time window [Se, Fe[. A shift of employee e
is a time interval [Ve,We[with Se ≤ Ve ≤We ≤ Fe and We−Ve ≥ me where me

is a given minimal shift length. During each period within a shift the employee

114

performs a task, or has a (long or short) break, or is idle. There are maximal
or minimal time distances between Ve,We ,the starting times, or finishing times
of breaks. Breaks are non-preemptive.

There are n tasks j = 1, · · · , n. Each task j has a duration pj and must be
processed by exactly one employee within a time window [Rj , Dj [with Dj−Rj ≥
pj . Preemption is allowed, i.e. different employees may perform a task and an
employee may perform different tasks on a day. Also interruption and later
consideration of a task is possible. However, the total processing of task j must
be equal to pj .

Each employee can be assigned to any task.

One has to assign feasible shifts to the employees and for each shift to assign
tasks to its active periods such that

• the duration of each task is covered within its time window, and

• the total labor costs are minimal.

The labor costs are defined as follows: meal breaks are unpaid. Short rest
breaks are compensated. An overtime rate is paid for the time of a shift exceed-
ing a given limit M. If an employee is not given at least two days off for a week
then there is an additional pay.

Under the assumption that for each employee a shift has been fixed the
problem can be formulated as a maximum flow problem with the following
data.

Let T be the set of all Rj- and Dj- values, and all block starting and fin-
ishing times for all employees working on the day (blocks are maximal sets of
consecutive working periods of a shift). Denote by t1 < t2 < ... < ts the ordered
sequence of all elements in T .

The network (V,A) can be constructed as follows. The set V of nodes consists
of

• task nodes j = 1, · · ·n,

• interval nodes [ti, ti+1[(i = 1, · · · , s− 1), and

• a source s and a sink t.

There are three different types of directed arcs:

• arcs (s, j) with upper capacity pj ,

• arcs ([ti, ti+1[, t) with upper capacity (ti+1− ti)Ni where Ni is the number
of employees available in time period [ti, ti+1[,

• there is an arc between a task node j and an interval node [ti, ti+1[if and
only if [ti, ti+1[⊆ [Rj , Dj [. The upper capacity of this arc is ti+1 − ti.

115

tasks intervals
≤ pj : ≤ ti+1 − ti : ≤ (ti+1 − ti)Ni

s −−−−−→ j −−−−−−−−−→ [ti, ti+1[−−−−−−−−−→ t
: iff [ti, ti+1[⊆ [Rj , Dj [:

Figure 1: Network for the assignment of tasks to employees

The network is shown in Figure 1.
A flow in an arc (j, [ti, ti+1[) may be interpreted as working time assigned

to task j in the interval [ti, ti+1[. There exists a feasible task assignment if and
only if the value of a maximal flow is equal to

∑n
j=1 pj .

If there is a maximal flow with this property then in each task node j the
processing time pj is distributed to the time intervals [ti, ti+1[in which j can
be processed and the time j is processed in [ti, ti+1[cannot exceed ti+1 − ti.
Furthermore, due to the flow-balance constraints in the interval nodes [ti, ti+1[
the sum of these processing times cannot exceed (ti+1 − ti)Ni. It is well known
(see e.g. [1] P. 108) that under these conditions it is possible to process the
parts of tasks assigned to [ti, ti+1[by Ni employees if preemption is allowed.

Robinson et al. describe a tabu search heuristic for calculating shifts for the
employees for a time horizon of several days and corresponding assignments to
tasks. The tabu search can be described as follows.

A working pattern of an employee consists of all shifts assigned to the em-
ployee within the time horizon. A solution consists of the working pattern of all
employees. A solution is feasible if it allows to cover the demand of all tasks on
every day. Feasibility can be checked and task assignments can be calculated by
solving a maximum flow problem for each day. The search is performed within
the set of all feasible solutions.

The assumption that each employee can be assigned to any task is not always
realistic. Therefore the model will be extended in the next section.

3 An extended network flow model

In this and later sections the assumption that employee e can perform only tasks
j ∈ Qe ⊆ {1, · · · , n} is added. A network which takes care of these additional
constraints can be described as follows.

Again t1 < t2 < ... < ts are the time instances where the data are changing.
The set of nodes of the network consists of

• task nodes j = 1, · · · , n,

• interval-task nodes [ti, ti+1[j for all intervals [ti, ti+1[with [ti, ti+1[⊆ [Rj , Dj [,

• interval-employee nodes [ti, ti+1[e for all working intervals [ti, ti+1[of em-
ployee e, and

• a source s and a sink t.

116

tasks intervals
≤ pj : ≤ ti+1 − ti : : ≤ (ti+1 − ti)

s −−−→ j −−−−−−−→ [ti, ti+1[j −−−−−−→ [ti, ti+1[e −−−−−−−→ t
: : iff j ∈ Qe :
: : :
: iff [ti, ti+1[⊆ [Rj , Dj [iff [ti, ti+1[is a possible
: : working period for e

Figure 2: Extended nerwork

There are four different types of arcs:

• arcs (s, j) with upper capacity pj ,

• arcs (j, [ti, ti+1[j) with upper capacity ti+1 − ti,

• arcs ([ti, ti+1[j , [ti, ti+1[e) for j ∈ Qe, and

• arcs ([ti, ti+1[e, t) with upper capacity ti+1 − ti.

The network is shown in Figure 2. A flow in an arc ([ti, ti+1[j , [ti, ti+1[e)
may be interpreted as the number of time units employee e is assigned to task
j within the time interval [ti, ti+1[. The flow conservation constraint for node
[ti, ti+1[j distributes the time spent on task j in [ti, ti+1[among employees which
are qualified to do task j. The flow conservation constraint for node [ti, ti+1[e
limits the workload of employee e in [ti, ti+1[by ti+1− ti. There exists a feasible
assignment of employees to tasks if and only if the maximum flow is equal to∑n

j=1 pj .
The procedure is illustrated by the following example with two employees

and three tasks.
Example 1 Consider a problem with the following data. Notice that in the

time interval [2, 3[employee e1 has a break.

task j 1 2 3
Rj 0 3 4
Dj 6 7 6
pj 4 2 2

employee ei shift Qi

e1 [0, 2[, [3, 6[{1, 2}
e2 [3, 7[{2, 3}

The corresponding network with a solution is presented in Figure 3. Figure
4 shows the Gantt chart of the solution. The relevant ti values are 0, 2, 3, 4, 6, 7.
Employee e2 is idle in period [3, 4[.

4 Further extensions

The model introduced in the previous section can be extended at the demand
side and/or the supply side. Possible extensions will be discussed in this section.

117

Figure 3: Network flow of Example 1

Figure 4: Gantt chart of the solution for Example 1

118

4.1 Extensions at the demand side

Instead of forcing the processing time of each task j to be equal to pj by solving
a corresponding maximum flow problem it is possible to enforce the constraint
LPj ≤ pj ≤ UPj by the lower bound LPj and the upper bound UPj for the flow
in the arc (s, j). In this case one has to find a feasible solution. If additionally
costs are assigned to the arcs ([ti, ti+1[e, t) one could minimize labour costs by
solving a corresponding minimum cost network flow problem.

Another option is to replace

≤ pj ≤ ti+1 − ti
s −−−−→ j −−−−−−−→ [ti, ti+1[j

by

≤ pij (ti+1 − ti)
s −−−−−−−−−−→ [ti, ti+1[j

where pij is the number of employees needed for task j in the time inter-
val [ti, ti+1[. Again one has to solve a maximum flow problem to cover the
demand. Also by lower and upper bounds on the arcs (s, [ti, ti+1[j) the con-
straints LDij (ti+1 − ti) ≤ pij (ti+1 − ti) ≤ UDij (ti+1 − ti) can be enforced.

4.2 Extensions at the supply side

Instead of fixing the shift of employee e in advance one could fix only the avail-
ability interval [Se, Fe[and a minimal working time me for employee e. Then
shifts for the employees which cover the demand of tasks can be calculated. To
achieve this one has to replace

≤ ti+1 − ti
[ti, ti+1[e −−−−−−−→ t

by

≤ ti+1 − ti ≥ me

[ti, ti+1[e −−−−−−→ e −−−→ t

Due to node e and arc (e, t) the total working time of employee e cannot be
smaller than me.

119

≥ LDij∆i

≤ UDij∆i

≤ ∆i ≤ ∆i ≥ me

s −−−−−−→ [ti, ti+1[j −−−−−−→ [ti, ti+1[e −−−→ e −−−→ t
iff j ∈ Qe

Figure 5: Combined extensions

4.3 Combined extensions

The extensions at the demand and supply side can be combined. A possible
combination is shown in Figure 5 where ∆i := ti+1 − ti. A feasible network
flow solution corresponds to a feasible shift and task assignment. Also overtime
costs can be taken into account by assigning these overtime costs to the arcs
(e, t), zero costs to all other arcs, and by solving the corresponding minimum
cost network flow problem.

5 Concluding remarks

In this note we have shown that the problem of assigning shifts to employees
and employees to tasks to cover the demand can be efficiently solved by network
flow algorithms if preemption is allowed, even if employees are not qualified for
all tasks. This can be exploited in heuristics for personnel scheduling problems
for a time horizon of several days.

However, a side effect is that employees have to switch between tasks (work-
ing places) during their shifts. These switches depend on the constraints under
which shifts are calculated and may be unavoidable. In connection with this the
following working place change minimization (WPCM-) problem is of interest:
Assume that shifts have been assigned to all employees working on a given day.
Then we call a task assignment for these employees feasible if the demand of all
tasks for employees is covered. Find a feasible assignment which minimizes the
number of working place changes.

In [2] it has been shown that the WPCM-problem is NP-hard if possible
shifts for e have the form [t, t + pe[(t = 0, · · · , P − pe) where P is the number
of working periods of the day. The complexity of the WPCM-problem for other
ways of shift assignments is unknown.

Based on the present on the network flow models, extended investigations
will be carried out in our future work to develop heuristic algorithms which
assign feasible shifts to employees and construct (directly) preemptive sched-
ules taking care of working place changes (e.g. by constructing good shifts).
Numerical results will be reported and analysed on solving real world problems.

120

References

[1] Brucker, P. (2007), Scheduling Algorithms, Springer, Berlin.

[2] Brucker, P., Qu, R., Burke, E. (2008). Personnel scheduling: models and
complexity, Working Paper, Automated Scheduling, Optimization and Plan-
ning (ASAP) Group, School of Computer Science, University of Nottingham.

[3] Robinson, R., Sorli, R., Zinder, Y. (2005), Personnel scheduling with time
windows and preemptive tasks, In: E. K. Burke and M. Trick (editors),
Proceedings of the 5th International Conference on the Practice and Theory
of Automated Timetabling, 18th August - 20th August 2004, Pittsburgh,
PA USA: 561-566

[4] Segal, M. (1974), The operator scheduling problem: a network flow ap-
proach, Operations Research 22: 808-823.

121

Round-Robin Tournaments with homogenous rounds

Bregje Buiteveld · Erik van Holland ·

Gerhard Post⋆
· Dirk Smit

Abstract We study round-robin tournaments for n teams, where in each round a

fixed number (g) of teams is present and each team present plays a fixed number (m)

of matches in this round. In the tournament each match between two teams is either

played once or twice, in the latter case in different rounds. We give necessary combina-

torial conditions on the triples (n, g,m) for which such round-robin tournaments can

exist, and discuss three general construction methods that concern the cases m = 1,

m = 2 and m = g−1. For n ≤ 20 these cases cover 149 of all 173 non-trivial cases that

satisfy the necessary conditions. Of these 149 cases a tournament can be constructed

in 147 cases. For the remaining 24 cases the tournament does not exist in 2 cases, and

is constructed in all other cases. Finally we consider the spreading of rounds for teams,

and give some examples where well-spreading is either possible or impossible.

1 Introduction

The most common form for sports competitions is the round-robin tournament. In

such tournaments the number of matches between each pair of teams is the same: in a

single round-robin tournament this number of matches is 1, while in a double round-

robin tournament it is 2. If the competition contains n teams, there are 1

2
n(n − 1)

matches in a single round-robin, and n(n− 1) matches in a double round-robin. Often

the location of the match is important. In this case a match is home for one team,

while it is away for the other team.

If the matches are divided in rounds, the rounds are ordered in time, and a team

plays at most in one match per round, we have the notion of break. We say that a team

⋆ This research has been supported by the Netherlands Organisation for Scientific Research,
grant 639.033.403, and by BSIK grant 03018 (BRICKS: Basic Research in Informatics for
Creating the Knowledge Society).

Bregje Buiteveld · Erik van Holland · Dirk Smit
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Gerhard Post
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands and
ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands

122

has a break between two of its consecutive matches, if it plays in both matches home,

or in both matches away. It is well-known ([8,5,6]) that if n is even, and there are n−1

rounds with each team playing a match, then there are at least n − 2 breaks. For n

odd, the usual round-robin tournament contains n rounds with n − 1 teams present,

playing one match. In this case we can find a round-robin tournament without breaks,

and even more remarkable this schedule is essentially unique (see [7]).

In some competitions the round-robin tournament has a different structure for the

rounds: in a round only a (small) subset of all teams play one or more matches. The

reason for this format can be two-fold: the match is played in a sports hall or court,

which is rented for a (part of the) day by the league (see also [13,9]) or the teams

prefer to play twice or more on the same day; this preference is encountered regularly

for youth teams. While often in round-robin tournaments breaks are an important

issue, this is obviously not the case in this situation.

Our main motivation was provided by the Dutch Inline Skater Hockey League,

where in each round 3 or 4 teams play once against each other, leading to 3 or 6

matches in a round. Note that scheduling a competition in this form gives the compe-

tition organizer the possibility to cope with problems due to unavailabilities of teams,

an aspect important for the Dutch Inline Skater Hockey League, where teams can in-

dicate what dates they are not available. Hence the construction of the round-robin

tournaments in this case is in parallel to the construction of basic match schedules

(see [12]) in the usual round-robin tournaments: we make a schedule for dummy teams

which are matched to the real teams in a second phase leading to the fixture list.1

This is the setting we will study: the round-robin tournament for n teams is divided

in rounds which always contain a subset of teams of the same size (g), and all teams

play an equal number (m) of matches in this round. The schedule in this form we

will call an (n, g, m)-tournament. If necessary we will attach ‘single’ or ‘double’; for

example a double (5, 4, 2)-tournament.

In Section 2 we will derive some necessary conditions for the existence of an

(n, g, m)-tournament. In the Section 3 and 4 we will give our results for the single

round-robin tournaments, while Section 5 will discuss the double round-robin tourna-

ments. In Section 6 we will give some case studies on the well-spreading of (n, g, m)-

tournaments.

In this work we mainly investigate the existence of (n, g, m)-tournaments by using

different ‘standard’ techniques. The techniques used apply to any number (n) of teams.

We tried to be exhaustive for ‘small’ n, namely n ≤ 20: it is seldom that one encounters

competitions with more than 20 teams. Our standard techniques settle the existence

of most (n, g,m)-tournaments for n ≤ 20. Most remaining cases were solved by hand,

though we made an ILP formulation as well, and used CPLEX 11.2 to establish the

existence of some double round-robin tournaments. The solutions constructed are usu-

ally far from unique; we noted that the solutions constructed by hand are usually much

more regular than those found by CPLEX; examples of this can be found in Section 4.

1 The dates represent the times that a round can be played. For most competitions of the
Dutch Inline Skater Hockey League there are more dates than rounds, leading to even more
possibilities for the competition organizer.

123

2 Conditions for the existence of (n, g, m)-tournaments

We consider round-robin tournaments for n teams, where in each round a subset of g

teams play m matches. There are two cases that we call trivial, and which we skip in

all our further considerations:

1. The case g = 2 and m = 1. In this case each match represents a round.

2. The case g = n and m = n−1. In this case a round is a complete single round-robin

tournament.

For the remaining cases we can state integrality conditions for the existence of an

(n, g, m)-tournament. This is formulated in the following theorem.

Theorem 1 Let S be an (n, g,m)-tournament for a round-robin tournament. Let d =

1 if S is a single round-robin tournament, and d = 2 if S is a double round-robin

tournament. Then the parameters n, g,m and d have the following relations.

(a) g is even or m is even.

(b) dn(n − 1) is a multiple of gm.

(c) d(n − 1) is a multiple of m.

Proof.

1. The number of matches in a round is 1

2
gm. Hence either g or m must be even.

2. The number of rounds in tournament S is
1

2
dn(n−1)

1

2
gm

, i.e. the total number of matches

divided by the number of matches per round. Since this fraction is integer, we have

that dn(n − 1) is multiple of gm.

3. The number of rounds for a team is
d(n−1)

m
. Hence d(n− 1) needs to be a multiple

of m. �

Theorem 1 restricts the number of possible combinations considerably. Table 2 gives

all possible combinations (g,m) for n ≤ 20 in the single round-robin case, 80 cases in

total. For example, for n = 7 there exist at most 3 single (7, g, m)-tournaments, namely

for (g, m) = (3, 2), (g,m) = (6, 1), and (g, m) = (7, 2). A similar table for double round-

robin tournaments can be found in Section 5.

At this point it is appropriate to discuss a graph theoretical setting for the single

round-robin tournaments. The existence of a single (n, g, m)-tournament is equivalent

to a decomposition of the complete graph Kn in m-regular subgraphs on g vertices,

such that all these subgraphs are edge-disjoint. There are some special cases of interest:

1. If g = n and m = 1 this decomposition is called a 1-factorization. Necessarily n is

even. This case corresponds to the regular round-robin tournament for n teams.

2. If m = 2 we have a decomposition of Kn in cycles. In our case the vertices in the

components add up to g. If we require that all cycles have the same length g the

decomposition is called a cycle decomposition.

3. If m = g− 1 we have that the teams present in a round all play against each other.

Consequently the (n, g, g− 1)-tournament is a collection of subsets of {1, 2, . . . , n},

all of size g, such that each pair of teams is member of exactly 1 subset. Such

collection of subsets is an (n, g, 1)-(block) design, see for example [3].

In the next section we will describe the results based on these ‘standard construc-

tions’, and some variations. Section 4 is devoted to the cases for which no standard

construction exists.

124

n (g, m)

4 (4,1)
5 (4,1) (5,2)
6 (6,1)
7 (3,2) (6,1) (7,2)
8 (4,1) (8,1)
9 (3,2) (4,1) (4,2) (6,1) (6,2) (6,4) (8,1) (9,2) (9,4)
10 (6,1) (6,3) (10,1) (10,3)
11 (5,2) (10,1) (11,2)
12 (4,1) (6,1) (12,1)
13 (3,2) (4,1) (4,3) (6,1) (6,2) (12,1) (13,2) (13,4) (13,6)
14 (14,1)
15 (3,2) (5,2) (6,1) (7,2) (10,1) (10,7) (14,1) (15,2)
16 (4,1) (4,3) (6,1) (6,5) (8,1) (8,3) (8,5) (10,1) (10,3)

(12,1) (12,5) (16,1) (16,3) (16,5)
17 (4,1) (4,2) (8,1) (8,2) (16,1) (17,2) (17,4) (17,8)
18 (6,1) (18,1)
19 (3,2) (6,1) (6,3) (9,2) (18,1) (19,2) (19,6)
20 (4,1) (10,1) (20,1)

Table 2. Parameters (g, m) for which a single (n, g, m)-tournament can exist.

3 Standard constructions for single round-robin tournaments

In the previous section we described three special cases, which we will call ‘round-

robin’ construction, ‘cycle’ construction, and ‘block-design’ construction. We will de-

scribe the results of each of these combinatorial constructions in a separate subsection.

Before turning to these constructions, we formulate a general construction, the merg-

ing of rounds. Note that this theorem is valid for both single and double round-robin

tournaments.

Theorem 2 Suppose an (n, g,m)-tournament exists with R rounds, where g = n, and

m′ is a multiple of m, as well as a divisor of mR. Then an (n, g, m′)-tournament exists

as well.

Proof

Starting with an (n, n, m)-tournament, we can unite groups of m′/m rounds to obtain

the (n, n, m′)-tournament. �

3.1 Round-robin constructions

The constructions for (n, n, 1)-tournaments (n even) and (n, n− 1, 1)-tournaments are

well-known ([8,6]). We will call these tournaments the regular round-robin tournaments

(single or double) for the given number of teams. Based on a regular tournament we can

construct other tournaments as well. The next theorem is valid for single and double

round-robin tournaments.

Theorem 3 Let M be the number of matches in the round-robin tournament. An

(n, g, 1)-tournament exists in the following cases:

(a) For n even, g even, and g a divisor of n.

(b) For n odd, g even, and g is divisor of n − 1.

125

(c) For n even, g even, 1

2
g a divisor of M , and g ≤

1

2
n + 1.

(d) For n odd, g even, 1

2
g a divisor of M , and g ≤

1

2
(n + 1).

Proof

(a) Starting with a regular (n, n, 1)-tournament, we can split the 1

2
n matches of a round

in groups of 1

2
g matches each. All the matches in a round contain different teams,

hence we end up with an (n, g, 1)-tournament.

(b) The proof is similar to case (a), starting with a regular (n, n − 1, 1)-tournament.

(c) The construction resembles case (a), but we have to do a little more work. Consider

a regular (n, n, 1)-tournament, and order the matches in this schedule according to

the rounds. What we need to do is to refine this ordering such that picking the next
1

2
g matches each time, results in an (n, g, 1)-tournament. (Note that the number

of matches M is required to be a multiple of 1

2
g.) To construct the next round in

the (n, g, 1)-tournament, we pick the next 1

2
g consecutive matches: these fall within

round (say) r and round r + 1. What could happen is that the matches in round

r + 1 contain the same teams as those selected from round r. We show that the

order of the matches can be adjusted to avoid this. Suppose k matches are in round

r: these k matches contain 2k teams. Hence there are at most 2k matches in round

r + 1 with those teams. Consequently there remain at least 1

2
n − 2k matches in

round r + 1 that can be used in the (n, g, 1)-tournament. The number of matches

in round r + 1 is 1

2
g − k. Hence we need 1

2
g − k ≤

1

2
n − 2k, or 1

2
g + k ≤

1

2
n. Since

k < 1

2
g, and g ≤

1

2
n + 1, this condition is satisfied.

(d) The analysis is similar to case (d), starting with a regular (n, n− 1, 1)-tournament.

�

Theorem 3 settles the existence of 34 parameter combinations in Table 2, namely

all cases with m = 1 except the cases (9, 6, 1), (15, 10, 1), (16, 10, 1), and (16, 12, 1).

Applying Theorem 2 yields the cases (10, 10, 3), (16, 16, 3), and (16, 16, 5).

3.2 Cycle constructions

The decomposition of graphs by cycles of fixed length has been studied extensively.

This research lead to the end result for complete graphs [1,11], stating that the obvious

necessary conditions are also sufficient, see Theorem 4.

Theorem 4 Suppose n is odd and 3 ≤ g ≤ n, such that g divides 1

2
n(n− 1). Then the

complete graph Kn can be decomposed in edge-disjoint cycles of length g. �

Comparing this sufficient condition with the necessary conditions in Theorem 1, we see

that for the existence of (n, g, 2)-tournaments the necessary conditions are sufficient.

Hence all 22 (n, g, 2)-tournaments in Table 2 exist. Using Theorem 2 we get additionally

the existence of all 6 (n, n, m)-tournaments for n odd and m > 2 even. Note that the

results in [11,1] use cycles of fixed length. This can be used to obtain the following

construction.

Theorem 5 Suppose n is odd, g is even and 1

2
g divides n. Then a single (n, g, 1)-

tournament exists.

Proof

According to Theorem 4 the complete graph Kn can be decomposed in cycles of length

n. Choose in each of these cycles groups of 1

2
g non-adjacent edges. Letting these edges

126

correspond to the matches of a round between the corresponding nodes, we obtain the

required (n, g, 1)-tournament. �

This construction yields several of the (n, g, 1)-tournaments constructed before. In

addition it yields the existence of a single (9, 6, 1)-tournament and a single (15, 10, 1)-

tournament.

3.3 Block design constructions

As explained in Section 2 we can use block designs for the construction of (n, g, g− 1)-

tournaments. We formulate this equivalence in the following theorem.

Theorem 6 A single (n, g, g − 1)-tournament exists if and only if an (n, g, 1)-design

exists. �

Consequently, we can use the extensive tables (see for instance §II.1 in [3]) on block

designs to settle the existence of (n, g, g − 1)-tournaments. For n ≤ 20 it yields the

following results.

– A (13, 4, 3)-tournament and a (16, 4, 3)-tournament exist.

– A (16, 6, 5)-tournament does not exist.

Note that we have the first negative result. This implies that the necessary conditions in

Theorem 1 are in general not sufficient. Another remark is on the (16, 4, 3)-tournament.

Such a tournament was used in [10] to obtain a regular round-robin tournament for 16

teams with at least 40 breaks. This block design is a so-called resolvable block design

(see also Definition 2): there exist 5 groups of 4 rounds each, where these 4 rounds

contain exactly all 16 teams. Splitting this resolution into 2 parts again, we obtain a

(16, 8, 3)-tournament.

Concluding we settled the existence of 4 additional tournaments, leaving only 9

cases from Table 2 unaccounted for; these cases we will study in the next section.

4 Ad hoc constructions of single round-robin tournaments

In this section we study the 9 cases in Table 2 that remained unsolved. We devote a

separate subsection to most of these cases.

4.1 The (9, 6, 4)-tournament

This tournament does not exist, which we can prove as follows. The 36 matches have

to be divided over 3 rounds, and each teams appears in 2 rounds only. If we look at

round 3, there are three teams not present, say the teams 1, 2, and 3. These all have

to appear in the rounds 1 and 2, while all other teams (4 to 9) appear in exactly one

of the rounds 1 and 2, say the teams 4, 5, 6 in round 1, and the teams 7, 8, 9 in round

2. Consequently the teams 1, 2, and 3 all have to play the teams 4, 5, and 6 in round

one, and the teams 7, 8, and 9 in round 2. The last matches for the teams 1, 2, 3

are the 3 mutual matches, to be played in 2 rounds. This is impossible, because the

(3, 3, 1)-tournament does not exist. Hence the claim follows.

127

4.2 The (10, 6, 3)-tournament

The tournament has 5 rounds. Group the 10 teams in pairs, and require that in round

r the pairs r− 1, r and r +1 (cyclically) are present. With this basis a tournament can

be constructed. The tournament in Table 4.2 has the rounds permuted, to improve the

spreading.

Round 1 Round 2 Round 3 Round 4 Round 5

1-5 1-7 3-6 1-2 5-9
2-6 2-8 4-8 4-10 6-10
3-4 9-10 5-7 3-9 7-8
1-6 1-8 3-8 1-4 5-10
3-5 7-9 4-7 2-9 8-9
2-4 2-10 5-6 3-10 6-7
1-3 1-9 3-7 4-9 5-8
2-5 2-7 6-8 1-10 7-10
4-6 8-10 4-5 2-3 6-9

Table 4.2. A single (10, 6, 3)-tournament

4.3 The (15, 10, 7)-tournament

This tournament has 3 rounds, and each team plays in 2 of these rounds. We put the

teams 1-5 in group 1, 6-10 in group 2 and 11-15 in group 3. We can require that in round

1 the groups 1 and 2 play, in round 2 the groups 1 and 3, and in round 3 the groups

2 and 3. In a round all matches between teams of different groups have to be played.

Note that the teams within a group play according to a single (5, 5, 2)-tournament,

which exists. Hence we can construct a schedule, which is given in Table 4.3.

Round 1 Round 2 Round 3

group 1 - group 2 group 1 - group 3 group 2 - group 3
1-2, 3-4, 5-1, 2-3, 4-5 1-3, 5-2, 4-1, 3-5, 2-4 6-8, 10-7, 9-6, 8-10,7-9

6-7, 8-9, 10-6, 11-12, 13-14, 15-11, 11-13, 15-12, 14-11,
7-8, 9-10 12-13, 14-15 13-15, 12-14

Table 4.3. A single (15,10,7)-tournament

4.4 The (16, 8, 5)-tournament

This tournament has 6 rounds, and each team appears in 3 rounds. This suggests to

divide the teams in 4 groups of size 4 (1-4, 5-8, 9-12, and 13-16), and let 2 groups to

play in a round. Since there are 6 pairs of groups, this exactly fits. In a round the teams

of one group have to play against all other teams in the other one, and one team of

the same group. This leads to the tournament in Table 4.4.

128

Round 1 Round 2 Round 3

group 1 - group 2 group 3 - group 4 group 1 - group 3
1-2, 3-4, 5-6, 7-8 9-10, 11-12, 13-14, 15-16 1-3, 2-4, 9-11, 10-12

Round 4 Round 5 Round 6

group 2 - group 4 group 1 - group 4 group 2 - group 3
5-7, 6-8, 13-15, 14-16 1-4, 2-3, 13-16, 14-15 5-8, 6-7, 9-12, 10-11

Table 4.4. A single (16,8,5)-tournament

4.5 The (16, 10, 1)-tournament and the (16, 12, 1)-tournament

These were constructed ad hoc from a (16, 16, 1)-tournament. Hence they both exist,

but the (extensive) schedules are not presented here.

4.6 The (16, 10, 3)-tournament

There are 8 rounds, and each team plays in 5 rounds. We require in round r the teams

10r − 9 to 10r, where the team number is taken modulo 16 from {1, 2, . . . , 16}. So in

the first round appear the teams 1 to 10, in round 2 the teams 11 to 16 and 1 to 4,

and round 3 the teams 5 to 14, etcetera. With some care the schedule in Table 4.6 can

be constructed.

R1 R2 R3 R4 R5 R6 R7 R8

1-7 11-1 5-11 15-5 9-15 3-10 13-4 7-14
2-8 12-2 6-12 16-6 10-16 4-9 14-3 8-13
1-9 11-3 5-13 15-7 9-2 3-12 13-6 7-16
2-10 12-4 6-14 16-8 10-1 4-11 14-5 8-15
3-9 13-3 7-13 1-8 11-2 5-12 15-6 9-16
4-10 14-4 8-14 2-7 12-1 6-11 16-5 10-15
1-5 11-15 5-9 15-3 9-13 3-8 13-2 7-12
2-6 12-16 6-10 16-4 10-14 4-7 14-1 8-11
3-7 13-1 7-11 1-6 11-16 5-10 15-4 9-14
4-8 14-2 8-12 2-5 12-15 6-9 16-3 10-13
3-5 13-15 7-9 1-3 11-13 5-8 15-2 9-12
4-6 14-16 8-10 2-4 12-14 6-7 16-1 10-11
5-7 15-1 9-11 3-6 13-16 7-10 1-4 11-14
6-8 16-2 10-12 4-5 14-15 8-9 2-3 12-13
9-10 3-4 13-14 7-8 1-2 11-12 5-6 15-16

Table 4.6. A single (16, 10, 3)-tournament

4.7 The (16, 12, 5)-tournament

This tournament contains 4 rounds, and each team appears in 3 rounds. This suggests

to divide the teams in 4 groups of 4, and per round to leave out one of these groups.

Since each pair of groups appears twice, we let each team play against 2 teams from a

different group, and one team from the own group. This leads to the schedule in Table

4.7. Here (a, b)-(c, d) denotes the matches a-c, b-d, a-d, and b-c.

129

Round 1 Round 2 Round 3 Round 4

(1,2)-(5,6) (1,2)-(7,8) (1,2)-(11,12) (5,6)-(11,12)
(3,4)-(7,8) (3,4)-(5,6) (3,4)-(9,10) (7,8)-(9,10)
(5,6)-(9,10) (5,6)-(13,14) (9,10)-(13,14) (9,10)-(15,16)
(7,8)-(11,12) (7,8)-(15,16) (11,12)-(15,16) (11,12)-(13,14)
(9,10)-(1,2) (13,14)-(1,2) (13,14)-(3,4) (13,14)-(7,8)
(11,12)-(3,4) (15,16)-(3,4) (15,16)-(1,2) (15,16)-(5,6)

1-2, 3-4 1-3, 2-4 1-4, 2-3 5-8, 6-7
5-6, 7-8 5-7, 6-8 9-11, 10-12 9-12, 10-11

9-10, 11-12 13-14, 15-16 13-15, 14-16 13-16, 14-15

Table 4.7. A single (16, 12, 5)-tournament

4.8 The (19, 6, 3)-tournament

The (19, 6, 3)-tournament does not exist. This was established by formulating the con-

struction problem as an IP problem, and let CPLEX run to establish infeasibility.

5 Existence of double round-robin tournaments

The construction of double round-robin tournaments follows along the lines of the

single round-robin tournaments, but in addition there are two general constructions

from the single round-robin case. These we formulate in the following theorem.

Theorem 7 Suppose a single (n, g,m)-tournament exists. Then

(a) A double (n, g, m)-tournament exists.

(b) A double (n, g, 2m)-tournament exists.

Proof

(a) To construct the double round-robin tournament, we can repeat the single tourna-

ment.

(b) To construct the double round-robin tournament, we can repeat the matches in one

round. �

Case (b) is a construction that is usually not preferred as the two matches between

two teams are played in the same round. More generally, we define a proper round-

robin tournament as a tournament with only different matches in a round. We will

study exclusively proper round-robin tournaments from now on. There exist parame-

ters (n, g,m) for which the improper tournament exists, although a proper (n, g, m)-

tournament does not exist. This is for example the case for the double (15, 5, 4)-

tournament: since the single (15, 5, 2)-tournament exists, we can construct a double

(15, 5, 4)-tournament. However, a proper double (15, 5, 4)-tournament corresponds to

a (15, 5, 2)-design, which does not exist; see also Subsection 5.3.

The construction in case (a) is often preferred, or even required. However sometimes

it is better to use two different single round-robin tournaments, instead of one, see

Section 6.

In Table 5 we list all combinations (n, g, m) that satisfy the necessary conditions

in Theorem 1 for the double round-robin case. Because of Theorem 7(a) we omit the

triples for which the single tournament exists; hence we omit all triples from Table 2,

130

n (g, m)

4 (3,2) (4,2)
5 (4,2)
6 (3,2) (4,1) (5,2) (6,2)
7 (4,1) (4,3) (6,2) (7,4)
8 (4,2) (7,2) (8,2)
9 (6,4) (8,2)
10 (3,2) (4,1) (4,3) (5,2) (6,2) (9,2) (10,2) (10,6)
11 (4,1) (5,4) (10,2) (11,4)
12 (3,2) (4,2) (6,2) (8,1) (11,2) (12,2)
13 (4,2) (6,4) (8,1) (8,3) (12,2) (13,8)
14 (4,1) (7,2) (13,2) (14,2)
15 (4,1) (5,4) (6,2) (7,4) (10,2) (12,1) (12,7) (14,2) (15,4)
16 (3,2) (4,2) (5,2) (6,2) (6,5) (8,2) (8,6) (10,2) (10,6)

(12,2) (12,10) (15,2) (16,2) (16,6) (16,10)
17 (8,4) (16,2)
18 (3,2) (4,1) (6,2) (9,2) (12,1) (17,2) (18,2)
19 (4,1) (4,3) (6,2) (6,3) (9,4) (12,1) (12,3) (18,2) (19,4)

(19,12)
20 (4,2) (5,2) (8,1) (10,2) (19,2) (20,2)

Table 5. Parameters for which only a double (n, g, m)-tournament can exist.

except the cases (9, 6, 4), (16, 6, 5), and (19, 6, 3). This leads to 93 cases to investigate

for n ≤ 20.

We will discuss the basic construction methods in this case, and establish the

existence of double (n, g, m)-tournaments for n ≤ 20.

5.1 Round-robin constructions

We can use Theorem 3 to construct tournaments from the regular double round-robin

tournament. This leads to 9 (n, g, 1)-tournaments: only the cases (12, 8, 1), (13, 8, 1),

(15, 12, 1), (18, 12, 1), and (19, 12, 1) remain open. Using Theorem 2 leads to the exis-

tence of 12 (n, n, m)-tournaments with n even and m > 1.

5.2 Cycle constructions

For cycle constructions for the double round-robin tournament we need the directed

version of Theorem 4, which can be found in [2].

Theorem 8 Suppose Dn is the complete digraph on n vertices and M = n(n−1) arcs,

and 3 ≤ g ≤ n, such that g divides M . Then Dn can be decomposed into edge-disjoint

directed cycles of length g. �

As in the single tournament case, this theorem leads to the conclusion that all double

(n, g, 2)-tournaments, satisfying the necessary conditions in Theorem 1 exist. Hence in

Table 5 we get the existence of the 43 remaining cases with m = 2. Using Theorem 2

we get the existence of the 6 (n, n, m)-tournaments, with n odd and m > 2 even.

By using Theorem 8 we can prove the ‘even’ version of Theorem 5:

131

Theorem 9 Suppose n is even, g is even and 1

2
g divides n. Then a double (n, g, 1)-

tournament exists. �

From this theorem it follows that the (12, 8, 1)-tournament and the (18, 12, 1)-tournament

exist.

5.3 Block design constructions

A theorem similar to Theorem 6 also exists for double round-robin tournaments.

Theorem 10 A proper double (n, g, g− 1)-tournament exists if and only if a (n, g, 2)-

design exists. �

Hence we can settle these cases by using the tables for block designs.

– The (7, 4, 3)-tournament, the (10, 4, 3)-tournament, the (11, 5, 4)-tournament, the

(16, 6, 5)-tournament, and the (19, 4, 3)-tournament exist.

– A (proper!) (15, 5, 4)-tournament does not exist. As noted before there exists an

improper (15, 5, 4)-tournament.

5.4 The remaining cases

We have 15 cases left, 8 cases with m even and 7 cases with m odd. The cases with

m even are: (9, 6, 4), (13, 6, 4), (15, 7, 4), (16, 8, 6), (16, 10, 6), (16, 12, 10), (17, 8, 4), and

(19, 9, 4). Note that in all these cases an improper tournament exists. The proper cases

we solved with CPLEX: they all exist. The 7 remaining cases with m odd remain are:

(13, 8, 1), (13, 8, 3), (15, 12, 1), (15, 12, 7), (19, 6, 3), (19, 12, 1), and (19, 12, 3). These

were all constructed manually, but are not presented here.

There is an interesting series among these remaining cases, already starting with the

single (7, 3, 2)-tournament and the double (11, 5, 4)-tournament, and continuing with

two cases in the list above: the (15, 7, 4)-tournament and the (19, 9, 4)-tournament.

These tournaments are related to (4n− 1, 2n− 1, n− 1)-designs, where in our case n =

2, 3, 4, 5. The blocks of the block design are used to determine the teams in the round1.

For the (7, 3, 2)-tournament and the double (11, 5, 4)-tournament this determines the

tournament as well (all teams in a round play against each other). For n = 4, 5 each

pair of teams appears in n − 1 rounds. To compose the tournament we have to choose

which teams play against each other in which round. This can be done for n = 4, 5.

The (4n−1, 2n−1, n−1)-design is a symmetric block-design, also called a Hadamard

design of order n. For small n the Hadamard designs are constructed by using different

techniques, but for bigger values of n the existence is unknown. For one of the latest

results on Hadamard designs we refer to [4].

6 Spreading of rounds for teams

Till now we discussed parameters (n, g, m) for which (n, g, m)-tournaments might exist.

If such tournament exists, there are usually (but not always) many solutions. In this

1 Note that this is an extra restriction on the construction of the tournament.

132

section we discuss an additional property that is important in practice, namely the

spreading of rounds for a team. This is especially important in cases that a team

appears in a few rounds only, few compared to the total number of rounds. In such

cases we would prefer that the rounds in which a team appears are ‘spread’ over all

rounds. Since we require this for all individual teams, it is not obvious that we can

achieve that. Before continuing it is wise to give a definition of what we mean by

‘well-spread’.

Definition 1 We call an (n, g, m)-tournament well-spread if after any number of

rounds, the number of rounds played by the teams differ at most 1.

In the regular (n, n, 1)-tournaments (n even) the number of rounds played by the teams

is the same after any number of rounds. For all other (n, g, m)-tournaments this is not

the case. For this reason we allowed a difference of 1 in Definition 1. The regular round-

robin tournaments are well-spread. The tournaments constructed by using Theorem

3(a) and (c) are well-spread as well. This is not the case for the tournaments constructed

by Theorem 3(b) and (d).

There is another class of tournaments for which the rounds can be ordered such

that the tournament is well-spread: the resolvable tournaments. This term is borrowed

from the theory of block designs.

Definition 2 We call a (n, g, m)-tournament resolvable if it is possible to construct

an (n, n, m)-tournament from it, by only merging rounds of the (n, g, m)-tournament

to a new round in the (n, n, m)-tournament.

For a resolvable (n, g, m)-tournament g is a divisor of n. The regular (n, n, 1)-tournaments

(n even) are (trivially) resolvable, as well as the tournament constructed from it by

Theorem 3(a). Also in other cases resolvable tournaments can exist. We mentioned

already the (16, 4, 3)-tournament in Subsection 3.3. The cases with m = 2 can be

constructed from resolvable g-cycle systems (see Section V1.12 in [3]). Such 3-cycle

system exists in K9, leading to a resolvable single (9, 3, 2)-tournament. (By accident

this tournament also corresponds to a resolvable (9, 3, 1)-design.) For K15 there exist

3-cycle, 5-cycle, and 7-cycle systems, leading to well-spread (15, 3, 2)-, (15, 5, 2)-, and

(15, 7, 2)-tournaments.

There are parameters (n, g, m) for which no well-spread tournament exists. A beau-

tiful example of this situation is the single (7, 3, 2)-tournament. It corresponds to a

(7, 3, 1)-design, which is unique (up to permutations of the teams). This tournament is

given in Table 6 if one only selects the first 3 matches in each round.

Note that any 2 rounds have exactly 1 team in common; this reflects the fact that

this design corresponds to a projective plane (Fano plane). Hence after 2 rounds, there

is one team that played 2 rounds (team 2), there are 4 teams that played 1 round

(the teams 1,3,4,5) and 2 teams that didn’t play at all (the teams 6 and 7). So the

tournament is not well-spread. However for the double (7, 3, 2)-tournament we can find

a well-spread tournament, by weaving two permuted single (7, 3, 2)-tournaments. Such

tournament is given in Table 6 as a double (7, 6, 2)-tournament: by separating the first

3 and second 3 matches in a round to consecutive rounds, we obtain the well-spread

double (7, 3, 2)-tournament.

Another example is the double (6, 3, 2)-tournament, which corresponds to a (6, 3, 2)-

design. This design is unique and has the property that any two subsets have one team

in common. Hence the (6, 3, 2)-tournament is not well-spread.

133

R 1 R 2 R 3 R 4 R 5 R 6 R 7

1-2 2-3 3-4 4-5 5-6 6-7 7-1
1-4 2-5 3-6 4-7 5-1 6-2 7-3
2-4 3-5 4-6 5-7 6-1 7-2 1-3
3-5 4-6 5-7 6-1 7-2 1-3 2-4
3-6 4-7 5-1 6-2 7-3 1-4 2-5
5-6 6-7 7-1 1-2 2-3 3-4 4-5

Table 6. A double (7, 6, 2)-tournament

7 Conclusions

We studied an interesting extension of the regular single and double round-robin tour-

naments for n teams, which we called the (n, g,m)-tournaments. We derived necessary

conditions on the parameters (n, g,m) for the existence of a (n, g,m)-tournament. For

n ≤ 20 there are 173 combinations of (n, g,m) satisfying the necessary conditions; only

in 4 cases the (proper) (n, g, m)-tournament does not exist.

The (n, g, m)-tournaments appear in practice, especially for the case that 2 matches

are played in a round for a subset of teams (m = 2). From the theory of graph de-

composition we established that such tournaments exist, if the number of teams in a

round is a divisor of the total number of matches in the tournament. The case that

more matches are played in a round can be interesting as well. One could think of a

competitions where many short matches are played in a round, for example in a bridge

competition.

Our focus was on the existence of the tournaments. We only touched on one addi-

tional property, namely the spreading of rounds for a team. Another requirement could

be the spreading of the matches of a team within a round, (see [9]).

Acknowledgment. We thank Nans Wijnstok (competition organizer of the Dutch

Inline Skater Hockey League) for motivating this research, and his continuing interest.

References

1. B. Alspach and H. Gavlas, ‘Cycle decompositions of Kn and Kn − I’, Journal of Combi-

natorial Theory, Series B 81 (2001), pp. 77–99.
2. B. Alspach, H. Gavlas, M. Šajna and H. Verrall, ‘Cycle decompositions IV: complete

directed graphs and fixed length directed cycles’, Journal of Combinatorial Theory, Series

A 103 (2003), pp. 165–208.
3. C. Colbourn and J. Dinitz, The CRC handbook of Combinatorial Designs, CRC Press,

Inc, Florida, 2007.
4. D. Doković, ‘Hadamard matrices of order 764 exist’, Combinatorica 28 (2008), pp. 487–

489.
5. D. de Werra, ‘Scheduling in sports’, Annals of Discrete Mathematics 11 (1981), pp. 381–

395.
6. D. de Werra, ‘Some models of graphs for scheduling sports competitions’, Discrete Applied

Mathematics 21 (1988), pp. 47–65.
7. D. Fronček and M. Meszka, ‘Round robin tournaments with one bye and no breaks in

home-away patterns are unique’, in: Proceedings of the 1st International Conference on

Multidisciplinary Scheduling: Theory and Applications, Nottingham, UK (2003), pp. 331-
340.

8. T. P. Kirkman, ‘On a problem in combinations’, Cambridge and Dublin Mathematics

Journal 2 (1847), pp. 191–204.

134

9. S. Knust, ‘Scheduling sports tournaments on a single court minimizing waiting times’,
Operations Research Letters 36 (2008), pp. 471–476.

10. G. Post and G. Woeginger, ‘Sports tournaments, home-away assignments, and the break
minimization problem’, Discrete Optimization 3 (2006), 165-173.

11. M. Šajna, ‘Cycle decompositions III: Complete graphs and fixed length cycles’, Journal of

Combinatorial Designs 10 (2002), pp. 27–77.
12. J. A. M. Schreuder, ‘Combinatorial aspects of construction of competition Dutch profes-

sional football leagues’, Discrete Applied Mathematics 35, (1992), pp. 301–312.
13. A. van Weert and J.A.M. Schreuder, ‘Construction of basic match schedules for sports

competitions by using graph theory’, in: PATAT 1997, Lecture Notes in Computer Science
1408, E. Burke and M. Carter (eds.), Springer (1998), pp. 201–210.

135

Adaptive Selection of Heuristics for Improving
Constructed Exam Timetables

Edmund K. Burke, Rong Qu, and Amr Soghier

School of Computer Science, University of Nottingham
Nottingham, NG8 1BB, UK

{ekb,rxq,azs}@cs.nott.ac.uk

Abstract. This paper presents a hyper-heuristic approach which hybridises low-
level heuristics to improve constructed timetables. The constructed timetable is
analysed and the exams causing a soft-constraint violation are identified. It is
observed that both the type of move performed and the order in which exams
are rescheduled in the timetable affect the quality of the solution produced. Af-
ter testing different combinations in a hybrid approach, the Kempe chain move
heuristic and swapping timeslots proved to be the best heuristics to use in a hy-
bridisation. Similarly, it was proved that ordering the exams using Saturation De-
gree and breaking any ties using Largest Weighted Degree produces the best re-
sults. Based on these observations, an iterative hybrid approach is developed to
adaptively hybridise these two heuristics in two stages. In the first stage, ran-
dom heuristic sequences are generated and applied to the problem. The heuris-
tic sequences are automatically analysed. The heuristics repeated in the best se-
quences are fixed while the rest are randomly changed in an attempt to find the
best heuristic sequence. The approach is tested on the Toronto benchmark and the
exam timetabling track of the second International Timetabling Competition, to
evaluate its ability to generalise. The hyper-heuristic with low-level improvement
heuristics approach was found to generalise well over the two different datasets
and performed comparably to the state of the art approaches.

1 Introduction

For more than 40 years exam timetabling has been one of the mostly studied domains
in the AI and OR research communities. This is due to its importance in many aca-
demic institutions worldwide. However, much of the research was aimed at develop-
ing methodologies that produce the best quality timetables for a single problem [24].
A more recent direction in this field, namely, hyper-heuristics, aims to raise the level
of generality of search methodologies to create algorithms that act well over a range
of problems. A hyper-heuristic is seen as a heuristic to choose heuristics [7]. In this
case the low-level heuristics represent the search space. The low-level heuristics can be
categorised as heuristics which construct a timetable or heuristics which perform cer-
tain moves to improve a constructed timetable. This paper presents a random iterative
hyper-heuristic approach which uses improvement low-level heuristics. This approach
has been tested on the Toronto benchmark and the second International Timetabling
Competition (ITC2007) exam timetabling problems. It proved to generalise well over

136

the two datasets. Furthermore, very competitive results have been produced against
other approaches in the literature.

The following section presents a brief description of the benchmarks and an overview
on different approaches, including hyper-heuristic approaches, developed in the exam
timetabling domain. A random iterative hyper-heuristic to improve timetables is pro-
posed in section 3. An adaptive methodology to select low-level heuristics and the re-
sults obtained are presented in section 4. The future extensions of this work are sum-
marised in section 5.

2 Exam Timetabling

2.1 The Toronto Benchmark

An exam timetabling problem consists of a set of exams to be allocated to a given set
of timeslots. The generated timetable must satisfy the hard constraints of the problem,
which are the requirements that cannot be violated, e.g. no one student must be sched-
uled to sit two exams during the same period. A timetable which meets all the hard
constraints given is called a feasible timetable. A timetabling problem can also have a
set of soft constraints that can be violated. The violations of these constraints are usu-
ally used to determine the quality of the timetable generated, e.g. there must be a certain
number of periods between two exams sat by the same student. Therefore, high quality
timetables contain the least number of soft constraint violations. The Toronto bench-
mark problem is well known in the exam timetabling community since it was firstly
introduced by Carter et al. [11] in 1996. Over the years, a slightly different version has
been used to test some approaches in the literature. The characteristics of the two ver-
sions of this dataset are presented in table 1. The problem has one hard constraint where
conflicting exams cannot be assigned to the same time slot. In addition, a soft constraint
is present where conflicting exams should be spread throughout the timetable as far as
possible from each other. The goal here is to minimise the sum of proximity costs given
as follows:

∑4
i=0(wi x n)/S

where

– wi = 24−i is the cost of assigning two exams with i time slots apart. Only ex-
ams with common students and are four or less time slots apart are considered as
violations, i.e. i ε {0,1,2,3,4}

– n is the number of students involved in the conflict
– S is the total number of students in the problem

Since then this problem has been used to test and compare many approaches in the
literature. Recently, a more constrained set of benchmarks was made available as part of
the International Timetabling Competition (ITC2007) [17]. The next section describes
the ITC2007 dataset in detail.

137

Problem Exams I/II Students I/II Enrolments I/II Density Time Slots
car91 682 16925 56877 0.13 35
car92 543 18419 55522 0.14 32

ear83 I 190 1125 8109 0.27 24
ear83 II 189 1108 8057 0.27 24
hec92 I 81 2823 10632 0.42 18
hec92 II 80 2823 10625 0.42 18
kfu93 I 461 5349 25113 0.06 20
lse91 381 2726 10918 0.06 18

sta83 I 139 611 5751 0.14 13
sta83 II 138 549 5417 0.19 35
tre92 261 4360 14901 0.18 23

uta92 I 622 21266 58979 0.13 35
uta92 II 638 21329 59144 0.12 35
ute92 184 2750 11793 0.08 10

yor83 I 181 941 6034 0.29 21
yor83 II 180 919 6002 0.3 21

Table 1. Characteristics of the two versions of the Toronto Benchmark datasets

2.2 The International Timetabling Competition (ITC2007) dataset

The ITC2007 exam timetabling track could be considered as a complex and a more
practical dataset in comparison to the Toronto benchmark. This is due to the larger
number of constraints it contains. A full description of the problem and the evaluation
function can be found in [17]. In addition, the characteristics which define the instances
are summarised in table 2. The problem consists of the following:

– A set of timeslots covering a specified length of time. The number of timeslots and
their durations are provided.

– A set of exams which should be allocated to the timeslots.
– A list of the students enrolled in each exam.
– A set of rooms with different capacities.
– A set of additional hard constraints (e.g. exam X must be after exam Y or exam A

must use Room R).
– A set of soft constraints and their associated penalties.

In comparison to the Toronto benchmark, the ITC2007 dataset has more than one
hard constraint. The hard constraints are as follows:

– No student sits more than one exam at the same time.
– The capacity for each individual room should not be exceeded at a given period.
– Period lengths should not be violated.
– Additional hard constraints should be all satisfied.

The soft constraints violations are summarised as follows:

– Two Exams in a Row The number of occurrences where a student sits two exams
in a row on the same day.

138

– Two Exams in a Day The number of occurrences where a student sits two exams
on the same day. If the exams are back to back then this is considered as a Two
Exams in a Row violation to avoid duplication.

– Period Spread The exams have to be spread a certain number of timeslots apart.
– Mixed Durations The number of occurrences where exams of different durations

are assigned to the same room.
– Larger Exams Constraint The number of occurrences where the largest exams are

scheduled near the end of the examination session. The number of the largest exams
and the distance from the end of the exam session are specified in the problem
description.

– Room Penalty The number of times where certain rooms, which have an associated
penalty, are used.

– Period Penalty The number of times where certain timeslots, which have an asso-
ciated penalty, are used.

Instance Conflict Density Exams Students Periods Rooms no. of Hard Constraints
exam 1 5.05 607 7891 54 7 12
exam 2 1.17 870 12743 40 49 14
exam 3 2.62 934 16439 36 48 185
exam 4 15.0 273 5045 21 1 40
exam 5 0.87 1018 9253 42 3 27
exam 6 6.16 242 7909 16 8 23
exam 7 1.93 1096 14676 80 15 28
exam 8 4.55 598 7718 80 8 21

Table 2. Characteristics of the ITC2007 dataset

2.3 Exam timetabling approaches for the ITC2007 dataset

A three phased approach was developed by Muller [18] to solve the problems in the
ITC2007 exam timetabling track. The first phase consists of an Iterative Forward Search
algorithm to find a feasible solution. Hill climbing is then used to find the local optima
in the second phase. Finally, a Great Deluge Algorithm is applied to further explore the
search space.

Gogos et al. [14] proposed a method which used a GRASP (Greedy Randomised
Adaptive Search Procedure). In the construction phase, five orderings of exams based
on various criteria are generated. Tournament selection is used to select exams until
they are all scheduled. A backtracking strategy using a tabu list is employed as required.
In the improvement phase, Simulated Annealing is used. Finally, room allocations are
arranged using integer programming in the third phase.

Atsuta et al. [3] used a constraint satisfaction solver incorporating tabu search and
iterated local search. The solver differentiates between the constraints and their corre-

139

sponding weights during computation to improve performance. De Smet [12] also in-
corporated local search techniques in a solver called Drools, an Open-Source Business
Rule Management System (http://www.jboss.org/drools/).

Pillay [19] introduced a biological inspired approach which mimics cell behaviour.
The exams are initially ordered using the saturation degree heuristic and scheduled
sequentially in the available ”cells” i.e. timeslots. If more than one timeslot is available,
the slot which causes the least overall constraint violations is chosen. Rooms are chosen
using the best fit heuristic. If a conflict occurs before all the exams are scheduled, the
timetable is rearranged to reduce the soft constraints violation. This is described as
cell division. If the overall soft constraint violation is not improved without breaking
hard constraints, cell interaction occurs. The timeslots are swapped in this process to
remove hard constraint violations. The process continues until a feasible solution is
achieved. Finally, the contents of cells having equal durations are swapped to improve
the solution. This is called cell migration.

McCollum et al. [16] proposed a two phased approach where an adaptive heuristic
is used to achieve feasibility during the first phase. The second phase improves the
solution through the employment of a variant of the Great Deluge Algorithm.

2.4 Exam timetabling approaches for the Toronto Benchmark

An approach which uses a sequential construction method, employed by Caramia et al.
[10], to assign exams in the least number of timeslots was able to produce the best qual-
ity timetables for four of the Toronto benchmark instances. It uses a greedy scheduler
to obtain a feasible solution. A penalty decreaser and trader are then applied to improve
the quality of the constructed solution. Burke et al. [6] introduced an approach which
combines a variable neighbourhood search with a genetic algorithm which produced
the best quality solution for one of the Toronto instances. In addition Burke et. al [5]
proposed a method where a hill-climber compares the candidate solution with a solu-
tion produced a couple of iterations back instead of the current solution. This was called
the ”late acceptance criteria” and it produced the best quality solutions for another four
instances. Yang et. al [26] employed Case-Based Reasoning to choose graph-heuristics
to construct initial solution which were improved using a Great Deluge algorithm. This
approach produced the best quality solution for one of the instances. The results ob-
tained by these approaches are presented in section 4.1.

2.5 Hyper-heuristics in exam timetabling

Recently, some new methods were investigated to automatically find the best heuris-
tic to solve a set of instances. This has led to the introduction of Hyper-heuristics. A
hyper-heuristic can be seen as a method to choose low-level heuristics depending on the
problems in hand. Furthermore, it could be used to adapt or tune heuristics and meta-
heuristics. Hyper-heuristics in exam timetabling can be categorised, according to the
low-level heuristics they use, into two types as follows:

1. Hyper-heuristics with constructive low-level heuristics
2. Hyper-heuristics with improvement low-level heuristics

140

A Tabu search was developed by Burke et al. [8] to optimise a search space of
heuristic sequences comprised of two or more low-level heuristics. This work was ex-
tended in later research by Qu et al. [23] to construct heuristic sequences which pro-
duce feasible timetables. The combinations are then analyzed to find distribution pat-
terns of low-level heuristics, based on which the heuristic sequences are adaptively
adjusted to construct better timetables. In addition, hybridisations of the graph based
hyper-heuristic with local search methods was investigated in [22].

Asmuni et al. [1] used fuzzy logic to combine two out of three graph colouring
heuristics. The idea was to combine the two heuristics into a single value which calcu-
lates the difficulty of allocating an exam to a timeslot. The exams are ordered using this
value and are scheduled in order. Furthermore, the approach was extended to tune the
fuzzy rules instead of keeping them fixed [2].

Ersoy et al. [13] developed an approach called the hyperhill-climber where a hyper-
heuristic is embedded in a memetic algorithm. The aim of this hyper-heuristic was to
select the best hill-climber to apply or decide the best order in which hill-climbers
are executed. In addition, Pillay et al. [20] created another approach where genetic
programming was used to evolve hyper-heuristics.

Biligan et al. [4] presented different heuristic selection methods and acceptance cri-
teria for hyper-heuristics in exam timetabling. Finally, a different method of combining
heuristics was presented by Pillay et al. [21]. The low-level heuristics are combined
hierarchically and applied simultaneously instead of being applied sequentially.

3 A Hyper-heuristic with low-level improvement heuristics

Several low-level heuristics can be used to improve a timetable with varying quality.
The different low-level heuristics used could be considered as different methods for
escaping from local optima. However, the order in which exams are moved and the
type of moves performed play an important role in finding the best quality solution.
In our hyper-heuristic approach, an initial feasible solution is constructed using the
Largest Degree heuristic where the exams in the ordering are assigned randomly to a
timeslot causing the least penalty. Our objective is to analyse the performance of the
different low-level heuristics used to minimise the penalty incurred from a constructed
solution. In addition, we test the effect of using different orderings for the exams causing
penalties in the solution. Finally we develop an adaptive approach which orders the
exams causing violations and automatically selects the best heuristic to use for each
exam to produce an improvement.

3.1 The low-level heuristics

In this paper we investigate the effect of using different low-level heuristics or neigh-
bourhoods to improve timetables. A combination of two improvement low-level heuris-
tics is used in our approach. The following is a list of the heuristics investigated:

1. Move Exam (ME): This heuristic selects an exam and reassigns it to the timeslot
causing the least penalty.

141

2. Swap Exam (SE): This heuristic selects an exam and tries swapping it with a sched-
uled exam leading to the least penalty timetable.

3. Kempe Chain Move (KCM): This is similar to the SE heuristic but is more complex
as it involves swapping a subset of conflicting exams in two distinct timeslots. This
neighbourhood operator proved success when it was previously used in [6] and
[25].

4. Swap Timeslot (ST) : This heuristic selects an exam and swaps all the exams in the
same timeslot with another set of exams in a different timeslot. After testing all the
timeslots, the swap producing the least penalty timetable is applied.

3.2 The random iterative hyper-heuristic

The study presented in this paper takes a similar approach to that presented in [23]
where a random iterative hyper-heuristic generates heuristic sequences of different qual-
ity to solve the benchmark problem mentioned in section 2.1. Instead of using the
heuristic sequences to construct solutions, the heuristic sequences are used here to im-
prove constructed feasible solutions by rescheduling exams causing penalties. Figure
1 presents the pseudo-code of this random iterative hyper-heuristic. The process starts
by constructing an initial feasible solution. Since the initial solution constructed affects
the improvement process, a random largest degree graph colouring heuristic which or-
ders exams according to the number of conflicts each exam has with others is used [6].
This allows us to compare our approach to other approaches in the literature which use
a similar method in construction. At every iteration, the exams causing violations in
the constructed solution are identified and a random sequence of moves is generated.
A move is the application of one of the low-level heuristics described in section 3.1.
The sequence of moves is then applied to the sequence of exams as they are unsched-
uled one by one. Only moves that improve the current solution are accepted. If a move
does not improve the solution, it is skipped and the exam stays in its current position.
A sequence is discarded if an improvement is not obtained after the whole sequence is
employed.

This approach was applied to four instances (hec92 I, sta83 I,yor83 I and tre92) of
the Toronto benchmark exam timetabling problems described in section 2.1 for off-line
learning of the best heuristic hybridisations and the order of execution leading to the
best improvement. After running this process for (ex50) times, where e is the number of
exams causing soft constraint violations in the constructed solution, a set of sequences
and the penalties of their corresponding solutions are obtained for further investigation
on the effectiveness of the different heuristics used. Finally, an adaptive approach was
developed and applied to the Toronto benchmark. Furthermore, to test the generality of
the approach, it was applied to the ITC2007 exam timetabling track. The approach is
presented in section 4.

3.3 Analysis of hybridising improvement low-level heuristics

In order to clearly observe the effect of the different low-level heuristics in improving
solutions, the heuristic sequences generated consist of two heuristics. We use the Kempe
chain move(KCM) heuristic as the basic heuristic in the sequences as it has proved to

142

Fig. 1. The pseudocode of the random iterative hyper-heuristic with low-level improvement
heuristics

be successful in previous work [6, 25]. The rest of the heuristics (ME, SE and ST) are
randomly hybridised into the list of KCM.

The random sequences are generated with different percentages of hybridisation by
inserting n ME, SE or ST, n = [1,..,e] in the sequences. For each hybridisation of KCM
with either ME, SE or ST, fifty samples are obtained for each amount of hybridisation.

We applied this approach to four instances of the Toronto benchmark exam timetabling
problems [11]. Table 3 presents the results obtained using ME, SE and ST in a hybridi-
sation with KCM as well as a comparison against using KCM only.

hec92 I yor83 I sta83 I tre92
KCM without hybridisation Best 13.50 43.84 160.43 8.99

KCM with ME Best 12.03 43.84 157.48 8.91
KCM with SE Best 12.03 42.37 157.75 8.75
KCM with ST Best 11.30 41.79 157.27 8.57

Table 3. Best results using KCM without a hybridisation and with several different moves.

It was observed that using a Kempe chain only produces the worst results. After
introducing other heuristics in a hybridisation with the Kempe chain moves, better re-
sults are obtained. Another observation from table 3 is that swapping timeslots and
performing Kempe chain moves produces the best improvement for all the instances.
One possible reason may be that swapping timeslots allows the search to be more di-
verse and to sample different areas of the search space to find good solutions faster. In
addition, no obvious trends could be obtained on the amount of ST hybridisation within
the best heuristic sequences. However, in all the sequences leading to the best timeta-
bles, the ST heuristic is randomly distributed within the sequences and the percentage
of hybridisation is less than 50%.

143

3.4 Variations of Orderings of the exams causing a penalty

To analyse the effect of ordering the unscheduled exams causing a soft constraint vi-
olation in a solution, we decided to test different orderings while using the Kempe
Chain and swapping timeslot hybridisation stated in the previous section. After the ex-
ams causing violations are identified, they are ordered first before being reassigned to a
timeslot. Several orderings can be used to guide the search as follows:

– Largest Degree (LD) : The exams are ordered decreasingly according to the number
of conflicts each exam has with others.

– Largest Weighted Degree (LWD) : The exams are ordered similarly to LD but the
exams are weighted according to the number of students involved in the conflict.

– Saturation Degree (SD) : The exams are ordered increasingly according to the num-
ber of remaining timeslots available to assign them without causing conflicts. In the
case where ties occur, LWD is used as a tie breaker. From our previous work it was
shown that SD produces the best results when LWD is used to break ties in the
ordering [9].

– Largest Penalty (LP) : The exams are ordered decreasingly according to the penalty
they incur in the current solution.

– Random Ordering (RO) : The exams are ordered randomly.

Table 4 presents the average and best results of applying different orderings to the
unscheduled exams, then running a random heuristic sequence of KCM and ST to assign
them to better timeslots.

hec92 I yor83 I sta83 I tre92
KCM with ST + RO Average 11.99 42.63 159.74 8.91

KCM with ST + RO Best 11.60 41.33 158.46 8.64
KCM with ST + LD Average 12.15 42.09 159.39 9.00

KCM with ST + LD Best 11.32 39.69 157.76 8.66
KCM with ST + LWD Average 12.06 42.08 159.74 9.02

KCM with ST + LWD Best 11.39 39.69 157.49 8.66
KCM with ST + LP Average 12.69 42.10 163.32 8.91

KCM with ST + LP Best 12.50 39.69 159.50 8.51
KCM with ST + SD tb LWD Average 12.69 41.74 159.21 8.90

KCM with ST + SD tb LWD Best 11.19 39.47 157.18 8.49

Table 4. Results of hybridising KCM with ST using different orderings of the exams causing a
soft constraint violation. The notation ”X tb Y” means heuristic Y is used to break ties in heuristic
X

As shown in table 4, we found that using SD and breaking any ties in the order-
ing using LWD produced the best results. This is because SD orders the unscheduled
exams according to the number of remaining timeslots available to assign them with-
out causing conflicts. Therefore, the chances of moving exams at the top of the SD list

144

and finding better timeslots for them becomes higher. Ordering the exams according
to the penalty they incur proved to be the second best ordering after SD. LD and RO
performed the worst when applied.

4 Adaptive Selection of Low-level Heuristics for Improving Exam
Timetables

Figure 2 presents the initialisation stage of the adaptive approach. The exams causing a
penalty are first identified and are unscheduled. They are then put in a list and ordered
using SD. Random heuristic sequences are generated using KCM and ST to reschedule
the exams. The sequences are then applied to the ordered exams and the corresponding
solutions are saved.

Fig. 2. The pseudocode of the initialisation stage of the adaptive hyper-heuristic with low-level
improvement heuristics

The above observations indicate that the best solutions were obtained when ordering
the exams causing violations using SD, and rescheduling them using either a Kempe-
chain move or swapping timeslots. It was also observed that the heuristic sequences
resulting in the best solutions used the same move for the majority of the exams (i.e. the
same heuristic appears in the same position in the majority of the sequences). There-
fore, we developed an intelligent approach that performs an analysis to the best 5% of
the sequences produced to generate a new set of sequences. The new set of sequences
obtained better results for all the problem instances. The adaptive approach was tested
and showed to be effective and comparable with the best approaches in the literature.

Figure 3 presents the pseudo-code of the approach which hybridises ST with KCM
in two stages. The process is presented as follows:

1. In the first stage, the best 5% of heuristic sequences are collected and analysed. If
the same heuristic is used in more than 75% of the heuristic sequences, then it is
stored. Otherwise the heuristic is neglected and the position is randomly assigned
as KCM or ST.

145

2. n x 5 sequences for the large instances (uta92 I, uta92 II, car91 and car92) and n x
10 sequences for the small instances are generated, respectively. The new sequences
are then applied to the instance.

Fig. 3. Adaptive generation of heuristic sequences hybridising KCM and ST

4.1 The Toronto Benchmark Results

We tested this approach on the Toronto benchmark exam timetabling problems and
present the results in tables 5 and 6. The average computational time across the instances
is also presented for 30 runs on a Pentium IV machine with a 1 GB memory.

146

hec92
I

yor83
I

ear83
I

sta83 I car92 car91 uta92
I

ute92 lse91 tre92 kfu93

AIH Aver-
age

12.69 41.74 38.98 159.21 4.49 5.39 3.56 27.97 11.45 8.90 15.54

AIH Best 11.19 39.47 35.79 157.18 4.31 5.19 3.44 26.70 10.92 8.49 14.51
Time(s) 397 1683 1692 759 41954 97961 61284 641 1466 4293 2745

Table 5. Results from the the Adaptive Improvement Hyper-heuristic (AIH) approach on the
Toronto Benchmark dataset.

hec92 II yor83 II ear83 II sta83 II uta92 II
AIH Average 12.43 50.49 41.98 35.00 3.54

AIH Best 11.35 49.72 39.60 32.57 3.45
Time (s) 498 1374 2792 1888 81316

Table 6. Contd. Results from the the Adaptive Improvement Hyper-heuristic (AIH) approach on
the Toronto Benchmark dataset.

The best results stated in the literature are presented in table 7. These include the
hill-climbing with a late acceptance strategy implemented by Burke et al. [5], the vari-
able neighbourhood search incorporating the use of genetic algorithms used by Burke
et al. [6], the sequential construction method developed by Caramia et al. [10] and the
Case-Based Reasoning approach employed by Yang et al. [26]. These algorithms are
described in section 2.4.

Problems AIH Burke(2008) Burke(2010) Caramia(2008) Yang(2005)
Best Best Best Best Best

[5] [6] [10] [26]
hec92 I 11.19 10.06 10.00 9.20 10.83
sta83 I 157.18 157.03 156.90 158.20 158.35
yor83 I 39.47 34.78 34.90 36.20 36.35
ute92 26.70 24.79 24.80 24.40 25.39

ear83 I 35.79 32.65 32.80 29.30 33.70
tre92 8.49 7.72 7.90 9.40 7.92
lse91 10.92 9.86 10.00 9.60 10.35
kfu93 14.51 12.81 13.00 13.80 13.82
car92 4.31 3.81 3.90 6.00 3.93

uta92 I 3.44 3.16 3.20 3.50 3.14
car91 5.19 4.58 4.60 6.60 4.50

Table 7. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
the best approaches in the literature on the Toronto Benchmark

147

The results obtained indicate the generality of our approach to different constructed
timetables. We also make a comparison with other hyper-heuristics which produced
the best results in the literature in table 8. In comparison with the graph-based hyper-
heuristic in [8], our approach performs better in all the cases reported. In addition, it
performs better in 8 out of 11 cases in comparison with the hyper-heuristics investigated
in [21] and [22]. Finally, it performs better in 10 out of 11 cases compared to the Tabu
search hyper-heuristic investigated in [15]. Only the problems presented in table 8 were
compared to other results since the results for the other instances in table 1 were not
reported in the literature.

Problems AIH Kendall(2004) Burke(2007) Pillay(2009) Qu(2009)
Best Best Best Best Best

[15] [8] [21] [22]
hec92 I 11.19 11.86 12.72 11.85 11.94
sta83 I 157.18 157.38 158.19 158.33 159.00
yor83 I 39.47 - 40.13 40.74 40.24
ute92 26.70 27.60 31.65 28.88 28.30

ear83 I 35.79 40.18 38.19 36.86 35.86
tre92 8.49 8.39 8.85 8.48 8.60
lse91 10.92 - 13.15 11.14 11.15
kfu93 14.51 15.84 15.76 14.62 14.79
car92 4.31 4.67 4.84 4.28 4.16

uta92 I 3.44 - 3.88 3.40 3.42
car91 5.19 5.37 5.41 4.97 5.16

Table 8. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
other hyper-heuristics approaches in the literature on the Toronto Benchmark

4.2 The International Timetabling Competition (ITC2007) Results

To test the generality of our approach, we applied it to the ITC2007 exam timetabling
dataset. The initial solution is constructed by ordering the exams according to their
saturation degree. The exams are assigned a random timeslot in the situation where
more than one timeslot is available. After a feasible solution is constructed the Adaptive
Improvement Hyper-heuristic was applied to the constructed solution. To allow a fair
comparison with the reported competition results, the approach was run for the same
amount of time using 11 distinct seeds for each instance. Table 9 presents the results we
obtained in comparison with the best in the literature. The description of the approaches
used for comparison are presented in section 2.3. We do emphasise that the objective
here is not to beat the best reported results but to demonstrate the generality of our
approach to different problems with different constraints. A dash in the table means
that no feasible solution was achieved.

The Extended Great Deluge in [16] obtained the best results for 5 out of the 8
instances. However, the approach was run for a longer time as it was developed after
the competition. In the competition, the best results for all the 8 instances were reported

148

in [18] using a three phased approach. The GRASP used in [14] produced the second
best results.

In comparison to the Constraint Based Solver developed in [3], our approach per-
formed better in 3 out of the 8 instances. The approach using the Drools solver in [12]
obtained feasibility for only 5 instances. Our approach outperformed it as we were able
to gain feasibility for all the 8 instances. This demonstrates the generality of our ap-
proach to solving exam timetabling problems. Finally, our approach performed better
on 6 of the 8 instances in comparison with the biologically inspired approach proposed
in [19].

Instances AIH McCollum(2009) Muller(2008) Gogos(2008) Atsuta(2008) De Smet(2008) Pillay(2008)
Best Best Best Best Best Best Best

[16] [18] [14] [3] [12] [19]
Exam 1 6235 4633 4370 5905 8006 6670 12035
Exam 2 2974 405 400 1008 3470 623 3074
Exam 3 15832 9064 10049 13862 18622 - 15917
Exam 4 35106 15663 18141 18674 22559 - 23582
Exam 5 4873 3042 2988 4139 4714 3847 6860
Exam 6 31756 25880 26950 27640 29155 27815 32250
Exam 7 11562 4037 4213 6683 10473 5420 17666
Exam 8 20994 7461 7861 10521 14317 - 16184

Table 9. Best results obtained by the Adaptive Improvement Hyper-heuristic (AIH) compared to
the best approaches in the literature on the ITC2007 dataset

5 Conclusions

The study presented in this paper implements a hyper-heuristic approach which adap-
tively adjusts heuristic combinations to achieve the best improvement for constructed
timetables. An investigation is made on the low-level heuristics used and the order in
which exams causing soft constraint violations are rescheduled. The analysis is per-
formed on a set of four benchmark instances of differing difficulty in an off-line learning
process. It is shown that, of the heuristics tried, the best to combine with Kempe chains
is swapping timeslots. In addition, better solutions are produced when ordering the ex-
ams causing a soft constraint violation using Saturation Degree and breaking any ties
with Largest Weighted Degree. Based on the output of the learning process, an adaptive
approach which analyzes and adjusts some randomly generated sequences is imple-
mented and applied to the rest of the instances. Furthermore, the approach is applied to
a different and more constrained dataset, the ITC2007 dataset. The hyper-heuristic pro-
duced very competitive results compared to other approaches in the literature on both
datasets.

Future research directions include performing improvements during the timetable
construction stage instead of performing the improvements at the end of the construc-
tion. Using hybridisations of more than two low-level heuristics could also be investi-

149

gated. Finally, the approach investigated in this paper can be applied to course timetabling
problems.

References

1. H. Asmuni, E.K. Burke, J. Garibaldi, and B. McCollum. Fuzzy multiple ordering criteria
for examination timetabling. In E.K. Burke and M. Trick, editors, Selected Papers from the
5th International Conference on the Practice and Theory of Automated Timetabling, volume
3616 of Lecture Notes in Computer Science, pages 334–353. Springer, 2004.

2. H. Asmuni, E.K. Burke, J. Garibaldi, B. McCollum, and A.J. Parkes. An investigation of
fuzzy multiple heuristic orderings in the construction of university examination timetables.
Computers and Operations Research, 36(4):981–1001, 2009.

3. M. Atsuta, K. Nonobe, and T. Ibaraki. Itc2007 track 1: An approach using general csp solver.
In Practice and Theory of Automated Timetabling (PATAT 2008), pages 19–22, August 2008.

4. B. Biligan, E. Ozcan, and Korkmaz E.E. An experimental study on hyper-heuristics and
exam timetabling. In E. Burke and H. Rudova, editors, Practice and Theory of Automated
Timetabling VI: Selected Papers from the 6th International Conference PATAT 2006, volume
3867 of Lecture Notes in Computer Science, pages 394–412, 2007.

5. E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing for examination
timetabling problems. In Proceedings of the conference on the Practice and Theory of Auto-
mated Timetabling(PATAT), 2008.

6. E.K. Burke, A. Eckersley, B. McCollum, S. Petrovic, and R. Qu. Hybrid variable neighbour-
hood approaches to university exam timetabling. European Journal of Operational Research
(EJOR), 206:46–53, 2010.

7. E.K. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg. Hyper-heuristics:
An emerging direction in modern search technology. In F. Glover and G. Kochenberger,
editors, Handbook of Meta-Heuristics, pages 457–474. Kluwer, 2003.

8. E.K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu. A graph-based hyper-heuristic
for educational timetabling problems. European Journal of Operational Research, 176:177–
192, 2007.

9. E.K. Burke, R. Qu, and A. Soghier. Adaptive tie breaking and hybridisation in a graph-
based hyper-heuristic for exam timetabling problems. under review at Journal of Operational
Research, 2010.

10. M. Caramia, P. Dell Olmo, and G.F. Italiano. Novel local-search-based approaches to uni-
versity examination timetabling. Informs Journal of Computing, 20(1):86–99, 2008.

11. M.W. Carter, G. Laporte, and S.Y. Lee. Examination timetabling: Algorithmic strategies and
applications. Journal of Operational Research Society, 74:373–383, 1996.

12. G. De Smet. Itc2007 - examination track. In Practice and Theory of Automated Timetabling
(PATAT 2008), pages 19–22, August 2008.

13. E. Ersoy, E. Ozcan, and Uyar S. Memetic algorithms and hill-climbers. In P. Baptiste,
G. Kendall, A.M. Kordon, and F. Sourd, editors, Proceedings of the 3rd Multidisciplinary
International Conference on Scheduling: Theory and Applications Conference(MISTA2007),
pages 159–166, 2007.

14. C. Gogos, P. Alefragis, and E. Housos. A multi-staged algorithmic process for the solution
of the examination timetabling problem. In Practice and Theory of Automated Timetabling
(PATAT 2008), pages 19–22, 2008.

15. G. Kendall and N. Mohd Hussin. An investigation of a tabu search based hyper-heuristic for
examination timetabling. In G. Kendall, E. Burke, S. Petrovic, and M. Gendreau, editors,
Selected Papers from MISTA 2005, pages 309–328. Springer, 2005.

150

16. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Abdullah. An extended
great deluge approach to the examination timetabling problem. In Proceedings of the 4th
Multidisciplinary International Scheduling: Theory and Applications 2009 (MISTA 2009),
pp. 424-434, 10-12 August , Dublin, Ireland, 2009.

17. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, L. Di Gaspero, A. J. Parkes,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal of Computing, doi: 10.1287/i-
joc.1090.0320, 2008.

18. T. Muller. Itc 2007 solver description: A hybrid approach. In Practice and Theory of Auto-
mated Timetabling (PATAT 2008), pages 19–22, August 2008.

19. N. Pillay. A developmental approach to the examination timetabling problem. In Practice
and Theory of Automated Timetabling (PATAT 2008), pages 19–22, August 2008.

20. N. Pillay and W. Banzhaf. A genetic programming approach to the generation of hyper-
heuristic systems for the uncapicitated examination timetabling problem. In Neves et al.,
editor, Progress in Artificial Intelligence, volume 4874 of Lecture Notes in Artificial Intelli-
gence, pages 223–234, 2007.

21. N. Pillay and W. Banzhaf. A study of heuristic combinations for hyper-heuristic systems
for the uncapicitated examination timetabling problem. European Journal of Operational
Research, 197:482–491, 2009.

22. R. Qu and E.K. Burke. Hybridisations within a graph-based hyper-heuristic framework for
university timetabling problems. Journal of Operational Research Society, 60:1273–1285,
2009.

23. R. Qu, E.K. Burke, and B. McCollum. Adaptive automated construction of hybrid heuris-
tics for exam timetabling and graph colouring problems. European Journal of Operational
Research, 198(2):392–404, 2009.

24. R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A survey of search method-
ologies and automated approaches for examination timetabling. Journal of Scheduling,
12(1):55–89, 2009.

25. J.M. Thompson and K.A. Dowsland. Variants of simulated annealing for the examination
timetabling problem. Annuals of Operations Research, 63:105–128, 1996.

26. Y. Yang and S. Petrovic. A novel similarity measure for heuristic selection in examination
timetabling. In Practice and Theory of Automated Timetabling: Selected papers from the 5th
International Conference .Lecture Notes in Computer Science, volume 3616, pages 377–396,
2005.

151

Iterated Heuristic Algorithms for the

Classroom Assignment Problem

Ademir Aparecido Constantino
1*

, Walter Marcondes Filho
1
, Dario Landa-Silva

2

1
Department of Computer Science

 State University of Maringá, Brazil

2
ASAP Research Group

School of Computer Science

University of Nottingham, UK

Abstract

We tackle the classroom assignment problem in a large University with the objective of

minimising the total distance between all classrooms assigned to teaching activities in the same

course. Additional requirements that should be satisfied include: making an efficient utilisation of

the space, satisfying room preferences and complying with other administrative requirements. We

present two iterated heuristic approaches, each one consisting of an iterative resolution of an

assignment problem (the classical assignment problem in the first approach and the bottleneck

assignment problem in the second approach) and a third algorithm based on the Variable

Neighbourhood Search (VNS) meta-heuristic. We also present and discuss experimental results

using real-world data from three consecutive academic sessions.

Key words: classroom assignment problem, iterated heuristic algorithm, variable

neighbourhood search.

*Corresponding author: ademir@din.uem.br

152

1 Introduction

The classroom assignment problem in an academic institution refers to assigning

classes, that meet at different timeslots, to rooms while respecting a series of

operational restrictions and preferences (Carter and Covey 1992). This paper deals

with a real-world classroom assignment problem from a large university involving

many courses and classrooms. In our case, like in many other scenarios, the

underlying course timetabling problem is solved in two phases (Carter and

Laporte 1998). In the first phase, timetables are constructed for each department

and each course. Since different courses can share some rooms, the availability of

rooms is usually not considered in this first phase (although some courses might

have priority for using certain rooms). In the second phase, rooms are assigned

centrally to all courses based on the timetables produced in the first phase.

Although the classroom assignment problem is usually part of the well-known

university course timetabling problem, it is also a very difficult problem and it has

not been investigated on its own so extensively in the timetabling literature.

Abdennadher et al. (2000) tackled this problem independently from the associated

course timetabling problem and using constraint logic programming. Martinez-

Alfaro et al. (1996) employed simulated annealing to assign classrooms to a large

number of classes in a University in Mexico. Many times, the classroom

assignment problem is tackled as part of the University course timetabling

problem or the School timetabling problem (see Adriaen et al. 2006, Dammak et

al 2006 and Schaefer 1999).

Carter and Tovey (1992) studied the classroom assignment problem and discussed

its computational complexity. They suggested two versions of the problem,

interval problem and nointerval problem, depending on how the concept of class

is defined. In the interval problem, classes meet only once a week while in the

noninterval (also called multiday) problem classes can meet more than once a

week. Furthermore, when a class meets more than once a week, every meeting

should occur in the same room. Following this classification, our work deals with

a noninterval classroom assignment problem. Carter and Tovey (1992) showed

153

that this problem is NP-complete even for the satisfice case in which the problem

is to find a feasible solution.

This paper is organized in 5 sections. Section 2 describes the particular classroom

assignment problem tackled in this paper. Section 3 introduces some definitions

and the proposed algorithms. Section 4 gives an overview of the implementation

and the results. Finally, we conclude the paper in Section 5.

2 Problem Description

This work is based on the timetabling problem faced by a public higher education

institution which is divided in several administrative centres and each containing

related departments. Departments are responsible for offering and coordinating

the various courses within their competence. Specifically, the institution is divided

in 7 administrative centres and 34 departments. A total of 49 courses are on offer

with approximately 4,000 subjects/sections offered to serve approximately 16,500

enrolled undergraduate students. There are 200 available classrooms for lectures

plus special rooms or laboratories for practical classes. These practical classes

have the special rooms assigned locally by their own departments and hence are

not considered as part of the classroom assignment problem tackled here.

Despite this administrative division, the assignment of classrooms is responsibility

of the institution’s central administration. Students’ transfers and adjustments may

occur some days before the classes start. This situation makes the problem more

difficult because prior assignments might need to be modified and this provokes

operational administrative problems.

When assigning classrooms to classes, there are a number of restrictions and

special needs for resources which hinder the classroom distribution. Several

requirements must be taken into consideration:

1. Except for lectures resulting from the union of groups with practical

lessons, only one lesson can be assigned in the same classroom at the same

time. The classroom must be accessible to groups in which there are

students with special needs.

154

2. Except for some subjects determined by the course, the number of students

in a classroom must not be superior to its capacity.

3. Each course must have a defined geographic area for their academic

activities and this serves as reference for the classroom assignment. The

goal is to concentrate all classes in the same course within a geographic

area of the campus.

4. Classes must be assigned to classrooms numbered according to the class

year, i.e. freshman, sophomore, junior or senior year.

5. All the weekly meetings of a class should be preferably assigned to the

same classroom. This facture increase the difficulty to solve the problem

(noninterval case) as it was discussed by Carter and Tovey (1992).

The goal is to assign all the groups of all the subjects and courses to classrooms,

maximizing the concentration of students of the same course within a

geographical area, thus, minimizing the movement of students inside the campus

while also obeying the abovementioned restrictions. Notice that requirements 1, 3

and 4 are considered preferences. In addition, some courses have preference for

certain classroorns, these preferences are incorporated into the cost function (see

Section 3). According to Carter and Tovey (1992) these preferences are non-

monotonic (arbitrary) and increase the complexity of the assignment problem. The

present work proposes the use of heuristic algorithms to solve this problem.

2.1 Definitions

There are 6 timeslots every weekday for a total of 34 timeslots per week, as

shown in Table 1. Note that these 34 slots are available in each week of the entire

academic year and since the allocations are the same for every week, then the

solution for one week is all that is needed.

Table 1. Definition of timeslots during a week.

Period Hour Week

Mon Tur Wed Thu Fri Sat

Morning 07:45 - 09:15 1 7 13 19 25 31

09:30 - 11:45 2 8 14 20 26 32

Afernoon 13:30 - 15:10 3 9 15 21 27 33

15:30 - 17:10 4 10 16 22 28 34

Night 19:30 - 21:10 5 11 17 23 29 -

21:30 - 23:00 6 12 18 24 30 -

155

Consider the following notations for the indices:

m =1...M for the timeslots with M = 34,

k = 1...K for the courses,

t = 1...Tm for the groups (classes) with their timetable in timeslot m,

s = 1...Sk for the years of a course k,

l = 1...L for the classrooms.

A classroom area comprises of a building or an agglomerate of classrooms.

Normally, the administrative centres have some preferred classroom areas for

assigning classes in their courses. For each classroom area a Cartesian coordinate

is given (area’s central position) which is called the area’s point.

It is desirable to assign all weekly lessons of a given group to the same classroom

and also to have all the classrooms used by the same course and year within a

geographic delimitation. In order to achieve this, we defined a gravitational point

as a point in Cartesian coordinates or a scalar. The gravitational point serves as

reference for the arranging of groups, years and courses within a geographic

space. Three kinds of gravitational points are considered regarding the course,

year and group and identified as: PGCk, PGSs and PGTt, respectively. Each PGCk

corresponds to the Cartesian coordinates extracted from an image of the campus

layout. The gravitational points PGSs and PGTt correspond to the classroom

number. These values are used when attempting to arrange the years and groups

following the order of the classroom numbers, i.e., a group in the initial year is

assigned to the classrooms with numbers smaller than the other groups of

posterior years. The gravitational points are empirically initialised. However, they

are self-adjusted while the algorithms are executed.

3 Proposed Algorithms

In order to tackle the above classroom assignment problem (CAP), this section

describes two iterated heuristic algorithms. The first one (CAP-A) is based on the

successive resolution of the linear assignment problem whereas the second one

(CAP-BA) is based on the successive resolution of the bottleneck assignment

problem. A third proposed algorithm (CAP-VNS) is based on the variable

156

neighbourhood search (VNS) meta-heuristic and uses an initial solution obtained

from the first phase of the CAP-A algorithm.

3.1. Algorithm CAP-A

This algorithm is based on the successive resolution of the linear assignment

problem. The linear assignment problem is a classic linear programming problem

equivalent to the minimum-cost perfect matching in a bipartite graph. For each

timeslot m an instance of the assignment problem is created. The formulation of

the assignment problem may be described as:

{ } L ,...,1 , ,...,1 ,1,0

 ,...,1 ,1

 ,...,1 ,1 s.t.

.Min

1

1

1 1

==∈

==

==

=

∑

∑

∑∑

=

=

= =

lTtx

Ttx

Llx

xcz

m

m

tl

L

l

m

m

tl

T

t

m

tl

T

t

L

l

m

tl

m

tlm

m

m

where m

tlc is the cost of assigning group t to room l within timeslot m, and m

tlx = 1

if group t is assigned to room l and 0 otherwise.

3.1.1 Phase 1

This phase consists of solving M assignment problems, one for each timeslot.

Each assignment problem is defined by the square matrix []m

tlc ; however, the

number of groups may be smaller than the number of available classrooms. Thus,

LTTT
Ficticious

m

al

mm =+=
Re will be considered, where al

mT
Re is the actual number of

existing groups and Ficticious

mT is the number of fictitious groups created to make

the square matrix. Therefore, the cost matrix can be split in two parts, as shown in

Fig 1, having their elements defined as:

Part I: For t = 1,2,…, al
mT
Re and l = 1,2,…,L, we have),(ltfc

m

tl = where

the function f (presented in the sequence) defines the cost of each

assignment.

157

Part II: For t= al
mT
Re +1,…,L (representing fictitious groups) and l = 1,2,…,

L, m

tlc is the cost of assign a fictitious group in a classroom, in this case a

large cost ∞=
m

tlc . As already mentioned above, the fictitious group is

created to complement the matrix and make it square.

 Rooms

Groups

Part I

),(ltfc
m

tl =

Ficticious

Groups

Part II

∞=
m

tlc

Fig. 1 Matrix basic structure

In Part I the function f(t,l), is defined as:

>∉++

≤∉+

>∈+

≤∈

=

)()(and(if)(

)()(and)(if)(

)()(and)(if)(

)()(and if)(

),(

211

21

11

1

lCapt Sizet) SC l ppt,ld

lCapt Size tSC l pt,ld

lCapt Size tSC l pt,ld

lCapt SizeSC(t) lt,ld

ltf (1)

where:

• d1(t,l) = Euclidian distance from the PGCk associated to group t, to the

area’s point related to room l.

• SC(t) is the group of classrooms with accessibility for the group t and

their priority use is assigned to the courses from the administrative

centre to which the group t is linked.

• Size(t) is the number of students in group t.

• Cap(l) is the number of students that the classroom j can seat.

• p1 is the penalty applied when the classroom size does not serve the

group’s need. This penalty has been empirically defined as 2x10
3
.

• p2 is the penalty defined as the biggest distance between classroom

areas which belong to the same administrative centre to which the

group t belongs. The penalty serves the purpose of forcing group t to

be assigned to a room l belonging to SC(t).

An iteration of this phase involves the resolution of M assignment problems, one

for each timeslot. In the first iteration, the PGCk is empirically defined, normally a

158

point next to the classroom area desired for the course. For the following

iterations, PGCk is the average point estimated from the coordinates among all the

classroom areas used for course k in the previous iteration. This procedure is

repeated until the PGCk of all the courses are not modified.

3.1.2 Phase 2

The purpose of this phase is to gather the groups of the same academic year in a

course following the order by which the rooms are numbered, e.g. groups in the

first year are in rooms with numbers smaller than the groups of the next academic

year.

The structure of the cost matrix used in this phase is the same as in the previous

phase, although the cost formation is slightly different, as follows:

>∉+++

≤∉++

>∈++

≤∈+

=

)()(andif)()(

)()(and)(if)()(

)()(and)(if)()(

)()(and)(if)()(

),(

2121

221

121

21

lCapt SizeSC(t) l ppt,ldt,ld

lCapt Size tSCl pt,ldt,ld

lCapt Size tSC l pt,ldt,ld

lCapt Size tSCl t,ldt,ld

ltf (2)

where:

• d2(t,l) = | PGSs – Num(l)|, considering PGSs the gravitational point of

the year s to which the group t is related and Num(l) is room number l.

An iteration of this phase also solves M assignment problems. In the first iteration

PGSs = s, s = 1…Sk, for the course k related to the group t. In the following

iterations, PGSs will be the average value of all classroom numbers allocated to

the year s. This procedure is repeated until the PGSs of all the years of every

course are not modified.

3.1.3 Phase 3

The goal of this phase is to rearrange the groups gathered in phase 2 following a

correspondence order for the group regarding the room numbering, e.g., if the

group number 1 has been allocated to room 101, it is desirable that the group

number 2 is allocated to room 102.

As in phase 2, the cost matrix structure used is the same as in phase 1, with

the cost defined as follows:

159

>∉++++

≤∉+++

>∈+++

≤∈++

=

)()(and)(if)()()(

)()(and)(if)()()(

)()(and)(if)()()(

)()(and)(if)()()(

),(

21321

2321

1321

321

lCapt Size tSC l ppt,ldt,ldt,ld

lCapt Size tSC l pt,ldt,ldt,ld

lCapt Size tSCl pt,ldt,ldt,ld

lCapt Size tSC l t,ldt,ldt,ld

ltf (3)

where:

• d3(t,l) = |PGT – Num(l)|, considering PGT the gravitational point of

the group t and Num(l) is room number l.

An iteration of this phase also solves M assignment problems. In the first

iteration PGTt = t. In the following iterations, PGTt will be the average value of

the numbers of all the rooms allocated for the M modules in the previous iteration.

This procedure is repeated until the PGTt of all groups of every course are not

modified.

3.2 Algorithm CAP-BA

This algorithm is equivalent to the algorithm CAP-A with the difference that the

linear assignment model is replaced by the bottleneck assignment model. The

bottleneck assignment problem is formulated as follows:

{ } L ,...,1 , ,...,1 ,1,0

 L ,...,1 , ,...,1 ,

 ,...,1 ,1

 ,...,1 ,1 s.t.

Min

1

1

==∈

==≤

==

==

∑

∑

=

=

lTtx

lTtZxc

Ttx

Llx

Z

m

m

tl

mm

m

tl

m

tl

L

l

m

m

tl

T

t

m

tl

m

m

The cost matrix []m

tlc is defined in the same way as for the previous algorithm.

While the linear assignment model minimises the cost sum of all assignments, the

bottleneck assignment model minimises the cost of the biggest assignment.

3.3. Algorithm CAP-VNS

This algorithm is based on the variable neighbourhood search (VNS) meta-

heuristic, a local search procedure that explores the solution space by

systematically changing the neighborhood structure (Hansen and Mladenovic,

160

2001). R neighbourhoods are defined for the problem in hand, N1, N2,...,NR and if

the current solution is not improved using a particular neighbourhood, the next

neighbourhood is explored and so on.

Then, our CAP-VNS algorithm starts with a solution obtained in phase 1 of the

algorithm CAP-A. Four neighbourhood structures Nr (r = 1, 2, 3 and 4) were

defined. A neighbour Nr(s) is obtained by exploring every timeslot for every

weekday, and then choosing another assignment at random (see below).

The iterative improvement strategy used is the best descent, i.e., all solutions s”

around s’ are assessed, and the one giving the best improvement is selected. The

evaluation function of a solution, to be minimised, is defined as:

∑∑∑
= = =

=
34

1 1 1

.)(
m

t

t

L

l

m

tl

m

tl

m

xcsf (4)

where m

tlc is defined as in phase 3 for the algorithm CAP-A.

The neighbourhood structures Nr can be defined as:

1. N1: for each timeslot m = 1,...,M and for each classroom area (building)

used in the solution, randomly select a classroom in the classroom area

and move the groups to an idle room in the same area, if possible.

2. N2: for each timeslot m = 1,...,M and for each classroom area used in the

solution, randomly select two classrooms in the classroom area and change

the groups from one room to another, if possible.

3. N3: for each timeslot m = 1,...,M and for each course with classes in

module m, randomly select two classrooms used for the same course

(regardless of the classroom area) and interchange all the groups between

the two classrooms, if possible.

4. N4: for each timeslot m = 1,...,M and for each year with classes in module

m, randomly select two classrooms used by the year of the same course

(regardless of the classroom area) and have the groups change from one

room to the other, if possible.

161

In each iteration of the CAP-VNS algorithm, every neighbourhood is explored

and the algorithm stops when there is no improvement within 3 iterations. We

then follow the VNS scheme presented in Fig 2.

Fig 2. Steps of the VNS

4 Results and Analysis

To solve the linear assignment problem, the algorithm proposed by Carpaneto and

Toth (1987) was implemented which combines the Hungarian method and the

Shortest Augmenting Path method. To solve the bottleneck assignment problem,

the algorithm presented by Carraresi and Gallo (1984) was used.

All computational experiments were performed using a PC AMD Atlhon at 2.4

MHz, with 1 GB RAM running on Windows XP. The definition of Cartesian

coordinates, used to calculate the distance between classroom areas, was based on

a sketch of the institution’s campus layout with a drawing scale of 2 cm = 1 m

(1:50). The algorithms were tested with real data from three consecutive academic

years. The characteristics of the test data used are summarised in Table 2.

Table 2. Characteristics of the test instances

Year Number of

courses

Number of

rooms

Number of

groups

Number of

students

2006 47 170 3,927 15,270

2007 48 192 4,016 16,530

2008 49 192 3,978 16,320

Initialisation. Select the set of neighbourhood structures Nr (r = 1, 2, 3 and 4);

find an initial solution s; choose a stopping condition;

Repeat the following sequence until the stopping condition is met:

(1) Set r ← 1;

(2) Repeat the following steps until r = R:

(a) Generate a random solution s’ from the r
th

 neighbourhood

of s (s’ ∈ Nr(s));

(b) Local search. Find the best neighbour s” of s’ (s” ∈ Nr(s’));

(c) Move or not. If f(s’’) < f(s) then s ← s’’ and r←1;

otherwise, r←r+1;

162

Tables 3-5 present the results obtained by the proposed algorithms applied to the 3

test instances. Column Total Cost results from applying the objective function

(equation 4) defined in Section 3.3. The number of allocations which satisfied the

classroom capacity restriction is shown in the column Favourable Allocations

(FA) and the number that did not satisfy that restriction other are shown in the

column Unfavourable Allocations (UF). Column Iterations corresponds to the

number of times that each phase was executed in order to reach an improved

solution.

Table 3. Results for the test instance corresponding to year 2006

Algorithm Phase
Time

hh:mm:ss

Total

cost

FA

UF

Iterations

CAP-A

1 00:21:08 2,015,496 3,595 332 8

2 00:04:52 1,751,583 3,595 332 2

3 00:17:27 1,598,637 3,595 332 3

CAP-BA

1 00:12:18 2,632,801 3,586 341 4

2 00:07:15 2,549,259 3,587 340 2

3 00:18:05 2,507,436 3,591 336 3

CAP-VNS

Initial Solution 00:21:08 2,015,496 3,595 332 -

Local Search 00:26:02 1,731,850 3,595 332 3

Table 4. Results for the test instance corresponding to year 2007

Algorithm Phase
Time

hh:mm:ss

Total

cost

FA

UF

Iterations

CAP-A

1 00:12:10 1,979,099 3,708 308 6

2 00:08:15 1,733,254 3,708 308 3

3 00:18:41 1,581,791 3,708 308 3

CAP-BA

1 00:06:11 2,589,698 3,705 311 2

2 00:07:13 2,529,129 3,705 311 2

3 00:22:05 2,479,152 3,706 310 4

CAP-VNS

Initial Solution 00:12:10 1,979,099 3,708 308 -

Local Search 00:35:27 1,693,173 3,708 308 4

Table 5. Results for the test instance corresponding to year 2008

Algorithm Phase
Time

hh:mm:ss

Total

Cost

FA

UF

Iterations

CAP-A

1 00:11:30 1,960,146 3,677 301 6

2 00:09:17 1,697,943 3,677 301 3

3 00:17:09 1,580,312 3,677 301 3

CAP-BA

1 00:06:02 2,589,036 3,666 312 2

2 00:05:43 2,506,241 3,669 309 2

3 00:18:22 2,493,253 3,671 307 3

CAP-VNS

Initial Solution 00:11:30 1,960,146 3,677 301 -

Local Search 00:34:47 1,690,372 3,677 301 4

163

Tables 6-8 summarise the results achieved by the three algorithms proposed here

together with the solution quality of the manually constructed assignments

produced by the human planners. Besides the costs calculated using the objective

function, these tables present the sums of the distances between the assigned

rooms and the Gravitational Point of each course, measured in meters. Note that

these distances are calculated based on a sketch of the campus layout. The

minimum, maximum and average distances are also shown.

Table 6. Comparing results for the test instance corresponding to year 2006

Approach Total cost FA UA Total

distance

Minimum

Distance

Average

distance

Maximum

distance

CAP-A 1,598,637 3,595 332 432,855 0 158 1,680

CAP-BA 2,507,436 3,591 336 1,006,023 0 270 1,640

CAP-VNS 1,731,850 3,595 332 577,379 0 223 1,710

Manual 2,295,242 3,293 634 1,010,172 0 265 1,664

Table 7. Comparing results for the test instance corresponding to year 2007

Approach Total cost FA UA Total

distance

Minimum

Distance

Average

distance

Maximum

distance

CAP-A 1,581,791 3,708 308 506,620 0 172 1,762

CAP-BA 2,479,152 3,706 310 1,152,620 0 289 1,724

CAP-VNS 1,693,173 3,708 308 673,983 0 227 1,762

Manual 2,282,502 3,385 631 1,099,214 0 273 1,675

Table 8. Comparing results for the test instance corresponding to year 2008

Approach Total cost FA UA Total

distance

Minimum

distance

Average

distance

Maximum

distance

CAP-A 1,580,312 3,677 301 504,543 0 167 1,724

CAP-BA 2,493,253 3,671 307 1,149,892 0 286 1,724

CAP-VNS 1,690,372 3,677 301 673,057 0 225 1,724

Manual 2,281,593 3,348 630 1,098,053 0 271 1,675

It can be observed that the algorithms CAP-A and CAP-VNS achieved the best

results overall. By comparing these results with those obtained manually by the

institution, a very considerable improvement in the quality of the solutions can be

observed, mainly with respect to the number of unfavourable allocations (UA).

164

5 Conclusions

In this paper, we tackled a real-world classroom assignment problem and

proposed three algorithms: two iterated heuristic algorithms based on successive

resolution of (linear and bottleneck) assignment problems and one algorithm

based on VNS meta-heuristic. While the first and third algorithms try to minimise

the total distance, the second one tries to minimise the maximum distance (min-

max problem). Overall, the CAP-A algorithm performed better and reduced by

more than 50% the total distance between classrooms of the same course and it

also reduced considerably the number of unfavourable allocations when compared

to previous manual solutions.

The computational performance of the proposed algorithms was very satisfactory

regarding both solution quality and computational time. The computational time

of approximately 30 to 40 minutes is quite acceptable since constructing a manual

resolution for the problem can take days or weeks of work.

It is particularly important to note that CAP-A and CAP-BA are both

deterministic algorithms, so, given a particular input, they always give the same

solutions, while the CAP-VNS is a stochastic algorithm.

In particular, both algorithms CAP-A and CAP-BA are quite flexible with respect

to the incorporation of new constraints. The required adaptation to accommodate

new rules is only on the construction of the cost matrix for each assignment

problem, but no change is required on the heuristic algorithms. A new hard

constraint can be incorporated as an infinity cost in the cost matrix, whilst a soft

constraint would be given a finite penalty cost.

Acknowledgements

This work was partly supported by the CNPq (Brazilian National Council for

Scientific and Technological Development) and CAPES (Brazilian Ministry of

Education).

165

References

Abdennadher SM, Saft S, Will S. (2000) Classroom Assignment Using Constraint Logic

Programming. In: Proceedings of the Second International Conference and Exhibition on the

Practical Application of Constraint Technologies and Logic Programming (PACLP 2000),

Manchester.

Adriaen, M., De Causmaecker, P., Demeester, P., Vanden Berghe, G. (2006). Tackling the

University Course Timetabling Problem with an Aggregation Approach. In: Proceedings of The

6th International Conference on the Practice and Theory of Automated Timetabling (PATAT

2006), 330-335, Brno, Czech Republic.

Carpaneto, G.; Toth, P (1987). Primal-dual algorithms for the assignment problem. Discrete

Applied Mathematics, vol. 18, 137-153, North-Holland.

Carraresi, P.; Gallo, G. (1984). A Multi-level Bottleneck Assignment Approach to the Bus

Drivers’ Rostering Problem. European Journal of Operations Research, vol. 16, 163-173.

Carter, M. W.; Tovey, C. A. (1992). When is the Classroom Assignment Problem Hard?

Operations Research, vol. 40, 28-41.

Carter, M. W.; Laporte, G. (1998). Recent Developments in Practical Course Timetabling. In: The

Practice and Theory of Automated Timetabling II: Selected Papers From the 2nd International

Conference on the Practice and Theory of Automated Timetabling (PATAT 1997), LNCS 1408,

Springer, 3-19.

Dammak, A.; Elloumi, A.; Kamoun, H. (2006). Classroom Assignment for Exam Timetabling.

Advances in Engineering Software, vol. 37, no. 10, 659-666 .

Hansen, P.; Mladenovic, N. (2001). Variable Neighbourhood Search: Principles and Applications.

European Journal of Operational Research, vol. 130, no. 3, 449-467.

Martinez-Alfaro, H.; Minero, J.; Alanis, G.E.; Leal, N.A.; Avila, I.G. (1996). Using Simulated

Annealing to Solve the Classroom Assignment Problem. In: Proceedings of the 1st Joint

Conference on Intelligent Systems/ISAI/IFIS, 370-377.

Schaefer, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review, vol. 13,

87-127.

166

A Variable Neighborhood Search based Matheuristic for
Nurse Rostering Problems

Federico Della Croce · Fabio Salassa

Abstract A practical nurse rostering problem, which arises at a ward of an Italian

private hospital, is considered. In this problem, it is required each month to generate

the nursing staff shifts subject to various requirements. A matheuristic approach is

introduced, based on a set of neighborhoods searched by a commercial integer pro-

gramming solver within a defined global time limit. Generally speaking, a matheuristic

algorithm is a heuristic algorithm that uses non trivial optimization and mathematical

programming tools to explore the solutions space with the aim of analyzing large scale

neighborhoods. The solutions computed by the proposed procedure are compared to

the solutions achieved by the pure solver within the same time limit. The results show

that the proposed solution approach outperforms the solver in terms of solution quality.

Keywords Variable neighborhood search · Matheuristics · Timetabling · Nurse

Rostering Problem

1 Introduction

The paper pertains to a nurse rostering problem, which occurs at a private hospital

located in Turin, Italy. The problem consists in optimally assigning a working shift or

a day off to each nurse, on each day of a month, according to several contractual and

operational requirements. The problem belongs to the family of timetabling problems

[5], [6] and [16]. Many works have been published on the nurse rostering problem since

the pioneering works of Warner [17] and Miller [14] and the proposed approaches are

mainly based on constraint programming and metaheuristic procedures (see for in-

stance [4] and [10]). In [1], a nurse rostering problem similar to the one considered here

F. Salassa
DISPEA - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Tel.: +39 0110907206
Fax: +39 0110907299
E-mail: fabio.salassa@polito.it

F. Della Croce
DAI - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Tel.: +39 0110907059
Fax: +39 0110907099
E-mail: federico.dellacroce@polito.it

167

was tackled by means of a metaheuristic approach. In particular, in the metaheuristic

framework, a simple and effective metaheuristic for combinatorial and global optimiza-

tion, called variable neighborhood search (VNS) has been successfully applied to solve

both general mixed integer programming problems (MIPs) [15] [11] and timetabling

problems [3].

Combinatorial optimization problems, such as timetabling problems, usually may be

formulated in different ways. Mathematical programming formulations such as integer

programs are very popular, since they make possible the use of general-purpose Inte-

ger Linear Programming (ILP) solvers, independently of problem specific properties.

However, in some hard cases, for instance when the number of variables becomes too

large, solvers might not be an adequate choice [12].

Metaheuristic approaches, instead, rely on formulations adapted to be able to handle

the special concrete combinatorial optimization problems that have to be faced thus

loosing the advantage of working in a generic modelling framework, in fact, even slight

changes of the problem description can cause a complete redesign of data structures

and algorithms. Indeed, the adaptation of the approach proposed in [1], even if the

constraints set was quite similar, proved to be quite tricky. On the other hand, the

improvement of ILP solvers in the recent years have made them already competitive

(by simply adding a time limit) to metaheuristic approaches in the search of subopti-

mal solutions within limited CPU time. Further, whenever an ILP model is available,

the addition of new constraints or the modification of the objective function is often

straightforward.

Recently [9], [13] a new topic has attracted the attention of the community of re-

searchers, the so called Matheuristics. Matheuristics are heuristics algorithms made by

the inter operation of metaheuristics and mathematical programming techniques. An

essential feature is the exploitation in some part of the algorithms of features derived

from the mathematical model of the problem of interest [2].

The aim of the present work is, then, to demonstrate the applicability, presenting com-

parison results, of a VNS based matheuristic for solving hard timetabling problems.

As ILP solver we use XPRESS IVE version 1.19 from Fair Isaac Corporation.

The article is organized as follows. In Section 2 the problem is described. In Section 3

the matheuristic solution approach is described. Section 4 is devoted to computational

testing and comparison. Section 5 concludes the paper with final remarks.

2 Problem Description

The problem considered here is based on a real situation encountered in a ward of a

private hospital in Turin. At the end of each month, the nurses’ shifts for the following

month must be scheduled. The ward is made up of a given number of hired nurses,

but the timetable of these nurses is not always sufficient to cover the legal minimum of

personnel presence in every shift. For that reason the hospital management can make

use of freelance nursing staff to cope with the demand of personnel inducing however

an extra cost. The problem consists, thus, in optimally assigning a working shift or

a day off to each nurse, on each day, according to several requirements in order to

reduce the outsourced work. In the considered case all nurses have the same skills’

level except for newly recruited personnel. This issue is resolved imposing a period of

shadowing between specific nurses or setting the incompatibility in the same shift for

specific workers (the newly recruited nurses).

168

Table 1 Shift types and demand

Demand

Shift type Mon Tue Wed Thu Fri Sat Sun

Morning 3 3 3 3 3 3 3
Afternoon 3 3 3 3 3 3 3
Night 2 2 2 2 2 2 2

In that hospital, the nurses timetabling was generated manually every month by the

hospital management, but it was too time consuming leading often to unfair timetables

and to an overuse of freelance staff. Indeed the hospital management wanted to try

other approaches to overcome those issues and decided then to test an automated

timetabling generation procedure in order to better manage the hired personnel and

to reduce, as much as possible, the number of outsourced shifts. We were then asked

to realize a tool to cope with these requirements.

2.1 Types of shifts

There are five different kinds of shifts considered in the hospital: three of them are

working shifts and two are off-duty shifts. During the last week of each month, the

nurses can provide to the management their requests of off-duty shifts. In general,

no request of specific working shifts are accepted by the hospital management. The

working shifts, all lasting 8 hours, are:

– Morning shift (M)

– Afternoon shift (A)

– Night shift (N)

The off-duty shifts are:

– Rest (R)

– Off (O)

The difference between Rest and Off shifts is basically that a number of Rest shifts

can be both requested by staff and assigned by the management, Off shifts can only

be requested by the nursing hired staff.

2.2 Constraints Description

Hereafter is presented the complete list of constraints integrated in the support tool

realized for the hospital.

(C1) The number of R shifts per month must be equal to a predefined value provided

by the management.

(C2) The nurses’ requirements related to O shifts and R shifts must be satisfied.

(C3) A nurse cannot work consecutively for more than D days.

(C4) Specific shifts types must be allocated in sets of minimum Lk and maximum Sk

consecutive days for each shift type k.

169

(C5) After a set of N shifts, there must be a given number E of R shifts.

(C6) An interval of at least P days (working or not) must occur between two N shifts

sets.

(C7) A minimum number of nurses must be guaranteed for each working shift. This

parameter, provided by the management, may differ from shift to shift and from

day to day. An example of personnel demand is summarized in Table 1.

(C8) Forbidden sequences of shifts (e.g. N-R-N, N-M, N-A, N-O, etc.).

(C9) A balanced assignment of M, A and N shifts must be guaranteed among the

nurses.

(C10) Working shifts and days off during weekends mus be evenly assigned.

(C11) At least two off-duty weekends for each nurse/per month.

(C12) All constraints must be respected considering the last days of the previous

month.

(C13) Some nurses must (not) work together in particular set of days and for particular

shifts (shadowing/incompatibility period).

The considered problem can be easily formulated as an ILP model. Indeed, with

n nurses and m days in a month, it is sufficient to introduce a set of 0/1 variables

denoted xi,j,k (i = 1, ...n, j = 1, ...m, k = 1, ...5) indicating if nurse i is assigned to

shift k (k = 1 : morning, k = 2 : afternoon, k = 3 : night, k = 4 : rest, k = 5 : off-duty)

on day j. Correspondingly, an integer variable yj,k is introduced indicating the number

of freelance nurses used on working shift k on day j. The objective function is then

min

m∑
j=1

3∑
k=1

yj,k.

We do not present here the complete ILP formulation (see [7] for details) but just

present as an example the formulation of constraint C7 related to the morning shift. If

we denote by Mj the requirement of nurses for the morning shift of day j, we have

n∑
i=1

xi,j,1 + yj,1 ≥Mj ∀j = 1, ...m.

For the considered hospital ward, we have n = 10. Correspondingly, there are

approximately 90 integer variables yj,k and 1200 binary variables xi,j,k (the off-duty

shifts are pre-determined). Also, there are approximately 2000 constraints.

3 The VNS Matheuristic Based Approach

The pure ILP model solved by means of the ILP solver (XPRESS) already gave satis-

factory results so that the hospital management decided after the very first results to

stop creating nurse timetables manually, considering the results of the ILP solver much

better in terms of required outsource shifts (that does not consume personnel time with

respect to the generation of the timetable). However, the hospital management wanted

also to generate more than one timetable, for the ward under analysis, considering, for

example, different weekly demands of nurses.

During the testing of that feature for the support tool we found that, sometimes, the

considered ILP solver was not performing sufficiently well as for some problems the

170

gap between upper bound (the feasible solution obtained within the considered time

limit) and lower bound (the bound given by the solver at the end of the considered

time limit) was significant. Hence, a new matheuristic approach based on VNS was

proposed to be compared to the ILP solver.

3.1 Description of the matheuristic approach

The core of our approach is made by two further constraints: the first one states that

the number of variables xi,j,k that can change their value from the current solution is

less than a parameter value K, that is the neighborhood size is controlled by parameter

K. Indeed, K is the maximum Hamming distance between the current solution and all

feasible solutions of the neighborhood, or, in other words, K is the maximum number

of changing shifts in the new solution with respect to the incumbent solution.

The second constraint states the structure of the neighborhoods. In particular we have

defined 12 types of neighborhoods, for the considered problem, each of different size.

For each of these subproblems, the ILP solver used as a black box is applied searching

for the optimal solution (limiting though the search by means of a given time limit).

In order to escape from possible local minima, we integrate in our approach, as an

additional feature, the use of neighborhhod structures not only limited by the value K

but also by the value 2*K, expanding, in that way, the search space thus generating

globally 24 different neighborhoods.

We have used the variable fixing method for generating our neighborhoods defining

NJg,T (x) as the structure of neighbors of x.

In particular g = 1..3 and J = 1..30 days of the current month where g = 1 represents

the first 10 days of the month, g = 2 the second decade and g = 3 the last ten days.

T = 1..5 represents the shift types and in our matheuristic are taken into account with

the sequence order:

– fix all T shifts of all i nurses for a period Jg of days and K value

– fix all T shifts of all i nurses for a period Jg of days and K2 value

– fix T = 1 shift of all i nurses for a period Jg of days and K value

– fix T = 2 shift of all i nurses for a period Jg of days and K value

– fix T = 3 shift of all i nurses for a period Jg of days and K value

– fix T = 1 shift of all i nurses for a period Jg of days and K2 value

– fix T = 2 shift of all i nurses for a period Jg of days and K2 value

– fix T = 3 shift of all i nurses for a period Jg of days and K2 value

We decided not to include the off-duty shifts because they are mainly requested by

nurses so a priori fixed in the model.

The mixing of these two constraints generates a sequence of increasing size neighbor-

hoods at each iteration. Note that after adding one (or several) constraints the resulting

MIP has the same structure as the original MIP but a smaller solution space.

The strength of a matheuristic procedure can be seen also in another relevant aspect:

the effort spent on the generation of different neighborhoods and on the analysis of their

quality it is noticeably lower than the majority of pure heuristics or metaheurisics ap-

proaches as we had to add two constraints to the original model to implement our

neighborhood structure. Hereafter is the pseudo code of our matheuristic procedure.

Pseudocode

171

Begin

(1) choose an initial feasible solution z

(2) iter:=1

(3) while iter <=24 do

(4) |z - x|<=K(iter)

(5) set the variables belonging to N(iter) to their corresponding values in z

(6) solve subproblems within local time limit

(7) if f(x) < f(z) then do

(8) update solution

(9) iter:=1

(10) else do

(11) iter:=iter+1

(12) end if

(13) if the overall CPU time is greater than 3600 s. or iter>24 then

(14) EXIT

(15) end if

(16) end-do

End

3.2 Implementation

It is important to underline that the difference between the current solution and the

incumbent solution, as our decision variables are binary, corresponds to the Hamming

distance between two strings of [0,1] values and, in our approach, that distance must

be lower than K. It is possible to model this feature in a very compact way by taking

advantage of the linear programming formulation. For instance, by denoting with zi,j,k
the value of the xi,j,k variables in the incumbent solution, the Hamming distance

constraint can be modeled as follows.

n∑
i=1

m∑
j=1

5∑
k=1

zi,j,k(1− xi,j,k) + (1− zi,j,k)xi,j,k ≤ K.

3.3 Parameters Settings

The parameters present in our matheuristic are the value K, and time T for each

iteration. The K values used in all our tests are K1= 50 and K2=100. Even though

these values of K could appear very large, they were the ones that gave best results in

preliminary testing. This can be explained by the strong structure of the ILP models

related to timetabling problems. The global time stopping criterion, as told before,

has been set to 3600 seconds which has been considered by hospital management a

reasonable time window to wait for solutions of hard instances. In order to evaluate

the quality of our approach, we decided to generate a number of instances similar to

the real ones. We also decided to generate different size instances for testing in order to

widen the possibilities of application of the approach. For that reason we used different

time limit at each iteration with relation to the different sizes of the models.

1. Instances with 10 hired nurses - time limit = 60 seconds for each iteration

172

2. Instances with 20 hired nurses - time limit = 120 seconds for each iteration

3. Instances with 30 hired nurses - time limit = 240 seconds for each iteration

3.4 The Instances Generation Process

This paragraph presents a short description of the rules used to randomly generate

instances1. The random generation concerned:

1. the last 5 days of the previous month, respecting all constraints, i.e. without any

schedule violation;

2. the requests of R shifts and O shifts of the current month are generated nurse by

nurse: for each nurse the requests are drawn from a uniform distribution according

to the following probabilities:

– 60% no requests

– 5% 15 days of O shifts

– 10% seven days of O shifts

– 20% three days of R shifts

– 50% three single R shifts

– 50% two consecutive R shifts and a single R shift.

– 5% two consecutive R shifts

3. shadowing or incompatibility constraints (from 0 to 4 w.r.t. nurses number);

4. different nurses demand structures (3-3-2; 4-3-2; 3-3-3; 3-2-1 mixing also weekday

and weekend demands) multiplied by the size of the instances (e.g. 30 nurses,

request 9-9-6).

4 Computational results

The proposed procedure was tested on 20 instances generated as mentioned before. The

approach was implemented directly in XPRESS and tested on a Pentium IV Quad Core

at 2.4 GHz. The results and the comparison with XPRESS with the time limit of 60

minutes are presented in Table 2. In the table, the first column depicts the instance

size and name, the second column depicts the lower bound computed by XPRESS after

60 minutes of CPU time and the third and fourth column indicate the cost function

values (the total number of outsourced shifts) of the solutions computed by MathVNS

and the pure XPRESS solver respectively within a time limit of 60 minutes.

From this table we notice that the MathVNS procedure reaches solutions that are

better than or equal to those of the pure Xpress solver in all cases but one. These

results indicate that the proposed MathVNS approach is a viable option in handling

nurses rostering problems.

5 Concluding Remarks

A VNS based matheuristic approach was proposed for a real life nurse rostering prob-

lem. The local search steps work on a smaller solution space specifying that at most

1 Instances are available upon request from authors

173

Table 2 Comparing MathVNS vs XPRESS

Instance size/name LP MathVNS (1h) Xpress (1h)
10n*1 43 54 54
10n*2 71 71 72
10n*3 9 9 9
10n*4 21 27 27
10n*5 72 80 80
10n*6 44 53 53
10n*7 24 28 30
10n*8 40 43 46
10n*9 21 26 27
10n*10 74 81 82
20n*1 51 68 71
20n*2 141 141 141
20n*3 56 64 67
20n*4 88 102 108
20n*5 35 46 50
30n*1 94 103 107
30n*2 139 158 161
30n*3 73 83 85
30n*4 35 45 45
30n*5 135 161 160

K decision variables can be complemented and fixing iteratively subsets of them. To

do so we have exploited the strength of the mathematical programming formulation

making use of a compact modellization of the Hamming distance between two strings

and drawing advantage from the capability of generating and analyzing different neigh-

borhoods’ structures and sizes in a very short time. The proposed procedure shows a

very good behavior in terms of solutions quality with CPU time limit of 60 minutes

as presented by the achieved results. A software has been developed which is currently

under testing in the hospital ward. This software can handle different nurse planning

scenarios with different personnel requirements and different nurses’ requests at the

same time.

References

1. Bellanti F., Carello G., Della Croce F., Tadei R., A greedy-based neighborhood search
approach to a nurse rostering problem, European Journal of Operational Research, 153 ,
pp. 28-40, (2004).

2. Boschetti M.A., Maniezzo V., Roffilli M., Bolufe Rohler A., Hybrid Metaheuristics, 6th
International Workshop, pp., 171-177, Spriger,(2009).

3. Burke E., De Causmaecker P., Petrovic S., Vanden Berghe G., Variable neighborhood
search for nurse rostering problems. In Metaheuristics: Computer Decision-Making, Ap-
plied Optimization, 86, Kluwer, pp.153-172, (2004).

4. Burke E. K., De Causmaecker P., Vanden Berghe G., Van Landeghem H., The State of
the Art of Nurse Rostering, Journal of Scheduling, 7, pp. 441-499,(2004).

5. De Werra D., An introduction to timetabling, European Journal of Operational Research,
19, pp. 151-162, (1985).

6. De Werra D., The combinatorics of timetabling, European Journal of Operational Re-
search, 96, pp. 504-513, (1997).

7. Della Croce F., Salassa F., A VNS based Matheuristic Procedure for Nurse Rostering
Problem, Internal Report, D.A.I. Politecnico di Torino, (2009).

8. Ernst A.T., Jiang. H., Krishnamoorthy M., Sier D., Staff scheduling and rostering: A
review of applications, methods and models, European Journal of Operational Research,
153, pp. 3-27, (2004).

174

9. Fischetti M., Lodi A., Local Branching, Mathematical Programming B, 98, 23-47, (2003).
10. Grobner M., Wilke P., Buttcher S., A Standard Framework for Timetabling Problems in

Practice and Theory of Automated Timetabling IV, pp. 24-38, Springer, (2003).
11. Hansen P., Mladenovic N., Variable neighborhood search: Principles and applications,

European Journal of Operational Research, 130, pp. 449-467, (2001).
12. Hansen P., Mladenovic N., Urosevic D., Variable neighborhood search and local branching,

Computers and Operations Research, 33, pp. 3034-3045, (2006).
13. Maniezzo V., Stutzle T., Voss S., Matheuristics: Hybridizing Metaheuristics and Mathe-

matical Programming, Annals of Information Systems, 10, Springer,(2009)
14. Miller H.E., Nurse scheduling using mathematical programming, Operations Research, 24,

pp. 857-870, (1976).
15. Mladenovic N., Hansen P., Variable neighborhood search, Computers and Operations Re-

search, 24, pp. 1097-1100, (1997).
16. Nanda R., Browner J., Introduction to Employee Scheduling, Van Nostrand Reinhold,

New York, (1992).
17. Warner D.M., Scheduling nursing personnel according to nursing preference: A mathemat-

ical programming approach, Operations Research, 24, pp. 842-856, (1976).

175

On-line timetabling software

Florent Devin · Yannick Le Nir

Abstract Timetable design is a really important and difficult task. Timetable hand-

building consumes a lot of time. In this paper we address two main difficulties of

automatic timetabling, that is data acquisition and timetable computation. The former

task is made using new advanced technologies in the area of Rich Internet Application.

This offers very powerful, and easy to use, interfaces to acquire data. The latter task

is the computation of the timetable itself. We use the constraint programming and one

implementation in swi-prolog to compute the timetable. Finally we show some results

of our application on a real case study.

Keywords Timetabling · CSP · Prolog · Java framework · ZK · Google API

1 Introduction

In this paper we present a timetabling software. Timetabling application can be split

into two different parts, the design of a valid solution and the data acquisition. Many

operational software need to hand-build a timetable. Computing helps are only given

to verify constraints and to acquire input data.

To acquire data, we create an RIA1. This choice allows us to provide an original

solution for timetabling. First we decide to use web services to allow us using a par-

ticular algorithm to solve the problem. Moreover by using web services we are able to

interact with Google Calendar. At last, this use allows the software to be built in our

IT system. The figure 1 shows the general architecture of our software. This distributed

approach, and using an RIA allows us to delegate data acquisition as we will see.

Florent Devin · Yannick Le Nir
EISTI, 26 avenue des Lilas, 64062 Pau Cedex 9
Tel.: +33 5 59 14 85 34
Fax: +33 5 59 14 85 31
E-mail: florent.devin@eisti.fr

E-mail: yannick.lenir@eisti.fr

1 Rich Internet Application

176

Fig. 1 General architecture system

The design part, in our solution, is made with an automated task as the solution

of a CSP2. Such approach based on CSP has already been studied for examination

and lectures timetabling in school and university (Abdennadher et al 2007)(Abbas

and Tsang 2001). We present in the last sections of this paper an instantiation of our

model in a similar way (university timetabling) with some computational results under

global parameters variation. Other computational models can be used, as mentioned

in (Qu et al 2009). We decide to choose CSP, that is easy to use and very powerful for

timetabling applications (Wallace 1996), especially in our general architecture where

compatibility and performance issues are not problematic.

2 Definitions

In this section, we introduce some definitions that we will use to present our solution

for an on-line timetabling software in next sections.

The first notions we have to define are timetable and time slot. The timetable is

defined as a consecutive list of time intervals. A time slot is the minimal time interval

we can find on the timetable. Its duration is fixed and then it is only specified with its

starting time.

Then, we have to define the resources we need to access, that is in our case the

resources that describe the context of the timetable. It is specific to every timetable

but belongs to one of the following categories:

2 Constraint Satisfaction Problem

177

– main resources: elements to be planed in the timetable (lectures, talks, meetings,

. . .),

– static resources: elements that are already linked to main resources before the

computation (peoples, holidays, . . .),

– dynamic resources: elements that will be linked to main resources by the compu-

tation (rooms, materials, . . .).

All these resources are the descriptive resources of the timetable. In our application,

they are collected in a relational database.

Now, we can define the availability of the different descriptive resources of the

database. The timetable is made of time slots, and then an availability can be associated

to each resource as a starting time slot and an ending time slot. We can also define

unavailability as the complementary of an availability. The (un)availabilities will be

considered as constraints in the following, mainly in the section on CSP.

The last notion we have to define is the timetabling. It consists to an assignment

of all the main resources of the database on the timetable for a specific period, with

respect of all constraints on descriptive resources.

Some more specific definitions will follow in the next sections. However, these

specifics terms are not a prerequisite for understanding.

3 Rich Internet Application for Timetabling

3.1 Motivation for rich interface

Whilst there is no need to argue for a tool for timetabling, we have to discuss why we

have to create a rich interface. In an ideal world, all constraints are known long before

they occur. In this same world, the constraints do not often change. But this never

happens in reality, where very often constraints are modified. There is a real need to

change the constraints, whatever the real motivation; for example, we need to provide

a tool for specifying unavailability3.

In this case, we have two choices:

– A centric application: This means that there is only one person who creates or edits

the timetable. This amounts to saying also, that only one person takes responsibility

for validating or invalidating the constraint. But this step is a little tricky, because

you must contact the person who has created the constraint.

– A distributed application: That means you delegate checking constraints to the

user.

The former approach has several disadvantages. Such as the problem of knowing

the validity of the constraints. The latter approach allows all users to input or delete

their constraints. This is a real advantage for the distributed approach.

Once we have chosen a distributed approach, again there are two choices:

– a classical third party application;

– a Rich Internet Application.

Rich Internet Application (RIA) does not require any installation on the client side.

Also, neither a particular operating system nor a particular software. RIA allows users

3 A constraint for a contributor can be an unavailability

178

to use the application without any requirement. Nevertheless using an RIA implies

that you have to look after the security of your software(Lehtinen 2009), mainly if this

one is accessible from the Internet.

3.2 Implementation

ZK is an open-source Ajax Web application framework written in Java(Seiler 2009).

It uses the server centric approach(Yeh 2007) so that the communication between

components is done by the engine. Security process is involve, synchronisation with a

database is easier. In the other hand as ZK can use Java, we are able to use Hibernate

framework. Also ZK provide a framework for mobiles(Yeh 2007). Even if we do not,

for instance, provide a mobile interface this can be very useful for several contributor.

Timetabling involve a lot of contributors. Some of them will have some constraints

to input, modify or delete, others will have to create the planning, etc. All of them need

to use the RIA. In addition, we want to keep the job process in a single location. This

can be done if you use a framework that keeps it on the server. For all these reasons,

and (Yeh 2006), we choose to use the ZK framework4.

3.3 Presentation

The entry point is the RIA. Currently in our application, users5 have different roles:

– User: a contributor who is allowed to submit some constraints on his own timetable

and view all timetables (rooms, class, users, etc).

– Admin : someone entitled to accept or refuse the constraints created by a user. The

admin can also generate a timetable and export it into all contributors’ Google

Calendar6, if they want to.

3.3.1 User

Fig. 2 User welcome screen

At present users have two options to enter their constraints: either through our

application or through Google Calendar application. If they choose the second option,

4 ZK framework : http://zkoss.org
5 users : someone who have to use our application. We use the term of contributor as well.
6 We will see the usage of Google Calendar, later on.

179

Fig. 3 Admin welcome screen

they have either to provide to the administrator a link to their Google Calendar, or to

log in into our application once to save this URL. Once this is done, the users may put

their constraints in their own calendar. Later on, the admin will validate or invalidate

users’ constraints. Validation by the admin is required by the policy of our institution

and to avoid any abuse. To allow the admin to make better decisions, in case he has

to invalidate a constraint, we plan to use a scale for fixing the degree of unavailability.

As soon as the admin creates the timetable, the corresponding time slot will appear in

all users’ calendar. The same operation can be done in our application. There is also

an interface to create, modify or delete any users’ constraints as is shown in figure 6.

3.3.2 Admin

The admin work load is significantly reduce thanks to our application.

Creating a timetable by hand is an extremely time consuming tasks, which might

take up to 3 days a week. This is a huge task, because of many reasons, for example:

A videoconferencing can be used for teaching. This is a really strong constraint because

it occurs in two different places. On another hand, in our institution a school term is

about 16 weeks long, during which many courses last for about 20. Each course has

different contributors and durations in a week, and in a period. This involves creating

a different timetable for almost every week. On top of this, contributors’ constraints

may change according to their other activities, rendezvous, and so on.

Fig. 4 Lecture time-line

180

By using our application the task of the admin comes down to putting all lectures in

a time-line, as is shown in figure 4. By doing this, the admin also specifies the number

of courses per week, number of time slots devoted to practice, . . . This simply task

takes roughly one hour per term. Then he has to specify which contributor will give

what lecture, and also which features are required, and for which class the lecture is

addressing as is show in figure 5. This step may take up to four hours once. This is

what we can call the initialisation phase.

Fig. 5 Courses, features, contributor association

Now we have all the elements to compute an intermediate solution. The result is

a timetable which does not take into consideration the users’ constraints. If no users’

constraint has been specified, this is a valid timetable. Otherwise the admin has to

validate or invalidate users’ constraints. To simplify this step, our application presents

two different screens.

One is textual screen, figure 6(a), and another one is a dashboard, figure 6(b),

which partitions all constraints into three categories:

– rooms (un)availability constraints;

181

(a) Constraints textual input screen shot (b) Constraints dashboard screen shot

Fig. 6 Constraints input

– contributors’ constraints, as we have seen before;

– free session, holidays, which are used to set some empty time slots for student

activities, or holidays.

For each category, the dash board uses a color code to show the state of the constraint.

There are three possibilities:

– Green : the constraint has already been validated. This usually means a recurrent

constraint. The admin can still invalidate it.

– Orange : the constraint has never been validated. The admin must validate it if he

wants to take it into account.

– Red : the constraint has been validated, but the contributor has changed it after-

wards.

Another possibility is to fix a time slot. This will later be taken by the computation

as a hard constraint. Eventually, the admin can create a real timetable, by invoking

the computational service as mentioned before. Figure 7 shows a computed timetable

involving all the required constraints.

4 Distributed approach

4.1 Motivation for using web services

Creating a new application entails deploying it in an existing IT system. In this system,

there is always a user identification process. This process can be used as a service.

That was the first reason why we decided to use web services; on the other hand, we

want to create an RIA, but we have to compute a timetable. To solve the timetabling

problem, as mentioned above, a backtrack search algorithm is used. This algorithm

was implemented in Prolog. This implies that the RIA, and the Prolog program have

to interact. We choose to use the web services technology for doing this.

182

(a) A compute timetable

(b) A partial zoom of a timetable

Fig. 7 Timetable

In addition, some contributors may wish to use their own calendar. In our insti-

tution there is no shared calendar, but we plan to use Google Calendar soon, which

183

many contributors are already using.. So we decided to allow the contributors to use

their own calendar. This implies that the contributors’ constraints are generated in two

different ways. Some can simply put their constraints on Google Calendar, the others

may use our application once again; we need web services7 to import and export some

slots. Some others reasons to use web services will be explained later.

4.2 Export and import from Google Calendar

4.2.1 Google API

If there are two main components that access the database, 1, there is one which does

not access the database. In our application, we have a component that can export from

or import to a Google Calendar. This component does not directly interact with the

database, but it can modify the database through the RIA. Google releases an API

to use a lot of their components. This API allows our contributor to use their own

calendar.

4.2.2 Constraints acquisition

A major feature of our application is the acquisition of the users’ constraints. This can

be done by the RIA, or by putting the constraints in the Google Calendar. The only

restriction is to have a particular calendar, which is used to show unavailability. This

calendar will be used later to input the compute time slot. The contributor has to put

his constraints on Google calendar. He can use all of the Google features. These con-

straints will be validated by the admin. When the admin checks the users’ constraints,

he has the choice to validate or to invalidate it. Both of the choices will inform the user

by putting a message in the appropriate time slot.

To perform this kind of operation, the contributor has to allow our application to

modify his own calendar. Ideally, the contributor creates a particular calendar, and

uses this one to manage his professional time slot.

4.2.3 Timetable visualisation

When we have full access to a contributor’s calendar, we are able to create a full

timetable. For instance, we have created a specific user. This user has several calendars,

one for each room, one for each class, and possibly one for each contributor. This allows

when needed, to visualize all timetables with all possible views. Of course, the compute

timetable can only be viewed by classes, but we provide any possible view.

As the contributor has a Google calendar, his own timetable is created on it. This

allows a convenient view for all who need it.

7 As Google calendar is accessible via web services.

184

5 Database modeling for Timetabling

5.1 Required resources for timetabling

The main goal of timetable generation is to compute time slots from descriptive re-

sources. Such resources are needed to provide the context model we want to use. For

example, to compute the timetabling of lectures, we need to know all information

dealing with lectures such as:

– who will follow this lecture

– who will teach this lecture

– how long is this lecture

– which material is needed

Less specifically, we can split such information in two distinct categories: inner and

outer properties. Inner properties deal with information directly linked to lectures (du-

ration, starting time, fixed time). Outer properties deal with information linked to

external resources (people, materials, calendar). Therefore, the global data architec-

ture is made of resources associated to time values. We can assume that time values

associated to each resource contain an interval of availabilities. Then, the database

should contain tables for each type of resource and at least a field for its availability.

Therefore, to compute a time slot associated to a main resource, we then first have to

collect all the associated availabilities that can be found in the records of the associated

resources. Without loss of generality, we can assume that in this particular case, the

values that we have to compute (time slots), can be represented by integers correspond-

ing to an interval of times between 1 and N , where N depends on the number of time

slots of the timetable. This value can change with the granularity of the timetabling,

that is the difference between two consecutive time slots. With this modeling, we can

transform our problem in a constraint satisfaction problem on finite domains (Apt and

Zoeteweij 2007), what is detailed in section 7.

6 Database implementation

6.1 Motivation to use a central database

Once we have all constraints, we need to compute a timetable which complies with all

of them. We need to save these constraints somewhere. This can be done by using a

database, XML or anything that stores data. As the computation is done by Prolog,

we have to provide an access to this data.

A central point to notice is that our application use the web services to commu-

nicate. This means that you design several small applications and assemble them to

make a bigger one. The communication between each part of the application has to

send or receive some data. Possibly we could use a data feed. It is really simple to

send the data to the computational part, and it is also as simple to receive the result.

But for providing the users with an interface, we have to keep the generated data.

Also, we have to keep the users’ entries. That means that we need something to save

the data. The best solution for us was to use a database. Indicating this has changed

the approach of our application. We choose to put the database at the center of the

application.

185

Also, using a central database allows the RIA to modify data, while Prolog is

computing a timetable. Why can this be done ? The database itself prevents multiple

modification on the same data. Therefore once Prolog has gathered the data to compute

the timetable, they are not missing anymore, while modifying another data. As the

computation is done by invoking a web service, we can focus the computation on a

particular week, and then begin to modify this week. In fact, the computation accesses

the data to get all the constraints in one shot, then computes the timetable and then

commits the result to the database. As a web service is an asynchronous method, we

can run the computation, and leave it. As the same time you may modify the data you

need. But if you want this new data to be considered, you have to rerun the process.

On the other side, we have the RIA that has to use the database. Since ZK frame-

work is a java framework, we can use Hibernate tools to do the mapping from database

to objects. By using this technology, we can save time(Minter and Linwood 2006) when

creating the RIA. It also provides us with a way to automatically create an RIA for a

CSP.

6.2 Shared Database for asynchronous communication

Currently, our application is made up of several black boxes. Each of these has to

access and modify the database. For now, there are two main components which use

the database : the RIA, and the computational program. The benefits of doing this is

that we can keep running the service at all times. There is no need to run all parts of

our application for it to work. You can use only the RIA to update the data, or use

only the computed part to create a timetable.

We use a web service to order the computational part to run. Whilst the web service

allows us to mix Java and Prolog in one application, it has some disadvantages too.

Among them, there is the timeout problem. This problem can occur at various times,

depending on the system, the network . . . Again using a central database helps us to

resolve this problem. Thus, we communicate via the database, when the RIA asks

to the computational part, this simply returns an acknowledgment message. Then,

later the RIA will check the database to see if the computational program has finished

computing the timetable. This approach has several advantages. One of them is that we

can use the RIA without waiting for the end of the computational timetable. Another

one is that the computational program can put some statistics in the database . The

RIA just has to query the database. Then we can create a report of the timetabling.

To simplify the work both of the component use an ODBC to interact with the

database. For Prolog we use a classical ODBC, and for ZK we use hibernate. Using the

ODBC allows us to change quite dynamically the database server. It also provides us

with a convenient way to access to the data. We do not have to consider the multiple

access. This job is done by the ODBC. We can have concurrent access, the processing

is solved by the database itself.

In this section, we now explain how we can make the design part of timetabling using

CSP on finite domain. We first define CSP and then formulate timetabling problem in

this context. Finally we give an example of the use of our model with an instantiation in

real case of university timetabling from which we explain some computational results.

186

7 CSP on finite domain

7.1 Definitions

A constraint satisfaction problem (CSP) is modeled with a triple P = (X,D,C) where

X = {X1, · · · , Xn} is a finite set of variables to assign, D is the domain function of

each variable, that is (D(Xi)) contains all the possibles values of variables. From this

point forward, we will consider to finite domains. The last element of the triple P is a

finite set of constraints C = {C1, · · · , Cm}. A constraint is a relation between sub-sets

of variables W ⊆ X, and a sub-set of values T ⊆ DW . A mapping is a set of pairs

(variable-value): A = {(Xj ← vj)} with Xj ∈ X and vj ∈ D(Xj). A mapping is total

if for each variable there is a value assigned. It is valid with C if every relation of Ci

is true for all variables in A. A solution to a CSP is a total and valid mapping.

7.2 Modeling of Timetabling in CSP

With this data description and computational model, we can describe the timetabling

problem in CSP as follow:

– X = {X1, · · · , Xn} is the finite set of time slots we have to assign to entities. Xj

is the starting time of jth entity. The number of entities (n) is obtained from the

database.

– D(Xi) is the interval of possible values for the ith entity. It depends on the avail-

ability of the entity, that is also obtained from the database.

– C = {C1, · · · , Cm} is the set of all constraints on variables and can be split to the

following categories :

– scattering constraint checks that among all pairs of distinct variables from a

subset S ∈ X, there is a break of at least ld:

scattering(S, ld) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi 6= Xj)) ⇒ ((Xj >

(Xi + di + ld)) ∨ (Xi > (Xj + dj + ld)))

where di is the duration of the ith entity

– overlapping constraint checks that among all pairs of distinct variables from a

subset S ∈ X, there is an overlap if we want a break of at least ld:

overlapping(S, ld) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi 6= Xj)) ⇒ ((Xi <

Xj < (Xi + di + ld)) ∨ (Xj < Xi < (Xj + dj + ld)))

– relation constraint checks that among variables of all couples from a subset

P ∈ X2, there is a relation r:

relation(P, r) ≡ ∀Xi∀Xj((Xi, Xj) ∈ P)⇒ r(Xi, Xj)

– separation constraint checks that around a specific value,vb, there is a break of

at least length lb between all pairs of variables from a subset S ∈ X:

separation(S, vb, lb) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi < vb) ∧ (Xj >

vb))⇒ (Xj > (Xi + di + lb)).

Therefore computing time slots consists of four consecutive steps:

1. Requests:

Extraction from the database of all the different entities we need to apply con-

straints and their availabilities. We can build the X part of the CSP modeling.

187

2. Domains:

Affectation of interval values to the variables from X, that is the D part of the

CSP modeling.

3. Constraints:

Application of the different constraints to each group of entities. We build the C

part of the CSP modeling for timetabling.

4. Computation:

Computing times slots for each entity, as a solution of the obtained CSP problem

in the two previous step.

8 Prolog implementation

Our application is built upon a SOA architecture. The CSP part is implemented in swi-

prolog and communicates with the RIA part using Web services and with the database

using classic ODBC. We use the clpfd library of swi-prolog to implement the CSP.

This library deals with finite domain, thus we can compute time slots as consecutive

integers on the interval {i1 · · · , in}, where i1 and in are the first and last available time

slots of the timetabling period.

We can express all the constraints in this library using arithmetic or domain con-

straints and then apply the ”labeling” predicate to obtain a solution to the CSP. This

implementation follow the classical model of constraint programming (Jaffar and Ma-

her 1994)(Frühwirth and Abdennadher 2003)

9 Model instantiation

9.1 A concrete example for lectures timetabling

Finally, we end this section with an application of our model to the generation of

lectures in a university U during a week S. The resources are the following:

– lectures and their properties (duration, type of classroom required, week, teachers,

groups of students),

– teachers and their availabilities,

– groups of students and their size,

– type of classrooms including their size and equipment.

9.2 Requests

In the first step of the computation, in this example, the resources we need to collect

to apply constraints to, are the following:

– general parameters of the system:

– list of time slots: lts(U,S)

– list of students groups: lg(U,S)

– list of teachers: lt(U, S)

– list of type of classrooms: lc(U, S)

– list of classrooms of a specific type C: lct(C)

188

– lectures lists:

– list of lectures for a specific students group G: llg(G)

– for a given group G, the list of pairs of lectures such that first one has to be

given before the second one: lpl(G)

– list of lectures for a specific teacher T : llt(T)

– list of lectures with the specific classroom type C: llc(C)

– availabilities list:

– list of availabilities for a specific teacher T : lat(T)

– list of availabilities for a specific students group G: lag(G)

9.3 Domains

In the second step, we assigned interval values to all variables (lectures):

– lectures are assigned to time slots:

∀G(G ∈ lg(U,S))⇒ (llg(G) ∈ lts(U,S))

– teacher availabilities:

∀T (T ∈ lt(U, S))⇒ (llt(T) ∈ lat(T))

– group availabilities:

∀G(G ∈ lg(U,S))⇒ (llg(G) ∈ lag(G))

9.4 Constraints

The third step of the computation is now an instantiation of constraints schemes 7.2:

– lesson lectures are always take place before practice lectures for a specific group:

∀G ∈ lg(U,S), relation(lpl(G),<)

– lunch break of at least duration d around time t for a specific group:

∀G ∈ lg(U,S), separation(llg(G), d, t)

– break of at least duration d between two lectures of a specific group:

∀G ∈ lg(U,S), scattering(llg(G), d)

– break of at least duration d between two lectures of a specific teacher:

∀T ∈ lt(U,S), scattering(llt(T), d)

– the number of overlapped lectures with classroom type C is less or equal than the

number of classroom of type C:

∀C,∀T, ((C ∈ lc(U, S)) ∧ (T ⊆ llc(C)) ∧ overlapping(T, lb))⇒ (|T | ≤ |lct(C)|)

10 Results

In this part we present results on computation time of the CSP part of the application

with different values for the following parameters:

– time slot number per day (from 120 to 140)

– break between two consecutive lectures (5, 10 or 15 minutes)

– lunch break (90 or 120 minutes)

189

(a) Lunch break: 90 minutes

(b) Lunch break: 120 minutes

Fig. 8 Computation times

190

The computation was done for 3 different classes (C1, C2 and C3). C1 was made

of two subgroups (C1a, C1b), as well as C3 (C3a, C3b). C1 consumes 590 time slots.

Among them 36 was shared between the two subgroups. C1a and C1b got 282 different

time slots. C2 only consumes 372. Finally C3 had 84 shared time slots, and each

subgroup was using 192.

There were only one global constraint : “Thursday afternoon is devoted to sport,

so we do not want to have courses on this particular period”.

The computation was launched once. In figure 8 the 50 seconds value, means that

the algorithm was not able to find an answer in the accorded time. It does not means

obligatory that there is no solution. Running more than once the computation does

not change the look of the results neither the interpretation that we can make on it.

There are some interesting things to notice :

– In the general case, 5 minutes break is longer to compute than 15 minutes break.

This can be explained by the fact that the definition domain is shorter for 15

minutes break than for 5 minutes break. This means that there is less case to test.

You can find this case in figure 8(a) from 123 slots per day, and in figure 8(b) from

129 slots.

– In the specific case, we can find a solution for 5 minutes break, but not for 15

minutes break. This means that if you want a solution you have to less restrain the

domain. You can find this case in figure 8(b) before 126.

– If we are not in the two previous case, the results may be inverted. We can explain

this. There is some solution, but they are more frequent with 5 minutes break,

than with 15. So the algorithm is able to find one quicker for 5 than for 15 minutes

break.

11 Conclusion

In this paper we have presented a modern approach to timetabling, mixing the ad-

vantages of RIA for data acquisition and the power of constraint programming to find

a solution. To validate this approach, we have created an application for university

timetabling from which we have computed results with some parameters variations.

The obtained application validate the choices we have made. This software is a very

useful tool to design timetable, as expected. But it also provide a tool to analyse the

complexity variation of timetabling under realistic data sets. In future works, we plan

to design other type of timetabling with our approach and to improve the result inter-

pretation with many more data, that is now possible thanks to our global architecture.

References

Abbas A, Tsang E (2001) Constraint-based timetabling-a case study. Computer Systems and
Applications, ACS/IEEE International Conference on

Abdennadher S, Aly M, Edward M (2007) Constraint-based timetabling system for the german
university in cairo. In: INAP/WLP, pp 69–81

Apt KR, Zoeteweij P (2007) An analysis of arithmetic constraints on integer intervals. Con-
straints 12(4):429–468

Frühwirth T, Abdennadher S (2003) Essentials of Constraint Programming. Springer Verlag
Jaffar J, Maher MJ (1994) Constraint logic programming: A survey. J Log Program 19/20:503–

581

191

Lehtinen J (2009) Ria security. In: JAZOON09
Minter D, Linwood J (2006) Beginning Hibernate: From Novice to Professional. Apress
Qu R, Burke EK, Mccollum B, Merlot L, Lee SY (2009) A survey of search methodologies and

automated system development for examination timetabling. J of Scheduling 12:55–89
Seiler D (2009) Ria with zk. In: JAZOON09
Wallace M (1996) Practical applications of constraint programming. CONSTRAINTS 1:139–

168
Yeh TM (2006) Zk ajax but non javascript
Yeh TM (2007) Server-centric ajax and mobile

192

Soccer Tournament Scheduling Using Constraint
Programming

Mike DiNunzio · Serge Kruk

Abstract Larger soccer tournaments of school-age children in Michigan can host as

many as 600 teams divided into three age groups, all of which must play a set number

of games, on a fixed number of fields, during a weekend. This leads to three scheduling

problems of roughly 200 teams that must be done concurrently. With side constraints

involving resting time, limited number of games in a day and playoffs, the task soon be-

comes unruly if done by hand. This paper summarizes the results of efforts to develop a

Constraint Programming solution to this Soccer Tournament Scheduling Problem, and

concludes that an appropriate model, combined with an appropriate search strategy,

can handle problems of practical size.

Keywords Tournament · Constraint Prohramming

1 Introduction

1.1 Background

Based on one of the authors’ multi-year experience, scheduling soccer tournaments is an

exercise typically done with pencil and paper. As a result, there is an inherent unfairness

in the schedules that are computed, as well as certain inefficiencies (empty fields, long

hours). Overflow games, or games that do not fit neatly into the Saturday/Sunday

preliminary schedule, are usually scheduled on the previous Friday night, bringing

players, referees, and tournament officials to the tournament site for an additional

evening. While commercial sports tournament scheduling software is available, most is

of the drag and drop variety (not functionally different from using pencil and paper), or

does not address the issues and requirements that are particular to soccer tournaments.

M. DiNunzio
Oakland University
MI, USA
E-mail: mrdinunz@oakland.edu

S. Kruk
Oakland University
MI, USA
E-mail: kruk@oakland.edu

193

This paper examines a practical solution to these issues through the use of con-

straint programming. A number of different approaches were considered, some of which

did not work at all, and others which worked moderately well (scheduling 10-50 teams).

Ultimately, tuning the search strategy, a solution technique was reached which works

well with over 200 teams.

1.2 How Soccer Tournaments are Organized

The first step in scheduling a soccer tournament is organizing the divisions, small

groups of three to five teams of comparable ability and skills. This aggregation is done

by the coaches to offer to the players a reasonable yet challenging experience. Then

divisions are paired to offer intra and inter-divisional games. Usually three preliminary

games are played, followed by a playoff game where the winners of divisions face off

against each other. Divisions of varying sizes are scheduled in the following manner:

(3 Teams) Each team plays the other two teams in their division, plus a team from

a 2nd division. A championship playoff game is scheduled pitting the winners of

the two divisions.

(4 Teams) Each team plays the other 3 teams within their division. The winner of

the division plays the winner of another division in a playoff game.

(5 Teams) Each team plays the other 4 teams within their division. A playoff game

may or may not be scheduled.

The ability to schedule divisions of 3,4, or 5 teams gives the tournament organizers

a great deal of flexibility in setting up the divisions and handling last minute team

additions. A typical tournament has preliminary games all day Saturday, and the 1st

half of Sunday. The 2nd half of Sunday is set aside for the playoff games. If necessary,

games can be played (local teams only) on the Friday night prior to the start of the

tournament.

Soccer fields are one of three sizes; 6v6, 8v8, and 11v11 referring to the number of

players on a side. Younger players, up to about age 9, play on the 6v6 fields. Players

from about the age of 9 through 11 play on the 8v8 fields. Older players use the 11v11

fields. There is no mixing of the three groups. Scheduling a soccer tournament then

becomes three completely separate problems, one for each of the three field sizes.

Based on the experience of one author, the following issues stand to be improved

through better soccer tournament scheduling:

1. Games are often widely spread throughout the day. It is not uncommon for a team

to play a game at 7 am, then have to return to play again at 7 pm. Most families

would prefer to play at 7 am and 11 am, for example, freeing up the rest of the day

to do something else. We would like to cap the length of time a team has to wait

between games.

2. Fields are not always efficiently used; there are often empty fields throughout the

day. Is it possible to compress the schedule for increased efficiency?

3. Related to 2, is that overflow and hard-to-schedule games are put into a Friday

night time slot, prior to the official start of the tournament. This uses tournament

resources as well as disrupting families Friday nights. Can we eliminate the need

for Friday night games?

194

4. Scheduling a tournament is a drawn out process, generally taking 2-3 weeks from

the time registration closes to several days before the start of the tournament.

Can we reduce that 2-3 week time period to under an hour even when scheduling

concurrently the three age groups?

5. When scheduling playoff games, we would like to begin playoff games for a particular

pair of divisions before the end of the preliminary schedule, provided the slots are

open and there is no chance of any preliminary games interfering with the playoffs

for that division.

6. A large soccer tournament can have 200 or more teams to be scheduled for each of

the three field sizes. Our solution has to be capable of handling that many teams.

1.3 Constraints to be Implemented

From the above observations, we formulate the problem. Our goal is to schedule all

preliminary games and playoff games, given a number of teams, divisions, playing fields,

and time slots. The following hard and soft constraints are under consideration.

1. No team plays more than 2 preliminary games in a day.

2. Each team plays the prescribed number of games against division and cross-division

opponents.

3. Each team needs a rest period between games.

4. There is a maximum time gap between games, so that families do not need to spend

all day at the field.

5. A playoff game can only be scheduled after the last scheduled preliminary game for

the divisions involved, with an appropriate rest period between the games.

6. Each fields use is maximized so that Friday night games do not need to be scheduled

(soft constraint).

7. Use the minimum number of time slots to fill the schedule, possibly allowing teams

to finish earlier and/or start later, thereby increasing goodwill (soft constraint).

1.4 Objectives

The soft constraints could be seen as an objective function: minimizing the total number

of time slots so that we do not schedule on Friday night. Note that minimizing more

than that is neither useful not required. A second additional objective (assuming that

the ’no Friday games’ is achieved) is to minimize the time between the first and last

game of each team in a day. Minimizing idle time provides the player and their families

a better experience.

1.5 Previous work in Sports Scheduling

The definitive annotated bibliography of sport scheduling is [3]. Much research has been

done in the area of starting with the pioneering work of de Werra [12,11,10]. Much of

the focus has been on round-robin or double round-robin tournaments, where a team

plays once home and once away, [1,6], or some other variation where a certain balance

between home and away is the goal [2]. Sometimes, there may be a limit on one or the

195

other tournament [1,8], possibly based on the strength of the team or the geographical

distance. Some other restrictions are based on the sharing of home facilities between

teams [13].

Much of this research has little connections with our problem since our teams are all

converging on a single venues, with multiple fields, for a weekend of games. More closely

related is the work of Schaerf [8] on a general Constraint Programming approach. Our

secondary objective of minimizing the time between the first and last game of a day

is related to the break minimization problem [9,7,4]. Our sharing of fields among all

teams is related to the work of [5] though they used a simulated annealing algorithm,

and the work of [2].

In addition to being a problem combining temporal as well as spacial constraints,

we are looking at a very large number of teams. A large scale soccer tournament for

one age group (say 200 teams) can be thought of as perhaps 30 small round robin

tournaments, each of which must be scheduled around each other, and fit into the

confines of a single weekend. The challenge, then, is to efficiently schedule each team

for the desired number of games while maintaining constraints discussed earlier. By

efficiently, we mean that, as late as on the Friday or even Saturday morning, it must be

possible to add teams and produce an amended schedule in a few seconds or minutes.

2 Moving Toward a Solution

It was decided early on to use constraint programming to work toward a solution.

ECLiPSe (http://eclipse-clp.org/) was chosen because it easily allows experimen-

tation and prototyping. Once the implementation proved correct, we could always, if

needed, re-implement using a faster library. In implementing, these steps were followed:

1. Choose an appropriate model, using only integer values.

2. Input the parameters: number of playing fields, time slots, start time, etc, in a form

that is compatible with the data structure and the organizers’ experience.

3. Apply as many constraints as possible to limit the search, prior to assigning the

variables.

4. Label for the variables, paying special attention to the order in which these variables

are chosen.

5. After scheduling the preliminary games, schedule playoff games using time/field

slots not used during the preliminary games.

6. Manipulate the results as necessary to present them in a format meaningful to the

organizers.

2.1 Failures

2.1.1 The Multi-Dimensional Array

One strategy that was unsuccessful was to simulate a large multi-dimensional array,

with a separate dimension for: team number, opponent team number, field number,

time, and day. If all the variables coincided, a 1 value would signify that the game was

on. Otherwise, the value of the variable was assigned 0.

This solution worked, but not for more than 10 teams. The search space was simply

too large (or pruning was too ineffective) to come up with a solution in a reasonable

196

time. To use this technique with 50 teams, and 15 fields, with 10 time slots over each

of 2 days, would require a total of 750,000 variables! And, the objective was to be able

to schedule 200+ teams, which would have involved a considerably larger search space.

2.1.2 The 2-Dimensional Array

The second approach involved simulating a 2-dimensional array, each dimension with

N entries, where N is the total number of Teams. Each variable in the array would

contain either a 0, or, if a game was to be played between those two teams, a game

number greater than 0. The game number was encoded to contain both time slot and

field information:

b(G− 1) Nc+ 1 = T

G− (T − 1)×N = F

where G is the game number, N is the number of fields, T is the time slot and F is

the field number of the game. For example, in the matrix

Team1 Team 2 Team 3 Team 4

Team 1 0 3 117 230

Team 2 3 0 238 239

Team 3 117 238 0 115

Team 4 15 239 115 0

Teams 1 and 4 will meet on game number 230. Since we have 15 playing fields available

and b(230− 1)/(15)c+ 1 = 16, the game will be played on time slot 16. Consequently,

230− (16− 1) ∗N = 5 which means it will be played on field 5.

A strictly triangular matrix could also be used . This approach also worked, but

not for the required number of teams. It was capable of scheduling a tournament with

about 50 teams in what we considered a reasonable time.

2.2 Success

It was decided that limiting the overall number of variables might yield better results,

so the following model was chosen. The Game Number encoding approach was kept but

the matrix was discarded in favour of lists. Note that every variable holds meaningful

data (none take the value 0). We introduced two lists of lists of the same size. One for

opponent and one for game. For example, the same schedule between teams 1, 2, 3 and

4 would be encoded as

OpponentList = [[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3], ...]

GameList = [[3, 117, 237], [3, 238, 239], [117, 238, 115], [15, ...],...]

The lists GameList and OpponentList contain all the coded information necessary

to represent a game Both Team Numbers, Time, Day, and Field Number. This model

was the one which ultimately provided a solution meeting the objectives stated earlier

in this paper. Note that there is still some redundancy that could be eliminated but

this structure proved to be small enough not to cause memory problems. It could be

allocated from the start, as we know exactly how many preliminary games each team

197

will play and the symmetry constraint (team 1 vs team 2 is identical to team 2 vs team

1) is easy to impose.

The playoff games were scheduled after all preliminaries games were scheduled. The

overall structure of the approach was:

solve(GameList,OpponentList):-

initialize(GameList,OpponentList,NumGames),

constrain(GameList,OpponentList),

labeling(OpponentList),!,

ourlabeling(GameList),

outputSchedule(OpponentList,GameList),

schedulePlayoffs(GameList,PlayoffGameList),

outputPlayoffs(PlayoffGameList).

After the appropriate model and the encoding that allowed us to have variable

domains representing with one integer both the spatial component (the field) and the

temporal component (the time slot), the key to success was the search strategy, i.e. the

labeling variable order and the value order. Specifically,

– We label the Opponent List first. When backtracking occurs in an effort to find

a solution, there is no need to swap opponents around. If 1 is scheduled to play

2, then swapping 2 for 3,is most likely not getting any closer to a solution. So we

label the Opponent List first, which is easy, and then focus primarily on getting

the Game List right.

– Labeling the games in order by team caused problems: too many backtracks. In-

stead, the variable ordering was to choose the team that has the most games to

be assigned. Followed by the possible opponent that has the most games to be

assigned. Assign a game number to those two teams at that point.

– The game is chosen to minimize the time to the last game assigned to the team,

while maintaining the appropriate rest period. This is done by pruning domains of

the games not yet assigned immediately after a game assignment, an easy constraint

given our encoding.

– Note that there is no need for one labeling on time slots and one on fields, with

possible ensuing conflicts. The encoding allowed, in a sense, both labellings at the

same time. This was also crucial for the success of the approach.

2.2.1 Objective function

Recall that we had two objectives: first to eliminate, if possible Friday games; second

to minimize the spread between the first and last game of a team. We aim at this

multiple objective by minimizing the time between first and last game of each team,

constraining time slots to avoid Fridays. If the time spent backtracking is too large, we

restart the search allowing Friday time slots. This is clearly heuristic and it is possible

to miss an optimal solution with small game spread and no Friday games. But on the

instances we tried, Friday games were never used.

2.3 Efficiency of the Solution

Actual tournament data was run through the application. We had available the data

for two tournaments. From these, we synthesised variations, by deleting playing fields,

198

deleting time slots, adding teams here and there more or less haphazardly to stretch

the implementation and test its robustness.

For the largest real tournament instance, comprised of 227 teams in the 11v11

bracket, the manually produced schedule used 23 fields, Friday evening games were

scheduled and some teams had to wait up to 10 hours between weekend games in a

given day. We now comment on the automated solution achieved for this instance and

whether the objectives were met.

1. Our ECLiPSe implementation was able to come up with a solution where the

maximum time between games was 4 time slots. This is a considerable improvement

over the 8,9, or 10 time slots that teams commonly have to contend with.

2. In the largest instance solved, 343 games were scheduled across 19 time slots using

19 fields (361 possible events). A clear improvement on the 23 fields required by

the manual solution. Theoretically, one needs b343/19c = 19 fields. Therefore 19

fields is the absolute minimum that can be used. After scheduling the preliminary

games field utilization was just over 95%. In addition, due to the value ordering of

our encoding, most of the unused slots were at the end of the preliminary game

schedule and were used later to schedule playoff games.

3. Playoff scheduling was efficient and made optimal use of the remaining time slots.

After filling the unused preliminary slots with playoff games, only 1 slot could not

be used, for an efficiency of 360/361 or over 99%.

4. It was not necessary to schedule any games on Friday evening.

5. Execution time was below 10 seconds on an average PC.

6. One unintended benefit is that each age group, since they were assigned team

numbers close to each other, tended to play similar schedules. So a coach of sev-

eral teams across different age groups has an excellent chance of attending all the

games. It is now conceivable, through applying additional constraints, to ensure

this additional constraint because the current solution technique is fast enough.

3 Conclusion

We defined a scheduling problem modeling school-age children soccer tournaments in

Michigan. We suspect the problem is almost identical elsewhere in the country. The

problem has temporal and spatial constraints, both soft and hard, and is fairly large

scale, as far as sport schedules are concerned. The first key element of the imple-

mentation is an encoding that allows scheduling time and place of a game with one

instantiation, allows efficient pruning of variable domains for hard constraints and also

allows simple minimization of violation of soft constraints. The second key element is

a search based on a dynamic choice of the variables ordered according to the number

of games yet to be scheduled.

Experiments with real data from two tournaments shows that our implementation

in ECLiPSe, can do an excellent job of scheduling large scale soccer tournaments;

much better, for the instances tested, than the manual schedules that were used. We

are now in a position to add a number of secondary constraints and further improve

the tournament experience for all participants, players, coaches, families and friends.

199

References

1. Easton, K., Nemhauser, G., Trick, M.: CP based branch-and-price. In: Constraint and in-
teger programming, Oper. Res./Comput. Sci. Interfaces Ser., vol. 27, pp. 207–231. Kluwer
Acad. Publ., Boston, MA (2004)

2. Hamiez, J.P., Hao, J.K.: Using solution properties within an enumerative search to solve
a sports league scheduling problem. Discrete Appl. Math. 156(10), 1683–1693 (2008).
DOI 10.1016/j.dam.2007.08.019. URL http://dx.doi.org/10.1016/j.dam.2007.08.019

3. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated
bibliography. Comput. Oper. Res. 37(1), 1–19 (2010). DOI 10.1016/j.cor.2009.05.013.
URL http://dx.doi.org/10.1016/j.cor.2009.05.013

4. Knust, S.: Scheduling sports tournaments on a single court minimizing waiting times.
Oper. Res. Lett. 36(4), 471–476 (2008). DOI 10.1016/j.orl.2007.11.006. URL
http://dx.doi.org/10.1016/j.orl.2007.11.006

5. Lim, A., Rodrigues, B., Zhang, X.: Scheduling sports competitions at multiple venues—
revisited. European J. Oper. Res. 175(1), 171–186 (2006). DOI 10.1016/j.ejor.2005.03.029.
URL http://dx.doi.org/10.1016/j.ejor.2005.03.029

6. Nemhauser, G., Trick, M.: Scheduling a major college basketball conference. Operations
Research 46, 1–8 (1997)

7. Régin, J.C.: Minimization of the number of breaks in sports scheduling problems using
constraint programming. In: Constraint programming and large scale discrete optimization
(Piscataway, NJ, 1998), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 57, pp.
115–130. Amer. Math. Soc., Providence, RI (2001)

8. Schaerf, A.: Scheduling sport tournaments using constraint logic program-
ming. Constraints 4(1), 43–65 (1999). DOI 10.1023/A:1009845710839. URL
http://dx.doi.org/10.1023/A:1009845710839

9. Suzuka, A., Miyashiro, R., Yoshise, A., Matsui, T.: The home-away assignment problems
and break minimization/maximization problems in sports scheduling. Pac. J. Optim. 3(1),
113–133 (2007)

10. de Werra, D.: Scheduling in sports. In: Studies on graphs and discrete programming
(Brussels, 1979), Ann. Discrete Math., vol. 11, pp. 381–395. North-Holland, Amsterdam
(1981)

11. de Werra, D.: On the multiplication of divisions: the use of graphs for sports
scheduling. Networks 15(1), 125–136 (1985). DOI 10.1002/net.3230150110. URL
http://dx.doi.org/10.1002/net.3230150110

12. de Werra, D.: Some models of graphs for scheduling sports competitions. Dis-
crete Appl. Math. 21(1), 47–65 (1988). DOI 10.1016/0166-218X(88)90033-9. URL
http://dx.doi.org/10.1016/0166-218X(88)90033-9

13. de Werra, D., Jacot-Descombes, L., Masson, P.: A constrained sports scheduling problem.
Discrete Appl. Math. 26(1), 41–49 (1990). DOI 10.1016/0166-218X(90)90019-9. URL
http://dx.doi.org/10.1016/0166-218X(90)90019-9

200

Truck Driver Scheduling and Australian Heavy Vehicle
Driver Fatigue Law

Asvin Goel

Abstract In September 2008 new regulations for managing heavy vehicle driver fa-
tigue entered into force in Australia. According to the new regulations there is a chain
of responsibility ranging from drivers to dispatchers and shippers. Thus, carriers must
explicitly consider driving and working hour regulations when generating truck driver
schedules. This paper presents various heuristics for scheduling driving and working
hours of Australian truck drivers.

Keywords Vehicle Scheduling · Working Hour Regulations

1 Introduction

According to a survey of truck drivers in Australia, fatigue is felt as contributing factor
in every fifth accident (Williamson et al. [2001]). One out of five drivers reported
at least one fatigue related incident on their last trip and one out of three drivers
reported breaking road rules on at least half of their trips. Many drivers feel that fatigue
is a substantial problem for the industry and feel that their companies should ease
unreasonably tight schedules and should allow more time for breaks and rests during
their trips. In their efforts to increase road safety the Australian Transport Ministers
adopted new regulations for managing heavy vehicle driver fatigue. According to the
new regulations there is a chain of responsibility ranging from drivers to dispatchers
and shippers. Consequently, road transport companies must ensure that truck driver
schedules comply with Australian Heavy Vehicle Driver Fatigue Law. An important
key in managing fatigue is to explicitly consider driving and working hour regulations
when generating truck driver schedules. Planning problems considering driving and
working hours of truck drivers, however, have so far attracted very little interest in

Asvin Goel
MIT-Zaragoza International Logistics Program
Zaragoza Logistics Center, Spain
E-mail: asvin@mit.edu
and
Applied Telematics/e-Business Group,
Department of Computer Science, University of Leipzig, Germany
E-mail: asvin.goel@uni-leipzig.de

201

the vehicle routing and scheduling literature and to the best of the author’s knowledge
there are currently no planning tools available that allow for truck driver scheduling
considering Australian Heavy Vehicle Driver Fatigue Law.

Driver scheduling in road freight transportation differs significantly from airline
crew scheduling and driver scheduling in rail transport or mass transit systems which
are covered by a comprehensive annotated bibliography by Ernst et al. [2004]. The
difference stems from the fact that in road freight transportation it is usually possible
to interrupt transportation services in order to take compulsory breaks and rest periods.
Furthermore, time constraints in road freight transport are usually not as strict and
departure and arrival times can often be scheduled with some degree of freedom.

The first work known to the author explicitly considering government regulations
in vehicle routing and scheduling is the work by Xu et al. [2003] who study a rich
pickup and delivery problem with multiple time windows and restrictions on drivers’
working hours imposed by the U.S. Department of Transport. Xu et al. [2003] con-
jecture that the problem of finding a feasible schedule complying with U.S. hours of
service regulations is NP-hard in the presence of multiple time windows. Archetti and
Savelsbergh [2009] show that if weekly rest periods do not need to be considered and
all locations shall be visited within single time windows, schedules complying with U.S.
hours of service regulations can be determined in polynomial time. U.S. hours of ser-
vice regulations differ significantly from Australian Heavy Vehicle Driver Fatigue Law
because they do not demand short break periods for recuperation. Such short break
periods are also included in European legislation which is studied by Goel [2009], Kok
et al. [2009], and Goel [2010]. Goel [2009] presents a Naive and a Multi-Label scheduling
method embedded to a Large Neighbourhood Search meta-heuristic for combined vehi-
cle routing and scheduling. Kok et al. [2009] present a truck driver scheduling method
extending the Naive method which considers additional provisions of the regulation
which are ignored in Goel [2009]. Goel [2010] presents the first approach for scheduling
driving and working hours of European truck drivers which is guaranteed to find a fea-
sible truck driver schedule if such a schedule exists. This paper studies the Australian
Heavy Vehicle Driver Fatigue Law, which, to the best of the authors knowledge, has
yet not been tackled in the scheduling literature.

The remainder of this paper is organised as follows. Section 2 describes the Aus-
tralian Heavy Vehicle Driver Fatigue Law. Section 3 presents the Australian Truck
Driver Scheduling Problem (AUS-TDSP). In Section 4 some structural properties of
the AUS-TDSP are given and solution approaches are presented in Section 5. Compu-
tation experiments are reported in Section 6.

2 Australian Heavy Vehicle Driver Fatigue Law

In Australia new regulations for managing heavy vehicle driver fatigue entered into
force on September 29, 2008. The new regulations comprise three different sets of
rules. Operators accredited in the National Heavy Vehicle Accreditation Scheme may
operate according to the Basic Fatigue Management Standard (National Transport
Commission [2008c]) or the Advanced Fatigue Management Standard (National Trans-
port Commission [2008b]). One condition for being accredited is that operators must
plan schedules and rosters to ensure they comply with the respective operating lim-
its. Without accreditation operators must comply with the Standard Hours option

202

(National Transport Commission [2008a]) which imposes the following constraints on
drivers’ wschedules:

1. In any period of 5 1
2 hours a driver must not work for more than 5 1

4 hours and must
have at least 15 continuous minutes of rest time

2. In any period of 8 hours a driver must not work for more than 7 1
2 hours and must

have at least 30 minutes rest time in blocks of not less than 15 continuous minutes
3. In any period of 11 hours a driver must not work for more than 10 hours and must

have at least 60 minutes rest time in blocks of not less than 15 continuous minutes
4. In any period of 24 hours a driver must not work for more than 12 hours and must

have at least 7 continuous hours of stationary rest time
5. In any period of 168 hours (7 days) a driver must not work for more than 72 hours

and must have at least 24 continuous hours of stationary rest time
6. In any period of 336 hours (14 days) a driver must not work for more than 144

hours and must have at least 4 night rest breaks (2 of which must be taken on
consecutive days)

In the last provision a "night rest break" means a rest break consisting of (a)
7 continuous hours of stationary rest time taken between 10 PM and 8 AM on the
following day; or (b) 24 continuous hours of stationary rest time.

If truck drivers do not work on Saturdays and Sundays, the last two provisions of the
regulation are automatically satisfied. For simplicity, we will assume in the remainder
that we are only interested in generating schedule for a planning horizon starting on
Monday and ending on Friday of the same week.

3 The Truck Driver Scheduling Problem

This section gives describes the Australian Truck Driver Scheduling Problem for a
planning horizon starting on Monday and ending on Friday of the same week. Let
us consider a sequence of locations denoted by n1, n2, . . . , nλ which shall be visited
by a truck driver. At each location nµ some stationary work of duration wµ shall be
conducted. This work shall begin within a time window denoted by Tµ. We assume that
n1 corresponds to the driver’s current location and that the driver completes her or his
work week after finishing work at location nλ. The (positive) driving time required for
moving from node nµ to node nµ+1 shall be denoted by δµ,µ+1. Let us assume that
all values representing driving or working times are a multiple of 15 minutes.

In order to give a formal model of the problem, let us denote with DRIVE any
period during which the driver is driving, with WORK any period of working time in
which the driver is not driving (e.g. time in which the driver is loading or unloading
the vehicle), with REST any period in which the driver is neither working nor driving.
A truck driver schedule can be specified by a sequence of activities to be performed
by the drivers. Let A :=

˘
a = (atype, alength) | atype ∈ {DRIVE, WORK, REST}, alength >

0
¯

denote the set of driver activities to be scheduled. Let « . » be an operator that
concatenates different activities. Thus, a1.a2.ak denotes a schedule in which
for each i ∈ {1, 2, . . . , k − 1} activity ai+1 is performed immediately after activity ai.
During concatenation the operator merges consecutive driving and rest periods. That
is, for a given schedule s := a1.a2.ak and an activity a with atype

k = atype we have
s.a = a1.ak−1.(atype

k , alength
k +alength). For a given schedule s := a1.a2.ak

and 1 ≤ i ≤ k let s1,i := a1.a2.ai denote the partial schedule composed of

203

activities a1 to ai. Recall that we assumed that the drivers do not work on Saturdays
and Sundays and that we are only interested in generating schedules for a planning
horizon starting on Monday and ending on Friday of the same week. For simplicity,
we will thus only consider schedules which begin with a rest period representing the
rest taken on the weekend preceding the planning horizon. That is, we only consider
schedules s := a1.a2.ak with atype

1 = REST.
We use the following notation for determining whether a schedule complies with the

regulation. For each schedule s := a1.a2.ak with atype
1 = REST we denote with

parameter i420c
s the index of the last rest activity of 420 minutes (7 hours) continuous

rest, and with parameters iτs the index of the last rest activity contributing to a total
amount of at least τ minutes of rest before the end of the schedule. More formally, the
parameters are defined by

i420c
s := max

˘
i | atype

i = REST, alength
i ≥ 420

¯
and

iτs := max
˘
i |

X
i≤j≤k

a
type
j

=REST

alength
j ≥ τ

¯
.

According to provision 1, the total duration of all non rest activities in schedule s

which are scheduled after the rest period with index i15s must not exceed 315 minutes
(51

4 hours). According to provision 2, the total duration of all non rest activities in
schedule s which are scheduled after the rest period with index i30s must not exceed
450 minutes (71

2 hours). According to provision 3, the total duration of all non rest
activities in schedule s which are scheduled after the rest period with index i60s must
not exceed 600 minutes (10 hours). According to provision 4, the total duration of all
non rest activities in schedule s which are scheduled after the rest period with index
i720s must not exceed 720 minutes (12 hours). If the last activity of schedule s is not
a rest period, provision 4 furthermore requires that the total duration of all activities
which are scheduled after the rest period with index i420c

s must not exceed 1020 minutes
(17 hours). If the last activity of schedule s is a rest period, this rest period can still
be extended to rest a period if at least 420 minutes (7 hours). In this case, provision
4 requires that the total duration of all activities which are scheduled after the rest
period with index i420c

s and before the last rest period must not exceed 1020 minutes
(17 hours).

Let us consider a schedule s = a1.ak with atype
1 = REST which complies with

the regulation and let a denote some driver activity. Then, schedule s.a complies with
the regulation if and only if atype = REST or

alength ≤ 315−
X

i15s <j≤k

a
type
j

∈{DRIVE,WORK}

alength
j =: ∆15

s

alength ≤ 450−
X

i30s <j≤k

a
type
j

∈{DRIVE,WORK}

alength
j =: ∆30

s

alength ≤ 600−
X

i60s <j≤k

a
type
j

∈{DRIVE,WORK}

alength
j =: ∆60

s

204

alength ≤ 720−
X

i720s <j≤k

a
type
j

∈{DRIVE,WORK}

alength
j =: ∆720

s

alength ≤ 1020−
X

i420c
s <j≤k

alength
j =: ∆420c

s

For a given sequence of locations n1, n2, . . . , nλ and a schedule s = a1.a2.ak

with atype
1 = REST, let us denote with i(µ) the index corresponding to the µth stationary

work period, i.e. ai(µ) corresponds to the work performed at location nµ. With this
notation we can now give a formal model of the problem. The Australian Truck Driver
Scheduling Problem (AUS-TDSP) is the problem of determining whether a schedule
s := a1.a2.ak with atype

1 = REST exists which satisfiesX
1≤j≤k

a
type
j

=WORK

1 = λ and
X

i(1)≤j≤i(λ)

a
type
j

=DRIVE

alength
j =

X
1≤j≤k

a
type
j

=DRIVE

alength
j (1)

alength
i(µ)

= wµ for each µ ∈ {1, 2, . . . , λ} (2)

lend
s1,i(µ)−1 ∈ Tµ for each µ ∈ {1, 2, . . . , λ} (3)X

i(µ)≤j≤i(µ+1)

a
type
j

=DRIVE

alength
j = δµ,µ+1 for each µ ∈ {1, 2, . . . , λ− 1} (4)

alength
i ≤ min{∆15

s1,i−1 , ∆30
s1,i−1 , ∆60

s1,i−1 , ∆720
s1,i−1 , ∆420c

s1,i−1}
for each i ∈ {1, . . . , k} with atype

i ∈ {DRIVE, WORK}
(5)

Condition (1) demands that the number of work activities in the schedule is λ and
that all driving is conducted between the first and the last work activity. Condition
(2) demands that the duration of the µth work activity matches the specified work
duration at location nµ. Condition (3) demands that each work activity begins within
the corresponding time window. Condition (4) demands that the accumulated driving
time between two work activities matches the driving time required to move from one
location to the other. Condition (5) demands that the schedule complies with the reg-
ulation. In the remainder of this paper, we will say that a schedule s := a1.a2.ak

with atype
1 = REST is feasible if and only if it satisfies conditions (1) to (5).

4 Structural Properties

Let us now give some structural properties of the truck driver scheduling problem
which help us solving the AUS-TDSP without exploring unnecessarily many partial
schedules. The first lemma gives us conditions when we can postpone rest periods in
order to schedule a driving or working.

Lemma 1. Let s := a1.ak be a feasible schedule with atype
i = REST and atype

i+1 ∈
{DRIVE, WORK} for some 1 < i < k. If the partial schedule

a1.ai−1.ai+1

complies with the regulation and all relevant time window constraints, then

a1.ai−1.ai+1.ai.ai+2.ak

is a feasible schedule.

205

Proof Let s′ := a1.ai−1.ai.ai+1 and s′′ := a1.ai−1.ai+1.ai. Obviously
s′′ complies with the regulation because atype

i = REST. The only difference between
schedule s′ and s′′ is that in s′′ one rest period is moved to a later point in time. Thus,
we have

∆15
s′′ ≥ ∆15

s′ , ∆
30
s′′ ≥ ∆30

s′ , ∆
60
s′′ ≥ ∆60

s′ , ∆
720
s′′ ≥ ∆720

s′ , and ∆420c
s′′ ≥ ∆420c

s′ .

Assume we have two schedules s′ and s′′ which comply with the regulation and
all relevant time window constraints and which satisfy above conditions. Assume we
have, furthermore, an activity a for which s′.a complies with the regulation and all
relevant time window constraints. Then we have atype = REST or atype ∈ {DRIVE, WORK}
and alength ≤ min{∆15

s′ , ∆
30
s′ , ∆

60
s′ , ∆

720
s′ , ∆420c

s′ } ≤ min{∆15
s′′ , ∆

30
s′′ , ∆

60
s′′ , ∆

720
s′′ , ∆420c

s′′ }.
Thus, s′′.a complies with the regulation and all relevant time window constraints.
Furthermore, we have

∆15
s′′.a ≥ ∆15

s′.a, ∆30
s′′.a ≥ ∆30

s′.a, ∆60
s′′.a ≥ ∆60

s′.a, ∆720
s′′.a ≥ ∆720

s′.a, and ∆420c
s′′.a ≥ ∆420c

s′.a .

Therefore, a1.ai−1.ai+1.ai.ai+2.ak is a feasible schedule.

The next lemma gives us further conditions when we can postpone a rest period in
order to schedule some driving time.

Lemma 2. Let s := a1.ak be a feasible schedule with and atype
i = REST and

atype
i+1 = DRIVE, alength

i+1 > 15 for some 1 < i < k. If the partial schedule

a1.ai−1.(DRIVE, 15)

complies with the regulation, then

a1.ai−1.(DRIVE, 15).ai.(DRIVE, a
length
i+1 − 15).ai+2.ak

is a feasible schedule.

Proof Analogue to first lemma.

The next lemma gives us conditions when we can postpone a part of a rest period
of less than 420 minutes.

Lemma 3. Let s := a1.ak be a feasible schedule with and atype
i = REST, 15 <

alength
i < 420, and atype

i+1 ∈ {DRIVE, WORK} for some 1 < i < k. If

a1.ai−1.(REST, alength
i − 15).ai+1

complies with the regulation and time window constraints, then

a1.ai−1.(REST, alength
i − 15).ai+1.(REST, 15).ai+2.ak

is a feasible schedule.

Proof Analogue to first lemma.

The next lemma gives us further conditions when we can postpone a part of a rest
period of less than 420 minutes in order to schedule a some driving time.

206

Lemma 4. Let s := a1.ak be a feasible schedule with and atype
i = REST, 15 <

alength
i < 420, and atype

i+1 = DRIVE, alength
i+1 > 15 for some 1 < i < k. If

a1.a2.ai−1.(REST, alength
i − 15).(DRIVE, 15)

complies with the regulation, then

a1.a2.ai−1.(REST, alength
i −15).(DRIVE, 15).(REST, 15).(DRIVE, alength

i+1 −15).ai+2.ak

is a feasible schedule.

Proof Analogue to first lemma.

Because of these lemmata we can now state some conditions that we impose on
all schedules to be considered when solving the AUS-TDSP. We say that a feasible
schedule s := a1.ak is normal form if and only if

for all 1 < i < k with atype
i = REST and atype

i+1 ∈ {DRIVE, WORK} :

a1.ai−1.ai+1 violates the regulation or some time window
(N1)

for all 1 < i < k with atype
i = REST and atype

i+1 = DRIVE, alength
i+1 > 15 :

a1.ai−1.(DRIVE, 15) violates the regulation
(N2)

for all 1 < i < k with atype
i = REST, 15 < alength

i < 420 and atype
i+1 ∈ {DRIVE, WORK} :

a1.ai−1.(REST, alength
i − 15).ai+1 violates the regulation or some time window

(N3)

for all 1 < i < k with atype
i = REST, 15 < alength

i < 420, atype
i+1 = DRIVE, alength

i+1 > 15 :

a1.ai−1.(REST, alength
i − 15).(DRIVE, 15) violates the regulation

(N4)
If a feasible schedule for a given tour exists, there also exists a feasible schedule

in normal form. Thus, we can ignore all schedules which are not in normal form when
searching for a feasible truck driver schedule.

5 Solution Approaches

Assume we knew the start time and end time of each rest period of 7 hours or more.
We could try to construct a feasible schedule in normal form by iteratively scheduling
driving or working activities as early as possible and rest activities as late as possible.
The duration of all driving activities would be set to the largest possible value and the
duration of all rest activities scheduled would be set to the smallest possible value. If
no feasible schedule in normal form can be constructed by this procedure, no feasible
schedule exists.

Unfortunately, determining when a rest period of at least 7 hours should be sched-
uled and how long this rest period should be is a difficult task. Therefore, we will
presents several heuristics for scheduling these rest periods in this paper. These heuris-
tics use the framework given in Figure 1. The heuristic framework begins by choosing
a partial schedule s which is feasible for the tour n1, . . . , nµ and sets δ to the driving

207

time required to reach location nµ+1. As long as the next location is not yet reached
(i.e. δ > 0), the maximum amount of driving allowed with respect to condition (5)
is determined. If condition (5) forbids any driving, a rest period of 15 minutes is ap-
pended to the schedule. Otherwise, the longest possible driving period is appended
to the schedule and δ is updated. When the next location is reached (i.e. δ = 0), as
much rest time as necessary in order to be able to schedule the next working period of
duration wµ+1 is appended to the schedule. Then, depending on the specific method,
the set S(s, µ + 1) is determined and included into the set of schedules found for tour
n1, . . . , nµ+1.

1. choose s ∈ Sµ, set δ := δµ,µ+1

2. while δ > 0 do
– ∆ := min{∆15

s , ∆30
s , ∆60

s , ∆720
s , ∆420c

s }

– s :=

s.(REST, 15) if ∆ = 0
s.(DRIVE, min{δ, ∆}) if ∆ > 0

– δ := δ −min{δ, ∆}
3. while wµ+1 > min{∆15

s , ∆30
s , ∆60

s , ∆720
s } do

– s := s.(REST, 15)
4. Sµ+1 := Sµ+1 ∪ S(s, µ + 1)

Fig. 1 Heuristic framework for scheduling activities for the trip from location nµ to nµ+1

The AUS1 heuristic is a greedy heuristic in which S(s, µ + 1) contains at most one
schedule. If lend

s ∈ Tµ+1 and wµ+1 ≤ ∆420c
s then S(s, µ + 1) := {s.(WORK, wµ+1)}.

Otherwise, if for some ∆ > 0 a feasible schedule s.(REST, ∆).(WORK, wµ+1) for tour
n1, . . . , nµ+1 exists, then S(s, µ+1) contains the feasible schedule s.(REST, ∆).(WORK, wµ+1)

with the smallest value ∆. If no such schedule exists, then S(s, µ + 1) := ∅.
In the AUS2 heuristic S(s, µ + 1) contains at most two schedules. The first is the

schedule which is also determined by the AUS1 heuristic. The second schedule is only
included to the set if lend

s < min Tµ+1 or if the last activity of s is of type REST and
has a duration of less than 7 hours. Let a denote the last activity of s and let

∆′ :=

alength if atype = REST

0 else

If for some ∆ > 0 with ∆′ + ∆ ≥ 420 a feasible schedule s.(REST, ∆).(WORK, wµ+1)

for tour n1, . . . , nµ+1 exists, then the feasible schedule s.(REST, ∆).(WORK, wµ+1) with
the smallest such value ∆ is included to S(s, µ + 1). If no such schedule exists then
S(s, µ + 1) is the same as for the AUS1 heuristic.

In the AUS3 heuristic S(s, µ+1) contains at most three schedules. The first two are
the schedules which are also determined by the AUS2 heuristic. The third schedule is
only included to the set if lend

s < min Tµ+1. Let s′ denote the schedule which is obtained
by extending the last rest period in s, which has a duration of at least 420 minutes, by
the largest value which does not exceed min Tµ+1 − lend

s and for which time window
constraints are not violated for any work location visited after the last rest period.
If lend

s′ < min Tµ+1 and wµ+1 + min Tµ+1 − lend
s′ ≤ ∆420c

s′ then s′.(REST, min Tµ+1 −
lend
s′).(WORK, wµ+1) is included to S(s, µ + 1). If lend

s′ = min Tµ+1 and wµ+1 ≤ ∆420c
s′

then s′.(WORK, wµ+1) is included to S(s, µ + 1). Otherwise, S(s, µ + 1) is the same as
for the AUS2 heuristic.

208

The AUS1, AUS2, and AUS3 heuristics begin with

S1 := {(REST, max{2880, min T1}).(WORK, w1)}

and µ = 1. Then, the method illustrated in Figure 1 is invoked until each schedule in
Sµ has been selected. If Sµ+1 = ∅, the heuristic terminates because no feasible schedule
is found for tour n1, . . . , nµ+1. Otherwise, µ is incremented and the process is repeated
until Sλ 6= ∅.

To reduce the computational effort of the AUS2 and AUS3 heuristic some partial
schedules are removed from Sµ before invoking the scheduling method. Let us consider
two schedules s′, s′′ ∈ Sµ for some 1 < µ < λ. If lend

s′ + 720 ≤ lend
s′′ , then s′′ is removed

from Sµ. In the case that s′′ is not removed and s′ ends with a rest period followed by
a work period let a denote this rest period and let

∆ :=

(
max{420, 720− alength} if alength < 420

max{0, 720− alength} if alength ≥ 420.

If lend
s′ + ∆ ≤ lend

s′′ , then s′′ is removed from Sµ.

6 Computational Experiments

Scheduling of driving and working hours is of particular importances for long distance
haulage where drivers do not return home every day. In order to evaluate the scheduling
method presented in this paper we generate benchmark instances for a planning horizon
starting on Monday morning and ending on Friday evening. In the benchmark set each
handling activity requires one hour of working time (i.e. wµ = 1 for all 1 ≤ µ ≤ λ)
and the driving time between two subsequent locations is 4, 8, 12, or 16 hours (i.e.
δµ,µ+1 ∈ {4, 8, 12, 16} for all 1 ≤ µ < λ). Assuming an average speed of 75 km/h,
this implies that the distance between two subsequent locations ranges from 300 km
to 1200 km. Each location must be visited on a specific day between 6.00h and 13.59h
or between 14.00h and 21.59h.

Algorithm Instances Computation time
AUS1 64,785 123’43”
AUS2 67,556 275’57”
AUS3 67,556 360’29”

Table 1 Number of instances for which a feasible schedule is found by the method and total
computation time required

In total, around 15.6 million instances where generated in which time window
constraints could be satisfied if driving and working times were unrestricted. Only
3,166,146 of these instances do not exceed the accumulated weekly working time of
72 hours. All other instances are discarded by the heuristics before starting to construct
schedules. Table 1 gives an overview of the number of instances for which the AUS1,
AUS2 and AUS3 heuristic find a feasible schedule and the total computation time
required. The AUS2 heuristic can find a feasible schedule for 2,771 instances more
than the AUS1 heuristic. However, it requires almost double the computation time.
Although it is easy to find examples in which the AUS3 heuristics is superior to the

209

AUS2 heuristic, the AUS3 heuristic cannot find a feasible schedule for more instances
considered in this experiment. The AUS1 heuristic has by far the smallest running
time and is capable of finding a feasible schedule for approximately 96 per cent of the
instances for which the more sophisticated approaches can find a feasible schedule.
Thus, it appears that, for similarly structured practical problem instances, the AUS1
heuristic has the best trade-off between exactness and computational effort.

7 Summary

This paper studies the Australian Heavy Vehicle Driver Fatigue Law and formulates
the Australian Truck Driver Scheduling Problem. Structural properties of the problem
are analysed and used to develop heuristics for solving the problem.

Acknowledgements This research was supported by the German Research Foundation (DFG)
and the National ICT Australia (NICTA).

References

C. Archetti and M. W. P. Savelsbergh. The trip scheduling problem. Transportation
Science, 43(4):417–431, 2009. doi: 10.1287/trsc.1090.0278.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An annotated
bibliography of personnel scheduling and rostering. Annals of Operations Research,
127(1):21–144, March 2004. doi: 10.1023/b:anor.0000019087.46656.e2.

A. Goel. Vehicle scheduling and routing with drivers’ working hours. Transportation
Science, 43(1):17–26, 2009. doi: 10.1287/trsc.1070.0226.

A. Goel. Truck Driver Scheduling in the European Union. Transportation Science, (to
appear), 2010.

A. L. Kok, C. M. Meyer, H. Kopfer, and J. M. J. Schutten. Dynamic Programming
Algorithm for the Vehicle Routing Problem with Time Windows and EC Social
Legislation. Beta working paper 270, University of Twente, 2009.

National Transport Commission. Heavy Vehicle Driver Fatique Reform – Standard
Hours explained. Information Bulletin, 2008a.

National Transport Commission. Heavy Vehicle Driver Fatique Reform – Advanced
Fatigue Management explained. Information Bulletin, 2008b.

National Transport Commission. Heavy Vehicle Driver Fatique Reform – Basic Fatigue
Management explained. Information Bulletin, 2008c.

A. Williamson, S. Sadural, A. Feyer, and R. Friswell. Driver Fatigue: A Survey of Long
Distance Heavy Vehicle Drivers in Australia. Information Paper CR 198, National
Road Transport Commission, 2001.

H. Xu, Z.-L. Chen, S. Rajagopal, and S. Arunapuram. Solving a practical pickup and
delivery problem. Transportation Science, 37(3):347–364, 2003.

210

Distributed Scatter Search for the

Examination Timetabling Problem

Christos Gogos
1,2

, George Goulas
1
, Panayiotis Alefragis

1,3
, Vasilios Kolonias

1
 and

Efthymios Housos
1

1
University Of Patras. Dept. of Electrical and Computer Engineering, Rio Patras,

Greece.

2
Technological Educational Institute of Epirus. Dept. of Finance and Auditing,

Psathaki, Preveza, Greece.

3
Technological Educational Institute of Mesolonghi. Dept. of Telecommunication

Systems and Networks, Varia, Nafpaktos, Greece.

Abstract: Examination Timetabling for Universities is a problem with significant practical

importance. It belongs to the general class of educational timetabling problems and has been

exposed to numerous approaches for solving it. We propose a parallel/distributed solution which is

based on the metaheuristic method Scatter Search combined with Path Relinking in an attempt to

diversify the search procedure by producing promising new timetables. Our approach improves on

the best publicly available results for the datasets of ITC2007 (International Timetabling

Competition 2007-2008). The constraint of limited execution time that was imposed by ITC2007

was disregarded in an effort to pursue the best values our approach could reach. We consider this

specific examination timetabling problem as a “test bed” for timetabling problems in general and

we expect to provide insight for developing effective solution processes for other practical

scheduling problems.

Keywords: scatter search, path relinking, examination timetabling

1. Introduction

The advent of multicore processors, cloud computing and programmable Graphical Processing

Units, to name just three of recent massive processing technologies, offer nowadays abundant

processing power. Difficult practical problems can be revisited and new solution methods can be

sought under the presence of distributed or parallel environments of execution. Under conditions

of vast availability of computational resources, mixed integer and dynamic programming

approaches, which generate provable optimal solutions, become interesting. Equally interesting are

metaheuristic approaches that sacrifice optimality but are in general simpler to implement and can

give very good results.

The Examination Timetabling Problem (ETP) has received ample attention and numerous

approaches from and across various disciplines have been proposed for solving it. Some of the

approaches that have given satisfactory results are: Constraint Programming (David, 1998), Hybrid

methods (Qu and Burke, 2009), Hyper Heuristics (Pillay and Banzhaf, 2008) and various

211

Metaheuristics (Ersoy et al., 2007). In this contribution the ITC2007
1
 model of the Examination

Timetabling Problem is solved by a Scatter Search metaheuristic and the whole process is

undertaken by our distributed execution framework called SchedScripter. The solutions that we

have obtained indicate that significant potential of using analogous methods to similar problems

exists. We also observed that the benefit of reaching better solutions was complemented by the

robustness of the procedure.

The rest of the paper is organized as follows. Section 2 describes the ETP. Section 3 presents an

introduction to parallel/distributed execution environments and metaheuristics. The SchedScripter

framework is also presented in the same section. SchedScripter is used for communications and

workload management needed by the distributed Scatter Search application. Section 4 describes

the distributed Scatter Search solution approach, with subsections describing Scatter Search and

Path Relinking. Section 5 presents the experimental results. Section 6 concludes the paper

asserting that distributed Scatter Search can outperform various single processor approaches in

terms of solution quality.

2. Problem Description

The ETP belongs to the general class of timetabling problems which are known to be NP-complete

under certain conditions (Schaerf, 1999). Several different formulations of ETP exist ranging from

rather simple ones to more complicated (Qu et al., 2009). Historically, early formulations

considered only the avoidance of exam conflicts thus drawing parallelism between ETP and graph

coloring problems (Carter, 1996) while gradually details regarding rooms, periods and exams were

added. The main objective of the ETP is to produce timetables giving adequate time between

exams for all participating students.

In our contribution, we use the ITC2007 formulation of the problem. Under this formulation a set

of exams has to be scheduled in a set of time periods and rooms while at the same time a number

of hard constraints have to be satisfied. Hard constraints are avoidance of conflicts between exams

for all students, respect of room capacities, matching of exam duration with assigned period

duration and various constraints regarding ordering between exams and pre-assignment of exams

to certain rooms. The quality of the solution is measured against cost penalties imposed by a set of

soft constraints. Examples of soft constraints considered are the presence of two exams in a row

and two exams in the same day for a particular student, early scheduling of exams with large

audiences, mixing of exams with different durations in the same room and the usage of rooms and

periods that have been marked as undesirable. Period spread is also a soft constraint meaning that

occurrences of consecutive exams for each student within a predefined range of periods are

penalized. Every soft constraint is related with a weight that prescribes its penalty. Each university

defines the weight of every constraint according to its preferences thus creating a vector called the

Institutional Model Index (IMI). The objective function is a weighted sum of the soft constraint

violations according to the weights defined in IMI.

1
 http://www.cs.qub.ac.uk/itc2007

212

A thorough description of the ITC2007 ETP formulation can be consulted in (McCollum et al.

2009a) while further details regarding ITC2007 issues in general can be found in (McCollum et al.

2009b). Twelve datasets were provided for benchmarking and data associated with them are

presented in Table 1. The last four of the datasets were characterized as hidden indicating the

intention of the organizers to make them publicly available after the completion of the

competition. The 12 datasets present significant variation in their characteristics which is also

observed in real life examination timetabling problems (McCollum, 2007). Therefore, a generic

successful algorithmic approach should not make any assumptions about specific values.

ITC2007-DATASETS

 Exams Students Periods Rooms

Period

HC

Room

HC

Two In

A Row

Penalty

Two In

A Day

Penalty

Period

Spread

Penalty

No Mixed

Durations

Penalty

Number

Of

Largest

Exams

Number

Of Last

Periods

To Avoid

Frontload

Penalty

Conflict

Density

Dataset 1 607 7891 54 7 12 0 7 5 5 10 100 30 5 5.05%

Dataset 2 870 12743 40 49 12 2 15 5 1 25 250 30 5 1.17%

Dataset 3 934 16439 36 48 170 15 15 10 4 20 200 20 10 2.62%

Dataset 4 273 5045 21 1 40 0 9 5 2 10 50 10 5 15.00%

Dataset 5 1018 9253 42 3 27 0 40 15 5 0 250 30 10 0.87%

Dataset 6 242 7909 16 8 23 0 20 5 20 25 25 30 15 6.16%

Dataset 7 1096 14676 80 15 28 0 25 5 10 15 250 30 10 1.93%

Dataset 8 598 7718 80 8 20 1 150 0 15 25 250 30 5 4.55%

Dataset 9 169 655 25 3 10 0 25 10 5 25 100 10 5 7.84%

Dataset 10 214 1577 32 48 58 0 50 0 20 25 100 10 5 4.97%

Dataset 11 934 16349 26 40 170 15 10 50 4 35 400 20 10 2.62%

Dataset 12 78 1653 12 50 9 7 35 10 5 5 25 5 10 18.45%

Table 1. Datasets characteristics

3. Parallel / Distributed Execution Environments

and Metaheuristics

It is often the case that real life problems generate problem instances that require vast amounts of

CPU time to create optimal feasible solutions. Although the use of metaheuristics allows

significant reduction of the search process computational complexity, the wall clock time is still

the major performance measurement. End-users in many application areas require that high quality

solutions be obtained as soon as possible. In such applications the cost of hardware resources that

may be required is considered a minor issue. A detailed presentation of the possibilities in

metaheuristic design can be found in (Talbi 2009). Recently, parallel processing has again gained

significant attention as various technology advancements has been performed in processor design

(multicore processors, GPU computing) and interconnecting networks (e.g. Infiniband). Moreover,

Grid technologies allow the exploitation of vast amounts of usually volatile loosely coupled

computational resources, creating an opportunity to exploit such architectures for the design and

implementation of parallel metaheuristics.

Many aspects, design decisions and goals have to be considered during parallel metaheuristic

algorithm design. The most usual goal is to speed up the search process or the improvement of the

quality of the obtained solutions. The former allows the design of real-time or interactive

optimization methods, while the latter allows the cooperating metaheuristics to obtain better

convergence characteristics while reducing search time. Researchers or practitioners using parallel

processing have managed to improve the robustness of the obtained solutions for various difficult

213

practical problems. This is usually achieved by reducing the sensitivity of the metaheuristics to

their parameters and by managing to examine the search space in greater detail. During parallel

metaheuristic design, questions such as exchange decision criterion (when?), exchange topology

(where?), information exchanged (what?) and integration policy (how?) have to be answered.

Detailed presentation of various parallel metaheuristics can be found in (Alba, 2005).

Our approach was to create a middleware architecture that isolates parallel algorithm design

components from the mapping to parallel architectures, providing a toolbox to rapidly create

different parallelization approaches.

3.1 SchedScripter framework

SchedScripter (Gogos et al., 2009), (Goulas et al., 2009) is a software framework to assist in the

development of distributed, grid-based, human resources scheduling applications. SchedScripter

covers an area between loosely-coupled grid-based workflow systems (Yu and Buyya 2005) and

message passing libraries. Grid workflow systems create execution workflows based on

independent jobs and their data dependencies, while message passing libraries assist in the creation

of parallel/distributed applications using tight message passing protocols like the MPI (Gropp et

al., 1999). SchedScripter applications main components are the SchedScripter registry, the

SchedScripter worker nodes and the application coordination process (Figure 1). SchedScripter

installs a web service container on every worker node to provide a set of services designed to

allow the worker node to be considered as a single process of a worker collection. A single master

node provides a registry for the worker node services and ensures that workers remain available.

All SchedScripter services are offered as XML Web Services for interoperability and ease of

access. A SchedScripter-based application needs to access the registry to find resources and then

transfer tasks and code to worker nodes. This process is assisted by an application level task

scheduler offered in the SchedScripter API.

Figure 1. SchedScripter architecture

214

A natural coordination scheme for web services, supported by SchedScripter, is the use of

Business Process Execution Language (BPEL
2
) workflows. BPEL allows for web service message

interactions providing programming language constructs. BPEL tools offer graphical

representation of application workflows which is a great visualization tool. In order to assist

resource discovery and utilization using BPEL, the SchedScripter application-level task scheduler

is available as a web service. Furthermore, since BPEL processes are themselves web services,

BPEL can offer layers of abstraction, composite services and reuse. The SchedScripter master

includes Apache ODE
3
 as a BPEL engine, compatible with both BPEL versions, BPEL4WS 1.1

and WS-BPEL 2.0.

While web services and BPEL are an easy way to create distributed applications, it was clearly

demonstrated that it is common for developers to have difficulties in understanding the concepts of

Service Oriented Architecture so as to use web services and BPEL effectively. To narrow this

knowledge gap, SchedScripter tries to abstract the process of applying specific distributed

application patterns and offers them as Application Templates in the form of a Java API. The main

patterns supported are the master/worker paradigm and the swarm pattern. The master/worker is a

very popular, centralized pattern where a single master process splits the workload into tasks and

assigns them to worker nodes. The swarm pattern, also usually referred as peer-to-peer, assumes a

set of independent processes, each of them deciding on the task to accomplish in order for the

whole swarm to solve the general problem. These processes communicate frequently with

broadcasted messages, in order to publish their findings and provide hints to the swarm, which

may or may not be used. The swarm, in SchedScripter, has a single master, whose role is to

monitor message exchanges and store the result at the end of the process. While SchedScripter was

originally developed to be used in the EGEE
4
 grid infrastructure, the framework is generic and can

be used outside EGEE as well, even in a cluster environment without grid middleware. Indeed, the

results of this paper were collected during runs on the small cluster of servers of a newly acquired

blade system running Ubuntu Karmic 9.10 server operating system.

4. Solution Process

The solution process that we have chosen is based on metaheuristic Scatter Search and uses data

structures and algorithms from our previous work described in (Gogos et al, 2010). A stage of

Simulated Annealing and a stage of Shaking are combined in a single improvement phase that is

employed whenever an attempt to improve a solution occurs. In the Shaking stage a set of exams is

formed based on the cost per student contribution of each exam giving preference to higher values.

The selected exams are removed and then scheduled once again causing distortion to the timetable.

2
 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

3
 http://ode.apache.org

4
 http://www.eu-egee.org

215

4.1 Scatter Search

Scatter Search is a well known metaheuristic that was originally proposed by Glover for Integer

Programming problems as a way of combining critical constraints in order to produce new

“surrogate” constraints (Glover, 1977). It was also included as a stage in the original Tabu Search

metaheuristic but it was seldom used in various implementations of it. Paper (Glover 1998) played

a key role in establishing Scatter Search as an independent self contained metaheuristic. Detailed

descriptions of Scatter Search can be found in (Glover et al., 2002), (Glover et al., 2003) and

(Laguna and Marti, 2006) while in (Laguna and Armentano, 2000) several practical advices about

implementing Scatter Search are illustrated. It has to be mentioned that Scatter Search has been

recently employed in (Mansour et al., 2009) for tackling a modified formulation ETP giving

promising results.

Scatter Search is classified as an evolutionary algorithm. It maintains a population of solutions that

are recombined in order for better solutions to be achieved. Similarities exist with the widely

known Genetic Algorithm metaheuristic but Scatter Search maintain smaller population of

solutions, is less dependent on randomization, improves the solution after each recombination of

solutions and systematically injects diversity into the population. A key point of Scatter Search is

the concept of reference points (RPs). RP is a “good” solution that has been obtained from a

previous solution effort. RPs are systematically combined in order for new solutions to be

generated. Scatter Search starts by generating a pool of good and diverse solutions. From this pool

a reference set (RefSet) is formed that contains not only the best solutions but also solutions that

are different from the other already included in the RefSet. Next, new solutions are formed by

combining members of the RefSet. Each produced solution is improved through heuristic methods.

The best improved solutions are inserted into the RefSet causing the removal of inferior solutions.

The procedure continues in an iterative manner creating combinations of the newly inserted

solutions with already existing solutions of the RefSet. When no new solutions can be inserted into

the RefSet then either the procedure stops or certain actions are initiated that diversify RefSet by

replacing solutions with less good but significantly different ones. The general template of Scatter

Search consists of five methods forming a cycle of continuous improvement over a set of

solutions. Our implementation of the Scatter Search is shown in (Figure 2) where each solution is

depicted by a hexagon. The role that each method plays in solving the ETP is presented in the

following paragraphs.

216

Figure 2. Scatter Search 5 method template

Diversification Generation Method (DGM).

The purpose of this method is to generate a collection of diverse timetables. In our approach we

simply loaded a pool with 100 solutions from past experiments done in (Gogos et al., 2010).

Alternatively, the pool could be generated on demand by running several time bounded

constructions and improvements while modifying various parameters like construction over

improvement time, simulated annealing cooling schema etc. Experiments showed that the exact

method of populating the pool does not hinder the robustness of the approach. Then, an initial

RefSet is constructed by selecting exams from the pool. Half of RefSet solutions are selected from

the pool based on their cost. The other half is completed by selecting solutions that exhibit the

biggest dissimilarity with the timetable of the RefSet that is more similar to the selected solution.

It has to be noted that diversification is not the same as randomization because the whole process

is biased towards selecting solutions that differ from other ones.

Improvement Method (IM).

Improvement of each solution is undertaken by a cycle of two stages. These stages are “simulated

annealing” and “shaking”. Simulated annealing allows, in a systematic way, moves to inferior

solutions thus enabling the possibility of escape from local best values basins. On the other hand

the purpose of the shaking stage is to dislocate the current solution so as new searches for better

values to start from yet unexplored points of the search space. In our distributed execution

approach a master/slave schema is employed. The improvement method executes in parallel by

worker nodes while a coordinator is responsible for collecting results and producing new jobs

under the SchedScipter framework described in Section 3.

RefSet Update Method (RSUM).

Solutions become members of the RefSet based on their cost. Inferior timetables may also be

accepted provided that they are sufficiently different from existing timetables in RefSet. The

217

similarity of two solutions is computed based on the number of exams that are scheduled in the

same period and room in both solutions.

Subset Generation Method (SGM).

This method operates on the RefSet and produces a subset that will be used in order for solutions

to be combined. In our approach pairs of solutions are formed ensuring that each pair has not

already been examined in the past.

Solution Combination Method (SCM).

Path Relinking occurs in this method. Pairs of timetables are combined in order to construct new

solutions. A given timetable is gradually transformed to another timetable (guiding solution) by

repositioning exams to periods and rooms. In order for the solution to be in the feasible area

backtracking moves that remove offending exams and then reschedule them might be necessary.

4.2 Path Relinking

Suppose the existence of two complete timetables A and B assuming that A is superior to B

considering cost value. The objective during Path Relinking is to gradually transform A to B

hoping that promising timetables will arise during the process (backward relinking). At each step

of the procedure, certain attributes of A are modified so as to become identical with those of B.

During the transformation process intermediate, but complete, solutions are stored whenever they

are considered to be of value for subsequent stages of the overall process.

More specifically timetable A becomes timetable B gradually in cycles. In each cycle a group of

exams are selected from timetable A and rescheduled to new periods and rooms so as to comply

with those found in timetable B. It is possible that the rescheduling of a group of exams in A will

result in cascaded repositions of other exams in order to retain the feasibility of the solution.

Whenever the resulting timetable has more differences than the original, a rollback is performed to

the previous state of timetable A and an extra exam is added to the initial group of exams. The use

of the Command design pattern (Gamma et al., 1994) made rollback moves easy to be

programmed. The pseudo-code of the above process follows:

Step 1: Set N=1. Find differences between A and B and put them on set DIFFS. Set

MIN_SIZE=|DIFFS|. Set LEVEL=MIN_SIZE

Step 2: If MIN_SIZE=0 then terminate. Else all exams of A which are members of DIFFS that

can be scheduled to the same period and room as in B are repositioned accordingly.

Step 3: N exams are selected randomly from set DIFFS. For each selected exam other exams

must be removed from the timetable so as to allow the scheduling of the selected exam to the

period and room dictated by B. Priority for removal is given to exams that are not scheduled in the

same period and room as in B. If removing these exams is not sufficient extra exams are selected

on the basis of evoking minimum removals of other exams in previous stages of the algorithm.

Extra exams are selected one by one until the selected exam can be scheduled in the correct period

and room. Each one of the N exams are scheduled in the period and room found in solution B,

while a set of exams called UNSCHED contains exams that no longer belong to the timetable.

218

Step 4: All exams of set UNSCHED are scheduled to any of the available periods and rooms until

set UNSCHED become empty. In the process, removal of already scheduled exams is possible. If

this is the case then exams for removal are selected based again as in Step 3 on the history of

removals caused by each candidate exam. It should be mentioned that during this step no

restrictions apply on which exams could be removed.

Step 5: Update set DIFFS by finding differences between solution A and B. If

|DIFFS|>=MIN_SIZE then N=N+1 else MIN_SIZE=|DIFFS|.

Step 6: If MIN_SIZE<LEVEL then LEVEL=MIN_SIZE and N=1. Return to Step 2.

5. Experiments

While the application development and debugging has been carried out on a small cluster of

desktop PCs and the South East Europe part of the EGEE infrastructure, the results were obtained

running on a brand-new IBM Blade system. This system consists of 14 independent servers in a

single enclosure, each of them powered by a quad core hyper-threaded CPU Xeon processor based

on Nehalem architecture. These processors were coordinated by another server, which we call the

head node, a dual CPU quad core Xeon based on Clovertown architecture.

The head node hosts the SchedScripter master, which includes the services registry, as well as the

Distributed Scatter Search application coordinator. The 14 blade servers host the worker node

process and in order to fully exploit the 8 virtual cores (4 real ones hyper-thread), 8 processes start

on each server. This system was installed recently, so there was little time to measure the impact of

possible memory bandwidth bottlenecks. The different coordination process runs were managed

using Sun Grid Engine and a local queue with one slot on the head node. Several configuration

experiments were taking place at one or two nodes while the experiments were running, removing

these servers eventually from the available resources, so the resource pool was varying from 12 to

14 blades, or from 96 to 112 worker processes. The same experiment running on the EGEE grid

would suffer much more uncertainty in resource numbers, as on the grid resources enter and leave

at random times during runtime as the system lacks rendezvous mechanisms.

Every time the coordinator finds a new worker node, it transfers the necessary executables and

instructs it to load the problem dataset, which is about a minute long process. After this initial step,

specific improvement tasks are sent to the worker nodes. An improvement task is an instruction to

perform local search (Simulated Annealing and Shaking), starting from a specific solution with a

specific set of local search parameters and a timeout period. When the worker node finishes the

local search, it sends the resulting solution back to the coordinator, using a web service.

SchedScripter, being a grid framework, is highly tolerant to resource failure events and

dynamically resizes the resource pool at runtime. Distributed Scatter Search Coordinator as well,

has been created as a fault-tolerant process, able to dynamically resize its workers pool. Indeed,

since the biggest part of the debug sessions took place in the EGEE grid, where we submit about a

couple of hundred of worker jobs, these jobs start at random times as the grid workload

management system decides. These potential problems in reliability lead us to include fault-

tolerance as an inherent part of the coordination approach.

219

Table 2 displays the best results for each dataset of the problem under the runtime limit of about

10 minutes imposed by the ITC2007 competition. The second column contains the best results

collected from the winner of the competition, Tomas Muller, after 100 runs (Muller, 2008). It

should be noted that no data exist in this paper for the former hidden datasets because at that time

those datasets were not available. The next two columns are the best results collected after 51

independent runs as cited in (McCollum et al., 2009). The last column of the table depicts the best

results over 100 runs as cited in (Gogos et al., 2010). The last 4 values of the last column are not

included in (Gogos et. al., 2010) so new runs for those datasets were made and the values recorded

are the best results collected over 100 runs.

Instance (Muller, 2008) (McCollum et al, 2009)

(Post ITC2007)

Muller

(Post ITC2007)

(Gogos et al, 2010)

Dataset 1 4.356 4.663 4.370 4.775

Dataset 2 390 405 385 385

Dataset 3 9.568 9.064 9.378 8.996

Dataset 4 16.591 15.663 15.368 16.204

Dataset 5 2.941 3.042 2.988 2.929

Dataset 6 25.775 25.880 26.365 25.740

Dataset 7 4.088 4.037 4.138 4.087

Dataset 8 7.565 7.461 7.516 7.777

Dataset 9 X 1.071 1.014 964

Dataset 10 X 14.374 14.555 13.203

Dataset 11 X 29.180 31.425 28.704

Dataset 12 X 5.693 5.357 5.197

Table 2. Best results under time limit

The configuration used in our experiment with Scatter Search included a RefSet of 20 solutions,

collection of 4 solutions during each Path Relinking, 120 seconds available for each improvement

attempt and total runtime of 4 hours. In Table 3 the results of our approach are presented and

compared alongside with results obtained in (Gogos et al., 2009) with the current approach giving

better results in all datasets. The last column of the table shows the percentage of improvement

achieved over best results of Table 2. For all 12 datasets improvement was achieved, while for

certain datasets improvement was beyond our initial expectations.

Instance (Gogos et al, 2009) Current approach (Scatter

Search)

Percentage of improvement over best

results of Table 2

Dataset 1 4.699 4.128 5,23%

Dataset 2 385 380 1,30%

Dataset 3 8.500 7.769 13,64%

Dataset 4 14.879 13.103 14,74%

Dataset 5 2.795 2.513 14,20%

Dataset 6 25.410 25.330 1,59%

Dataset 7 3.884 3.537 12,39%

Dataset 8 7.440 7.087 5,01%

Dataset 9 X 913 5,29%

Dataset 10 X 13.053 1,14%

Dataset 11 X 24.369 15,19%

Dataset 12 X 5.095 1,96%

Table 3. Best results under no hardware or time limits

In order to be fair in our comparisons a few points have to be stressed out. The execution

environment is different between approaches included in Table 2 and Table 3. In the former case a

220

time limit of about 10 minutes was given while in the latter no practical time limit was imposed.

Furthermore, the number of runs is different. In Table 2 the results are the best collected from 51

or 100 runs while in Table 3 the results are collected from a single experiment that consumed more

processing power than all runs in each dataset of Table 2. However, we believe that our approach

demonstrates an effective method for using additional time and CPU resources if they are

available.

6. Conclusions

Evolutionary algorithms usually can be well adapted for execution in parallel or distributed

systems. This is the case for Scatter Search too. Creation of the initial population and processing of

solution combinations can be greatly accelerated using distributed workers. In this contribution we

have proposed a Scatter search technique for tackling the examination timetabling problem

harnessing the processing power of a very powerful computer system. Results show improvements

over best known values for all datasets of the ITC2007 ETP problem, which are for some cases

significant. We acknowledge the fact that results we compare with were obtained under a small

fraction of the processing time that we spent but we believe that for certain problems this extra

time can be allocated. Consequently, whenever “very good” solutions for difficult practical

problems are of significant importance over simply “good” solutions experimentation with scatter

search or other evolutionary metaheuristics combined with distributed execution environments

have increased possibilities to pay off.

References

Alba, E. Editor (2005). Parallel Metaheuristics, A New Class of Algorithms, ISBN 978-0-471 -

67806-9, John Wiley & Sons, Inc.

Carter M, Laporte G, Lee S (1996). Examination Timetabling: Algorithmic Strategies and

Applications. Journal of Operational Research Society, Volume 47, pp 373-383.

David P. (1998). A Constraint-Based Approach for Examination Timetabling Using Local Repair

Techniques. In: E.K. Burke and M.W. Carter (eds). Practice and Theory of Automated

Timetabling: Selected papers from the 2nd International conference, LNCS, Volume 1408, pp 169-

186. Springer-Verlag, Berlin, Heidelberg.

Ersoy E., Ozcan E. and Sima Uyar A. (2007). Memetic Algorithms and Hyperhill-Climbers.

Proceedings of the 3nd Multidisciplinary International Conference on Scheduling: Theory and

Applications, MISTA07, pp 159-166.

Gamma E., Helm R., Johnson R., Vlissides J. (1994). Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series. ISBN-13: 978-

0201633610.

Glover F (1977). Heuristics for Integer Programming Using Surrogate Constraints. Decision

Sciences, Vol 8, No 1, pp. 156-166.

221

Glover F (1998). A template for scatter search and path relinking. In: Hao JK, Lutton E, Ronald E,

Schoenauer M, Snyers D (eds). Artificial evolution. Lecture notes in computer science, vol 1363.

Glover F, Laguna M, Martí R (2000) Fundamentals of scatter search and path relinking. Control

Cybern 29(3):653–684.

Glover F, Laguna M, Martí R (2002) Scatter search. In: Ghosh A. Tsutsui S (eds) Theory and

applications of evolutionary computation: recent trends. Springer, Berlin, pp 519–529

Glover F, Laguna M, Martí R (2003) Scatter search and path relinking: advances and applications.

In: Glover F, Kochenberger G (eds) Handbook of metaheuristics. Kluwer Academic, Dordrecht,

pp 1–36

Gogos C, Alefragis P and Housos E (2010). An Improved Multi-Staged Algorithmic Process for

the Solution of the Examination Timetabling Problem. Annals of OR, DOI: 10.1007/s10479-010-

0712-3.

Gogos C, Goulas G, Alefragis P and Housos E (2009). Pursuit of Better Results for the

Examination Timetabling Problem Using Grid Resources, 2009 IEEE Symposium on

Computational Intelligence in Scheduling (CI-Sched), Nashville, Tennessee, USA, 30 Mar-2 Apr

2009, pp 48-53, DOI:10.1109/SCIS.2009.4927014.

Goulas G, Gogos C, Alefragis P and Housos E (2009). SchedScripter: Workflows for Grid-based

Human Resources Scheduling Applications, 4th EGEE User Forum/OGF 25 and OGF Europe's

2nd, Catania, Sicily, Italy, 2-6 March 2009

Gropp W, Lusk E and Skjellum A (1999). Using MPI: Portable Parallel Programming with the

Message Passing Interface, 2nd Edition, MIT Press.

Laguna M and Armentano V (2005). Metaheuristic Optimization via Memory and Evolution Tabu

Search and Scatter Search. Lessons from applying and experimenting with Scatter Search, pp.

229-246. Operations Research Computer Science Interfaces Series, Vol. 30.

Laguna M. and Marti R. (2006). Metaheuristic Procedures for Training Neural Networks edited by

Alba E. and Marti R. Scatter Search. Springer Science+Business Media, LLC.

Mansour N, Isahakian V and Ghalayini I. (2009). Scatter Search Technique for Exam

Timetabling. App Intell, DOI 10.1007/s10489-009-0196-5.

McCollum B. (2007). A Perspective on Bridging the Gap between Theory and Practice in

University Timetabling. In: PATAT 2006, LNCS 3867, pp 3-23, ISBN 978-3-540-77344-3.

Berlin: Springer.

McCollum B., McMullan P., Burke E., Parkes A., Qu R. (2009a). A New Model for Automated

Examination Timetabling. Submitted to post PATAT Annals of OR.

McCollum B., Schaerf A., Paechter B., McMullan P., Lewis R., Parkes A., Di Gaspero L., Qu R.,

Burke E. (2009b). Setting the Research Agenda in Automated Timetabling: The Second

International Timetabling Competition. INFORMS Journal of Computing 2009.

DOI:10.1287/ijoc.1090.0320.

Muller T. (2008). ITC 2007: Solver description. Proceedings of the 7th International Conference

on Practice and Theory of Automated Timetabling. University of Montreal, Canada.

222

Pillay N. and Banzhaf W. (2008). A Study of Heuristic Combinations for Hyper-Heuristic Systems

for the Uncapacitated Examination Timetabling Problem. European Journal of Operational

Research. DOI:10.1016/j.ejor.2008.07.023.

Qu R, Burke E, McCollum B Merlot L and Lee S (2009). A Survey of Search Methodologies and

Automated System Development for Examination Timetabling. Journal of scheduling, 12(1), pp

55-89. DOI:10.1007/s10951-008-0077-5.

Qu R. and Burke E.K. (2009). Hybridizations Within a Graph Based Hyper-Heuristic Framework

for University Timetabling Problems. Journal of Operational Research Society.

DOI:10.1057/jors.2008.102

Schaerf A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review, Volume

13, pp 87-127. Kluwer Academic Publishers, Netherlands.

Talbi, El-Ghazali(2009). Metaheuristics, from Design to Implementation, ISBN 978-0-470-27858-

1, John Wiley & Sons, Inc.

Yu J. and Buyya R. (2005). A Taxonomy of Workflow Management Systems for Grid Computing,

Journal of Grid Computing, Volume 3, Numbers 3-4, Pages: 171-200, Springer, New York, USA.

223

A Comparison of Three Heuristics on a Practical Case of
Sub-Daily Staff Scheduling

Maik Günther · Volker Nissen

Abstract Sub-daily personnel planning, which is the focus of our work offers considerable
productivity reserves for companies in certain industries, such as logistics, retail and call
centers. However, it also creates complex challenges for the planning software. We compare
particle swarm optimisation (PSO), the evolution strategy (ES) and a constructive agentba-
sed heuristic on a set of staff scheduling problems derived from a practical case in logistics.
All heuristics significantly outperform conventional manual full-day planning, demonstra-
ting the value of sub-daily scheduling heuristics. PSO delivers the best overall results in
terms of solution quality and is the method of choice, when CPU-time is not limited. The
approach based on artificial agents is competitive with ES and delivers solutions of almost
the same quality as PSO, but is vastly quicker. This suggests that agents could be an inter-
esting method for real-time scheduling or re-scheduling tasks.

Keywords personnel planning · sub-daily scheduling · metaheuristics · artificial agents

1 Introduction

Staff scheduling involves the assignment of an appropriate employee to the appropriate
workstation at the appropriate time while considering various constraints. This work de-
scribes a method for solving the problem of subdaily staff scheduling with individual work-
stations. According to current research employees spend on average 34.3% of their working
time unproductively [26]. Major reasons include a lack of planning and controlling. The
problem can be faced with demandoriented staff scheduling. Key planning goals are increased
productivity, reduction of staff costs, prevention of overtime, better motivation of employees
with positive results for sales and service [29].

In practice, the application of a system for staff scheduling has not been very prevalent
up to now. Most often planning takes place based on prior experience or with the aid

M. Günther, V. Nissen
Ilmenau University of Technology, Faculty of Economic Sciences
Chair of Information Systems in Services (WI2)
Postfach 100565, D-98684 Ilmenau, Germany
Tel.: +49-3677-694047
E-mail: maik.guenther@gmx.de, volker.nissen@tu-ilmenau.de

224

of spreadsheets [2]. It is obvious that the afore-mentioned goals of demand-oriented staff
scheduling cannot be realised with these planning tools. Even with popular staff planning
software employees are regularly scheduled for one workstation per day. However, in many
branches, such as logistics and trade, the one-employee-one-station concept does not corre-
spond to the actual requirements and sacrifices potential resources. Intra-day variations in
demand require more flexible changes of employees among workstations. This is the only
way to prevent or at least reduce phases of over- and understaffing. This issue is critical in our
application domain logistics, because on the one hand a high service level is contractually
obligated to the customers and on the other hand the level of competition is high and strict
cost management is required. Therefore, sub-daily planning should be an integral component
of demand-oriented staff scheduling.

It may be argued that the introduction of sub-daily scheduling is likely to generate
resistance among the workers. However, in markets with intense competition, such as lo-
gistics, a company must use it’s opportunities to provide good service at a reduced cost level
to secure the long-term competitiveness and survival of the firm. This is ultimatively also in
the interest of employees. Moreover, in industries with similar characteristics and require-
ments, such as retailing and call centers, the concept of sub-daily scheduling is already in
use.

In our work, we pursue three intertwined research goals. According to Puppe et al. [27],
centralized scheduling approaches are difficult to employ successfully. One of our research
goals is, therefore, to investigate whether this is actually true for sub-daily staff scheduling
problems. To this end, we develop different variants of centralized scheduling approaches
based on modern metaheuristics, namely the evolution strategy (ES) and particle swarm
optimisation (PSO).

The ES was chosen, because our earlier experiments on other application problems [22]
[21] showed great potential of the ES for combinatorial optimisation, even though this is
still a rather neglected field of research and the vast majority of publications on ES deals
with real-valued parameter optimisation. PSO was chosen, because our prior work on staff
scheduling [23] demonstrated that this metaheuristic can produce very good results on this
type of application. We build upon our previous work here by adding a repair heuristic to
further improve results.

The metaheuristics are tested and compared on a set of eight problem instances gen-
erated from a practical logistics case. Here, a second research goal is to contribute to the
comparison of metaheuristics on practical problems of realistic size and complexity. We
compare the results to the manually generated plan (as taken from the cooperating company)
as well as results from a constructive approach.

Ernst et al. [10] provide a comprehensive overview of problems and solution methods
for personnel scheduling and rostering from more than 700 analysed sources. Constructive
methods were applied in 133 of those works. Because of it’s popularity, this method is
included in our comparison. We develop a constructive heuristic approach that builds a
single solution by interaction of multiple artificial agents, following other successful agent-
based scheduling approaches in the literature [27] [18] [9].

Finally, with our research we aim to contribute to the solution of a practical and non-
trivial optimisation problem that is gaining significance in industries such as trade and lo-
gistics as well as call centers. We use real-world data sets and the results of our heuristic
approaches were conceived very positively by the management of the respective company.
However, we have so far not integrated the new solution methods in a commercial software
product. It is worth mentioning here that workforce management consists of many facets
besides optimization that should be adressed within a holistic commercial software solution.

225

In the following section, the application problem is described and the mathematical
model is given. Then, we discuss work related to our own research before developing
approaches based on particle swarm optimisation, the evolution strategy and artificial agents
in section 4. The experimental setup and empirical results are presented and discussed in
section 5. The paper concludes with a short summary and some indications for future work.

2 Description of the Practical Application Problem

The present problem originates from a German logistics service provider. This company
operates in a spatially limited area. The planning problem covers seven days (20 hours each),
divided into 15-minute intervals. It includes 65 employees and, thus, an uncompressed total
of 36,400 dimensions for the optimisation problem to be solved. The planning task is to
find a staff schedule that respects certain hard constraints and minimizes the violation of
soft contraints. Nine different workstations need to be filled, with seven having qualification
requirements. For real-world data sets and benchmarks see [37].

The problem starts out assuming a set of employees E = {1, . . . ,E}, a set of worksta-
tions W = {1, . . . ,W} and a discrete timeframe T with the index t = 0, . . . ,T − 1, where
each period t of the range has a length lt greater than zero. The demand dwt of employees
per workstation and period cannot be negative.

lt > 0 ∀t ∈T
dwt ≥ 0 ∀w ∈W and ∀t ∈T

(1)

The general availability of the employees is known for each interval from the previous
full-day planning. Employees are quite flexible in terms of their working hours, which
results in a variety of shifts. Shift planning was done for 13 possible shifts plus a planned off-
shift. Several considerations are included, such as presence and absence, timesheet balances,
qualifications and resting times etc. Therefore the availability of employees is known at the
beginning of the sub-daily planning and is determined using the binary variable aet .

aet =
{

1 if employee e is available at period t
0 otherwise (2)

The assignment of an employee to a workstation is controlled using the binary variable
xewt .

xewt =
{

1 if e is assigned to w at t
0 otherwise (3)

An employee e can only be associated with a workstation w in the period t if he or she
is actually present. Additionally, an employee can only be designated to one workstation at
a time.

W

∑
w=1

xewt = aet ∀e ∈ E and ∀t ∈T (4)

A staff schedule is only valid if any one employee is assigned to one workstation at a
time and if absent employees are not included in the plan. These hard constraints can be
contrasted with soft constraints, such as the avoidance of understaffing or qualifications.
The violation of soft constraints is penalized with error points. The error points used in our
work are from an interview with the logistics service provider and reflect that company’s
requirements. Basically, they reflect a ranking of constraint violations.

226

Special attention must be paid during the scheduling process to compliance with the
required qualifications. The tasks of employees concern loading and unloading, short dis-
tance transportation and other logistic services. There are regulations especially with regard
to qualifications because the assignment of unqualified employees might lead to significant
material damage and personnel injury. The employer regularly invests substantial time and
money in qualification measures. Thus, many employees can work at several different work-
stations. The variety of qualifications was summarised in four qualification groups. Any
workstation can require a set of qualifications Qw, and employees have a set of qualifica-
tions Qe at their disposal. If an employee is planned for a workstation but does not meet
all necessary qualifications, error points Pq are generated for the duration of the assignment
according to the error point size cq. The error point size itself is independent of the particular
workstation or employee.

Pq =
T−1

∑
t=0

W

∑
w=1

E

∑
e=1

cqltxewt

cq > 0 if e is not qualified
for w,

cq = 0 else
(5)

The personnel requirements for each workstation are known in advance and even short-
term alterations occur extremely rarely, which yields a high certainty in planning. If a
discrepancy arises from the workstation staffing target dwt , error points Pd are generated for
the duration and size of the erroneous assignment according to the error point size. Three
types of errors can be distinguished: cdo represents overstaffing when the demand dwt > 0,
cdn signals overstaffing when the demand dwt = 0, cdu signals cases of understaffing. Again,
the three error point sizes are not dependent on the particular workstation.

Pd =
T−1

∑
t=0

W

∑
w=1

(cdn + cdo + cdu)lt

∣∣∣∣∣
(

E

∑
e=1

xewt

)
−dwt

∣∣∣∣∣ ,
with: (6)

cdn > 0 if w is overstaffed at t and dwt = 0, else cdn = 0

cdo > 0 if w is overstaffed at t and dwt > 0, else cdo = 0

cdu > 0 if w is understaffed at t and dwt > 0, else cdu = 0

To avoid an excessive number re of sub-daily workstation (job) rotations for any em-
ployee cr error points arise for such rotations.

Pr = cr

E

∑
e=1

re (7)

Therefore, the objective function to be minimised becomes:

minP = Pq +Pd +Pr. (8)

Currently, monthly staff scheduling is carried out manually within MS EXCELTM. The
personnel demand for the workstations is subject to significant variations during the day.
However, employees are generally scheduled to work at the same workstation all day, caus-
ing large phases of over- and understaffing. This lowers the quality of service and the
motivation of employees and leads to unnecessary personnel costs as well as downtime.
Today, sub-daily workstation rotation is only rarely used in the planning. Usually, department
managers intervene directly on site and reassign the employees manually. Obviously, demand-
oriented staff scheduling cannot be realised with this approach.

227

3 Related Work

In [10] Ernst et al. offer a summary of papers related to the issue of staff scheduling – about
700 papers between the years 1954 and 2004 have been included. They identify certain
categories of problems, such as the category flexible demand. This category is characterised
by little available information on schedules and upcoming orders. In our problem a demand
per time interval is given as well as a required qualification. Thus, the application problem
discussed here can be classified in the group flexible demand schemes. It can additionally be
classed under task assignment. Task assignment is used to generate assignments requiring
certain qualifications and needing to be completed in a certain period of time, which are then
distributed amongst the employees. The employees have already been assigned shifts.

As work related to our research Vanden Berghe [33] presents a heuristic to sub-daily
planning. Here, demand is marked by sub-daily time periods, which allows the decoupling
of staff demand from fixed shifts resulting in fewer idle times. However, scheduling ist not
performed at the detailed level of individual workstations as in our research.

In [20] Schaerf and Meisels provide a universal definition of an employee timetabling
problem. Both the concepts of shifts and of tasks are included, whereby a shift may include
several tasks. Employees are assigned to the shifts and assume tasks for which they are
qualified. Since the task is valid for the duration of a complete shift, no sub-daily changes
of tasks (or rather workstations) are made. Blöchlinger [6] introduces timetabling blocks
(TTBs) with individual lengths. In this model employees may be assigned to several se-
quential TTBs, by which subdaily time intervals could be represented within a shift. Blöch-
linger’s work also considers tasks; however, a task is always fixed to a TTB. Essentially, our
problem of the logistics service provider represents a combination of [20] (assignment of
staff to tasks) and [6] (sub-daily time intervals), but with the assignment periods (shifts) of
the employees already being set.

Staff scheduling is a hard optimisation problem. In [12] Garey and Johnson demonstrate
that even simple versions of staff scheduling problems are NP-complete. Kragelund and
Kabel [17] show the NP-hardness of the general employee timetabling problem. Moreover,
Tien and Kamiyama prove in [32] that practical personnel scheduling problems are generally
more complex than the TSP which is itself NP-hard. Thus, heuristic approaches appear
justified for our application.

Apparently, there exists no off-the-shelf solution approach to the kind of detailed sub-
daily staff planning problem considered here. Approaches based on particle swarm optimisation
(PSO), the evolution strategy (ES), and multiple artificial agents for this application are
outlined in the following section.

We now give a short general overview of particle swarm optimisation and the evolution
strategy. For more details, the reader ist referred to [16] [11] for standard-PSO and [4] [5]
for standard-ES. Thereafter, some research of others on agent-based scheduling is outlined
to complete the picture of related work.

The basic principles of PSO were developed by Kennedy and Eberhart among others
[15] [16]. Swarm members are assumed to be massless, collision-free particles that search
for optima with the aid of a fitness function within a solution space. In this process each
single particle together with its position embodies a solution to the problem [34]. While
looking for the optimum, a particle does not simply orient itself using its own experience
but also using the experience of its neighbours [11]. This means that the particles exchange
information, which can then positively influence the development of the population in the
social system as a whole [24].

228

Modifications of standard real-valued PSO exist for binary variables, where the speed of
a particle is used as the probability for the change of the binary value [16]. This approach,
however, has several limitations and was changed from binary to decimal variables in [35].
Another PSO-variant was developed for sequence planning tasks [31]. In 2007 Poli analysed
the IEEE Xplore database for the thematic grouping of PSO applications [25]. Of approxi-
mately 1100 publications only one work is focused specifically on timetabling [8] which is
related to our own application problem. In [8], the authors adjust PSO to the combinatorial
domain. No longer is the position of a particle determined by its speed but rather by using
permutation operators. In [7] university timetabling was also approached with PSO.

The evolution strategy (ES) was originally invented by Rechenberg and Schwefel [5]
and soon applied to continuous parameter optimisation problems. Like genetic algorithms
the evolution strategy belongs to the class of evolutionary algorithms that form broadly
applicable metaheuristics, based on an abstraction of the processes of natural evolution [3]
[4]. There is some work on the evolution strategy in combinatorial and discrete optimisation.
Herdy [14] investigates discrete problems with some focus on neighbourhood sizes during
mutation. Rudolph [28] develops an evolution strategy for integer programming by construc-
ting a mutation distribution that fits this particular search space. Bäck [3] discusses mutation
realized by random bit-flips in binary search spaces. Nissen [21] modifies the coding and
the mutation operator of the evolution strategy to solve combinatorial quadratic assignment
problems. Schindler et al. [30] apply the evolution strategy to combinatorial tree problems
by using a random key representation which represents trees with real numbers. Schwefel
and Beyer [5] present permutation operators for the evolution strategy in combinatorial
ordering problems. Li et al. [19] develop a mixed-integer variant of the evolution stra-
tegy that can optimize different types of decision variables, including continuous, normal
discrete, and ordinal discrete values. Nissen and Gold [22] propose an evolution strategy
for a combinatorial network design problem that successfully utilises a repair heuristic
and domain-specific mutations. However, continuous parameter optimisation is still the
dominant field of application for the evolution strategy, as the operators of the standard
form are particularly well adapted to this type of problem.

Next to these metaheuristics, there is also some related work on agent-based scheduling.
Puppe et al. [27] present two concepts for artificial agents on scheduling in hospitals. In the
resource-oriented view each resource or the associated organizational unit is represented as
an agent. This concept is more applicable, when the problem is static. In the patient-oriented
view, an agent is created for every patient examination, which is more adapted to dynamical
problems.

Krempels [18] also creates a staff schedule by using agents. The agent approach is di-
vided in several phases. Initially a planner agent creates a plan ignoring staff preferences.
Thereafter, the planner tries to improve the plan by incorporating preferences. A knowledge
tank stores all relevant aspects of the resources. In case of a conflict, an agent is created for
each staff member, followed by a negotiation phase.

De Causmaecker et al. [9] make comments on negotiation schemes for course time-
tabling. Only necessary information should be exchanged among agents. Moreover, a nego-
tiation process should not take exceedingly long. More recent agent-based approaches for
scheduling are, for instance, presented in [1] and [36].

229

4 PSO Approach and Evolution Strategy

4.1 Problem Representation

To apply PSO and the evolution strategy, the sub-daily staff scheduling problem needs to be
conveniently represented. A two-dimensional matrix is applied. Each particle in the swarm
(for PSO) has an own matrix that determines its position. Also, each individual in the ES-
population uses a matrix to represent its solution to the application problem. The rows of
the matrix signify employees and the columns signify each time period of the length lt > 0.
To mark times in which an employee is not present due to his work-time model, a dummy
workstation is introduced (in Table 1: workstation 0). For example, employee two is absent
in the first period and then is assigned to workstation 2. Assignment changes can only be
made to non-dummy workstations, so that no absent employee is included.

To lower the complexity the number of dimensions should be reduced. This can be
realised via a suitable depiction of time. Within the planned day, time is viewed with a
time-discrete model. An event point (at which a new time interval begins) occurs when the
allocation requirement for one or more workstations or employee availability change. With
this method, however, the periods are not equally long any more, so that their lengths need
to be stored.

Table 1 Assignment of workstations in a matrix.

periodemployee
1 2 3 4 5 6 ...

1 1 1 1 1 1 1
2 0 2 2 2 2 2
3 0 1 1 2 2 2
4 0 6 6 6 6 2
5 3 3 2 2 0 0
...

4.2 Repair Heuristic

Both scheduling metaheuristics outlined in this paper employ an identical repair heuristic to
reduce the total error points of a solution. This repair heuristic corrects constraint violations
in the following order based on error point size:

– qualification: employees not qualified for the currently assigned workstation are given
an apropriate assignment whilst ignoring under- or overstaffing

– no demand: employees currently assigned to a workstation with zero demand are given
a different assignment (if possible) whilst simultaneously considering their qualification

– understaffing: if workstations are understaffed employees are reassigned from other
workstations with overstaffing (if possible) also considering their qualification. Thus,
simultaneously the problem of overstaffing is reduced.

230

4.3 PSO for this Application

The following pseudocode presents an overview of the implemented PSO. Here, pBest
represents the best position found so far by the particle while gBest corresponds to the best
position of all particles globally.

01: initialise the swarm
02: evaluate the particles of the swarm
03: determine pBest for each particle and gBest
04: loop
05: for i = 1 to number of particles
06: calculate new position // use the 4 alternative actions
07: repair the particle
08: evaluate the particle
09: if f(new position)<f(pBest) then pBest=new position // new pBest
10: if f(pBest)<f(gBest) then gBest=pBest // new gBest
11: next i
12: until termination

At the start of PSO the initialisation of the particle position creates valid assignments
w.r.t. the hard constraints by using information from the companys current full-day staff
schedule. Therefore, valuable prior knowledge is not wasted. Based on this plan, improved
solutions can now be determined that include plausible workstation changes.

In each iteration the new particle position is determined by traversing all dimensions
of the particle and executing one of the following actions with predefined probability. The
probability distribution was heuristically determined in prior tests. The behaviour of the
PSO-heuristic is relatively insensitive to changes of p1, p3, and p4. The optimal value for
p2 depends on the problem size (smaller probabilities for larger problems).

– No change (p1=9.7%): The workstation already assigned remains.
– Random workstation (p2=0.3%): A workstation is randomly determined and assigned.

Only those assignments are made, for which the employee is qualified. The probability
function is uniformly distributed.

– pBest workstation (p3=30%): The corresponding workstation is assigned to the particle
dimension from pBest. Through this, the individual PSO component is taken into ac-
count.

– gBest workstation (p4=60%): The corresponding workstation is assigned to the particle
dimension from gBest. gBest was found to work best as a neighbourhood topology for
this type of application in [13]. By considering the best position of all particles, the
swarm’s experience is included in the position calculation.

Once created, a solution is repaired with the heuristic described above before it undergoes
evaluation.

The characteristics of PSO have not been changed with these modifications. There are
merely changes in the way to determine a new particle position, so that the calculation of
the velocity is not needed. The current form of position determination makes it unnecessary
to deal with dimension overruns. All other peculiarities of PSO regarding social or global
behaviour remain. Even all neighbourhood topologies established as part of continuous
parameter optimisation in standard-PSO remain and can be used without restrictions. In
our implementation, PSO terminates after 400,000 inspected solutions. Alternatively, con-
vergencebased termination criteria could be employed.

231

4.4 Evolution Strategy for this Application

The following pseudocode presents an overview of the implemented ES.

01: initialise the population with µ individuals
02: repair the µ individuals
03: evaluate the µ individuals
04: loop
05: copy and recombine parents to generate λ offspring
06: mutate the λ offspring
07: repair the λ offspring
08: evaluate the λ offspring
09: select ((µ +λ) or (µ,λ)) µ best individuals as new generation
10: until termination

The ES population is initialized with valid solutions w.r.t the hard problem constraints.
Again, information from the company’s current full-day staff schedule is used. We use
the same initialisation as for PSO. (µ,λ)-selection (comma-selection) as well as (µ + λ)-
selection (plus-selection) are used as well as different population sizes. In plus-selection
parents compete with their offspring and can, thus, survive to the next generation cycle.
By contrast, comma-selection assumes that only offspring compete during the selection
process. The best solution found during an experimental run is always stored and updated
in a ”golden cage”. It represents the final solution of the run. Following suggestions in the
literature [4] [5], the ratio µ/λ is set to 1/5 – 1/7 during the practical experiments.

Ten alternative recombination variants were evaluated in a pre-test. The best perform-
ance was achieved with a rather simple form that is based on the classical one-point cross-
over. The recombination of parents to create an offspring solution works as follows: A
common crossover point is determined at random for all employees (rows) of a solution
and the associated parts of the parents are exchanged (see fig. 1).

Fig. 1 Recombination operator employed.

Mutation is the main search operator employed in ES. In standard-ES mutation is per-
formed using normally-distributed random variables so that small changes in a solution are
more frequent than large changes. In [23] we developed a search operator that adheres quite
closely to this classical form of mutation and produced fairly good results.

In this paper, a different approach to mutation is employed that takes the characteris-
tics of the discrete search space better into account. It is based on the work of Rudolph
[28]. He developed an approach to construct a mutation distribution for unbounded integer
search spaces. The concept of maximum entropy is used to select a specific distribution from

232

numerous potential candidates. Rudolph tested his ideas on five nonlinear integer problems.
Some adaptations were required for the staff scheduling problem, though. The search space
in our problem domain is bounded and hard constraints must be considered. In short, the
main differences to Rudolph’s approach are as follows:

– dimension boundaries are introduced to account for the bounded search space
– mutation produces only changes that consider employee availability
– the assignment of workstations during mutation respects necessary qualifications
– the mutation intensity is increased to account for the high-dimensional search space

Before a solution is evaluated it is repaired using the same repair heuristic as was the
case for PSO. The ES terminates when 400,000 solutions have been inspected to allow for a
fair comparison with PSO.

4.5 Artificial Agents for this Application

The two metaheuristic approaches that are based on searching the solution space are con-
trasted with a constructive method that is based on a multitude of interacting artificial agents.
Following the suggestion of Puppe et al. [27], resource-oriented agents are used for this
static staff scheduling application. In our problem, constraints and preferences come from
two directions. On one side is the employer who aims at reduced overall costs, a high service
level, the consideration of qualifications in the schedule etc. On the other side there are the
employees, that try to enforce their rights, such as legal regulations and the minimization of
workstation rotations during the day. Consequently, following Krempels [18], our approach
is structured in two phases associated with employer and employees.

Fig. 2 Representation of the agent approach for the logistics problem.

Fig. 2 shows a schematic representation of our multi-agent approach, which also respects
the recommendations in [9]. The individual steps, that finally construct a staff schedule, can
be described as follows:

– First, the properties of existing resources, current demands and conditions of the prob-
lem space are stored in the knowledge tank (0). This information includes absence of

233

employees, required qualifications, error-point values for violations of restrictions, per-
sonnel requirements of each interval etc.

– The information in the knowledge tank is supplied (1) to three agents (2), (5) and (6).
– Before starting to plan, service agent (2) initialises the schedule by assigning all em-

ployees to a dummy workstation. This indicates, that these employees are not currently
assigned to an actual workstation.

– Following that, service agent (2) ranks the nine workstations, with the highest priority
going to workstations for which the least number of employees are qualified. Should the
number of qualified staff for two or more workstations be identical, then the priorities
are ordered at random.

– Scheduling agents (3) are sequentially initialised by the service agent (2), according to
priority. Each scheduling agent (3) represents one of the nine workstations. Only one
scheduling agent (3) exists at any time. The scheduling agent for which the fewest em-
ployees are qualified begins. He schedules qualified employees, who are present and
have not yet been assigned. Over- and understaffing should be minimised as much as
possible. The planning result of the first scheduling agent is passed (4) to service agent
(2), which in turn gives feedback regarding the schedule to the knowledge tank (1). Then,
service agent (2) initiates the next scheduling agent (3), which also attempts to cover its
personnel demand as good as possible. During this process, previously assigned em-
ployees may not be deployed to subsequent workstations. Service agent (2) sequentially
initiates scheduling agents (3) until all nine workstations have been processed.

– After an assignment plan was created, there could still be employees in some timeslots,
who have not yet received an assignment. Switching employees to other workstations
could result in better coverage of demand. The service agent (2) calls a scheduling agent
(5), also connected (1) to the knowledge tank. Scheduling agent (5) finalises the schedule
by deploying all workers, who are still unassigned, necessarily accepting overstaffing.
Possible switches are again checked as to whether they would lead to better demand
coverage and those that would are carried out.

– Assignment planning was done up to now from the point of view of the company. This
occurred while neglecting employee needs – the reduction of the number of workstation
rotations. For this reason, scheduling agent (5) initiates another service agent (6) in
order to consider employee preferences. This service agent (6) is also connected to the
knowledge tank (1).

– Service agent (6) examines each timeslot in the schedule and checks whether a worksta-
tion rotation occurs. If this is the case, all workers are identified for whom a negotiation
could occur for this timeslot. They must be present in the timeslot and qualified for the
switch. Service agent (6) simultaneously generates a staff agent (7) for each relevant
employee. In contrast to the scheduling agents (3), more than one staff agent exists at
the same time.

– Two staff agents (7) negotiate a workstation assignment switch (8) in the following way:
The staff agent where the service agent (6) identified a workstation rotation sequentially
asks the other staff agents for a swap. Each staff agent knows its current workstation
assignment at times t, t − 1 und t + 1. The two communicating staff agents exchange
only information about their assignments at time t. Without re-calculating the whole
fitness function they can now decide, if a swap would reduce the overall error count
of the schedule. If this is the case, they agree to swap and communicate (9) this to the
service agent (6). Then, the swap is executed and all staff agents are deleted. If a swap
would not reduce the error count, the process continues by asking the next staff agent
in the queue. As a result, a swap may or may not occur for each staff agent where a

234

workstation rotation was identified, depending on the availability of a swap option that
improves the overall error count of the schedule.

– In addition to the negotiation (8) between staff agents (7), a negotiation is also carried
out between the service agent (6) and the staff agent, for which the workstation rotation
was identified. The goal of this negotiation is not to execute a switch with another staff
agent, but rather to carry out a switch at time t for the workstation at which the em-
ployee is working at times t−1 or t +1. This also helps reduce the number of worksta-
tion rotations. Service agent (6) only agrees to the switch, if the overall quality of staff
assignments does not deteriorate. The result of the negotiation is either the assignment
to a different workstation at time t (and thus the reduction of workstation rotations) or
keeping the assignment as is. This decision is reported to service agent (6) and carried
out.

– Service agent (6) repeats the last three steps up to the point where no further improve-
ments occur.

5 Results and Discussion

The full-day manual staff schedule for the logistics service provider problem without sub-
daily workstation changes results in 411,330 error points after an evaluation that included
the penalties arising from the afore-mentioned constraints.

Table 2 Comparison (error points) of the different sub-daily scheduling heuristics, based on 30 independent
runs each. Best results are bold and underlined.

error number wrong under- overstaffing in minutes
of job qualifi- staffingheuristic

mean min changes cations in in
demand demand

minutes minutes
>0 =0

Manual Plan 411330 411330 0.0 1545.0 20130.0 14610.0 33795.0
Agents 51829 51801 1579.0 0.0 7365.0 28395.0 7245.0
PSO (10) 51752 51736 1502.2 0.0 7365.0 28395.0 7245.0
PSO (20) 51781 51763 1531.4 0.0 7365.0 28395.0 7245.0
PSO (100) 51826 51811 1575.8 0.0 7365.0 28395.0 7245.0
PSO (200) 51841 51817 1591.2 0.0 7365.0 28395.0 7245.0
ES (10,50) 51870 51842 1620.3 0.0 7365.0 28395.0 7245.0
ES (10+50) 51843 51816 1592.5 0.0 7365.0 28395.0 7245.0
ES (30,200) 51855 51835 1604.5 0.0 7365.0 28395.0 7245.0
ES (30+200) 51846 51820 1596.3 0.0 7365.0 28395.0 7245.0

Table 3 t-test results for pairwise comparison of heuristics.

signi- mean 95% confidence
ficance diffe- intervall of

H1 T d f H0 rence differences
(l-tailed) lower upper

PSO(10) < ES(10+50) -26.40 58.00 < 0.001 -90.67 -97.54 -83.79
PSO(10) < Agents -23.57 47.17 < 0.001 -77.27 -83.86 -70.67
Agents < ES(10+50) -3.26 58 = 0.002 -13.40 -21.64 -5.16

The results of the various scheduling approaches are shown in table 2. Thirty inde-
pendent runs were conducted each time for each of the experiments to allow for statistical

235

testing. All test runs were conducted on a PC with an Intel 4 x 2.67 GHz processor and 4 GB
of RAM. An individual run with the multi-agent approach takes approx. 1 sec of CPU-time.
The runtime requirements for the PSO and ES approaches are much higher and in the order
of 50 minutes per run (including the repair heuristic). This effort, however, is acceptable as
there is sufficient time available for creating the schedule. Moreover, the required CPU-time
could certainly be reduced, for instance through parallelization, but this was not the focus of
our work.

All heuristics for sub-daily staff scheduling significantly outperform the manual full-day
schedule in terms of total error points. This demonstrates the value of sub-daily scheduling
as compared to today’s standard staff scheduling approach which not only wastes resources
but also demotivates personnel and deteriorates quality of service. Generally, the problems
of understaffing and overstaffing for periods without demand are greatly reduced. On the
other hand, all heuristics lead to more overstaffing in periods with demand > 0 as compared
to the initial plan. This approach, however, is sensible because employees can still support
each other instead of being idle when demand = 0.

The fact that all heuristics arrive at the same value for ’wrong qualifications’, ’un-
derstaffing’ and ’overstaffing in minutes’ should be interpreted cautiously. PSO and ES
find these values due to the use of the repair heuristic, which includes domain-specific
knowledge, just as the agent approach is tailored to the problem at hand. Finding these
values is, thus, not really an easy task.

However, the true complexity of the application lies in the additional requirement to
also reduce the number of job rotations to a minimum. Each job rotation is punished with
only one error point, according to the companies ranking of constraint violations as inquired
through interviews with the management. Thus, the total error counts of individual schedules
by different solution approaches are often quite close. But a schedule that includes many
absurd job rotations will not have acceptance of the planners and the employees. Thus,
even relatively small differences in the overall error count of distinct plans can be quite
meaningful in practice.

Interestingly, the PSO heuristic provides the best results with a rather small swarm size
of 10 particles, but also larger swarm sizes produce good results. Many steps are required
to arrive at a good schedule. Thus, it seems preferable to track changes for more iterations
as compared to richer knowledge (through larger swarm size) of the solution space in each
iteration. This effect is less clear for the ES with solution repair. It was visible for the ES,
though, when no solution repair was employed as in [23].

Apparently, the plus-selection has a slight advantage over the comma-selection for the
ES on this problem instance, but this should not be generalized. The mutation scheme based
on maximum entropy provides better results for the ES than a more traditional approach
based on rounded Gaussian mutations as given in [23]. This result underlines the importance
of adapting the mutation operator to fit the characteristics of the search space as well as
possible.

PSO(10) and ES(10+50) provided the best mean error results in their respective groups.
With 30 independent runs for each heuristic it is possible to test the statistical significance
of the performance difference between both solution methods with a t-test (see table 3).
A Levene-test revealed the homogeniety of variances (test level 5%) between both groups
(F = 3.55, p = 0.065). The corresponding t-test with a 95% confidence interval confirms the
better performance of PSO(10) with a very high statistical significance (p < 0.001 for H0).
The result remains the same, if heterogeniety of variances is assumed. This success of PSO
must be attributed to its operators since the coding of PSO and ES are identical. A second

236

reason concerns the fewer strategy parameters in our PSO-approach which are more easily
adapted to the application domain.

Fig. 3 Convergence chart for PSO(10) and ES(10+50).

Fig. 3 shows the convergence behaviour of best variants from PSO and ES in com-
parison. Not only does PSO generate the better final solution, but it also demonstrates a
more rapid convergence towards good solutions. This is generally a desirable characteristic,
particularly when the available time for an optimisation is rather limited (not the case here).

Notwithstanding the fact that the PSO heuristic was able to provide better results for
this problem, it also has one technical advantage over ES. The PSO outlined in this paper
only requires the varying of two parameters (swarm size and p2), which can both be easily
set. ES, on the other hand, offers more parameterisation possibilities (selection pressure,
recombination scheme, plus or comma selection etc.), resulting in greater heuristic com-
plexity from a user’s perspective.

The results from the multi-agent system are quite close to the schedules created by PSO
and in fact better than those generated by ES. A t-test was conducted to compare the best
parameterisation of PSO (swarm size 10) and the multi-agent approach (see Table 3). A
Levene-test revealed the heterogeneity of variances (test level 5%) between both groups
(F = 6.585, p = 0.013). The t-test with a 95% confidence interval confirms the better per-
formance of PSO (10) with a very high statistical significance (p < 0.001 for H0).

A corresponding t-test was conducted between the best parametrisation of ES (10+50)
and the agent approach. The Levene-test here showed a homogeneity of variances (test level
5%) between both groups (F = 0.049, p = 0.826). The t-test confirms the better performance
of the multiagent approach with a very high statistical significance (p = 0.002 for H0).

An advantage of the multi-agent approach over the metaheuristics, alongside the low
CPU-requirements, is the relative simplicity of its scheduling strategy. While it is hard for
a staff planner to grasp what is really happening during optimisation with PSO or ES, the
acceptance for the agent-derived solution is likely to be far higher, since the individual steps
of the planning and negotiation procedure are relatively straightforward and familiar for

237

staff managers. The importance of this comprehensibility for the acceptance of the resulting
schedule should not be underestimated.

The agent approach does not violate qualification constraints and over- as well as un-
derstaffing are reduced to the possible minimum as found by PSO and ES. It is only the
number of sub-daily workstation rotations that is different in the solutions produced by the
constructive multi-agent method. To achieve an improved solution quality, an extended re-
scheduling and swapping of assignments would have been required. It must consider more
than two staff members in parallel as well as large parts of the planning horizon. This is
beyond what is possible through one-to-one negotiation of a staff agent with the service
agent or other staff agents. It can only be achieved with the aid of a central planning instance,
that partly ignores the individual preferences of agents for a better overall result of the entire
schedule. Such a central planning instance, however, is not in line with the distributed nego-
tiation and decision scheme that is generally associated with multi-agent systems.

The different solutions approaches were also tested on the smaller problem sets, repre-
senting the individual days of the week. Table 4 shows the respective mean errors (based
again on 30 runs) for each day. The relative performance is similar to the more complex
week problem discussed before, supporting our previous conclusions.

Table 4 Mean results for individual days of the week problem (30 runs each). Best results are bold and
underlined.

Mo Tu We Th Fr Sa So
Manual Plan 85185 178260 91140 15465 11850 14850 14580
Agents 7727 5917 8183 8272 5528 8861 7337
PSO (10) 7712 5900 8161 8248 5500 8838 7330
PSO (20) 7726 5910 8171 8257 5508 8846 7325
PSO (100) 7725 5909 8170 8255 5508 8844 7325
ES (10,50) 7726 5910 8171 8257 5508 8846 7325
ES (10+50) 7725 5909 8170 8255 5508 8844 7325
ES (30,200) 7736 5918 8184 8262 5515 8857 7336
ES (30+200) 7737 5919 8183 8263 5514 8857 7335

6 Conclusion and Future Work

Sub-daily staff scheduling is a meaningful practical problem area. Using a complex, high-
dimensional and highly constrained practical planning scenario from logistics, it was de-
monstrated that sub-daily planning with modern heuristic approaches produces far better
results than traditional spreadsheet-based full day scheduling. Thus, sub-daily scheduling
significantly increases the value contributions of individual staff members. This success of
PSO and ES also contradicts Puppe et al. [27] who suggest that, in contrast to distributed
multi-agent systems, centralized scheduling methods (in our case metaheuristics with a
centrally supervised optimisation approach) are likely to fail due to the many constraints
and complexity of the task.

Because PSO and ES in their traditional forms are not suitable for the planning problem
at hand, the metaheuristics were adapted to the combinatorial domain without sacrificing
their basic mechanisms. PSO outperformed different variants of the evolution strategy on
this problem. The superior performance must be attributed to the operators and parameters
of PSO since the coding of PSO and ES are identical.

238

A constructive heuristic, based on interacting agents, performed competitively with the
ES and only slightly inferior to PSO. Based purely on solution quality, PSO should be
favored when runtime is not a seriously limiting factor for optimisation. In our practical
application this is the case.

The agent approach is vastly quicker in finding good solutions. This result suggests
that artificial agents could be useful for real-time scheduling or re-scheduling tasks where
runtime for the optimisation is usually very limited. This conclusion is in line with findings
of other authors in the literature, such as in [1] for crew rescheduling.

Our agent approach also has benefits in terms of user-acceptance, since the generation
of planning results is here more comprehensible than with metaheuristics. In future work we
will take a closer look at other recent agent-based approaches for related problems such as
the ones presented in [1] and [36].

In addition to the results presented in this paper, we have also experimented with Tabu
Search (TS) as a well-known and not population-based local search metaheuristic. Although
TS was tailored to the problem at hand, the results achieved so far are not competitive
with the three heuristics outlined here. Moreover, TS appears to be strongly influenced by
characteristics of the initial solution. Additionally, TS displays slower convergence and,
thus, uses more fitness evaluations than PSO and ES to arrive at results of reasonable quality.

In our current research, similar scheduling problems from the domain of trade are inves-
tigated. Here, a particularly flexible form of demand-oriented personnel planning is gaining
significance. The assumption of fixed shifts is given up and automatic generation of work-
ingtime models and staff scheduling are done in parallel, which further increases the com-
plexity of the task. The results achieved so far confirm the value of sub-daily staff schedu-
ling. Moreover, metaheuristics demonstrate a more robust performance than a constructive
approach when the application problem is slightly varied.

References

1. Abbink E.J.W., Mobach D.G.A., Fioole, P.J., Kroon, L.G., v.d.Heijden E.H.T., Wijngaards N.J.E.: Actor-
Agent Application for Train Driver Rescheduling. In: Proceedings of the 8th Int. Conf. on Autonomous
Agents and Multiagent Systems - Vol. 1, 513–520 (2009)

2. ATOSS Software AG, FH Heidelberg (eds.): Standort Deutschland 2006. Zukunftssicherung durch
intelligentes Personalmanagement, München (2006)

3. Bäck T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press (1996)
4. Bäck T., Fogel D.B., Michalewicz Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics

Publishing (1997)
5. Beyer H.G., Schwefel H.P.: Evolution strategies: a comprehensive introduction. In: Natural Computing

1: 3–52 (2002)
6. Blöchlinger I.: Modeling Staff Scheduling Problems. A Tutorial. In: European Journal of Operational

Research 158: 533–542 (2004)
7. Brodersen O.B.: Eignung schwarmintelligenter Verfahren für die betriebliche Entscheidungs-

unterstützung. Cuvillier (2008)
8. Chu S.C., Chen Y.T., Ho J.H.: Timetable Scheduling Using Particle Swarm Optimization. In: Proceedings

of the International Conference on Innovative Computing. Information and Control (ICICIC Beijing
2006) Vol. 3: 324–327 (2006)

9. De Causmaecker P., Ouelhadj D., Vanden Berghe G.: Agents in Timetabling Problems. In: Proc. of
MISTA 2003, 67–71 (2003)

10. Ernst A.T., Jiang H., Krishnamoorthy M., Owens B., Sier D.: An Annotated Bibliography of Personnel
Scheduling and Rostering. In: Annals of OR 127: 21–144 (2002)

11. Fukuyama Y.: Fundamentals of Particle Swarm Optimization Techniques. In: Lee K.Y., El-Sharkawi
M.A. (eds.): Modern Heuristic Optimization Techniques with Applications to Power Systems, Wiley-
IEEE Press, 24–51 (2003)

239

12. Garey M.R., Johnson D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness,
Freeman (1979)

13. Günther M., Nissen V.: A Comparison of Neighbourhood Topologies for Staff Scheduling With Particle
Swarm Optimisation. In: Mertsching B. et al. (eds.): Proc. of KI 2009, LNAI 5803, Springer, 185–192
(2009)

14. Herdy M.: Application of the ’Evolutionsstrategie’ to Discrete Optimization Problems. In: Schwefel
H.P., Männer R. (eds): Parallel Problem Solving from Nature, Springer, 188–192 (1990)

15. Kennedy J., Eberhart R.C.: Particle Swarm Optimization. In: Proc. of the IEEE Int. Conf. on Neural
Networks, IEEE, 1942–1948 (1995)

16. Kennedy J., Eberhart R.C., Shi Y.: Swarm Intelligence, Kaufmann (2001)
17. Kragelund L., Kabel T.: Employee Timetabling. An Empirical Study, Master’s Thesis, Department of

Computer Science, University of Aarhus, Denmark (1998)
18. Krempels, K.H.: Lösen von Scheduling-Konflikten durch Verhandlungen zwischen Agenten. In: Sauer J.

(ed.): Proc. of PuK 2002, 86–89 (2002)
19. Li R., Emmerich M.T.M., Bovenkamp E.G.P., Eggermont J., Bäck T., Dijkstra J., Reiber J.H.C.: Mixed

Integer Evolution Strategies and Their Application to Intravascular Ultrasound Image Analysis. In:
Rothlauf F. (ed.): Applications of Evolutionary Computation, LNCS 3907, Springer, 415–426 (2006)

20. Meisels A., Schaerf A.: Modelling and Solving Employee Timetabling. In: Annals of Mathematics and
Artificial Intelligence 39: 41–59 (2003)

21. Nissen V.: Solving the Quadratic Assignment Problem with Clues from Nature. In: IEEE Transactions
on Neural Networks 5 (1): 66–72 (1994)

22. Nissen V., Gold S.: Survivable Network Design with an Evolution Strategy. In: Yang A., Shan Y., Bui L.T.
(eds.): Success in Evolutionary Computation. Studies in Computational Intelligence, Springer, 263–283
(2008)

23. Nissen V., Günther M.: Staff Scheduling with Particle Swarm Optimization and Evolution Strategies. In:
Cotta C., Cowling P. (eds.): EvoCOP, LNCS 5482, Springer, 228–239 (2009)

24. Parsopoulos K.E., Vrahatis M.N.: Recent Approaches to Global Optimization Problems through Particle
Swarm Optimization. In: Nat. Comp. 1: 235–306 (2002)

25. Poli R.: An Analysis of Publications on Particle Swarm Optimization, Report CSM-469, Dep. of
Computer Science, University of Essex, England (2007)

26. Proudfoot Consulting: Global Productivity Report, Atlanta (2008)
27. Puppe F., Klügl F., Herrler R., Kirn S., Heine C.: Konzeption einer flexiblen Agentenkomponente für

Schedulingaufgaben im Krankenhausumfeld. In: Proc. of 2. Koll. ”Intelligente Softwareagenten und
betriebswirtschaftliche Anwendungsszenarien” (2000)

28. Rudolph G.: An Evolutionary Algorithm for Integer Programming. In: Davidor Y., Schwefel H.P.,
Männer R. (eds.): PPSN III, LNCS 866, Springer, 139–148 (1994)

29. Scherf B.: Wirtschaftliche Nutzenaspekte der Personaleinsatzplanung. In: Fank M., Scherf B. (eds.):
Handbuch Personaleinsatzplanung, Datakontext, 55–83 (2005)

30. Schindler B., Rothlauf F., Pesch E.: Evolution strategies, Network Random Keys, and the One-Max Tree
Problem. In: Applications of Evolutionary Computing: EvoWorkshops 2002, LNCS 2279, Springer, 29–
40 (2002)

31. Tasgetiren M.F., Sevkli M., Liang Y.C., Gencyilmaz G.: Particle Swarm Optimization Algorithm for
Single Machine total Weighted Tardiness Problem. In: Proceedings of the CEC 2004. IEEE, 1412–1419
(2004)

32. Tien J., Kamiyama A.: On Manpower Scheduling Algorithms. In: SIAM Rev. 24 (3): 275–287 (1982)
33. Vanden Berghe G.: An Advanced Model and Novel Meta-heuristic Solution Methods to Personnel Sche-

duling in Healthcare, Thesis, University of Gent (2002)
34. Veeramachaneni K.: Optimization Using Particle Swarm with Near Neighbor Interactions. In: GECCO-

2003, LNCS 2723, Springer, 110–121 (2003)
35. Veeramachaneni K., Osadciw L., Kamath G.: Probabilistically Driven Particle Swarms for Optimization

of Multi-valued Discrete Problems: Design and Analysis. In: Proceedings of the IEEE SIS 2007,
Honolulu, 141–149 (2007)

36. Wauters T, Verbeeck K, Vanden Berghe G., de Causmaecker P.: A Multi-Agent Learning Approach
for the Multi-Mode Resource-Constrained Project Scheduling Problem. Paper presented at the 2nd Int.
Workshop on Optimisation in Multi-Agent Systems (OptMas), Budapest AAMAS (2009)

37. Sub-Daily Staff Scheduling Data Sets and Benchmarks, http://www.tu-
ilmenau.de/fakww/2608+M54099f70862.0.html

240

Aldy Gunawan

School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902

E-mail: aldygunawan@smu.edu.sg

Hoong Chuin Lau

School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902

E-mail: hclau@smu.edu.sg

The Bi-Objective Master Physician Scheduling

Problem

Aldy Gunawan • Hoong Chuin Lau

Abstract Physician scheduling is the assignment of physicians to perform different duties in the

hospital timetable. In this paper, the goals are to satisfy as many physicians’ preferences and duty

requirements as possible while ensuring optimum usage of available resources. We present a

mathematical programming model to represent the problem as a bi-objective optimization

problem. Three different methods based on ε–Constraint Method, Weighted-Sum Method and Hill-

Climbing algorithm are proposed. These methods were tested on a real case from the Surgery

Department of a large local government hospital, as well as on randomly generated problem

instances. The strengths and weaknesses of the proposed methods are also discussed. Finally, a

summary is given together with suggestions for future research.

Keywords: master physician scheduling problem, preferences, bi-objective optimization,

mathematical programming.

1 Introduction

Personnel scheduling is defined as the process of constructing optimized work schedules for

staff (Topaloglu, 2009). A literature review of applications, models and algorithms in personnel

scheduling has been provided by Ernst et al. (2004). The personnel scheduling problem includes a

wide variety of applications such as airlines, railways, manufacturing and health care systems. In

this paper, the scheduling of physicians in a hospital is addressed.

Brandeau et al. (2004) provided a more recent collection of Operations Research applications

in health care, with particular emphasis on health care delivery. To our knowledge, research on

physician scheduling focuses primarily on a single type of duty, such as the emergency room (e.g.

Vassilacopoulos, 1985; Beaulieu et al., 2000; Carter and Lapierre, 2001; Gendreau et al., 2007;

Puente, et al., 2009), the operating room (e.g. Testi et al., 2007; Burke and Riise, 2008; Beliën et

al., 2009; Roland et al., 2009), the physiotherapy and rehabilitation services (Ogulata et al., 2008).

In this paper, our problem, termed the Master Physician Scheduling Problem, is the tactical

planning problem of assigning physician activities to the time slots over a time horizon

incorporating a large number of rostering and resource constraints together with complex

241

physician preferences. The main objectives are to satisfy as many physicians’ preferences and duty

requirements as possible while ensuring optimum usage of available resources such as clinics and

operating theatres.

The major contributions/highlights of this paper are as follows:

(1) We take a physician-centric approach to solving this problem, since physician retention

is the most critical issue faced by hospital administrations worldwide.

(2) We formulate the problem as a bi-objective optimization problem and solve the problem

by different methods: ε–Constraint Method, Weighted-Sum Method and Hill-Climbing

Algorithm.

The organization of the paper is as follows. Section 2 gives some literature review. Section 3

gives a detailed description of the master physician scheduling problem. In Section 4, we propose

a bi-objective mathematical programming model along with the description of notation and

variables, constraints and objective functions. Section 5 discusses three different methods used to

solve the problem. Section 6 makes a computational analysis of the model with a real case from

the Surgery Department of a large local government hospital, as well as on randomly generated

problem instances. Finally, we provide some concluding perspectives and directions for future

research in Section 7.

2 Literature Review

There have been a number of review papers in the area of personnel scheduling and rostering

research, as in the works of Aggarwal (1982), Burke et al. (2004), Ernst et al. (2004). Much of the

research on personnel scheduling in health care has been devoted to the case of nurse scheduling

problem (e.g. Burke et al., 2004; Ernst et al, 2004; Bard and Purnomo, 2005; Beliën and

Demeulemeester, 2005; Petrovic and Berghe, 2008). On the other hand, little work has been done

on the physician scheduling problem. Carter and Lapierre (2001) provide the fundamental

differences between physicians and nurses scheduling problems. Unlike nurse rostering problems,

in physician scheduling, maximizing satisfaction only matters, as physician retention is the most

critical issue faced by hospital administrations. In addition, while nurse schedules must adhere to

collective union agreements or written rules, physician schedules are more driven by personal

preferences and with no formal scheduling rules.

Physician and nurse scheduling problems are typically multi-objective by nature. One

approach for handling multi-objective optimization problem is to formulate the objectives as soft

constraints and define the global objective function as the total deviations in the soft constraints

(Beaulieu, et al., 2000; Topaloglu, 2006, 2009; Burke et al., 2009). Another way to solve a multi-

objective problem is to apply the Weighted-Sum method that combines the objectives into a single

scalar value (Beaulieu et al., 2000, Carter and Lapierre, 2001; Blöchliger, 2004; Topaloglu, 2006;

Beliën et al., 2009; Puente et al., 2009; Topaloglu, 2009). Yet another method that has also been

considered is the sequential method (Topaloglu, 2009). In this method, objectives are sorted in

descending order of importance and optimized in an iterative procedure. Another most commonly

242

used method is goal programming since it allows simultaneous solution of multiple objectives

(Ozkarahan, 2000; Ogulata and Erol, 2003; Topaloglu, 2006; White et al., 2006).

Burke et al. (2007) and Burke et al. (2009) presented a Pareto-based optimization technique

based on a Simulated Annealing algorithm to address nurse scheduling problems in the real world.

One of the latest papers about physician rostering problem is presented by Puente et al. (2009).

The problem consists in designing timetables for the physicians at the Emergency Department in a

hospital.

3 Problem Definition

This paper focuses on a physician scheduling problem for the Surgery Department of a large

government hospital in Singapore. The problem (termed the Master Physician Scheduling

Problem) is to assign different physician duties (or activities) to the defined time slots over a time

horizon incorporating a large number of constraints and complex physician preferences. For

simplicity, we assume the time horizon to be one work week (Mon-Fri), further partitioned into 5

days and 2 shifts (AM and PM).

The work mode combines shifts and duties. Physicians may specify their respective ideal

schedule in terms of the duties they like to perform on their preferred days and shifts, as well as

shifts-off or days off. An actual schedule is generated by taking the physicians’ preferences

together with resource capacity and rostering constraints into consideration (Figure 1).

Due to conflicting constraints, the ideal schedules might not be fully satisfied in the actual

schedule (see Figure 1 for illustration). That may occur in two possible scenarios:

 Some duties have to be scheduled on different shifts or days – which we term non-ideal

scheduled duties (e.g. Physician 2 Tuesday duties).

 Some duties simply cannot be scheduled due to resource constraints – which we term

unscheduled duties (e.g. Physician 1 Friday PM duty).

Physician

Physician

1 2 … |I|

1 2 … |I|

Monday AM Duty 1 - … Duty 3

Monday AM Duty 1 - … Duty 5

PM Duty 5 Duty 4 … Duty 1

PM Duty 5 Duty 4 … Duty 1

Tuesday AM - Duty 1 … Duty 5

Tuesday AM - Duty 5 … Duty 3

PM Duty |L| Duty 5 … Duty 2

PM Duty |L| Duty 1 … -

: : :

:

: : :

:

: : :

:

: : :

:

Friday AM Duty 4 - … Duty |L|

Friday AM Duty 4 - … Duty |L|

PM Duty 1 Duty |L| … -

PM - Duty |L| … -

Physicians’ Ideal Schedule

Actual Schedule

Figure 1. Example of the master physician scheduling problem

The master physician scheduling problem is a highly constrained resource allocation

problem. The constraints imposed are categorizes into two different types: hard and soft

243

constraints. Our goal is to meet the hard constraints while aiming at a high-quality result with

respect to soft constraints. The hard constraints in our problem are as follows:

 H1: No physician can perform more than one duty in any shift.

 H2: The number of resources (e.g. operating theatres, clinics) needed cannot exceed their

respective capacities at any time. For simplicity, we assume that each type of activity does not

share its resources with another type of activities – for example, operating theatres and clinics

are used to perform surgery and out-patient duties, respectively.

 H3: The number of activities allocated to each physician cannot exceed his contractual

commitments, and do not conflict with his external commitments. In this paper, we assume

external commitments take the form of physicians’ request for shifts-off or days-off, and

hence no duty should be assigned to these requests.

The master physician scheduling problem incorporates both physician preferences and

ergonomic constraints, optimizing on two objectives - maximizing the number of ideal schedules

and minimizing the number of unscheduled duties. These objectives are related to the following

soft constraints:

 S1: Duties should be scheduled with respect to the ideal schedule.

 S2: For some heavy duties, such as surgery and endoscopy duties, that could not be

scheduled with respect to the ideal schedule, we try to reschedule these duties with respect to

the ergonomic constraints:

o If a physician is assigned to a heavy duty in the morning shift, then he cannot be assigned

to another type of heavy duty in the afternoon shift on the same day. However, it is

possible to assign the same type of heavy duties in consecutive shifts on the same day.

o Similarly, a physician cannot also be assigned to another type of heavy duty in the

morning shift on a particular day if he has been assigned to a heavy duty in the afternoon

shift on the previous day.

4 Mathematical Programming Model

The following notation is required to formulate the mathematical programming model.

Parameters

I = Set of physicians, Ii ,,2,1

J = Set of days, Jj ,,2,1

K = Set of shifts per day, Kk ,,2,1

L = Set of duties, Ll ,,2,1

HL = { Ll : l = heavy duty}

PRA = { KJIkj,i, : kj,i, = physician i requests not being assigned on day j shift k}

lR = number of resources required to perform duty l Ll

jklC = number of resources available for duty l on day j shift k LlK,kJ,j

244

 (i.e. resource capacity)

ilA = number of duty l requested by physician i in a weekly schedule LlI,i

ijklF = 1 if physician i requests duty l on day j shift k (ideal schedule), 0 otherwise

 LlK,kJ,jIi ,

Decision and auxiliary variables

ijklX = 1 if physician i is assigned to duty l on day j shift k with respect to the ideal schedule, 0

otherwise

ijklY = 1 if physician i is assigned to duty l on day j shift k with respect to the ergonomic

constraints, 0 otherwise

iU = number of unscheduled duties of physician i

iN = number of non-ideal scheduled duties of physician i

iS = number of ideal scheduled duties of physician i

 We consider the problem that optimizes physician ideal schedules on one hand, and on the

other, improves the quality of duty transition on non-ideal scheduled slots through ergonomic

constraints. More precisely, we are concerned with the bi-objective problem of maximizing the

number of ideal scheduled duties (1) and minimizing the number of unscheduled duties under

ergonomic constraints (2).

Maximize Ii iSZ1 (1)

Minimize Ii iUZ2
(2)

subject to:

jklIi ijklijkll CY(XR) LlK,kJ,j (3)

1 ijklijkl YX LlK,kJ,jI,i (4)

ilJj ijklKk ijkl A)Y(X LlI,i (5)

1 Ll ijklijkl)Y(X KkJ,jI,i (6)

 Ll ijklijkl)Y(X 0 PRAkj,i, (7)

ijklijkl FX LlK,kJ,jI,i (8)

 Jj Kk Ll ijklijklLl ili YXAU)(Ii (9)

 Jj Kk Ll ijkli XS Ii (10)

 Jj Kk Ll ijkli YN Ii (11)

 1
221 11 lkijlkijijkl YXY

 212112,1 llLl&l,K,,kJ,jI,i H (12)

 1
221

1111 ljiljilKij
YXY

 212112,1 llLl&l,J,,jI,i H (13)

245

1
221

11 lijlijlKij
YXY

 2121 llLl&lJ,jI,i H

(14)

 1
221 111

 lKjilKjilij YXY

 21213,2 llLl&l,J,...,jI,i H (15)

 1,0, ijklijkl YX LlK,kJ,jI,i (16)

ZS,NU iii , Ii (17)

Constraint (3) ensures that the total number of resources required does not exceed total

number of available resources per shift (the resource capacity constraint). Note that lR is set to zero

for activities without limited number of resources available. (4) ensures that a duty is scheduled as

either an ideal or a non-ideal duty. (5) represents the number of duties allocated to each physician

cannot exceed his contractual commitments. (6) ensures that each physician cannot be assigned

more than one duty in any shift, while (7) ensures that no duty would be assigned to a physician

during any shifts-off or days-off requested. Duties represented by ijklX

have to be scheduled with

respect to the ideal schedule (constraint (8)). Constraints (9), (10) and (11) calculate the number of

unscheduled duties, ideal scheduled duties and non-ideal scheduled duties, respectively. The

details of ergonomic constraints are represented by (12) – (16). Finally, (16) imposes the 0-1

restrictions for the decision variables ijklX and ijklY while (17) is the nonnegative integrality

constraint for the decision variables iU , iN and iS .

In the following section, three different approaches are proposed to solve the bi-objective

physician scheduling problem: one based on ε–Constraint approach that obtains a single solution,

and the others based on Weighted-Sum Method and Hill-Climbing Algorithm that obtains non-

dominated or Pareto-optimal solutions.

5 Proposed Methods

5.1 ε–Constraint Method

The ε–Constraint Method was suggested by Haimes et al. (1971). In this method, the bi-

objective problem is reformulated by just keeping one of the objective functions and restricting the

other objective function within user-specified value. Here, we decide to restrict the number of

unscheduled duties to be less than or equal to the values obtained by solving another model

proposed by Gunawan and Lau (2009) (denote by
*
iU). Therefore, the model only focused on

minimizing the number of unscheduled duties with respect to ergonomic constraints. The modified

problem is as follows:

 [ε–Constraint Model]

Maximize Ii iSZ1 (18)

246

subject to:

constraints (3) – (17)

*
ii UU Ii (19)

5.2 Weighted-Sum Method

The Weighted-Sum Method is the simplest approach and commonly used to solve the

multiple-objective optimization problem. It formulates the problem as a classical multi-objective

weighted-sum model that combines two objectives into a single objective by multiplying each

objective with a user-defined weight. The weight of each objective is usually chosen in proportion

to the objective’s relative importance in the problem.

[Weighted-Sum Model]

Minimize Ii iIi i UWSWZ 21 (20)

subject to: constraints (3) – (17)

Note that in Weighted-Sum Model, the original objective function 1Z is transformed into a

minimization objective function. The advantage of the Weighted-Sum method is that it guarantees

finding Pareto-optimal solutions for convex optimization problems, which can be inferred from

Deb (2003) Theorem 3.1.1:

Corollary: The solution to the Weighted-Sum Model is not Pareto-optimal iff either W1 or W2 is

set to zero.

Algorithm
(1) Set W1 = 1

(2) Repeat

(3) Set W2 = 1 - W1

(4) Solve the Weighted-Sum Model optimally (using mathematical programming)

(5) W1 = W1 – 0.1

(6) Until W1 < 0

(7) For all solutions generated by the above, let M denote the subset of Pareto-optimal solutions

(8) For a pre-set number of iterations do the following

(9) Let M1 and M2 (M) with the lowest and the second lowest total number of unscheduled duties,

respectively

(10) Set W′1 = W1 of solution M1 and W′2 = W2 of solution M1

(11) Set W′′1 = W1 of solution M2 and W′′2 = W2 of solution M2

(12) Calculate new weight values, denoted as W*1 and W*2, as follows:

 W*1 = (W′1 + W′′1)/2

 W*2 = 1 - W*1

(13) Solve the Weighted-Sum Model with W1 = W*1 and W2 = W*2

(14) If the solution obtained is a new Pareto-optimal solution

(15) Then update M

(16) Else if the solution obtained and M1 are the same

(17) Set the solution obtained as M1 and Update M

(18) Else if the solution obtained and M2 are the same

(19) Set the solution obtained as M2 and Update M

Figure 2. Algorithm to obtain Pareto-optimal solutions

In this paper, instead of using a single set of weight values, several different sets of weight

values would be used to efficiently generate a set of Pareto-optimal solutions. First, a constant k

247

number of solutions with different values of W1 uniformly distributed between [0, 1] are generated.

Since not all Pareto-optimal solutions may be discovered by the initial set of weight values, we

introduce an adaptive exploration on the neighborhood of weight values using linear interpolation,

i.e. we examine two different Pareto-optimal solutions to derive weight values for obtaining other

possible optimal solutions. The detail of the algorithm is presented in Figure 2.

5.3 Hill-Climbing Algorithm

In this section, we turn to a Hill Climbing Algorithm to generate a set of non-dominated

solutions. The initial solution is generated by setting one of the weight values to 1. Next, a set M of

potentially non-dominated solutions would be generated. This set is updated whenever a new non-

dominated solution x′ is generated. This updating process consists of two possible actions:

(1) Adding x′ to M if there is no other solution vM such that v dominates x′

(2) Removing all solutions from set M which are dominated by x′

The Hill-Climbing Algorithm will terminate when either there is no unscheduled duties or it

reaches a pre-set number of iterations. The algorithm is given as follows.

Hill-Climbing Algorithm

(1) Generate a starting solution xD, where D is the set of feasible solutions

(2) M := Ø

(3) Update M of potentially efficient solutions with x

(4) Repeat

(5) Select one solution xM

(6) Construct a new solution x′V(x), where V(x) D is the neighborhood of solution x

(7) If a new solution x′ exists

(8) If x′ is a non-dominated solution then

(9) Update M

(10) Until the stop conditions are satisfied

Figure 3. Hill-Climbing Algorithm

Our proposed neighborhood structure is in essence a kind of ejection chain move involving

either one or two physicians and the pool of hitherto unscheduled duties. From the initial solution

generated, the Unscheduled_Pool contains the list of physicians with the respective number of

unscheduled duties. A physician (say physician i) and one of his unscheduled duty (say Duty1) is

selected randomly from the Unscheduled_Pool and the aim is to insert it into the schedule, thereby

decreasing the total number of unscheduled duties by 1. To do so, one of his scheduled duties (say

Duty2) at say slot2 needs to be reallocated to another timeslot say slot1.

Note that each time as a duty is moved to another timeslot, it must satisfy either one of the

two following conditions:

Condition1: the duty is allocated to a timeslot that follows the physician’s ideal schedule. The net

effect is that the total number of ideal scheduled duties either remains the same or increases by 1.

Condition2: the duty is allocated to a timeslot that does not follow the physician ideal schedule. In

this case, we need to ensure that the ergonomic constraint is not violated. The net effect is that the

total number of ideal scheduled duties either remains the same or decreases by 1.

In considering the relocation of Duty1 to slot2, two possible scenarios are possible:

248

(1) Scenario 1: If there is resource available at slot2 to perform Duty1 (Figure 4), the move can

be performed.

(2) Scenario 2: If no resource is available slot2 for Duty1 (Figure 5), then another physician j,

who is performing the same duty (i.e. Duty1) at slot2 will be selected (if any) and we apply

an ejection chain strategy to swap out the Duty1 of physician j so as to free up the resource

needed.

Figure 4. Illustration of Scenario 1

Figure 5. Illustration of Scenario 2

 Unscheduled Pool

 swap

Duty|L| Duty1

Physician i Duty3

Shift1

Duty7 Duty5 - Duty2 -

Shift1

1

Shift1

1

Shift2 Shift2

2

Shift2

2

Day1 Day2

Day4

Physician i 2 1

….

….

Physician j Duty1 - Duty2 Duty3

….

….

Physician i Duty3 Duty7 Duty5 Duty2

2

Duty1 - ….

Day1

Shift1 Shift2 Shift1 Shift2 Shift1 Shift2

Day2

Day4

….

 Unscheduled Pool

Duty|L| Duty1

Physician i 2 1

….

….

Physician i Duty3 Duty7 Duty5 Duty2

2

Duty1 - ….

Day1

Shift1 Shift2 Shift1 Shift2 Shift1 Shift2

Day2

Day4

….

Physician i Duty3

Shift1

Duty7 Duty5 - Duty2 -

Shift1

1

Shift1

1

Shift2 Shift2

2

Shift2

2

Day1 Day2

Day4

….

….

Physician j Duty2 - Duty1 Duty3

249

The pseudo-code for generating moves for this neighborhood is as shown in Figure 6.

(1) Select physician i from Unscheduled_Pool randomly

(2) Find an empty timeslot randomly, slot1

(3) By considering all scheduled duties of physician i, find one possible time slot2 such that the duty

allocated at slot2 can be reassigned to slot1

(4) If

it can be rescheduled at slot1,

(5) Find an unscheduled duty of physician i, Duty1

(6) If the resource capacity at slot2 for Duty1 is greater than 0

(7) Evaluate whether Duty1 can be allocated to slot2

(8) If there is no constraint violation, generate a new possible solution x′

(9) Else if the resource capacity at slot2 for Duty1 is equal to 0

(10) Evaluate whether Duty1 can be allocated to slot2

(11) If there is no conflict,

(12) Find a physician j who has the same duty scheduled, Duty1, at slot2

(13) Apply an ejection chain strategy to physician j, by ensuring that all constraints are satisfied

(14) If there is no constraint violation, generate a new possible solution x′

Figure 6. Neighborhood Move

6 Computational Results

To evaluate the performance of the proposed methods, computational experiments were done

on 6 different random problem sets and a real case from the Surgery Department of a large local

government hospital. The 6 sets problem sets were generated with varying values of the parameter

– total percentage of heavy duties assigned to physicians (last column of Table 1). For each

problem set, we also generate several problem instances with different values of number of

resources available in every shift (Table 2). The details about how problem instances were

generated are summarized in Gunawan and Lau (2009).

Table 1. Characteristics of problem instances

Problem Set
Number of
physicians

Number of

shifts per

day

Number of
days

Number of
duties

Number of
heavy duties

Number of

duties with
limited

capacity

Total

percentage
of heavy

duties*

Case study 15 2 5 9 3 3 73%

Random 1 20 2 5 7 3 3 20%
Random 2 20 2 5 7 3 3 30%

Random 3 20 2 5 7 3 3 40%

Random 4 20 2 5 7 3 3 50%
Random 5 20 2 5 7 3 3 60%

Random 6 20 2 5 7 3 3 70%

 %|K||J||I|/A* Ii Ll ilH 100

In the following sub-sections, we report a suite of computational results and analysis

obtained from the proposed methods. The mathematical programming models (ε–Constraint and

Weighted-Sum Models) were implemented using ILOG OPL Studio 5.5 and the proposed

algorithm (Hill Climbing Algorithm) was coded in C++. All codes are executed on a Intel (R) Core

(TM)
2
 Duo CPU 2.33GHz with 1.96GB RAM that runs Microsoft Windows XP.

250

Table 2. Examples of varying values of Cjkl (Random 1 and Random 2 instances)

Problem Set Instances
L

Duty 1 Duty 2 Duty 3

Random 1

 15 28 22

Random 1a 3 6 4

Random 1b 3 5 4

Random 1c 3 4 4

Random 1d 3 3 4

Random 1e 3 3 3

Random 1f 2 3 3

Random 1g 1 2 2

Random 2

 21 46 32

Random 2a 4 10 5

Random 2b 4 9 5

Random 2c 4 8 5

Random 2d 4 7 5

Random 2e 4 6 5

Random 2f 4 5 5

Random 2g 4 5 4

Random 2h 3 5 4

Random 2i 2 4 3

6.1 Results from ε–Constraint Method

As described in Section 5.1, the physician scheduling problem is reformulated by keeping

one objective and restricting the other one within a specified value. In this paper, we restrict the

number of unscheduled duties within the number of unscheduled duties generated by another

model proposed by Gunawan and Lau (2009).

In Gunawan and Lau (2009), the ergonomic constraints are imposed to all scheduled duties.

On the other hand, in this paper, duties are scheduled with respect to either of two criteria: the

number of scheduled duties with respect to the physicians’ ideal schedules has to be satisfied as

many as possible, while non-ideal scheduled duties cannot violate ergonomic constraints.

Table 3. Computational results of ε–Constraint Model

Problem
Instances

Number of

unscheduled

duties

Number of scheduled

duties
Percentage of

unscheduled

duties

Percentage of scheduled duties

Ideal Non-ideal Ideal Non-ideal

Case study 8 135 7 5.3 90.0 4.7

Random 1a 0 196 4 0.0 98.0 2.0
Random 1b 0 192 8 0.0 96.0 4.0

Random 1c 0 192 8 0.0 96.0 4.0

Random 1d 4 186 10 2.0 93.0 5.0
Random 1e 5 181 14 2.5 90.5 7.0

Random 1f 5 180 15 2.5 90.0 7.5
Random 1g 10 173 17 5.0 86.5 8.5

Random 2a 0 196 4 0.0 98.0 2.0

Random 2b 0 196 4 0.0 98.0 2.0

Random 2c 0 196 4 0.0 98.0 2.0
Random 2d 0 194 6 0.0 97.0 3.0

Random 2e 0 194 6 0.0 97.0 3.0

Random 2f 3 186 11 1.5 93.0 5.5
Random 2g 3 186 11 1.5 93.0 5.5

Random 2h 3 183 14 1.5 91.5 7.0

Random 2i 10 174 16 5.0 87.0 8.0

Table 3 summarizes the results obtained for the real case study, as well as Random 1 and 2

instances. In general, we found that the number of unscheduled duties is relative small compared

with the number of ideal scheduled duties (less than or equal to 5.3%). By using this method,

251

different optimal solutions can be found by setting different
*
iU values. Take note however that it

is possible that infeasible solutions would be obtained.

The following table summarizes the average percentages of all our problem sets. It can be

observed that the average percentage of ideal scheduled duties is at least 86%, and only Random 5

has the average percentage of non-ideal scheduled duties which is more than 10%.

Table 4. Summary of computational results of ε–Constraint Model

Problem Set
Number of

instances

Average percentage of

unscheduled duties

Average percentage of scheduled duties

Ideal Non-ideal

Case study 1 5.3 90.0 4.7

Random 1 7 1.7 92.9 5.4
Random 2 9 1.1 94.7 4.2

Random 3 9 1.8 91.2 6.9

Random 4 11 1.1 89.6 9.2
Random 5 13 1.1 86.7 12.2

Random 6 15 2.6 89.5 7.9

6.2 Results from Weighted-Sum Method

In Section 5.2, we proposed an algorithm to generate several possible sets of weight values in

order to obtain set of Pareto-optimal solutions. It is started by generating 10 different sets of

weight values that uniformly distributed within [0, 1].

In the next step, we set the number of iterations to 5 iterations. This step is applied for further

finding of other possible Pareto-optimal solutions. By using linear interpolation, we focus on

exploring neighborhoods of the solutions with the lowest values of the total number of

unscheduled duties since we view that unscheduled duties as bad compared to non-ideal scheduled

duties.

In general, the value of W1 should be less than 0.5 in order to obtain the lowest number of

unscheduled duties. We also found that the higher the percentage of heavy duties, the lower the

value of W1 should be set. It could be due to the difficulty to assign unscheduled heavy duties with

respect to ergonomic constraints. That’s why we need to give higher importance/value for W2.

Table 5 represents the results obtained by the proposed algorithm. Here, we only present two

representative instances 1g and 6l for illustration purposes. Figure 7 represents the Pareto-optimal

solutions obtained for Random 1 and 2 instances.

In general, we observe that the more we increase the weight value of the first objective (W1),

the less we get the number of non-ideal scheduled duties (see Table 5 for illustration). At the same

time, the number of unscheduled duties would also be increased since the number of unscheduled

duties becomes less important with the decreased weight value of the second objective (W2). This

method could guarantee finding solutions on the Pareto-optimal set. However, we also found that

different weight values need not necessarily lead to Pareto-optimal solutions and some sets of

weight values might lead to the same solution.

252

Table 5. Computational results of instances 1g and 6l

Random 1g Random 6l

Weight
Number of

Scheduled duties
Number of

Unscheduled
duties

Weight
Number of

Scheduled duties
Number of

Unscheduled
duties W1 W2 Ideal

Non-

Ideal
W1 W2 Ideal

Non-

Ideal

1.0 0.0 183 0 17 1.0 0.0 181 0 19
0.9 0.1 183 3 14 0.9 0.1 181 9 10

0.8 0.2 183 3 14 0.8 0.2 181 9 10

0.7 0.3 183 3 14 0.7 0.3 181 9 10
0.6 0.4 183 3 14 0.6 0.4 181 9 10

0.5 0.5 181 7 12 0.5 0.5 181 9 10

0.4 0.6 179 11 10 0.4 0.6 179 13 8
0.3 0.7 179 11 10 0.3 0.7 173 22 5

0.2 0.8 179 11 10 0.2 0.8 169 27 4

0.1 0.9 179 11 10 0.1 0.9 160 38 2

0.0* 1.0 31 51 139 0.0* 1.0 113 85 2

0.45 0.55 179 11 10 0.15 0.85 160 38 2

0.475 0.525 179 11 10 0.175 0.825 165 32 3
0.4875 0.5125 179 11 10 0.1625 0.8375 160 38 2

0.49375 0.50625 179 11 10 016875 0.83125 165 32 3

0.496875 0.503125 179 11 10 0.165625 0.834375 160 38 2

* Non Pareto-optimal solution

 Figure 7. Pareto-optimal solutions of Random 1 and 2 problem sets

The proposed algorithm is also tested to the real case study (Table 6).The value of W1 should

be within [0.9, 1.0] in order to obtain the lowest number of unscheduled duties. The result of the

real case study problem by the ε–Constraint and the Weighted-Sum Methods and the actual

allocation generated manually by the hospital are also compared.

The number of ideal scheduled duties obtained by the Weighted-Sum Model is significantly

higher than that of the manual allocation. Although the number of unscheduled duties obtained by

both ε–Constraint Model and Weighted-Sum Model are slightly worse than the number of

unscheduled duties via manual allocation, the number of non-ideal scheduled duties is better than

that of the manual allocation. One of possible reason is in the manual allocation, the administrator

allocates non-ideal scheduled duties to any time slots/shifts without considering the ergonomic

constraints. In the manual allocation, there are also two physicians who have to cancel their days-

off or shifts-off for other duties. This outcome is very undesirable since they might have external

commitments that cannot be delayed or cancelled.

0

5

10

15

20

0 5 10 15

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 1a Random 1b
Random 1c Random 1d
Random 1e Random 1f
Random 1g

0

10

20

0 5 10 15

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 2a Random 2b

Random 2c Random 2d

Random 2e Random 2f

253

Table 6. Comparison between the manual allocation and model solutions on a real case

 Manual
allocation

ε–Constraint
Model

Weighted-Sum
Model

Number of unscheduled duties 5 8 8

Number of non-ideal scheduled duties 10 7 2

Number of ideal scheduled duties 135 135 140

6.3 Results from Hill-Climbing Algorithm

In this experiment, the number of iterations for Hill Climbing is set to 200 for each test

instance. Note that the number of Pareto-optimal solutions obtained by the Weighted-Sum Method

is small. For instance, for problem instances Random 1 (i.e. 1a to 1g), the number of Pareto-

optimal solutions generated is between 3 and 4, compared with the Hill-Climbing Algorithm which

provides up to 10 non-dominated solutions (see Table 7). Figure 8 represents results obtained by

the Hill-Climbing Algorithm for some of the representative instances.

Table 7. The number of solutions generated

Problem Set The range of the number of solutions generated

Weighted-Sum Method Hill-Climbing Algorithm

Case Study 1 2

Random 1 [3,4] [3,10]
Random 2 [2,4] [3,11]

Random 3 [3,5] [2,12]

Random 4 [4,5] [4,12]
Random 5 [4,5] [4,16]

Random 6 [4,7] [4,11]

Figure 8. Non-dominated solutions of Hill-Climbing Method

0

2

4

6

8

10

12

14

16

18

0 5 10 15

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 1g

Weighted Sum Heuristic

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 2i

Weighted Sum Heuristic

0

5

10

15

20

25

30

0 10 20 30

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 4k

Weighted Sum Heuristic

0

5

10

15

20

25

30

0 10 20 30

U

n
sc

h
e

d
u

le
d

 d
u

ti
e

s

Non-ideal scheduled duties

Random 5k

Weighted Sum Heuristic

254

As observed by Burke et al., 2009, one issue in comparing the algorithms in multi-objective

problems is that there is no systematic criterion to measure the performance of each algorithm. In

Burke et al. (2009), a number of objective functions were considered, and their approach was

convert these objectives into goals, and the aim was to minimize the deviations (i.e. the percentage

of total number of violations in the solution with respect to the total number of constraints).

In this paper, we choose to measure the deviation of our heuristic approach from Pareto

optimality directly. Let the results obtained by the Hill-Climbing and Weighted-Sum Methods be

denoted as Sets H and W with sizes of nH and nW, respectively. In order to compare and measure

the closeness between a solution Hx and a solution Wy , we propose the following formula:

2

2

22

1

11

y

xy

y

xy
yx

Z

ZZ

Z

ZZ
,dist (21)

For a particular solution x, we calculate nW different values of dist(x,y) and choose the

solution y which yields the minimum dist(x,y) value (ties broken arbitrarily). The fitness value of a

solution x is calculated as follows:

1),(

1

yx
x

dist
Fitness (22)

Note that this is a normalized value that falls between 0 and 1, where a value 1 means perfect fit,

and tends to 0 as the distance increases.

 For each problem instance, we will have nH different values of dist(x,y). For example, for

Random 1g (see Figure 8), six different non-dominated solutions were obtained by the Hill-

Climbing Algorithm. The average fitness value associated with a given problem instance is then

calculated as follows:

H

H

n

Fitness
FitnessAverage

 x)(x

(23)

Table 8 lists the distances obtained for representative instances Random 1g, 3i, 4k and 5k.

We observe that the Hill-Climbing Algorithm produces non-dominated solutions with the fitness

values greater than 0.93. Although the results obtained by the Hill-Climbing Method might not be

Pareto-optimal solutions, we found that the number of non-dominated solutions generated is more

than that of the Weighted-Sum Method. For future research, these non-dominated solutions can be

considered as starting points/initial solutions that would be further improved in order to obtain

Pareto-optimal solutions.

Table 8. Comparison between the Hill-Climbing Algorithm and the Weighted-Sum Method

Problem Instances
Number of solutions generated

by Weighted-Sum Method

Number of solutions generated

by Hill Climbing Algorithm
Average Fitness

Random 1g 4 6 0.974

Random 2i 4 11 0.962
Random 4k 4 12 0.954

Random 5k 5 16 0.937

255

Table 9 summarizes the statistical descriptions of the entire results for all problem sets. The

grand mean of average fitness values is above 0.9 which is considered high. Some instances in

Random 2 and 3 have the values of 1. The Grand Mean column refers to the means of the average

fitness values of the respective problem sets.

Table 9. Summary of average fitness values

Problem Set
Number of
instances

Grand Mean Std dev Minimum Maximum

Case Study 1 0.96 0.04 0.93 0.99

Random 1 7 0.94 0.03 0.90 0.97
Random 2 9 0.95 0.03 0.92 1.00

Random 3 9 0.96 0.03 0.92 1.00

Random 4 11 0.94 0.01 0.92 0.96
Random 5 13 0.96 0.02 0.93 1.00

Random 6 15 0.94 0.02 0.92 0.97

7 Conclusion

In this paper, we introduce the master physician scheduling problem considering two

different objectives simultaneously. Three different multi-objective methods have been proposed.

These approaches were tested on a real case from the Surgery Department of a large local

government hospital, as well as on randomly generated problem instances. We observe that the

objectives were better satisfied compared against the manual allocation.

In terms of future research, there are several potential areas for investigation. An interesting

research direction would be to apply other methods, such as Multi-Objective Simulated Annealing,

Multi-Objective Tabu Search, and to develop other neighborhood structures in an attempt to

improve the solutions. In the same way, we can also consider other constraints, such as fairness

constraints, which commonly seen in other hospitals (Gendreau et al., 2007). Another systematic

criterion to measure the performance of an algorithm can be considered as future work. We notice

that some distance values of the Hill-Climbing Method’s solutions might be large. It is probably

due to the limitation of the Weighted-Sum Method in generating all possible Pareto-optimal

solutions. The application of the ε–Constraint Method is rather limited in this paper; for example,

we can consider applying this method to retrieve the complete Pareto-optimal solutions. The main

idea is to construct a sequence of ε-Constraint Model based on a progressive modification of *
iU

values (equation (19)) (Deb, 2003; Bérubé et al., 2009).

Acknowledgements We like to thank the Department of Surgery, Tan Tock Seng Hospital

(Singapore) for providing valuable comments and test situations.

References

1. Aggarwal, S. (1982). A focused review of scheduling in services. European Journal of

Operational Research, 9(2), 114-121.

2. Bard, J. F., & Purnomo, H. W. (2005). Preference scheduling for nurses using column

generation. European Journal of Operational Research, 164, 510-534.

256

3. Beaulieu, H., Ferland, J. A., Gendron, B., & Philippe, M. (2000). A mathematical

programming approach for scheduling physicians in the emergency room. Health Care

Management Science, 3, 193-200.

4. Beliën, J., & Demeulemeester, E. (2005). Integrating nurse and surgery scheduling. In

Proceedings of the 2
nd

 Multidisciplinary International Scheduling Conference: Theory and

Applications 2005, New York, USA, 18-21 July 2005, 408-409.

5. Beliën, J., Demeulemeester, E., & Cardoen, B. (2009). A decision support system for cyclic

master surgery scheduling with multiple objectives. Journal of Scheduling, 12, 147-161.

6. Bérubé, J.-F, Gendreau, M., & Potvin, J.-Y. (2009). An exact ε-constraint method for bi-

objective combinatorial optimization problems: application to the traveling salesman problem

with profits. European Journal of Operational Research, 194, 39-50.

7. Blöchliger, I. (2004). Modeling staff scheduling problems. A tutorial. European Journal of

Operational Research, 158, 533-542.

8. Brandeau, M.L., Sainfort, F., & Pierskalla, W.P. (2004). Operations research and healthcare:

A handbook of methods and applications. Dordrecht: Kluwer Academic.

9. Burke, E. K., & Riise, A. (2008). Surgery allocation and scheduling. In Proceedings of the 7
th

International Conference of Practice and Theory of Automated Timetabling 2008, Montreal,

Canada, 18-22 August 2008.

10. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem H. (2004). The

state of the art of nurse rostering. Journal of Scheduling, 7(6), 441-499.

11. Burke, E. K., Li, J., & Qu, R. (2009). A Pareto-based search methodology for multi-objective

nurse scheduling. Annals of Operations Research, DOI: 10.1007/s10479-009-0590-8,

published online.

12. Burke, E. K., Li, J., Petrovic, S. & Qu, R. (2007). A new Pareto-optimality based

metaheuristic approach to the multi-objective nurse scheduling problem. Technical Report,

School of Computer Science and IT, University of Nottingham.

13. Carter, M. W., & Lapierre, S. D. (2001). Scheduling emergency room physicians. Health Care

Management Science, 4, 347-360.

14. Deb, K. (2003). Multi-objective optimization using evolutionary algorithms. Wiley & Sons,

Chichester, New York.

15. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004). Staff scheduling

and rostering: A review of applications, methods and models. European Journal of

Operational Research, 153, 3-27.

16. Gendreau, M., Ferland, J., Gendron, B., Hail, N., Jaumard, B., Lapierre, S., Pesant, G., &

Soriano, P. (2007). Physician scheduling in emergency rooms. In Burke, E. K., & Rudová, H.

(eds.), The Practice and Theory of Automated Timetabling VI (PATAT’06, Selected papers).

Lecture Notes in Computer Science, 3867, 53-66, Springer, Heidelberg.

17. Gunawan, A., & Lau, H.C. (2009). Master physician scheduling problem. In Proceedings of

the 4
th

 Multidisciplinary International Scheduling Conference 2009, Dublin, Ireland, 10 – 12

August 2009.

257

18. Haimes, Y.Y., Lasdon, L.S., & Wismer, D.A. (1971). On a bicriteriona formulation of the

problems of integrated system identification and system optimization, IEEE Trans. Syst., Man

Cybernet, 1, 296-297.

19. Ogulata, S. N., & Erol, R. (2003). A hierarchical multiple criteria mathematical programming

approach for scheduling general surgery operations in large hospitals. Journal of Medical

Systems, 27(3), 259-270.

20. Ogulata, S. N., Koyuncu, M., & Karakas, E. (2008). Personnel and patient scheduling in the

high demanded hospital services: a case study in the physiotherapy service. Journal of

Medical Systems, 32(3), 221-228.

21. Ozkarahan, I. (2000). Allocation of surgeries to operating rooms by goal programming.

Journal of Medical Systems, 24(6), 339-378.

22. Petrovic, S., & Vanden Berghe, G. (2008). Comparison of algorithms for nurse rostering

problems. In Proceedings of the 7
th

 International Conference of Practice and Theory of

Automated Timetabling 2008, Montreal, Canada, 18 – 22 August 2008.

23. Puente, J., Gómez, A., Fernández, I., Priore, P. (2009). Medical doctor rostering problem in a

hospital emergency department by means of genetic algorithm. Computers & Industrial

Engineering, 56, 1232-1242.

24. Roland, B., Di Martinelly, C., Riane, F. & Pochet, Y. (2009). Scheduling an operating theatre

under human resource constraints. Computers & Industrial Engineering, article in press,

corrected proof, available online, 14 January 2009.

25. Testi, A., Tanfani, E., & Torre, G. (2007). A three-phase approach for operating theatre

schedules. Health Care Management Science, 10, 163-172.

26. Topaloglu, S. (2006). A multi-objective programming model for scheduling emergency

medicine residents. Computers & Industrial Engineering, 51, 375-388.

27. Topaloglu, S. (2009). A shift scheduling model for employees with different seniority levels

and an application in healthcare. European Journal of Operational Research, 198, 943-957.

28. Vassilacopoulos, G. (1985). Allocating doctors to shifts in an accident and emergency

department. Journal of the Operational Research Society, 36, 517-523.

29. White, C.A., Nano, E., Nguyen-Ngoc, D.H, White, & G.M. (2006). An evaluation of certain

heuristic optimization algorithms in scheduling medical doctors and medical students. In

Proceedings of the 6
th

 International Conference of Practice and Theory of Automated

Timetabling 2006, Brno, The Czech Republic, 30 August – 1 September 2006.

258

Combining VNDS with Soft Global Constraints Filtering
for Solving NRPs

J-P.Métivier · P. Boizumault · S. Loudni

Abstract Nurse Rostering Problems (NRPs) consist of generating rosters where re-

quired shifts are assigned to nurses over a scheduling period satisfying a number of

constraints. In [25], we have shown how soft global constraints can be used to model

NRPs in a concise and elegant way. In this paper we go one step further by proposing

new neighborhood heuristics for VNS/LDS+CP. Experiments show that, despite its

genericity and flexibility, our approach supplies excellent results on small and middle

size problems and very promising results on large scale problems.

Keywords NRP · Constraint Programming · VNS · VNDS · Soft Global Constraints.

1 Introduction

Due to their complexity and importance in real world modern hospitals, Nurse Ros-

tering Problems (NRPs) have been extensively studied in both Operational Research

(OR) and Artificial Intelligence (AI) for more than 40 years [5,13]. Most NRPs in real

world are NP-hard [20] and are particularly challenging as a large set of different rules

and specific nurse preferences need to be satisfied to warrant high quality rosters for

nurses in practice. Other wide ranges of heterogeneous and specific constraints usually

make the problem over-constrained and hard to solve efficiently [1,32].

NRPs consist of generating rosters where required shifts are assigned to nurses

over a scheduling period satisfying a number of constraints [5,10]. These constraints

are usually defined by regulations, working practices and preferences of nurses and are

usually categorised into two groups: hard constraints and soft constraints (with their

violation costs).

Jean-Philippe Métivier
GREYC (CNRS - UMR 6072) – Université de Caen, Campus II – Boulevard du Maréchal Juin,
14000 Caen Cedex, FRANCE
Tel.: + 33 (0)2 31 56 74 84
Fax: + 33 (0)2 31 56 73 30
E-mail: Jean-Philippe.Metivier@info.unicaen.fr

Patrice Boizumaut and Samir Loudni
GREYC (CNRS - UMR 6072) – Université de Caen, Campus II – Boulevard du Maréchal Juin,
14000 Caen Cedex, FRANCE

259

VNS/LDS+CP [23] is a generic local search method based on VNDS (Variable

Neighborhood Decomposition Search [15]) for solving over-constrained problems. Neigh-

borhoods are obtained by unfixing a part of the current solution according to a neigh-

borhood heuristic. Then the exploration of the search space related to unfixed part of

the current solution is performed using LDS (Limited Discrepancy Search [16]) com-

bined with Constraint Propagation (Filtering).

Global constraints are often key elements in successfully modelling and solving

real-life problems due to their efficient filtering. Global constraints are particularly

well suited for modelling (hard) NRP constraints [3,35]. More recently, soft global

constraints proposed by [24,31,33,37] enable to quantify the violation while keeping

the efficiency of their filtering. In [25], we have shown how soft global constraints can

be used to model NRPs in a concise and elegant way. In this paper we go one step

further by proposing new neighborhood heuristics for VNS/LDS+CP. Such heuristics

provide results better than those described in [25]. Experiments show that, despite its

genericity and flexibility, our approach supplies excellent results on small and middle

size problems and very promising results on large scale problems.

Section 2 gives a synthetic overview of NRPs. Section 3 describes VNS/LDS+CP

and reviews neighborhood heuristics already proposed for solving NRPs using VNS.

We performed experiments over different instances selected to be representative of the

diversity and the size of NRPs (Section 4). For each selected instance, we compare

(Section 5) quality of solutions and computing times for our method with the best

known ad’hoc method for solving it [18]. Finally we conclude and draw some further

works.

2 Nurse Rostering Problems

2.1 An overview of NRPs

NRPs consist of generating rosters where required shifts are assigned to nurses over a

scheduling period (planning horizon) satisfying a number of constraints [5,13]. These

constraints are usually defined by regulations, working practices and nurses preference.

Constraints are usually categorised into two groups: hard and soft ones.

Hard constraints must be satisfied in order to obtain feasible solutions for use

in practice. A common hard constraint is to assign all shifts required to the limited

number of nurses.

Soft constraints are not mandatory but are desired to be satisfied as much as

possible. The violations of soft constraints in the roster are used to evaluate the quality

of solutions. A common soft constraint in NRPs is to generate rosters with a balanced

workload so that human resources are used efficiently.

Shift types are hospital duties which usually have a well-defined start and end time.

Many nurse rostering problems are concerned with the three traditional shifts Morn-

ing, (7:00–15:00), Evening (15:00–23:00), and Night (23:00–7:00). Nurses can possess

different skills and cover can be defined for each skill.

Different kinds of constraints can be imposed on the work planning of a nurse:

(i) Shift constraints set the minimal and/or maximal number of nurses of certain

skill level working in each shift as well as within each group during the planning period.

260

(ii) Pattern constraints ensure a certain level of quality for the plannings produced

and may be specified either globally for the staff or only for certain individuals. Typical

requirements are:

– patterns of shifts (i.e. minimal and/or maximal total number of particular sequences

of shifts) between any two types of shifts in the planning period (e.g., at least one

day-off per week),

– length of stretches of shifts of identical type to avoid working too few or too many

days in a row on a certain shift (e.g. working more than 4 consecutive day shifts is

not permited),

– patterns of stretches such as forward rotation (going from day shifts to evening

shifts to night shifts to day shifts again),

– and patterns of stretches of a given length that ask for at least so many consecutive

shifts of a certain type right after shifts of another type (e.g., there must be a

day-off before and after working for three consecutive night shifts).

(iii) Workload constraints are used to model the requirements of min/max total

number of hours and/or shifts of specific type worked by each nurse in the planning

period.

2.2 Example: Valouxis Instance

For the Valouxis instance [36], 16 nurses must be planned over a period of 4 weeks.

Three shifts are considered: M (Morning), E (Evening) and N (Night). O (Off) will

represent repose. The following hard and soft constraints must be enforced. Fig. 1

describes a planning of cost 60 for this instance.

1. Hard constraints:

(H1) From Monday to Friday, M , E and N shifts require respectively (4,4,2) nurses.

(H2) For weekend, M , E and N shifts require respectively (3,3,2) nurses.

2. Soft constraints:

(S1) For each nurse, the number of M shifts should be within the range [5..8]. Any

deviation δ is penalised by a cost δ × 1000.

(S2) For each nurse, the number of E shifts should be within the range [5..8]. Any

deviation δ is penalised by a cost δ × 1000.

(S3) For each nurse, the number of N shifts should be within the range [2..4]. Any

deviation δ is penalised by a cost δ × 1000.

(S4) Each nurse must have at least 10 days Off. Any shortage δ generates a cost

δ × 1000.

(S5) Each nurse must have at most 13 days Off. Any excess δ generates a cost δ×100.

(S6) Over a period of 4 weeks, each nurse must have at least 1 free Sunday. Any

violation of this rule is penalised by a cost 1000.

(S7) Each nurse should not work more than 3 consecutive N shifts. Any excess δ

generates a cost δ × 1000.

(S8) Shift changes must be performed respecting the order: M , E, N . Any violation

of this rule is penalised by a cost 1000.

(S9) Each isolated working day is penalised by a cost 1000.

(S10) Each isolated day off is penalised by a cost 1000.

(S11) Each nurse should work 4 consecutive days. Any excess δ generates a cost

δ × 1000. Each period of 2 (resp. 3) consecutive working days is respectively

penalized by a cost 40 (resp. 20).

261

M T W

1

T F S S M T W

2

T F S S M T W

3

T F S S M T W

4

T F S S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Nurse 1

Nurse 2

Nurse 3

Nurse 4

Nurse 5

Nurse 6

Nurse 7

Nurse 8

Nurse 9

Nurse 10

Nurse 11

Nurse 12

Nurse 13

Nurse 14

Nurse 15

Nurse 16

M M E E N

M M E M N M E E N

M M E N E N M E

M N M E M E N M E M E

E N E N M M E N M

E M E M E M N

E M N M E M E M E N

E M E M E M E N M N

E M E N E N M

N E N M M E M E N

E N M N M M E

M E M N M N M E

E M E N M E M N M E

N M E M E E N M

M E M E N E N M E

M E N M E E N M

Fig. 1 A solution of cost 60 for the Valouxis instance.

3 Solving NRPs

3.1 VNS/LDS+CP

A wide range of approaches and techniques have been proposed for solving NRPs.

These include ad’hoc OR methods (by means of mathematical programming with pre-

processing steps to reduce the problem size), constructive heuristics and local search

methods combining OR techniques to find an initial solution (see [5,13] for a compre-

hensive review). Of those techniques that have been applied to NRPs, metaheuristics

dealing with large-scale neighborhoods (2-opt, swap and interchange of large portions

of nurse plannings, . . .) such as Variable Neighbourhood Search (VNS) seem to be well

suited and very effective.

VNS is a metaheuristic which systematically exploits the idea of large neighborhood

change, both in descent to local minima and in escape from the valleys which contain

them [27]. Variable Neighborhood Decomposition Search (VNDS) [15] extends basic

VNS within a successive approximations method. For a solution of size n, all but k

variables are fixed, and VNDS solves a sub-problem in the search space defined by the

k unfixed variables.

3.1.1 General overview

VNS/LDS+CP [23] is a generic local search method based on VNDS, where neighbor-

hoods are obtained by unfixing a part of the current solution according to a neighbor-

hood heuristic. Then the exploration of the search space related to the unfixed part

of the current solution is performed using a Limited Discrepancy Search (LDS [16])

combined with Filtering in order to benefit from the efficiency of soft global constraints

filtering (See Algorithm 1).

262

Algorithm 1: Pseudo-code for VNS/LDS+CP.

function VNS/LDS+CP(X , C, kinit, kmax, δmax)
1 begin
2 s← genInitialSol(X)
3 k ← kinit

4 while (k < kmax) ∧ (not timeout) do
5 Xunaffected ← Hneighbor(Nk, s)
6 A ← s\{(xi = a) s.t. xi ∈ Xunaffected}
7 s′ ← NaryLDS(A,Xunaffected, δmax,V(s), s)
8 if V(s′) < V(s) then
9 s← s′

10 k ← kinit

11 else k ← k + 1

12 return s

Unlike an usual VNS scheme, our approach offers two main advantages: first, by

focusing efforts on improving only a part of the solution, we restrict the size of the

search space and intensify search to improve the current solution; second, even if the

exploration of (very) large neighborhoods requires a too expensive effort, the use of

LDS allows to efficiently explore parts of the search space.

Algorithm 1 shows the general pseudo-code of VNS/LDS+CP, with kinit (resp.

kmax) the minimal (resp. maximal) number of variables to be unassigned and δmax

the maximal number of discrepancies allowed for LDS. A subset of k variables (k is the

dimension of the neighborhood) is selected by the neighborhood heuristic Hneighbor

in Nk (set of all subsets of k variables among X) (line 5). A partial assignment A
is generated from the current solution s by unassigning the k selected variables ; the

(n− k) non-selected variables keep their current value in s (line 6). Then, unassigned

variables are rebuilt by a partial tree search LDS, combined with constraint propagation

based on filtering of global constraints. If a solution of better quality s′ is found in the

neighborhood of s (line 8), then s′ becomes the current solution and k is reset to

kinit (lines 9-10). Otherwise, we look for improvements in the subspace where (k + 1)

variables will be unassigned (line 11). The algorithm stops when it reaches the maximal

dimension size allowed or the timeout (line 4).

3.1.2 LDS+CP

LDS is a tree search method introduced by Harvey and Ginsberg [16] allowing to

iteratively solve binary CSPs. Let H be a heuristic that is trusted. The main idea

of LDS is to follow H when exploring the search tree, and to consider that H may

make mistakes a small number (δ) of times. Thus, δ discrepancies are allowed during

search. For a given maximal number δmax of discrepancies, LDS explores the tree in

an iterative way with an increasing number of discrepancies (from δ = 0 to δ = δmax).

Depending on the value of δmax, LDS is either a partial or a complete tree search. In

[23], LDS has been extended to n-ary optimization problems, and only performs the

last iteration (for δ = δmax).

Our variable ordering for LDS first selects the variable having the lowest ratio

domain cardinality divided by its degree (Dom/Deg). Our value ordering (BestFirst)

selects the values according to the increasing order of their violation costs. We re-

use information gained from the filtering of soft global constraints to determine the

263

violation cost for a value. Finally, Constraint Propagation is performed using soft global

constraints filtering (see [17,25]).

3.2 Neighborhood Heuristics: Related works

Neighborhood heuristics are crucial since they select parts of the search space to explore

in order to find solutions of better quality. However, designing efficient neighborhood

heuristics is a hard task and requires a great deal of expertise. Morever, as quoted in

[8], few neighborhood heuristics have been designed for NRPs. In this subsection, we

review these neighborhood heuristics and describe the context in which they have been

used.

(i) (VNS). In [6], three neighborhood heuristics based on swapping large parts of

nurse plannings have been proposed and used in a VNS scheme:

– Shuffle neighborhood considers different swaps between the worst nurse planning

and any other nurse planning.

– Greedy Shuffle neighborhood considers swaps between any two nurse plannings.

– Core Shuffle neighborhood considers two consecutive swaps between any two nurse

plannings at a time (see [6] for more details).

(ii) (VNS+HO). A hybrid method combining VNS with a heuristic ordering (HO)

has been proposed in [7]. The aim of the heuristic ordering is to sort all the shifts

by their estimated difficulty for assigning them or how likely they are to cause high

penalties. First, an initial planning is built using the heuristic ordering. Second, in

order to improve the initial planning, a VNS is performed, followed by a repair phase.

This phase selects the worst individual plannings, unassigns their shifts and reassigns

them using the heuristic ordering. This process is repeated until a stopping criterion

is reached. Two kinds of neighborhoods heuristics have been proposed:

– One-shift Swap: re-assigning a shift to another nurse working on the same day.

– Two-shift Swap: swapping a pair of shifts assigned to two nurses working on the

same day.

(iii) (VNS+CP). A 2-steps hybrid Constraint Programming approach has been pro-

posed in [32]. First, a constraint satisfaction model is used to generate weekly plannings

of high quality satisfying a subset of shift sequence constraints. An iterative forward

search is then used to combine them in order to build feasible solutions over the whole

scheduling period (4 weeks). Second, VNS combined with the neighborhood heuristics

described in (i) is used to quickly improve obtained solutions.

(iv) (VNS+IP). VNS has been used as a postprocessing step in [10] to make re-

finements on solutions found by an Integer Program (IP). Proposed neighborhood

heuristics are based on swapping groups of consecutive shifts and are very close to the

Greedy Shuffle neighborhood heuristic decribed in (i).

(v) (LNS). More recently, a LNS (Large Neighborhood Search [34]) scheme has been

used to tackle NRPs [17]. It proceeds by selecting fragments of nurse plannings to

be unassigned and then rebuilding them using F iltering. Such a use of LNS can be

considered as an instance of VNDS. Three neighborhood heuristics have been proposed

in [17]:

(a) Sliding window with a fixed length: Nurse plannings are selected over a sliding

window (i.e. covering fixed days of the roster of all nurses) of one week.

264

(b) Sliding window with an overlap: It is a refinement of heuristic (a) by selecting

variables involved in the pattern constraints for which a part of variables is on

the boundary of the sliding window, whereas another part is outside the sliding

window.

(c) Detecting regions of low quality: Instead of selecting all nurse plannings like for

heuristics (a) and (b), only nurse plannings of low quality are considered. Moreover,

PGLNS [30] is used to determine the size of the sliding window and the set of

variables to be unassigned according to the information gained by filtering (see [30]

and [17] for more details).

3.3 Neighborhood Heuristics: Our proposal

Neighborhood heuristics based on swap cannot be combined with our VNDS approach

which requires an unassigning step and a rebuilding step. Moreover, we haven’t used

heuristics (a), (b) and (c) described Section 3.2 for two main reasons. First, selecting all

nurse plannings is only effective for small problems. For large problems, as neighbor-

hoods size can quickly grow, the exploration of (very) large neighborhoods may require

a too expensive effort. Second, as a lot of soft global constraints are stated over the

whole planning of a nurse, unassigning only the subset of variables that appear in the

sliding window will not lead the rebuilding step to find a new solution of better quality.

Indeed, the more the variables are linked, the more opportunities for the rebuilding

step to minimize violations.

All variables related to a nurse planning will be together unassigned. For our ap-

proach, k will represent the number of nurse plannings to be unassigned (and not the

number of variables to be unassigned as depicted in general Algorithm 1). We have

considered the following three heuristics:

– rand randomly selects nurse plannings,

– maxV selects nurse plannings having high violation costs,

– dilution combines the two previous heuristics. Among the k nurse plannings to be

unassigned, half of them are selected using maxV, and the other ones will be chosen

randomly. The idea is to mix intensification phases (by considering nurse plannings

with high violation cost) with diversification phases (by considering nurse plannings

randomly in order to escape from local minima).

4 Experimental protocol

The ASAP site (Automated Scheduling, optimization And Planning) of University of

Nottingham (http://www.cs.nott.ac.uk/~tec/NRP/) records a large and various set

of NRPs instances as well as the methods used to solve them.

We performed experiments over different instances we selected in order to be rep-

resentative of the diversity and the size of NRPs (see Table 1). For each instance,

we always compare our approach with the best methods for solving it [18].

As experiments have been run on various machines, we will report, for each instance,

the original CPU time and the processor. For all instances, except the first three ones

where the processor is too old to be normalised (they are noted in italic Table 1), CPU

times will be normalised1 and denoted CPUN.

1 For a machine κ times slower than ours, reported CPU times will be divided by κ.

265

Instances |I |×|J | |D | Optimum
Ad hoc methods VNS/LDS+CP

Algo. Cost Time(s) Cost Time(s)

Ozkarahan 14×7 3 0? [29] - - 0 1

Millar 8×14 3 0? Network 2550 500
0 1

TS+B&B 0 1
Musa 11×14 2 175? [28] 199 28 175 39
LLR 26×7 4 301? TS+CP 366 16 312 275

BCV-5.4.1
4×28 5 48?

Hybrid TS 48 5
48 1

VDS 48 128

Valouxis 16×28 4 20? VDS 60 32450
60 6570

SS+VDS 100 6000

Azaiez 13×28 3 0? (0,1)-LGP 0 150 0 233

GPOST A 8×28 3 5? SS+VDS 9 6457
8 474

MIP [14] 5 1285

GPOST B 8×28 3 3?
SS+VDS 5 5932

4 9892-Phases 3 14
MIP [14] 3 441

ORTEC 01 16×31 5 270?

GA [7]
775 3600

355 6818

681 86400

VNS+HO [7]
706 3085
541 37020

VNS+IP [10] 460 2571

VDS
355 14359
280 51420

MIP [14] 270 120
Ikegami

25×30 4 2? TS+B&B 6 111060 63 671
3Shift-DATA1

Table 1 Best results for Ad hoc methods vs best results for VNS/LDS+CP.

Some methods include a pre-treatment. As CPU times for this step are not

given in papers, reported CPU times concern in fact the second step. In our approach,

we use LDS, combined with filtering of soft global constraints, to generate the initial

solution. So, reported CPU times for our method always include the computing

time for obtaining the initial solution.

Benchmarks we considered (see Table 1) represent a wide variety of NRPs with

non-trivial properties which are derived from real world complex instances. They are

significantly different from each other by the number of nurses (ranging from 4 to 26),

the number of shift types (ranging from 2 to 5), the duration of the planning period

(ranging from 7 to 31 days) and the constraints to be verified: Shift constraints, Pattern

constraints and Workload constraints (see Section 2.1). Finally, they may also differ

by the number of personal requests and preferences.

Each instance has been solved by VNS/LDS+CP using neighborhood heuristics

rand, maxV and dilution. kmin has been set to 2 and kmax to 66% of the total number

of nurses. Timeout has been set according to the size of each instance. For heuristics

rand and dilution, a set of 10 runs per instance has been performed. VNS/LDS+CP

has been implemented in C++. Experiments have been performed under Linux on a

2.8 GHz P4 processor, with 1GB RAM.

266

5 Experimental results

5.1 Comparing with ad hoc methods

5.1.1 Ozkarahan instance [29]

We find the optimum in less than 1s. using maxV.

5.1.2 Millar instance (2 methods)

– B1) Network programming [26]: All feasible weekly shift patterns of length at most 4

days are generated. Then, an acyclic graph is defined, where nodes are the stretches,

while arcs represent feasible transitions between stretches. Costs are associated

to the transitions in order to reflect their desirability. The model is solved using

CPLEX.

– B2) TS+B&B [19]: Nurse constraints are used to produce all feasible shift pat-

terns for the whole scheduling period for each nurse (independently from shift con-

straints). Best combinations of these shift patterns are found using mathematical

programming and Tabu Search.

With B1, a solution of cost 2,550 is found after 500 s. on an IBM RISC6000/340.

With B2, a solution of cost 0 is obtained in 1 s. on a 1GHz Intel P3 processor. We find

the optimum in less than 1 s. using maxV.

5.1.3 Musa instance [28]

A solution of cost 199 is found in 28 s. on UNIVAC-1100. We find the optimum (cost

175) in 39 s. using maxV

5.1.4 LLR instance

A hybrid AI approach (TS+CP), which combines Constraint Propagation and Tabu

Search is used in [22]. First, a relaxed problem which only includes hard constraints is

solved as a CSP. Second, adjustments with local search and tabu search is then applied

to improve the solution. A solution of cost 366 is found after 96 s. on a PC/P-545MHz

(CPUN 16 s.). With rand, we obtain (on average) a solution of cost 316.1 after 600 s.

The best solution (over the 10 runs) has a cost 312 (275 s.). The first solution (cost

363) is obtained in less than 1 s.

5.1.5 BCV-5.4.1 instance (2 methods)

All the results are obtained on a same machine (2.66GHz Intel P4 processor). Hybrid

Tabu search [4] is the best of the 2 methods for this instance. The optimum is found

in 5 s. (CPUN 5 s.). With dilution, we obtain the optimum after 1 s.

267

5.1.6 Valouxis instance

This instance [36] is described Section 2.2. In [8], Variable Depth Search (VDS) obtains

a solution of cost 60 (3 workstretches of length 3) after 23,175 s. on a 2.66GHz Intel

Core2 Duo processor (CPUN 32,450 s.). VDS works by chaining together single swaps

of shifts among nurse plannings. Several heuristics are used to select the swaps to be

chained in order to escape from local optima. In [9], VDS has also been used as an

improvement method in the Scatter Search (a population based optimisation method).

On this instance, (SS+VDS) obtains a solution of cost 100 in 4,000 s. on a 2.83GHz

Intel Core2 (CPUN 6,000 s.).

We obtain a solution of cost 60 (3 workstretches of length 3) after 6,570 s. using

rand (see Figure 1).

5.1.7 Azaiez instance

An optimal solution is provided with the (0,1)-Linear Goal Programming method [2]

after 600 s. on a PC/P-700MHz (CPUN 150 s.). rand (resp. maxV) finds the optimum in

233s. (resp. 1,050 s.).

5.1.8 GPOST (2 instances)

The first instance, GPOST A, has an optimal solution of cost 5. The optimum has been

found in 1,320 s. using MIP (Mixed Integer Programming) on a P4 2.66GHz (CPUN

1,285 s.) This approach [14] takes advantage of the structure of the problem in order to

derive new pattern rules to allocate particular shifts e.g. Night shifts. Such propagations

drastically reduce the size of the search space. On this instance, (SS+VDS) [9] obtains

a solution of cost 9 in 4,305 s. (CPUN 6,457 s.).

We find a solution of cost 8 in 474 s. using dilution.

The second instance, GPOST B, is a relaxed version of GPOST A where nurse requests

have been removed. For this instance, three approaches have been proposed:

– the same MIP approach [14] finds an optimal solution in 420 s. (CPUN 441 s.).

– a 2-steps method [18]. First, all feasible plannings are enumerated for each nurse.

Then, the final planning is generated using CPLEX. This method obtains an opti-

mal solution in 8 s. on a 2.83GHz Intel Core2 Duo processor (CPUN 14 s.) without

taking into account the time used in the first step.

– (SS+VDS) [9] obtains a solution of cost 5 in 3,955 s. (CPUN 5,932 s.).

We find a solution of cost 4 in 989 s. using rand.

5.1.9 Ikegami-3shift-DATA1 instance

Experiments have been performed on a P3 1GHz. TS+B&B [19] finds a solution of

cost 10 after 543 mns (CPUN 194 mns) with a timeout of 24h and a solution of cost 6

after 5,783 mns (CPUN 1,851 mns) with a timeout of 100h. maxV provides a solution of

cost 63 (where all unsatisfied constraints are of weight 1) after 671 s. with a timeout of

1h.

Contrary to other instances, nurse constraints are hard ones and shift constraints

are soft ones for Ikegami. So our neighborhood heuristics which unassign whole nurse

268

Instance Opt. First Sol.
rand maxV dilution

timeout
best time avg. best time best time avg.

Millar 0 4800 0 2 0 0 1 0 1 0 300
BCV-5.4.1 48 69 48 5 48.8 48 202 48 1 48.6 300

LLR 301 363 312 275 316.1 337 385 315 440 321.3 600
Valouxis 20 37240 60 6570 132 160 3780 60 7160 102 7200
GPOST A 5 7876 8 654 11.4 14 1252 8 474 11 1800
GPOST B 3 7362 4 989 8.5 1365 44 5 1701 8.1 1800

Table 2 Comparing heuristics rand, maxV and dilution on several instances.

plannings are irrelevant. If the timeout is increased, the solution quality is improved

but it is not enough to bring the optimum. As it is more efficient to unassign variables

related to soft constraints than hard ones, one may consider that basic heuristics unas-

signing shift constraints would be efficient. But it is not the case as it is very difficult

to obtain a first solution: the number of nurse constraints is greater than the number

of shift ones.

5.1.10 First results for ORTEC 01

The ORTEC 01 instance is a benchmark from ORTEC’s Harmony software, an interna-

tional consultancy company in planning, optimization and decision support solutions.

This instance is a large and difficult one. Several approaches have been used to solve

it:

– The MIP approach [14] finds an optimal solution in 120 s. (CPUN 120 s.).

– (VNS+HO) [7] finds a solution of cost 706 in 1 h. on a P4 2.4GHz (CPUN 3,085 s.).

The same method finds a solution of cost 541 in 12 h. (CPUN 617 mns).

– (VNS+IP) [10] finds a solution of cost 460 in 3,000 s. on a P4 2.4GHz (CPUN 2,571

s.).

– VDS finds a solution of cost 355 in 16,755 s. (CPUN 14,359 s.) and a solution of cost

280 in 60,000 s. (CPUN 51,420 s.) on a P4 2.4GHz.

For a timeout set to 7, 200 s., we find a solution of cost 355 in 6,818 s. using rand,

and a solution of cost 375 in 4,231 s. using dilution. More experiments have to be

performed to confirm and improve these promising results.

5.2 Comparing our neighborhood heuristics

Table 2 compares the results produced by our neighborhood heuristics (i.e. rand, maxV

and dilution) on different instances. For each instance, the cost of the best solution

found, its computation time and average solutions over 10 runs are reported. The cost

of the first solution we obtained is also recorded in the third column. We can draw

some remarks:

– On average, dilution outperforms both rand and maxV, except for LLR, where rand

is the best one. Indeed, as two consecutive days off get a penalty of 5 and as there

are two nurses which require one week day off in their planning leading to a higher

violation cost (i.e. 30), heuristics maxV and dilution will almost select these two

nurses, while rand will enable to escape from such local optima.

269

 0

 1000

 2000

 3000

 4000

 5000

 0 1000 2000 3000 4000 5000 6000 7000

Q
ua

lit
y

Time (secondes)

rand
dilution

optimum

Fig. 2 Valouxis Instance, optimum=20

 0

 200

 400

 600

 800

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800

Q
ua

lit
y

Time (secondes)

rand
dilution

optimum

Fig. 3 GPOST B Instance, optimum=3

– For the best reported results, dilution and rand perform similarly, both in solution

quality and computing time. Indeed, when k becomes sufficiently large, the two

heuristics tend to have very similar neighborhoods.

– maxV is the less effective heuristic. This is probably due to its deterministic criterion,

which leads the heuristic to be stucked in local minima. Focussing only on the worst

nurse plannings will rarely improve the quality of the overall planning. So, using

some randomness enables diversification.

The performance profile of a method describes the evolution of the quality of ob-

tained solutions as a function of computation times. Fig. 2 and Fig. 3 depict the

performance profiles of VNS/LDS+CP for Valouxis and GPOST B instances. As maxV is

the less effective heuristic, (average) results are only reported for dilution and rand.

On Valouxis instance (see Fig. 2), dilution enables to quickly improve the quality

of the solution during the search. At the beginning, the performance profile of dilution

is very close to that of rand. But after a few seconds of computation (60 s.) dilution

always provides solutions of better quality, thus clearly outperforming rand. This be-

havior can be explained by the fact that dilution benefits from information provided

by MaxV tto improve nurse plannings having a high violation cost, but without selecting

them all the time.

On GPOST B instance (see Fig. 3), the same conclusions can be drawn: first, solu-

tion quality improvements are larger at the early stages of computation (property of

diminishing returns), particularly during the time interval of [0 . . . 1,000 s.]. Second,

the two curves show a decelerating phase leading to a quasi-plateau.

6 Conclusion

For each instance, we have compared our method with the best ad hoc method for

solving it [18]. Despite its genericity and flexibility, our method has obtained:

– solutions of better quality and better computing times for Ozkarahan, Millar, Musa,

LLR, BCV-5.4.1, and Valouxis ;

– solutions of equal quality with computing times close to those for BCV541 and

Azaiez,

– very promising solution quality on large scale instances as GPOST A, GPOST B or

ORTEC 01.

270

For large instances as ORTEC or Montreal, or very specific ones as Ikegami, perfor-

mances of our method could be greatly improved by i) using neighborhood heuristics

especially designed for NRPs, and ii) reducing the lack of communication between soft

global constraints by extending arc consistency for soft binary constraints [11,12,21].

In 2009, [21] has shown for the first time that dedicated cost function filtering tech-

niques can also be used to define Global Cost Functions leading to important speedups

compared to the use of global constraints with cost variables.

References

1. H. Meyer auf’m Hofe. Solving rostering tasks as constraint optimisation. In PATAT’00,
LNCS 2079, pages 191–212, 2001.

2. M. Azaiez and S. Al Sharif. A 0-1 goal programming model for nurse scheduling. Computers
and Operations Research, 32(3):491–507, 2005.

3. S. Bourdais, P. Galinier, and G. Pesant. HIBISCUS: A constraint programming application
to staff scheduling in health care. In CP’03, volume 2833 of LNCS, pages 153–167, 2003.

4. E. Burke, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search algorithm
for the nurse rostering problem. In 2nd Asia-Pacific Conference on Simulated Evolution
and Learning, volume 1585 of LNCS, pages 187–194, 1999.

5. E. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state of
the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

6. E. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Variable neighborhood
search for nurse rostering problems. In Metaheuristics: computer decision-making, pages
153–172, Norwell, MA, USA, 2004. Kluwer Academic Publishers.

7. E. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem. European Journal of
Operational Research, 188(2):330–341, 2008.

8. E. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A time predefined variable depth
search for nurse rostering, TR-2007-6, University of Nottingham, 2007.

9. E. K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A scatter search methodology for
the nurse rosetering problem. Journal of the Operationnal Research Society, pages 1–13,
2009.

10. E. K. Burke, Ji. Li, and R. Qu. A hybrid model of integer programming and variable
neighbourhood search for highly-constrained nurse rostering problems. European Journal
of Operational Research, 203(2):484–493, 2010.

11. M. Cooper, S. de Givry, M. Sanchez, T. Schiex, and M. Zytnicki. Virtual arc consistency
for Weighted CSP. In AAAI’08, 2008.

12. M. Cooper and T. Schiex. Arc consistency for soft constraints. Artificial Intelligence,
154(1-2):199–227, 2004.

13. A. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models. EJOR, 153(1):3–27, 2004.

14. C. A. Glass and R. A. Knight. The nurse rostering problem: A critical appraisal of the
problem structure. EJOR, 202(2):379–389, 2010.

15. P. Hansen, N. Mladenovic, and D. Perez-Britos. Variable neighborhood decomposition
search. Journal of Heuristics, 7(4):335–350, 2001.

16. W. Harvey and M. Ginsberg. Limited Discrepancy Search. In IJCAI’95, pages 607–614,
1995.

17. F. He and R. Qu. Constraint-directed local search to nurse rostering problems. In 6th
International Workshop on Local Search Techniques in Constraint Satisfaction (LSCS
2009), CP’09, pages 1–12, 2009.

18. http://www.cs.nott.ac.uk/˜tec/NRP/.
19. A. Ikegami and A. Niwa. A subproblem-centric model and approach to the nurse scheduling

problem. Mathematical Programming, 97(3):517–541, 2003.
20. R. Karp. Reducibility among combinatorial problems. In Complexity of Computer Com-

putations, pages 85–103. Plenum Press, New York, 1972.
21. J. Lee and K. Leung. Towards efficient consistency enforcement for global constraints in

weighted constraint satisfaction. In IJCAI’09, pages 559–565, 2009.

271

22. H. Li, A. Lim, and B. Rodrigues. A hybrid AI approach for nurse rostering problem. In
SAC, pages 730–735, 2003.

23. S. Loudni and P. Boizumault. Combining VNS with constraint programming for solving
anytime optimization problems. EJOR, 191(3):705–735, 2008.

24. J.-P. Métivier, P. Boizumault, and S. Loudni. Softening Gcc and Regular with preferences.
In 24th annual ACM Symposium on Applied Computing, pages 1392–1396, University of
Hawaii at Manoa, USA, March 2009.

25. J-P. Métivier, P. Boizumault, and S. Loudni. Solving nurse rostering problems using soft
global constraints. In 15th Int. Conf. on Principles and Practice of Constraint Program-
ming, volume 5732 of LNCS, pages 73–87, Lisbon, Portugal, 2009.

26. H. Millar and M. Kiragu. Cyclic and non-cyclic sheduling of 12h shift nurses by network
programming. EJOR, 104(1):582–592, 1996.

27. N. Mladenovic and P. Hansen. Variable neighborhood search. Computers & OR,
24(11):1097–1100, 1997.

28. A. Musa and U. Saxena. Scheduling nurses using goal-programming techniques. In IIE
transactions, volume 16, pages 216–221, 1984.

29. I. Ozkarahan. The zero-one goal programming model of a flexible nurse scheduling support
system. In Int. Industrial Engineering Conference, pages 436–441, 1989.

30. L. Perron, P. Shaw, and V. Furnon. Propagation guided large neighborhood search. In
Proceedings of CP’04, LNCS 3258, pages 468–481, 2004.

31. T. Petit, J-C. Régin, and C. Bessière. Specific filtering algorithms for over-constrained
problems. In CP’01, volume 2239 of LNCS, pages 451–463, 2001.

32. R. Qu and F. He. A hybrid constraint programming approach for nurse rostering problems.
In 28th SGAI International Conference on A.I., pages 211–224, 2008.

33. J-C. Régin, T. Petit, C. Bessière, and J-F. Puget. An original constraint based approach
for solving over-constrained problems. In CP’00, volume 1894 of LNCS, pages 543–548,
2000.

34. P. Shaw. Using constraint programming and local search methods to solve vehicle routing
problems. In CP’98, volume 1520 of LNCS, pages 417–431, 1998.

35. H. Simonis. Models for global constraint applications. Constraints, 12(1):63–92, 2007.
36. C. Valouxis and E. Housos. Hybrid optimization techniques for the workshift and rest

assignment of nursing personnel. A.I. in Medicine, 20(2):155–175, 2000.
37. W. van Hoeve, G. Pesant, and L-M. Rousseau. On global warming: Flow-based soft global

constraints. Journal of Heuristics, 12(4-5):347–373, 2006.

272

An efficient and robust approach to generate

high quality solutions for the Traveling

Tournament Problem

Douglas Moody, Graham Kendall and Amotz Bar-Noy

City University of New York Graduate Center and School of Computer Science

(Moody,Bar-Noy), University of Nottingham, UK (Kendall)

dmoody@citytech.cuny.edu, gxk@cs.nott.ac.uk,

amotz@sci.brooklyn.cuny.edu

The Traveling Tournament Problem (TTP) describes a typical

sports scheduling challenge. The TTP, which is based on the U.S.

Major League Baseball (MLB), has specific instances with results

available on the web. Several approaches have been proposed

since the problem’s creation. The “best” of these solutions use ex-

tensive resources in local search activities to find high quality so-

lutions. We propose a tiling method that can produce a good qual-

ity solution, using a fraction of the resources documented in other

approaches. Our solution can also be expanded to handle the ad-

ditional real-world scheduling requirements, including unbalanced

schedules within the MLB.

1 Introduction

The Traveling Tournament Problem (TTP) is a double round robin tour-

nament to be played by n teams over (2n-2) periods or weeks, where each

team plays in every period (we do not consider the “mirrored” version of

the problem). The three constraints of the TTP are:

1) Maximum “Road Trip” of three games: each team can play at most

three consecutive games away from the team’s home site before

playing again at the home site. For teams beginning the season with

an away game, it is assumed travel for that game would begin at the

home site. Likewise, teams ending the season with an away game,

would require to travel from that opponent’s location to the team’s

home site to complete the season.

2) Maximum “Home stand” of three games: each team can play at most

three consecutive games at its home site.

3) Repeater Rule: a team cannot play an opponent away in time period k

and then home in time period k+1, or vice versa.

The TTP seeks to minimize the distance traveled by each team. A dis-

tance matrix is available to define the distance between each team. This

calculation is used for each road trip, with the total being the accumulated

distance for all teams. The selection of opponents and their order within

273

the road trip is critical, while home stands have no bearing on the distance

calculation. Efficient road trips across all teams are more likely to yield

good quality solutions to the TTP.

The TTP has served as a benchmark problem for sports scheduling

over the past decade. Easton et al. [6] defines the problem, and the latest

results are available at [14]. However, the TTP definition notes its simpli-

fication of the actual Major League Baseball. This simplification elimi-

nates some key complexities of the MLB, notably:

Existence of unbalanced schedules – Teams in MLB play other teams

within their division more frequently than teams in other divisions.

Unequal home and away games – Due to Inter-league play, teams do

not play an equal number of home and away games against all teams. It

also introduces constraints of teams from the same city playing on the

same day. Kendall [7] notes this constraint in scheduling the English

football league.

These two simplifications enable many solution approaches to take ad-

vantage of round-robin tournament scheduling for the TTP. The solutions

that depend on a mirrored approach would not be able to produce an un-

balanced schedule. Other approaches use simple tournament generators

that also would not handle an unbalanced schedule. We propose an ap-

proach that can compete with existing TTP tournament based solutions

sets, and also be extendable to handle the real MLB problem.

2 Related Work

The TTP has spawned a variety of methodologies to find good quality

solutions. Kendall et al. [8] surveys this broad array of approaches. The

work to date can be viewed in two phases. The first phase consists of

traditional approaches including simulated annealing by Anagnostopou-

los [2], Lims’ [11] work on integer programming, the constraint pro-

gramming approach by Leong [10] , and tabu search proposed by Di Gas-

pero and Schaerf [5]. Also special heuristics have been developed as

used by Shen and Zhang [13]. The second phase focuses on the use of

parallel processing and server farms. Van Hentenryck and Vergados [16],

and Araujo [1] use a parallel implementation of existing algorithms to

improve on published results.

The majority of the above methods have focused almost exclusively on

local search operations to produce the best solutions. The initial neigh-

borhood for the local search is usually generated at random, and is not

necessarily feasible. Hence the starting “neighborhood” may be extreme-

ly far from the optimal solution, in terms of a distance measured by the

number of “swaps”, which are defined as moves between neighborhoods.

Our approach seeks to create an initial neighborhood that is a feasible

solution closer to the optimal solution than random initial solutions. We

use a tiling method, proposed by Kingston [9] for course scheduling.

Our tiling method creates an initial solution that has minimal hard con-

274

straint violations, and contains a core set of game assignments for a high

quality solution. The second phase of local search is used to remove con-

straint violations, and tune the solution.

The concept of modeling the problem using away trips was also consi-

dered by Trick [15]. A new variable, representing a road trip is introduced

into the model. The road trip variable is constructed as game assignments

are made. This variable affects the value of the objective function, and

hence the road trips are modified to reduce the objective function. Hence

many road trips are considered for a given team during the running of the

model. This approach differs from our approach, as we begin the schedul-

ing process with existing road trip (tile) formations. During our schedul-

ing phase, we do not re-formulate a tile, based upon other assignments.

We may break a tile into its component parts, but these parts are not reas-

sembled into another tile. Our approach is based on a fixed set of tiles.

3 Proposed Approach

Our approach is a two phase approach involving tiling, followed by a

local search phase. The tiling phase creates an initial solution, which may

not be feasible. The second phase (a local search) removes the hard con-

straint violations and improves the quality of the solution.

3.1 Tiling

We model the road trips of the TTP as “tiles”. Each tile contains

“blocks”, which represent individual games. A road trip of three oppo-

nents is considered as one tile, with three blocks. A teams’ schedule can

be thought of as a series of tiles, with home games as spacers between the

tiles. Figure 1 shows the scheduling grid and tiles for Team 1 and Team 2.

Fig. 1. Tile Placement for Teams 1 and 2 (shaded cells indicate an away game)

For each team a set of tiles is created that seeks to minimize the dis-

tance traveled for a particular team, without taking into account any con-

straints involving other teams. These tiles are placed in a scheduling grid

of n rows representing teams and (2n-2) columns representing weeks.

 As tiles are placed, other cells of the grid are filled in to maintain

schedule consistency with the tile placement. When no more tiles can be

275

placed, the tiles are broken into their component blocks, and placed sub-

ject to TTP constraints. If all blocks cannot be placed, the consecutive

home and away constraint is relaxed, allowing all blocks to be placed

albeit in an infeasible solution.

The creation of the tiles is carried out on a team by team basis. For

each team a minimum spanning tree (MST) is created by using the Prim

[4] algorithm. The algorithm begins with the selection of a root node, in

our approach this is a team. All distance edges in the distance matrix,

defined in the problem, are searched for the smallest edge. Each edge has

a vertex of a team in the tree, and a vertex of a team not in the tree. This

edge is then added between the two teams. For the first branch, we are

finding the nearest opponent of the root team. The second edge is the

nearest team to the root team, or its first opponent. Edges that are added

to an opponent will suggest that the two vertices or teams will be on the

same road trip or tile. Two edges having the same root node as a vertex,

suggest that the two opponents of the root team will be on different road

trips. Figure 2 presents an example MST for the team Pittsburgh (PIT) in

the NL6 problem documented in [14].

Fig. 2. Minimum Spanning Tree (MST) for PIT in NL6 and the accompanying

distance matrix.

Figure 2 suggests that the team PIT should have 2 road trips or tiles –

one with ATL and FLA, and the other with PHI, followed by NYM and

MON. If the team completes these two road trips, the team may have

travelled the optimal minimum distance. This does not imply the league

overall will have optimal minimal distance, but rather just this team.

We use a tree collapsing algorithm to create tiles from the tree struc-

ture. Separate trees are created with each tree having the root node of a

team. The collapsing approach merges child nodes into their parent node.

When the parent has three teams, a tile is created. When the parent must

decide among its children, a greedy method is used, to pick the best set of

three teams from the parent and children. Figure 3 provides a sample col-

lapsing process.

276

Fig. 3. Creation of Tiles through collapsing of the tree

The three team tile creation process creates ceiling((n-1)/3)*n tiles.

Note that all tiles have three blocks, with the possible exception of the last

tiles created for the team. At the root node, if both children have a weight

of two nodes, two tiles of two blocks are created for each child.

277

 After tile creation, each tile is given a cost. This cost is calculated to

capture some measurement of the impact on the objective function of

breaking up the tile. The cost is the sum of a round-trip of the home team

to each opponent within the tile, minus the actual distance to be traveled

between teams within the tile. This cost is then used to prioritize the or-

der that tiles will be placed in the schedule.

We select the tile with the highest cost. We place this tile on the first

available space on the schedule without violating any constraints. We

start with week one, and move forward checking all constraints for the

three games represented in the tile. If the tile cannot be placed in week 1,

we rotate the tile, by changing the order of the first and last teams in the

road trip. This rotation does not alter the distance associated with the tile.

The tile is moved through the schedule week by week until a placement

can be found.

The tile placement process is continued for each tile in cost priority or-

der. When no more tiles can be placed we break all tiles into individual

games. The games are then placed in the schedule, starting from the first

week of the schedule. We relax the maximum away games and home

stand rules as well as the repeater rule constraints at this point to allow for

placement of all games. When a game cannot be placed, given these re-

laxations, previous assignments are backtracked. If the backtracking of

the individual games does not produce a feasible schedule, then the last

place tile is backtracked.

One noteworthy aspect of our approach is that tiles are never broken

and then formed into new tiles, referred to as reconfiguration. This

process involves breaking two tiles in their component blocks, and re-

grouping the blocks into two new tiles.

3.2 Local Search

The local search phase of our approach is designed to remove any hard

constraint violations and improve the quality of the schedule. When it is

possible to place all tiles, a near optimal solution based on the quality of

our tile set can be generated. The breaking of the tiles is where our initial

solution degrades. Hence, the games placed singularly are the root of all

hard constraint violations, and higher than optimal travel distances. Our

local search seeks to reach the best local minimum of our initial solution,

after performing a variety of “swaps”. Each swap moves a set of games

within the schedule while maintaining, or improving, feasibility and the

objective function of the solution.

We employ the following sets of swaps during our local search phase:

 Home / Away Swap – We swap two games, involving the same

two teams, where each team is home in one game and away in the other

game. The swap is done between two weeks.

 Round Swap – All games for two weeks are moved between the

two weeks.

278

 Partial Round Swap - The partial round swap described in [2],

moves a set of connected games between two weeks. We begin this oper-

ation by selecting two games in different weeks. The teams in these

games create our swap set. We then add teams playing these two teams,

in either week, to the swap-set. The process continues until all teams, in

both weeks, are in the swap set or its complement. We then move all

games involving teams in the swap set between weeks. We can also

choose to move all teams in the complement of the swap set between the

weeks.

The local search phase is an iterative process to optimize the impact of

the above swap actions. We look at each swap in the order above, and

analyze the schedule improvement, if any, of each possible swap. The

swap with the largest improvement is performed to reach a new schedule.

If no improvement can be found, we move to the next type of swap in the

list above. The same process is used until no improvement can be found.

After performing all possible swaps of the last type (partial round), we

have reached a local minimum and stop the local search.

4 Results

Our two phase approach of tiling and local search enables us to produce a

high quality solution with minimal resources. We only use a small frac-

tion of the resources consumed by the best known approaches. Our plat-

form is a 2.13 Ghz Dell laptop, using a .NET software application.

We use three approaches for comparison, presented in Table A. The

first approach, described by Van Hentenryck and Vergados [16] is a pa-

rallel processing approach, carried out on clusters of dual-processor blade

servers. They use a simulated annealing based Traveling Tournament

approach first proposed by Anagnostopoulos [2]. The second approach

by Di Gaspero and Schaerf [5] uses tabu search. The final comparison is

with Araujo et al. [1], using parallel processing. This approach is also a

two phase approach, with a random initial neighborhood construction,

followed by a greedy search phase to reach a local minimum to produce a

mirrored solution. The local search phase is iterated after a perbutation of

the initial neighborhood.

279

Instance Tiling

Results

Van Hen-

tenryck

and Ver-

gados

Results

[16]

Di Gas-

pero and

Schaerf

Re-

sults [5]

Araujo et

al.

(GRASP)

Results

[1]

Average

% Dif-

ference

from Tiling

NL 16 317,764 267,194 279,465 285,614 14.54%

NFL 16 266,231 235,930 238,581 N/A 12.21%

NFL 18 339,822 296,638 N/A 299,134 14.08%

NFL 20 406,463 332041 352947 359,748 16.71%

NFL 22 482,374 412,812 439,626 418,086 13.90%

NFL 24 544,354 463,657 499017 465,491 14.34%

CON16 354 N/A 328 342 5.67%

CON18 466 N/A 418 432 9.64%

CON20 568 520 521 522 9.02%

Table A: Results Comparison (best solutions in bold)

Instance Tiling

Time

Van Hentenryck

and Vergados

Time – Best [15]

Di Gaspero and

Schaerf Time – [5]

NL 16 38 1,815 51,022.4

NFL 16 35 2,220 N/A

NFL 18 105 3,120 N/A

NFL 20 135 6,750 N/A

NFL 22 150 8,100 N/A

NFL 24 320 5,490 N/A

CON16 18 N/A 19,665

CON18 22 N/A 33,979

CON20 23 N/A 46,579

Table B: Time Comparison in seconds

We choose instances with a higher number of teams and the con-

strained constant distance instances of the problem, for comparison. The

instances with fewer teams have been addressed by a variety of algo-

rithms, whereas instances with 16 teams or more have been addressed

successfully by only the above approaches.

Table A compares the results and resources of our tiling approach with

the best-known approaches. Our tiling approach comes withinn 10-16%

of the objective function for the TTP for all approaches. The tiling ap-

proach produces slightly better results where the number of games to be

played by each team is divisible by three. This situation allows all games

for a team to be placed in 3-team tiles. Hence our 16 and 22 team in-

stances are slightly better in comparison with the other approaches.

For the constrained instances, our approach is even closer than the

higher NFL instances. The construction and costing of the tiles is not im-

portant, since all distances are constant. Hence each tile for a team has

the same cost, when the tile is broken. Our 16 team instance, dictating 5

280

tiles of 3 teams per tile, provides our best result. One factor in this result

is that the games for each team can be constructed into a set of tiles with 3

games each. This enables more tiles to be placed in the initial neighbor-

hood, increasing the quality of the initial solution.

 We use only a few seconds compared to the substantive time used in

the other approaches. Table B compares our times with the published

times of the approaches with comparable metrics.

The key difference between our tiling approach and the other ap-

proaches is the initial neighborhood. Our initial neighborhood is built

based upon tiles, which are high quality partial solutions. Hence our ap-

proach saves the time used by others in the local search to develop a high

quality initial solution. We follow our tiling phase with an efficient

greedy approach to quickly develop a solution relatively close to the best

known solutions.

 The most illuminating result is the NL16 figure for Araujo et al.

in Table A. The result of 285,614 was achieved by running the GRASP

algorithm in sequential mode outlined in [1] for 5 days. This algorithm is

similar to our local search, because of its greedy nature. Both algorithms

explore all possible swaps of a given category and perform the swap with

the greatest improvement. When no improvements can be made, the local

minimum is reached. Since the local search phases are similar, the key

difference between the approaches is the construction of the initial neigh-

borhood. The results in the table show the results of using GRASP on

neighborhoods created, over a 5 day time span. After each local minimum

is reached, random swaps are done to create a new neighborhood. Hence

large numbers of initial neighborhoods are created over the 5 day

processing period. The best of these neighborhoods led to only an 8.5%

improvement of creating one initial neighborhood solution through tiling.

5 Conclusion and further work

Our approach indicates substantial resource savings in finding good quali-

ty solutions for the TTP. Our initial neighborhood, along with a minimal

local search phase can produce high quality solutions. In our future work

we will compare solution results among the best approaches, to under-

stand the distance of our initial neighborhood from the best known solu-

tion sets. This will enable us to identify the transformations needed to

move from our initial neighborhood more directly to the best solutions.

We also plan to expand the TTP to handle a complete Major League

Baseball schedule, which was the original motivation for the problem.

Albeit the actual MLB schedule has a wide variety of real-world con-

straints, we look to expand the TTP by implementing the actual unba-

lanced team schedules and inter-league play of the MLB master schedule.

These instances will greatly increase the complexity of the schedule due

to its unbalanced nature.

281

References

1. Araújo, A., Boeres, M.C., Rebello, V.E., Ribeiro, C.C., Urrutia, S..,

Exploring Grid Implementations of Parallel Cooperative Metaheuris-

tics, A Case Study for the Mirrored Traveling Tournament Problem.

Chapter 16, Metaheuristics Volume 39, US:Springer, 2007.

2. Anagnostopoulos A., Michel L., Van Hentenryck P., Vergados Y. A

simulated annealing approach to the traveling tournament problem.

Journal of Scheduling 2006;9:pp. 177–93.

3. Bar-Noy, A. and Moody, D. “A Tiling Approach for Fast Implementa-

tion of the Traveling Tournament Problem,” Practice and Theory of

Automated Timetabling (PATAT06, Brno, August 2006), Conference

Proceedings, pp. 351-358.

4. Cormen, Thomas H. , Leiserson, Charles E., Rivest Ronald L., Stein,

Clifford, Introduction to Algorithms. pp. 570-573.Boston: McGraw-

Hill, 2001.

5. Di Gaspero L, Schaerf A. A composite-neighborhood tabu search ap-

proach to the traveling tournament problem. Journal of Heuristics

2007;13:pp. 189–207.

6. Easton K., Nemhauser G.L., Trick M.A. The travelling tournament

problem: description and benchmarks. In: Walsh T, editor. Principles

and practice of constraint programming. Lecture notes in computer

science, vol. 2239. Berlin: Springer; 2001. pp. 580–5.

7. Kendall G. Scheduling English football fixtures over holiday periods.

Journal of the Operational Research Society 2008; 59:743–55.

8. Kendall G., Knust S., Ribeiro C. C. and Urrutia S. Scheduling in

Sports: An Annotated Bibliography. Computers & Operations Re-

search (2009), 37: pp.1-19

9. Kingston, J. A tiling algorithm for high school timetabling, Proceed-

ings Practice and Theory of Automated Timetabling (PATAT04, Pitts-

burgh, August 2004, USA).,Conference Proceedings, pp. 208-225.

10.Leong, G. (2003). Constraint programming for the traveling tourna-

ment problem.

www.comp.nus.edu.sg/henz/students/gan_tiaw_leong.pdf

11.Lim, A., Zhang, X. (2003) Integer programming and simulated anneal-

ing for scheduling sports competition on multiple venues, Proceedings

of the Fifth Metaheuristics International Conference (MIC 2003).

12.Ribeiro CC, Urrutia S. Heuristics for the mirrored traveling tourna-

ment problem. European Journal of Operational Research

2007;179:pp. 775–87.

13.Shen, H., Zhang, H. (2004) Greedy Big Steps as a Meta-Heuristic for

Combinatorial Search. The University of Iowa AR Reading Group,

Spring 2004

14.Trick, M.A., Challenge Traveling tournament instances. Online docu-

ment at http://mat.gsia.cmu.edu/TOURN/.

15.Trick MA., Formulations and Reformulations in Integer Programming.

Lecture Notes In Computer Science; Integration of AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimization

Problems, Volume 3524/2005 pp: 366-379. Springer 2005.

16.Van Hentenryck, P. and Vergados Y., “Population-Based Simulated

Annealing for Traveling Tournaments”, AAAI - National Conference

on Artificial Intelligence, 2007

282

Youth Sports Leagues Scheduling

Douglas Moody, Graham Kendall and Amotz Bar-Noy

City University of New York Graduate Center and School of Computer Science

(Moody,Bar-Noy), University of Nottingham, UK (Kendall)

dmoody@citytech.cuny.edu, gxk@cs.nott.ac.uk,

amotz@sci.brooklyn.cuny.edu

1 Introduction

 Youth sports are administered by governing bodies that deter-

mine sportsmanship rules, promote the sport, and organize youth partici-

pation. Organizations within these bodies may be towns, high schools,

sports clubs with international affiliations (e.g., FIFA -Federation Interna-

tional de Football Federation), and religious groups. Each of the organi-

zations sponsor teams in leagues, and provides a venue or fixture. For

example youth leagues in the United States include: junior soccer leagues,

Little League baseball, inter-scholastic high school basketball, and the

Catholic Youth organization (CYO). Youth sports leagues are played

worldwide. For example, Little League Baseball is played in 72 countries

worldwide within 7,170 leagues, comprising over 2 million players [7].

 A Youth Sports League (YSL) consists of divisions (see Ap-

pendix A for terms we use in this paper), which are sets of teams grouped

by age, gender, and/or level of play. The number of teams in a division

can vary, ranging from 4 to 20 teams. Each participant registers with the

league to play the same number of games, regardless of division. The

schedule for a division is often a round robin tournament followed by

additional games against selected opponents from the division in order to

meet each team’s required number of games. This type of schedule is

referred to as “unbalanced” since a team may play one opponent once

more than another. The sharing of the organization’s venue by its spon-

sored teams creates a dependency between the division schedules. Two

of an organization’s teams, possibly from different divisions, cannot host

a game at the same time. Hence, the administrator must consider the

schedule of all divisions, when creating the master league schedule.

 The scheduling of youth sports leagues differs from the profes-

sional sports league problem, widely studied in scheduling literature and

surveyed by Kendall et al. [6]. Professional sports involve a balanced

schedule, with guaranteed availability of the venue. Youth sports leagues

play unbalanced schedules, and teams from all divisions must share a

venue. A YSL venue can support several games a day, whereas profes-

sional sports teams’ venues typically only host one game in a day. This

venue sharing creates a schedule dependency among all divisions. A pro-

fessional league with 4 divisions comprising 12 teams, can be viewed as

four separate and distinct round-robin tournaments. The same league

structure in the YSL must be viewed as one schedule with 48 teams play-

283

ing an unbalanced schedule. Real world instances of youth sports can

include 400 divisions involving 3500 teams, for example the Long Island

CYO youth basketball.

 In the following section, we will informally define the youth

sports league problem presenting its hard and soft constraints, and the

objective function. The subsequent section discusses related research in

this area, followed by our tiling approach to address the problem. The

last section discusses the availability of real-world problem instances and

related future work.

2 Problem Definition

The YSL involves scheduling multiple divisions, each containing teams

sponsored by a common set of member organizations, across a set of ve-

nues. All games are intra-divisional. A season consists of a specific num-

ber of games to be played by all teams in the league, regardless of the

number of teams in a particular division. If the number of games in a sea-

son is 12, then teams in a five team division and an eight team division

will all play exactly 12 games. Some divisions are required to play an

unbalanced round-robin tournament, where a team will play various op-

ponents a different number of times.

Each organization makes a venue available to the league. The

venue has a daily capacity or number of games that can be played on one

day. A league may allow games to be played on more than one day of

the week, particularly weekends. A season consists of a set of consecu-

tive weeks, to be played on a given number of days per week. A venue’s

season capacity is the number of games per day that can be hosted by the

venue, multiplied by the available days in the season. Divisions also have

an associated referee level, indicating the minimum level of the referee’s

certification. This level is referred to as the referee category. A referee

must have the proper level of certification to officiate the game. Referees

may choose to officiate games at a lower level than their certification

based upon their personal preference. This preference may stem from a

goal of providing more on-field rule instruction to the younger age

groups. However, in this instance the referee would be assigned a lower

level category for the season. Each referee is assigned a category based

upon their certification and personal requests. Often, a referee is assigned

two games at a venue on a given day. The referee prefers to have the

games follow each other to minimize his or her time at the venue. Hence

it is desirable to schedule games, requiring the same referee level in suc-

cession. A venue’s daily schedule should have an even number of games

for each referee category to support this concept. This will enable the

scheduler to schedule for each referee. A referee may officiate games

consecutively from different divisions, if the divisions’ referee category

for the consecutive games are identical.

The schedules for the individual divisions are combined into a

master schedule. The master schedule must address all venue sharing and

referee assignment constraints.

A master schedule is to be created for all divisions such that:

284

1. Teams must play exactly g games within w weeks, where g is the

league wide number of games per team, and w is the number of

weeks of play during the season.

2. Each division will play a multiple round-robin schedule. For di-

visions requiring unbalanced schedules, teams may play an op-

ponent only one additional time than other opponents.

3. Teams can play multiple games in a week, but only one game

per day.

4. All teams from the organization will play at their organization’s

venue, when designated as the home team.

5. Each venue has a fixed capacity of s games per day. This value

differs by venue.

1.

The quality of the schedule is evaluated by calculating the number of

penalty points within the schedule. Schedules with lower penalty points,

are of higher quality. The following section lists the penalty points, also

referred to as soft constraints.

1. A team playing more than one game in a week (4 penalty points

per game). Teams may play only one game per day, but are per-

mitted to play on multiple days. For example, a team having

games on both weekend days would be assigned 4 penalty

points.

2. A venue hosting an odd number of games with the same referee

category during one day (2 penalty points per referee category).

Venues with an odd number of games within the same referee

category will prohibit a referee from officiating successive

games at the venue on that day.

3. A team playing home (or away) games in consecutive weeks (1

penalty point per week). Teams prefer to alternate home and

away games.

The YSL solution must be a feasible solution satisfying all the hard

constraints. The objective function of the YSL is to minimize the penalty

points of the soft constraints above. Regin [10] shows that for a round-

robin tournament, it is not possible to eliminate all breaks, defined as con-

secutive home or away games in the schedule. Hence, the third soft con-

straint renders a schedule of zero penalty points for the YSL impossible.

3 Example YSL Instance

Our example problem instance involves three towns, referred to as A, B,

C, each sponsoring one or more boys and girls teams, within the league.

Table A shows the input parameters necessary for the YSL in our sample

league. The boys division contains two teams from town A, and one team

from B and C. The girls division has three teams from B, two teams from

A and one team from C. Each town maintains one venue with a capacity

of two games per day, on two days each week. The season should contain

8 games per team, over a 7 week season. Both divisions have the same

referee category. Note that the boys division is a double round-robin tour-

285

nament followed by additional games causing an unbalanced schedule.

The girls division has a single round robin tournament followed by addi-

tional games resulting in an unbalanced schedule. The two divisions

share a venue provided by each town.

 Table A provides the set of inputs needed to define a YSL prob-

lem instance. Each row contains an input parameter, or a set of informa-

tion about the league’s structure.

Input

Parameter

Value Definition

G 8 Nubmer of games to be played by all

teams

W 7 Number of weeks in the season

Y 2 Number of days per week for play

V 3 Number of venues

D {b,g} Values identifying each division.

R L1 Referee categories

Tv

A(b-2,g-2)

B(b-1,g-3)

C(b-1,g-1)

Organizations and number of teams

sponsored by division. For each organi-

zation, the number of teams per division

identified in D is provided. The value is

specified by Organization, with the divi-

sion-team number for each team in pa-

rentheses

Cv

{2,2,2} Capacity for each venue. All venues can

host 2 games per day.

Table A – Sample problem input parameters and data

 Table B provides the rounds necessary to schedule the master

schedule for this youth sports league. A team is referred to by its town

(A,B or C), followed by the sequence number of the team within the

town. The team reference of “A2” would indicate this team is the second

team sponsored by town A. For the Boys division, the first round shown

(A1-B1, A2-C2) has been placed in week 2 of the master schedule. Each

team plays an unbalanced schedule. Team A1, in the boys division, plays

B1 and C1 three times while only playing A2, twice. Each box of the

master schedule represents a venue’s games for a day, whose maximum is

two in our example instance. In weeks, where only one day is used by a

venue, the choice of the day is not consequential.

 The penalty point calculations are shown at the bottom of Table

C. Since the number of games in a season is less than the number of

elapsed weeks, it is guaranteed that penalty points will be earned for each

team due to the soft constraint of playing multiple games in a week.

Since both divisions have the same referee category, venues hosting an

even number of games, will not incur a penalty point for non consecutive

games by referee category. For example, in week 2, A2-C1 was sche-

duled on the same day as A4-C2 to avoid having an odd number of games

on each day.

286

Table B – Tiles (Rounds) for the example league divisions

Table C – Sample Problem scheduling grid

4 Related Work

A great deal of research in sports scheduling has been aimed at profes-

sional sports leagues. Kendall et al. [6] provides a broad survey of vari-

ous sports leagues and their scheduling challenges. Leagues are often

structured as single or double round-robin tournaments. The scheduling

challenges revolve around the quality of the schedule, to achieve certain

objectives. Norhona et al. [8], Ribeiro and Urrutia [11], consider fairness

in South American football leagues, Kendall [5] seeks to minimize travel

distances in the English Football league, and Rasmussen [9], Goossens

and Spieksma in [4] consider various venue availability constraints. The

instances in these problems can be reduced to tournament schedules of 20

to 24 teams, with consideration for some unique constraints and minimiz-

ing travel distance. Only Kendall [5] introduces a relationship between

different divisions due to the pairing requirement (sets of venues that

cannot host a game on the same day). In all these professional sports

problems, a venue can be used for only one game in a day.

YSL are most closely associated with the Travelling Tournament

Problem (TTP) described by Easton et al. [3]. The TTP and YSL share

constraints, with the following exceptions:

1. The YSL may schedule multiples games per week, on separate

days.

2. A YSL team is not required to play in every week.

3. Teams share home site venues, which support several games per

day.

4. A YSL division may play an unbalanced tournament schedule.

287

These differences have a profound effect on the instance size, within

real-world applications. The TTP instances documented on the problem

definition web site [12] involve a maximum of 32 teams, albeit there is no

real-world example for that size of tournament. The YSL has common

occurrences of leagues with 50 divisions, comprising over 500 teams.

The CYO of Westchester-Putnam, near New York City, has 68 divisions,

comprising 582 teams sponsored by 58 parishes.

5 Proposed Approach

Our approach is a two phase approach based upon “tiling”. Each tile

represents a round of games for a division, requiring a total number of

tiles equaling the number of divisions multiplied by the games per season.

Each tile is one round of a tournament for a division. The tiles are placed

in the master schedule in a greedy fashion. Each tile is placed in a week

that results in the least number of penalty points being added to the objec-

tive function. Tiling continues until a tile cannot be placed without caus-

ing a hard-constraint violation. At this point, the venue capacity constraint

is relaxed, and the remaining tiles are placed in the schedule. These final

placements continue to use greedy approach to minimize total penalty

points.

Once all tiles are placed, we analyze each game’s contribution to

the penalty points. Games violating the venue capacity hard constraint are

temporarily assigned an artificially large penalty point value to prioritize

them, within our local search phase. The schedule is now ready for the

second phase, a local search. This phase consists of a set of swaps to re-

duce the current penalty points of the schedule. The following sections

discuss the steps of these two phases in more detail.

5.1 Tiling Phase

For each division, we use a single round-robin tournament to produce n-1

rounds of opponent pairings, where n is the number of teams within a

given division. We use one of a variety of single round-robin tournament

method generators discussed in [2]. The YSL requires a number of

teams, g, for each team to play. Hence, g / (n-1) is the number of round-

robin tournaments needed for each division, The YSL will frequently

have an unbalanced schedule. This occurs when g / (n-1) is not an integer.

These divisions require using a partial round-robin tournament to com-

plete the season. When divisions require more than a round-robin tour-

nament, a mirrored round-robin tournament is used for the second tour-

nament. We may use a round-robin tournament definition and its mirror

several times within a division’s schedule. Table D provides examples of

divisions with unbalanced schedules:

288

Teams in the

Division

Games

per

season

Full Round-Robin

Tournament usage

Additional

Tournament

rounds

10 9 1 Round-Robin None

6 12 1 Round Robin

1 Mirrored Round-

Robin

2 rounds from

round-robin

7 20 2 Round-Robin

1 Mirrored Round-

Robin

2 rounds from

Mirrored round-

robin

Table D – Unbalanced Schedule in terms of tournaments

 Each round of a tournament for a division is a tile. We apply a

cost to each tile based upon the percentage of venue capacity used by

each game. Tiles that contain several games with home teams in highly

constrained venues will have a higher cost. A highly constrained venue is

a venue where the usage rate ((number of teams/2) / daily slots), over the

season, is higher than other venues. For example a venue sponsoring 6

teams, which can host 4 games a week, has a 75% usage rate. The rate

suggests that the venue will be using an average 75% of its capacity each

week. A venue usage rate over 100% indicates that a feasible schedule is

not possible due to venue capacity.

 Tiles with the highest costs are the first tiles to be placed in the

schedule. For each week the tiles placement cost is calculated by deter-

mining the number of penalty points created by the tile’s assignment for a

given week. The week with the smallest placement cost, is chosen for the

tile’s placement. Tiling continues until the remaining tiles cannot be

placed without causing a hard constraint violation of venue capacity.

 The venue capacity constraint in relaxed to allow “over book-

ing” of a venue. An artificial penalty point value of 9999 is used to enable

the tile placement to continue. This temporary penalty assignment will

highlight these games during the remaining tile placements and our local

search phase.

5.2 Local Search Phase

The second phase involves a local search and seeks to remove hard con-

straint violations and reduce the number of penalty points in the existing

schedule. The swaps in the YSL are similar to those discussed by Anag-

nostopoulos et al. [1] for solving the TTP. All swaps are done between

teams in the same division. Each swap maintains a feasible schedule for

each division. The swaps are:

 Home / Away Swap – We swap two games, involving the same

two teams, where each team is home in one game and away in the other.

The swap is done between two weeks. The impact of the swap is a reduc-

tion in the number of games for one venue and an increase for the other

venue. This swap is only effective in the YSL for teams playing their

home games at different venues.

289

 Round Swap – All games for two rounds of a division schedule

are moved between two weeks. All venues hosting a game in either week

are affected by the swap.

 Partial Round Swap - The partial round swap moves a set of

connected games between two weeks. We begin this operation by select-

ing two games in different weeks. The teams in these games create our

swap set. We then add teams that are playing a team in the team-swap set

to that set. The process continues until all teams, in both weeks, are in the

swap set or its complement. We then move all games involving teams in

the swap set between weeks. We can also choose to move all teams in the

complement of the swap set between weeks.

We perform the local search in a structured fashion to reach the

local minima. In the first step, we consider all games at the venue during

the week that has a hard constraint violation, indicated by the artificially

high penalty points. We calculate the reduction in penalty points, if any;

of performing a Home/Away swap for each game. We also calculate the

reduction in performing a round swap for each round. The most benefi-

cial swap is chosen and executed.

In the second step, we analyze all games, involved in producing pe-

nalty points. Each possible home and away swap, and each possible

round swap for each game is analyzed for its potential reduction in penal-

ty points. All partial round swaps are identified for every round. The par-

tial round swap considers both the swap set described above, and its com-

plement set. The most beneficial swap among the three types of swaps is

chosen for execution. The swap is performed and the resulting Master

Schedule will have a lower penalty point total. If no improvement is

found, processing is halted as the schedule has reached its local mini-

mum. Figure 1 below presents the algorithm as pseudo-code.

1. Tile creation

a. For each division generate a round-robin tournament

and its mirrored image

b. Create a tile for each round of the table until G tiles are

generated, alternating the tournament table with its mir-

ror.

c. Assign a cost to each tile based upon the venue capacity

usage of each game.

2. Tile Placement

a. For each tile sorted by cost, find all weeks where the

tile may be scheduled with no hard constraint viola-

tions. If no week exists, relax the venue capacity con-

straint and assign artificially high penalty point value

for that week.

b. Place all games in the tile within the week causing the

fewest penalty points.

3. Local Search: Home / Away swap

a. Set S′ to be the schedule of swapping home and away

assignments for two games with the same opponents.

b. Consider all games with the same opponents and find S′

with the minimum penalty points.

290

c. If S′ reduces penalty points, then swap home and away

assignments for the games and continue step 3.

4. Local Search: Round swap

a. Set S′ to be the schedule of swapping all games in one

week with all games in another week.

b. For each pair of weeks, calculate S′

c. Find the S′ that minimizes the number of penalty points

d. If S′ improves the schedule, swap rounds and repeat

step 4.

5. Local Search: Partial Round swap

a. For each pair of weeks, create sets of opponents who

play each other in week 1 and / or week 2.

b. Set S′ to the schedule of swapping each set of teams be-

tween the weeks.

c. Find the S′ that minimizes the number of penalty points

d. If S′ improves the schedule, swap rounds and repeat

step 5.

Figure 1 – Tiling by Round Algorithm

6. Results

We will present our results at the conference. The results will include

solutions to the sample instances shown in Table A, as well as the results

from real-world instances of youth sports leagues, comparing the sche-

dules actually used with our approach.

7. Future Work

In this paper, we have described a sports scheduling problem widely

faced by thousands of organizations. This problem has not been reported

before in the scientific literature. A set of professional-sports scheduling

problems, including the TTP, have similarities to the YSL. However, key

differences arise such as: sharing venues among several teams, signifi-

cantly larger problem instances, and unbalanced schedules. These add

real-world complexities that will challenge current approaches. We look

to document problem instances and results for the community similar to

the TTP [12]. We are currently working with several youth leagues to

help in defining these world problem instances.

References

1. Anagnostopoulos A., Michel L., Van Hentenryck P., Vergados Y. A

simulated annealing approach to the traveling tournament problem.

Journal of Scheduling 2006;9:177–93.

2. Dinitz J.,E.Lamken, and Wallis, W.D. Scheduling a tournament.

Handbook of Combinatorial Designs, pages 578-584. CRC Press,

1995.

291

3. Easton K., Nemhauser G.L., Trick M.A. The travelling tournament

problem: description and benchmarks. In: Walsh T, editor. Principles

and practice of constraint programming. Lecture notes in computer

science, vol. 2239. Berlin: Springer; 2001. p. 580–5.

4. Goossens D, Spieksma F. Scheduling the Belgian soccer league. Inter-

faces 2009; 39:109–18.

5. Kendall G. Scheduling English football fixtures over holiday periods.

Journal of the Operational Research Society 2008; 59:743–55.

6. Kendall G., Knust S., Ribeiro C. C. and Urrutia S. Scheduling in

Sports: An Annotated Bibliography. Computers & Operations Re-

search (2009), 37: 1-19

7. Little League Home website. Little League history. Online documen-

tation at:

http://www.littleleague.org/Learn_More/about/historyandmission/arou

ndtheworld.htm

8. Noronha T.F., Ribeiro C.C., Duran G., Souyris S., Weintraub A. A

branch-and-cut algorithm for scheduling the highly-constrained Chi-

lean soccer tournament. Practice and theory of automated timetabling

VI. Lecture notes in computer science, vol. 3867. Berlin: Springer;

2007. pp. 174–186.

9. Rasmussen R.V. Scheduling a triple round robin tournament for the

best Danish soccer league. European Journal of Operational Research

2008; 185:795–810.

10.Regin J.C. Minimization of the number of breaks in sports scheduling

problems using constraint programming. DIMACS series in discrete

mathematics and theoretical computer science, vol. 57, 2001. p. 115–

30.

11.Ribeiro C.C., Urrutia S. Scheduling the Brazilian soccer tournament

with fairness and broadcast objectives. Practice and theory of auto-

mated timetabling VI. Lecture notes in computer science, vol. 3867.

Berlin: Springer; 2007. p. 147–57.

12.Trick, M.A., Challenge Traveling tournament instances. Online docu-

ment at http://mat.gsia.cmu.edu/TOURN/.

292

http://www.littleleague.org/Learn_More/about/historyandmission/aroundtheworld.htm
http://www.littleleague.org/Learn_More/about/historyandmission/aroundtheworld.htm
http://mat.gsia.cmu.edu/TOURN/

Appendix A. Glossary

Capacity: The number of games that can be played at a given venue

on any day. The capacity may vary by venue.

Division: A set of teams where every team in the division plays

against every other team a set number of times. Subsets of these teams

may play one additional game amongst them to reach the required num-

ber of games.

Game: A sports contest between two teams.

League: A set of divisions, comprised of teams, which share a com-

mon set of venues.

Organization: An entity that maintains a venue and sponsors teams

across many divisions.

Round-robin tournament: A round-robin tournament involves n teams

playing n-1 games. Each game is played against a different opponent in

the tournament. Also, every team plays a game in each round.

Slot: A time period during a given day to be used to play a game at a

venue. The YSL schedules a fixed number of slots per day at each venue,

depending upon the venue’s daily capacity. The actual clock time of the

slot is not considered in the problem.

Unbalanced Schedule: A schedule where a team will play one oppo-

nent more often than another opponent. The YSL requires unbalanced

schedules in divisions where the required number of games in a season is

not a multiple of the number of n 1, for a division.

Venue: A physical location for a game to played.

293

A Novel Event Insertion Heuristic for Creating Feasible
Course Timetables

Moritz Mühlenthaler · Rolf Wanka

Abstract We propose a novel event insertion heuristic for finding feasible solutions for in-
stances of the University Course Timetabling Problem (UCTP). We introduce and apply
a new neighbourhood structure on partial timetables that permits to approach a feasible
timetable. The key insight is that an event can be inserted in a time slot if all the events con-
flicting with it are moved to other time slots. In order to prevent our event insertion heuristic
from running into local optima, a simple perturbation strategy is employed additionally. Our
experimental results show that our event insertion heuristic yields superior results compared
to other state-of-the-art feasible solution generation algorithms for a large number of corre-
sponding benchmark instances.

Keywords Course Timetabling Problems· Feasible Solution Generation· Kempe Move

1 Introduction

The task of creating course timetables such that certain constraints are satisfied occurs
periodically in all sorts of educational institutions such as high schools and universities.
Typically the constraints to be considered are divided into hard and soft constraints. Hard
constraints are “must haves,” i. e., timetables which violate any of the hard constraints are
considered infeasible. On the other hand, soft constraints are “nice to have,” i. e., timetables
with fewer soft constraint violations are more convenient for staff and students, and are thus
preferred. The University Course Timetabling Problem (UCTP) is an NP-hard combinatorial
optimisation problem in the setting of a university with the objective of finding a feasible
timetable with minimal soft constraint violations.

In this paper, we propose a novel heuristic approach for finding feasible timetables for
UCTP instances that is based on a new sophisticated neighbourhood structure for timeta-
bles. The research yielding the proposed heuristic was motivated by the authors’ university
administration, who posed the following question: “Do we have to rent additional rooms for

Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.

Moritz Mühlenthaler, Rolf Wanka
Department of Computer Science, University of Erlangen-Nuremberg, Germany
E-mail:{moritz.muehlenthaler,rwanka}@cs.fau.de

294

a temporarily increased course load, or is thereany way we can get away with the rooms
we have?” No specific soft constraints are imposed in this particular case, the generation
of a feasible timetable is sufficient. But feasible timetable generation is also an important
part of solving UCTPs when soft constraints are involved. Since hard and soft constraints
are typically considered in distinct phases of the optimisation process, a feasible solution is
required before even considering the soft constraint violations.

The proposed event insertion heuristic calledKempe insertion heuristicis built around
a novel neighbourhood structure for timetables, which is closely related to the distance to
feasibility. The key feature of this neighbourhood structure is that each move in the neigh-
bourhood brings a timetable closer to feasibility. The experimental results presented in Sec-
tion 4 show that our Kempe insertion heuristic outperforms current state-of-the-art feasible
solution generation algorithms with respect to solution quality and computation time for the
small and medium benchmark instances. This means, for such instances, solvers can spend
more time on minimising soft constraint violations and thus potentially find better timeta-
bles with the same amount of computation time. For the large instances, our results are on
par with the currently best performing algorithm by Tugaet al. [13], the HSA (hybrid simu-
lated annealing) algorithm. For a considerable number of instances, we only need a fraction
of CPU time compared to HSA. The advantage of our approach is that onlyone singleso-
phisticated neighbourhood structure is used whereas HSA uses three different, but simple
neighbourhood structures.

The remainder of this paper is organised as follows. In Section 2, the basic definitions
concerning the distance to feasibility of timetables and Kempe moves are reviewed. In Sec-
tion 3, the event insertion heuristic is discussed and we detail how to construct the neighbour-
hood structure. In Section 4, the performance of the Kempe insertion heuristic is evaluated
based on the timetables generated for the 60 benchmark instances proposed by Lewis et al.
in [5]. It is compared to the results of the HSA algorithm [13] and the Grouping Genetic
Algorithm and the Heuristic Search Algorithm, both from [4].

2 Preliminaries

In this section we give the necessary definitions of structures and operations used by the
Kempe insertion heuristic. First, we give a more formal definition of UCTPs, which were
informally described above and define the notion of apartial timetable. We also give a
short review of theKempe move, which is a popular technique in educational timetabling for
moving events in a timetable. The Kempe move is the main ingredient of the neighbourhood
structure used by our new Kempe insertion heuristic.

2.1 Problem Definition

A UCTP instanceI consists of the following data: A setE = {c0,c1, . . .} of events (or
courses), a setT = {t1, t2, . . .} of time slots, and a setR= {r0, r1, . . .} of rooms. Additionally,
we are given two relationsC⊆ E×E andS⊆ E×R. We say that eventsc andc′ are in
conflict if (c,c′) ∈C. We say that a roomr is suitable for an eventc if (c,r) ∈ S.

A feasible timetablefor a UCTP instanceI is an assignmentτ : E→ R×T of events to
(room, time slot)-pairs calledresourcessuch that each of the followinghard constraintsis
satisfied:

1. Each event is assigned to a suitable resource.

295

2. No conflicting events occur in the same time slot.
3. No room is double-booked.

This definition is the basis of our proposed algorithm. It is consistent with the UCTP for-
mulations for the benchmarking instances for feasible timetable generation from [5]. As
indicated above, no soft constraints are to be considered for our purpose of finding a feasi-
ble timetable.

A partial timetableis an assignment of events to resources such that hard constraints 2
and 3 are satisfied. Additionally, a relaxed version of hard constraint 1 is imposed: we re-
quire that all assigned resources are suitable for the respective events, but not all events have
to be assigned to a resource. Building on the notion of a partial timetable, feasible timetable
generation can be turned into an optimisation problem for which the single objective is to
minimise the number of events not assigned to a resource. Clearly, if no events remain unas-
signed, we have found a feasible timetable. Thedistance to feasibilityof a partial timetable
is the number of events which have not been assigned to a resource.

2.2 The Classical Kempe Move

TheKempe move[9] is a technique for moving events between time slots of a timetable. It
has been applied with great success in a wide range of feasible timetable generation and soft
constraint optimisation algorithms for educational timetabling [1,7,8,12,13]. The Kempe
move is the basic ingredient of the neighbourhood construction in our new Kempe insertion
heuristic proposed in the next section. The idea behind using Kempe moves for feasible
solution generation is that as long as a few simple requirements are met, applying a Kempe
move to a partial timetable results again in a partial timetable. As we will see below, the
resulting timetable has the same distance to feasibility as the original timetable. Hence, no
additional hard constraint violations are introduced by performing such Kempe moves. For
other definitions of the distance to feasibility (see for example [4,6,13]), similar properties
can be established.

A Kempe move is based on the identification of connected components in a bipartite
graph. Letτ be a partial timetable for a UCTP instanceI and let

Et = {c | c∈ E,∃r ∈ R : τ(c)= (r, t)}

be the events scheduled in time slott. Now we consider two timeslotss and t along with
the bipartite graphGs,t whose nodes areEs∪· Et and whose edges are induced by the conflict
relation of I . Without loss of generality, lete be any node inEs called thetrigger event
andD = Ds∪· Dt be the connected component ofe with Ds⊆ Es andDt ⊆ Et . None of the
events inDs can be moved to the time slott as long as the eventsDt are present int without
introducing conflicts that would violate the partiality requirements ofτ . However, when the
events inDs are swapped with those inDt , no such conflicts are introduced. A Kempe move
between time slotssandt triggered byeswaps the events inDs with those inDt and hence,
no conflicting events occur inEs or in Et after the Kempe move.

As an example, let us consider two timeslotss andt, which are populated by the events
{ci}0≤i<12 as shown in Figure 1. Any two events connected by an edge are in conflict.
The connected component of the trigger eventc0 is {c0,c3}∪· {c6,c7}, so the Kempe move
triggered byc0 exchangesc0 and c3 with c6 and c7. As indicated in Figure 1, the room
assignment may need to be rearranged when exchanging events between timeslots. If, for
example, eventc7 can only be scheduled in room 1,c1 needs to be moved to a different

296

Fig. 1 A Kempe move between time slotss andt which is triggered by the eventc0. Conflicting events are
connected by edges.

room. The task of assigning events to suitable rooms for a particular timeslott can be stated
in terms of a maximum cardinality bipartite matching problem, which can be solved, for
instance, by the augmenting paths algorithm given in [11] in timeO(min{|Et |, |R|} · |A|),
where|A| is the number of suitable room/time slot combinations. Please note that the Kempe
move can also be used for soft constraint optimisation with only a slight modification: if
the cost of assigning a particular event to a particular room is known, a minimum weight
bipartite matching algorithm can be used to determine a room assignment with minimal cost
for a particular time slot. See [7] for a UCTP solver using this technique.

For the purpose of finding feasible timetables, we have to consider the following if we
want to avoid introducing additional hard constraint violations: when reassigning rooms
for the events in a time slott, each event has to be assigned to a suitable room, i. e., the
cardinality of the matching has to be equal to|Et |. If this is the case, we say that a Kempe
move isadmissible. If we perform an admissible Kempe move on a partial timetable, the
result is again a partial timetable and its distance to feasibility, as defined in Section 2.1, is
not altered by the Kempe move.

3 Feasible Timetable Generation

The new algorithm for generating feasible course timetables consists of two consecutive
phases: In the first phase, a simple sequential heuristic, similar to the one used in [13],
is employed for quickly creating a partial timetable with as many events assigned to suit-
able resources as possible. Typically for harder instances, not all events can be assigned to
suitable resources by the sequential heuristic. Hence, in the second phase, we try to assign
feasible resources to the remaining events using the proposed newKempe insertion heuristic
(see Section 3.2). This heuristic uses a computationally heavier neighbourhood exploration
scheme based on the Kempe move in order to free suitable resources for the remaining
events and bring the timetable gradually closer to feasibility.

297

3.1 The Sequential Heuristic

Sequential event insertion heuristics generate for a given UCTP instance a partial timetable.
The essence of sequential heuristics is that, starting with an empty timetable, events are
inserted one by one such that those events are scheduled first, which are likely to be diffi-
cult to insert in an already populated timetable. For highly constrained instances, such as
the ones proposed by Lewis and Paechter in [5], sequential heuristics are very unlikely to
produce feasible timetables. It turns out however that combining the new Kempe insertion
heuristic with a sequential heuristic generally yields better timetables within limited com-
putation time than the Kempe insertion heuristic alone because sequential event insertion is,
in comparison, very fast.

Algorithm 1 shows the sequential heuristic used in conjunction with the Kempe inser-
tion heuristic for obtaining the experimental results in Table 1. SEQUENTIAL HEURISTIC

takes as input a UCTP instanceI , and returns a partial timetable. In the initialisation step,
the events to be scheduled are sorted lexicographically according to i) the number of suit-
able time slots and ii) the number of suitable rooms. Hence, events with the most time slot
constraints are scheduled first, and among them the ones with the least number of suitable
rooms. Then the sorted listµ of events is traversed in forward order, and for each event a
random suitable resource, i. e., a suitable(room, time slot)-pair, is picked. If none is available
for a particular event, it remains unassigned. As soon as all events inµ have been processed,
the resulting partial timetable is returned.

Algorithm 1 : SEQUENTIAL HEURISTIC

input : I : UCTP instance
output: τ : partial/feasible timetable

τ ← empty timetable
ρ ← list of all resources ofI arranged in random order
µ ← list of all events to be scheduled
sort items inµ by i) the number of suitable time slots and ii) the number of suitable rooms
foreach evente in µ do

if ρ contains a suitable resource fore then
r← first suitable resource fore in ρ
remover from ρ
assigne to r

end
end
return τ

The crucial part of the sequential heuristic is the determination of the order in which
events are inserted in the timetable. We have tried several approaches, including those
proposed by Burkeet al. in [2], as well as the combination of “least saturation degree
first”(LSD) and “largest degree first” (LD) used by Tugaet al. in [13]. We found that the
sorting criteria as given in Algorithm 1 yield the best results in conjunction with our Kempe
insertion heuristic. However, switching to the LSD/LD sequential heuristic used by Tugaet
al. changes the results only marginally.

298

3.2 The Kempe Insertion Heuristic

The proposed Kempe insertion heuristic is built around a novel neighbourhood structure for
partial timetable transformations, we dubKempe insertion neighbourhood. A neighbour-
hoodof a partial timetableτ is a collection of sequences of (admissible) Kempe moves onτ .
The Kempe insertion neighbourhood has been specifically designed such that each move in
the neighbourhood of a partial timetable decreases its distance to feasibility by one. Current
state-of-the-art solvers typically use a combination of different neighbourhoods, each one
with its individual strengths and weaknesses [3,7,10,13]. For example the hybrid simulated
annealing approach for feasible timetable generation by Tugaet al. [13] uses a combination
of the simple,swapandKempe chainneighbourhoods. Our objective however is to show
that the Kempe insertion neighbourhood is a very good general purpose neighbourhood for
feasible timetable generation, so our feasible solution generation approach relies exclusively
on the Kempe insertion neighbourhood.

Let E− ⊆ E be the set of events which are yet to be scheduled in a partial timetableτ .
The key observation behind the Kempe insertion neighbourhood is that an eventc can be
inserted in the time slots of a timetableτ if the following two conditions are met: First, all
events ins conflicting withc can be moved to a different time slot using admissible Kempe
such that no additional events conflicting withc are moved tos. And second, suitable rooms
can be assigned to all remaining events insandc. So for an eventc and a time slots, we can
define the set

N
τ

c (s) = {K | K is a sequence of admissible Kempe moves involving time slots
s. t.c can be inserted insafter performing the moves inK}.

For an eventc∈ E−, the objective is to find a time slots such thatN τ
c (s) is non-empty. If

such a time slot can be found, thenc can be inserted in the timetable. Hence, the Kempe
insertion neighbourhoodN τ

c of a timetableτ with respect to an eventc∈ E− is

N
τ

c =
⋃

s

N
τ

c (s) .

If N τ
c is non-empty, the eventc can be inserted in the timetable and as a consequence, the

distance to feasibility ofτ decreases by one. Hence the goal of the Kempe insertion heuristic
is to make a partial timetable feasible by finding a non-emptyN τ

c for eachc∈ E−.
Figure 2 shows, by example, how a single Kempe movek with (k)∈N τ

c (s) is performed
to fit an eventc in a time slots. In the example, the only event in conflict withc in s is c2,
which is moved to a time slott by k. None of the remaining events ins is in conflict withc,
so room assignment can be performed for the events{c}∪{c1,c3,c4,c5} using a maximum
cardinality bipartite matching algorithm as described in the previous section.

The full Kempe insertion heuristic is outlined in Algorithm 2. INSERTION HEURISTIC

takes as input a partial timetableτ of some UCTP instanceI , as well as the exploration pa-
rameterd and a time limit. It returns a feasible timetable as soon as one has been found or the
best partial timetable found before the time limit is hit. In each iteration, an evente is picked
at random from the listµ of unscheduled events. If some element inN τ

e can be found using
NEIGHBOURHOOD SEARCH (see Algorithm 3),e is added to the timetable, otherwisee re-
mains unscheduled. If less than two events were successfully added to the timetable within
max{k, |µ |} iterations, the search is considered stuck and we insert a randomly chosen event
e∈ µ in the timetable “by force.” This means a target time slots is picked foreand all events
Cs(e) in conflict with e in s are removed from the timetable so thate can be inserted ins.
This perturbation move increases the distance to feasibility by|Cs(e)|−1, and therefore, we

299

Fig. 2 Inserting an eventc in the time slots: A single Kempe movek with (k) ∈N τ
c removes froms all

events in conflict withc. Whens has been cleared of all such events,c can be inserted ins.

do not want to use this perturbation operation too often. On the other hand, when we have
tried to insert a number of events with only little success we have probably wasted CPU
time because we are stuck in a local optimum. We can influence how often the perturbation
operation is performed by setting the exploration parameterd, which is an upper bound for
the number of iterations of NEIGHBOURHOOD SEARCHbefore considering the perturbation
operation depending on how many events were successfully inserted in the timetable.

The key element of INSERTION HEURISTIC is the neighbourhood exploration shown
in Algorithm 3. In NEIGHBOURHOOD SEARCH, we try to find for an eventc an element
of N τ

c in a greedy fashion, so we can addc to the timetable. For each suitable time slot
for c, NEIGHBOURHOOD SEARCH tries to remove events conflicting withcby using Kempe
moves. If it succeeds to clean a time slot from all such events, it checks if additional rooms
need to be freed using another Kempe move. Now, if rooms can be assigned successfully to
all events inEs∪{c}, NEIGHBOURHOOD SEARCH has found an element ofN τ

c (s)⊆N τ
c

and returnss. It returns “invalid time slot” to indicate that no element ofN τ
c has been found.

It is possible that NEIGHBOURHOOD SEARCHcannot find a sequence of moves such that an
evente can be inserted in the timetable, althoughN τ

c is, in principle, non-empty. However,
trying to find any sequence of moves such thatecan be scheduled is not computationally fea-
sible and, as the experimental results in the next section show, NEIGHBOURHOOD SEARCH

is quite successful in finding such sequences.

In the worst case, NEIGHBOURHOOD SEARCH tries to fit an evente in every time slot
without success. Then for each time slots and for each eventc in the time slot in con-
flict with e, the algorithm has tried to find a time slott 6= s such thatc can be moved tot
without introducing new conflicts. This means, in the worst case, performing NEIGHBOUR-
HOOD SEARCH results inO(|T|2 · |C|) attempts to remove events from a time slot using
Kempe moves without finding an element ofN τ

e , where|T| is the number of time slots and
|C| the number of conflicts . To increase the likeliness of INSERTION HEURISTIC to find an

300

Algorithm 2 : INSERTION HEURISTIC

input : I : UCTP instance
input : k: max. number of iterations until perturbation
in/out : τ : partial timetable

τbest← τ
µ ← list of events to be scheduled
while time limit not hit andτ infeasibledo

success← 0
for max{k, |µ |} iterationsdo

e← random element fromµ
s← NEIGHBOURHOOD SEARCH(τ ,e)
if s is a valid time slotthen

inserte in s

success← success+1
end

end
if dist(τ)< dist(τbest) then τbest← τ
if success ≤ 1 then

pick e at random fromµ
force insertion ofe in τ
updateµ

end
end
return τbest

Algorithm 3 : NEIGHBOURHOOD SEARCH

input : e: event to be scheduled
in/out : τ : partial timetable

foreach suitable time slots for e do
cleanslot← s

/* try to reschedule all events in s conflicting with e */

foreach eventc in s conflicting withe do
find a time slott 6= s s.t. there is an admissible Kempe Move which movese to t without
introducing events conflicting withe in s

if suitablet was foundthen KempeMove(s,t,c)
else cleanslot← invalid time slot; break

end
/* if rescheduling failed, try to gather conflicting events in s */

if cleanslot = invalid time slotthen
T← suitable time slots not yet processed
find a time slott in T and a trigger eventc s.t.c triggers an admissible Kempe Move, which
increases the number of events conflicting withe in s

if suitablet andc were foundthen
KempeMove(s,t,c); break

end
end
if cleanslot 6= invalid time slotthen

if all rooms are booked incleanslot then
find a time slott and a trigger eventc s.t.c triggers an admissible Kempe Move, which
decreases the number of events ins without introducing events conflicting withe
if suitablet andc foundthen KempeMove(s,t,c)

end
if suitable rooms can be assigned to events(Ecleanslot∪{e}) then

return cleanslot
end
return invalid time slot

301

element ofN τ
e as early as possible, we do the following: If NEIGHBOURHOOD SEARCH

fails to free a time slots from all events conflicting withe, we gather events conflicting with
e from the time slots which are yet to be processed. More precisely, in the remaining time
slots we look for a time slott such that we can perform an admissible Kempe move which
increasesthe number of events conflicting withe in s. Experiments indicated that gathering
conflicts in this fashion improves the overall running time of INSERTION HEURISTIC con-
siderably when feasible solutions are found and also seems to have a beneficial impact on
the overall quality of the solutions obtained.

4 Experimental Results

Our experimental results were obtained for the 60 problem instances in [5]. These instances
were specifically designed to be hard to solve by sequential heuristics as described in Sec-
tion 3.1. For each instance however, it is guaranteed that there exists at least one feasible
solution. The 60 instances are divided in three categories: Small instances with 200 to 225
events and 5 to 6 rooms, medium instances with 390 to 425 events and 10 to 11 rooms, and
large instances with 1000 to 1075 events and 25 to 28 rooms. For all instances, the number
of time slots is 45, and all events can be scheduled in any of the 45 time slots if there are no
conflicting events in a time slot already.

Our solutions were obtained by running SEQUENTIAL HEURISTIC 150 times and then
using the best partial solution found so far as input for INSERTION HEURISTIC. Feasible
solutions were found by the sequential heuristic for the instancessmall 2, 6, 11, 12 and
20. In comparison, in [13], Tugaet al. performed their sequential heuristic 500 times for
each instance as a preprocessing step and found feasible solutions for 14 of the 60 instances
just using the sequential heuristic. It turned out however, that increasing the number of
iterations or modifying the sequential heuristic did not improve the overall solution quality
in our experiments. The exploration parameter for INSERTION HEURISTICwas set to 16 and
timeout values were set to 100 s for the small instances, to 200 s for the medium instances
and to 500 s for the large instances.

The results shown in Table 1 were obtained by performing 20 consecutive runs for each
instance on asinglecore of personal computer equipped with a Intel QuadCore CPU clocked
at 3 GHz. Running the sequential heuristic 150 times took between 0.2 s and 1.7 s, depending
on the size of the instance. For each instance, the lowest and average distance to feasibility
and the average CPU time were recorded. Table 1 shows our results along with the results
obtained by Tugaet al. in [13] (HSA) on a Pentium IV 3.2 GHz, and Lewis and Paechter
in [4] (Lewis I and II) for comparison. Note that different time limits were imposed in the
experiments run in [13] and [4]. Tugaet al. set the timeouts to 200, 400 and 1000 seconds
for the small, medium and large instances, respectively [13]. Lewis and Paechter imposed
timelimits of 30, 200 and 800 seconds for small, medium, and large instances to obtain their
results [4]. To the knowledge of the authors, no average running times were given in [4].

As shown in Table 1, to combine SEQUENTIAL HEURISTIC and INSERTION HEURIS-
TIC consistently outperforms the other algorithms for the small and medium benchmark
instances with respect to the distance to feasibility of the obtained solutions and CPU time
used. Our Kempe insertion heuristic found feasible timetables for all 40 small and medium
instances. Concerning the large instances, our algorithm performs better than both algo-
rithms proposed in [4]. Also, our algorithm is at least as good as the HSA approach by Tuga
et al.for 13 out of the 20 large instances despite the shorter timeout and uses much less CPU
time on average for many instances such asbig 2, 3, 12, 13, 14 and 16.

302

ins. heuristic HSA Lewis I Lewis II
Instance best(avg) avg time best(avg) time best(avg) best(avg)
small 1 0(0) 0.0 0(0) 0 0(0) 0(0)
small 2 0(0) 0.0 0(0) 0 0(0) 0(0)
small 3 0(0) 0.1 0(0) 9 0(0) 0(0)
small 4 0(0) 0.0 0(0) 0 0(0) 0(0)
small 5 0(0) 0.2 0(0) 5 0(1.05) 0(0)
small 6 0(0) 0.0 0(0) 0 0(0) 0(0)
small 7 0(0) 0.1 0(0) 0 0(0) 0(0)
small 8 0(0) 15 0(1.9) 79 4(6.45) 0(1)
small 9 0(0) 1.7 0(3.85) 84 0(2.5) 0(0.15)
small 10 0(0) 0.4 0(0) 15 0(0.1) 0(0)
small 11 0(0) 0.0 0(0) 0 0(0) 0(0)
small 12 0(0) 0.0 0(0) 0 0(0) 0(0)
small 13 0(0) 1.0 0(1) 15 0(1.25) 0(0.35)
small 14 0(0) 33 3(5.95) 136 3(10.5) 0(2.75)
small 15 0(0) 0.0 0(0) 0 0(0) 0(0)
small 16 0(0) 0.0 0(0) 13 0(0) 0(0)
small 17 0(0) 0.1 0(0) 13 0(0.25) 0(0)
small 18 0(0) 0.0 0(0.45) 36 0(0.7) 0(0.2)
small 19 0(0) 0.5 0(1.2) 25 0(0.15) 0(0)
small 20 0(0) 0.0 0(0) 0 0(0) 0(0)
med 1 0(0) 0.21 0(0) 0 0(0) 0(0)
med 2 0(0) 0.15 0(0) 0 0(0) 0(0)
med 3 0(0) 0.73 0(0) 8 0(0) 0(0)
med 4 0(0) 0.30 0(0) 3 0(0) 0(0)
med 5 0(0) 5.2 0(0) 85 0(3.95) 0(0)
med 6 0(0) 4.0 0(0) 20 0(6.2) 0(0)
med 7 0(0) 80 1(4.15) 440 34(51.65) 14(18.5)
med 8 0(0) 4.2 0(0) 12 9(15.95) 0(0)
med 9 0(0.1) 142 0(4.9) 269 17(24.55) 2(9.7)
med 10 0(0) 0.0 0(0) 0 0(0) 0(0)
med 11 0(0) 1.3 0(0) 25 3(13.35) 0(0)
med 12 0(0) 0.2 0(0) 54 0(0.25) 0(0)
med 13 0(0) 1.6 0(0.5) 172 30(43.15) 0(0.5)
med 14 0(0) 1.0 0(0) 59 0(0.25) 0(0)
med 15 0(0) 1.6 0(0.05) 72 0(4.85) 0(0)
med 16 0(0) 7.3 1(5.15) 733 30(43.15) 1(6.4)
med 17 0(0) 1.4 0(0) 39 0(3.55) 0(0)
med 18 0(0) 5.6 0(6.05) 429 0(8.2) 0(3.1)
med 19 0(0) 11 0(5.45) 511 0(9.25) 0(3.15)
med 20 0(0) 15 2(10.6) 457 0(2.1) 3(11.45)
big 1 0(0) 0 0(0) 0 0(0) 0(0)
big 2 0(0.05) 56 0(0) 283 0(0.7) 0(0)
big 3 0(0) 26 0(0) 447 0(0) 0(0)
big 4 0(1.4) 465 0(0) 406 30(32.2) 8(20.5)
big 5 5(8.4) 500 0(1.1) 743 24(29.15) 30(38.15)
big 6 29(40.3) 500 5(8.45) 893 71(88.9) 77(92.3)
big 7 100(109.2) 500 47(58.3) 966 145(157.3) 150(168.5)
big 8 0(0.25) 329 0(0) 210 30(37.8) 5(20.75)
big 9 0(0.7) 434 0(0.05) 419 18(25) 3(17.5)
big 10 9(12.5) 500 0(1.25) 660 32(38) 24(39.95)
big 11 8(10.2) 500 0(0.35) 444 37(42.35) 22(26.05)
big 12 0(0) 37 0(0) 240 0(0.85) 0(0)
big 13 0(0) 70 0(0) 274 10(19.9) 0(2.55)
big 14 0(0) 54 0(0) 271 0(7.25) 0(0)
big 15 0(11.4) 496 0(0) 255 98(113.95) 0(10)
big 16 0(0) 80 0(2) 755 100(116.3) 19(42)
big 17 13(57.5) 500 76(89) 998 243(266.55) 163(174.9)
big 18 0(0) 259 53(62) 764 173(194.75) 164(179.25)
big 19 161(171.5) 500 109(127) 998 253(266.65) 232(247.35)
big 20 6(13.0) 500 40(46.7) 827 165(183.15) 149(164.15)

Table 1 Experimental results for the 60 benchmark instances from [5]. Average time is given in seconds.

303

5 Conclusions

In this paper, the new Kempe insertion heuristic has been proposed for generating feasible
timetables for university course timetabling problems. Our approach is based on exploring
a sophisticated neighbourhood structure for partial timetables, the Kempe insertion neigh-
bourhood. Each move in the neighbourhood structure brings the partial timetable computed
so far closer to feasibility. In addition, a perturbation strategy has been proposed for pre-
venting the Kempe insertion heuristic from getting stuck in local optima.

The Kempe insertion heuristic has been tested on the 60 benchmark instances from [5].
Our results show that our algorithm consistently outperforms other state-of-the-art algo-
rithms for feasible solution generation [4,13] for the small and medium benchmark instances
with respect to the distance to feasibility of the timetables and CPU time used. For 13 of the
20 large instances, the Kempe insertion heuristic performs at least as good as the Hybrid
Simulated Annealing algorithm from [13] despite the shorter timeout and uses much less
CPU time on average for many instances. The Kempe insertion heuristic generally outper-
forms the Grouping Genetic Algorithm and the Heuristic Search Algorithm from [4].

References

1. Edmund K. Burke, Adam J. Eckersley, Barry McCollum, Sanja Petrovic, and Rong Qu. Hybrid variable
neighbourhood approaches to university exam timetabling.European Journal of Operational Research,
206(1):46–53, 2010.

2. Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong Qu. A graph-based
hyper-heuristic for educational timetabling problems.European Journal of Operational Research,
176(1):177–192, 2007.

3. Luca Di Gaspero and Andrea Schaerf. Neighborhood portfolio approach for local search applied to
timetabling problems.Journal of Mathematical Modeling and Algorithms, 5(1):65–89, 2006.

4. Rhydian Lewis and Ben Paechter. Finding feasible timetables using group-based operators.IEEE Trans-
actions on Evolutionary Computation, 11:397–413, 2007.

5. Rhydian Lewis and Ben Paechter. http://www.emergentcomputing.org/timetabling/harderinstances.htm,
accessed 2010.

6. Rhydian Lewis, Ben Paechter, and Barry McCollum. Post enrolment based course timetabling: A de-
scription of the problem model used for track two of the second international timetabling competition.
Cardiff Accounting and Finance Working Papers A2007/3, Cardiff University, Cardiff Business School,
Accounting and Finance Section, July 2007.

7. Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for course timetabling.European Journal of Oper-
ational Research, 200(1):235–244, 2010.

8. Liam T. G. Merlot, Natashia Boland, Barry D. Hughes, and Peter J. Stuckey. A hybrid algorithm for
the examination timetabling problem. InProc. 4th Int. Conf. on the Practice and Theory of Automated
Timetabling (PATAT), pages 207–231. Springer, 2003.

9. Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for general graph coloring.
In Proc. 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 226–235, 1990.

10. Tomáš Müller. ITC2007 solver description: A hybrid approach.Annals of Operations Research,
172(1):429–446, 2009.

11. Christos H. Papadimitriou and Kenneth Steiglitz.Combinatorial Optimization; Algorithms and Com-
plexity. Dover Publications, 1998.

12. Jonathan M. Thompson and Kathryn A. Dowsland. A robust simulated annealing based examination
timetabling system.Computers & Operations Research, 25(7-8):637 – 648, 1998.

13. Mauritsius Tuga, Regina Berretta, and Alexandre Mendes. A hybrid simulated annealing with Kempe
chain neighborhood for the university timetabling problem. InProc. 6th ACIS Int. Conf. on Computer
and Information Science (ACIS-ICIS), pages 400–405, 2007.

304

Choquet Integral for Combining Heuristic Values for
Exam Timetabling Problem

Tiago Cardal Pais · Edmund Burke

Abstract In this paper we present a constructive heuristic approach based on Cho-

quet integral. We use this method to combine the information given by different basic

heuristics. We use a fuzzy measure to model the importance of each heuristic as well

as the interaction between them. We test our approach on 2 different testbeds and

compare its performance against the individual heuristics. Moreover, we also compare

the results against the best results reported in the literature.

Keywords Exam Timetabling, Fuzzy Measure, Choquet Integral, Construction

Heuristics

1 Introduction

Problems related to timetabling are present in daily life. Solving timetabling problems

is a crucial task and affects many institutions and services like hospitals, transportation

enterprizes, educational establishments, among many others. These problems have been

the object of increasing interest by the research community. Many interesting proposals

have been presented, particulary in the field of Operations Research and Artificial

Intelligence, to solve timetabling problems in sports (Easton et al. 2004; Trick 2001),

transportations (bus,railways,planes) (Isaai and Singh 2001; Caprara et al. 2001; Qi

et al. 2004), schools (Abramson et al. 1999; Colorni et al. 1998; Ribeiro Filho and Lorena

2001; Hansen and Vidal 1995; Schaerf 1999) and universities (Awad and Chinneck 1998;

Burke et al. 2006; Burke and Newall 2003; Caramia et al. 2001; Casey and Thompson

2003; Carter et al. 1994, 1996; Corr et al. 2006; Dowsland and Thompson 2004; Erben

2001; Di Gaspero 2002; Di Gaspero and Schaerf 2001; Kendall and Mohd Hussin 2004;

Merlot et al. 2003; Paquete and Fonseca 2001; Petrovic and Bykov 2002; Schimmelpfeng

and Helber 2007; Thompson and Dowsland 1996, 1998; White and Xie 2001; Yang and

Petrovic 2004).

A general definition of timetabling was given by Burke, Kingston, and de Werra

(2004):

Tiago Cardal Pais · Edmund Burke
ASAP group, University Of Nottingham, Nottingham, NG8 1BB, UK
E-mail: {tpp,ekb}@cs.nott.ac.uk

305

“A timetabling problem is a problem with four parameters, T a finite set of

times, R a finite set of resources, M, a finite set of meetings: and C, a finite set

of constraints. The problem is to assign times and recourses to the meetings so

as to satisfy the constraints as far as possible.”

Hence, if we consider exams as meetings then we are facing exactly the problem

that we want to tackle in this paper, that is, the exam timetabling problem.

In Burke and Newall (2004) an iterated construction algorithm is described.

They make use of a construction ordering heuristic as the basic method for

scheduling the exams. However, the authors introduce an iterated adaptive

method which consists of changing the “degree” of each exam in each iteration.

They proposed an incremental and exponential adaptation scheme. In the first

case the “degree” is modified by one unit at each iteration. On the other hand,

the exponential scheme increments the “degree” by 2n, where n is the num-

ber of iterations by which a particular “degree” was modified. Moreover, they

compare the performance of the algorithm when using different basic ordering

heuristics. They use the largest degree first (LD), a flat ordering (which initial-

izes every “degree” on 0), smallest degree first (SmD), saturation degree (SD)

and random ordering. They tested the algorithm using the Toronto’s data set

(Carter et al. 1996). It can be observed that the adaptation mechanism helps

to improve the initial timetable given by the original order of the exams.

In Asmuni et al. (2009) a fuzzy multiple heuristic ordering approach is pre-

sented. In this work a simple heuristic ordering was implemented, based on the

Carter and Laporte (1996) algorithm. The following three different criteria were

used to order exams: (1) largest degree (LD); (2) largest enrolment (LE); (3)

and least saturation (SD) degree criterion. They use a fuzzy inference system

to combine the different criteria previously mentioned. All possible combina-

tions were tested (LD + LE, SD + LE and LD + SD). The Mandani type

fuzzy system that they used has a 9 rule structure, meaning that two linguistic

variables were used to evaluate the exam “quality” and for each variable three

linguistic terms were defined: “small”, “medium” or “high”. The output linguis-

tic variable “examweight” is also defined by the same three linguistic terms. A

pre-normalisation of data was also performed before computing the fuzzy in-

ference system. In this process a linear transformation was used. Furthermore,

a tuning process was also implemented. It consists, basically, of changing si-

multaneously, by small steps, the upper bound, centre and lower bound of the

three membership functions. All results obtained for each instance used the

best “tuned system”. All approaches were tested using the Toronto’s data set

(Carter et al. 1996). They conclude that the approach using a tuned fuzzy

system with the SD and LE as input variables gave, overall, the best results.

Qu et al. (2009a) presented an adaptive hybridisation of basic graph heuristics

within a graph hyper-heuristic framework. They first started studying some

statistical properties of a random constructive graph hyper-heuristic. They ob-

served that sequences of SD heuristic hybridised with Largest Weighted Degree

(LWD) gave better results than if hybridised with LD or LE heuristic. Fol-

lowing that, they proposed an adaptive approach which uses sequences of SD

heuristic hybridized with LWD. This new method consists of two steps. Firstly,

they iteratively hybridise the LWD heuristic into the first half of a sequence

based on SD heuristic. At the end of each iteration, if the solution obtained

was feasible, the hybridisation amount was increased by 0.03. On the other

306

hand, if that solution was feasible but had a higher cost than the best solution

previously found, the hybridisation amount was decreased by 0.01. Secondly,

they hybridised the entire sequence with LWD. However, in this step only the

best sequences obtained from the previous step were used.

The paper is organized as follows. Section 2 presents the mathematical for-

mulation of the exam timetabling problem that we adopted in this work. It is

followed, in section 3, by a brief description of the key concepts for a better

understanding of the proposed method. Section 4 contains all the details about

the construction algorithm and how to combine all the basic heuristic values

using Choquet integrals. Afterwards, a description of the experimental design

is given in Section 5, as well as the experimental results and discussion. Finally,

the conclusions are drawn in Section 6.

2 Exam Timetabling Problem Definition

The exam timetabling problem can be formulated as a combinatorial optimisa-

tion problem. In order to compare our approach with other methods proposed

in the literature, we adopt the following formulation followed by many authors.

Let,

E = total number of exams, (1)

P = total number of periods, (2)

S = total number of students, (3)

cij = number of students enroled in exam i and j for i, j = 1, . . . , E, (4)

aij =

{
1 if cij > 0

0 otherwise
for i, j = 1, . . . , E, (5)

and consider the following variables:

xi = period in which exam i is scheduled , i = 1, . . . , E (6)

The formulation is:

min f =

∑E
i=1

∑E
j=1 proximity cost(xi, xj) ∗ cij

2S
(7)

subject to: |xi − xj | ≥ aij for i, j = 1, . . . , E and i 6= j (8)

1 ≤ xi ≤ P and integer for i, j = 1, . . . , E (9)

where proximity cost is defined as:

proximity cost(xi, xj) =

{
25−|xi−xj | if 0 < |xi − xj | < 6

0 otherwise
(10)

for i, j = 1, . . . , E and i 6= j

307

The objective function (7) penalizes the proximity of exams with students in

common, using as weights the number of students involved in both examinations

and a factor that depends on the proximity of the periods, ranging from 16 to

0 (Carter et al. 1996). The constraint 8 ensures that any two exams indexed by

i and j with students in common are not assigned to the same period.

3 Essential Concepts

Let us briefly present some useful concepts for our work before we describe the

construction algorithm in more detail.

3.1 Fuzzy Sets

Definition 1 (Zimmermann (1996)). If X is a collection of objects designated

by x then a fuzzy set Ã in X is defined by a set of pairs:

Ã = {(x, µ(x))|x ∈ X}
where µ

Ã
(x) is the membership function of x em Ã.

From now on we are going to refer to a membership function as f
Ã

instead of

the traditional way, as presented in the previous definition, µ
Ã

to avoid any

confusion with the representation of a fuzzy measure µ (see Section 3.3).

For example we can consider the age of a person. Let X be the age domain and

x the age of a certain person. Then the fuzzy set YOUNG may be defined by:

Ã = {(x, f(x))|x ∈ X}
where

f
Ã

(x) =

0 , if x ≥ 65
65−x

30 , if 35 ≤ x ≤ 65

1 , if x ≤ 35

Fuzzy sets are often represented by triangular, trapezoidal (triangular as a par-

ticular case) or gaussian membership functions. The membership function for

YOUNG presented above is an example of a trapezoidal function. Generalising,

a trapezoidal function is given by the following membership function:

f
Ã

: D ⊂ X → [0, 1]

where

f
Ã

(x) =

0 , if x ≤ a ∨ x > d
x−a
b−a , if a < x ≤ b

1 , if b < x ≤ c
d−x
d−c , if c < x ≤ d

(11)

where x ∈ D ⊂ X and Ã is a fuzzy set in X .

The triangular function is a trapezoidal function where b = c.

308

3.2 Linguistic Variable

The linguistic values or terms of a linguistic variables are concepts defined by

words or expressions of a natural language.

Definition 2 (Zadeh (1975)). A linguistic variable is characterized by the quin-

tuple (H, T (H), U, G, M) , where H is the name of the variable, T (H) is the set

of terms or linguistic values of H, U is the universe of the variable, G the

semantic rule that generates the terms in T (H) and M is the semantic rule as-

sociating to each term or linguist value its meaning trough the fuzzy set M(X)

(M(X) is a fuzzy set on U).

Let us consider the linguistic variable TEMPERATURE as in (Klir and Yuan

1995). We can have a pure numerical interpretation for this concept as depicted

in case (b) in Figure 1, but we can represent it as a linguistic variable (case (a)),

characterised by the linguist values { Very Low, Low, Average, High, Very High}.

Very Low Low Average High Very High

1
Very Low Low Average High Very High

a)

b)

Very Low Low Average High Very High

1
Very Low Low Average High Very High

a)

1
Very Low Low Average High Very High

a)

b)

Fig. 1: a) Temperature as Linguistic Variable - b) Numerical representation of Tem-

perature

3.3 Fuzzy Measures

Since here we are working with finite spaces, we are going to present a simplified

definition of a fuzzy measure. More details about this topic can be found in

Wang and Klir (1992).

Definition 3 (Grabisch (1995)). A fuzzy measure µ defined on the measurable

space (X, X) is a set function µ : X → [0, 1] satisfying the following axioms:

i µ(∅) = 0, µ(X) = 1. This is the usual convention, although in general µ(X)

can be any positive finite (or infinity) quantity.

ii A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity).

where X , {x1, . . . , xn}, and generally X is a σ-algebra on a space X.

(X, X, µ) is said to be a fuzzy measure space.

In this work, we assume that the σ-algebra X is the power set of X. Hence, in

this case we have X = {SD, CD, LD, LWD, LE} and X = P(X).

309

3.4 Choquet Integral

Again, as in Section 3.3, we present a definition of Choquet integral for the

particular case of discrete spaces.

Definition 4. (Grabisch (1995)): Let (X, X, µ) be a fuzzy measure space. The

Choquet integral of a function f : X → [0, 1] with respect to µ is defined by

Cµ(f(x1), ..., f(xn)) ,
n∑

i=1

(f(x(i))− f(x(i−1)))µ(A(i))

where ·(i) indicates a permutation such that 0 ≤ f(x(1)) ≤ . . . ≤ f(x(n)) ≤ 1,

A(i) , {x(i), . . . , x(n)}, and f(x(0)) = 0.

To better illustrate how Choquet integral works we present the same example

described in Murofushi and Sugeno (1989) paper. Consider that there is a rare

book collection which consists of two volumes (let us label y1 as volume 1, and

y2 as volume 2). There is a bookseller who is interested in buying this rare collec-

tion. Therefore, he offers: µ({y1}) monetary units (m.u.) per volume 1; µ({y2})
m.u. per volume 2; and µ({y1, y2}) m.u. for each entire collection. Obviously, he

sets a higher values for the complete set, i.e. µ({y1, y2}) ≥ µ({y1}) + µ({y2}).
Suppose now, that there is a person that sells x1 = h(y1) units of volume 1

and x2 = h(y2) units of volume 2, where x1 ≤ x2. We can say that he of-

fers x1 complete collections and (x2 − x1) volumes 2. Therefore, he would get

x1 × µ({y1, y2}) + (x2 − x1)× µ({y2}) m.u.

4 Construction Heuristic

We implemented a simple construction algorithm. The construction heuristic

block is composed by two secondary order heuristics. These are: exam ordering

heuristic; and period ordering heuristic. The former one concerns the order in

which exams are scheduled. As the latter chooses in which period a particular

exam should be scheduled. Furthermore, we also implemented a backtracking

procedure which is based on the one described in Carter et al. (1996). A pseu-

docode of the algorithm is depicted in Algorithm 1.

Algorithm 1 Construction algorithm pseudocode

unscheduled exams ← all exams
while unscheduled exams is not empty do

Select an exam from the list unscheduled exams using a exam ordering heuristic
Select a feasible period to schedule the previous selected exam using a
period ordering heuristic
if it is impossible to select a feasible period then

Use the backtracking procedure described in Carter et al. (1996)
if it is impossible to backtrack then

break
end if

end if
Update unscheduled exams list

end while

310

The four period ordering heuristics implemented in this work are the following:

1. random: a random feasible period is chosen using an uniform distribution;

2. first period: the first feasible period is chosen;

3. biased: a roulette-wheel scheme is used to choose the period. The weights

are computed using Eq. 7;

4. deterministic and random: the periods are sorted according to the weights

obtained by using Eq. 7. Ties are broken randomly.

We implemented three different types of exam ordering. The logic behind them

is similar to the one used for period ordering. The description of the heuristics

is given below.

1. random: a random exam is chosen from the unscheduled ones using a uni-

form distribution;

2. biased: a roulette-wheel scheme is used to choose one of the unscheduled ex-

ams using an empirical distribution based on one of six heuristics described

below;

3. deterministic and random: the exams are sorted according to one of six

heuristics described below. Ties are broken randomly.

The heuristics implemented represent how “hard” it is to schedule a particular

exam. Each one of the five basic heuristics are described below.

1. Saturation Degree (SD): increasingly order exams by the number of feasible

periods in which an exam can be scheduled;

2. Colour Degree (CD): decreasingly order exams by the number of total con-

flicts that an exam has with the already scheduled exams;

3. Largest Degree (LD): decreasingly order exams by the number of total con-

flicts;

4. Largest Weighted Degree (LWD): decreasingly order exams by the number

of total conflicts weighted by the number of students involved in each one;

5. Largest Enrolment (LE): decreasingly order exams by the number of enrol-

ments;

4.1 Construction Heuristic using Choquet Integral

The more traditional aggregation methods (e.g. Weighted Sum, OWA) are easy

to interpret but are too restrictive since they are not able to represent the

interaction between the criteria. It is assumed that the criteria is independent,

when in most practical cases that does not happen. The motivation to use this

method is so that we can represent the information given by the individual

heuristics (given above), as well as the interaction between those heuristics by

using a fuzzy measure (see Section 3.3) in an understandable way. This way we

can model criteria that are not independent.

Choquet integral can be regarded as an extension of Lebesgue integral. That

is, if the measure at hand is additive, or in other words, it is a classical mea-

sure, then Choquet integral coincides with Lebesgue integral (Murofushi and

Sugeno 1989). Therefore, it is easier to interpret its output than other fuzzy

integrals. Moreover, Choquet integral has some algebraic properties that other

fuzzy integrals do not have (Grabisch 1995). Hence, it makes it more suitable for

multicriteria decision making problems (Murofushi and Sugeno 1989; Grabisch

1995, 1996).

311

Since the information given by the heuristics had different units, we used fuzzy

sets (see Section 3.1) to normalise its values into the unit interval. The goal of

using this information is to decide which exam is “harder” to schedule. Bearing

that in mind, we modeled each basic heuristic as a linguistic variable (see Section

3.2). Hence, we used a triangular membership function (see Eq. 11) to represent

the linguistic terms, such as “low SD” value, “high CD” value, “high LD” value,

“high LWD” value and “high LE” value. The membership functions are relative

to each iteration, e.g., if the highest SD value is 5 (in one particular iteration)

all exams with that value are going to have a membership of 0. The membership

functions for each linguistic term are defined below.

f ˜lowSD
(xSD) =

maxSD − xSD

maxSD
(12)

f ˜highCD
(xCD) =

xCD

maxCD
(13)

f ˜highLD
(xLD) =

xLD

maxLD
(14)

f ˜highLWD
(xLWD) =

xLWD

maxLWD
(15)

f ˜highLE
(xLE) =

xLE

maxLE
(16)

Where maxSD, maxCD, maxLD, maxLWD and maxLE is the maximum

SD, CD, LD, LWD, LE value in the current iteration, respectively.

Moreover, if some of the maxCD, maxLD, maxLWD, maxLE values are equal

to zero, in some iteration, the respective function returns 0 by default. On the

other hand, if maxSD value is equal to zero the function returns 1 by default.

The weights presented in Table 1 and 2 were chosen using a “rule of thumb”. We

set the individual weights according to how each individual heuristic performed

. The interaction’s weights were defined by analysing the information given

by the heuristics, i.e., if the heuristics present some kind of complementary

information, the weight given to that interaction should be at least higher than

the sum of the individual weights. For example, the SD and CD heuristic

values capture different information of the timetable being constructed. One

could expect that the interaction between these two criteria to be synergetic,

i.e. it provides a better understanding of the problem than both heuristics

separately. Hence, the weight given to the interaction between these two is

higher than the sum of both together. On the other hand, if heuristics present

similar information a lower weight should be given. For instance, the LD and

LWD heuristic values share, to some degree, the same information; hence the

weight given to the interaction between these two is less than the sum of both

together. For both individual and interaction weights, we used a trial-and-error

approach based on how well the heuristic performed on the hec-s-92 data set.

312

Table 1: Individual and two-way interaction weights for µ fuzzy measure

Weight Individual Criterion Weight Criteria
0 empty 0.51 SD,LD

0.5 SD 0.515 SD,LWD
0.01 LD 0.52 SD,LE
0.015 LWD 0.8 SD,CD
0.02 LE 0.02 LD,LWD
0.2 CD 0.04 LD,LE

0.21 LD,CD
0.045 LWD,LE
0.3 LWD,CD
0.32 LE,CD

Table 2: Interaction’s weights for µ fuzzy measure

Weight Criteria Weight Criteria
0.6 SD,LD,LE 0.7 SD,LD,LWD,LE
0.62 SD,LWD,LE 0.9 SD,LD,LWD,CD
0.85 SD,LD,CD 0.98 SD,LD,LE,CD
0.88 SD,LWD,CD 0.95 SD,LWD,LE,CD
0.9 SD,LE,CD 0.6 LD,LWD,LE,CD
0.35 LD,LWD,CD 1 SD,LD,LWD,LE,CD
0.06 LD,LWD,LE
0.4 LD,LE,CD
0.43 LWD,LE,CD
0.55 SD,LD,LWD

With all the values fuzzyfied and a fuzzy measure set we can use the Choquet

Integral (see Section 3.4) to combined all the information. As we did with

the other basic heuristics, the exams are ordered decreasingly according to the

values obtained by using this method. That is, if one exam is attributed value 1

it means that it is very hard to schedule, according to the information given by

the five basic heuristics. Hence it should be scheduled before all other exams.

To better illustrate how the process works, an example is here presented. Con-

sider two exams,e1 and e2. After the basic heuristic values were computed and

normalized, we obtained the following values: xe1 = (0.4, 0.5, 0.5, 0.6, 0.8) and

xe2 = (0.8, 0.4, 0.7, 0.7, 0.4), corresponding to the SD, CD, LD, LWD, LE

heuristic, respectively. The Choquet integral value for exam e1 is computed as:

Cµ(xe1) =µ{SD,CD,LD,LWD,LE}xe1SD+

+ µ{CD,LD,LWD,LE}(xe1CD − xe1SD)+

+ µ{LD,LWD,LE}(xe1LD − xe1CD)+

+ µ{LWD,LE}(xe1LW D − xe1LD)+

+ µ{LE}(xe1LE − xe1LW D) =

=1× 0.4 + 0.6× (0.5− 0.4) + 0.35× (0.5− 0.5)+

+ 0.045× (0.6− 0.5) + 0.02× (0.8− 0.6) =

=0.4685

313

An analogous process is also applied to exam e2, giving the value Cµ(xe2) =

0.6150. Hence, the next exam to be scheduled would be the exam e2.

5 Experimental Design

To test the performance of the algorithm we used two data sets. The first one

was a collection of real problems and is available in an online repository created

by Michael Carter1. The second data set was put online for the International

Timetabling Competition2 (ITC 2007) (McCollum et al. 2007). In this work,

we used the average performance to test whether the algorithm performs signi-

ficatively better when distinct heuristics are used for ordering exams. For this

purpose, we performed 330 runs for each heuristic and for each data file. In total,

we ran the algorithm 41580 times (330runs× 6heuristics× 21datafiles). For

each data file and each heuristic, we computed an average of 33 runs. This way,

we obtained 10 samples of the average performance of the algorithm for each

data file and each heuristic. We assumed that the 10 samples were normally

distributed since we were dealing with averages of 33 random independent and

identically distributed variables. Hence, to compare the performance of differ-

ent heuristics we used the statistical t-test with a significance level of 0.95. The

following null hypothesis was used:

H0 : µdfi1hj1 ≥ µdfi2hj2 (17)

where µ represents the mean value and dfi1, dfi2, hj1, hj2 are the data files

i1, i2 ∈{Carter’s data files, ITC’s data files} and the heuristics j1, j2 ∈{SD,

CD, LD, LWD, LE, CI}, respectively.

In the next section we only present the results regarding the determinist or-

der of exams and periods. The results of the other ordering strategies were

considerably worse when compared to the aforementioned ones.

5.1 Computational Results

Tables 3 and 4 depict the minimum (min), maximum (max) and average (avg)

values over the 330 runs for all data files (lines) and for each heuristic (columns).

The best results are presented in boldface.

We also computed how many time each heuristic was statistically better than

other k heuristics (with k = 0, 1, 2, 3, 4, 5) across all 21 data files. The results

are depicted in Figure 2. For instance, we can observe that SD heuristic (see

Figure 2a) performed better than 1 heuristic in 2 data files and was also better

than all other heuristics in the other 2 data files.

5.2 Discussion

From analysing Figure 2 it can be seen that amongst the basic heuristics, the

one that performs better is the SD heuristic followed by the CD heuristic.

1 ftp://ftp.mie.utoronto.ca/pub/carter/testprob
2 http://www.cs.qub.ac.uk/itc2007/

314

Table 3: Computational results of the basic and Choquet heuristics for the Carter’s

data set

Data Set SD CD LD LWD LE CI

car-f-92
min 4.56 4.74 5.15 5.17 5.03 4.44
max 6.17 7.51 7.61 7.44 7.54 6.99
avg 5.07 5.77 6.07 6.06 6.12 5.28

car-s-91
min 5.25 5.39 5.54 5.69 5.83 5.18
max 7.15 7.76 8.77 8.33 8.34 6.95
avg 5.73 6.25 6.70 6.65 6.82 5.66

ear-f-83
min 40.74 40.22 41.02 43.65 43.67 39.55
max 58.78 61.46 58.73 60.06 61.34 57.53
avg 46.56 49.00 49.13 51.03 51.04 45.43

hec-s-92
min 12.59 12.68 14.16 14.14 12.73 12.20
max 22.80 26.61 27.14 23.15 23.40 25.27
avg 16.07 17.22 18.41 17.53 18.11 16.48

kfu-s-93
min 15.92 16.12 16.41 16.05 16.70 15.46
max 26.00 29.44 26.12 26.81 26.98 22.98
avg 18.55 19.23 20.57 20.00 20.44 17.54

lse-f-91
min 11.96 12.03 12.95 12.28 12.48 11.83
max 19.25 19.43 19.25 20.01 19.08 15.55
avg 14.25 14.81 14.24 14.96 15.30 12.89

pur-s-93
min 4.95 4.96 5.04 5.05 5.15 4.93
max 5.85 6.01 6.05 7.42 7.82 5.81
avg 5.33 5.38 5.37 5.58 5.64 5.19

rye-s-93
min 10.48 10.65 12.35 10.33 10.92 10.04
max 17.84 19.15 19.02 18.49 19.17 16.07
avg 12.78 13.35 15.07 13.76 14.14 11.85

sta-f-83
min 159.35 159.71 162.11 163.09 161.71 160.50
max 185.63 182.97 199.70 192.51 202.30 184.89
avg 169.94 169.95 180.09 173.50 174.71 169.46

tre-s-92
min 8.90 9.04 10.18 9.25 9.47 8.71
max 12.40 13.12 13.34 13.73 12.67 11.07
avg 10.10 10.76 11.66 11.20 11.27 9.27

uta-s-92
min 3.64 3.67 4.04 3.76 3.86 3.49
max 4.69 5.49 6.09 6.80 6.70 5.17
avg 3.95 4.22 4.83 4.74 4.84 3.80

ute-s-92
min 28.93 28.65 31.34 29.55 29.45 29.44
max 43.78 45.25 45.21 46.60 49.48 39.15
avg 34.91 34.09 36.82 37.12 36.55 33.44

yor-f-83
min 43.29 43.07 45.27 46.38 45.74 42.19
max 56.59 59.20 58.13 56.27 58.62 54.77
avg 49.10 50.64 51.65 51.07 51.46 47.94

This can be somewhat explained since these two heuristics have a dynamic

behaviour, while the other three are static, as mentioned in Section 4.

As it can be observed in Table 3 and 4, the CI heuristic almost always obtained

the best results across all data sets. It obtained the best minimum, maximum

and average results in 15, 17 and 18 out of 21 data files, respectively. Figure 2f

shows that the CI heuristic was significatively better than all of other heuristics

in 81% of the instances. Moreover, this heuristic was better than at least 4

heuristic in 90% of the cases.

Only two of the constructive methods (Burke and Newall 2004; Qu et al. 2009a)

seem to perform better than the rest. However, as was described in Section 1, all

methods (with the exception of Carter and Laporte (1996)) have incorporated a

315

Table 4: Computational results of the basic and Choquet heuristics for the International

Timetabling Competition (ITC) data set

Data Set SD CD LD LWD LE CI

ITC1
min 1.20 1.20 1.30 1.22 1.22 1.12
max 1.51 1.49 1.55 1.42 1.44 1.30
avg 1.36 1.36 1.42 1.31 1.33 1.21

ITC2
min 0.28 0.28 0.30 0.28 0.28 0.26
max 0.40 0.38 0.40 0.39 0.39 0.35
avg 0.34 0.33 0.35 0.33 0.34 0.30

ITC3
min 1.91 1.90 1.99 1.88 1.93 1.81
max 2.29 2.31 2.29 2.25 2.23 2.06
avg 2.10 2.09 2.10 2.07 2.07 1.93

ITC4
min 13.99 13.66 14.49 15.77 15.91 13.54
max 22.82 24.63 25.28 28.10 29.59 28.49
avg 16.91 17.48 18.46 20.95 20.90 16.67

ITC5
min 0.49 0.50 0.59 0.53 0.55 0.44
max 0.72 0.73 0.82 0.69 0.74 0.61
avg 0.60 0.60 0.71 0.60 0.63 0.52

ITC6
min 4.63 4.78 4.87 4.43 4.67 4.50
max 6.09 6.29 6.88 7.65 7.41 5.49
avg 5.27 5.34 5.63 5.47 5.77 4.90

ITC7
min 0.10 0.11 0.13 0.14 0.14 0.11
max 0.17 0.17 0.19 0.19 0.19 0.16
avg 0.14 0.14 0.16 0.17 0.16 0.13

ITC8
min 0.18 0.18 0.23 0.22 0.24 0.18
max 0.32 0.33 0.33 0.33 0.35 0.30
avg 0.25 0.25 0.28 0.28 0.30 0.25

more sophisticated method to improve the construction process. Therefore, the

heuristic described in this work held a much greater potential since the fuzzy

measure used in this work was not a subject of any kind of sophisticated tuning

procedure. Nevertheless, if we compare the results obtained by the CI heuristic

with some other constructive methods described in the literature (which are

depicted in table 5) we can observe that it presents very competitive results

in most of the instances of the Carter’s data set. Moreover, the CI heuristic is

faster (see Table 6) than most of the construction heuristics depicted in Table 5.

This makes it suitable to be used as a generator for population based algorithms

since it builds good quality timetables.

6 Conclusions

In this work we presented a construction algorithm which uses a fuzzy measure

and Choquet integral to combine the information given by 5 basic heuristics

(see Section 4). The exams are then decreasingly ordered according to the value

obtained by the Choquet integral and scheduled into a time period. This is

chosen in virtue of minimising the total cost of the timetable (which is given

by Equation 7).

The new method proposed in this work performs better than all basic heuris-

tics in most of the test instances. However, in some of them the SD heuristic

obtained better results. Nevertheless, we expect to enhance the performance of

316

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

2

4

6

8

10

number of times that heuristic SD was better than k heuristics

(a) SD heuristic

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

5

10

15

number of times that heuristic CD was better than k heuristics

(b) CD heuristic

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

2

4

6

8

10

12

14

number of times that heuristic LD was better than k heuristics

(c) LD heuristic

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

2

4

6

8

10

number of times that heuristic LWD was better than k heuristics

(d) LWD heuristic

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

2

4

6

8

10

number of times that heuristic LE was better than k heuristics

(e) LE heuristic

F
re

qu
en

cy

−1 0 1 2 3 4 5
0

5

10

15

number of times that heuristic CI was better than k heuristics

(f) CI heuristic

Fig. 2: Histogram of the number of times that each heuristic performed better than k

others

CI heuristic by using other techniques (e.g. differential evolution (Price et al.

2005)) to tune the weights of the fuzzy measure. Moreover, instead of tuning

the weights for each instance we can use a training data set. Through this, we

expect the heuristic to perform well across a different range of instances with

different characteristics.

Acknowledgements This research has been supported by Fundação para a Ciência
e Tecnologia (FCT) Portugal grant number SFRH/BD/43486/2008.

317

Table 5: Best computational results of some constructive methods and the Choquet

heuristic for the Carter’s data set

Data Set (Carter
and La-
porte
1996)

(Burke
and
Newall
2004)

(Asmuni
et al.
2009)

(Qu
et al.
2009a)

Best re-
ported
(Qu et al.
2009b)

CI

car-f-92 6.2 4.32 4.54 4.32 3.93 4.44
car-s-91 7.1 4.97 5.29 5.11 4.5 5.18
ear-f-83 36.4 36.16 37.02 35.56 29.3 39.55
hec-s-92 10.8 11.61 11.78 11.62 9.2 12.20
kfu-s-93 14.0 15.05 15.80 15.18 13.0 15.46
lse-f-91 10.5 10.96 12.09 11.32 9.6 11.83
pur-s-93 3.9 - - - - 4.93
rye-s-93 7.3 - 10.38 - 6.8 10.04
sta-f-83 161.5 161.91 160.42 158.88 134.9 160.50
tre-s-92 9.6 8.38 8.67 8.52 7.9 8.71
uta-s-92 3.5 3.36 3.57 3.21 3.14 3.49
ute-s-92 25.8 27.41 28.07 28.00 24.4 29.44
yor-f-83 41.7 40.77 39.80 40.71 36.2 42.19

Table 6: Computational times (in seconds) for the CI heuristic. The values are an

average of 300 runs.

Data Set car-f-92 car-s-91 ear-f-83 hec-s-92 kfu-s-93 lse-f-91 pur-s-93
Times 5.03 9.13 0.34 0.15 2.89 1.66 382.81

Data Set rye-s-93 sta-f-83 tre-s-92 uta-s-92 ute-s-92 yor-f-83 -
Times 3.42 0.11 0.60 6.97 0.24 0.43 -

References

D. Abramson, M. Krishnamoorthy, and H. Dang. Simulated annealing cooling sched-
ules for the school timetabling problem. Asia Pacific Journal of Operational
Research, 16:1–22, 1999.

H. Asmuni, E.K. Burke, J.M. Garibaldi, B. McCollum, and A.J. Parkes. An investiga-
tion of fuzzy multiple heuristic orderings in the construction of university exami-
nation timetables. Computers and Operations Research, 36(4):981–1001, 2009.

R. Awad and J. Chinneck. Proctor Assignment at Carleton University. Interfaces, 28
(2):58–71, 1998.

E. K Burke and J. P Newall. Enhancing Timetable Solutions with Local Search
Methods. Lectue Notes in Computer Science, pages 195–206, 2003.

E. K. Burke and J. P. Newall. Solving examination timetabling problems through
adaption of heuristic orderings. Annals of operations Research, 129(1):107–134,
2004.

EK Burke, J. Kingston, and D. de Werra. Applications to timetabling. Handbook of
Graph Theory, pages 445–474, 2004.

E.K. Burke, A.Eckersley, B.McCollum, S.Petrovic, and R.Qu. Hybrid variable neigh-
bourhood approaches to university exam timetabling. Technical Report NOTTCS-
TR-2006-2, School of Computer Science and IT, University of Nottingham, 2006.

A. Caprara, M. Fischetti, PL Guida, M. Monaci, G. Sacco, and P. Toth. Solution of
real-world train timetabling problems. In System Sciences, 2001. Proceedings of
the 34th Annual Hawaii International Conference on, page 10, 2001.

M. Caramia, P. DellÓlmo, and G.F. Italiano. New algorithms for examination
timetabling. In Algorithm Engineering, volume 1982 of Lecture Notes in Com-
puter Science, pages 230–242. Springer, 2001.

318

M. W. Carter, G. Laporte, and J.W. Chinneck. A general examination scheduling
system. Interfaces, 24(3):109–120, 1994.

Michael W. Carter and Gilbert Laporte. Recent developments in practical examina-
tion timetabling. In Selected papers from the First International Conference on
Practice and Theory of Automated Timetabling, pages 3–21, London, UK, 1996.
Springer-Verlag. ISBN 3-540-61794-9.

M.W. Carter, G. Laporte, and S.Y. Lee. Examination Timetabling: Algorithmic
Strategies and Applications. Journal of the Operational Research Society, 47(3):
373–383, 1996.

S. Casey and J. Thompson. Grasping the examination scheduling problem. In Practice
and Theory of AutomatedTimetabling IV, volume 2740/2003 of Lecture Notes in
Computer Science, pages 232–244. Springer Berlin / Heidelberg, 2003.

A. Colorni, M. Dorigo, and V. Maniezzo. Metaheuristics for High School Timetabling.
Computational Optimization and Applications, 9(3):275–298, 1998.

PH Corr, B. McCollum, MAJ McGreevy, and P. McMullan. A New Neural Network
Based Construction Heuristic for the Examination Timetabling Problem. Lecture
Notes in Computer Science, 4193:392, 2006.

L. Di Gaspero. Recolour, shake and kick: A recipe for the examination timetabling
problem. In Proceedings of the fourth international conference on the practice and
theory of automated timetabling, pages 404–407, Gent, Belgium, 2002.

Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination
timetabling. In PATAT ’00: Selected papers from the Third International Con-
ference on Practice and Theory of Automated Timetabling III, pages 104–117,
London, UK, 2001. Springer-Verlag. ISBN 3-540-42421-0.

KA Dowsland and JM Thompson. Ant colony optimization for the examination
scheduling problem. Journal of the Operational Research Society, 56(4):426–438,
2004.

K. Easton, G. Nemhauser, and M. Trick. Sports scheduling. Handbook of Scheduling:
Algorithms, Models, and Performance Analysis, 2004.

W. Erben. A Grouping Genetic Algorithm for Graph Colouring and Exam
Timetabling. Lecture Notes in Computer Science, pages 132–158, 2001.

M. Grabisch. Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems,
69(3):279–298, 1995.

M. Grabisch. The application of fuzzy integrals in multicriteria decision making.
European journal of operational research, 89(3):445–456, 1996.

M.P. Hansen and R.V.V. Vidal. Planning of high school examinations in Denmark.
European Journal of Operational Research, 87(3):519–534, 1995.

MT Isaai and MG Singh. Hybrid applications of constraint satisfaction and meta-
heuristicsto railway timetabling: a comparative study. Systems, Man and Cyber-
netics, Part C, IEEE Transactions on, 31(1):87–95, 2001.

Graham Kendall and Naimah Mohd Hussin. An investigation of a tabu search based
hyper-heuristic for examination timetabling. In Graham Kendall, Edmund K.
Burke, and Sanja Petrovic, editors, Selected papers from MISTA 2003. Kluwer
Publication, 2004. URL http://www.asap.cs.nott.ac.uk/publications/pdf/
nbh_mista03_extend.pdf.

G. J. Klir and B. Yuan. Fuzzy Sets and Fuzzy Logic. Prentice Hall, 1995.
Barry McCollum, Paul McMullam, Edumund K. Burke, Andrew J. Parkes, and Rong

Qu. The second international timetabling competition: Examination timetabling
track. Technical Report QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s Uni-
versity Belfast, September 20 2007.

L.T.G. Merlot, N. Boland, B.D. Hughes, and P.J. Stuckey. A hybrid algorithm for
the examination timetabling problem. In Practice and Theory of Automated-
Timetabling IV, volume 2740/2003 of Lecture Notes in Computer Science, pages
207–231. Springer Berlin / Heidelberg, 2003.

T. Murofushi and M. Sugeno. An interpretation of fuzzy measures and the Choquet
integral as an integral with respect to a fuzzy measure. Fuzzy sets and Systems,
29(2):201–227, 1989.

Luis F. Paquete and Carlos M. Fonseca. A sutdy of examination timetabling with
multiobjective evolutionary algorithms. In Proccedings of 4th Metaheuristics In-
ternational Conference, 2001.

319

Sanja Petrovic and Yuri Bykov. A multiobjective optimisation technique for exam
timetabling based on trajectories. In Proceedings of the 4th International Confer-
ence on Practice and Theory of Automated Timetabling (PATAT 2002), volume
2740 of Lecture Notes in Computer Science, pages 179–192, Gent, Belgium, Aug
21-23 2002. Springer. URL http://www.asap.cs.nott.ac.uk/publications/pdf/
yuri_Patat02sv.pdf.

Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing Series). Springer-
Verlag New York, Inc., 2005. ISBN 3540209506.

X. Qi, J. Yang, and G. Yu. Scheduling problems in the airline industry. Handbook of
Scheduling: Algorithms, Models, and Performance Analysis, 2004.

R. Qu, E.K. Burke, and B. McCollum. Adaptive automated construction of hybrid
heuristics for exam timetabling and graph colouring problems. European Journal
of Operational Research, 198(2):392–404, 2009a.

R. Qu, EK Burke, B. Mccollum, LT Merlot, and SY Lee. A survey of search method-
ologies and automated system development for examination timetabling. Journal
of Scheduling, 12(1):89, 2009b.

G. Ribeiro Filho and L.A.N. Lorena. A Constructive Evolutionary Approach to School
Timetabling. Applications of Evolutionary Computing - Lecture Notes in Com-
puter Science, 2037:130–139, 2001.

A. Schaerf. Local search techniques for large high school timetabling problems. Sys-
tems, Man and Cybernetics, Part A, IEEE Transactions on, 29(4):368–377, 1999.

K. Schimmelpfeng and S. Helber. Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum, 29(4):783–803,
2007.

J.M. Thompson and K.A. Dowsland. Variants of simulated annealing for the exami-
nation timetabling problem. Annals of Operations research, 63(1):105–128, 1996.

Jonathan M. Thompson and Kathryn A. Dowsland. A robust simulated annealing
based examination timetabling system. Comput. Oper. Res., 25(7-8):637–648,
1998. ISSN 0305-0548. doi: http://dx.doi.org/10.1016/S0305-0548(97)00101-9.

M.A. Trick. A Schedule-Then-Break Approach to Sports Timetabling. Lecture Notes
in Computer Science, pages 242–253, 2001.

Zhenyuan Wang and George J. Klir. Fuzzy measure theory. Plenum Publishing Cor-
poration, 1992.

George M. White and Bill S. Xie. Examination timetables and tabu search with
longer-term memory. In PATAT ’00: Selected papers from the Third International
Conference on Practice and Theory of Automated Timetabling III, pages 85–103,
London, UK, 2001. Springer-Verlag. ISBN 3-540-42421-0.

Yong Yang and Sanja Petrovic. A novel similarity measure for heuristic selection in
examination timetabling. In Proccedings of the 5th International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2004), Pittsburg,
August 18-20 2004. URL http://www.asap.cs.nott.ac.uk/publications/pdf/
yxy_Patat04.pdf.

L.A. Zadeh. The concept of a linguistic variable and its application to approximate
reasoning, Part I. Information Sciences, 8(3):199–249, 1975.

H. J. Zimmermann. Fuzzy Set Theory and its applications. Kluwer Academic Pub-
lishers, 1996.

320

An Overview of School Timetabling Research

Nelishia Pillay

School of Computer Science, University of KwaZulu-Natal
+27 2605644

+27 2605648

pillayn32@ukzn.ac.za

Abstract. Although there has been a fair amount of research in the area of school timetabling, this

domain has not grown as well as other fields of educational timetabling such as university course

and examination timetable. This can possibly be attributed to the fact that the studies in this

domain have generally been conducted in isolation of each other and have addressed different

school timetabling problems. Furthermore, there have been no comparative studies on the success

of different methodologies on a variety of school timetabling problems. As a way forward this

paper provides an overview of the research conducted in this domain, details of problems sets

which are publically available and proposes areas for further research in school timetabling.

Keywords: school timetabling, educational timetabling

1. Introduction

Educational timetabling encompasses university course timetabling, examination timetabling

and school timetabling. A lot of progress has been made in university course and examination

timetabling research. This can be attributed to the variety of problems publicly available which

has enabled a comparative study of different methodologies for these domains. Research in school

timetabling has not advanced as rapidly as in the other two areas of educational timetabling

(Kingston 2006). This is possibly due to studies being done in isolation of each other for specific

schools (Santos et al. 2008) and the lack of a variety of problems which can be accessed publicly

(Schaerf 1991; Smith et al. 2003; Jacobsen et al. 2006; Post et al. 2008). According to Nurmi et al.

(2008) and Post et al. (2008) the school timetabling problem has not been studied as extensively as

the university course and examination timetabling problems. Furthermore, methods implemented

have not been widely tested on a variety of school timetabling problems (Jacobsen et al. 2006;

Santos et al. 2005) which is essential in order to ascertain how well the methodology can

generalize. Due to the unavailability of a general set of benchmarks, there have not been much

comparative analyses of different methodologies in solving the school timetabling problem. In

cases where such studies have been performed, different methods are compared for a single school

and not on a variety of problems.

This paper serves as a starting point for further development in the field. The definition of the

school timetabling problem and the hard and soft constraints associated with each problem

instance differs from one study to the next. The following section attempts to provide a

standardized definition of the problem. Section 3 presents an overview of research in the field.

321

Problems sets that are publicly available for research are described in section 4. Section 5

proposes a way forward by proposing future directions of research in school timetabling.

2. The School Timetabling Problem (STP)

The school timetabling problem and the terminology used in defining the problem differs

drastically from one study to the next. For consistency the following terms are defined.

A class refers to a group of students that will be taught a particular subject, e.g. Mathematics. A

lesson refers to a particular subject being taught to a class by a teacher. The teaching period refers

to the duration of the timetable and is usually a week.

Carter et al. (Carter et al. 1997) define the school timetabling problem as a subtype of course

timetabling. Solving the school timetabling problem essentially involves allocating class, teacher

and room tuples to timetable slots so as to satisfy the hard and soft constraints of the problem

(Abramson et al. 1991; Beligiannis et al. 2008; Post et al. 2008). Students are usually grouped into

classes prior to the timetable construction process (Abramson 1991). The school timetabling

problem differs for each country due to the characteristics and regulations specific to the particular

education system (Alvarez-Valdes et al. 1996; Post et al. 2008). In some cases the room does not

form part of the tuple and each class-teacher pair has to be allocated to a period and a venue

(Wilke et al. 2008; Post et al. 2008). The number and duration of lessons can also differ for grades

or class levels in a school (Post et al. 2008). Furthermore, some schools extend over more than one

site (Schaerf 1991).

The hard and soft constraints also differ drastically from one problem to the next. Hard

constraints are constraints that must be met by a timetable in order for it to be operable. A

timetable meeting all the hard constraints of a problem is called a feasible timetable. Soft

constraints define the quality of a timetable. Soft constraints are usually contradictory, and as such

it is impossible to satisfy all the soft constraints. Thus, we attempt to minimize the soft constraint

cost.

The STP can be defined in terms of the requirements of the problem, the hard constraints and

soft constraints. Section 2.1 presents a model for specifying the requirements of the STP.

Sections 2.2 and 2.3 provide a comprehensive set of hard and soft constraints, respectively, for the

school timetabling problem that should be catered for in a standardized definition of the problem.

Some constraints are treated as hard constraints in one STP and soft constraints in another. These

are described in section 2.4. Objective functions generally used to evaluate school timetables are

discussed in section 2.5.

2.1 Requirements of the Problem

The requirements of the STP differ from problem to problem. This section attempts to describe

the requirements as generally as possible so as to accommodate most variations of the STP. The

requirements of the STP can be defined in terms of the following:

322

• General statistics – Number of courses, number of teachers, number of periods or number

days and number of periods per day.

• Available periods – The number and duration of available periods. An indication of

which session the period falls in, e.g. morning or afternoon or the time of each period.

• Lesson requirements – These requirements specify the number of times a teacher has to

meet a class over the teaching period. In most problem instances the requirements are

specified in terms of class, teacher, room tuples which must be assigned to periods.

• Room requirements - A variation of this problem does not include rooms in the tuple, and

room allocation forms part of the timetable construction process.

In this case class sizes must be provided. In addition to this a list of rooms and their

corresponding capacities must be specified. Certain lessons may require specialized

rooms such as laboratories or a gymnasium. These need to be indicated. In some

versions of the problem classes have fixed rooms and teachers move from one class to

another. In this case classes will only move to specialized rooms or in the case of splits

or mergers for lessons.

• Teacher requirements - Each teacher’s workload is defined in terms of the maximum and

minimum number of periods or hours the teacher teaches for the week. Teachers may

also be given a set number of free periods over the teaching period. These must be

specified. It a teacher is required to commute between two different school sites in a day

this must be indicated.

• Teacher unavailabilities – Teachers are usually unavailable for certain periods. This may

be due to other administrative duties. Alternatively, teachers may be allocated certain

free periods or days off and thus may not be available. Some schools employ teachers on

a part-time basis. In this case teachers will teach at different schools on different days of

the week and thus may not be available.

• Teacher preferences – Teachers may have preferences to teach in certain periods and not

in others.

• Class requirements - In some cases classes are split into subgroups and each subgroup is

taught a different subject simultaneously in different venues. Alternatively, classes are

merged together for certain subjects and taught in one large venue. The merger can occur

over more than one grade. Another scenario involves splitting one or more classes in a

form and rejoining the classes into different subgroups. Each subgroup is taught a

different subject in the same period in different venues. These requirements must be

specified.

It may also be necessary for classes to have double or triple (i.e. two or three

consecutive periods) lessons for certain subjects. Double and triple period requirements

must be specified.

If a lunch break is not built into the timetable, and the corresponding period is not

included in the available periods, a specification indicating the need for a lunch break and

the duration and range of periods during which it should be scheduled must be provided.

323

• Class preferences – There may be certain preferences as to when lessons for particular

classes should be held, e.g. Mathematics for lower grades in morning sessions. This must

be specified.

2.2 Hard Constraints

The hard constraints for the STP can be described in terms of the hard constraints for classes,

teachers, and rooms.

Hard Constraints for Classes

• Every class must be allocated.

• Classes must be scheduled for the required number of meetings for each subject over the

teaching period (usually a week).

• Classes must not be scheduled more than once during a period, i.e. there must not be any

class clashes.

• Splitting and merging of classes (Beligiannis et al. 2008; Jacobsen et al. 2006; Kingston

2004; Kwok et al. 1997; Marte 2006; Post et al. 2008; Wilke et al. 2008) – Classes may

be merged together for a lesson. In some cases classes may have to split into subgroups

with each subgroup being taught a different subject simultaneously. The split subgroups

may also need to be merged differently from the original configuration. The splitting and

merging may take place for the same grade or across grades.

• Sequence of lessons (Melicio et al. 2006) – Certain subjects may have to be taught before

or after other subjects.

• One period, in a specific range, should be allocated as a lunch break for pupils (Colorni et

al. 1998; Wilke et al. 2008).

Hard Constraints for Teachers

• Teachers must not be scheduled more than once during a period.

• Teachers must be scheduled for the required number of meetings with each class over the

teaching period.

• Teachers must only be scheduled when available (Beligiannis et al. 2008; Birbas et al.

1997; Post et al. 2008; Santos et al. 2008; Valouxis et al. 2003; Wilke et al. 2008) –

Teachers may be unavailable during certain periods due to administration tasks, teaching

in another school, allocated free periods or days off. Teachers must not be scheduled to

teach during these periods.

• Teacher workload must be adhered to – The teacher workload is defined in terms of a

minimum and maximum number of teaching lessons or hours per week (Birbas et al.

2009; de Haan et al. 2007; Nurmi et al. 2008; Santos et al. 2005; Wilke et al. 2008).

• Time permitted for commutation between schools (Schaerf 1991) – Some schools are

located over more than one site. Thus, it may be necessary for teachers to commute

324

between schools. Thus, time for commutation must be allowed, for example a teacher

cannot be scheduled to teach two consecutive periods, each on a different site.

Hard Constraints for Rooms

In some versions of the STP rooms have to be allocated as part of the timetable construction

process and are not pre-assigned. The following constraints generally have to be met with respect

to venues:

• Room capacities must not be exceeded (Wilke et al. 2008).

• All rooms must be used (Groebner et al. 2003).

• Certain lessons require specialized rooms, e.g. science labs, computer lab, the

gymnasium. These requirements must be met. In some problems the specialized rooms

are highly utilized, making the STP more difficult (Wilke et al. 2008; Wright 1996;

Wood et al. 1998).

• Some schools are located over more than one site. In this case a room at the same

location must be allocated for all class-teacher meetings of a subject (Post et al. 2008).

2.3 Soft Constraints

The soft constraints for the STP can be described in terms of the soft constraints for classes and

teachers.

Soft Constraints for Classes

• Lesson session preferences – This refers to period preferences for lessons (Melicio et al.

2006; Wright 1996). There may be preferences for some subjects to be taught in morning

sessions, e.g. mathematics or afternoon sessions (Colorni et al. 1998), a particular subject

should not be taught in the first period of a day (Nurmi et al. 2008).

Soft Constraints for Teachers

• Teacher preferences - A teacher may prefer to teach in certain periods and not in others

(Schaerf 1991; Nurmi et al. 2008; Valouxis et al. 2003).

2.4 Hard or Soft Constraints

The following constraints have been treated as hard constraints in some versions of the STP and

soft constraints in others:

Constraints for Classes

• Idle or free periods – This constraint differs from one STP to the other. In some cases

free periods are not allowed at all (Alvarez-Valdes et al. 1996; Jacobsen et al. 2006;

Melicio et al. 2006; Wilke et al. 2008). In other problems only some grades or levels,

usually higher grades, can have free periods (Filho et al. 2001). Some problems also

325

stipulate when the free periods are permitted, e.g. last two periods of the day (Schaerf et

al. 1991; Valouxis et al. 2003).

• Lesson spread – Different STPs have different spread requirements for lessons. For

example, there may be a restriction of at most one lesson for a subject per day (Alvarez-

Valdez et al. 1996; Filho et al. 2001; Melicio et al. 2006; Wright 1996). Alternatively,

lessons must not be taught on consecutive days for n days (Alvarez-Valdez et al. 1996).

Lessons for each subject must be distributed uniformly throughout the week (Alvarez-

Valdez et al. 1996; Birbas et al. 2009; Colorni et al. 1998; Wright 1996).

There must not be more than two daily lessons with the same teacher (Birbas et al. 1997;

Santos et al. 2005). The same subject must not be taught in the last period of one day and

the first period of the following day (Wright 1996).

• Double or triple lessons (DeHaan et al. 2007; Filho et al. 2001; Jacobsen et al. 2006;

Kingston 2004; Melicio et al. 2006; Santos et al. 2008; Schaerf 1991) – It may be

necessary to schedule a double (two consecutive lessons) or triple lesson (three

consecutive lessons) with a class for a particular subject.

Constraints for Teachers

• Lesson spread – The lessons taught by a teacher should be well-spaced throughout the

week (Valouxis et al. 2003). Alternatively, the lessons taught by a teacher should be

concentrated over a limited number of days (Birbas et al. 1997; Filho et al. 2001; Santos

et al. 2008).

• Idle/Free periods - Teachers are generally allowed some free periods (Wilke et al. 2008;

Wright 1996), however the number of free periods for each teacher should be minimized

when constructing the timetable (Birbas et al. 2009; de Haan et al. 2007; Post et al. 2008;

Wilke et al. 2008).

2.5 Objective Function

One of two objective functions has been used to calculate the cost of the timetable. The first

function is basically the sum of the hard and soft constraint violations (Abramson et al. 1991;

Valouxis et al. 2003; Wood et al. 1998). The second function used is the weighted sum of the hard

and soft constraint violations which allows for some constraints to have higher priority than others

(Schaerf 1991; Wright 1996).

3. Solving the School Timetabling Problem

This section examines some of the methodologies that have been used to solve the STP. This

survey of techniques is a work-in-progress and is by no means exhaustive. Methods used to solve

the school timetabling problem include simulated annealing, evolutionary algorithms, tabu search,

integer programming, constraint programming, GRASP (Greedy Randomized Search Procedure),

and tiling algorithms. In some cases hybrid approaches, combining the use of two or more

methodologies are implemented. Comparative studies, comparing the performance of two or more

326

techniques in solving a particular STP have also been conducted. This section provides an

overview of the different methods and studies.

3.1 Simulated Annealing

Abramson (1991) applies simulated annealing to the school timetabling problem. The atoms

correspond to elements of the timetable and the energy to the cost of the timetable.

In order to allow for scheduling to be more flexible, assignments are made to room groups instead

of individual rooms. If a group of classes must always take place at the same time, the classes

should be scheduled as a group instead of individually. The system was tested on randomly

generated problems and data from an Australian school.

Melicio et al. (2006) developed the THOR school timetabling tool to solve the STP for

Portuguese schools. THOR firstly creates an initial solution using a heuristic constructive

algorithm. This solution is then improved using fast simulated annealing.

3.2 Evolutionary Algorithms

Abramson et al. (1991) use a genetic algorithm to solve the school timetabling problem. A

parallel algorithm is applied to speed up the process. Each chromosome consists of n periods and

each period contains m tuples. The mutation operator changes the period of a tuple. Crossover is

also applied to two chromosomes by choosing a crossover point in each chromosome and

swapping the fragments. One child is returned which contains the first fragment of the first parent

and the second fragment of the second parent. Crossover may result in the “label replacement

problem”, i.e. the child may contain some duplicated and/or missing genes. A label replacement

algorithm is used to rectify this problem. The GA was used to solve nine highly constrained

school timetabling problems.

Beligiannis et al. (2008) use an adaptive evolutionary algorithm to solve the school

timetabling problem. Each element of the population is a matrix with the rows corresponding to

the classes and the columns to the periods. Each cell in the matrix stores the teacher that will teach

the class in the particular period. Initial studies indicated that crossover was not effective and time

consuming and hence it was not used. The period mutation operator swaps the teachers between

two time periods for a class. The periods chosen for swapping are randomly selected. The bad

period mutation operator does not randomly choose periods, instead the two “most costly” periods

in the corresponding teacher timetable are selected. Linear ranking selection is used to choose

parents. The best chromosome of each generation is copied into the next generation. This

algorithm successfully generated solutions to the Greek high school timetabling problem.

Caldiera et al. (1997) evaluate the use of genetic algorithms (GAs) to solve the STP by

applying a GA to a small randomly generated school timetabling problem. An initialization

procedure is used to create an initial population of feasible timetables. A GA is used to improve

the quality of the initial population. Roulette-wheel selection and an ultra-elitism method are used

for selection. Reproduction, mutation and crossover are applied to parents to create the offspring

of the next generation. A repair algorithm is applied to offspring to ensure that they are feasible.

327

Filho et al. (2001) use a constructive genetic algorithm to solve the school timetabling

problem for two Brazilian high schools.

Nurmi et al. (2008) convert the curriculum-based university course timetabling problem for

the 2nd International Timetabling (ITC ’07) into one for school timetabling and use a genetic

algorithm to solve this problem. The GA uses a greedy hill-climbing mutation operator to solve

problem.

Raghavjee et al. (2008) apply a genetic algorithm to five highly constrained school

timetabling problems (Beasley 2010). The algorithm firstly creates an initial population of

timetables using a sequential construction method employing the largest degree heuristic. The

mutation operator is used to iteratively refine initial population. A variation of tournament

selection is used to choose the parents of each generation. The algorithm found solutions for all

five problems and produced better results than other methodologies applied to the same set of

problems.

Wilke et al. (2002) use a genetic algorithm to solve the German school timetabling problem.

The initial population is comprised of potential timetable solutions, i.e. timetables are directly

represented. Each chromosome contains the class timetables for the school. Roulette-wheel

selection is used to choose parents. An elitist strategy copying the best two individuals into the

next generation is also employed. In addition to crossover and mutation operators, a number of

hybrid operators are applied. If there is no improvement in the fitness of offspring, a

reconfiguration step is performed during which the parameters of the GA are reset.

3.3 Tabu Search

Bello et al. (2008) treat the school timetabling problem as a graph coloring problem. An

adjunct graph is created and colored using an adaptation of the Tabu search algorithm for graph

coloring (Tabucol), namely, Modified Tabucol (MT). The system was applied to five instances

from Brazilian high schools.

In the approach taken by Jacobsen et al. (2006), an initial solution is firstly created using a

construction heuristic with a graph coloring algorithm. The initial solution is then improved using

Tabu search. The system was tested on data from German high schools.

Santos et al. (2005) firstly apply a constructive algorithm to create an initial solution. A tabu

search using an informed diversification strategy is applied to the initial solution to improve the

quality of the timetable. The diversification strategy was tested with transition based long term

memory and residence based long term memory. The study showed that the use of a

diversification strategy improved the quality of the timetable produced by the tabu search. The

algorithm was used to solve the STP for Brazilian high schools.

3.4 Integer Programming

Earlier work by Birbas et al. (1997) use integer programming to solve the school timetabling

problem for Greek high schools. This work is extended further in Birbas et al. (2009) which takes

a hybrid approach to solving the problem. The first phase solves the shift assignment problem in

328

which teachers are allocated to shifts. The second phase solves the school timetabling problem.

Integer programming is used in both phases. The approach was successfully applied to a secondary

Hellenic school.

Santos et al. (2008) use mixed integer programming to solve the STP for Brazilian high

schools. A cut and column generation algorithm is implemented. The algorithm uses Fenchel

cuts.

3.5 Constraint Programming

Valouxis et al. (2003) use constraint programming (CP) in combination with local search to

solve the school timetabling problem for Greek high schools. CP is used to find a feasible

timetable. The quality of the timetable is then improved using local search until further

improvement is not possible. The stopping criterion is a runtime of one hour.

3.6 GRASP

Moura et al. (2010) use GRASP with path-relinking to solve the STP for three Brazilian high

schools. GRASP takes a three stage approach to the problem. The first phase ranks lessons.

During the second phase the ranking is improved using local search. In the third phase a path-

relinking strategy is used to identify optimal solutions. These three phases are repeated a number

of times.

3.7 Tiling Algorithms

Kingston (Kingston 2004; Kingston 2006) uses a tiling algorithm in combination with hill-

climbing to allocate meetings (teacher and class tuples) and an alternating path algorithm for

assigning recourses to meetings after times are fixed. Meetings are firstly placed onto tiles and

then the tiles are timetabled. Resources are then allocated to meetings. Later research conducted

by Kingston (2008) investigates the use of a bipartite matching model, namely, global tixel

matching, to assign resources such as teachers and rooms to meetings. These algorithms have

been applied to Australian high schools.

3.8 Hybrid Approaches

Alvarez-Valdes et al.(1996) takes a three phase approach to the school timetabling problem.

In the first phase a parallel heuristic algorithm with priority rules is used to create an initial

timetable which is not usually feasible. Phase 2 applies a variation of the standard tabu search to

the initial timetable created in phase 1 to produce a feasible timetable. Phase 3 improves the

quality of the feasible timetable developed in phase 2. A graph theory approach, using the Floyd-

Warshall algorithm, is taken in this phase. This approach was tested on randomly generated

problems and data sets from 14 Spanish schools.

De Haan et al. (2007) take a four-phase approach to solving the STP. A preprocessing phase

is conducted to cluster events into clusters schemes using a branch-and-bound algorithm. The

second and third phases focus on constructing feasible timetables. The second phase assigns

329

lessons to day-parts using a dynamic priority rule. The cluster with the lowest availability is

scheduled first. If this leads to unscheduled lessons the heuristic value is recalculated. During the

third phase day-parts are allocated to timeslots. A graph coloring first-fit heuristic is used for this.

The fourth phase uses a Tabu search to improve the feasible timetable. The system was

successfully applied to a data set from a Netherlands high school.

The method employed by Schaerf (1991) firstly constructs an initial timetable by randomly

assigning teacher-class pairs according to the requirements matrix. The RNA (Randomized Non-

Ascendant) search is then applied to improve the initial timetable until no further improvement is

possible. At this point the tabu search is applied until there is no more improvement. During the

RNA phase the hard constraint cost is weighed higher than the soft constraint cost. During the

tabu search this weight is “adjusted dynamically”. This is referred to as adaptive relaxation.

Adaptive relaxation was found to be essential for finding feasible solutions. The RNA and tabu

phases are repeated sequentially until there is no further improvement in the quality of the

timetable. This hybrid system was used to solve the STP for a randomly generated data set and

data sets obtained from two Italian schools.

3.9 Comparative Studies

Colorni et al. (1998) compare the performance of simulated annealing, tabu search with local

search and genetic algorithms in solving the school timetabling problem for two Italian high

schools. The GA uses reproduction and crossover and applies mutation iteratively. Mutation

swaps a set of contiguous genes in the same row. Day mutation swaps two days in the same row.

A filtering algorithm is used to convert an infeasible offspring to a feasible one. Instead of

creating timetables from scratch the previous year’s handmade solution was used as a starting

point. Tabu search produced the best results followed by genetic algorithms and simulated

annealing.

Smith et al. (2003) use a Hopfield neural network to solve the school timetabling problem.

The neural network is used to solve the problem for nine highly constrained school timetabling

problems made available by Abramson (Beasley 2010). The performance of the Hopfield neural

network on this data set is compared to that of greedy search, simulated annealing and tabu search.

The neural network performed better than the other methods, followed by simulated annealing.

Wilke et al. (2008) compare the performance of tabu search, simulated annealing, genetic

algorithms and branch and bound in solving the school timetabling problem for a German high

school. The comparison is performed with respect to computation time and solution quality. Tabu

search had the best runtimes but was unable to find feasible solutions. Simulated annealing found

feasible solutions. The GA was not able to find feasible solutions. Branch and bound had the

highest runtimes and also did not produce valid solutions.

4. Benchmark Data Sets for the STP

For further advancement in school timetabling research, it is essential that there is a variety of

school timetabling data sets publicly available to test and compare the performance of different

330

methodologies in solving the STP. This section describes school timetabling data sets that are

publicly available.

Five of the data sets used in the study conducted by Smith et al. (2003) are available from the

OR-Library maintained by Beasley(2010) at http://people.brunel.ac.uk/~mastjjb/jeb/orlib/tableinfo

.html.

These problems have been described as “hard” timetabling problems and are more highly

constrained than real-world school timetabling problems. The cost of the timetable is the number

of class, teacher and venue clashes.

The seven data sets from Greek high schools tested by Beligiannis et al. (2008) are available

at http://prlab.ceid.upatras.gr/timetabling/ . Each data set contains a requirements matrix

specifying how many times each teacher must meet each class. In addition to this each data set

also includes co-teaching and sub-classing (i.e. splitting and merging of classes) requirements.

Post et al. (2008) have initiated a project to facilitate the easy exchange of benchmark school

timetabling data sets and so promote research in this domain. Post et al. propose an XML format

to describe school timetabling problems and have setup a website for the submission of problems,

namely, http://wwwhome.math.utwente.nl/~postgf/BenchmarkSchoolTimetabling/. There are 19

data sets from 7 different countries, namely, Australia (3), Brazil (6), England (1), Finland (4),

Italy (1), Greece (1) and the Netherlands (3), available from the website.

5. Future Research Directions for School
Timetabling

It is evident from the previous section that a variety of school timetabling data sets are now

available. This will facilitate a comparison of different methodologies in solving the school

timetabling problem and promote further development of the school timetabling domain.

A majority of the methods described in this paper firstly implement a construction phase

during which a heuristic is used to sort class-teacher (or class-teacher-room) tuples in order of

difficulty to schedule and allocate each tuple in sequence. An area which has not been investigated

as thoroughly as in university examination timetabling (Carter et al. 1996) is different heuristics

that can be used to estimate the difficulty of scheduling a tuple. The heuristic commonly used in

the domain of school timetabling is a largest degree heuristic which gives priority to the most

constrained class-teacher tuples (Raghavjee et al. 2008; Valouxis et al. 2003). The derivation and

evaluation of other heuristics for this domain needs to be examined.

The aim of hyper-heuristics is to generalize well over the problems in a particular domain,

rather than producing the best result for one or more problem sets (Burke et al. 2003). Hyper-

heuristics search a heuristic space rather than a solution space. The heuristic space is usually

comprised of combinations of low-level heuristics which can be constructive or perturbative

(Pillay et al. 2009). While there has been research into the effectiveness of hyper-heuristics for

university course and examination timetabling (Burke et al. 2007), this has not been studied for

school timetabling.

331

A way of stimulating research in a particular field is to arrange competitions for the particular

domain. This is evident from the 2nd International Timetabling Competition (McCollum et al.

2009) which has promoted research in examination, post enrollment and curriculum based

university course timetabling. Arranging a track for school timetabling in future competitions will

help develop the field more rapidly.

Building school timetabling systems that can be deployed in schools and are not just research

tools is important to the development of the field. Such a system must allow for timetable

reconstruction without much effort. The user must be able to easily make minor changes to the

constraints, change the weighting of constraints, make manual changes and request a new

timetable taking these into consideration. When methodologies are evaluated in this domain, the

evaluation must also take into consideration reconstruction ability.

The application of some search techniques, e.g. evolutionary algorithms, can be time

consuming. There have been earlier studies investigating the use of parallel processing to decrease

the runtime of timetabling systems (Abramson 1991; Abramson et al. 1991). Given the emergence

of multi-core processors the effectiveness of parallel processing in improving runtimes of school

timetabling systems needs to be examined.

6. Conclusion

Research in the domain of school timetabling has not advanced as rapidly as other spheres of

educational timetabling. This has been attributed to most studies in this domain being done in

isolation of each other and the lack of a variety of benchmark problems to perform comparative

studies on. The definition of the school timetabling problem varies drastically from one study to

the next. This paper has attempted to provide a standardized definition of the problem in terms of

problem requirements, hard constraints and soft constraints. The paper provides an overview of

methodologies employed to solve the school timetabling problem. In addition to this the paper

provides details of publicly available school timetabling data sets. Finally, the paper describes

future directions of research in this field, namely, the derivation of new heuristics, an evaluation of

hyper-heuristics in this domain, arranging competitions for school timetabling, developing usable

systems that promote timetable reconstruction and the use of parallel processing to improve the

runtimes of school timetabling systems.

7. References

1. Abramson D (1991) Constructing School Timetables Using Simulated Annealing:

Sequential and Parallel Algorithms. Management Science, Vol. 37, No. 1, 98-113.

2. Abramson D, Abela J (1991) A Parallel Genetic Algorithm for the Solving the School

Timetabling Problem. In proceedings of the Fifteenth Australian Conference: Division of

Information Technology, C.S.I.R.O, 1-11.

3. Alvarez-Valdes R, Martin G, Tamarit JM (1996) Constructing Good Solutions for the

Spanish School Timetabling Problem, in the Journal of the Operational Research Society,

Vol. 47, No. 10, 1203-1215.

332

4. Beasley JF (2010) OR Library, http://people.brunel.ac.uk/mastjjb/jeb/orlib/tableinfo.html,

last accessed 1 February 2010.

5. Beligiannis GN, Moschopoulos CN, Kaperonis GP, Likothanassis SD (2008) Applying

Evolutionary Computation to the School Timetabling Problem: The Greek Case.

Computers and Operations Research, Vol. 35, 1265-1280, Elsevier.

6. Bello GS, Rangel MC, Boeres MCS (2008) An Approach for the Class /Teacher

Timetabling Problem. In the proceedings of the 7th International Conference on the

Practice and Theory of Automated Timetabling (PATAT2008),

http://w1.cirrelt.ca/~patat2008/ PATAT_7_ PROCEEDINGS/Papers/Boeres-WA2b.pdf.

Last accessed 05/02/10.

7. Birbas T, Daskalaki S, Housos E (1997) Timetabling for Greek High Schools. Journal of

the Operational Research Society, Vol. 48, No. 2, 1191-1200, December 1997.

8. Birbas T, Daskalaki S, Housos E (2009) School Timetabling for Quality Student and

Teacher Schedules. Journal of Scheduling, Vol. 12, Issue 2, 177-197, April 2009, Kluwer

Academic Publishers.

9. Burke E, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Hyper-Heuristics:

An Emerging Direction in Modern Research. Handbook of Metaheuristics, chapter 16.

Kluwer Academic Publishers, 457– 474.

10. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A Graph-Based Hyper-

Heuristic for Educational Timetabling Problems. European Journal of Operational

Research (EJOR), 176, 177 – 192.

11. Calderia JP, Ross AC (1997) School Timetabling Using Genetic Search. In the

proceedings of the International Conference on the Practice and Theory of Automated

Timetabling (PATAT ’97), 115-122.

12. Carter MW, Laporte G, Lee SY (1996) Examination Timetabling: Algorithmic Strategies

and Applications. The Journal of the Operational Research Society, 47(3), 373-383.

13. Carter MW, Laporte G (1997) Recent Developments in the Practical Course Timetabling.

In Burke E, Carter M (eds.) Practice and Theory of Automated Timetabling II, Lecture

Notes in Computer Science, Vol. 1408, 3-19, Springer.

14. Colorni A, Dorigo M, Maniezzo V (1998) Metaheuristics for High School Timetabling.

Computational Optimization and Applications, Vol. 9, 275-298, Kluwer Academic

Publishers.

15. de Haan P, Landman R, Post G, Ruizenaar H (2007) A Four-Phase Approach to a

Timetabling Problem for Secondary Schools. In Burke EK, Rudova H (eds.) The Practice

and Theory of Automated Timetabling VI, Lecture Notes in Computer Science, Vol.

3867, 267-279, Springer-Verlag.

16. Filho GR, Lorena LAN (2001) A Constructive Evolutionary Approach to School

Timetabling. In Proceedings of the EvoWorkshops on Applications of Evolutionary

Computing, Lecture Notes in Computer Science, Vol. 2037, 130-139, Spring-Verlag.

333

17. Grobner M, Wilke P, Buttcher S (2003) A Standard Framework for Timetabling

Problems. In Burke EK, De Causmaecker P (eds.): Proceedings of the International

Conference on the Practice and Theory of Automated Timetabling (PATAT 2002), LNCS

2740, 24-38, Springer-Verlag Berlin Heidelberg.

18. Jacobsen F, Bortfeldt A, Gehring H (2006) Timetabling at German Secondary Schools:

Tabu Search versus Constraint Programming. In Burke EK, Rudova H (Eds.):

proceedings of the International Conference on the Practice and Theory of Automated

Timetabling (PATAT 2006), 439-442, ISBN 80-210-3726-1.

19. Kingston JH (2004) A Tiling Algorithm for High School Timetabling. In Practice and

Theory of Automated Timetabling V, Lecture Notes in Computer Science, Vol.

3616/2005, 208-225, Springer Berlin/Heidelberg.

20. Kingston JH (2006) The KTS High School Timetabling Systems. In Burke EK, Rudova

H (Eds.): proceedings of the International Conference on the Practice and Theory of

Automated Timetabling (PATAT 2006), 181-195, ISBN 80-210-3726-1.

21. Kingston JH (2008) Resource Assignment in High School Timetabling. In the

proceedings of the 7th International Conference on the Practice and Theory of Automated

Timetabling (PATAT2008), http://w1.cirrelt.ca/~patat2008/PATAT7 PROCEEDINGS/

Papers/Kingston-WA2b.pdf. Last accessed 05/02/10.

22. Kwok L, Kong S, Kam Y (1997) Timetabling in Hong Kong Secondary Schools.

Computer Education, Vol. 28, No. 3, 173-183, Elsevier Science Ltd.

23. Marte M (2006) Towards Constraint-Based Grammar School Timetabling.

http://www3.deis.unibo.it/Events/Deis/Workshops/PapersCPAIOR99/21final.ps,

Last accessed 12 February 2010.

24. McCollum B, McMullan P, Paechter B, Lewis R, Schaerf A, Di Gaspero L, Parkes AJ,

Qu R, Burke EK (2009a) Setting the Research Agenda in Automated Timetabling: The

Second International Timetabling Competition. INFORMS Journal on Computing, doi:

101287/ijoc.1090.0320.

25. Melicio F, Calderia JP, Rosa A (2006) THOR: A Tool for School Timetabling. In Burke

EK, Rudova H (eds.): Proceedings of the 6th International Conference on the Practice and

Teaching of Automated Timetabling (PATAT 2006), 532-535, ISBN 80-210-3726-1.

26. Moura AV, Scaraficci RA (2010) A GRASP Strategy for a More Constrained School

Timetabling Problem. International Journal of Operational Research, Vol. 7, No. 2,152-

170, 2010.

27. Nurmi K, Kyngas J (2008) A Conversion Scheme for Turning a Curriculum-Based

Timetabling Problem into a School Timetabling Problem. In the proceedings of the 7th

International Conference on the Practice and Theory of Automated Timetabling (PATAT

2008), Montreal, http://w1.cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/Papers/

Nurmi-TC1.pdf, last accessed 12 February 2010.

28. Pillay N, Banzhaf W (2009) A Study of Heuristic Combinations for Hyper-Heuristic

Systems for the Uncapacitated Examination Timetabling Problem. European Journal of

Operational Research(EJOR), 197, 482-491.

334

29. Post G, Ahmadi S, Daskalaki S, Kingston JH, Kyngas J, Nurmi C, Ranson D, Ruizenaar

H (2008) An XML Format for Benchmarks in High School Timetabling. In the

proceedings of the 7th International Conference on the Practice and Theory of Automated

Timetabling (PATAT 2008), Montreal, http://w1.cirrelt.ca/~patat2008/ PATAT_7_

PROCEEDINGS/Papers/Post-WD2a.pdf, last accessed 12 February 2010.

30. Raghavjee R, Pillay N (2008) An Application of Genetic Algorithms to the School

Timetabling Problem. In Cilliers C, Barnard L, Botha RA (Eds.) Proceedings of

SAICSIT 2008, 193-199, ACM Press.

31. Santos HG, Ochi LS, Souza MJF (2005) A Tabu Search Heuristic with Efficient

Diversification Strategies for the Class/Teacher Timetabling Problem. Journal of

Experimental Algorithms, Vol. 10, 2.9, ACM.

32. Santos HG, Uchoa E, Ochi LS, Maculan N (2008) Strong Bounds with Cut and

Column Generation for Class-Teacher Timetabling. In the proceedings of the 7th

International Conference on the Practice and Theory of Automated Timetabling (PATAT

2008), Montreal, http://w1.cirrelt.ca/~patat2008/ PATAT_7_

PROCEEDINGS/Papers/Santos-WD2b.pdf, last accessed 12 February 2010.

33. Schaerf A (1991) Tabu Search Techniques for Large High-School Timetabling Problems.

Technical Report CS-R9611 1996, Computer Science/Department of Interactive Systems,

Centrum Voor Wiskunder en Informatica (CWI), ISSN 0169-118X.

34. Smith KA, Abramson D, Duke D (2003) Hopfield Neural Networks for Timetabling:

Formulations, Methods, and Comparative Results, in Computers and Industrial

Engineering, Vol. 44, 283-305, Pergamon.

35. Valouxis C, Housos E (2003) Constraint Programming Approach for School Timetabling.

In Computers and Operations Research, Vol. 30, 1555-1572, Pergamon.

36. Wilke P, Grobner M, Oster N (2002) A Hybrid Genetic Algorithm for School

Timetabling. AI 2002: Advances in Artificial Intelligence, Lecture Notes in Computer

Science, Vol. 2557/2002, 455-464, Springer Berlin.

37. Wilke P, Ostler J (2008) Solving the School Timetabling Problem Using Tabu Search,

Simulated Annealing, Genetic and Branch & Bound Algorithms. In the proceedings of

the 7th International Conference on the Practice and Theory of Automated Timetabling

(PATAT 2008), Montreal, http://w1.cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/

Papers/Wilke-WD2c.pdf, last accessed 12 February 2010.

38. Wright M (1996) School Timetabling Using Heuristic Search. Journal of the Operational

Research Society, Vol. 47, No. 3, 347-357.

39. Wood J, Whitaker D (1998) Student Central School Timetabling. Journal of the

Operational Research Society, Vol. 49, No. 11, 1146-1152.

335

Evolving Hyper-Heuristics for a Highly
Constrained Examination Timetabling
Problem

Nelishia Pillay

School of Computer Science, University of KwaZulu-Natal, South Africa
+27 2605644

+27 2605648

pillayn32@ukzn.ac.za

Abstract: A lot of research has been conducted on hyper-heuristics for examination timetabling.

However, most of this work has been focused on an uncapacitated version of the problem. This

study reports on evolving hyper-heuristics for a highly constrained version of the problem,

namely, the set of problems from the second International Timetabling Competition (ITC ’07).

Previous work has shown that using an evolutionary algorithm (EA) based hyper-heuristic with

more than one chromosome representation is more effective than the standard EA using a single

representation. This study evaluates an EA hyper-heuristic, using three different chromosome

representations, in solving the capacitated examination timetabling problem. The results produced

by the hyper-heuristic were found to be comparable to other methodologies applied to the same

problem set.

Keywords: hyper-heuristics, examination timetabling, evolutionary algorithms

1. Introduction

The main aim behind hyper-heuristics is to generalize well in a particular domain rather than

producing the best result for one or more problems in that domain (Burke et al. 2003 ; Ross et al.

2005). Hyper-heuristics select or combine either perturbative or constructive low-level heuristics.

The study presented in this paper focuses on the combination of constructive heuristics. There

have been numerous studies investigating the use of constructive hyper-heuristics in the

examination timetabling domain. An overview of the most relevant studies follows.

Qu et al. (2005) apply variable neighborhood search to a space of combinations of two or

more constructive low-level heuristics. Burke et al. (2005; 2007) employ a tabu search to explore

the space of heuristics combinations. Qu et al. (2009b) analyze the heuristic combinations, found

by a tabu search hyper-heuristic, that produce feasible timetables in order to identify patterns of

low-level heuristics that lead to good quality solutions. Qu et al. (2009a) compare the performance

of different local search strategies in exploring the heuristic space. Iterated local search produced

the best results. The study also revealed that searching the solution space whilst constructing the

timetable using the heuristic combination output by exploring the heuristic space, produces better

336

quality timetables. A Greedy Adaptive Search Procedure (GRASP) is used by Burke et al. (2009)

to search a space of heuristic combinations of two constructive low-level heuristics. The quality of

the feasible timetable constructed using the heuristic combination returned by GRASP is further

improved using steepest descent. Asmuni et al. (2005; 2007; 2009) combine two or three

constructive low-level heuristics using a fuzzy logic function. This function estimates the

difficulty of scheduling an examination. Examinations are sorted according to their difficulty and

scheduled in sequence. Pillay et al. (2007) implement a genetic programming system to search a

space of constructive heuristic combinations. The length of the combinations in the initial

population is randomly chosen to be between two and a preset maximum. Tournament selection

is used to choose parents, to which the crossover and mutation operators are applied to create the

next generation. The studies described thus far have combined heuristics linearly and applied

them sequentially. Pillay et al. (2009) achieve good results with combining constructive low-level

heuristics hierarchically using logical operators and applying them simultaneously. Four heuristic

combinations are created and tested. This work is extended further by Pillay (2009) by employing

genetic programming to search a space of such heuristic combinations.

All these studies have used the Carter benchmark set of timetabling problems (Carter et al.

1996) to test the hyper-heuristics. This set of benchmarks is comprised of 13 real-world problems.

The hard constraint for this set of problems is that no students must be scheduled to sit two

examinations at the same time and the soft constraint aims to spread the examinations for each

student. A more recent set of examination timetabling problems has been made available by the

organizers of the second International Timetabling Competition (ITC ’07). This set of eight

problems is highly constrained and is representative of the current real-world examination

timetabling problem. At the time of writing this paper, studies into applying hyper-heuristics to

such a highly-constrained, multi-objective examination timetabling problem as that represented by

the ITC ’07 problem set had not as yet been conducted or published.

The main contribution of the study presented in this paper is the evaluation of the performance

of an evolutionary algorithm hyper-heuristic on the set of highly-constrained capacitated

examination timetabling problems. The study presented in this paper employs an evolutionary

algorithm (EA) to search the heuristic space of linear combinations of constructive low-level

heuristics. In previous work three different representations, namely, fixed length, variable length,

and n-times representation were evaluated for the Carter benchmark problems. A separate EA run

using each of the representations as well as an EA combining all three representations were

implemented. The study revealed that the EA combining all three representations performed better

than the EAs using each of the representations separately. Thus, the EA in this study combines the

three chromosome representations. Note that the aim of the study is not to compare the three

representations but test the effect of an EA combining the three representations on a more highly

constrained, capacitated version of the examination timetabling problem.

The following section provides an overview of the examination timetable problem as defined

for the second International Timetabling Competition. Section 3 presents the EA-based hyper-

heuristic. The experimental setup for testing the EA-HH is described in section 4.

337

The performance of the EA-HH on the eight problems is discussed in section 5. The outcome of

this study and future extensions of this work are summarized in section 6.

2. The Examination Timetabling Problem for
“ITC‘07”

The examination timetabling problem requires the allocation of examinations to timeslots so

that the hard constraints of the problem are satisfied and the soft constraint cost is minimized. A

timetable is said to be feasible if it meets all the hard constraints of the problem. The hard and soft

constraints differ drastically from one examination timetabling problem to the next. The ITC ’07

problem set has the following hard constraints:

• All examinations must be scheduled.

• There are no clashes, i.e. a student is not scheduled to sit two examinations during the

same period.

• The duration of the period that each examination is assigned to is not less than the

duration required for the examination.

• The number of students writing an examination does not exceed the capacity of the room

the examination is assigned to.

• Period related hard constraints must be met. There are three such constraints: some

examinations must occur after other examinations; certain examinations must be written

during the same period while others must not be scheduled in the same period.

• Room related hard constraints must be satisfied. In some cases an examination must be

assigned exclusively to a room.

The soft constraints for the ITC ’07 problem set are summarized below:

• Two in a row – The number of examinations taken back to back by students is minimized.

• Two in a day – The number of examinations written in the same day by students is

minimized.

• Period spread – The number of examinations written within a specified period, e.g. 5

days, is minimized.

• Mixed durations – Examinations are of different durations. The number of examinations

with different durations in the same room for a period is minimized.

• Larger examinations scheduled earlier in the examination timetable – The number of

examinations with a “larger” number of students scheduled in the latter part of the

timetable is minimized.

• Room penalties – Certain rooms have a penalty associated with using them. The number

of times rooms with penalties are utilized is minimized.

• Period penalties – Certain periods also have a penalty associated with their use. The

number of times these periods are used is minimized.

338

A more detailed description of these soft constraints can be found in (McCollum, 2007). The

winner of the competition has taken a multi-phased approach to the problem (Muller, 2008). An

iterative forward search, using conflict-based statistics to prevent cycling, is firstly applied to find

a feasible timetable. The second phase employs hill-climbing to further improve the quality of the

feasible timetable. If hill-climbing can no longer improve the solution, a variation of the Great

Deluge algorithm is applied for further improvement.

Gogos et al. (2008), who were placed second, use a combination of the Greedy Randomized

Adaptive Search Procedure (GRASP), simulated annealing and mathematical programming to

solve the examination timetabling problem.

A variation of GRASP incorporating tabu search is firstly used to find a feasible solution.

This solution is then improved using simulated annealing. In the last phase integer programming

with branch and bound is used to further improve the quality of the timetable.

Atsuta et al. (McCollum et al. 2009b) were placed third in the competition and implement a

constraint satisfaction problem solver which uses tabu search and local iterated search in solving

the examination timetabling problem.

De Smet (2007) combines the use of the drools-solver and tabu search to solve the problem.

This approach was placed fourth in the competition.

Pillay (2007) takes a developmental approach (DA) to the examination timetabling problem.

The DA mimics the processes of cell biology. Each organism developed represents a timetable

with each cell representative of an examination period. The creation of an organism begins with a

single cell which is developed into a fully grown organism by means of cell division, cell

interaction and cell migration. The fully grown organism then goes through a process of

maturation in which cell migration is used to further improve the quality of the timetable. The DA

was placed fifth in the competition.

The organizers of the competition take a two-phased approach to the problem (McCollum et

al. 2009a; McCollum et al. 2009b). The first phase is a construction phase which uses an adaptive

ordering heuristic to create a feasible solution. The feasible solution is improved using an

extension of the Great Deluge algorithm.

The results obtained by these methods are presented in section 5.

3. The Evolutionary Algorithm

The EA employs the generational control model (Koza 1992) and the population size remains

fixed from one generation to the next. An initial population is created and iteratively improved via

the processes of evaluation, selection and recreation. These processes are described in the sections

below.

3.1 Initial Population Creation

Each element of the population is a string containing two or more characters representing the

following constructive low-level heuristics:

339

• Largest degree (l) – Examinations involved in the largest number of clashes are scheduled

first.

• Largest enrolment (e) – Examinations with the largest number of students are given

priority.

• Largest weighted degree (w) – Examinations with the largest number of students involved

in clashes are allocated first.

• Saturation degree (s) – Examinations with the least number of feasible options available

on the timetable developed thus far are given priority.

• Spread heuristic (h) – Is an estimate of the spread of examinations over a range of periods

for each student. The estimate is defined in terms of the proximity of the examinations

for a student to each other, and weighted by the number of students involved. Thus,

examinations with a higher value are given priority. Like the saturation degree, this

heuristic is not static and its value depends on the current state of the timetable. Thus, it

needs to be recalculated whenever an allocation is made to the timetable.

These low-level heuristics are combined using one of the following representations:

• Fixed length heuristic combination (FHC) – The length of the combination is equal to the

number of examinations, e.g. well if the number of examinations is four. One heuristic is

used to schedule each examination.

• Variable length heuristic combination (VHC) – Studies conducted by Cowling et al.

(2002) and Han et al. (2003) applying a hyper-heuristic genetic algorithm to the trainer

scheduling problem have revealed that a chromosome representation with variable length

produces better results than a fixed length representation as the GA is able to evolve a

chromosome of the optimal length. A similar representation is used in this study. The

length of each combination is randomly chosen to be between two and a specified

maximum, e.g. lessh. Each heuristic is used to schedule an examination.

If the length of the combination is less than the number of examinations the

combination is wrapped around beginning at the start of the string again. If the

combination is longer than the number of examinations, only a substring of the

combination is applied. Thus, two combinations of length larger than the number of

examinations would essentially be clones of each other. Due to this together with the fact

that mutation and crossover may produce clones, the reproduction operator is not used.

• N-times heuristic combination (NHC) – Each combination is composed of integers and

characters representing low-level heuristics, e.g. 3h2l3s1w1s. The integer preceding the

heuristic specifies the number of examinations the heuristic will be used to schedule. In

the example the first three examinations will be allocated according to the spread

heuristic, the next two with the largest degree heuristic and so on. The sum of the integer

values in the combination is equal to the number of examinations to be scheduled. The

reason for including this representation is that it may result in the algorithm converging

quicker to certain areas of the heuristic space. For example, it may take longer to evolve

340

the combination lesllllllllhh than it would take to evolve 1l1e1s8l2h. In this way more of

the heuristic space may be explored in a shorter time.

The size of the initial population is a genetic parameter and differs for each problem domain.

The population consists of an equal number of combinations of each type of representation.

Previous work has shown that in the domain of EA-based hyper-heuristics for examination

timetabling different representations are suitable for different problems. Thus, an EA providing

more than one chromosome representation in the initial population is more effective. The EA

converges to the most suitable representation.

3.2 Evaluation and Selection

Each heuristic combination is assigned a fitness measure. The fitness measure of a

combination is a function of the hard and soft constraint cost of the timetable constructed using the

combination. During the timetable construction process each examination is allocated to the

feasible minimum cost timeslot. If there is more than one option the period is randomly chosen

from the possible options. If a feasible period is not available, a period is randomly selected. If

there is more than one room available, the room with the best fit is chosen. If there is more than

room with the same best fit value, the lowest penalty is used to decide which room to use. The

fitness measure is the soft constraint cost multiplied by the hard constraint cost incremented by

one. Based on trial runs performed, this fitness function proved to be representative of the fitness

of an individual without any processing overheads. The fitness measure is used by the selection

method to choose parents of the next generation. The tournament selection method is used in this

study.

A tournament of t individuals is randomly chosen. The fittest individual in the tournament is

returned as a winner and is used as a parent for the next generation. The value of t is a genetic

parameter and is problem dependant.

3.3 Recreation

Two genetic operators, namely, mutation and crossover are implemented to create the next

generation. The mutation operator randomly changes a low-level heuristic in a copy of the

selected parent. The tournament selection method is evoked to choose a parent. For example, if

welsh is a chosen parent, the offspring could be weesh. In this case l was chosen to be replaced.

The heuristic e was randomly chosen to replace l. There is no limit set on the size of the offspring.

The crossover operator randomly chooses two crossover points in two parents selected using

tournament selection, and swaps the fragments at the crossover points to produce two offspring.

For example suppose wehll and leh are the chosen parents and three is the crossover point in the

first parent and two in the second. The resulting offspring are weeh and lhll. Trial runs have

indicated that returning the fitter offspring is more effective than returning both offspring.

Crossover occurs between parents of the same representation, i.e. both parents must be NHC or

VHC. Crossover is also permitted between VHC and FHC parents. Crossover is structure-

preserving in the case of NHC ensuring that an integer value precedes each heuristic.

341

4. Experimental Setup

The EA-HH was tested on the eight problems from the examination timetabling track of ITC

’07. The four hidden data sets are not publicly available. The characteristics of the eight data sets

as presented by McCollum et al. (2009a) are listed in Table 1.

 Table 1: Characteristics of the Problem Set

Problem Conflict
Density (%)

No. of Exams No. of Students No. of Periods No. of Rooms

Exam_1 5.05 607 7891 54 7
Exam_2 1.17 870 12743 40 49
Exam_3 2.62 934 16439 36 48
Exam_4 15.0 270 5045 21 1
Exam_5 0.87 1018 9253 42 3
Exam_6 6.16 242 7909 16 8
Exam_7 1.93 1096 14676 80 15
Exam_8 4.55 598 7718 80 8

The genetic parameters used by the EA are tabulated in Table 2. These values were obtained

by performing test runs. Due to the stochastic nature of evolutionary algorithms, ten runs were

performed for each problem set, each with a different random number generator seed. The EA

was implemented in Java and simulations were run on a system with a 1995 Mhz Intel Core 2 Duo

processor and 2 gigabytes of memory.

Table 2: Genetic Parameters

Parameter Value
Number of generations 100
Population size 500
Maximum initial length 5
Tournament size 10
Crossover rate 0.3
Mutation rate 0.7

5. Results and Discussion

The EA-HH produced feasible timetables for all eight problem sets. The best soft constraint

cost obtained over ten runs for each problem is listed in Table 3. Although the main aim of a

hyper-heuristic is to generalize well rather than producing the best result, for completeness Table 3

compares the performance of the EA-HH to other methodologies applied to the same set of

problems. These methodologies are described in section 2. Note that while these methodologies

perform one or more improvement phases to reduce the soft constraint cost of the timetable, the

EA-HH does not perform additional optimization once a feasible solution is found. Furthermore,

in this study the time limitation imposed by the competition was not adhered to and the time taken

by the EA-HH was not monitored. It is assumed that the EA-HH will have longer runtimes due to

the overhead of solving the problem using each heuristic combination in each population.

342

 Table 3: A Comparison of Results

Problem EA-HH Muller

Gogos

Atusta et al.

De Smet

Pillay

McCollum et
al.

Exam_1 8559 4370 5905 8006 6670 12035 4633
Exam_2 830 400 1008 3470 623 2886 405
Exam_3 11576 10049 13771 17669 - 15917 9064
Exam_4 21901 18141 18674 22559 - 23582 15663
Exam_5 3969 2988 4138 4714 3848 6860 3042
Exam_6 28340 26585 27640 29155 27815 33005 25880
Exam_7 8167 4213 6572 10506 5436 17666 4037
Exam_8 12658 7742 10521 14317 - 15592 7461

Although the EA-HH does not further optimize feasible solutions, its performance is

comparable to the other methodologies applied to this problem set. For all problem sets the EA-

HH has produced better results than at least one to three other methodologies. Table 4 lists the

representation, i.e. FHC, VHC or NHC, of the best heuristic combination evolved for each

problem over the ten runs. Note that the representation converged to for each run maybe different

and that the population at the end of the run will have a majority of the individuals with the same

structure, because the EA has converged to a particular area of the heuristic space, but not all the

individuals will necessarily have the same representation.

 Table 4. Representations Converged to

Problem Representation
Exam_1 FHC
Exam_2 VHC
Exam_3 VHC
Exam_4 VHC
Exam_5 FHC
Exam_6 NHC
Exam_7 FHC
Exam_8 NHC

The algorithm converged to a combination with the NHC representation for two of the

problem sets, with the FHC representation for three of the problem sets and with the VHC

representation for three of the problem sets. An analysis into a possible correlation between the

representation converged to and the characteristics of each problem will be conducted as part of

future work.

6. Conclusion and Future Work

This paper presents an EA-based hyper-heuristic for a highly constrained examination

timetabling problem, namely, that used for the examination timetabling track of the second

International Timetabling Competition. The EA combines three different chromosome

representations. The EA-HH produced feasible timetables for all eight competition timetabling

problems. Furthermore, the quality of the timetables produced by the EA-HH was comparable to

and in some cases better than the best timetable produced by other methodologies, even through

the EA-HH did not perform additional optimization after a feasible solution was obtained.

However, the time needed to find an optimal heuristic combination was not monitored and thus the

343

approach may have the advantage of longer runtimes. It is interesting to note that the

representation of the heuristic combination producing the best quality timetable differed for each

problem. Future work will investigate whether there is a correlation between the representation of

the best heuristic combination and the characteristics of the problem.

7. References

1. Asmuni H, Burke EK, Garibaldi JM (2005) Fuzzy Multiple Ordering Criteria for

Examination Timetabling. In Burke EK, Trick M (eds.), selected Papers from the 5th

International Conference on the Theory and Practice of Automated Timetabling (PATAT

2004)- The Theory and Practice of Automated Timetabling V, Lecture Notes in Computer

Science, 3616, 147–160.

2. Asmuni H, Burke EK, Garibaldi JM, McCollum B (2007) Determining Rules in Fuzzy

Multiple Heuristic Orderings for Constructing Examination Timetables. In proceedings

of the 3rd Multidisciplinary International Scheduling: Theory and Applications

Conference (MISTA 2007), 59-66.

3. Asmuni H, Burke EK, Garibaldi JM, McCollum B, Parkes AJ (2009) An Investigation of

Fuzzy Multiple Heuristic Orderings in the Construction of University Examination

Timetables. Computers and Operations Research, Elsevier, 36(4), 981-1001.

4. Burke E, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Hyper-Heuristics:

An Emerging Direction in Modern Research. Handbook of Metaheuristics, chapter 16.

Kluwer Academic Publishers, 457– 474.

5. Burke EK , Dror M , Petrovic S, Qu R (2005) Hybrid Graph Heuristics with a Hyper-

Heuristic Approach to Exam Timetabling Problems. In Golden BL, Raghavan S, Wasil

E.A. (eds.), The Next Wave in Computing, Optimization, and Decision Technologies –

Conference Volume of the 9th Informs Computing Society Conference, 79 -91.

6. Burke EK, McCollum B, Meisels A, Petrovic S, Qu R (2007) A Graph-Based Hyper-

Heuristic for Educational Timetabling Problems. European Journal of Operational

Research (EJOR), 176, 177 – 192.

7. Burke EK, Qu R, Soghier A (2009) Adaptive Selection of Heuristics within a GRASP for

Examination Timetabling Problems. In proceedings of Multidisciplinary International

Conference on Scheduling 2009 (MISTA 2009), 409-422.

8. Carter MW, Laporte G, Lee SY (1996) Examination Timetabling: Algorithmic Strategies

and Applications. The Journal of the Operational Research Society, 47(3), 373-383.

9. Cowling P, Kendall G, Han L (2002) An Adaptive Length Chromosome Hyperheuristic

Genetic Algorithm for a Trainer Scheduling Problem. In proceedings of the 4th Asia-

Pacific Conference on Simulated Evolution and Learning (SEAL ’02), 267-271.

10. DeSmet G (2007) ITC-2007- Examination Track Drools-solver.

http://www.cd.qub.ac.uk/winner/bestexamsolutions/Geoffrey_De_smet_examination_des

cription.pdf, last accessed 12 February 2010.

344

11. Gogos C, Alefragis P, Housoss E (2008) A Multi-Stage Algorithmic Process for the

Solution of the Examination Timetabling Problem. In the proceedings of the 7th

International Conference on the Practice and Theory of Automated Timetabling (PATAT

2008),Montreal,http://w1.cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/Papers/Gogo

s-HC2b.pdf, last accessed 12 February 2010.

12. Han L, Kendall G (2003) Guided Operators for a Hyper-Heuristic for Genetic

Algorithms. In proceedings of AI-2003 Advances in Artificial Intelligence-The 16th

Australian Conference on Artificial Intelligence, Lecture Notes in Artificial Intelligence,

2903, 807-820.

13. Koza JR (1992) Genetic Programming I: On the Programming of Computers by Means of

Natural Selection, MIT Press.

14. McCollum B (2007) International Timetabling Competition: Evaluation Function.

http://www.cs.qub.ac.uk/itc2007/examtrack/, last accessed 12 February 2010.

15. McCollum B, McMullan P, Paechter B, Lewis R, Schaerf A, Di Gaspero L, Parkes AJ,

Qu R, Burke EK (2009a) Setting the Research Agenda in Automated Timetabling: The

Second International Timetabling Competition. INFORMS Journal on Computing, doi:

101287/ijoc.1090.0320.

16. McCollum B, McMullan PJ, Parkes AJ, Burke EK, Abdullah S (2009b) An Extended

Great Deluge Approach to the Examination Timetabling Problem. In proceedings of the

Multidisciplinary International Conference on Scheduling: Theory and Application

(MISTA 2009), 424-434.

17. Muller T (2008) ITC2007 Solver Description: A Hybrid Approach. In the proceedings of

the 7th International Conference on the Practice and Theory of Automated Timetabling

(PATAT’08), http://w1.cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/Papers/Muller-

HC1c.pdf, last accessed 12 February 2010.

18. Pillay N, Banzhaf W (2007) A Genetic Programming Approach to the Generation of

Hyper-Heuristics for the Uncapacitated Examination Timetabling Problem. In Neves et

al. (eds.), Progress in Artificial Intelligence, Lecture Notes in Artificial Intelligence,

4874, 223-234.

19. Pillay N (2008) A Developmental Approach to the Examination Timetabling Problem.

http://www.cd.qub.ac.uk/winner/bestexamsolutions/pillay.pdf, last accessed 12 February

2010.

20. Pillay N (2009) Evolving Hyper-Heuristics for the Uncapacitated Examination

Timetabling Problem. In proceedings of Multidisciplinary International Conference on

Scheduling 2009 (MISTA 2009), 409-422.

21. Pillay N, Banzhaf W (2009) A Study of Heuristic Combinations for Hyper-Heuristic

Systems for the Uncapacitated Examination Timetabling Problem. European Journal of

Operational Research(EJOR), 197, 482-491.

22. Qu R, Burke EK (2005) Hybrid Neighbourhood HyperHeuristics for Exam Timetabling

Problems. In Proceedings of the MIC2005: The Sixth Metaheuristics International

Conference, Vienna, Austria.

345

23. Qu, R, Burke EK (2009a) Hybridizations within a Graph Based Hyper-Heuristic

Framework for University Timetabling Problems. Journal of Operational Research

Society (JORS), 60, 1273-1285.

24. Qu R, Burke EK, McCollum B (2009b) Adaptive Automated Construction of Hybrid

Heuristics for Exam Timetabling and Graph Colouring Problems. European Journal of

Operational Research (EJOR), 198(2), 392-404.

25. Ross P (2005) Hyper-heuristics. In Burke E.K., Kendall G. (eds): Search Methodologies:

Introductory Tutorials in Optimization and Decision Support Methodologies, chapter 17.

Kluwer, 529 -556.

346

An XML Format for Benchmarks in High School

Timetabling II

Gerhard Post · Jeffrey H. Kingston · Samad

Ahmadi · Sophia Daskalaki · Christos

Gogos · Jari Kyngas · Cimmo Nurmi ·

Haroldo Santos · Ben Rorije · Andrea

Schaerf

Abstract We present the progress on the benchmarking project for high school timetabling

that was introduced at PATAT 2008. In particular, we announce the High School

Timetabling Archive HSTT2010 with 15 instances from 7 countries and an evaluator

capable of checking the syntax of instances and evaluating the solutions.

Keywords. Timetabling, high school, benchmark, XML, scheduling.

1 Introduction

“It is surprising that no standard format for exchanging datasets in the field of high

school timetabling has emerged until now.” This sentence was the motivation for a

Gerhard Post
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands and
ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands

Jeffrey H. Kingston
School of Information Technologies, The University of Sydney, Australia

Samad Ahmadi
Dept. of Informatics, De Montfort University, The Gateway, LE1 9BH, UK Leicester

Sophia Daskalaki
Engineering Sciences Department, University of Patras, 26500 Rio Patras, Greece

Christos Gogos
Engineering Sciences Department, University of Patras, 26500 Rio Patras, Greece

Jari Kyngas
Satakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland

Cimmo Nurmi
Satakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland

Haroldo Santos
Computing Department, Universidade Federal de Ouro Preto, Brazil

Ben Rorije
University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

Andrea Schaerf
DIEGM, University of Udine, via delle Scienze 206, 33100 Udine, Italy

347

group of researchers to define a format capable of expressing high school timetabling

instances from all over the world, see (Post 2010).

The high school organization is different around the world, consequently the prob-

lems in high school timetabling that arise from real cases in various countries differ as

well. As a specific example, one of the main differences that has emerged from our re-

search is related to allowing idle times for students during school hours versus the cases

where this is not allowed. In the first case teachers are usually not preassigned to the

lessons, as this may lead to infeasibilities. In the second case, teachers are mostly pre-

assigned, leading to the problem of eliminating idle times for students and minimizing

them for teachers.

Another important difference is related to the granularity of the scheduling process:

sometimes it is performed at the level of an entire class, whereas in other cases of a

single student. In the latter case the problem usually becomes harder, since the schedule

of each individual student has to be evaluated during the solving process, thus making

the process computationally more expensive.

The purpose of this paper is to report on the progress of this collaborative research

and reflect on the current situation; we will give a short overview and motivation of

the XML format in Section 2, discuss the current archive in Section 3, the evaluator

in Section 4, and give an outlook to the future in Section 5.

2 The format

Differences in the organization of high schools in different countries imply that the def-

inition of a unified format for high school timetabling is not a trivial task. The current

format has emerged after many iterations; indeed the format discussed in (Post 2010)

differs considerably from the original version presented at PATAT 2008.

The format of our benchmark is mapped out by an XML schema which defines the

compulsory and optional elements that need to be present in the XML files holding

the instances and solutions. The basic elements of an instance are the times, resources,

and events, complemented by the constraints, which are imposed on them. We believe

that the structure of the format as it is now will essentially remain the same over time.

The reason lies in the principal choice to embed the “business logic” in the constraints,

and not in the basic elements. At present, the format contains (only) 15 constraint

types, including “obvious” ones, like AssignTimeConstraint (assign a start time to

selected events) and AvoidClashesConstraint (a resource may be involved with at most

one event at a time). The modular nature of the schema assures that new constraints

can be added without having to change its structure. Indeed, we believe that the set of

constraints will probably be extended further to incorporate new specialized constraints

to deal with unforeseen problems in other countries.

A fragment of an instance file is shown in Figure 1. All objects have the attribute

Id for referencing, and the child Name for displaying. Times, Resources and Events

can be grouped in TimeGroups, ResourceGroups and EventGroups, respectively. For

demonstration purposes the Times section is expanded with some more detail.

One of the main discussions during the design of this format was about the “domain

specific” structure and the “solver needed” structure. The “domain specific” structure

reflects how a timetabler at a school has structured the data; for example, a timetabler

will distinguish days of the week, will think in terms of students, school classes or

teachers (certainly not of general resources), and will consider courses and subjects

348

<Instance Id="Example">

<Times>

<TimeGroups>
<Day Id="Day1"/> <Name>Monday</Name> </Day>

...

<Day Id="Day5"/> <Name>Friday</Name> </Day>

<TimeGroup Id="AllTimes"/> <Name>AllTimes</Name> </TimeGroup>

...
</TimeGroups>

<Time Id="Day1_1"> <Name>Monday 1</Name>

<TimeGroups>

<Day Reference="Day1"/>

<TimeGroup Reference="AllTimes"/>
</TimeGroups>

</Time>

...

</Times>

<Resources>
...

</Resources>

<Events>

...

</Events>
<Constraints>

...

</Constraints>

</Instance>

Fig. 1 A problem instance in the XML format

as principal objects for scheduling. The solver instead requires a structure organized

in terms of variables which represent units of lessons or resources, while conceptual

entities are not important.

In the format, although some of the domain specific structural elements (for ex-

ample “days” and “courses”) are supported and their use is recommended, it is not

obligatory to use them. We mention the two most important ones. A Day is introduced

as a time group, that almost certainly will be needed, because in high school timetabling

there are many constraints at a daily level. For example, constraints about “working

hours”, “idle times”, and “number of days present”. In addition, by introducing days

we are able to display daily schedules for the resources. Another element is the Course,

which is introduced as an EventGroup for a subject and a student group combination.

This is important in order to control the spreading of the individual lessons (events)

of a course over the week days. Courses also allow control on events with similar prop-

erties; if certain events are identical, they can be clustered to one event and allow

the lessons to be sub-events. Moreover, constraints like the SplitEventsConstraint can

prescribe how such an event should be split into sub-events.

Our view on inclusion of new constraints has changed during the past two years.

Originally we tried to include all the constraints that we encountered in the literature,

or that we could imagine to be useful. On the contrary, the current set of constraints

in the format reflect only the constraints needed by the contributors, and no more.

The reason for this is that complicated constraints usually need to be clarified by an

expert.

349

3 The archive HSTT2010

At the website (Post 2008) the archive HSTT2010 with 15 instances from 7 different

countries is available. These instances have appeared previously in the literature, but

were not available for download. Apart from the instances, solutions are also available.

We intend to keep record of the best found solutions for researchers to be able to

validate their solvers. In Table 1 we present the instances that have been contributed.

In the columns are given

– the country (Country);

– name of the instance (Name);

– total duration of all events (EvD);

– the number of teachers (T);

– the number of school classes (SC);

– the number of students (St);

– the number of rooms (Ro).

Country Name EvD T SC St Ro
Australia BGHS98 1564 56 30 45

SAHS6 1876 43 20 36
TES99 806 37 13 26

Brazil Instance 1 75 8 3
Brazil Instance 4 300 23 12
England St Paul 1227 68 67 67
Finland Artificial 200 22 13 12

College 854 46 31 33
High school 319 18 102 13
Secondary school 306 25 14 25

Greece High School 1 372 29 66
Italy Instance 1 133 13 3
Netherlands GEPRO 2675 132 44 846 80

Kottenpark 2003 1203 75 18 453 41
Kottenpark 2005 1272 78 26 498 42

Table 1 The instances in the archive HSTT2010.

Note that the instances vary significantly in size. Most instances are described at

the level of school classes, which might split further to form sub groups. The Dutch

instances,however, carry information at the level of individual students as well. For

the lower grades the groups of students (school classes) are fixed and all students of a

group attend most lessons together. Conversely, for the higher grades the timetable of

each student is mostly personal, since the compulsory lessons constitute only 1

3
of the

lessons. For the Australian instances, the teachers have to be assigned as well in the

timetabling process and in such case split assignments should be avoided.

4 The evaluator

Apart from the instances, the format also models solutions. A solution is presented by

describing the duration of all events (as mentioned previously it is possible to define

350

a “course” event of duration 3, which can be split into, for example, three sub-events

of duration 1), the time slots assigned to each event, and (in some cases) the resources

assigned to events. Once a solution is provided we can then evaluate it. The evaluation

leads to two integers: the infeasibility value (i.e. the total cost of the hard constraints

violations) and the objective value (the total cost of the soft constraints). The total

cost is generated from two different constraint types: if the constraint is “hard”, then

the cost is added to the infeasibility value, otherwise to the objective value. Depending

on the type of the constraint, the cost is attributed to: an event (for example: “is there

a time assigned to the event?”), to an event group (for example: “is the course well-

spread?”) or to a resource (for example: “are the idle times within the given limits?”).

The cost of the schedule is the sum of all separate costs. The cost value V is then

calculated from the deviation D of the constraint C with weight λ by the formula:

V = λ · fC(D)

Here fC is a cost function and its type is specified in the constraint. The cost functions

supported currently are: step function, linear function, and quadratic function.

The format supports multiple instances and multiple groups of solutions to these

instances:

<HighSchoolTimetableArchive>

<Instances>
<Instance Id="Instance1">

...

</Instance>

</Instances>

<SolutionGroups>
<SolutionGroup>

<Solution Reference="Instance1">

...

</Solution>
</SolutionGroup>

</SolutionGroups>

</HighSchoolTimetableArchive>

In benchmarking an indisputable interpretation of the data and constraints is es-

sential. The documentation for the current constraints is given on the website devoted

to this project (Post 2008). Although we believe that this effort so far was very impor-

tant, we still thought it was not enough. For this reason an evaluator was additionally

developed and can be accessed from the Internet, see (Kingston 2009). The task of the

evaluator is three-fold: first it checks if the provided instances and solutions satisfy the

syntax rules. This includes checking consistency of the used Ids and whether a solution

respects the preassignments. The second task is to provide the infeasibility value and

the objective value of the solution and, if indicated, a full report on the deviations for

all constraints. Finally, if several solutions of the same instance are included, a com-

parison table is presented. The first two parts are very useful for the implementation as

they provide the user with checks on the generated format and implementation of the

constraints. In this sense the evaluator is the ultimate documentation: either the result

of the evaluator is accepted, or the behaviour of the evaluator is marked as “bug”.

Some cases led to discussions of the interpretation. One example is the constraint

LimitBusyTimesConstraint, which limits the busy times of a resource on a day be-

tween a minimum and a maximum. Initially this constraint generated the cost for the

days without work too. In the revised implementation these days are skipped. This is

351

reasonable, since by using another constraint one can describe the number of days a

resource should be busy.

5 The future

After the past and the present let us make some speculations about the future, based

on our experiences till now. First of all we have noted that there is a great interest in

this format; interest from researchers in high school timetabling, but also from other

areas of timetabling. In our opinion this shows that many researchers feel the urge for

exchangeable datasets. Our vision in building this data format is our belief that efforts

to define very general formats right from the start have a great chance to fail. We believe

that the current format keeps a good balance between tangibility and abstraction.

Though several researchers have expressed their interest, converting their formats

to the proposed format requires time. In view of this we are proud that we can present

an archive with 15 datasets from 7 contributors. By active acquisition and support we

hope to extend this in the near future. As an example we can refer to the development of

a automated repository for High School timetabling. This repository will have facilities

to convert data sets to the standard data format, uploading new data sets, download

of existing data and use of the evaluator. A work in progress version of this site is

available (Ahmadi 2010).

If new contributors appear, new constraints or variants of the current constraints

may appear. One type of constraint needed is a sequencing constraint. Looking at a

resource the sequence of events can be important. An example is when the events take

place at different locations: in such cases one would like to minimize the number of

location changes, or have breaks or idle times in between. Another example could be

a sequence of the subjects like Mathematics, Physics, Chemistry, and Biology for a

group of students.

Though new constraints will be needed, one should keep in mind that an instance

is usually just an approximation of practice. The timetabler at school will have a

clear view of the schedules, but to formalize this in constraints is not always easy (or

interesting). In practice hard constraints can turn out to be soft, if necessary, while

giving weights to the soft constraints can be difficult. The violation of some important

soft constraints can turn out to be unacceptable to the timetabler. The timetabler will

rather change the data, and try again to find a good solution. On one hand this might

be discouraging for the researchers, but on the other hand it is always a challenge to

cope with the reality.

References

[(Ahmadi 2010)] Samad Ahmadi and Ben Rorije, ‘High School Timetabling Problem Reposi-
tory’, http://opt-kd.cse.dmu.ac.uk/www/, (2010).

[(Kingston 2009)] , Jeffrey H. Kingston, ‘The HSEval High School Timetable Evaluator’,
http://www.it.usyd.edu.au/∼jeff/hseval.cgi, (2009).

[(Post 2008)] Gerhard Post, ‘High school timetabling web site’,
http://wwwhome.math.utwente.nl/∼postgf/BenchmarkSchoolTimetabling/, (2008).

[(Post 2010)] Gerhard Post et al, ‘An XML Format for Benchmarks in High School
Timetabling’, Annals of Operations Research, (2010) [DOI 10.1007/s10479-010-0699-9].

352

A Construction Approach for Examination
Timetabling based on Adaptive
Decomposition and Ordering

Syariza Abdul Rahman1, Edmund Burke1, Andrzej Bargiela1, Barry McCollum2

and Ender Özcan1

1University of Nottingham, School of Computer Science, Jubilee Campus,

Nottingham NG8 1BB, UK

{sax, ekb, abb, exo}@cs.nott.ac.uk

2 Queen’s University Belfast, School of Electronics, Electrical Engineering and

Computer Science, University Road Belfast, BT7 1NN, Northern Ireland, UK

b.mccollum@qub.ac.uk

In this study, we investigate an adaptive decomposition strategy that automatically divides

examinations into difficult and easy sets for constructing an examination timetable. The

examinations in the difficult set are considered to be hard to place and hence are listed before the

ones in the easy set. Moreover, the examinations within each set are ordered using different

strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy

set. During the construction process, the examinations that cannot be scheduled are identified as

the ones causing infeasibility and are moved forward in the difficult set to ensure earlier

assignment than the others for the subsequent attempts. On the other hand, the examinations that

can be scheduled remain in the easy set. Within the easy set, a new subset called the boundary set

is introduced to accommodate shuffling strategies to change the given ordering of examinations.

The proposed approach which incorporates different ordering and shuffling strategies is explored

on the Carter benchmark problems. The empirical results show that its performance is promising

and comparable to existing constructive approaches.

Keywords: timetabling, decomposition, graph colouring, heuristic, grouping.

353

1 Introduction

Timetabling attracts numerous researchers and practitioners due to its challenging

nature. Timetabling problems are NP hard real-world problems (Even et al. 1976)

that are hard to solve and often require considerable amount of either human or

computational time or both. There are many types of timetabling problems e.g.

educational timetabling, nurse rostering, etc. The focus of this study is the

university examination timetabling problem. Principally, the examination

timetabling problem is concerned with the scheduling of a list of examinations

into a restricted number of time-slots while satisfying a defined set of constraints.

Hard constraints must be satisfied in creating a feasible solution e.g. no student

should take two examinations at the same time. Soft constraints on the other hand

can be broken but it is desirable to satisfy them as much as possible. The

evaluation of the degree these soft constraints are satisfied provides an indication

of the overall quality of a given solution. In relation to examination timetabling,

evaluating the average cost of student spread in the timetable as an indicator of

how ‘good’ a given solution is was introduced by Carter et al. (1996). More

overview information on the examination timetabling problem and associated

constraints can be found in (Carter and Laporte 1996; Carter et al. 1996; Petrovic

and Burke 2004; Qu et al. 2009).

Considering that the only constraint dealt with is the requirement that no

student should sit two examinations at the same time, the formulation of the

examination timetabling problem is closely similar to other graph colouring

problems. Ülker et al. (2007) discusses a grouping representation for this type of

examination timetabling problems. The vertices and edges of a graph denote the

examinations and the conflicting examinations that should not be scheduled at the

same time, respectively, where the colour of a vertex denotes a time-slot in the

timetable. The heuristic ordering methods for graph colouring are considered

constructive approaches. These approaches have been used to find an initial

solution before getting further to the improvement phase. There are several

heuristic ordering methods commonly used in examination timetabling i.e. largest

degree, saturation degree, largest weighted degree, largest enrolment and colour

degree (Carter 1986; Carter and Laporte 1996, Burke et al. 2004a).

A wide variety of approaches have been applied to examination timetabling.

The approaches vary from exact methods, such as, constraint logic programming

354

and constraint satisfaction to meta-heuristic approaches, such as, tabu search,

simulated annealing and population based approaches, such as, evolutionary

algorithms. Recent applications of search methodologies, such as hyper-heuristics

that perform search over the heuristics space (Burke et al. 2003; Özcan et al.

2008) and case-based reasoning approaches to timetabling aim to work at a higher

level of generality than meta-heuristics. An overview of methodologies employed

for examination timetabling is provided in Table 1.

Recent studies in timetabling have focused on the constructive approaches

for obtaining high quality solutions. Graph colouring heuristics have been

customized with the adaptive approaches to order the examinations based on their

difficulty of timetabling (Burke and Newall 2004). We have utilised the

framework of ‘squeaky wheel optimisation’ (Joslin and Clement 1999), where the

difficulty of scheduling an examination is identified based on its feasibility versus

infeasibility in a previous iteration. In this work, the difficulty indicator of

scheduling an examination was subsequently increased based on a certain

parameter to enable it be scheduled earlier in the next iteration. In 2009, Abdul

Rahman et al. extended this study by introducing more strategies for choosing an

examination to be scheduled and the time-slots. In another adaptive approach,

Casey and Thompson (2003) developed a GRASP algorithm for solving the

examination timetabling problems. In their approach, the next examination to be

scheduled is chosen from the top items in the list (called candidate list) using

roulette wheel selection and then assigned to the first available slot.

Table 1. Some representative methodologies for solving examination timetabling problems

Methodology Reference(s)

Cluster-based/decomposition Balakrishnan et al. (1992), Burke and Newall

(1999), Qu and Burke (2007)

Tabu search Di Gaspero and Schaerf (2001), White and

Xie (2001)

Simulated annealing Thompson and Downsland (1998), Merlot et

al. (2003)

Great deluge algorithm Burke et al. (2004b)

Variable neighbourhood search Burke et al. (2010)

Large neighbourhood search Abdullah et al. (2007)

Iterated local search Caramia et al. (2001)

355

GRASP Casey and Thompson (2003)

Genetic algorithms Burke et al. (1995), Ülker et al. (2007)

Memetic algorithms Burke and Newall (1999), Ozcan and Ersoy

(2005), Ersoy et al. (2007)

Ant algorithms Eley (2007)

Exact method Boizumault et al. (1996), David (1998),

Merlot et al. (2003)

Multi-objective Petrovic and Bykov (2003), Ülker et al.

(2007)

Hyper-heuristic Bilgin et al. (2007), Ersoy et al. (2007), Pillay

and Banzhaf (2009)

Case-based reasoning Burke et al. (2006)

Fuzzy approaches Asmuni et al. (2009)

Neural network Corr et al. (2006)

Constructive approaches Burke and Newall (2004), Abdul Rahman et

al. (2009)

The study by Qu and Burke (2007) describes an adaptive decomposition

approach for constructing an examination timetable. This paper draws upon the

research on similar adaptive approaches that make use of a decomposition

strategy. We propose an approach which divides the problem into two sub-

problems. We adopt the same naming convention introduced by Qu and Burke

(2007) for these sets as difficult and easy. In this study, the problem is

decomposed into difficult and easy sets at each iteration. A timetable is

constructed based on the associated heuristic ordering for each set. We also

introduce an additional set of examinations which is located in between the

difficult and easy sets, which is referred to as the boundary set. This study

describes several mechanisms associated with the boundary set in order to vary

the search space of solutions. In Section 2, we present the details of our approach

based on adaptive decomposition and ordering for examination timetabling.

Section 3 describes the experimental data and discusses the results. Finally, the

conclusion is provided in Section 4.

356

1. E={e1, e2,…., eN}
2. BoundarySetSize=δ
3. EasySet=E; DifficultSet=ø; BoundarySet= ø; TempSet=ø
4. Divide E into subsets
5. FOR i=0 to MAXIter
6. OrderExamsWithinSubsets(DifficultSet, EasySet)
7. BoundarySet=CreateBoundarySet(DifficultSet, EasySet)
8. WHILE (there are examinations to be scheduled)
9. Consider changing the ordering of examinations

 using Shuffling-Strategy
10. Employ Selection-Strategy to choose an

 unscheduled exam, e
11. IF e can be scheduled THEN
12. TempSet=TempSet {e}
13. Schedule e to the time-slot with the least penalty

 In the case of the availability of multiple
 time-slots with the same penalty,
 choose one randomly

14. ELSE
15. Move exam e to DifficultSet
16. END-IF
17. EasySet=TempSet
18. END-WHILE
19. Evaluate solution, store if it is the best found so far
20. END-FOR

2 Automated Decomposition and Ordering of
Examinations

Most of the timetabling approaches described do not make use of the information

obtained from the process of building an infeasible timetable. The examinations

causing the infeasibility of a solution provide an indication that those

examinations are very difficult to place and should perhaps be treated in different

ways. We propose a general constructive framework as presented in Pseudocode 1

for solving the examination timetabling problem based on the automated

decomposition of a set of examinations into two sets i.e. difficult and easy.

Pseudocode 1: Improvement and construction of a timetable based on automated decomposition

and ordering of examinations.

During each iteration, a new solution is constructed from an ordered list

of examinations. The difficult set consists of the examinations that cannot be

placed into a time-slot within the timetable due to some conflicts with other

examinations from the previous iteration. These examinations need to be

associated with a large penalty imposed on the unplaced examinations. On the

other hand, the examinations in the easy set cause no violations during the

357

timetabling. In our approach, all the examinations that contribute to the

infeasibility in a solution are given priority. They are moved forward in the

ordered list of examinations and treated first. Such examinations are detected and

included in the difficult set at each iteration and a predefined ordering strategy is

employed before their successive assignment to the available timeslots. The

remaining examinations that generate no feasibility issues are placed into the easy

set and the original ordering of those examinations is maintained. In order to

incorporate a stochastic component for the selection of examinations from the

generated ordering, some shuffling strategies are utilised. The following

subsections discuss these strategies.

2.1 Interaction between Difficult and Easy Sets through a Boundary
Set

An adaptive decomposition approach is experimented with using two graph

colouring heuristics for generating the initial ordering of examinations. We have

tested the largest degree heuristic that orders the examinations decreasingly with

respect to the number of conflicts with each examination and the saturation degree

heuristic that dynamically orders the unscheduled examinations based on the

number of available time-slots for each during the timetable construction. The

reason for testing these two graph colouring heuristics is to compare their

achievement in terms of solution quality and the contribution of difficult set size,

as they represent static and dynamic ordering heuristics. Initially, all the

examinations are considered to be a member of the easy set (as illustrated in

Figure 1(a)).

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

(a)

e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

(b)

Difficult set Easy set

Easy set

358

e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

(c)

e3 e5 e9 e7 e6 e11 e10 e1 e2 e8 e12 e4

(d)

Figure 1. (a) All examinations are in a easy set in the first iteration and examinations that cause

infeasibility are marked, (b) difficult and easy sets after an iteration resulting with an infeasible

solution, (c) boundary set with a prefixed size is added to the difficult set after an iteration and

reordering is performed, (d) the step in (a) is repeated and the infeasible examinations are placed in

the difficult size, the size of difficult set increased.

During each iteration, the examinations causing infeasibility are identified.

As in Figure 1(a), all such examinations are marked as a member of the difficult

set to be moved forward towards the top of the list of examinations (Figure 1(b)),

while the examinations that caused no violation during the assignment to a time-

slot remain in the easy set. In Figure 1(c), the boundary set is created between the

difficult and easy set and is merged with the difficult set before a reordering is

performed to the difficult set. In the next iteration, more infeasible examinations

are detected and included in the difficult set. Consequently, the size of the

difficult set is increased from one iteration to another.

2.2 Swapping the Examinations Between Difficult and Boundary Sets

This strategy shuffles the difficult set and the boundary set by swapping the

examinations in between them randomly. Occasionally, the examination causing

infeasibility is not necessarily the one that is very difficult to schedule. The

infeasibility may happen due to the previous assignment and ordering. This

strategy introduces the opportunity for some of the examinations in the difficult

set to be chosen later in the timetable. There is also a possibility that the

examinations in the boundary set are swapped back to the original set because this

process is done randomly. Figure 2 illustrates how the swapping of examinations

between two sets might take place.

Boundary set Easy setDifficult set

Boundary setDifficult set Easy set

359

e7 e9 e5 e11 e7 e1 e3 e2 e6 e8 e12 e4

Figure 2: The boundary set is swapped with the difficult set and is reordered before assigning

examinations to the time-slots.

2.3 Roulette Wheel Selection for Examinations

We utilised a roulette wheel selection strategy that incorporates a stochastic

element in choosing examinations before assigning them to the time-slots. If there

is no improvement evident for a certain time, a list of examination of size n was

chosen from the ordered list in the difficult set from which and an examination is

chosen based on a probability. The probabilities of an examination being chosen

were calculated based on a score, si of each examination in the list of size n. The

new size of the difficult set will be the set which includes the size of boundary

whenever there is improvement to the solution quality. The score value, si is a

dynamic measure that is obtained from the largest and saturation degree values (as

in equation 1), where Num_clashi is the number of examinations in conflict with

the examination i, Max_clash is the maximum number of conflicts with all

examinations, Sat_degreei is the saturation degree value for the examination i and

Num_slots is the number of time-slots given to the specified problem. Sat_degree

value in this problem is initialised as 1.

slotsNum

reeSat

clashMax

clashNum
s ii

i _

deg_

_

_
 (1)

The probability, pi of an examination being chosen from n list of examinations is,

1

0

n

i
i

i
i

s

s
p , (2)

A random number from (0, 1) is obtained in order to choose an examination from

a list of examination of size n. Those examinations with higher score values will

have a greater chance of being chosen.

Boundary set Easy setDifficult set

360

2.4 Comparison of Our Approach to a Previous Study

Qu and Burke (2007) previously proposed an adaptive decomposition approach to

construct examination timetables. Their approach starts with an initial ordering of

examinations using a graph colouring heuristic, namely saturation degree. In the

approach, a perturbation is made by randomly swapping two examinations in

order to obtain a better ordering. Examinations are then decomposed into two

sets: difficult and easy.

The initial size of the difficult and easy sets are prefixed as half of the

number of examinations in a given problem as shown in Figure 3(a). At each

iteration, the size of the difficult set is modified according to the feasibility of the

solution. If the solution is infeasible after the adjustment of the ordering of

examinations then the first examination that causes infeasibility (e.g. e11) is

moved forward for a fixed number of places (e.g., five as illustrated in Figure

3(b)). The size of the difficult set is then re-set to the point where the difficult

examination is placed. Otherwise, if feasible solution or an improved solution is

obtained, the size of the difficult set is increased (Figure 3(c)).

Our approach initialises with the easy set including all the examinations and

the difficult set is formed during each construction phase at each iteration. The

size of the difficult set depends on the number of unscheduled examinations that

cannot be assigned to any time-slot from all previous iterations. The size of the

difficult set never decreases and after a certain number of iteration, the number of

examinations in the difficult set might be sustained. On the other hand, in the

previous approach, the size of the difficult set is prefixed and increased when the

feasible solution or improved solution is obtained statically. The set is also

allowed to shrink. Additionally, the previously proposed approach uses an initial

ordering and reorders all the examinations without using a heuristic, which is not

the case in our approach. Although we have used the same approach for

reordering the examinations in difficult and easy sets separately, examinations in

different sets can be reordered based on a different heuristic at each iteration.

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

(a)

Difficult set Easy set

361

e3 e10 e5 e11 e7 e1 e9 e2 e6 e8 e12 e4

(b)

e3 e10 e5 e11 e1 e9 e2 e6 e7 e8 e12 e4

(c)

Figure 3. Difficult and easy sets (a) in the first iteration, (b) after an iteration is over (a) resulting

with an infeasible solution, (c) after an iteration is over (a) resulting with a feasible solution.

3 Experiments

The experiments were tested on benchmark problems introduced by Carter et al.

(1996) and are publicly available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.

In this study, we used version I of the 12 problems that were adapted from Qu et

al. (2009) to differentiate various versions of the problem. During the

experiments, five runs are performed and the stopping conditioned has been set as

10 000 iteration as to be equal with the experiment done by Qu and Burke (2007).

Two types of heuristic ordering for initialisation are investigated: largest degree

(LD) and saturation degree (SD). The difficult set is created using these two initial

orders are then reordered with either largest degree or saturation degree. In this

study, the same heuristic ordering is used for the examinations in the easy set. The

heuristics used in a given approach will be denoted by a triplet as [heuristic used

for the initial ordering – heuristic used for ordering the examinations in the

difficult set – heuristic used for ordering the examinations in the easy set] from

this point onwards. The size of the boundary set is fixed as 5.

Table 2 summarises the experimental results obtained applying the proposed

approach to the benchmark problem instances. By looking at the best ordering for

the difficult sets, we observe that the adding boundary set strategy performed

better with largest degree initial ordering where nine out of the twelve problem

instances has performed significantly better than saturation degree initial ordering

while the swapping strategy has performed better with saturation degree initial

ordering with seven out of twelve problem instances are better compare to largest

Difficult set

Easy set

Easy set

Difficult set

Examination that
causes infeasibility

362

degree initial ordering. The best combination ordering for adding boundary set

strategy is [LD-SD-LD] while the swapping boundary set strategy performed the

best with [SD-SD-SD]. From the perspective of the strategies, it is clear that by

swapping the boundary set with the difficult set produced better solution quality

as compared to just combining the boundary set as a part of the difficult set. The

swapping strategy has obtained seven better results while the combining strategy

produced the better results for only five problem instances.

Table 2. Comparing solution quality for (a) [LD-LD-LD], (b) [SD-LD-SD], (c) [LD-SD-LD], (d)

[SD-SD-SD] by adding boundary set into difficult set and swapping examinations between

boundary and difficult sets with δ=5. (LD: largest degree; SD: saturation degree) (Bold font

indicates the best for different ordering and strategy and italic is the best of all for each problem

instance).

Problem Add the boundary set (δ=5) into

the difficult set

Swap examinations in the

boundary (δ=5) and difficult sets

(a) (b) (c) (d) (a) (b) (c) (d)

car91 5.72 5.60 5.77 5.44 5.71 5.37 5.75 5.34

car92 4.97 4.76 4.90 4.85 5.03 4.87 4.95 4.91

ear83 I 41.36 41.42 42.53 42.51 41.90 42.48 43.38 42.78

hec92 I 12.98 12.76 12.24 12.45 13.32 13.15 12.72 12.52

kfu93 16.68 16.57 16.35 16.40 16.16 16.61 16.38 16.49

lse91 13.44 12.96 12.64 12.85 13.45 12.52 12.93 12.95

rye93 11.13 10.79 10.23 10.31 11.35 10.66 10.53 10.27

sta83 I 163.93 162.12 159.32 159.74 161.98 159.34 159.08 158.99

tre92 9.77 9.72 9.54 9.69 9.81 9.50 9.66 9.41

ute92 30.68 30.08 29.11 29.11 30.21 29.79 29.34 28.96

uta92 I 3.92 3.78 3.96 3.87 3.96 3.77 3.89 3.82

yor83 I 45.85 46.97 44.16 44.75 45.84 46.28 45.30 45.39

In the next set of experiments, the effect of incorporating the roulette wheel

into the examination selection process is tested with n = 3. As we can see from the

results in Table 3, the adding boundary set strategy with roulette wheel selection

has performed better by providing eight better solutions as compared to the

swapping strategy with roulette wheel selection. From the results, the adding

boundary set and selection strategy performed the best with combination of [LD-

SD-LD] while the best combination ordering for swapping with selection strategy

is [SD-LD-SD]. Comparing the best results obtained from the strategies without

363

roulette wheel selection in Table 2 and the strategies with roulette wheel selection

in Table 3, it shows that when incorporating the selection strategy improves the

performance of the approach.

Table 3. Comparing solution quality for (a) [LD-LD-LD], (b) [SD-LD-SD], (c) [LD-SD-LD], (d)

[SD-SD-SD] with shuffling strategies of adding the boundary set into the difficult set and

swapping examinations between the boundary and difficult sets with δ=5 and includes roulette

wheel selection for examinations with n=3. (LD: largest degree; SD: saturation degree) (Bold font

indicates the best for different ordering and strategy and italic is the best of all for each problem

instance).

Problem Add the boundary set (δ=5) into

the difficult set + Roulette wheel

selection (n=3)

Swap examinations in the

boundary (δ=5) and difficult sets

+ Roulette wheel selection (n=3)

(a) (b) (c) (d) (a) (b) (c) (d)

car91 5.67 5.28 5.64 5.43 5.67 5.57 5.77 5.48

car92 4.98 4.91 4.81 4.76 4.90 4.95 4.86 4.89

ear83 I 41.29 40.60 41.39 42.74 41.67 42.24 42.14 42.51

hec92 I 12.09 12.36 12.45 12.70 12.20 12.97 12.38 12.48

kfu93 16.25 16.22 16.04 16.43 16.43 16.07 16.20 16.05

lse91 12.70 12.03 12.76 12.67 13.06 12.75 12.14 12.82

rye93 10.52 10.25 10.40 10.41 10.45 10.45 10.20 10.54

sta83 I 160.20 162.26 158.68 160.00 158.60 160.43 158.39 161.75

tre92 9.31 9.72 9.08 9.55 9.43 9.79 9.21 9.63

ute92 27.81 27.93 28.57 27.90 28.01 27.84 27.30 27.55

uta92 I 3.95 3.73 3.83 3.81 3.88 3.92 3.89 3.74

yor83 I 45.48 45.24 45.76 44.36 545.04 44.33 44.51 44.81

Table 4 compares our best results obtained from the strategy of roulette

wheel selection to the other previous results based on constructive approaches.

Given by Qu and Burke (2007) is the closest comparison to our approach as they

have also implemented a decomposition strategy. Comparing the solutions across

all problem instances, it is observed that our approach does not yield the best

results. However, it provides one better result when compared to the approach

proposed by Qu and Burke (2007) for car91. Moreover, we have obtained better

results than the approach by Asmuni et al. (2009) for four problems (car91, lse91,

rye93 and ute92), Carter et al. (1996) for two problems (car91, car92),

364

respectively. However, Burke and Newall (2004) and Qu and Burke (2007) do not

provide the result for rye93.

Table 4. Comparison of different constructive approaches (LD: largest degree; SD: saturation

degree; RWS: roulette wheel selection) (The bold entries indicate the best results for constructive

approaches only, while the italic ones indicate the best results for the decomposition approach).

Problem Burke &

Newall

(2004)

Carter et

al. (1996)

Asmuni

et al.

(2009)

Abdul

Rahman

et al.

(2009)

Qu &

Burke

(2007)

SD-LD-

SD(RWS)

car91 4.97 7.10 5.29 5.08 5.45 5.28

car92 4.32 6.20 4.54 4.38 4.5 4.91

ear83 I 36.16 36.40 37.02 38.44 36.15 40.60

hec92 I 11.61 10.80 11.78 11.61 11.38 12.36

kfu93 15.02 14.00 15.80 14.67 14.74 16.22

lse91 10.96 10.50 12.09 11.69 10.85 12.03

rye93 - 7.30 10.38 9.49 - 10.25

sta83 I 161.90 161.50 160.40 157.72 157.21 162.26

tre92 8.38 9.60 8.67 8.78 8.79 9.72

ute92 27.41 25.80 28.07 26.63 26.68 27.93

uta92 I 3.36 3.50 3.57 3.55 3.55 3.73

yor83 I 40.88 41.70 39.80 40.45 42.2 45.24

The overall results once again highlight the importance of the methodology

used to change the ordering of difficult examinations, particularly the ones

causing infeasibility. In our approach, the ordering of the examinations within the

difficult set with respect to the others appears to be vital combined with the

assignment strategy. As shown in Figure 4, for the experiments adding and

swapping boundary set and difficult set without roulette wheel selection, the

average number of the examinations in the difficult set varies with different

ordering strategies. The approach using the largest degree ordering generates

infeasibility more often for a given solution during the time-slot assignments as

compared to the one using the saturation degree ordering. On the other hand,

saturation degree ordering might easily create a feasible solution for some

problem instances (e.g. car91 and uta92 I). However, using the saturation degree

alone does not for guarantee a good solution quality.

365

0

20

40

60

80

100

120

140

160

180

[LD-LD-LD] [SD-LD-SD] [LD-SD-LD] [SD-SD-SD]

a[D-B]
s[D-B]

Figure 4. Average number of examinations in the difficult set (its size) over all problems

considering all shuffling strategies using different initialisation and reordering heuristics. (LD:

largest degree, SD: saturation degree, B: boundary set, D: difficult set, a: add, s: swap).

In some cases, using the saturation degree ordering may easily create a

feasible solution when adding or swapping with the boundary set, the infeasible

examinations can be obtained in this approach since this approach gives priority

of ordering the difficult set. Consequently, adding or swapping the boundary set

with the difficult set might have increased the number of examinations in the

difficult set.

Figure 5((a), (b), (c)) illustrate the number of infeasible at each 100 iteration

for different combination of initial ordering and reordering heuristics for the

difficult set for car91, kfu93 and yor83 I, respectively. It shows that using largest

degree causes increasing number of examinations to generate infeasible solution

when compared to the saturation degree. car91 has an obvious difference in the

number of infeasible examinations when comparing with the other two types of

ordering i.e. [LD-LD-LD] and [LD-SD-LD]. In the other problem, kfu93 and

yor83 I the number of infeasible examinations for different ordering is

approximately the same but still using [SD-LD-SD] and [SD-SD-SD] are slightly

advantageous. In all problems, the number of infeasible examinations is

converged to a steady state after some point.

Avr. no. of examinations in the difficult set

366

0

50

100

150

200

250

300

350

0
20

0
40

0
60

0
80

0
10

00
12

00
14

00
16

00
18

00
20

00
22

00
24

00
26

00
28

00
30

00
32

00
34

00
36

00
38

00
40

00
42

00
44

00
46

00
48

00
50

00

[LD-LD-LD]

[SD-LD-SD]

[LD-SD-LD]

[SD-SD-SD]

(a) car91

0

20

40

60

80

100

120

140

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 4800

(b) kfu93

No. of examinations in the difficult set

iteration

iteration

No. of examinations in the difficult set

367

0

20

40

60

80

100

120

140

160

0 300 600 900 1200 1500 1800 2100 2400 2700 3000 3300 3600 3900 4200 4500 4800

(c) yor83 I

Figure 5. The change in the size of the difficult set and the solution quality at every 100 iteration

during the sample runs for (a) car91, (b) kfu93, (c) yor83 I. (LD: largest degree, SD: saturation

degree).

4 Conclusion

This study discusses a novel approach based on adaptive strategies that

decomposes the examinations in a given problem into two sets: a set of difficult to

schedule and a set of easy to schedule examinations. This decomposition is

performed automatically at each iteration, and is augmented with suitable ordering

of examinations within each set. In this study, it is observed that by merging or

swapping the boundary set with the difficult set could improve the solution

quality. A stochastic component based on roulette wheel selection is embedded

into the approach in order to shuffle the order of examinations. This mechanism

gives a higher chance to an examination with a higher score to be selected for

timetabling. It is observed that using saturation degree could decrease the

possibility of creating infeasible solution and that dynamic ordering gives better

ordering of examinations in the list. This preliminary study shows that the

proposed approach is simple to implement, yet it is competitive to the other

previous constructive approaches. In this study, the same ordering heuristics are

used for reordering the examinations in the difficult and easy sets. In fact, the

proposed framework allows the use of different strategies. As a future work,

iteration

No. of examinations in the difficult set

368

different strategies will be investigated for reordering of examinations and

choosing the examinations from the difficult set.

5 References

Abdul Rahman, S., Bargiela, A., Burke, E. K., McCollum, B., & Ozcan, E. (2009). Construction of

examination timetables based on ordering heuristics. ISCIS 2009 (pp. 727-732) (In proceeding of

24th international symposium of computer and information sciences, Cyprus).

Abdullah, S., Ahmadi, S., Burke, E. K., & Dror, M. (2007). Investigating Ahuja-Orlin's large

neighbourhood search approach for examination timetabling. OR Spectrum, 29(2), 351-372.

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., & Parkes, A. J. (2009). An

investigation of fuzzy multiple heuristic orderings in the construction of university examination

timetables. Computers and Operations Research, 36, 981-1001.

Balakrishnan, N., Lucena A., & Wong, R. T. (1992). Scheduling examinations to reduce second

order conflicts. Computers and Operations Research, 19, 353-361.

Bilgin, B., Özcan, E., & Korkmaz, E. E. (2007). An experimental study on hyper-heuristics and

exam scheduling, Practice and theory of automated timetabling 2006, Springer-Verlag, selected

papers, Lecture notes in computer science, vol. 3867, 394-412.

Boizumault, P., Delon, Y., & Peridy, L. (1996). Constraint logic programming for examination

timetabling. Journal of Logic Programming, 26(2), 217-233.

Burke, E. K., Petrovic, S., & Qu, R. (2006). Case based heuristic selection for timetabling

problems. Journal of Scheduling, 9, 115-132.

Burke, E. K., & Newall, J. P. (2004). Solving examination timetabling problems through

adaptation of heuristics orderings. Annals of Operational Research, 129, 107-134.

Burke, E. K., & Newall, J. P. (1999). A multi-stage evolutionary algorithm for the timetable

problem. IEEE Transactions on Evolutionary Computation, 3(1), 63-74.

Burke, E. K., Bykov, Y., Newall, J. P., & Petrovic, S. (2004b). A time-predefined local search

approach to exam timetabling problem. IIE Transactions, 36(6), 509-528.

Burke, E. K., Eckersley, A., McCollum, B., Petrovic, S., & Qu, R. (2010). Hybrid Variable

Neighbourhood Approaches to University Exam Timetabling. European Journal of Operational

Research, to appear 2010.

369

Burke, E. K., Elliman, D. G., & Weare, R. (1995). A hybrid genetic algorithm for highly

constrained timetabling problems. Paper presented at the 6th International Conference on Genetic

Algorithms (ICGA'95), San Francisco, CA, USA, Pittsburgh, USA.

Burke, E. K., Kendall, G., Newall, J., Hart, E., Ross, P., & Schulenburg, S. (2003).

Hyperheuristics: an emerging direction in modern search technology. In F. Glover & G. A.

Kochenberger (Eds.), Handbook of Metaheuristics. 457-474. Netherlands: Kluwer.

Burke, E. K., Kingston, J., & de Werra, D. (2004a). Applications to timetabling. In J. Gross & J.

Yellen (Eds.), Handbook of graph theory (pp. 445-474). Chapman Hall/CRC Press.

Caramia, M., DellOlmo, P., & Italiano, G. F. (2001). New algorithms for examination timetabling.

In S. Naher & D. Wagner (Eds.), Lecture notes in computer science. Algorithm engineering 4th

international workshop, proceeding WAE 2000 (vol. 1982, pp. 230-241). Berlin: Springer.

Carter, M. W., Laporte, G., & Lee, S. (1996). Examination timetabling: Algorithmic strategies and

applications. Journal of the Operational Research Society, 47(3), 373-383.

Carter, M. W., & Laporte, G. (1996). Recent developments in practical examination timetabling.

In E. K. Burke & P. Ross (Eds.), Lecture notes in computer science. Practice and theory of

automated timetabling I: selected papers from the 1st international conference (vol. 1153, pp. 3-

21). Berlin: Springer.

Carter, M. W. (1986). A survey of practical applications of examination timetabling algorithms.

Operational Research, 34, 193-202.

Casey, S., & Thompson, J. (2003). GRASPing the examination scheduling problem. In E. K.

Burke & P. De Causmaecker (Eds.), Lecture notes in computer science. Practice and theory of

automated timetabling IV: selected papers from the 4th international conference (vol. 2740, pp.

234-244). Berlin: Springer.

Corr, P. H., McCollum, B., McGreevy, M. A., & McMullan, P. (2006). A new neural network

based construction heuristic for the examination timetabling problem. In the international

conference on parallel problem solving from nature (PPSN 2006) (pp. 392-401), Reykjavik,

Iceland, September 2006.

David, P. (1998). A constraint-based approach for examination timetabling using local repair

techniques. In E. K. Burke & M. W. Carter (Eds.), Lecture notes in computer science. Practice

and theory of automated timetabling II: Selected papers from the 2nd international conference

(vol. 1408, pp. 169-186). Berlin: Springer.

370

Di Gaspero, L., & Schaerf, A. (2001). Tabu search techniques for examination timetabling. In E.

K. Burke & W. Erben (Eds.), Lecture notes in computer science. Practice and theory of automated

timetabling III: selected papers from the 3rd international conference (vol. 2079, pp. 104-117).

Berlin: Springer.

Eley, M. (2007). Ant algorithms for the exam timetabling problem. In E. K. Burke & H. Rudova

(Eds.), Lecture notes in computer science. Practice and theory of automated timetabling VI:

selected papers from the 6th international conference (vol. 3867, pp. 364–382). Berlin: Springer.

Ersoy, E., Özcan, E., & Uyar, Ş. (2007). Memetic algorithms and hyperhill-climbers. In P.

Baptiste, G. Kendall, A. Munier-Kordon, & F. Sourd (Eds.), Proceedings of the 3rd

multidisciplinary international conference on scheduling: theory and applications (pp. 159-166).

Paris, France.

Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow

problems. SIAM Journal on Computing, 5(4), 691-703.

Joslin, D. E., & Clements, D. P. (1999). “Squeaky wheel” optimization. Journal of Artificial

Intelligence Research, 10, 353-373.

Merlot, L. T. G., Boland, N., Hughes, B. D., & Stuckey, P. J. (2003). A hybrid algorithm for the

examination timetabling problem. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in

computer science. Practice and theory of automated timetabling IV: selected papers from the 4th

international conference (vol. 2740, pp. 207-231). Berlin: Springer.

Özcan, E., Bilgin, B., & Korkmaz, E. E. (2008). A comprehensive analysis of hyper-heuristics,

Intelligent Data Analysis, 12(1), 3-23.

Özcan, E., & Ersoy, E. (2005). Final exam scheduler - FES. In Proceedings of the IEEE Congress

on Evolutionary Computation (CEC'05) (vol. 2, pp. 1356-1363).

Petrovic, S., & Burke, E. K. (2004). Chapter 45: University timetabling. In J. Leung (Ed.),

Handbook of scheduling: Algorithms, models, and performance analysis. CRC Press.

Petrovic, S., & Bykov, Y. (2003). A multiobjective optimisation technique for exam timetabling

based on trajectories. In E. K. Burke & P. De Causmaecker (Eds.), Lecture notes in computer

science. Practice and theory of automated timetabling IV: selected papers from the 4th

international conference (vol. 2740, pp. 179-192). Berlin: Springer.

371

Pillay, N., & Banzhaf, W. (2009). A study of heuristic combinations for hyper-heuristic systems

for the uncapacitated examination timetabling problem. European Journal of Operational

Research, 197(2), 482-491.

Qu, R., & Burke, E. K. (2007). Adaptive decomposition and construction for examination

timetabling problems. In Multidisciplinary international scheduling: theory and applications

(MISTA'07) (pp. 418-425). Paris, France.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., & Lee, S. Y. (2009). A survey of search

methodologies and automated system development for examination timetabling. Journal of

Scheduling, 12(1), 55-89.

Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based examination

timetabling system. Computers and Operations Research, 25(7/8), 637-648.

Ülker, Ö., Özcan, E., & Korkmaz, E. E. (2007). Linear linkage encoding in grouping problems:

applications on graph coloring and timetabling, Practice and theory of automated timetabling

2006, Springer-Verlag, selected papers, Lecture notes in computer science, vol. 3867, 347-363.

White, G. M., & Xie, B. S. (2001). Examination timetables and tabu search with longer-term

memory. In E. K., Burke & W. Erben (Eds.), Lecture notes in computer science. Practice and

theory of automated timetabling III: selected papers from the 3rd international conference (vol.

2079, pp. 85-103). Berlin: Springer.

372

The New Timetable Era: The Single ‘W’ Concept and
Timetable Hub

Amir Said · Rafiq Muhammad.

Received: date / Accepted: date

Abstract The main of this paper is to deliver our insight on timetable solution based

on our 3 years of experience in within the Malaysian Higher Education sectors. This

paper is written purely on the basis of consultant point of view rather than from a

researchers expert opinion. Most of the findings are basically from our survey both

qualitatively and quantitatively which are then compile and reviewed by our consul-

tants for our development stages. Our close proximity with our pool of clients has

helped our Research and Development team of consultants to develop our timetable

software called Timetabler Plus initiated from version 1.0 till version 3.0 in the last

3 years. Efforts taken in solving most of the colleges, polytechnics, institutions and

universities constraints and demands were built around our interest to know more and

solve more. This is what this paper is all about; sharing our experiences as a timetable

consultant and also our vision for the new era of timetable solutions called timetable

hub.

Keywords Timetabling Solution · Commercial Product · Timetabling Process · ‘W’

Concept · Timetable Hub

1 Introduction

Timetabler Plus (T-Plus) is a commercial timetabling software designed to solve timetabling

problem in all education institutions. With the tag word of “ultimate timetabling solu-

tion for schools, colleges and universities”, the ultimate mission of T-Plus is to become a

universal timetabling application for all kinds of education timetabling problems. From

Amir Said
Timetable Hub
BLK 978D Buangkok Crescent 01-233 Singapore 536978
Tel.: +65 6795 9516
E-mail: amirezy@gmail.com

Rafiq Muhammad
EEET Department, Yanbu Industrial College
P.O. Box 30436 Yanbu Al-Sinayah, Saudi Arabia
Tel.: +966 55 815 2904
E-mail: mrafiq@yic.edu.sa

373

a humble beginning as an in-house developed timetabling software, it has evolved into

a full scale commercial software that is capable of handling diverse timetabling scenario

in different education institution ranging from schools, colleges, polytechnics and uni-

versities. Since its intervention in Malaysia education market, it has made some kind

of impact by securing 45 satisfied clients and currently launching it latest v3.0.

This paper provides our insight on timetable solution, purely from the commercial

point of view. It is written based on our 3 years of experience in providing consultation

and timetabling solution to diverse education institutions within the Malaysian Higher

Education sectors. Our close proximity with our pool of clients has helped us to develop

in-depth understanding of the actual problems faced by most of the industry users and

knowing their actual demands for a good timetabling solution. These findings have

helped us to develop T-Plus initiated from version 1.0 till version 3.0 in the last three

years. This is what this paper is all about; sharing our experiences as a timetable

consultant with the hope to bridge the gap between theory and practice, education and

industry, and also our vision for the new era of timetable solutions called timetable

hub.

At this point, we would like to strongly emphasis that this paper is lacking in

some of kind of proper referencing at this moment as this paper is purely citing issues

and solutions based on the practical experience having solved 45 clients based on

personal consultation and coaching. Currently, this paper also does not follow a proper

academic research guideline due to the time constraint. Discussion will be focused in

areas of timetable issues, our analysis, our strategy, consistent problems faced by our

consultants and The Future of Timetable Solution will be outlined throughout this

paper.

2 Common Timetable issues in Malaysian Higher Education

From our three years of timetable consultation within Malaysian Higher Education,

having closely knitted relationship with our clients has given our RD consultants op-

portunity to explore timetable issues ranging from minor to major problems.

In each of our 45 institutions, they faced common timetable issues either in macro

or micro level. Every institution face both the micro and macro level of timetable issues

during the same period or time or at different time and the degree of the problems

may also varies in each institution.

Macro level involved the management level across the institutions or even the gov-

erning body when related to government institution in Malaysia. Sometimes political

changes and top level changes in the management level within the Education Ministry

level could result in big impact on the macro level of timetable issues. As for private

colleges, there is a different set of macro level issue being commonly identified. De-

cisions by the management to maximize profits and implement cost efficiencies could

result in lack of resources while trying to cater for each individual student demanding

for different combination of subject. These may result in major constraints and con-

flicts in the timetable issues. In summary, Macro level usually may cause the whole

timetable that has been either ready or even running to be re-adjusted in the major or

minor scale. However from our experience, most macro level issues will have a major

impact on the timetable output. The worst case scenario is when there is no warning

sign and the changes need to take place immediately without any room of negotiation.

374

Micro level issues usually involved internal decision making between Head of De-

partment or individual request by certain lecturers and the timetable coordinators

level of kindness. In the normal human behavior, most timetable coordinator will only

make changes to those that they feel close to them or called favourable buddies. Other

common micro level issues are the Repeaters issues and staff deployment issues due

to the shortage of staffs or staff turnover issues. However in most micro level cases,

they are usually not as serious issues compared to macro level and can be solved in a

shorter period of time. In both macro and micro level, there is one common platform

which needs to be avoided, which is clashing. Clashing issue is the main reason why

institutions decide to engage timetable consultants like us. We realized that improper

timetable planning and the occurrence of micro and macro level issues are the major

contributions to this Clashing issues. In some occasions, in order to meet the demand

of micro and macro level issue there is a possibility that clashing issue could not be

avoided. From our experience, the inflexibility of macro issues are more prompt to the

greater possible of the incurrence of Compulsory Clashing.

Another common timetable issues within most privately-owned is the examina-

tion timetable. Examination can cause a big headache for timetable coordinators who

need manage incoming examination timetable with some courses that are still running

clashes need to be avoided by recognizing available rooms and available lecturers for

invigilators for within the examination schedule. Another issue can arise in the exami-

nation problem is when each student subject enrolment is unique from another student

commonly found in the privately run colleges which maximize profits and minimize

costs.

3 Concept of ‘W’ Timetable Creation Cycle

From our survey and analysis citing all the common timetable problems, we have real-

ized that all the problems are part of the one common element; lack of understanding

of timetable concept. In our last 3 years R and D, we have realized that there is no

common platform or even a formula for creating quality timetable. Despite the vast

availability of benchmark and measurement techniques in academic timetable research,

it is not known if such a benchmark ever exists for commercial timetable product.

Therefore it is difficult for commercial users to compare one software with another. It

is important to note that there is a huge different between evaluating a commercial

timetable solution to an academic one. In an academic exercise, the primary interest

is to evaluate the efficiency and effectiveness of the timetable generating algorithm.

Efficiency and effectiveness refer to the ability of the timetabling algorithm to create

a timetable output that satisfies most of the hard and soft constraints in the shortest

timeframe. Commercial users, on the other hand are more interested in the timetabling

process. Timetabling process can be summarized as from raw data to an acceptable

timetable output. This is the reason why we proposed the W concept, which represents

a single cycle in producing workable timetable. Achieving a single W is the ideal of

every commercial timetable process.

The single W model concept is shown in Figure 1. This is regarded as the perfect

timetable creation cycle for each timetable creation process. Table 1 summarizes the

activities in each of these processes in the W cycle.

This W concept can act like a base formula in the creation process of perfect

timetable for both user and also software developer. Achieving a single W is the ulti-

375

Fig. 1 Single W Model Concept (The perfect model for timetable creation cycle)

Table 1 Activities in ‘W’ Cycle

Processes Activities

Preparation of
database (Database)

- Course List
- Lecturer List
- Room List

Planning by manage-
ment (Planning)

- Who teaches What. of lectures/labs/tutorials per subject per
week
- Rooms allocation per department
- Merging classes according to demand
- Relief/Part-timer lecturers/teachers
- No of group of student for each batch
- Start and End time inclusion of break time
- List of prioritize subjects. (Eg: subjects having 3 hrs or more
duration, compulsory subjects etc)
- Plan and Understand all the Constraint

Execution: Construct-
ing timetable (Con-
struct)

- Construct Start and End time
- Listing all available room
- Analyze and identify constraints for batch of students,
courses and lecturers
- Construct timetable for (as sequence):

1. prioritize subjects
2. remaining subjects

Analyze the completed
timetable (Analysis)

- No clashes for batch of student, courses, rooms and lecturers.
- All offered subjects are included into the timetable with the
right constraints.
- Lecturer timetable daily/weekly workload/schedule
- Student timetable - daily distribution of lessons in a week
- Rooms utilization

Output and distribu-
tion process (Output)

- Output need to be copied again to the right template

mate target and goal for every timetable coordinator as it saves time and resources.

In order for a perfect W concept to works, timetable coordinator needs to understand

each of the W components; Database, Planning, Construct, Analysis and Output. These

five W components are also a good guide for a new timetable coordinator who has no

knowledge on timetable creation cycle.

376

Fig. 2 Multiple W Models (Commonly found in the Conventional way concept)

In practice it is quite impossible to obtain a perfect W. Many modifications would

come along the way which will disrupt the perfect ‘W’. This results in the multiple ‘W’

cycle as shown in figure 2. The quality of timetabling process in commercial world is

measures by the ability to minimize the ‘W’ cycle, ultimately to the perfect ‘W’ (i.e. a

single cycle). Large W cycles denotes inefficiency in timetable creation process.

As it is obvious from the ‘W’ cycle, construction of timetable is just one of the

processes. From the commercial point of view, good timetabling software is not only

software that is capable to generate the output in the shortest period of time, but is

also capable to assist in other processes in the cycle. One particularly important feature

which often neglected is the ability of the software to manage micro changes (editing)

to the result without affecting those that are already in their desired place.

In this paper, we are proposing the W concept a benchmark to measure commercial

timetable applications. The quality of a commercial timetable solution is measure by

its ability to minimize the number of W cycle. The development and improvement

of any timetable system should also take into account of W principles. In this paper,

based on our experience, we will explain about the relationship of our software being

developed in the last 3 years based on the W concept.

4 Introduction to Timetabler Plus

When Timetabler Plus (T-Plus) is being introduced in July 2007, its main mission

is to be the ultimate timetabling solution for schools, colleges and universities. T-

Plus is carefully designed and constantly updated to cater the needs and demands of

timetabling process. Table 2 summarizes the features of Timetabler Plus.

With friendly icons and lightweight standalone application, T-Plus has made some

kind of impact since v1.2 in July 2007 launching by securing 45 satisfied clients and

currently launching it latest v3.0 Apart from providing excellent technical support

service, our professional consultants provide training and consultancy packages to our

clients.

4.1 The Plus Factors of Timetabler Plus

Timetabler Plus offers various constraints setting for each/all:

377

Table 2 Summary of T-Plus Features Benefit

Features Benefits

Enables simultaneous constraints set-
ting for Program, Batch, Subject and
Lecturer

Fast, efficient optimization with complete user
control

Managing the allocation of specific
constraints in subjects and lecturers
using the TREE STRUCTURE ter-
minology (PARENT and CHILD con-
cept)

High flexibility and reusability in the creation
producing better result for any type of educa-
tional institution

USER-FRIENDLY interface with na-
tive Windows icon

Easy to learn and use even for non- computer
literate

Integration with MS EXCEL for
database and printing purpose with
various printing format available

Transferring of the current database for new
user made easy. Final output simple to cus-
tomize

AUTOMATED GENERATE button
function based on constraints settings
PLUS the option of Manual Allocation

Reduction in Cost, Time and Manpower. Clash
Free Result (Auto-Generate) and Reminder
(Manual Allocation)

(Latest Edition v2.8) Print preview for
Individual Lecturer, Room, Day and
even Batch of Student with customized
Header and Footer

Faster in Analyzing the output and Quicker in
Producing the Final Output

1. Lecturer(s) Constraints/Preference:

– Specific time or day he/she does not want to teach and

– Preferred Room/s

– Avoid Teaching Consecutively

2. Constraints for Each Program/Department/Faculty/Batch of Student/ Subject(s):

– Specific time or day to Include/Exclude

– Preferred Room/s

– Same Subject (different day) or Merging Request (Same Time Slot)

– Adjacent Classes

– Same Room for a particular group of students

3. Room Constraint/ Specific Room Types:

– Each Room Capacity

– Each Room Function/Equipment

4. Style of Generating Output (Generate Constraint):

5. Prefer to start the class in the early morning, afternoon or evening

6. Prefer the 1st class to start on 1st Day of the week (Monday) or last Day of the

Week (Friday)

7. User can have the choice for 2 hours class or more to span across the General Break

8. Rooms can be optimized according to the capacity

Timetabler Plus also offers various output formats for individual/master timetable

for:

– Lecturer

– Batch of Student

– Room

– By Day

378

There are three ways for users to print their finalized timetable:

1. Exporting to Microsoft Excel

2. Print directly from Timetabler Plus

3. Export to HTML

4.2 Timetabler Plus W Concept

Any good timetable software is measured by its ability to minimize the W cycle, ide-

ally achieving a single W. Other than the W concept, there is not known type of

measurement or benchmark that can act as a tool to differentiate the quality amongst

timetable software. We have committed our development of Timetabler Plus software

in line with the single W concept, trying to automate every process in the W cycle.

While we understand that a perfect W difficult to achieve (unless it is a small organi-

zation with small timetable), our goal is to help organization minimizes the W cycle.

Table 3 outlines the timetable creation processes and activities using Timetabler Plus

in relation to improving every process in the ‘W’ cycle.

5 Timetabler Plus Strategies

One of the key misconceptions of the users is that a timetabling solution is like a silver

bullet to their timetabling problem. This is indeed untrue. Many of the problems lie

in the human aspects as well as in planning and management. Our experience with

timetabling consultation since July 2007 made us realized that almost all timetable

problems could not be solved by many timetable solutions due to lack of understanding

between timetable coordinators with the timetable solutions and vice versa. Therefore

in order for Timetabler Plus to make a good impact, we have devised a structured

strategy to deal with each of our clients in three Cs steps: Consultation, Customized

Timetable, and Customized Training.

5.1 Consultation

Consultation is the key to understanding clients problems. Understanding our clients

unique scenario is the key to successful implementation. For that reason, our consultant

will first be consulted about all their timetable issues. Our experience has shown that

understanding just their demand and constraints are not sufficient to make a quality

timetable. We will need to understand the traditional way or sometimes what we called

customary way of creating the timetable. Even within the same organization, different

department may have different set of customary demand which may even differ when

new person takes over as a new Head of Department (micro level of constraints). Based

on the understanding of clients problem, Timetabler Plus will be customized to cater

to the needs of our clients. The crux of the challenge lies in the ability of Timetabler

Plus to adapt to different clients scenario without having to customize the software at

the code level.

379

Table 3 Process of Timetable Creation using Timetabler Plus

Processes Activities

Planning by manage-
ment and Database
preparation

- Conventional planning and database preparation applies
- Database can be easily exported from the ready-made
Timetabler Plus Excel
- Course, lecturer and room list can be categorized according
to department.
- Future editing can be done easily
- Construct the general timetable structure; general timeline
and list of room.
- High flexibility in designing timetable structure.

Data entry and Con-
straint Setting

- Modeling data and constraints in tree structure with parent
and child relationship.
- Future editing will be easily done in the existing tree struc-
ture.
- Apply constraint simultaneously for each faculty, program,
and batch of student, subject, lesson and lecturer according
to individual demand.

Auto-Generate

- Generating the timetable according to preference and prior-
ity
- Various generating options, offsetting between fast and qual-
ity output.
- Incremental generating of output to allow timetable coordi-
nator to build timetable incrementally.

Analyze the result and
Edit (if required) si-
multaneously

- Fast track on changes with quick analysis results
- Locking feature to preserve desirable output
- Various analysis techniques to analyze various data

Output and distribu-
tion process

- Offer various formats of output; Native output, Excel, and
Html
- Customizable output to suite to different organizations needs
- Use independent file concept to enable easy management of
multiple scenario.
- Multiple file concept also make timetable process easily re-
cyclable.

5.2 Customized Timetabler Plus

Based on our consultation inputs, we will try to accommodate all the demands and

constraints by creating a custom timetable structure for our clients. Here lies the key

strength of Timetabler Plus. As Timetabler Plus uses a model driven approach, it is

really up to the creativity of the timetable consultant to model the constraints. Similar

problem can be model in different way as long as the end result is the same. Not all

features of Timetabler Plus is required by all client, therefore we only expose those

that are of their concern.

5.3 Customized Training

Finally, we construct a Customized Training program for our clients to enable their

timetable problems and demands to be solved using Timetabler Plus software. This

may need a proper guidance by our consultants and priority is given for older generation

380

while more attention to bigger organizations. The training programs may even differ for

each department in the similar institutions as demands may vary from one another. We

usually customized the training program based on demand driven and the uniqueness of

each individual/department/institutions. Our main objective at the end of the training

session is for our clients to enjoy constructing quality timetable using Timetabler Plus

by optimizing the full functions of the software.

6 Impact of Human Character in Timetable Software Implementation

In each of our clients, that we have consulted and trained, we usually faced some prob-

lems that can be described as consistent problems which are found in most institutions.

These problems usually cause some kind of irregularity in the flow of our training pro-

gram in relation to timing and productivity. It is called the Human Character and even

though each human portrayed different set of characters, they usually have a common

element; Demand. This consistent Demand problem in Human Character will affect

the single W concept as planned in our training packages. From our findings, Demand

problems are commonly categorized accordingly:

– Demand for Attention: Usually for older generation who is resistant to change.

This is due to lack of confidence in using the computer as they are prone to do

anything manually.

Impact: Too much time spent on them while other coordinators may be acciden-

tally being ignored or lesser time attended to cater their needs.

– Demand for Excuse from Attendance: Usually occurs for those that are forced

to be inside the training program. Involuntary participants are being obliged to

follow orders from higher authority or to gain credit hours for attending the training

program.

Impact: This kind of character usually gives a negative impact to the others and at

times they may even create unnecessary scenes that can result in depress or moody

environment. The matter can be worst if each department timetable is dependent

on other department progress rate in completing the timetable output.

– Demand for Reasoning: This usually happen when someone is too enthusiast

with the training program or even the Timetabler Plus. He or she will usually wants

his/her voice or opinion being heard and sometimes can even dominate the entire

training sessions.

Impact: This character can have both positive and negative implications. On the

negative side, all the participants may be frustrated with too many questions being

posed by the individual and it can also create some kind of ill feeling due to the

limelight being extensively shown to him/her.

– Demand for Retraining: This behavior is normally occurred when there is new

timetable coordinator replacing the experienced ones. This is a common scene in

any institutions due to the rotation of staff responsibility, change in management,

higher posting and staff turnover. There are two main issues in connection to new

coordinators. Firstly they need to understand the technique of creation of timetable

in accordance of their department/institution demands, constraints and customary

way. The other is the need to understand the functions of Timetabler Plus software.

Another scenario is when existing timetable coordinator who has been trained once

will request for another retraining program due to the fact that they only construct

381

the timetable twice annually and in between there could be a minimum of three

months lapse. By the time they need to create new semester timetable they might

have forgotten all the functions of Timetabler Plus.

Impact: Main impact of this kind of human behavior will contribute to the quality

of the new semester timetable output. Not all institutions have annual budget for

the retraining program or there is even some cases whereby there is no unanimous

decision by all timetable coordinators to spend time and money for another session

of training. The critical impact may even cause some timetable coordinators to

abandon Timetabler Plus and even return the conventional (manual method) way.

The human character if ignored may have negative consequence on the success

of timetable software implementation. It will be unfortunate if a timetable solution is

rejected, not because it cannot cater for the organization needs, but due to the negative

image portray by human as a result of their resistive behavior.

7 The Future of Timetable Solution

In our 3 years of timetable research and consultation within the Malaysian Higher

Education institutions, the human behavior factors which were described earlier as

consistent problems need to be eliminated in order for the single W concept to be

achievable. In contrast, many software houses will argue that a good algorithm, friendly

interface and informative output may solve all the timetabling problems. Even till

this stage, our consultants have been working very hard to make Timetabler Plus the

ultimate timetabling solution in the market. However, as time goes by and all the

efforts are being done to accomplish this mission, our Timetabler Plus is still unable

to solve the consistent problem caused by human behavior.

Therefore, we have come out with another solution which will result in the single

W concept to be more achievable. Quality timetable is a perfect single W concept

and we believe all efforts need to be aimed in achieving this mission. In this paper and

conference, we will like to propose a service oriented timetable solution called Timetable

Hub that will eliminate the problems caused by Human behavior thus resulting in a

quality timetable output within the single W concept.

7.1 Timetable Hub: New Era of Timetable Solution

Every timetable software in the market including Timetabler Plus has been trying hard

to be the ultimate timetabling solution with better algorithm, interactive interface and

customized output while forgetting that a single W concept can only be achieved if there

is no barrier in the human behavior. In every timetable process, each stage indicated at

the single W concept outline the importance of every stage connecting one to another in

order to produce a quality output. Normally the relationship between human behavior

factors and software is critical at the Construct stage whereby any human elements

may influence the result of the subsequent stage; Analysis and Output. Therefore it

can be claimed that the quality of timetable lies heavily at this Construct stage which

will then acknowledge the importance of relationship between human factors and the

software itself. Table 4 outlines our observation on some of the most common human

behaviours that have impact on software implementation (particularly in timetabling

software).

382

Table 4 Human Behavior Factors vs Software

Human Behavior
Factors

Impact to Software

Age Factor How do the icons, language and functions of software be able
to accommodate different types of young, middle and old age
contributors?

Attitude Any software in the market will not be able to directly in-
fluence the attitude of the user. Definitely those with positive
attitude will be able to finish the Construct process better and
quicker than those with negative attitude

Computer Literacy Will the system be able to provide valuable assistance (Video
Tutorial, Easy Manual, Trainer and Help Support) with user
friendliness of icons and functions for all level of computer
literacy?

Environment Pressure Will the system be able to influence how each individual in
the timetable committee within similar institutions react to
one another and thus contribute to the peer pressure? Will
the system be able to eliminate ill feeling between colleagues?
Will the system be able to reduce the pressure of timetable
coordinators due to the Macro and Micro issues in the insti-
tutions?

Based on our survey, it is understood that within some of our clients, Timetabler

Plus was able to gain a single W concept as they are able to anticipate micro, macro and

human behavior issues at the planning stage. Commonly, just like any other software,

human behavior will usually influence the Auto-Generate process in the Construct stage

in the Timetabler Plus W cycle. Therefore, the introduction of Timetable Hub will be

able to fill the gap between human behavior factors and software in the Construct Stage

within the single W concept. Timetable Hub will be an application based on Software

As a Service (SAS) where clients who engaged the service will be required to input the

necessary data, constraints and requests (demands and customary behavior), while the

’Construct’ stage will be handle by the service provider. The aim is to take out what the

end users is not concern with. The system will Auto-Construct to produce few outputs

that will then allow the user to choose from varieties of them based on their preferences.

From the chosen output, user will then analyze with their preferences. Changes or

request can be made in the given template. Once confirmation about the result, the

output will then be able to be printed out in different type of format requested by the

user. Further changes in the timetable can be accessible through the given templates

and the process of output will then be repeated again.

Since the system will be 100% responsible (without any human interference) for

the Construct stage, it will be able to eliminate the Human Factor vs System problem

as discussed before. Even the changes to be made can be done easily and the output

can be customized according to the clients demands. Furthermore the upgrading of the

software or system will not hinder the clients ability to indulge in the creating quality

timetable without even learning about the latest upgraded functions.

383

8 Conclusion

As we are currently living and highly dependent on technology to solve our daily

problems, we sometimes failed to realize the importance of human behavior factors in

influencing the quality of any kind of output. Constructing timetable has always been

a challenge for software house to produce solution comprise of good algorithm, friendly

interface and informative output. A single W concept can be the tool to measure the

qualities of any kind of timetabling solution in the market. From a timetable consultant

point of view, the new era for timetable solution is called Timetable Hub which is able

to eliminate the human behavior in the single W concept cycle.

For more information about Timetabler Plus, please visit

http://www.timetablerplus.com.

384

Cross-Curriculum Scheduling with Themis

A Course-Timetabling System for Lectures and Sub-Events

Abstract We report on a practical implementation of a curriculum-based course-

timetabling system for pre-enrolment scheduling that is successfully used in our uni-

versity. The implementation is based on a sophisticated model that captures essential

real-world requirements in terms of course-structure modelling. Our tool Themis allows

to handle courses that have sub-events and that are shared between different programs

of study. It can also consider whether a shared course is mandatory or optional in each

curriculum. Themis supports a cyclic and interactive workflow and offers comfortable

means for editing model data and timetables.

Keywords system demonstration · course-timetabling system · real-world model ·
practical implementation · cross-curriculum scheduling · sub-events

1 Specific Challenges in Real-World Course-Timetabling

Various constraints of different type, uncertain information and competing goals turn

curriculum-based course timetabling for real-world settings into a challenging task [2].

In case of our department we observe that many aspects of this scheduling problem

can be modeled using typical entities, constraints and cost components. In particular,

courses are attended by students from different programs of study and each program

has its own curriculum. E.g., the course Theoretical Computer Science has first-year

students from the two Bachelor programs Computer Science (CS) and Internet-based

Systems (IBS), and second-year students from the Bachelor program Digital Media and

Games (DMG). For a standard model that covers most aspects of our setting we refer

to CB-CTT from [1]. However, to obtain practical solutions we also need to consider

some additional requirements:

– Each course has not only lecture events but also a number of smaller sub-events

associated with it, like tutorials or laboratory classes. All students attending a

lecture are partitioned into these sub-events, each of limited size.

Heinz Schmitz (corresponding author), Christian Heimfarth
Trier University of Applied Sciences
Department of Computer Science, Schneidershof, 54293 Trier, Germany
E-mail: schmitz@informatik.fh-trier.de

385

– The same course can be mandatory for some students but optional for others,

depending on their program of study. E.g., students from IBS have to take the

course Web-Technologies, while CS students may choose this or some other course to

fill one of the placeholders in their curriculum. Collisions between optional courses

should be avoided to offer students a large number of possible choices.

– Lectures and sub-events can require more than one timeslot. In some cases, even

sub-events of the same course have different numbers of timeslots to account for

different skill levels.

As a consequence, we have strong dependencies in terms of clashing constraints

across different curricula. Moreover, we need to construct a timetable for each term

prior to student enrolment. So there is only limited information about what students

from which program attend what lectures, and we have no information about sub-

event enrolments. Also, several other organisational requirements have to be taken

into account: No disruption or noticeable re-scheduling during a period is wanted, and,

on the other hand, there is strong need for manual editing and updating, especially

during the first weeks. The typical quantity structure of a problem instance for our

department has about 800 students, 25 teachers and 140 events to be scheduled in

27 timeslots and 15 rooms. We must consider curricula of three Bachelor programs,

two Master programs and some other post-graduate training programs, and we expect

that the number of programs and events increases in the next years. Altogether, we

are faced with a complex scheduling problem for which it seems nearly impossible to

obtain feasible or even optimized solutions without strong tool support.

2 Overview of Themis

The ambitious goal of Themis is not only to implement some experimental algorithms

but to provide a reliable and comfortable software system for our schedulers that really

solves the real problem. In this sense Themis can be understood as a contribution to the

research agenda set up by McCollum in his paper [2]. We started Themis in 2006 and it

is under continuous develoment since then, including a complete re-implementation in

2009 to account for the lessons learned. Right now Themis is successfully used to pro-

duce workable and optimized timetables in our department and in other departments

of our university.

Inspired by the manual work of our schedulers prior to Themis, the tool supports

an interactive and cyclic workflow consisting of the steps (1) management of model

data, (2) allocation of anonymous groups of students to lectures and sub-events, (3)

automatic timetable generation, (4) manual editing of timetables, (5) presetting of

(parts of) a timetable, and returning to (1), (2) or (3).

2.1 Model Data (Step 1)

An independent set of model data, usually one per scheduling period and institutional

unit, is organized in a project, typically called (CS-Department, SummerTerm2010),

(EngineeringDepartment, WinterTerm2009) and so on. This structure allows to model

different scenarios for the same period independently. The user can copy existing

projects and reuse model data.

386

Information Modelling. Themis allows to handle the typical main entities in

course timetabling, as there are timeslots, lectures and their sub-events, teachers and

rooms, all with a number of specific attributes and relations among each other. For

example, a course has a lecture event and a number of sub-events of a maximal size; an

event requires one or more timeslots, has one or more teachers and requires or excludes

a number of resources offered by rooms (e.g. computer workstations); teachers have,

among other attributes, preferred, available and not available timeslots, and so on.

Moreover, we have introduced an entity called curriculum-semester-combination (CSC)

to model groups of students that need to follow a certain set of lectures determined

by the curriculum they are enrolled to. Typical values are BachelorCSSecondSemester

or BachelorIBSFifthSemester and the like. We determine the number of students in

each CSC and assign one or more CSCs to each course to express its multiple usage in

different curricula.

Solution Modelling. As usual, we distinguish between hard constraints that a

timetable must fulfill to be feasible, and soft constraints that it should additionally

fulfill in order to be ‘good’. Right now, our list of constraints includes typical hard

constraints, like ‘no two events in the same room at the same time’ or ‘if two events

are modelled in mustFollowTo-relation, then the timeslot of the second event must im-

mediately follow the timeslot of the first event on the same day’. Themis also knows a

rather large number of soft constraints that can be used to optimize feasible timetables.

Each violation leads to penalty points that are accumulated for a timetable. Examples

are ‘minimize free timeslots between events for students of the same CSC’, ‘use pre-

ferred timeslots of teachers’ and ‘a sub-event should not be the only event on a day for

a CSC’. Clearly, accumulating penalty points blurs the boundaries between different

optimization objectives. So it is important to visualize for the user how the sum of

penalties of a timetable is composed. Themis offers a tree view that clearly presents all

details of a timetable score. Moreover, the user can choose weights to assess different

objectives, up to the possibility to exclude objectives from optimization by choosing

weight zero.

Each project memorizes the list of all timetables that have been generated so far

in this project, so it is always possible to go back to earlier attempts. Each run of a

generating algorithm adds a new timetable to this list. All timetables in a project are

dynamically evaluated with respect to the current set of model data, i.e., in case of

an update, all timetables in the project are automatically re-evaluated to determine

feasibility and penalties.

2.2 Lectures and Sub-Events (Step 2)

Lectures and sub-events together with their associated mandatory and optional CSCs

impose extra complexity to timetable scheduling. We briefly describe our approach to

this problem with help of an idealized and reduced example.

Example. Suppose the course Web-Technologies is mandatory for the CSC Bach-

elorIBSThirdSemester with 50 students and optional for the CSC BachelorCSFifth-

Semester also with 50 students. We estimate from past terms that 25 students from

BachelorCSFifthSemester will choose this course and introduce four sub-events for it,

each with a limit of 20 students.

After these steps are carried out for all courses in the project, we partition each CSC

in anonymous blocks of students and map these blocks to the sub-events of the courses.

387

This is sufficient if a course is mandatory for a CSC since all of its students attend

the lecture. In case of an optional course for a CSC, we partition only the estimated

number of attending students into such blocks and map them to the sub-events of this

course as well.

Example. (continued) The number of 50 students from BachelorIBSThirdSemester

is partitioned into blocks of 20, 20 and 10, the number of 25 students from BachelorCS-

FifthSemester into blocks of 10, 10 and 5. As a result we get two sub-events of Web-

Technologies each with 20 students from IBS, one sub-event with 15 students from CS

only, and one mixed sub-event of 20 students.

Themis has algorithms that support these partitioning and mapping steps. To

partition the number of students it chooses the smallest possible number of blocks, each

having a size from a user-defined range. These blocks are the basic units to allocate

students to sub-events. The mapping is done by a greedy algorithm that assigns blocks

to sub-events such that the heterogeneity with respect to different CSCs is minimized.

The algorithm considers blocks in descending order w.r.t. their size and assigns them

to sub-events in a best-fit manner. We do so because we expect less clashing conflicts

during timetabling if CSCs share only few events. Partitioning and mapping is carried

out as a preliminary step before timetable generation as part of the model data. Clearly,

this partitioning and mapping step is a non-trivial optimisation problem on its own that

deserves further investigation. Blocksizes and mappings can also be edited manually

during the overall interactive workflow.

After this step we have information in our model about what students from which

CSC attend what lectures and sub-events. This is further exploited to determine clash-

ings of events during timetable generation by specific hard and soft constraints. An

example of such a hard constraint is ‘no two sub-events of two mandatory courses in a

CSC with the same associated block in the same timeslot’. Penalties result, e.g., from

‘two sub-events of different optional courses of a CSC in the same timeslot’.

2.3 Timetable Generation and Editing (Steps 3, 4 and 5)

The user can choose to call an algorithm from scratch or to select any existing timetable

in the project as an initial solution for some timetable-generating or improving algo-

rithm, respectively. So far we have implemented the following set of algorithms (for

common algorithmic approaches to this kind of problem see, e.g., [3]):

1. A constraint-based algorithm to obtain a feasible timetable (an efficient implemen-

tation of backtracking with forward-checking, degree heuristic, minimum-remaining-

value heuristic and least-constraining-value heuristic).

2. A variant of algorithm 1 where the order in which the (timeslot, room)-values for

each event are chosen depends on the penalty of the resulting partial timetable.

3. A local-search procedure with various parameters to improve feasible timetables.

All algorithms display their current best values and can be interrupted by the user.

Algorithms 1 and 2 are based on a careful analysis of all hard constraints to reduce

the range for the variables in advance and during backtracking. It turned out that in

particular algorithm 1 is useful to reveal inconsistencies in model data very early. While

the resulting penalty after algorithm 1 is fairly high, we obtain optimized timetables

with small penalties from algorithms 2 and 3.

388

Themis has comfortable drag&drop-support for editing timetables. In the free mode

events can be moved arbitrarily to any timeslot. However, schedulers find it very helpful

to work with the supported mode of Themis during timetable editing. After choosing

an event all timeslots are coloured red or green, depending on whether a move of this

event to that timeslot results in a feasible timetable or not. Moreover, when dragging

over red timeslots, the user is provided with information about what constraints are

violated. In case of a green timeslot the new penalty is displayed in advance. Changing

the room of an event is assisted by a similar mechanism in this supported mode. It is

also possible to manually delete and insert events into an existing timetable.

Also other features of Themis turned out to be useful in practice. To display only

specific aspects of a timetable it is possible to use filters, e.g., to show the timetable for

a certain CSC, a certain teacher or a certain room. Timetables can be exported in a

universal format for further publishing. Moreover, in order to support an incremental

approach Themis allows the user to freeze parts of a timetable. As a consequence,

all algorithms must maintain this presetting. Schedulers use this feature to produce

similar timetables when single entities are added or updated. The following figure

gives an impression of the screen for editing timetables.

timetable views
and filters edit mode

tree view
of penalties

system messages drag and drop area list of timetables
in project

2.4 Software Architecture and Engineering Aspects

The current release of Themis is realized as a pure java application based on the frame-

works Hibernate1 and Docking Frames2. It has a modular architecture with separate

components for algorithms, graphical user interface and data management. Deployment

1 http://www.hibernate.org
2 http://dock.javaforge.com

389

is rather easy since Themis comes as a single jar-file, already including its database

HSQLDB3 (which can easily be changed to any other database working with Hiber-

nate). We want to point out some critical aspects that we have paid attention to while

developing Themis, but which do not deal with algorithm design in particular:

– Special care must be taken to maintain system-wide data consistency, i.e., due to

complex dependencies between model entities, referential integrity must be carefully

controlled when edit and update actions are preformed. This also includes some

thoughts on storage management for the persistent entities in the model.

– There are parts in the code that are frequently executed and where the user expects

very fast response times. Among others, efficient implementations of feasibility

checks are needed. This is usually carried out on the data-structure level and cannot

be discovered in some abstract pseudo-code from a research paper.

– Common software-engineering principles like design-patterns, encapsulation and

no-duplicate-code must be strictly followed. Especially model entities and code to

check constraints tend to spread all over the source code with the consequence,

that maintenance and further development of the system become impossible.

– It is helpful to work with a single programming environment and language which

leads to seamless debugging of the complete application. The latter is often problem-

atic when different programming languages are used at the same time. We found

that algorithms can be implemented in java reasonably fast (compared to other

languages) when restricted to native data types.

– Due to the complex nature of the application domain there is strong need for quality

assurance in the development project.

From our experience, disregarding a single of these aspects can make the difference

between a working system and an instable prototype which cannot be used in practice.

As a consequence, there is need for various expertises in the development team which

makes such a project attractive also from an educational point of view (for Computer

Science students). Luckily, we observe a high motivation of students to contribute to

a system that affects their own academic calendar.

3 Future Work

Themis is primarily designed and used to produce timetables for single departments in

universities. This is an appropriate approach in our case since only a small number of

rooms is centrally owned and must be shared between different departments. However,

we observe that there is an increasing number of programs in preparation that are

offered in cooperation between two or more departments which implies that a common

timetable is needed. We will investigate how Themis behaves on these larger instances

and what new requirements arise.

Moreover, we want to further investigate algorithmic and modelling aspects of

cross-curriculum scheduling of mandatory and optional courses and their sub-events

(section 2.2). One aspect is that it seems to be difficult to generate timetables that

guarantee a certain minimal number of non-overlapping optional lectures and sub-

events in each CSC.

3 http://hsqldb.org

390

Another aspect is the presence of uncertainty in the input data which cannot be

avoided in pre-enrolment scheduling. This becomes even more problematic if students

from different programs need to be allocated to common sub-events of optional courses.

Themis in its current version offers means to control this allocation in terms of block

mappings as described above. However, the critical part in this approach is that it is

based on the educated guess of the scheduler about how many students of a CSC will

presumably attend what optional courses. In practice, this uncertainty is now han-

deled by scheduling small over-capacities (an approach with definitely tight limits) and

manual editing after enrolment, e.g., by introducing additional sub-events. We think

that there is strong pratical motivation to further investigate models and algorithms

for timetables that are robust with respect to this uncertainty. A first step could be to

identify and select scenarios that represent situations where students have chosen other

optional courses than expected. Timetables should then be evaluated with respect to

their ability to remain feasible in different scenarios.

Acknowledgements We are grateful to the anonymous referees for their helpful comments.
We would also like to thank all other current and former members of the Themis develop-
ment team for their contributions which are F. Hermes, P. Kranz, J. Pauken, P. Schiffgens,
B. Schumacher, J. Sonntag, S. Stoffel, M. Stüber, M. Weiser. We are thankful to the Nikolaus-
Koch-Foundation for their financial support.

References

1. F. De Cesco, L. Di Gaspero, and A. Schaerf, Benchmarking Curriculum-Based Course
Timetabling: Formulations, Data Formats, Instances, Validation, and Results, In: E. Burke
and M. Gendreau (eds.), Proceedings of PATAT ’08 (2008).

2. B. McCollum, University Timetabling: Bridging the Gap between Research and Practice,
In: E. Burke and H. Rudov (eds.), Proceedings of PATAT ’06 (selected papers), Lecture
Notes in Computer Science 3867, pages 3-23 (2007).

3. A. Schaerf, A survey of automated Timetabling, Artificial Intelligence Review, volume 13(2),
pages 87-127 (1999).

391

The Perception of Interaction on the University

Examination Timetabling Problem

J. Joshua Thomas

Ahamad Tajudin Khader

Mohammed Al- Betar

Bahari Belaton

Artificial Intelligence Lab, School of Computer Sciences, University Sains Malaysia, Penang, Malaysia

joshopever@yahoo.com, tajudin@cs.usm.my,

mohbetar@cs.usm.my

bahari@cs.usm.my

Abstract. In real-world perspective, educational institutions have come across a mixture of

formulation for the examination timetabling problem and still semi- automated scheduling

systems are in practice. In this paper, we look into the knowledge abstractions techniques to

reduce the complexity of problem solving for university examination timetabling problem. The

methods consists of recapitulate, visual analysis heuristic (VAH), and specification. The

recapitulation groups the successive components, thus reducing the size of the problem. The

clustering heuristics, partitioning the problem into easy and difficult components interacting

through abstracted pools. The hierarchy of pools allows the user to intervene in conflict

resolution at the most appropriate level of abstraction. The specification simplify the decouple

components to aid the user in assessing the stiffness of the problem. We propose an algorithm

that interleaves these processes. The combinations of these three techniques are evaluated with

the real-world examination timetabling room allocation problem scenario. The merits of our

approach are minimizing the need for backtracking, provides interactive visual models

framework to understand the conflict resolution and offering a comprehensive direction to

feasible solution.

Keywords: Keywords: Examination Timetabling, Visualization, Conflict

resolution

392

mailto:joshopever@yahoo.com
mailto:tajudin@cs.usm.my
file:///C:/Documents%20and%20Settings/jjoshua/My%20Documents/DEGREE'Z/ToBurn/PHD/PhD-09-10/PATAT2010/Subformat/Versions/mohbetar@cs.usm.my
mailto:bahari@cs.usm.my

1 Introduction

The common feature of constraint satisfaction problems is the fact that each variable

ranges over a finite domain. Problems in this class are theoretically desirable. A

simple algorithm can be exhibited that eventually finds the solutions, if any, and

terminates. The real problem is efficiency that is, finding effective feasible solution.

Scheduling, assignment, planning are closely related problem. The main reason is

they intercede at different time scales and we are looking at that class of problem in

the paper.

The scheduling of examinations to time periods is a problem faced by many

educational institutions at the end of the academic semester (Lewis et al. 2005a,

Burke and Kingston et al. 2004). The basic form of the examination timetabling is

tackled by assigning a set of examination to predetermined time periods so as to

satisfy the predetermined constraints. The constraints are either hard or soft. The

former must be satisfied in order to come up with a feasible timetable while satisfying

the soft constraints is desired by not essential. The conventional research objective is

to minimize the total number of soft constraint violations in a feasible timetable.

Assorted and modern approaches such as hyper heuristics (Burke, McCollum et

al.2007), tabu search (Chiarandini et al.2006), evolutionary algorithms (Doyle 1979,

Cote 2005, Burke and Newall 1996) and simulated annealing (McCollum and

McMullan 2008), particle swarm algorithms (Erben 2001), and harmony search

algorithms (Al-Betar et al. 2008) are in the list on solving the examination timetabling

problems. Graph based techniques are beneficial to constructing solutions by ordering

the exams that have not yet been scheduled according to the obvious difficulty in

scheduling that exam into a feasible timeslot. In the newest dataset establish by ITC-

2007 or other real world case, finding a feasible solution by using graph colouring

heuristics becomes implausible.

The work carried out by (Lewis and Paechter 2005a, Lewis and Paechter

2005b, Lewis et al. 2007) can be good evidence that the real-world examination

instances normally cannot be feasibly tackled using classical graph colouring

approaches. The author employed a grouping genetic algorithm in order to solve the

first-ordering constraints against 60 test problem instances establish by him for post-

393

enrolment course timetabling. Eventually, the researcher was not able to find feasible

solutions for all problem instances.

In fact, the dataset established by the first international timetabling

competition (TTComp2002) for course timetabling problem has been not concern in

the difficulty of finding a feasible solution. It is awarded the participants based on

those who obtained a feasible solution with the least number of sort constraint

violations (Chiarandini Birattari et al 2006). Lately, the attentions of the timetabling

research communities have been turned toward closing the gap between the

fabrication datasets using in research and the real-world dataset especially when the

influential research carried by (McCollum et al. 2007) was published. As such, the

newer dataset released by ITC-2007 (McCollum et al. 2009) for the post enrolment

was more realistic in which the term „distance to feasibility ‟ is introduced as a factor

of evaluating the solution obtained and thus the competitor are win when they find a

feasible schedule for some problem instances.

 In extending and explaining the techniques behind the Visual Analysis

Heuristics (VAH), it is beneficial to look at the reasons for investigating the topic,

into a broader research context. It is essential to clearly define the subject of

interactive visualization as a basic formation. In real-life examination scheduling it

becomes highly complex making valid solutions where the visual representations can

be used as a guidance measure to reduce the complexity. Our previous work has

shown a visual analysis framework on the pre-processing (J.J. Thomas et al. 2008, J.J.

Thomas et al. 2009) over the examination timetabling problem.

There are a number of software commercial systems available for

examination scheduling (Erben 2001) each of which use apt user interfaces which

allow user to address the design and implementation issues of the search heuristics in

a more standard way. These computing system need human knowledge to intervene

few processes to ease the process and learn visually.

The interest in this research work is on solving the examination allocation problem,

an assignment usually to one or more human machinist. For example human

schedulers or human decision makers who applied a heuristic assignment procedure,

based on the knowledge and with little guidance from computer software to avoid

clashes in relation to solution the measurement of evaluation function is not feasible

394

or ideal and it was allowed to adjust the weight to enable the solution (Cumming et al.

2006). In this paper we cast the examination timetabling problem and the organization

of the paper is the subsequent paragraph.

The paper is organized as in sections; Introduction and problem definitions are

in Sections 1 and 2. Section 3 illustrates solution overview. Section 4 has the

knowledge abstractions and introduces two techniques recapitulate and specification.

Section 5 discusses how the knowledge abstractions are used to reduce the size of the

problem, the use of computation on recapitulate. In Section 6 we suggest a new

heuristic method to divide the problem into subcomponents and classify, easy to solve

and hard to solve (over-constrained) the subcomponents are interactive with a tree

structure, these interaction explains the conflicts. Section 7 elaborates the conflict

detection. In Section 8, we introduce an inadequacy of the disintegration strategy,

namely wide exam result, and introduce to overcome the problem by defining

associations among the conflicting problem components where the users can

intervene in problem feasible solution and contribute preferences interactively in

Section 9. We have applied the methods introduce earlier on to the framework to a

real-life examination timetabling problem in Section 10. Section 11 draws conclusion

and discussion.

2 Problem definition

Examination timetabling problem has to assign exams to periods (timeslots) and to

rooms. This would be easy, except for the constraints that need to be valued as much

as possible. E.g. a student cannot take 2 exams at the same time.

395

Fig. 1. Assignment of seven examinations to periods (timeslots) to rooms.

The above diagram illustrates an examination schedule in which students

take which exams. For- example, 306 (student A) takes FCP557 and FCP554. But

25967 and 009058 also take the FCP557 exam. There are only 3 periods (Monday

(AM), Friday (AM) and Friday (PM))) and 2 rooms (X with 40 seats and Y with 30

seats) available.

In a normal heuristic manner the algorithm orders and schedules exams to

time periods and rooms based on the difficulty level, but it cannot guarantee the

feasibility for all exams. 201692 (student G) has to take the RMT556 and LKM101

exams at the same time. And both 108752 and 201692 aren't too happy because they

each have 2 exams on Friday.

Fig. 2. (a) Examination Schedule of seven Exams with start time and duration during the

scheduling phase. For each of the exams possible rooms are shown. (b) Constraint graph on

the corresponding schedules.

396

The examination scheduling problem in Fig. 2(a) can be expressed as a discrete

constraint satisfaction problem (CSP). To identify the CSP graph where the nodes are

represented as exams to be assigned, Rooms are the resources, and arcs link nodes

that intersect in time and indicate that one room cannot be assigned to more than one

exam at a time. If it is the case, the constraint graph Fig. 2(b) generally highly

connected and often has no feasible solution which can result as conflicts.

Examination assignment can be easily mapped with a list coloring problem which is a

category in graph coloring. The usual graph coloring problem in interval graph is

known to be liner (Gupta et al. 1979) list coloring is NP-complete. (Arkin and

Silverberg 1987).

3 Solution Overview

Examination timetabling has considered being NP-complete problem, to generate a

solution method it is necessary to develop a structure graph which are more likely to

fit the combinatorial problem. We suggest an architecture in which we use three

useful techniques: recapitulate, visual analysis heuristic (VAH) and specification.

Recapitulate groups‟ successive constraints which can be executed by the same

resource into a single one, thus reducing the size of the problem. This can be done

when you look at the preprocessing of the problem (J.J Thomas et al. 2008).

In general, a recapitulation simplifies the problem and it might ignore

feasible solutions. To avoid that we first steadily process the original problem to

intermediate abstraction levels until confined recapitulation can be applied. The tree

of splitting which reflect safe recapitulations, illustrated in Fig. 3. It explains the

construction of the problem decomposition strategy called VAH (Visual analysis

Heuristic). The problem division strategy iteratively decomposes the room allocation

problem and expressed as in a CSP, (Constraint Satisfaction Problem) into tree

structure consists of interacting sub-components. This clustering process, tests are

carried out to check whether a recapitulation of the sub-component could yield a

feasible solution, if not further refinement is applied. The box in Fig. 3 symbolizes the

description of the diagram and its components.

397

Fig. 3. VAH heuristic and knowledge abstractions in solving examination problem.

At the end of the clustering process, the leaves of the generated tree form isolated

components of the initial problem. Some components are under-constrained and can

be solved independently, for example room related constraints some other are over-

constrained and interact among each other along the tree structure. There are

interactions among the conflicts with the resource specific constraints as it treated as

resource pools. It is located on the trunk of the tree. As shown in Fig. 3, the

detachment strategy provides a framework (J.J. Thomas et al 2008), that is well suited

for conflict isolation and for interactive problem solving, in which the human

 -Leaf Node

 -Cluster Node
2

2

1. VAH separates cluster to the

sub component.

2. Knowledge abstraction

reduces the cluster.

3. Knowledge abstraction

assists the conflict resolution.

4. Knowledge abstraction

assists the problem to be

coupled.

2 2

2 2 2

1

2

 Initial-Graph

Conflicting paths competing for the same

resources- conflict isolation (separation)

 3 and 4

1

1 1

2
2

1

2
2

1

398

operator can intervene to select between conflicting paths in the clustering tree. This

is very important feature, especially in heuristic application domains, for which

preferences are difficult to formulize i.e. semi-automated schedulers.

A second knowledge abstraction technique named specification and is based

on concept of specification (Dietterich, T.G. Michalski, J.C 1984). The process of

specification generates abstractions bottom up along the tree structure in Fig. 3. It

starting at the conflicting leaf nodes identified by the conflict resolution procedure.

The two-level approach can easily extend into multiple levels to give constraint

hierarchies (Boring et al. 1987). The specification procedure forms the most specific

common specifications of the conflicting assignment. This is used as a feedback

support for the visual analysis heuristics and evaluation of conflicts and problem

solidity.

4 Knowledge Abstraction

Abstraction techniques have been proposed as promising methods to reduce the

complexity of the problem solving and have been applied to large number of domains.

In the examination timetabling problem, multi-user distributed environment with

various cohorts of schools and department who often operate quite autonomously. It

has been studied (Dimopoulou et al. 2001, Dietterich et al. 1984, Dean et al. 1987,

Doyle 1987), much more work is required on understanding the issues involved and

the interplay between user interaction and managing the information with the goal of

producing a workable solution and the extent to which techniques can be used in an

automated process.

Defining the abstraction is as follows: (Golumbic 1984)

Abstraction is the mapping of a problem representation into a simple one

that satisfies some desirable properties in order to reduce the complexity of

reasoning. The problem is solved in a simplified abstract space and the solution is

then mapped back to the complex ground space.

 Abstraction techniques shows potential to reduce the complex problem, and

it have been applied to wide number of domains. We suggest two processes of

knowledge abstractions recapitulate and specification. Recapitulations group the

399

knowledge space, and are considering only time related information (periods), while

specifications group classes of similar within one proposition to form a more general

solution. These methods are independent of adopted sequential formalism, we

highlights the Time Map Manager (Dietterich et al 1984). The unit of TMM is

sequential tokens, and it is associated with the event proposition of a time interval. In

general abstractions are rough calculation and might lose little information related

with the detailed descriptions of sequential token (constraints). We organize the

tokens by using the arrangement used in TMS (Truth Maintenance System) (Dean et

al. 1987) the user has access to the sequential tokens (constraints) wherever it is

necessary.

4.1 Recapitulate

Recapitulation is the substitute of a compilation of time tokens. The interval of the

recapitulations is the smallest period that includes all intervals of the component

tokens. The property of the recapitulation is a combination of the properties of the

essential tokens, see Fig..4

 In the examination timetabling the allocation of rooms to exams are

recapitulate such as opt1 takes place in room-1 followed by opt2 and opt3 in the same

room (Institutional based soft constraint). All the examination must assigned to rooms

within the time period (interval) during the exam week. The solution can be of

constituent priorities. The priority does not necessary hold for every sub-interval.

Some exams may need specific rooms, only exams of similar lengths are scheduled at

the same timeslot in the same room.

After recapitulation, the abstract space comprises a subset of the initial set of

possible solutions and any solution found in the abstract space can be safely mapped

Fig. 4. Recapitulation of interval resource based constraints.

(Location (R-opt1, R-opt2, R-opt3) Room -i)

(Location R-opt1 Room-i) (Location R-opt2 Room-i) (Location R-opt3 Room-i)

 Time dependency

400

back to a concrete solution. In Fig.. 4 the assignment have been grouped to the same

room, for alternative solutions. For example, assigning a different room for exams has

been purposely ruled out and dropped from the solution space.

4.2 Specification

Specification is base on domain, depends on background knowledge in the form of

concept hierarchy. A time table designer or administrator who has good experience in

the hierarchy. For example an examination timetable designer must aware of what are

the subjects are currently in the semester. To avoid clashes in exams, the basic

knowledge is to allocate exams first for those who register for particular subjects in

the current exams should be of fewer conflicts. Specification operates only on its

propositional expression or property it provides a way to replace a disjunction of

terms within one proposition, by a single more general term (Dimopoulou et al.

2001).

(a) (b)

 give another example of specifying a proposition obtained by recapitulation using

specification hierarchy shown. For instance, the timetable designer recapitulates exam

section -1, exam section-2 and so on and allocate to the timeslots (periods) into rooms

with less conflicts. Specifications suppress the detailed descriptions of specific

entities by mapping them to more generalized categories. Thus decisions made on the

Fig. 5. (a) & (b) Specification using background knowledge structure

Exam – Section 1 Exam – Section 2 Room-Section -1- available

FCP557 KAA50

2

CCS523
 Room-FCP557, KAA502-

assigned

Room-Section -2- available

R-opt2 R-opt3 R-opt1
R-opt6 R-opt9

TMS

TMS

401

basis of the general categories alone might violate constraints that refer to the specific

entities.

5 The use and computation of Recapitulate

The goal is to simplify the problem by reducing the number of assignment and thus

the size of the search space, at the expense of reduced flexibility. In here, we discuss

how recapitulation are applies in examination allocation. Each leaf cluster identified

by the VAH is a set of assignments with similar room requirements. Recapitulations

are applied to the leaf clusters in order to reduce their size. A leaf cluster “contains” a

collection of intervals such as those shown in Fig. 6 (a). Groups of intervals which do

not overlap are identified and replaced by exclusive interval. A regular allocation

procedure can finally apply to assign one value per “time”.

The first step is to arrange the time interval, by topological sorting, in the

directed graph reflecting their knowledge abstraction succession Fig. 6 (b). Nodes

denote time internals, links are built between nodes that do not overlap, and arrows

reflect their precedence order. Every path in this graph represents a possible sequence

of assignment that can be carried out by one and the same room, and thus a possibly

useful recapitulation.

(a) (b) (c)

Fig. 6. (a) Token representation of timeslot located in one cluster. (b): graph comparability.

(c): After eliminating arcs of the transitive priority.

Time

A B C

D E

F G

A

A

A
D

D

D
F

F

B

B

C

C

E

E
G

G

A

A

F

F

B

B

D

D

G

G

C

C

E

E

402

The user may control the demanding constraints maximum, interval between

correlated assignment and the arcs that exceed this interval are omitted from the

graph. Competing recapitulations are apparent in the graph as different paths between

the same nodes. Those that arise as a result of transitive priority are eliminated to

simplify the graph.

If the users have some unquantifiable criteria (subjective preferences) for

grouping assignments, they can be presented with the graph in Fig. 6 (c) so, they can

interactively select the most suitable recapitulations. They can thus apply criteria

which are difficult to formalize in a computer program, and obtain solutions which

are more acceptable in practice.

The algorithm is to replace the set of intervals by the set recapitulated intervals of

minimum cardinality. This can be done by coloring the intervals with the minimum

number of colors then recapitulate those intervals with the same color. We consider

the two criteria for establishing this order.

1. maximize the minimum distance between consecutive timeslot (allocating

the exams, the length of the timetable)

2. minimize the maximum distance (the total number of students in the same

room must be less than the capacity of the room).

6 Visual Analysis Heuristic (VAH)

This section proposes a new heuristic called the Visual Analysis Heuristic (VAH)

useful for solving list coloring problems expressed in Section 2 Fig 2(a) & (b). Here

we are providing a node value called delay. This means that nodes linked cannot be

given the same value. In interval graphs, two nodes are linked if and only if their time

interval intersects and they have at least one value (i.e. resource) in common. Since,

in real-life examination applications, many constraints are to be executed at the same

time and many rooms are seek by many time slots, the corresponding constraint

graphs tend to be densely connected.

The clustering process has happened in the nodes shared most common

values in graph the elimination of arcs are applied to the constraint graph and step by

403

step separating it to clusters. We demonstrate it with a simple illustration. In Fig. 7

(top), we show simple example of a list coloring problem with four nodes: N1, N2,

N3 and N4. Each node has a set of values it can be assigned. It indicates the values

assigned to the nodes are not the same. The backtracking procedure applies to the

significant nodes and using iterations with respective of delay values to initial cluster

and to the generated cluster in the bottom of Fig. 7.

Using the value-delay heuristic, the most common value, is delayed, thus

splitting the initial cluster into two parts. In Cluster- 1, one can assign value {e} to N2

without hesitation. In Cluster2, the three nodes are still competing for common

values, and they share, as a reserve, a set of delayed values, delay ={a}. At the next

step, value {b} is delayed, and unsolved is split further, into two parts. One of these,

Cluster3, can be assigned a value without further delay, and the remaining cluster is

left with an empty set of possible values. It claims the delayed values “a” and “b”. A

subsequent conflict resolution procedure assigns one delayed value to each unsolved

node in this cluster.

The VAH heuristic provides a visually relevant, dynamically built,

hierarchical structure to evaluate and it is an abstraction technique.

404

 (a) (b)

Fig. 7. (a) List coloring problem (b): Applying Visual Analysis Heuristic to example

 {e}

N2

Delay = {a}

{b, c,d}

{b} {b}

N1

Delay = {a}

Delay ={ a}

N3 N4

5 Delay = a}

N1 N2

N3 N4

{c,d}

N1

Delay = {a,}

{ }

{ }

Delay = {a, b}

Delay = {a, b}

Initial Cluster

Solution achieved

 Cluster-1

Cluster-2

 Cluster-3 Cluster-4

Solution achieved

Solution delayed

N3

N4

{a,b,c,d} {a,e}

{a,b}

{a,b}

{a,b,c,d} {a,e}

{a,b}

{a,b}

N1 N2

N3 N4

405

7 Conflict detection

Fig. 8 has three clusters namely Cluster 1, 3 and 4. Each cluster maintains values {a}

and {b} and it can be solved independently. The root node has a delayed value {a}

with two levels, the first level cluster (leaf cluster-1) are solved. Cluser-4 is claiming

values {a} and {b} and the solution is delayed (not solved). Each set of delayed

values maintain by one or more unsolved cluster called conflict.

The detection of conflict has been achieved by testing all conflicts by a conflict

detection procedure. The conflicts are visually available for the timetable designers if

it has preferences he or she can interact with the conflict resolution and modify the

value assignment.

Delayed value {a}

Delayed value {b} Cluster -1

Cluster -3 Cluster -4

N3

3

N4

 { }

{ }

Delay = {a,b}

}

Delay = {a,b}

}

Solution delayed value {a, b}

Solved

Solved

Conflict over {a}

Conflict over {b}

Fig. 8. Conflict Separation

406

8 The Wide Exam Result and its resolution

The heuristics (or constructive) approaches are often stemming from a graph coloring

heuristics. The basic timetabling problems can be modeled as graph coloring problem

and the above section explains about the list coloring problem is a part of graph

coloring problem. The conflict procedure clusters of a given branch node in the

hierarchy tree might compete for values delayed however, the time interval does not

interconnect. This will happen to all the clusters have competing same delayed values.

We call this procedure as wide exam result it covers all instances of the clustering

procedure.

When the exams in two apparently competing clusters, do not all intersect in

time the two clusters defined a possible association. They can be merged and the non-

intersecting exams can be recapitulated thus reducing the overall space contention.

 (b)

 (b)

 (a) (b)

Fig. 9. (a): Four timeslots and their possible examinations. (b): illustration of Wide Exam

Result method.

The example of Fig. 9 (a) is a very simple illustration of the wide exam result effect.

Exam K has possible association with rooms {a, b} and Exam L with {a,b}, Exam M

{a} and Exam N with{a,b} respectively. Fig. 9 (b) value {a} and {b} are the

association forming the combination for room {a}. One way to overcome the wide

exam result is to find possible grouping among leaf clusters. Upon user‟s request, the

Exam K, {a, b}

c}

Exam L, {a,b} Exam M, {a}

Exam N, {a, b}

 a

 b Exam M

Exam L Exam K{c}

Exam K {c}

Two associates forming

a combination for room {a}

407

conflict detection procedure identifies all grouping and measures the corresponding

decrease of exam conflict.

9 Automatic conflict resolution

Although our goal is to allow the users to selectively participate in the conflict

resolution by viewing and manipulating conflicts and associations determined in the

previous steps, we also provide an automatic conflict resolution procedure. This

procedure may integrate domain dependent knowledge and adopt any of the following

strategies:

9.1 Conflict resolution procedure

1. Allocate a delayed value to the first node encountered going in the reverse

order of that used to create the tree (i.e. from the last visited leaf up to the

root).

2. When two exams are competing for a delayed value, give it to the exam that

temporally contains the other, or the one with the longest duration.

3. Allocate a delayed value to the exams that participate in the least number of

associations.

4. Use domain dependent heuristic knowledge to distribute delayed resources

over unsolved clusters. For instance, one may want to allocate a room to

those exams that show closeness or distances.

These strategies are implemented with visual representation which will be

depicted in Fig.10. Further investigation into conflict resolution is necessary. The

conflict resolution procedure exhibits exponential complexity. However, since parts

of the problem may have been solved by the previous procedure.

408

10 Real-world Examination Timetabling Problem: an example

In this section, we propose an interactive visual model for solving real-life

examination timetabling problems that integrates the techniques introduced and

discussed above. This solution method is made of three components, namely:

(1) a clustering algorithm based on the composition of the VAH heuristic and of

knowledge abstraction.

 (2) a conflict resolution procedure where conflicting needs of groups of tasks for the

delayed values are identified and, either interactively or heuristically, solved, and

(3) a specification procedure carried out over unsatisfied constraints. This last

procedure provides an assessment of problem rigidity. Here, we apply the solution

method to a real-life examination timetabling as a case study: The allocation of

examination to rooms based on standard constraints.

In this section, we demonstrates from Fig. 10 to 12, how a solution could be

completed successfully. Firstly, a node consistency check is run to determine the

rooms that can be allocated to each examination. Then the initial constraint graph is

built and separated into independent connected graphs. Nodes that are not linked to

the rest of the graph are isolated. Here we use three variables rooms, period and

exams to visualize the exam to rooms and to period‟s conflicts and allocation. Fig. 10

has shown the possible conflicts, between rooms, examination and timeslot (periods).

Fig. 10. The constraint graph of examination clashes between the exams to rooms and

period.

409

The clustering procedure is applied to each of the remaining components. It

uses the VAH heuristic, recapitulation; (Cheeseman et al. 1991) Fig. 11 illustrated the

initial problem discussed as in Fig. 3, the color symbolized the clustering groups and

links between each examination. This visualization assists the problem to separate

into two levels in later stage to apply the visual analysis heuristics techniques together

with evolutionary algorithms.

Fig. 11. Sample dataset color coded based on the exams clashes in a particular school.

The remaining in a leaf cluster (OPT603, ELT603) is solicited equally by the

allocation of room in the cluster. The recapitulation process described is Section 4.1 is

applied to these assignments to reduce the size of the corresponding leaf cluster. Fig.

12 shows the tree after the leaf clusters have been reduced by recapitulation; hence

the clusters in this diagram are smaller than the corresponding ones in Fig. 11.

410

Fig. 12. Leaf nodes have been recapitulated and conflicts detected (Decomposition by VAH).

At this case, the user can see the current conflicts based on the delayed value

assigned. For example here the delayed examination clusters are 5, 8, 4. The user may

interact in the resolution of any conflict in allocation of examination to rooms.

Solved

Clusters

Unsolved cluster, need to apply VAH delay

Delayed Cluster

Fig. 13. Assignment tasks delayed values (Cluster 5, Cluster 8 and Cluster 4) using

evolutionary algorithm

411

However the solver is enable from the human scheduler by formation procedures and

identifies the groups between the clusters claimed as delayed.

In Fig. 14. Visual Analysis Heuristic (VAH) solution split the problem into

easily solved cluster and difficult solved clusters. By the method of grouping

procedure identifies all possible clusters claiming the same delayed assignments.

Finally, in Fig..14, the automatic conflict resolution succeeded in allocating exams to

the rooms and all the grouped clusters are assigned with two assignments. E.g. Room

No (1) assigns to Exam No (172), (107) same room used for two different

examination in different period.

Fig. 14. Examination Assignment to rooms has been heuristically solved.

412

11 Conclusion and Discussion

We have presented a new interactive approach of the examination timetabling

problem as it would appeal to many institutions. In providing this formulation, it is

pointed out that minimizing the number of periods is not considered to be an effective

way to solve the real-world examination timetabling problem. The discussion below

is fruitful on helping the issues.

Several approaches have been used for solving the examination timetabling

problems are based on variations to build an automatic solver. Many on backtrack

search algorithms, mechanism are effectively implemented by underline the risks of

combinatorial explorations. Majority of the times, it focuses on algorithm efficiency

and the CPU time to solve the problem is discussed, importantly they fail to explain

the reasons for the failure when it occurs.

Few remarks that have to be including in this paper, the proposed approach

together with algorithms are creating a new breakthrough on the timetabling research.

Interactive techniques and visual perception are work together to solve combinatorial

problems with minimal violation of constraints especially to solve real-world

timetabling application in general.

 There are few approaches are highly suitable for interactive application

concept formation rather than just writing on implementation with results. The is one

of the good and advantages method is the reason provide to the reader it give visual

pertinent hierarchical tree structures that give the user a closer walkthrough on the

assignment of resources (real-world applications) and , through recapitulation and

specification over conflict sets. It might assist the user to generate knowledge based

abstraction for rescheduling.

Visual Analysis Heuristic (VAH) is assisted with delayed value to the

clusters. Each group of clustering are formed is based on certain constraints (soft

constraints) in real-world examination timetabling and with institutional model

(Cumming et al. 2006) it is necessary to analyze the constraints and split to work

towards a feasible solution. This technique is used for all type of list coloring problem

which is a category of graph coloring problem always mapped to examination

timetabling problem.

413

In many constraint based systems, contradictions are solved by relaxing one

or more constraints choosing the minimum set of constraints known to be NP-

Complete. But when we describe about feasibility and optimality, primarily the

interested area is feasible solutions. Optimality is considered highly complex once the

problem is in real-world environment (real-world examination timetabling). The

clustering method we proposed will find a better near-optimal solution because we

have avoided the situation where a few local minima are numerically compensated.

The prototype application has to be integrated to a single GUI and that will provide

the user a greater flexibility. Furthermore, the benchmark dataset are to be tested to

understand the proposed heuristics.

12 References

Al-Betar, Mohd., Khader, A.T., Gani, T,A.: A Harmony Search Algorithm for University

Course Timetabling. In: Burke, E., Michel Gendreau (eds) Proceedings of the 8th

International Conference on the Practice and Theory of Automated Timetabling. Université

de Montréal, August 18 - 22, 2008.

Arkin, E. Silverberg, E. Scheduling Jobs with Fixed Start and End Times. In.: Discrete Applied

Mathematics, Vol 18, pp. 1-8(1987)

Burke, E.K., Kingston, J., de Werra, D.: In: Gross, J., Yellen, J.(eds) Applications to

timetabling. Handbook of Graph Theory, pp. 445-474. Chapman Hall/CRC Press (2004)

Burke. E. K., Newall, J.P., Weare, R.F.: A Memetic Algorithm for University Exam

Timetabling. In: Burke, E.K., Ross, P. (eds) Practice and Theory of Automated Timetabling.

LNCS, vol. 1153, pp. 3-21. Springer, Heidelberg(1996)

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A graph-based hyper-heuristics

for educational timetabling problems. European Journal of Operational Research 176, 177-

192(2007)

Burke, E.K., Marecek, Parkes, Andrew J. Rudova, Hana. Decomposition, reformulation, and

diving in university course timetabling. Computers & Operations Research, Amsterdam,

Elsevier, The Nederlands. ISSN 0305-0548, 2010, vol. 37, no. 3, pp. 582-597.(2010)

Benson, B. W. and Freuder, E.C. Interchangeability Preprocessing Can Improve Forward

Checking Search. In.: Proceedings of the 10th ECAI, pp. 28-30, Vienna, Austria.

Berry, P.M. A Predictive Model for Satisfying Conflicting Objectives in Scheduling Problems.

PhD thesis, Department of Computer Science, University of Strathclyde, Glasgow, UK.

Borning, A., Duisberg, R., Freeman-Benson, B., Kramer, A., Woolf, M. Constraint Hierarchies.

In.: Proceedings of the conference on Object-Oriented Programming Systems, OOPSLA-87,

pp. 48-60, Languages and Applications, Orlando, FL.

Bose, P. An Abstraction-based Search and Learning Approach for Effective Scheduling. In.:

Famili, A., Nau, D.S., Kim, S.H (eds), Artificial Intelligence Applications to Manufacturing,

pp. 187-197. AAAI-Press/The MIT-Press, Menlo Park, California.

Cheeseman, P. Kanefsky, B. Taylor, W.M. Where the Really Hard Problems Are. In.:

Proceedings of the 12th IJCAI, pp. 331-337 Sydney, Australia(1991)

414

Cote, P.: A hyprid multi-objective evolutionary algorithm for the uncapacitated exam proximity

problem. In: Burke, E.K., Trick, M.A.(eds) PATAT 2004. LNCS, vol. 3616, pp. 294-

312.Springer, Heidelberg(2005)

Cumming, A. Paechter, B. Rankin, R.C. Post-Publication Timetabling, In: Proceedings of the

3rd International conference on the Practice and Theory of Automated timetabling, pp. 107-

108 (2006).

Chiarandini M, Birattari M, Socha K, Rossi-Doria O. (2006) An effective hybrid algorithm for

university course timetabling. J. of Scheduling 1094-6136 9: 403-432.

Di Gaspero, L., Schaerf, A.: Tabu search techniques for examination timetabling. In: Burke,

E., Erben, W.(eds) PATAT 2000. LNCS, vol. 2079, pp. 104-117. Springer, Heidelberg

(2001).

Dimopoulou, M. Miliotis, P. Implementing a University Course and Examination Timetabling

System in a Distributed Environment, In: Proceedings of the 3rd International Conference on

the Practice and Theory of Automated Timetabling. pp 148-151(2001).

Dietterich, T.G. Michalski, J.C. A Comparative Review of Selected Method for Learning from

Examples. In: Michalski, R.S., Carbonell, J.G., Mitchell, T.M.,(eds) Machine Learning: An

Artificial Intelligence Approach, pp. 41-81. Springer, Berlin, Heidelberg(1984)

Dean, T. McDermott, D. Temporal Data Base Management. Artificial Intelligence, Vol. 32, pp.

1-55 (1987)

Doyle, J. A Truth Maintenance System. Artificial Intelligence, Vol. 12, pp. 231-272 Morgan

Kauffman San Francisco, CA, USA (1979)

Erben, W,: A grouping genetic algorithm for graph coloring and exam timetabling. In: Burke,

E., Erben, W. (eds) PATAT 2000. LNCS, vol. 2079, pp. 132-158. Springer,

Heidelberg(2001)

Eley, M.: Ant algorithm for the exam timetabling problem. In: Burke, E.K., Rudova, E.K.(eds)

Practice and Theory of Automated Timetabling LNCS, vol. 1153, pp. 167-180. Springer,

Heidelberg (1996)

Ellman, T. Abstraction via Approximate Symmetry. In.: Proceeding of the 13th IJCAI,

International Joint Conference on Artificial Intelligence, pp.916-921, Chambery,

France(1993)

Ellman, T. Synthesis of Abstraction Hierarchies for Constraint Satisfaction by Clustering

Approximately Equivalent objects. In.: Tenth International Conference on Machine

Learning, Amherst, MA (1993)

Feldman, R. Golumbic, M.C. Optimization Algorithms for Student Scheduling via Constraint

Satisfiablilty. The Computer Journal, 3 No. 4:356-364.

Fox, M.S, Smith, S.F. ISIS: A Knowledge-Based System for Factory Scheduling. In.: Allen,

J.F. Hendler, J. Tate, A (eds) Readings in Planning , pp. 336-360. Kaufmann, San Mateo,

CA.

Gupta, U.J. Lee, D.T. Leung, J.Y. An Optimal Solution for the Channel Assignment Problem.

IEEE Transactions on Computers, C 28 (11): 807-810 (1979)

Golumbic, M.C. Algorithmic Aspects of Perfect Graphs. In.: Annals of Discrete Mathematics.

Vol 21, pp. 301-323(1984)

Giunchiglia, F. Walsh, T. A Theory of Abstraction. Technical Report IRST 9001-14, Istituto

per la Ricerca Scientifica e Tecnologica, University of Trento, Trento, Italy (1990b).

Hart, E.Ross, P. Gavel - a new tool for genetic algorithm visualizationIn.: IEEE Transactions

on Evolutionary Computing, Vol. 5, pp. 335-348.

Haselbock, A. Exploiting Interchangeabilities in Constraint Satisfaction Problems. In.:

proceedings of the 13th International Joint Conference on Artificial Intelligence IJCAI, pp

282-287, Chambery France (1993)

415

J.J Thomas, Khader, A.T. Belaton, B. A Visual Analytics Framework for the Examination

Timetabling Problem. In.: Proceeding of the 5th International Conference on Computer

Graphics, Imaging and Visualization CGIV08, pp. 305-310, August 26-28 (2008).

J.J. Thomas, Khader, A.T. Belaton, B. Information Visualization Approach on the University

Examination Timetabling Problem. In.: Book Visual Information Communication ISBN

978-1-4419-0311-2 pp. 255-264. Springer USA (2009).

Lewis R, Paechter B. (2005a) An empirical analysis of the grouping genetic algorithm: the

timetabling case Evolutionary Computation, 2005. The 2005 IEEE Congress on, pp. 2856-

2863 Vol. 2853.

Lewis R, Paechter B. (2005b) Application of the Grouping Genetic Algorithm to University

Course Timetabling Evolutionary Computation in Combinatorial Optimization, pp. 144-153.

Lewis R, Paechter B, Rossi-Doria O. (2007) Metaheuristics for University Course Timetabling

Evolutionary Scheduling, pp. 237-272.

McCollum B. (2007) A Perspective on Bridging the Gap Between Theory and Practice in

University Timetabling Practice and Theory of Automated Timetabling VI, pp. 3-23.

McCollum. B, P.McMullan, E.K.Burke, A.J.Parkes, R.Qu, A New Model for Automated

Examination Timetabling . In. Endre Boros (eds) Annals of Operational Research, 2008-

accepted.

McCollum, B.: University timetabling: Bridging the gap between research and practice. In:

Burke, E.K., Rudova, H (eds): Proceedings of the 6th International Conference on the

Practice and Theory of Automated Timetabling. 30th August – 1st September 2006, Brno,

Czeh Republic, pp. 15-35 (2006)

McCollum B, Schaerf A, Paechter B, et al. (2009) Setting the Research Agenda in Automated

Timetabling: The Second International Timetabling Competition. INFORMS JOURNAL

ON COMPUTING: ijoc.1090.0320.

Muller, T, Barak, R. Interactive Timetabling: Concepts, Techiniques and Practical Results, In:

Proceedings of the 4th International Conference on the Practice and Theory of Automated

timetabling, pp. 58-72.

Ow, P.S. Smith, S.F. Viewing Scheduling as an Opportunistic Problem-Solving Process,

Annals of Operational Research, vol 12, pp 85-108. (1988)

Piechowiak, A. Ma, J. Mandiau, R. An Open Interactive timetabling Tool, In: Burke, E.K.

Trick, M. (eds) selected papers from the 5th International conference, Pittsburgh 2004,

Springer Lecture Notes in Computer Science, Vol 3616, Springer 2005.

Qu, R, Burke, E., McCollum, B., Merlot, L.T.G Lee, S.Y.: A survey of search methodologies

and automated approaches for examination timetabling. Technical Report No. NOTTCS-

TR-2006-4, School of Computer Science & IT, University of Nottingham (2006)

Rubio, R.G. A Timetable Production System Architecture for Course and Exams. In:

Proceedings of the 5th International Conference on the Practice and Theory of Automated

Timetabling, pp. 342-350.

416

A 5.875-Approximation for the Traveling Tournament
Problem

Stephan Westphal · Karl Noparlik

Abstract In this paper we propose an approximation for the Traveling Tournament Problem
which is the problem of designing a schedule for a sports league consisting of a set of teams
T such that the total traveling costs of the teams are minimized. Thereby, it is not allowed
for any team to have more thank home-games ork away-games in a row. We propose an
algorithm which approximates the optimal solution by a factor of 2+ 2k/n+ k/(n− 1)+
3/n+3/(2· k) which is not more than 5.875 for any choice ofk ≥ 4 andn ≥ 6. This is the
first constant factor approximation fork> 3.

Keywords Sports Scheduling· Traveling Tournament Problem· Approximation Algo-
rithms

1 Introduction

During the last decades professional sports leagues worldwide have turned into million or
sometimes even billion dollar businesses. Soccer in Europe as well as American Football,
basketball, baseball or ice hockey in North America absorb thousands of fans inside the
stadiums and millions of spectators around the world. A crucial contribution to the success
of a season lies in the timetable or schedule of the league which determines what games are
arranged when and at which arenas. Thereby, the planers of those leagues have to balance not
only the expectations of the fans but also many requests stipulated by clubs and TV stations.
Created by hand in the past, nowadays most schedules of professional sports leagues are
obtained by computer-based applications of sophisticated mathematical models and tools.

In this paper we will focus on the Traveling Tournament Problem (TTP) introduced
by Easton et al. [6]. It is a quite well-known and practically difficult optimization problem
inspired by Major League Baseball. North American sports leagues have an incentive to
minimize the travel distance of the participants of a tournament due to the vast expanse of
their continent.

The task of the TTP is to find a schedule for a double round robin tournament (where
each team plays every other team twice: once at its home venue and once at the other team’s

University of Kaiserslautern, Department of Mathematics, P.O.Box 3049, Paul-Ehrlich-Str. 14, 67653 Kaiser-
slautern, Germany.
{westphal, noparlik}@mathematik.uni-kl.de

417

venue) which minimizes the overall travel distance of all teams in a sports league under two
specific constraints.

These constraints are the no-repeater constraint, enforcing that game A-B (B travels to
A’s venue) must not be placed directly after game B-A took place and the restriction on the
number of consecutive home games (home stands) and also on the away games (road trips).
This is due to economical reasons since the supporters might be bored by a too long home
stand a well as impatient during a long road trip.

1.1 Sports Scheduling and the Traveling Tournament Problem

Sports Schedulingin general deals with the design of tournaments. Asingle round robin
tournamenton n teams wheren is an even number consists of (n− 1) days (also called
slots). Each dayn/2 games which are themselves ordered pairs of teams take place. Every
team has to participate at one game per day and must meet every other team exactly once. It
is standard to assumen to be even since in sports leagues withn being odd, a dummy team is
usually introduced and whoever plays it has a day off, which is called abye. Adouble round
robin tournamentonn teams consists of 2(n−1) days and every team must meet every other
team twice: once at its own home venue (home game) and once at the other team’s venue
(away game). A popular policy in practice is to obtain a double round robin tournament
from a single round robin tournament by mirroring, that is repeating the matches of dayk
for k = 1, ...,n−1 on dayk+n−1 with changed home field advantage. Consecutive home
games are calledhome standand consecutive away games form aroad trip. Thelengthof a
home stand or road trip is the number of opponents played (and not the distance traveled).

TheTraveling Tournament Problem (TTP)as introduced in [7] is then defined as follows:

Input:

– a setV = {1,2, . . . ,n} of n teams withn even
– an n× n integer distance matrixD containing the metric travel distances between the

home venues of all teams
– integersL,k

Output: A double round robin tournament onV satisfying:

– The length of every home stand and road trip is betweenL andk inclusive.
– No pair of teams plays both of their matches against each other on two successive time

slots.
– The total distance traveled by all teams is minimized

In this paper, we assume thatL = 1 which is common in literature and means that we
forget aboutL. This assumption is reasonable since it is hard to imagine a sports league
planner who will insist on forbidding home stands or road trips of length 1 when facing his
many conflictive objectives.

418

1.2 Previous Work

So far, most efforts concerning the TTP have led to a variety of algorithms aiming to min-
imize the total distance driven by the teams. Kendall et al. [9] provide a good overview of
the work done on the TTP and sports scheduling in general. Just to mention a very few
examples, hybrid algorithms with constraint programming (CP) exist by Benoist et al. [3]
who additionally use Lagrange relaxation. Easton et al. [7] merge CP with integer program-
ming while Henz [8] combines CP with large neighborhood search. Anagnostopoulos et
al. [1] and Hentenryck and Vergados [14] propose simulated annealing algorithms, whereas
Ribeiro and Urrutia [12] focus on the special class of constant distance TTP where break
maximization is equivalent to travel distance minimization.

The TTP is believed to beNP-hard although to the best of our knowledge no proof
has been published yet. For scheduling single round robin tournaments a rather general and
useful scheme calledcanonical schedulehas been known in sports scheduling literature for
at last 30 years [5]. One can think of the canonical schedule as a long table at whichn
players sit such thatn/2 players on one side face the other players seated on the other side
of the table. Every player plays a match against the person seated directly across the table.
The next day of the schedule is obtained when everyone moves one chair to the right with
the crucial exception that there exists one person at the end of the table who never moves
and always maintains the seat from his or her first day. Note that the canonical schedule only
specifies who plays whom when and not where.

Miyashiro et al. [10] provide a 2+(9/4)/(n−1) approximation for the intensively studied
special casek = 3 by means of theModified Circle Method, a variation of the canonical
schedule. In [15] Yamaguchi et al. obtain an algorithm with approximation ratio (2k−1)/k+
O(k/n) for k≤ 5 and (5k−7)/(2k)+O(k/n) for k> 5. Again they make use of the canonical
schedule, now refined such that the teams are ordered around the ’table’ such that most of
the distances driven are part of a near optimal traveling salesman tour which clearly has
positive effects on the length of many distances traveled. Ask≤ n−1, they showed this way
that a constant factor approximation for any choice ofk andn exists. However, they did not
show how this factor looks like exactly.

1.3 Our Results

Our aim however is to approximate the TTP by a constant ratio for arbitrary choices ofk
andn.

Applying the canonical schedule mentioned above, we choose a specific orientation of
the underlying graph which ensures that home stands and road trips do not contain more than
k matches and for which the total distance traveled is not too long. Whereas it is common
practice to derive the second half of the season by repeating the first half’s games in the
same order but with changed home field advantage, it is not suitable here, as road trips or
home stands might become too long. Thus, we derive the second half in a different way.
Finally, we show that the plan we construct approximates the optimal solution by a factor of
2+2k/n+k/(n−1)+3/n+3/(2·k). For the case ofk = 3 this guarantees an approximation
ratio of 5/2+12/(n−1) which is actually not better than the ratio of Miyashiro et al. cited
above. But for any choice ofk≥ 4 (and thusn≥ 6) this yields an approximation ratio of less
than 5.875, which is the first constant factor approximation fork> 3.

419

2 Lower Bounds

The objective of the TTP, minimizing the total travel distance of all teams during a dou-
ble round robin tournament, can be estimated by various bounds. One of them is called
Independent Lower Bound (ILB) [6] and consists of finding the shortest tour for each team
individually, independent of the other team constraints. (primarily thatB has to be at home
when A visits B during one ofA’s road trips). Finding an ILB is equivalent to solving a
capacitated vehicle routing problem. In this paper we will use an even coarse version of ILB
where we focus only on a traveling salesman tour traversing all venues.

Theorem 1 Letρ be the length of a TSP in G. Every solution of the TTP has a total length
of at least n·ρ.

Proof Every team has to visit all the other teams. Thus, each team has to travel at least a
distance ofρ which gives a total distance ofn ·ρ.

As in [10], we denote the sum of the distances of all ordered pairs of teams as∆ =
∑

i, j∈T d(i, j). Miyashiro et al. [10] showed a lower bound of 2/3·∆ for the objective function
of TT Pwith k= 3. We generalize this result for arbitraryk:

Theorem 2 Every solution of the TTP has a total length of at least2/k·∆.

Proof Consider an arbitrary solution and suppose teami playsl ≤ k consecutive away games
at teamst1, t2, . . . , tl . The distancẽdi driven thereby is

d̃i = d(i, t1)+
l−1
∑

j=1

d(t j , t j+1)+d(tl , i)

Because of the triangle inequality we haved̃i ≥ 2 ·d(i, t j) for all j and thus we have

l · d̃i ≥ 2 ·
l
∑

j=1

d(i, t j) =⇒ d̃i ≥
2
k
·

l
∑

j=1

d(i, t j)

Summing up over all tours driven yields the desired lower bound of 2/k· ∆ for the total
distance driven by the teams in any solution.

3 Construction of the Tournament

For i ∈ V let s(i) :=
∑

j∈V d(i, j) be thestar-weightof i. Since
∑

i∈V s(i)=
∑

i∈V, j∈V d(i, j) = ∆,
there has to be onej ∈ V for which s(i)≤ ∆/n. Let Theu be a tour through all of the teams’
venues which has been found by applying the well known heuristic by Christofides [4].
Therefore, we know that this tour is not more than 1.5 times longer than the shortest possible
tour. We furthermore assume that the teams are named in a way such thatTheu traverses them
in the order 1,2, . . . ,n and thatn is the team with minimum star weight. Given this tour we
construct a solution of the TTP in the following way. Forn= 20 the games of the first two
days of the season are displayed in Figure 1 and 2. The Figures corresponding to other
choices ofn can be derived analogously. A solid arc (u,v) in this digraph means that teamu
is playing against teamv in the arena of teamv. The games of the other days can be derived
analogously by changing the positions of the teams counterclockwise. The only arc which

420

changes its orientation during one half of the season is the arc incident to noden which
changes its orientation everykth match. This way, the season starts for team 4 with a tour
visiting the teams 16,17,18 and 19 before coming home and then playing against the teams
1,2 and 3. Then, it starts offagain to play against 20,5,6,7, and has then a home stand again
consisting of matches against 8,9,10,11. Finally, there is a last road trip including 12 and
13 and a last home stand with 14 and 15. It is clear that no team has home stands or road
trips which are longer thank matches. And it is also clear that every two teams have met
each other during this firstn−1 games.

10

20

19 9 18 8 17 7 16 6 15

5144133122111

Fig. 1 Example for slot 1 withn= 20,k= 4 andl = 2

10

20

19 9 18 8 17 7 16 6

15514413312211

1

Fig. 2 Example for slot 2 withn= 20,k= 4 andl = 2

In order to construct a full tournament, it remains to construct the second half of the
season. If we just repeated the firstn−1 matches with changed locations (changed the ori-
entation of the arcs), we would obtain a solution, in which every pair of teams met twice and
these two games took place at different sites. Furthermore, no half of the season contained a
road trip or a home stand longer thank matches. However, this solution could contain road
trips and home stands being longer thank. For example, the team 4 we considered above
would start into the second half of the tournament with a home stand of length 4 after having
ended the first half with two home stands. In order to get rid of this problem, we start the sec-
ond half with the match of dayn−2, succeeded by the matches of the daysn−1,1,2, . . . ,n−3
in this order. The double round robin tournament obtained this way contains neither road trip
nor home stand longer thank. To see this, assume for the sake of a contradiction that there is
a teamt which has a road trip longer thank. It is clear from construction that no half of the
season completely contains such a tour. Thus, the tour has to include the daysn−1 andn.
In caset has away-games at both of these days, the other matches involving these opponents
will be home-games fort. By construction, these games will take place on the daysn−2 and
n+1 which means that the road trip had only a length of 2, contradicting the assumption.
The case for too long home stands follows along the same lines.

By looking at the figures presented above, one can see that every home stand or road
trip is defined by a set of consecutive arcs pointing in the same direction. We call such a
set of arcs ablock. Furthermore, any orientation of the arcs defining the schedule gives rise
to a feasible schedule, as long as the blocks do not contain more thank arcs. The leftmost
block is not even allowed to contain more thank−1 arcs because of the games teamn is

421

10

20

19

9 18 8 17 7 16 6 15 5

144133122111

Fig. 3 Example for slotn−1 with n= 20,k= 4 andl = 2

10

20

19 9 18 8 17 7 16

6155144133122

11

1

Fig. 4 Example for slotn with n= 20,k= 4 andl = 2

involved in. As long as we obey these rules for the maximum sizes of blocks stated above,
we will always obtain a feasible plan for any choice of orientations of the arcs defining the
tournament.

In the following, we considerk different orientations. The main difference between them
is the width of the rightmost block. Forl ∈ {1, . . . ,k} let Ol be the orientation in which the
rightmost block has widthl, the blocks in the middle all have widthk and the leftmost block
contains the rest (see Figure 5). In case this leads to the leftmost block containing exactly
k arcs, we change the orientation of the edge (u1,v1), such that the arc incident to teamn
cannot prolong the road trips induced by this block to have a length ofk+1 matches. The
left- and rightmost arcs in a block always define the first and the last match of a trip.

4 Costs of the Tournament

In this section we will prove an upper bound for the total length of the tours defined by the
tournament constructed in the previous section.

We assume that every teamt having an away game against teamn will drive home
first before driving to teamn’s site and drives home after having played that match. By
construction,t has a home game before or after that game anyway. We just obtain one more
visit home this way. By the triangle inequality, the costs incurred this way are only higher
than before. Furthermore, we will apply the triangle inequality a second time by assuming
that every team drives home after the last game of the first half if it is not already at home.
Let the nodes of the underlying graph be denoted asu1,u2, . . . ,un/2−2 andv1,v2, . . . ,vn/2−2

(see Figure 5).

v1 v2 v3 v4 . . . vn/2−2 vn/2−1

un/2−1un/2−2. . .u4u3u2u1

Leftmost block Rightmost block

Fig. 5 The blocks defined by the orientationO2

422

In the following we will estimate the distances related to the constructed tournament
separately:

1. Ch - the costs related to home-games of teamn
2. Ca - the costs related to away-games of teamn
3. Cs - the costs related to the first days of the season-halves and the costs of returning

home after the last days of the season-halves
4. Cl - the other costs incurred by the edge (u1,v1)
5. Cr - the other costs incurred by the edge (un/2−1,vn/2−1)
6. Co - the other costs

Ch - The costs related to home-games of team n :Every other team plays against teamn
once. As we can assume by application of the triangle inequality that all teams come from
their home venues to play against teamn and return to their home venues after the game, we
know that the cost incurred thereby is at most

Ch ≤

n−1
∑

i=1

d(i,n)+d(n,i) = 2 · s(n)≤ 2 ·∆/n

where the last follows from the assumption ofn being the node with the smallest star-weight.

Ca - The costs related to away-games of team n:Analogously, to the estimation of the
home-games of teamn, we can upper bound the costs incurred by the away games by first
assuming that teamn always returns home after each away-game. This way, we derive the
same upper bound of 2·∆/n for the costsCaincurred by the away-games of teamn.

Cs - The costs related to the first days of the season-halves and the costs of returning home
after the last days of the season-halves:At the first day of the season,n/2 teams have to
travel to their opponents. We do not consider the game that teamn is involved in, as we
have already taken care of these costs above. So, there aren/2− 1 distances traveled left
which correspond directly to the vertical arcs of Figure 1. After the games of dayn−1 the
first half of the season is over, and we assume that all teams drive home. The second half
of the season starts with the matches which have already taken place at dayn− 2 and it
ends with the second leg of the game of dayn−3. Observe, that the orientation of the arcs
does not have an effect on the total distance driven. It only affects the question who is driving
which is not of interest here. In the example mentioned above, for team 4 these are the teams
16,15,14 and 13. If team 4 did not start the season this way but with a match against team
15, then we would need to consider the distances to the teams 15,14,13 and 12. This way
we obtainn−1 different choices for the first and last trips of the two halves of the season.
Furthermore, it is easy to see that each edge of ({1, . . . ,n−1}×{1, . . . ,n−1}) is part of at most
four of these choices. So, summing up the distances of then−1 different possible choices
for day 1, we obtain a total of at most

n−1
∑

i=1

n−1
∑

j=i+1

4d(i, j) = 2∆−4 · s(n)

So, there has to be a choice for which we can estimate

Cs ≤ 2 · (∆−2 · s(n))/(n−1).

423

Cl - The costs incurred by the edge(u1,v1): As we assumed that every team’s trip to teamn
starts at the home-site and leads back there after the match, there is always a trip ending or
starting with a trip along the edge (u1,v1). Apparently, these are always trips between teams
being neighbors on the heuristically obtained tourTHeu. As these teams will meet in both
halves of the games, the edges have to be counted twice and the cost incurred on that arc can
thus be estimated as

Cl ≤ 2d(n−1,1)+2
n−2
∑

i=1

d(i, i +1)≤ 2 ·d(THeu).

Cr - The costs incurred by the edge(un/2−1,vn/2−1): In the first half of the season, the edge
(un/2−1,vn/2−1) always marks the end of a trip, whereas it stands for the beginning of a trip
in the second half of the season. The costs incurred in both halves together can be estimated
as follows.

Cr = 2 ·

n/2
∑

i=1

d(i, i +n/2−1)+
n
∑

i=n/2+1

d(i, i −n/2)

=

n/2
∑

i=1

(d(i, i +n/2−1)+d(i +n/2−1,i))+
n
∑

i=n/2+1

(d(i, i −n/2)+d(i −n/2,i))

≤

n/2
∑

i=1

opti +

n
∑

i=n/2+1

opti = opt (1)

with opti denoting the length of teami driven in an optimal solution of total lengthopt.
Every possible solution has to contain a trip for any teami ∈ {1, . . . ,n/2}which covers team
i +n/2−1. For the length of this trip is not longer thand(i, i +n/2−1)+d(i +n/2−1,i) and
we can make similar observations for the other teams as well, inequality 1 follows.

Co - The other costs:As already mentioned earlier in this paper, we do not only consider
the orientation of the arcs as displayed in Figures 1 - 3. Instead, we will considerk differ-
ent orientations. The difference between them is the width of the rightmost block, the block
including the arc (un/2−1,vn/2−1) or resp. (vn/2−1,un/2−1). For l ∈ {1, . . . ,k} let Ol be the ori-
entation in which the rightmost block has widthl, the blocks in the middle have widthk
and the leftmost block contains the rest. In case, this leads to the leftmost block containing
exactlyk arcs, we change the orientation of the edge (u1,v1), such that the arc incident to
teamn cannot prolong the road trips induced by this block to have a length ofk+1 matches.

In every half, every teami is associated to one of the nodesv1,v2, . . . ,vn/2−1 exactly
once. When it is associated to nodev j it plays against the team (i+ j −1) mod (n−1)+1
which is associated to nodeu j at that time. In case the edge (uj ,v j) marks the first or the
last game of a road trip in the first or the second half of the tournament, we call this edge
a home-edge(the dashed arcs in Figure 5). If the home-edge corresponds to the beginning
of a trip in the first half of the season, it marks the end of a tour in the second half of
the season. Therefore, the distance associated with this edge is driven exactly twice in the
corresponding tournament. Let us have a closer look at the costs which are being incurred by
teams traveling along the home-edges. Since every direct travel from or toi’s home site can
only happen via exactly one home-edge, and as there are at most two orientations in which
some edge (uj ,v j) is a home-edge, the overall costs incurred by the home edges is at most
2∆. It still remains to estimate the distances traveled which are not from or to the traveling

424

teams’ home sites. A trip which visitsl teams consists of two drives along home-edges and
l −1 drives inbetween. By construction, thesel −1 rides are driven along edges which are
part of the heuristically obtained tourTHeu. Let u j be a node which does not represent the
beginning of a trip. Whenever a teami is assigned to this node, there is another teaml
visiting i after having played an away match at the teami −1, the predecessor ofi in THeu.
Thus, for any nodeu j or v j which does not represent the beginning of a trip, we can estimate
the sum of the distances driven to get to the teams assigned to this node as no more than
d(THeu). Since there are no more thann/2−2 such nodes, the distances driven here are not
more than (n−2)d(THeu).

For there arek different orientations, there has to be one with total distance incurred by
the home-edges not more than

Co ≤
2∆+ (n−2)d(THeu)

k

5 The Approximation ratio

If we choose the parameters in the above mentioned ways, we obtain an approximation ratio
of

Ch+ca+Cs+Cl +Cr +Co

opt

≤
2∆/n+2∆/n+2 · (∆−2s(n))/(n−1)+2 ·d(Theu)+opt+

2∆+(n−2)d(THeu)
k

opt

=
2∆/n+2∆/n+2 · (∆−2s(n))/(n−1)

2/k·∆
+

2 ·d(Theu)
n ·d(Topt)

+1+
2/k·∆
2/k·∆

+
(n−2)/k·d(THeu)

n ·d(Topt)

≤
4∆/n+2 ·∆/(n−1)

2/k·∆
+

3
n
+1+1+

(n−2)/k·3/2·d(TOpt)

n ·d(Topt)

≤
2/n+1/(n−1)

1/k
+

3
n
+2+3/(2·k)

= 2k/n+k/(n−1)+
3
n
+2+3/(2·k)

As k ≤ n−1, this bound cannot be larger than 5+ 3
n +3/(2· k) which is not more than

5.875 fork≥ 4 andn≥ 6.

References

1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A simulated annealing approach to
the traveling tournament problem. In Proceedings CPAIOR’03, Montreal, (2003)

2. Ball, B.C. , Webster, D.B.: Optimal scheduling for even-numbered team athletic conferences. AIIE Trans-
actions, 9:161169, (1977)

3. Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange relaxation and constraint programming collaborative
schemes for traveling tournament problems. In Proceedings CPAIOR’01, Wye College (Imperial College),
Ashford, Kent, UK (2001)

4. Christofides, N.: Worst-case analysis of a new heuristic for the traveling salesman problem. Report 388,
Graduate School of Industrial Administration, CMU (1976)

5. de Werra, D.: Scheduling in Sports. In: P. Hansen, Editor, Studies on Graphs and Discrete Programming,
North-Holland, Amsterdam (1981) 381-395.

425

6. Easton, K., G. Nemhauser, and M. Trick.: The traveling tournament problem: Description and bench-
marks.Lecture Notes in Computer Science2239(2001) 580-585

7. Easton, K., Nemhauser, G., Trick, M.: Solving the traveling tournament problem: a combined integer
programming and constraint programming approach. In E. Burke and P. De Causmaecker, editors, Practice
and Theory of AutomatedTimetabling IV, volume 2740 of Lecture Notes in Computer Science, 100-109.
Springer Berlin/ Heidelberg (2003)

8. Henz, M.: Playing with constraint programming and large neighborhood search for traveling tournaments.
In E. Burke and M. Trick, editors, Proceedings PATAT 2004, 23-32 (2004)

9. Kendall ,G., Knust, S., Ribeiro, C. C., Urrutia, S.: Scheduling in Sports: An Annotated Bibliography.
Computers & Operations Research, 37, 1-19 (2010)

10. Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling tournament prob-
lem. The 7th International Conference on the Practice and Theory of Automated Timetabling (PATAT 2008)

11. Rasmussen, R.V., Trick, M.A.: Round robin scheduling - a survey. European Journal of Operational
Research 188 (2008), 617-636

12. Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. European Journal
of Operational Research, volume 179 number 3, 775-787 (2007)

13. Trick, M.: Challenge Traveling Tournament Instances (2009),http://mat.gsia.cmu.edu/TOURN/

14. van Hentenryck, P., Vergados, Y.: Traveling tournament scheduling: A systematic evaluation of simulated
annealing. In J.C. Beck and B.M. Smith, editors, Integration of AI and OR Techniques in Constraint Pro-
gramming for Combinatorial Optimization Problems, volume 3990 of Lecture Notes in Computer Science,
228-243. Springer Berlin/ Heidelberg, (2006)

15. Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation algorithm for the
traveling tournament problem. Mathematical Engineering Technical Report, METR09-42, Department of
Mathematical Informatics, Graduate School of Information Science and Technology, The University of
Tokyo (2009)

426

Comparison of Algorithms solving School and Course
Time Tabling Problems using the Erlangen Advanced
Time Tabling System (EATTS)

Peter Wilke · Helmut Killer

Abstract Seven algorithms are applied to two common time tabling problems: school

and course time tabling. The algorithms were implemented using the EATTS (Erlangen

Advanced Time Tabling System) which allows to compare and evaluate the algorithms

regarding their performance and ability to solve the problems.

Keywords Great Deluge · Harmony Search · Simulated Annealing · Genetic

Algorithms · Tabu Search · Immune System · Real World Problems · EATTS ·
Erlangen Advanced Time Tabling System

1 Introduction

Recently we had to deal with two real world problems, namely school and course time

tabling, and jumped on this opportunity to investigate regarding their ability and

performance to solve the given problems. All algorithms have been implemented using

the current version of EATTS (Erlangen Advanced Time Tabling System [Wil10]), to

allow comparison and evaluation.

2 The Problems

2.1 School 2009 Time Tabling

The data for our School 2009 time tabling problem represents an existing school with

students from year 1 to 10. In this scenario the classes and their subjects are given,

while class rooms and time slots have to be assigned to the events. Teachers can be

assigned fixed to class/subject pairs, but don’t have to. Here it is sufficient that one

student represents the entire class, details given in table 1.

Peter Wilke
Universitaet Erlangen-Nuernberg, Department Informatik, Martensstrasse 3, 91058 Erlangen,
Germany
Ph.: +49 (9131) 85-27998
E-mail: Peter.Wilke@Informatik.Uni-Erlangen.DE Helmut Killer
E-mail: Helmut.Killer@gmx.DE

427

Events: 178
Resources of type TimeSlot: 81
Resources of type Class: 14
Resources of type Student: 14
Resources of type Teacher: 28
Resources of type Room: 37
Resources of type Subject: 78
Resources of type Asset: 0
Resources of type LessonProperties: 178
Resources of type Building: 1
Resources: 431
Resources to be assigned: 118

Number of possible solutions: > 10439

Table 1 The main characteristics of the School 2009 example

2.2 MuT 2009 courses at a university

Our university organises a girl-and-technology (in german:
”
Maedchen und Technik“,

abbreviated MuT) week each year to attract more female students to technical subjects.

In this scenario the tutors and time slots for the events are fixed while students (not

classes) have to be assigned to the project of their choice, details given in table 2.

Events: 229
Resources of type TimeSlot: 57
Resources of type Subject: 52
Resources of type Girl: 170
Resources: 279
Resources to be assigned: 170

Number of possible solutions: > 10656

Table 2 The main characteristics of the MuT 2009 example

3 Algorithms

The following algorithms were implemented:

– Genetic Algorithms

– Immune System

– Harmony Search

– Tabu Search

– Simulated Annealing

– Great Deluge

– Walk Down Jump Up

Table 3 shows the used algorithms and their main characteristics, indicated by a

mark in the corresponding row. The characteristics are:

428

population In each iteration one or more solution candidates are produced and sub-

stitute older solutions.

trajectory In each iteration only one solution candidate exists.

history The algorithms depends (at least partial) on its history of computational

steps.

limit At each step of the computation the limit, which may vary during the computa-

tion, determines if the newly generated solution is accepted as new current solution

candidate.

round based In each round, i.e the iteration step, one or more solutions are generated,

but only one solution is selected for the next iteration step.

references For detailed information about the algorithms please consider the recom-

mended bibliographic references for reading.

p
o
p
u

la
ti

o
n

tr
a

je
ct

o
ry

h
is

to
ry

li
m

it

ro
u

n
d

b
a
se

d

re
fe

re
n

ce
s

Genetic Algorithms x [Gol89,GD91,Whi89,Sys91,BT95a,
BT95b]

Immune System x x [MKM06]
Harmony Search x [ABKG08,Gee09]
Tabu Search x x x [GS01,KH05]
Simulated Annealing x x x [Hel04,vL87,FSAPMV08]
Great Deluge x x x [BBNP04]
Walk Down Jump Up x x [Kil09,WK10]

Table 3 Used Algorithms and their characteristic properties

All algorithms were implemented using the EATTS Erlangen Advanced Time Tab-

ling System framework and all runs were performed using computers as specified in

table 4.

The following results are achived with sequential versions for Simulated annealing,

Great Deluge, Walk Up Jump Down, while parallel versions were used for Genetic

Algorithm, Harmony Search, Immune System and Tabu Search. All experiments were

run on the same computer so results are comparable.

Two different setups for the experience where used. One setup was designed to

achieve the fastest reduction of costs. The other setup was used to see the long term

improved behaviour of the algorithms, e.g. does the algorithms profit form excessive

computation. Both setups starts with randomly generated initial solutions.

3.1 Simulated Annealing

Basically Simulated Annealing maps the cooling down process of matter to optimization

problems. The standard version uses an acceptance probability function which is fixed

during cool down, in our implementation we allow modifications of this function over

time, i.e. the probability of making the transition from the current state s to a candidate

429

QuadCore DuoCore

CPU: Intel Core4Quad 2.8 GHz Intel Core2Duo 3,0 GHz
RAM: 8 GB 4 GB
OS: Debian Linux Kernel 2.6 x86-64 Suse Linux Kernel 2.6 i686
JVM: Java 6 32 Bit Server JVM Java 6 32 Bit Server JVM

Table 4 Specs of the computers used

new state s’ is specified by the acceptance probability function P(e,e’,T,t), that depends

on the energies e = E(s) and e’ = E(s’) of the two states, on a global time-varying

parameter T called the temperature, and the time t representing the time spend on

the cooling process so far. In our simulations we used this parameter to adapt the

temperature decrease on the maximum available time to cool down, i.e. the temperature

always reaches it’s minimum when the computation deadline is reached.

The performance of Simulated Annealing can be characterized as a slow starter

but winner, see fig. 9. It’s clearly visible that Simulated Annealing reduces the costs

slower than all other algorithms except Great Deluge, which is designed to perform in

an linear manner, see section 3.6.

Fig. 1 shows the details of the descent of the costs. The dots show the current

solutions under review and the line indicates the current best solution. The gap between

the dots and the line is the middle range of a distribution of solutions. The ranges is

determined by an acceptance criteria (upper limit) and the current best solution (lower

limit).

Remark: To make results more easily to interpret the x-axis (time) in the perfor-

mance plots has been scaled to extend phases of fast decline and to condense phases

of stagnation.

Experiments with parallel versions of the Simulated Annealing algorithms haven’t

shown sufficient results and will be subject to a closer investigation.

The starting temperature is chosen randomly as part of the random initial solution.

Cooling rate was initialy 0.99 and was adapted linearly to reach 0.0 at the end of the

given computation time.

3.2 Tabu Search

Tabu Search algorithm is trajectory based but can effectively be computed using multi

threading because for the calculation of a new solution at first a set of neighbours is

calculated and evaluated and this can be done in parallel. The best speed up is achieved

when the number of threads matches the number of available cores respectively CPUs.

On a Core2Quad CPU 19.4 iterations/second are computed when only one core is used,

the multi-threading version achieves 45.3 iterations/second yielding a speed up factor

of 2.33.

Fig. 2 shows the details when Tabu Search solves the MuT 2009 example. In contrast

to the nearly evenly solution candidate distribution of Simulated Annealing here the

solution candidates are concentrated near the currently best solution.

The size of the tabu list was 40, 200 neighbours were generated in each step and

the champion was the initial solution of the next iteration.

430

40000

36000

32000

28000

24000

20000

16000

12000

8000

4000

0

10000850070005500400025002000150010005000

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 1 Simulated Annealing solving the School 2009 problem

33000

29800

26600

23400

20200

17000

13800

10600

7400

4200

1000

1000080206040406020801008 06 04 02 00

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 2 Tabu Search solving the MuT 2009 problem

3.3 Genetic Algorithm

In our implementation all genetic operators have a complement operator, which re-

verses the effect of the operator. This speeds up the computation because it enables

multiple operator applications. A crossover requires significant more computing time

than a mutation, therefore reversal of a mutation leading to a lethal chromosome af-

ter a successful crossover avoids the waste of the time spend for the crossover. So

our implementation reverses all genetic operations when they don’t lead to a better

solution.

Genetic Algorithms are population based and therefore a good candidate for parallel

computation. We implemented an Island Ferry concept [CP95] which we optimized for

use on multi-core CPUs. For each CPU core a genetic algorithm instance is started and

431

all instances exchange their best solutions periodically over time, so all populations

reach the current global lowest cost value.

Fig. 3 shows the usual descent of a Genetic Algorithm with its typical plateaus.

Experiments were run with population sizes of 10 or 100, approx. half of the pop-

ulation is replaced in each generation. A two-point cross-over and a mutation rate of

0.005 was used.

39000

35100

31200

27300

23400

19500

15600

11700

7800

3900

0

3200025664193281299266563202561921286 40

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 3 Genetic Algorithm solving the School 2009 problem

3.4 Harmony Search

We first modified the original Harmony Search algorithm to allow variants with a wider

bandwidth as suggested by [MFD07]. But the results were disappointing. Better results

were achieved when stagnation was dissolved using randomly generated parameter

values or chosen from an interval (shake).

In each iteration Harmony Search generates a new solution which can be post-

processed by the same hybrid operators as used in Genetic Algorithms.

Harmony Search can be computed in threads, but the threads depend on the same

Harmony Memory. The number of threads should match the number of cores/CPUs,

otherwise threads sharing a core/CPU will fall behind the other threads and produce

solution candidates which are based on outdated versions of the Harmony Memory.

This means that precious computing time is dissipated.

Fig. 4 shows a rapid decline in the first seconds followed by a much smoother

and slower descent, a quite different behaviour compared to the other algorithms.

This nearly 90 degree turn is an extreme example but in all our Harmony Search

experiments similar turns were observed. The parameters used were Harmony Memory

Consideration Rate 0.99, Pitch Adjusting Rate PAR 0.01, Harmony Memory Size HMS

10 or 100, bandwidth = 0.1.

432

33000

29800

26600

23400

20200

17000

13800

10600

7400

4200

1000

3200025664193281299266563202561921286 40

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 4 Harmony Search solving the MuT 2009 problem

3.5 Immune System

The original Immune System suggests three variants: clonal selection, immune network

and negative selection. Best results on our problems were achieved using the negative

selection variant which basically eliminates candidates (so called detectors) with fitness

under the mean fitness value of the population.

Because Immune System is population based it is a good candidate for multi

threaded computation. The detectors can be generated and evaluated in parallel be-

cause they don’t depend on each other. The main algorithm wait until all detectors are

generated and evaluated, therefore it is recommended for efficiency reasons to generate

generators in numbers which are multiples of the number of available cores/CPUs.

Fig. 5 shows a remarkable pattern in the distribution of solution candidates. Three

clearly distinct bands are visible: the first close above the champion, the second a short

gap above the first and a very thin third quite far away from the other two. The first

two bands represent the candidates below/above the mean fitness.

Fig 6 shows even more bands. The gap between the bands corresponds to the given

penalty cost. The line indicating the drops down immediately after start and is stable

for the rest of the run.

For Immune System a population size of 10 or 100 was used and approx. half of

the population was replaced in each iteration. Parameters were maxMultiMoves 10.0,

Multimove tweak, allEqualFactor 1.1, all equal tweak.

3.6 Great Deluge

The original Great Deluge algorithm has a linear descending limit. Generated solutions

with cost above this limit are rejected and below are accepted. The best solution is

always saved. A small modification is the introduction of a best solution backup. When

current solution cost can’t get below the limit for a certain amount of time, the saved

best solution can be restored if it has lower cost, so the algorithm is revived.

433

Fig. 5 Immune Systeme solving the MuT 2009 problem

39000

35100

31200

27300

23400

19500

15600

11700

7800

3900

0

200001604012080812041602001601208 04 00

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 6 Immune System solving the School 2009 problem

Fig. 7 shows the behaviour of Great Deluge in detail. The line indicates the best

solution while the dots represent solution candidates. The sharp edge on top of the

solution cloud is due to the limit function.

The linear decreasing rate was adopted to the expected runtime, i.e. initial cost

divided by runtime in seconds giving the value to be subtracted in each step.

3.7 Walk Down Jump Up Algorithm

Walk Down Jump Up [WK10,Kil09] combines hill climbing, jump operator and Great

Deluge. It begins with an initial random solution and starts it’s descent until a local

434

34000

31200

28400

25600

22800

20000

17200

14400

11600

8800

6000

320002880025600224001920016000128009600640032000

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 7 Great Deluge solving the MuT 2009 problem

minimum is reached. Then the jump operator is used to set an higher acceptance limit,

i.e. all newly generated solutions with costs below this limit are accepted and each

following iteration will decrease this limit until a new local minimum is reached. If the

new local minimum is not better than the old one the height of the jump is increased,

otherwise the search continues from the newly found local minimum and jump height

is reset. A small modification is best solution backup, when current solution reached a

local minimum which is above best solution, then best solution is restored before next

jump.

Walk Down Jump Up is trajectory based and again therefore multi threading is

not really straight forward. Because the Jump Up operator can jump pretty far even

if the current solution is quite good it males sense to start the Walk Down Jump Up

algorithm on all available cores/CPUs and use the Island Ferry mechanism to exchange

the best solutions.

Fig. 8 shows details of the performance. Walk Down Jump Up has a very steep

descent phase of approximately 200 seconds at the very beginning followed by a long

stagnation phase for the rest of the 20.000 seconds run.

4 Summary

The performance of all 7 algorithms applied to the 2 real world problems is shown in fig.

9. The diverse nature of the problems has different impacts on the algorithms. While

the Immune System algorithms is leading head on head with Simulated Annealing and

Walk Down Jump Up when solving the MuT 2009 example, is comes in second to last

when solving the School 2009 example. Great Deluge shows excellent performance on

the School 2009 example, but is extremely bad on the MuT 2009 example.

Table 5 resp. 6 show the results achieved in 10 hours.

While all algorithms except the Great Deluge algorithm show nearly equal perfor-

mance, the situation for the School 2009 example is quite heterogeneous. Here the field

is lead by Walk Up Jump Down, Great Deluge and Simulated Annealing, a mid field

435

21000

19000

17000

15000

13000

11000

9000

7000

5000

3000

1000

200001604012080812041602001601208 04 00

time in seconds

p
e
n
a
l
t
y

p
o
i
n
t
s

best cost

current cost

Fig. 8 Walk Down Jump Up solving the MuT 2009 problem

consisting of Genetic Algorithm and Harmony Search, and trailed by Immune System

and Tabu Search.

MuT 2009 for 10h solved final cost stagnation after

Genetic algorithm yes 2216 6h:6m
Great Deluge no 7300 no
Harmony Search yes 2196 9h:42m
Immune System yes 2142 1h:48m
Simulated Annealing yes 2130 2h:56m
Tabu Search yes 2273 2h:5m
WalkDownJumpUp yes 2138 4h:6m

Table 5 Comparison of all 10h runs for the MuT 2009 problem

School 2009 for 10h solved final cost stagnation after

Genetic algorithm no 628 9h:56m
Great Deluge yes 256 4h:57m
Harmony Search yes 319 9h:18m
Immune System no 1055 5h:5m
Simulated Annealing yes 206 1h:10m
Tabu Search no 1182 0h:0m:5s
WalkDownJumpUp yes 278 0h:12m

Table 6 Comparison of all 10h runs for the School 2009 problem

A closer look on the time available for the computation shows that two algorithms,

namely Genetic Algorithm and Harmony Search, can profit from additional computing

time, while the others don’t improve their costs significantly relative to the solutions

436

found after only 10 seconds, but the hard constraints become fulfilled, so the solutions

become ”more and more” valid. This observation is true for both examples.

Overall winner is Simulated Annealing, best results and least expensive runtime

costs make this algorithm the best choice for the given problems.

Fig. 9 Performance of all algorithms solving the MuT-Problem over 5 hours

Fig. 10 Performance of all algorithms solving the School-Problem over 5 hours

5 Conclusion

The investigations have shown that it is a good idea to test several algorithms on their

ability to solve a given problem, even if the problems look quite similar.

Future work will be the extension of our database of problem descriptions and

implementation of additional algorithms.

437

Fig. 11 All algorithms and their performance on the MuT 2009 example

Fig. 12 All algorithms and their performance on the School 2009 example

Acknowledgements We would like to thank all our colleagues at EATTS for their support
and special thanks to Dimo Korsch, Sabine Helwig, Johannes Ostler for their contributions to
the implementation and test of the EATTS algorithms toolbox.

References

[ABKG08] Mohammed Azmi Al-Betar, Ahamad Tajudin Khader, and Taufiq Abdul Gani.
A harmony search algorithm for university course timetabling. 2008.

[BBNP04] Edmund Burke, Yuri Bykov, James Newall, and Sanja Petrovic. A time-
predefined local search approach to exam timetabling problems. 2004.

[BM10] E. Burke and Barry McCollum, editors. Springer Lecture Notes in Computer
Science. Springer-Verlag, 2010.

[BT95a] Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in
genetic algorithms. TIK-Report, 11, 1995.

438

[BT95b] Tobias Blickle and Lothar Thiele. A mathematical analysis of tournament se-
lection. Genetic Algorithms: Proceedings of the 6th International Conference,
1995.

[CP95] E. Cantu-Paz. A summary of research on parallel genetic algorithms. Technical
Report 95007, IlliGAL Report, 1995.

[FSAPMV08] Juan Frausto-Solis, Federico Alonso-Pecina, and Jaime Mora-Vargas. An effi-
cient simulated annealing algorithm for feasible solutions of course timetabling.
In MICAI 2008: Advances in Artificial Intelligence, volume 5317 of Lecture
Notes in Computer Science, pages 675–685. Springer Berlin / Heidelberg, 2008.
ISBN 978-3-540-88635-8.

[GD91] David E. Goldberg and Kalyanmoy Deb. A comparative analysis of selection
schemes used in genetic algorithms. Foundations of Genetic Algorithms, pages
69–93, 1991.

[Gee09] Zong Woo Geem, editor. Music-Inspired Harmony Search Algorithm: Theory
and Applications. 2009.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

[GS01] Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination
timetabling. In Practice and Theory of Automated Timetabling III, volume
2079 of Lecture Notes in Computer Science, pages 104–117. Springer Berlin /
Heidelberg, 2001. ISBN 978-3-540-42421-5.

[Hel04] Sabine Helwig. Erweiterung eines frameworks für zeitplanungsprobleme. Mas-
ter’s thesis, Universität Erlangen–Nürnberg, 2004.

[KH05] Graham Kendall and Naimah Mohd Hussin. An investigation of a tabu-search-
based hyper-heuristic for examination timetabling. In Multidisciplinary Schedul-
ing: Theory and Applications, pages 309–328. Springer US, 2005. ISBN 978-0-
387-25266-7 (Print) 978-0-387-27744-8 (Online).

[Kil09] Helmut Killer. Entwurf und implementierung von algorithmen für zeitpla-
nungsprobleme. Master’s thesis, Universität Erlangen-Nürnberg, Germany, 2009.

[MFD07] M. Mahdavi, M. Fesanghary, and E. Damangir. An improved harmony search
algorithm for solving optimization problems. 2007.

[MKM06] Muhammad Rozi Malim, Ahamad Tajudin Khader, and Adli Mustafa. Artificial
immune algorithms for university timetabling. 2006.

[Sys91] G. Syswerda. A study of reproduction in generational and steady-state genetic
algorithms. Foundations of Genetic Algorithms, pages 94–101, 1991.

[vL87] Peter J.M. van Laarhoven. Simulated annealing. D. Reidel Publishing Company,
1987.

[Whi89] Darrell Whitley. The genitor algorithm and selection pressure. Proceedings of the
Third International Conference on Genetic Algorithms, pages 116–121, 1989.

[Wil10] Peter Wilke. The Erlangen Advanced Time Tabling System (EATTS) Version
5. In Burke and McCollum [BM10], page submitted.

[WK10] Peter Wilke and Helmut Killer. Walk Up Jump Down - a new Hybrid Algorithm
for Time Tabling Problems. In Burke and McCollum [BM10], page submitted.

439

Walk Down Jump Up - a new Hybrid Algorithm for Time
Tabling Problems

Peter Wilke · Helmut Killer

Abstract A new trajectory time tabling algorithm is introduced. Because of it’s na-

ture the algorithm is called Walk Down Jump Up. The algorithm is described in a

basic version and an advanced version. The performance of the algorithm when solving

two real world problems is discussed.

Keywords timetabling · hybrid algorithm · time tabling algorithm · walk-down-

jump-up

1 Introduction

Working with school or course time tabling problems leads to the usual ”suspects” like

Simulated Annealing, Tabu Search or Genetic Algorithms. If the achieved results are

not acceptable then variants of these algorithms come into play trying to tailor the

algorithm to fit the problem even better.

Here we would like to introduce a hybrid algorithm which is inspired by hill climb-

ing, jumps and Simulated Annealing variants like Great Deluge [BBNP04].

Our algorithm is divided in two phases: first costs are reduced with a fast descending

acceptance rate, second on stagnation the acceptance rate is increased at one go by

a certain amount and phase one starts again and so on. That’s why it is called Walk

Down Jump Up.

Peter Wilke
Universitaet Erlangen-Nuernberg, Department Informatik, Martensstrasse 3, 91058 Erlangen,
Germany
Ph.: +49 (9131) 85-27998
E-mail: Peter.Wilke@Informatik.Uni-Erlangen.de
Helmut Killer
E-mail: Helmut.Killer@gmx.de

440

2 Walk Down Jump Up Algorithm

Walk Down Jump Up is a trajectory based local search algorithm. Overall idea of

the algorithm is based on changes of the acceptance rate. The idea for the algorithm

comes on one hand from observing hillclimbing algorithm where only new solutions

with better or equal costs than previous solution are accepted. Hillclimbing can reduce

costs fast but then gets stuck in stagnation. On the other hand the idea is inspired

by Great Deluge algorithm where new solutions are accepted when costs are below a

falling cost limit. When the cost limit falls too fast then there will be stagnation, if

it falls too slow no acceptable solution will be found in the estimated time. So our

conclusion was that the acceptance rate should fall fast and on stagnation where all

neighbour solutions to current solution have higher costs, it is necessary to set the

acceptance limit to far above this surrounding cost values, so that it can jump up to a

more far away solution and walk down to a new stagnation cost value that is hopefully

lower than the stagnation cost before. The image in mind is that of the moon surface

where many sinkholes exist and the task is to find one of the lowest. The astronaut

walks down into the crater until lowest position is reached, then he jumps up above

the border and tries to walk down into another crater which is hopefully deeper and

so on.

2.1 Algorithm workflow

At the beginning an initial solution is generated randomly. At this stage the current

best solution is equal to the initial solution and the jump distance is set to zero. Now a

loop begins, if the solution isn’t good enough. A new solution is generated by modifying

the current solution using certain random move operators. If new solution has better or

equal costs it is accepted and solutions with costs worse than the current solution are

rejected. This leads typically to a local minimum and a stagnation phase. To get out

of this trap the jump operator is enabled. When it is applied the threshold of accepted

solution is increased from the costs for the current solution to a temporary limit. This

limit is calculated by multiplying the current costs with an integer jump factor. After

the Jump Operator is enabled the limit is decreased with every new iteration step

by 1. If stagnation occurs again the current costs are compared with the costs of the

last stagnation phase. If they are better, the solution is saved as new best solution, if

they are worse but costs are in the same ball park as before, the search is continued

according to the cost distance up to 10 times longer to finally yet get a better cost

value. If the costs are still worse the jump factor is increased and the jump operator is

applied again. Fig. 1 shows the control flow of the algorithm.

2.2 Random move operators

In each step the Walk Down Jump Up algorithm modifes current solution randomly

to get a new solution with hopefully better costs. The initial solution is a random

assignment of resources like students, teachers, rooms and timeslots to events. Modi-

fication of such solution means ressources are randomly assigned to or removed from

some events, or directly exchanged. This leads to conflicts between the resources and

441

no

best_cost = calculate_cost(solution)

move = modify(solution)

current_cost = calculate_cost(solution)

initialize(solution)
jump_height = 0
jump_factor = 1

reset(move, solution)

current_cost < (best_cost + jump_height) ?

no

yes

reset(stagnation_limit)
jump_height = jump_height - 1

best_cost = current_cost
jump_factor = 1

stagnation_limit reached ?

yes

current_cost < best_cost ?

no

yes

jump_height = best_cost * jump_factor
jump_factor = jump_factor + 1

If cancel_criterion_fulfilled EXIT

Fig. 1 Flow chart showing Walk Down Jump Up algorithm

violates constraints which increase solution costs or solves conflicts and satisfies con-

straints like ”compact time table” which leads to lower costs. In one algorithm step

only very few events are changed by a move operator and after cost evaluation the

move is accepted or discarded.

2.3 Advanced Version - intelligent jump height

In the basic version of Walk Down Jump Up algorithm the jump height factor is

increased by one after every walk down whose final cost is worse than before. This

leads to more higher jumps after every algorithm walk down until new best cost is

reached and jump height is reset to one. In the advanced version of the algorithm

the jump height values which were successful are saved in a history list. When a new

jump height has to be determined, the jump height factor is chosen randomly from

the history list or a random value between 1 and the specified maximum jump height

factor that is e.g. 10 times current cost value. The experiments show that the advanced

version is able to reach better final costs than basic version.

442

3 Experiments and Results

Walk Down Jump Up was developed when we worked on two real world problems,

namely school timetabling and univerity course time tabling. Walk Down Jump Up

has been implemented using the current version of EATTS (Erlangen Advanced Time

Tabling System [Wil10]). Because also many other algorithms like Simulated Annealing,

Genetic Algorithm and Tabu Search are available in EATTS the algorithm performance

can easily be compared.

3.1 The Problems

3.1.1 School 2009 Time Tabling

The data for our School 2009 time tabling problem represents an existing school with

students from year 1 to 10. In this scenario the classes and their subjects are given,

while class rooms and time slots have to be assigned to the events. Teachers can be

assigned fixed to class/subject pairs, but don’t have to. Here it is sufficient that one

student represents the entire class, details given in table 1. Beside calculating a feasible

solution the main constraint is to also generate a timetable as compact as possible.

Events: 178
Resources of type TimeSlot: 81
Resources of type Class: 14
Resources of type Teacher: 28
Resources of type Room: 37
Resources of type Subject: 78
Resources of type LessonProperties: 178

Table 1 The main characteristics of the School 2009 example

3.1.2 MuT 2009 courses at a university

Our university organises a girl-and-technology (in german: ”Maedchen und Technik”,

abbreviated MuT) week each year to attract more female students to technical subjects.

In this scenario the tutors and time slots for the events are fixed while students (not

classes) have to be assigned to the project of their choice, details given in table 2. Each

student has a list of 4 preferred courses and can declare 4 friends with whom she wants

to share the same courses.

Events: 229
Resources of type TimeSlot: 57
Resources of type Subject: 52
Resources of type Girl: 170

Table 2 The main characteristics of the MuT 2009 example

443

3.2 Results

Figure fig. 2 shows the performance when solving the MuT 2009 problem. The red line

indicates the current best solution, while the green dots show current solution, which

can be worse then the best solution because of the jump operator and/or the random

changes made to find new solutions. When the runtime is limited to 1 second Walk

Down Jump Up shows a fast descent of costs followed by a long phase of slow descent.

When applied to the MuT 2009 problem Walk Down Jump Up performed equally

good to Simulated Annealing [vL87,FSAPMV08] and slightly better than Tabu Search

[GS01,KH05] and Immune Systems [MKM06].

On the School 2009 problem Walk Down Jump Up achieved the best results together

with Harmony Search [ABKG08,Gee09], Simulated Annealing, Great Deluge [BBNP04]

when long runs, i.e. several hours, are evaluated. On short runs, i.e. several seconds,

Walk Down Jump Up was head on with Tabu Search and Great Deluge, but all three

were outperformed by Simulated Annealing. For a more detailed comparison of Walk

Down Jump Up with six other algorithms see [WK10]

4 Conclusion

Walk Down Jump Up has proven that it is able to solve real world problems efficient

and effective. But the results have also shown that there is still room for improvements.

References

[ABKG08] Mohammed Azmi Al-Betar, Ahamad Tajudin Khader, and Taufiq Abdul Gani.
A harmony search algorithm for university course timetabling. 2008.

[BBNP04] Edmund Burke, Yuri Bykov, James Newall, and Sanja Petrovic. A time-
predefined local search approach to exam timetabling problems. 2004.

[BM10] E. Burke and Barry McCollum, editors. Springer Lecture Notes in Computer
Science. Springer-Verlag, 2010.

[FSAPMV08] Juan Frausto-Solis, Federico Alonso-Pecina, and Jaime Mora-Vargas. An effi-
cient simulated annealing algorithm for feasible solutions of course timetabling.
In MICAI 2008: Advances in Artificial Intelligence, volume 5317 of Lecture
Notes in Computer Science, pages 675–685. Springer Berlin / Heidelberg, 2008.
ISBN 978-3-540-88635-8.

[Gee09] Zong Woo Geem, editor. Music-Inspired Harmony Search Algorithm: Theory
and Applications. 2009.

[GS01] Luca Di Gaspero and Andrea Schaerf. Tabu search techniques for examination
timetabling. In Practice and Theory of Automated Timetabling III, volume
2079 of Lecture Notes in Computer Science, pages 104–117. Springer Berlin /
Heidelberg, 2001. ISBN 978-3-540-42421-5.

[KH05] Graham Kendall and Naimah Mohd Hussin. An investigation of a tabu-search-
based hyper-heuristic for examination timetabling. In Multidisciplinary Schedul-
ing: Theory and Applications, pages 309–328. Springer US, 2005. ISBN 978-0-
387-25266-7 (Print) 978-0-387-27744-8 (Online).

[MKM06] Muhammad Rozi Malim, Ahamad Tajudin Khader, and Adli Mustafa. Artificial
immune algorithms for university timetabling. 2006.

[vL87] Peter J.M. van Laarhoven. Simulated annealing. D. Reidel Publishing Company,
1987.

[Wil10] Peter Wilke. The Erlangen Advanced Time Tabling System (EATTS) Version
5. In Burke and McCollum [BM10], page submitted.

[WK10] Peter Wilke and Helmut Killer. Comparison of Algorithms solving School and
Course Time Tabling Problems using the Erlangen Advanced Time Tabling Sys-
tem (EATTS). In Burke and McCollum [BM10], page submitted.

444

(a) Walk Down Jump Up on MuT 2009 with runtime 1 second

MuT 2009

0

2000

4000

6000

8000

10000

12000

10 seconds 10 minutes 10 hours
Run Time

P
e

n
a

lt
y
 P

o
in

ts

Genetic Algorithm Immune System Harmony Search

Simulated Annealing Tabu Search Great Deluge

Walk Down Jump Up

(b) Walk Down Jump Up on MuT 2009 with runtimes 10 second, minutes, hours

Fig. 2 Walk Down Jump Up solving the MuT 2009 example

445

(a) Walk Down Jump Up on School 2009 with runtime 1 second

School 2009

0

1000

2000

3000

4000

5000

6000

7000

8000

10 seconds 10 minutes 10 hours Run Time

P
e
n
a
lt
y
 P

o
in

ts

Genetic Algorithm Immune System Harmony Search

Simulated Annealing Tabu Search Great Deluge

Walk Down Jump Up

(b) Walk Down Jump Up on School 2009 with runtimes 10 second, minutes, hours

Fig. 3 Walk Down Jump Up solving the School 2009 example

446

The Erlangen Advanced Timetabling System (EATTS)
Unified XML File Format for the Specification of
Timetabling Systems

Johannes Ostler · Peter Wilke

Abstract It would be nice if all timetabling problems could be described in a canonical

and universal description language with standardized syntax. If such a description

would be available algorithms and/or frameworks could be used to interpret and/or

compile these descriptions, and solve the problem at stake. And systems, algorithms,

problems, etc. could be compared in a simple way.

Here we would like to suggest to step towards a standard, a XML format to define a

great number of different problems like Course Timetabling, High School Timetabling,

Employee Timetabling et cetera. In addition tools to edit these descriptions and to

apply algorithms to solve the described problem.

Keywords EATTS · Erlangen Advanced Timetabling System · XML · Benchmarks ·
File Format · Standard · Timetabling Systems · Timetabling Problems

1 Introduction

A common and widely accepted description format for timetabling problems and its so-

lution would be a great help when algorithms and/or frameworks are compared. When

looking at the literature there are description formats but they are too specific and

can’t be used for general problems. The narrow focused system evolved due to historic

reasons, specific domain properties or efficiency reasons, e.g. very often these descrip-

tion are incomplete because part of the problem is hard coded in the implementation.

In the year 2003 our research group published a approach for a unified timetabling

framework and format [GWB03]. In the following years we continued this work and

would like to suggest the next version of our description format.

Johannes Ostler
Universitaet Erlangen-Nuernberg, Informatik 5, Martensstrasse 3, 91058 Erlangen, Germany
Tel.: +49 (9131) 85-27998
E-mail: Johannes.Ostler@Informatik.Uni-Erlangen.DE

Peter Wilke
Universitaet Erlangen-Nuernberg, Informatik 5, Martensstrasse 3, 91058 Erlangen, Germany
Tel.: +49 (9131) 85-27998
E-mail: Peter.Wilke@Informatik.Uni-Erlangen.DE

447

2 Existing XML format for High School Timetabling Problems

There are some approaches on standardization of formats to define timetabling prob-

lems of a certain problem type. Especially the standardized format for benchmarks

in High School Timetabling [PAD+08] is interesting. In that paper a way is shown

to give a unified format for High School Timetabling problems of different countries.

The purpose is to provide a format for benchmark data interchange between indepen-

dent groups of researchers. ”The students are organized in base groups, and follow

lessons. The lessons of a (usually fixed) group of students in the same subject (like

math, arts, ...), usually with the same teacher, we will call a course.”[PAD+08, p.

3] Students, teachers and rooms are the three main groups of resources. Moreover

there are assets, which are organized in ”four categories: Time, Courses, Subjects, and

Resources”[PAD+08, p. 7]. Every time slot has a sequence number, the day and op-

tional the week is attached. ”A course is a collection of events that involves a group of

students and a subject. Events that refer to the same course, are called lessons of the

course. ... A resource is an entity with time restrictions. The most common resources

are the students, teachers, and rooms. ... Events are the basic scheduling object. An

event can represent either a single lesson, or a set of lessons, that have to be taught

at the same time.”[PAD+08, p. 8f] There are a set of standardized constraints, which

can be referenced in the XML. Their parameters can be set via XML tags.

The structure of the XML is:

<Problem >
<Instance >

<Assets > ... </Assets >
<Events > ... </Events >
<Constraints > ... </Constraints >

</Instance >
<Solutions > ... </Solutions >

</Problem >

Listing 1 Structure of High School Timetabling XML [PAD+08, p. 11f]

The Solutions tag includes an Event tag per event which stores information about

the assignments of this event. Information about the costs and/or the constraint vio-

lations also can be included.

3 Benefits of a new XML format

The existing formats can only describe a special class of timetabling problems. But the

need for flexibility requires to categorize and compare many different problems. One

approach would be to adapt our solver so that it can read many input file formats. But

if there is a unified format other research groups can use our benchmark files, too.

We decided to create a XML format for the following reasons. First of all XML

is a standard of information interchange using internet and good support to handle

easily XML data is available in most computer languages. XML is a structured format,

the syntax can be defined by a Document Type Definitin (DTD) [wik10] or a XML

Schema Definition (XSD) [W3C10a]. At least XML is easy to understand and many

software engineers are familiar with it. More information about XML can be found on

the websites of W3C R© [W3C10b].

448

4 The EATTS XML File Format for Problem Definitions

4.1 Entities of a Timetabling Problem

Descriptions start with the specification of the entities of a typical Timetabling Prob-

lem. In many cases a set of time slots has be assigned to a set of events. Usually this

assignment is subject to some constraints. In some cases other resources are not as-

signed fixed to the events. For example in Course Timetabling exactly one room has

be chosen from a set of rooms.

Our approach to describe different Timetabling problems distinguishes between

three main entity types: resources (including time slots), events and constraints. The

solution of a Timetabling problem is the assignment of resources of different resource

types to the events. Solution have assigned costs depending on the violated constraints.

In our approach the description consists of a model part and a data part. While the

model takes care of the general structure of the problem at hand the data part takes

care of the individual components of the problem. For a School Timetabling Problem

the model would contain the resource types like teachers and rooms, while the data

part would contain the individual teacher with names, hours per week, subjects, etc.

4.2 RECPlan

In the EATTS XML format a Timetabling Problem is declared by a RECPlan tag. REC

stands for Resources, Events and Constraints. The typical structure of this tag is shown

in the listing below.

<RECPlan name=" nameOfThePlan " planVersion="0">
<TimeFrame ... />
<ResourceTypes > ... </ResourceTypes >
<ResourceCollections > ... </ResourceCollections >
<Resources > ... </Resources >
<Events > ... </Events >
<EventCollections > ... </EventCollections >
<Constraints > ... </Constraints >

</RECPlan >

Listing 2 Structure of RECPlan

The TimeFrame tag defines the time frame of the planning period.

The defintion of resource types starts with the tag ResourceTypes. Resources

of a resource type can be subdivided into collections which are defined in the tag

ResourceCollections. The same mechanism is available to describe event types and

event collections. To specify the resources the tag Resources is used, similar for events

the tag Events.

The constraints have there own part in the description starting with the tag

Constraints.

4.3 TimeFrame

The planning period of a Timetabling Problem starts at absolute date start. All other

points in time and intervals of time are declared relatively to this date. Because of the

variety of timetabling problems it is necessary to define a time grid. Typically schedules

449

are represented as a table. Often the columns represents one day and the lines one hour

or parts of one hour. The time which lies between the first point in time of column

i and this of column i + 1 is called the horizontal scaling hs. The vertical scaling vs

is the minimal timespan between two vertical lines. The value of the time t is given

relatively to start, so tabs = t + start. A time slot (s, d) starts at the absolute point in

time tstart = s + start and ends at tend = tstart + d.

The following condition must be true to ensure that all sub-units can be mapped

correctly to the given time line.

{hs, t, s, d} ⊂ {x = n · vs | n ∈ N} (1)

<TimeFrame absoluteStart=" 1253526334272 " horizontalScaling="86400000"
verticalScaling="900000" cycleLength="7" repeatNCycles="1"/>

Listing 3 Structure of RECPlan

The attributes horizontalScaling and verticalScaling determine the horizontal and

vertical scaling. The unit of time values is milliseconds. The absolute start absoluteStart

is given as a Unix timestamp value. Unix time stamps are widely supported, even on

windows systems, e.g. Java VM. The period to be planned is typically a multiple of

hs, typical periods are a week respectively seven days (see above). In that case the

attribute cycleLength has the value seven. For School Timetabling the schedule of a

standard week will be valid for the following x weeks. So the attribute repeatNCycles

will have the value x.

4.4 Resource Types

Every family of Timetabling Problems has the same types of resources. For example

in Course Timetabling there are teachers, rooms, classes, students, and subjects, while

for rosters the resource types are employees, machines et cetera. The description starts

with the definition of resource types and after that the resources of each resource type

are defined. Every resource type has a denomination like Teacher or Employee and a

set of attributes. The definition of an attribute includes the name and the type of the

attribute’s value.

<ResourceTypes >
<Type name="TimeSlot">

<Attribute name="Slot" typeKind="S" typeDenom="TimeSlot" isList="false"/>
</Type>
<Type name="Room">

<Attribute name="Name" typeKind="S" typeDenom="String" isList="false"/>
<Attribute name="Size" typeKind="S" typeDenom="Integer" isList="false"/>

</Type>
...

</ResourceTypes >

Listing 4 Example of a ResourceTypes tag

The Type tag defines a resource type. The attribute name specifies its name. This

tag includes a set of Attribute tags, which represents the attribute definitions of

the resource type. The attribute typeKind typecasts the type of the attribute value.

Possible types are ”S” for simple, ”G” for group, ”R” for resource and ”E” for event.

The type simple includes elementary values like integers, floats, strings or time slots.

450

The attribute typeDenom specifies this type more precisely. The attribute values can

be single values or a list of values. This property will be defined by the attribute isList.

4.5 ResourceCollections

Resources of a certain type can be grouped in collections. There are four different kinds

of collections.

1. Simple groups are called resource group. A resource group includes a set of resources

of a certain resource type. The relationship between a resource and a resource group

is n : m. Every resource can be added to any number of collections and vice versa.

2. The union of the elements of a set of collections can be defined by the Union tag.

3. The Intersection specifies the intersection of the elements of a set of collections.

4. If the set Rrt is the set of all resources of the resource type rt and Grt is any

resource collection of the resource type rt, then INV (Grt) = {r ∈ Rrt|r /∈ Grt} is

the absolute complement of Grt. The tag Inverter defines such a complement of

a resource collection.

<ResourceCollections >
<ResourceCollectionsByType typeName="TimeSlot">

<Group name=" MorningSlots "/>
<Inverter name=" AfternoonSlots ">

<CollectionRef name=" MorningSlots "/>
</Inverter >
<Union name="AllSlots">

<CollectionRef name=" MorningSlots "/>
<CollectionRef name=" AfternoonSlots "/>

</Union>
...
</ResourceCollectionsByType >
...

<ResourceCollections >

Listing 5 Example of a ResourceCollections tag

All collections of a plan are enclosed in ResourceCollections tag. The Resource-

CollectionsByType tag is a container for all definitions of collections of a certain

resource type. The attribute typeName specifies the corresponding resource type by its

name.

A simple collection of resources is defined by a Group tag. The name attribute

determines the denomination of the collection. This name must be unique for all col-

lections of the same type. This tag does not include any information regarding which

resources are members of the group. A CollectionRef tag references a collection by

its name. A union or intersection can include any number of other collections while an

inverter can include only one.

4.6 Resources

The resource definitions are encapsulated in Resources and ResourcesByType tags

following the collections. The Resource tag defines one resource. Every resource has its

unique id which is declared in the id attribute. Enclosed in a AttributeValues tag the

AttributeValue determines the value of the attribute which is referenced by the value

of the name attribute. The resource defines to which resource groups it is assigned to.

451

<Resources >
<ResourcesByType typeName="Class">

<Resource id="Class0">
<AttributeValues >

<AttributeValue name=" classRoom">
<ResourceRef id="Room16" resourceType="Room"/>

</AttributeValue >
<AttributeValue name="name">

<String >1A</String >
</AttributeValue >
<AttributeValue name="grade">

<String >1</String >
</AttribteValue >
<AttributeValue name="teacher">

<ResourceRef id="Teacher7" resourceType="Teacher"/>
</AttributeValue >
<AttributeValue name="group">

<ResourceCollectionRef name="students 1A" resourceType="Student"/>
</AttributeValue >

</AttributeValues >
<ContainingGroups >

<CollectionRef name="sports male of grade 1"/>
<CollectionRef name="sports female of grade 1"/>

</ContainingGroups >
</Resource >

</ResourcesByType >
</Resources >

Listing 6 Example of Resources tag

The values of the attributes are enclosed in tags which depend on the type of the

value. Possible Tags and their meaning are listed in the following table.

Value Tag Type of Value

String string literals
Integer integer numbers
Float floating-point numbers
Boolean boolean values
Time relative time values
TimeSlot relative time spans
ResourceRef references to resources
ResourceCollectionRef references to a resource collection
EventCollectionRef references to a event collection

Table 1 Value types of attributes

4.7 Events

The planning process is all about events. The time table - as a result of the planning

process - determines which resource is assigned to which event. Below rt a resource

type and e an event of the plan is shown. For every event it can be declared how much

resources of a certain resource type have to be assigned as minimal mine,rt or maximal

maxe,rt value so that the resulting time table is a valid solution. Two additional subsets

of resources of this type can be defined: one which is assigned fixed to this event and/or

one subset of resources which could be assigned, at least one of them must exist.

452

Let Fe,rt and Oe,rt be a subset of Rrt. Fe,rt is the set of resources of the resource

type rt which is assigned fixed to the event e and Oe,rt is the set of resources from

which the planning component can select. Let s be a result of the timetabling problem,

so s(e, rt) is the set of resources of resource type rt which are assigned to the event e

and s(r) is the set of events assigned to the resource r.

The following must be true:

Fe,rt ⊂ Re,rt ⊂ Fe,rt ∪Oe,rt (2)

The following condition should be true to avoid constraint violations.

mine,rt ≤ |Re,rt| ≤ maxe,rt (3)

<Events >
<Event name="5A_Maths">

<ResourceLists >
<ResourceList resourceTypeName="TimeSlot" max="4" min="4" fixed="true">

<OptionalGroup name=" MorningSlots "/>
</ResourceList >
<ResourceList resourceTypeName="Class" max="1" min="1" fixed="true">

<FixedGroup name="class 5A"/>
</ResourceList >

...
<ResourceList resourceTypeName="Teacher" max="1" min="1" fixed="true">

<OptionalGroup name="teachers of 5A_Maths"/>
</ResourceList >
...

</ResourceLists >
<ContainingGroups >
<EventCollectionRef name="Maths Lessons">
<EventCollectionRef name="Lessons of 5A">

</ContainigGroups >
</Event >

</Events >

Listing 7 Example of Events tag

The Event tag defines an event. Its name is set by the name attribute. For every

resource type this tag includes a ResourceList tag, which defines mine,rt by the

attribute min or maxe,rt by max. Fe,rt is declared by the tag FixedGroup, Oe,rt by

the OptionalGroup tag. If one of these group tags is missing the corresponding group

is believed to be an empty set, but at least one of them must be not empty. The sets

are referenced by the name of the group, which is stored in the resourceTypeName

attribute. Just like the resources events can also be classified into collections. The

EventCollectionRef tags in the ContainingGroups tag determines to which event

group this event is assigned to.

The assignments of resources of a certain type rt to a set of events {e1, ...en} can

be linked. That means that s(e1, rt) = s(e2, rt) = ... = s(en, rt). For this purpose the

attribute baseEvent must be added to the ResourceList tags of {e2, ...en}. The value

of this attribute is the name of e1.

4.8 Constraints in general

In the preceding sections a unified model for defining different Timetabling Problems

was described. Now it’s time to develop a uniform way to declare constraints. First of

453

all lets have a look at different solutions si of the same problem. A constraint measures

the quality of a solution from a certain point of view. It defines a cost function qc(si).

The codomains of these functions are subsets of R+
0 . Let C be the set of all constraints

of a problem. The quality of a solution si is defined as Q(si).

Q(si) =
X
c∈C

qc(si). (4)

The only aspect in which the solutions sk and sl can differ are the different assign-

ments of resources to the events. If the costs of a constraint does not depend on these

assignments this means that they are fixed costs for all solutions and can’t be reduced

by any planning algorithm. For simplicity they should not be part of the description,

i.e. only variable costs should be defined in the model.

A constraint is defined by its scope scopec and a function qc(s, y), whereby s is a

solution and y is an element of the scope. It is typical that the constraints differ in

weight. So a weight function wc : N→ R must be defined for every constraint c. That

way there must be a function violc(s, y) : S × scopec → N which counts the number of

violations against constraint c in the solution s on the view of y.

A view of a resource or event can be understood as looking at the solution showing

only the parts where this resource or event is involved. E.g. a student wants to see his

personal time table and not the whole plan of the entire school.

qc(s, y) = wc(violc(s, y)) (5)

qc(s) =
X

y∈scopec

qc(s, y) (6)

<Constraints >
<OperationLists > ... </OperationLists >
<Selectors > ... </Selectors >
<Variables > ... </Variables >
<TimeClashConstraint >

<ConstraintProperties name=" TimeClash for Teacher" type="hard">
<PenaltyFunction weight="50.0" coefA="1.0" coefB="0.0" exponent="2.0"/>
<Description >

No teacher can give more than one lesson at the same point in time.
</Description >

</ConstraintProperties >
<ResourceTuple >

<ResourceCollectionRef name=" Teacher_All " resourceType="Teacher"/>
</ResourceTuple >

</TimeClashConstraint >
</Constraints >

Listing 8 Constraints tag

The definitions of the constraints are enclosed in the Constraints tag. To define

standardized constraints we use lists of operations, selectors and variables. These enti-

ties will be explained in the sections 4.9, 4.10, and 4.12 below. Now the typical structure

of a constraint definition is shown using the example of a TimeClashConstraint tag.

The constraint of the example is violated if one teacher gives more than one lesson at

the same time. The ConstraintProperties tag declares all properties common to all

types of constraints. Every constraint has a denomination given by the name attribute

and a type. In our description language constraints come in three different flavours:

the familiar hard and soft constraints and in addition soft hard constraints. In normal

mode the latter are considered as hard constraints but in exception mode - when no

454

feasible solution could be found in normal mode - they are considered as soft con-

straints. This eases the burden on the planning algorithm. Every constraint c must

have a weight function wc. We use a standardized weight function which depends on

four float parameters: weight, coefA, coefB and exponent. These parameters are set by

the corresponding attributes of the PenaltyFunction tag.

wc(x) =

weight · (coefA · xexponent + coefB)

0
if

x ∈ N+

x = 0
(7)

The Description offers the opportunity to document additional information.

The ResourceTuple tag declares that this constraint must be evaluated for every

resource of the resource type Teacher. The view of a constraint definition can be one of

the following: the view of an event, the view of a relation between events or the view

of one resource. An example for the latter is the view of a teacher. So there are three

different main types of constraints in the model: event, event relation and resource

constraints.

4.9 Event Constraints

An event constraint ec measures a solution s from the view of a single event e. The

costs of the event e of ec for the solution s are defined by the function violec(s, e).

Every event constraint has a scope Scopeec ⊂ E.

Let’s have a look at the declaration of viol(s, e). Let A(s, e) be the assigned re-

sources of event e in the solution s. The violation count function viol(s, e) indicates if

the constraint is violated in regards to event e in the context of solution s. Typically

viol(s, e) is composed of three parts: two operations evari(A(e)) and evarj(A(e)) and

a relational operator rop. An event variable evar is composed of three parts too: a

selection function sel(A(e)) : A(s, e) → s(e, rti) ⊂ Rrti , an attribute value selection

function attr : Rrti → V , and an operation op : V → V ′. Hereby V and V ′ are sets of

lists of attribute values. The function rop maps the cross product V ′l × V ′r into the set

of natural numbers.

evar(A(s, e)) = op(attr(sel(A(s, e))) (8)

violec(s, e) = rop(evari(A(s, e)), evarj(A(s, e))) (9)

An example of an event constraint if the Room Size Constraint which is violated

if the capacity of one of the assigned rooms is less than the number sc of assigned

students.

viol∗ec(e, s, r) =

1 if capacity(r) < sc

0 else
(10)

violec(e, s) =
X

r∈s(e,Room)

viol∗ec(e, s, r) (11)

<Selectors >
<EventSelector name="Room Capacity Selector" lookAtEveryResourceSingle="

true">
<TupleValue type="Room" attribute="Capacity"/>

</EventSelector >

455

<EventSelector name="Student Count Selector" lookAtEveryResourceSingle="
false">

<TupleValue type="Student"/>
</EventSelector >

</Selectors >

Listing 9 Selectors of Room Size Constraint

The Room Capacity Selector returns the capacity values of the assigned rooms.

Because lookAtEveryResourceSingle has the value true the capacity of every assigned

room must be compared with the right operand. The Student Count Selector collects

all assigned students into a list of resources. Because only the count of students matters

no attribute value is selected.

<OperationLists >
<OperationList name="List Length">

<Operation >list_size </Operation >
</OperationList >

</OperationLists >
...

<Variables >
<EventVariable name="Student Count" typeDenom="Integer">

<EventSelectorRef name="Student Count Selector"/>
<OperationListRef name ="List Length"/>
</EventVariable >
<EventVariable name="Room Capacity" typeDenom="Integer">

<EventSelectorRef name=" RoomCapacitySelector "/>
</EventVariable >

</Variables >

Listing 10 Variables of Room Size Constraint

The values returned by the selectors will be handled by the variables. Student Count

returns the size of the students list of the Student Count Selector, hereby it uses the

operation list List Length.

<EventConstraint relOpDenom="geq">
<ConstraintProperties name="Room size" type="soft" slopeType="split">

<PenaltyFunction weight="50" coefA="1" coefB="2" exponent="1"/>
<Description >The room size must be >= student count</Description >

</ConstraintProperties >
<EventVariableRef name="Room Capacity"/>
<EventOperand >

<EventVariableRef name="Class Capacity"/>
</EventOperand >
<CollectionRef name=" Events_All "/>

</EventConstraint >

Listing 11 Room Size Constraint

The relational operator ≥ is declared by the attribute relOpDenom. There is a list

of different relational operators which can be referenced by name. The CollectionsRef

tag defines the scope of the constraints, in this case all events. The event operand can

also be a constant.

A special type of event constraints is the MinMaxConstraint. The scope of this

constraint is a set of events and the constraint is defined for a certain resource type

rt. The resource list, which is associated with event e and resource type rt, defines a

minimal min(e, rt) and maximal max(e, rt) count of resources giving the interval in

which the number of resources assigned to event e should lie.

456

violminmax rt(e) =

8<:
mine,rt − |s(e, rt)| if |s(e, rt)| < mine,rt

|s(e, rt)| −maxe,rt if |s(e, rt)| > maxe,rt

0 else

(12)

<MinMaxConstraint type="minmax">
<ConstraintProperties name="TimeSlot MaxConstraint " type="hard">

<PenaltyFunction weight="100.0" coefA="1.0" coefB="2.0" exponent="0.0"/>
<Description/>

</ConstraintProperties >
<ResourceTypeRef name="TimeSlot"/>
<CollectionRef name="All"/>

</MinMaxConstraint >

Listing 12 MinMaxConstraint tag

The attribute type defines which limit must be checked. Possible values are ’min’

(only the minimal limit), ’max ’ (only the maximal limit), and ’minmax ’ (check both

limits). The tags ResourceTypeRef references the resource type rt, and CollectionRef

defines the scope of the constraint.

4.10 Resource Constraints

The view of a resource constraint is the view of a single resource or a tuple of resources.

A special example of the first case is shown above with the TimeClashConstraint. If

a student stud can choose between courses of the same subject sub, there will be a

constraint necessary to ensure that the student will participate only at one of these

courses. One possibility to express this constraint is to define a maximal number of

events to which both (stud and sub) are assigned to.

In this case the view of this constraint are tuples (stud, sub) whereby stud ∈
RStudent and sub ∈ RSubject. Below the definition of a resource constraint by the

example of a Workload Constraint is given. Every teacher has an attribute workload

and this limit should not be exceeded by the generated solution.

A resource tuple selector rts maps the set of all resources to a set of resource

tuples. The codomain Codom(rts) of rts is a subset of Trt1,...,rtn the set of all tuples

of resources of the resource types rt1, ..., rtn.

Codom(rts) ⊆ Trt1,...,rtn

Trt1,...,rtn = {tuple ∈ Rrt1 × ...×Rrtn : rti 6= rtj ∀i, j ∈ [1, n] ∧ i 6= j} (13)

Let tuple t = (r1, ..., rn) be an element of Trt1,...,rtn . There are two ways to define

the associated events, on the one hand the intersection way IS(t), on the other hand

the union way U(t).

IS(t) = {e ∈ E | e ∈ s(ri) ∀i ∈ [1, n]} (14)

U(t) = {e ∈ E | (∃i ∈ [1, n] : e ∈ s(ri))} (15)

A resource selector rs includes a resource tuple selector rtsrs and defines whether

US or IS will be applied. The resource selector rsrc of a resource constraint rc defines

the scope scoperc.

457

scoperc = Codom(rtsrc) (16)

Let t ∈ scoperc be a tuple.

rs(t) =

IS(t)

U(t)
(17)

<Selectors >
<ResourceSelector name="Events of a Teacher" unionType="Union">
<ResourceTuple >
<ResourceCollectionRef name=" Teacher_All "

resourceType="Teacher" type="elem"/>
</ResourceTuple >

</ResourceSelector >
<ResourceSelector name="Student x Subject" unionType=" Intersection ">
<ResourceTuple >
<ResourceCollectionRef name=" Student_All " resourceType="Student"

type="elem"/>
<ResourceCollectionRef name=" mainSubjects "

resourceType="Subject" type="group"/>
</ResourceTuple >

</ResourceSelector >
</Selectors >

Listing 13 Resources Selectors

Events of a teacher represents the view of one teacher and returns whose assigned

Events. The second resource selector Student×Subject is a little bit more complex. Its

view is a tuple of a student and a set of subjects subjects. If the attribute type is ’group’

the tuples will be generated with a set of all resources of the group. An example is the

group of all main subjects mainSubjects. So tuples between all students of the collection

Student ALL (’elem’) and the collection mainSubjects (’group’) can be generated. The

return values are the events to those the student and at least one subject of subjects

is assigned to. IS is selected because the unionType is set to Intersection.

A resource variable rv is based on a resource selector rsrv. It can be expanded by

an event variable evrv and an operation list olrv. Every resource variable rvrc maps a

tuple t ∈ scoperc to a value rvrc(t). This value is the left operand of violrc(t).

EVrv(x) =

evrv(x) if evrv is set

x else
(18)

OLrv(x) =

olrv(x) if olrv is set

x else
(19)

rvrc(t) = OLrv(EVrv(rsrv(t))) (20)

<Constraints >
<OperationLists >

<OperationList name="Duration"> ... </OperationList >
</OperationLists >
<Selectors >

<EventSelector name=" timeSlotsSelector ">
<TupleValue type="TimeSlot" attribute="slot"/>

</EventSelector >
...

</Selectors >
<Variables >

<EventVariable name="timeSlots">
<EventSelectorRef name=" timeSlotsSelector "/>

458

</EventVariable >
<ResourceVariable name="Workload of Teacher">

<ResourceSelectorRef name="Events of a Teacher"/>
<OperationListRef name="Duration"/>
<EventVariableRef name=" timeSlots"/>

</ResourceVariable >
</Variables >

Listing 14 Variables of Work Load of a Teacher

The event variable timeSlots maps the list of events given by the resource selector

Events of a Teacher to a list of time slots. The operation list Duration computes the

sum of durations of these time slots. This is the result of the evaluation of the resource

variable Workload of Teacher.

A resource constraint rc consists of a relational operator rop, a resource variable

rv as left operand and a right operand right. The scope of the constraint is defined by

rsrv. The violation count function violrc(s, tuple) is defined by the following equation:

violrc(tuple) = rop(rv(tuple), right(tuple)); (21)

qrc(s) =
X

tuple∈scoperc

wrc(violrc(s, tuple)) (22)

The operand on the right hand side of a resource constraint can be a constant value.

This value has one of the types which are available for the definition of attributes. In

some cases it is necessary to refer to an attribute value attr of a resource r of the tuple

tuple.

<ResourceConstraint relOpDenom="DISTTIME">
<ConstraintProperties name="Work load of a teacher" type="soft">

<PenaltyFunction weight="50.0" coefA="1.0" coefB="2.0" exponent="1.0"/>
<Description >A teacher should work the given work load </Description >

</ConstraintProperties >
<ResourceVariableRef name=" workloadOfTeacher "/>
<ResourceOperand >

<TupleValue type="Teacher" attribute="workload"/>
</ResourceOperand >

</ResourceConstraint >

Listing 15 Work Load of a Teacher

4.11 Event Relation Constraints

In some cases the view of one event or one resource tuple is not sufficient to express all

constraints involved. An example is the Same Resource Constraint which is violated if

for a certain resource type rt s(e1, rt) 6= s(e2, rt). This relation is postulated for a the

resource type rt and a set of events Erel with e1 ∈ Erel ∧ e2 ∈ Erel. An event relation

constraint erc sets two collections of events Eleft and Eright in a relation. The scope

of this constraint is scopeerc = Eleft×Eright. So the owner of a constraint violation is

a tuple of events s(el, er)withel ∈ Eleft∧er ∈ Eright. The parameters of the violation

count function violerc are this tuple and the solution s. As said before the tuple consists

of two parts el and er. For each of this parts a reference to an event variable evleft

resp. evright is defined. And a relational operator roperc must be defined.

459

For each event of this tuple must be referenced event variables evleft and evright

and a relational operator roperc must be set.

violerc((el, er)) = roperc(evleft(el), evright(er)) (23)

<EventRelationsConstraint relOpDenom="SET_EQUAL">
<ConstraintProperties name="Sports 1A at Same Time" type="soft">

<PenaltyFunction weight="10.0" coefA="1.0" coefB="2.0" exponent="1.0"/>
<Description >The sports lessons of the class 1A should be at the same

time</Description >
</ConstraintProperties >
<EventRelationOperand >
<EventVariableRef name=" timeSlots"/>
<CollectionRef name="Sports Male 1A"/>

<EventRelationOperand >
<EventRelationOperand >
<EventVariableRef name=" timeSlots"/>
<CollectionRef name="Sports Female 1A"/>

<EventRelationOperand >
</EventRelationsConstraint >

Listing 16 Event Relation Constraint: Same Time

In the example above the left operand returns the assigned time slots of the male

sports lessons, the right operand the time slots of the female sports lessons. The re-

lational operator SET EQUAL compares this two lists and returns 0 if there is no

difference and a value x > 0 otherwise. Another possibility is to declare two events at

the same time to link the resource lists of these events.

4.12 Operation Lists

In the sections 11 and 14 we used operation lists without defining this entity. An

operation list ol is a sequence of operations (op1, ..., opn).

ol(x) = opn(...(op2(op1(x))

domain(ol) = domain(op1) ∧ codomain(ol) = codomain(opn)

codomain(opi) ⊂ domain(opi+1) ∀ i ∈ [1; n− 1]

(24)

The operations are defined in a XML file. This file of definitions can be used by

an editor to create a selection of available operations. The definition of operations

must be expressed in a programming language as part of the code of the solver tool.

At this point the designer of a timetabling system has to decide whether be would

prefer to modify the solver program code for performance reasons or to interpret the

specification and to preserve the flexibility. The same approach is used for defining

relational operators.

5 EATTS XML File Format for Results

5.1 Requirements to a Result Format

In section 4 we have described the EATTS format to define different timetabling prob-

lems. The purpose of planning is to generate a time table of high quality, i.e. with low

costs. After a couple of runs of the planning framework there is a list of solutions. Then

460

these results must be compared. In some cases this comparison could be based on the

absolute costs of the solution, but in other cases it must be a bit more precise. So a list

of constraint violations and their owner would be nice. Let ec be an event constraint

and viol(e, s) > 0. So ec is violated on the view of the event e. So there is a constraint

violation of ec with owner e. The owner of a resource constraint violation is a resource

tuple. The owner of an event relation constraint violation is a tuple of events.

A result file should contain information about the plan it is linked to, certainly the

assignments of the solution, the absolute costs and the constraint violations and its

owners. But there is another problem. If a plan is accepted it will be used by many

people. These users are interested in various views of this plan, but they are usually

not interested in the problem definition. So the result file should include all data to

generate all the required views on the plan.

5.2 The Structure of EATTS Result Format

The format is also XML based, because of the benefits shown in section 3.

<TTResult >
<Plan/>
<Events >...</Events >
<TimeModel >...</TimeModel >
<Resources >...</Resources >
<ConstraintViolations >...</ConstraintViolations >

</TTResult >

Listing 17 Structure of EATTS Result Format

The Plan stores a reference to the problem definition file. A list of all events with

name and index is enclosed in the Events tag. For visualization it is necessary to

have some informations regarding the time model. The common style of timetable

visualization is a table. This table has cycleLength columns and r rows. Every timeslot

must be assigned to one cell or a set of cells in this table. So every time slot resource

gets a day-index which defines the column, and vertical start and end index, which set

the rows. Resources includes all resources sorted by resource types. Every Resource

has a name and an index attribute and contains a list of the events it is assigned to.

The total costs of the solution is the value of the attribute totalCost of the Con-

straintViolations. This tag includes a list of the constraint violations sorted by

constraints in their order of appearance in the XML file. The ConstraintViolation

tag has information about its cost and its owner.

6 Conversion of High School Timetabling XML into EATTS XML Format

6.1 Conversion of Time, Resources, and Events

In this section we want to show how a problem given in the existing format for High

School Timetabling can be described in the EATTS format. TimeGroups, including

Week and Day, can be converted into resource groups of the type TimeSlot. Resources

of this type must be generated automatically so that there is a 1:1 mapping between

Time elements telem and the resources of the type TimeSlot timeSlot. As example

Mon 1 will be mapped to a time resource with start time 8 hours and duration 1

461

lesson, whereby the start of the planning period is Monday 0 : 00 and the duration of

one lesson must be set. The membership to time groups of telem must be adopted to

the corresponding resource groups of type TimeSlot.

The concept of resource types, resources and resource groups is very similar in both

formats so that a conversion is possible without a hitch. It should be considered that

the names of resource types and resource groups in EATTS format must be unique.

The name of the resources will be stored in attribute name of type String.

The conversion of courses and events is a little bit more difficult. In the EATTS

concept a course consists of one event or a set of events with their linked time slot

resources. In some cases the accumulated working time may differ from the time which

should be credited to the work load account, i.e. a premium, a Properties resource type

with an attribute workCredit and a property resource must be assigned fixed to every

event. If a class is split into two or more courses, like for sports, for each of these courses

a group of the participating students must be declared. If these courses should be at

the same time an event relation constraint can be added or the TimeSlot resource lists

can be linked to ensure that they are assigned to the same time slots.

6.2 Conversion of Constraints

Now will be shown how the constraints can be defined with the concept of EATTS

format. There is a list of constraints in the paper [PAD+08, p. 10f]. AssignTimSlot-

Constraint and AssignResourceConstraint can be converted to a MinMaxConstraint.

The LinkedEventsConstraint and the AvoidSplitAssigmnetsConstraint can be matched

to an event relation constraint, as shown in section 4.11, or the according resource lists

can be coupled.

NoResourceClashConstraint is a resource constraint, for every tuple of resources

must the count of events, which are assigned to all resources of the tuple, less or

equals 1. For the constraints WorkloadAssignment, IdleTimesConstraint and Time-

SlotAmountConstraint an operation must be applied to the list of assigned time slots

of a certain resource. This operation must compute the duration of these time slots or

the count or must measure the idle times.

The selector of a SubjectSequenceConstraint selects the assigned events to a com-

bination of a class or student and a collection of subjects. The resource variable selects

the time slots of these events and applies an operation on the time slots list which

measures the sequences. The viol(class, subjectCollection) function can compare the

result of the operation with the allowed sequence length. The ClusterTimeSlotCon-

straint is similar, the count of events assigned to a resource and a collection of Time-

Slots should lie between minimum and maximum. The CourseSpreadingConstraint can

also be matched to a resource constraint by selecting the event groups over the fixed

assigned property resources. In that case there must be a 1:1 relation between property

resource and event.

6.3 Conversion of Solutions

The conversion of the solutions needs a framework which computes the constraint

violations. In the first step the problem must be read. Then the assignments must be

set according to the solution. Now the framework can compute the total cost and the

462

constraint violations. In the last step the data can be written to the solutions file in

EATTS format.

6.4 Conversion of EATTS XML format into High School Timetabling XML Format

This way of conversion would in most cases be senseless, at least if the statement of the

problem is not concerned with High School Timetabling. But if there is a well defined

problem definition for High School Timetabling like the result of the conversion above,

an inversion of this process is possible. Let 2HST be the set of all timetabling problems

which can be defined with the High School Timetabling format and 2EATTS the set

of all timetabling problems which can be described with the EATTS format. Above we

have shown that there is a conversion C : 2HST → 2EATTS . Let Codom(2HST) be the

codomain of 2HST in 2EATTS , so Codom(2HST) (2EATTS . The inverse function C′

is defined by the following equation.

C′ : Codom(2HST)→ 2HST ; C′(C(hst)) = hst ∀ hst ∈ 2HST (25)

7 EATTS XML File Format Tools

The EATTS framework provides a set of tools to handle XML files defined in the

format described above. First of all there is a web based editor. It can be used to

create new timetabling problems, the input mask will be automatically adapted to

the user defined resource types with different attributes. There is also a tool, called

plan viewer, to visualize timetables from various views like the view of an event or

of a resource. Often the generated plans should be changed manually after planning.

So an application would be nice which gives support on changing the assignments,

whereby the costs and constraint violations must be updated just in time. The work

on this will be finished soon. At least the core of an automatic timetabling framework

must be a solver for generating as good as possible timetables. Our solver is written

in JAVA and provides classes to read and write the EATTS XML format and a set

of optimization algorithms which can be applied to all timetabling problems defined

by the XML. So the framework can be used to compare different algorithms on many

various timetabling problems.

8 Conclusion

Our approach is to define different types of timetabling problems with one format. The

existing formats are not flexible enough, because they can only describe timetabling

problems of one class. So we declared the EATTS XML format with regard to the

possibility of describing as much as possible problems.

Some very special constraints, like counting idle times, are not easy compatible

with the EATTS general approach of constraint definition. In these cases must be im-

plemented very special operations in the solver. Often these operations can be used

for other problems, too. The XML definition of some constraints could be very incon-

venient and need many tags, especially in case of event relation constraints. But this

should not be a big problem if the problem definition is automatically generated.

463

The main future work is to describe many different real world problems with our

format. On this way we will adapt the XML format and define a set of operations.

Then we want to categorize these problems and test the solver. We think a group of

types will need a special set of operators, like neighborhood or genetic operators, to get

good time tables. We want to have a special look on reusability and standardization.

We like to get problem definitions and suggestions at any time.

Acknowledgements We would like to thank Eugen Kremer for his participation in the
EATTS project and especially the XML file format.

References

[GWB03] Matthias Gröbner, Peter Wilke, and Stefan Büttcher. A standard framework for
timetabling problems. In Practice and Theory of AutomatedTimetabling IV, volume
2740 of Lecture Notes in Computer Science, pages 24–38. Springer Berlin / Heidel-
berg, 2003. ISBN 978-3-540-40699-0. ISSN 0302-9743 (Print) 1611-3349 (Online).
URL http://www.springerlink.com/content/2mj0rwlpbp5uvh1v/.

[PAD+08] Gerhard Post, Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngas,
Cimmo Nurmi, David Ranson, and Henri Ruizenaar. An xml format for benchmarks
in high school timetabling. In Proceeding of the 7th international conference on the
Practice and Theory of Automated Timetabling. Patat2008, 2008. URL http://w1.
cirrelt.ca/~patat2008/PATAT_7_PROCEEDINGS/Papers/Post-WD2a.p% df.

[W3C10a] W3C R©, January 2010. http://www.w3.org/XML/Schema.
[W3C10b] W3C R©, January 2010. http://www.w3.org/XML/.
[wik10] wikipedia, January 2010. http://en.wikipedia.org/wiki/Document Type Definition.

464

Abstracts

465

Assigning referees to a Chilean football tournament by
integer programming and patterns

Fernando Alarcón ⋅ Guillermo Durán ⋅
Mario Guajardo

Abstract The referee assignment in real-world sport competitions can lead to a hard

combinatorial decision problem when a number of conditions must be taken into ac-

count, such as fairness and operational considerations. In practice, the assignment is

often carried out manually by a group of experts, based on poorly defined criteria.

Recently, a number of sports scheduling articles have focused on improving this task,

by developing different models and solution approaches.

In this talk, we study a referee assignment problem in the Chilean football context.

The main parameters are a tournament and a set of referees. The tournament is a

set of games scheduled in a given number of rounds. Every game is played by two

teams in a venue known beforehand. Every game is refereed by a “main referee” (or

just “referee”), usually supported by two “assistant referees”. The problem consists

of assigning main referees to the games, fulfilling a number of conditions which have

been defined together with the managers in charge of the referee assignment in the

Chilean Football Association. These conditions intend to add transparency, objectivity

and fairness to the assignment decision. They include: balancing the total amount of

games refereed by every referee, balancing the number of games a referee is assigned to

a same team, balancing the travel distances of the referees and taking into account their

experience to referee special matches (e.g., the Association prefers to assign the most

experienced referees to the matches played by classic rivals). We propose an integer

linear programming model to tackle this problem.

The natural formulation of this referee assignment model can be solved by using

standard computer solvers. However, large instances may lead to relatively long solution

F. Alarcón
Department of Industrial Engineering, FCFM, University of Chile, Chile.
E-mail: falarcon@ing.uchile.cl

G. Durán
Department of Industrial Engineering, FCFM, University of Chile, Chile, and Department of
Mathematics, FCEN, University of Buenos Aires, Argentina.
E-mail: gduran@dii.uchile.cl

M. Guajardo
Department of Finance and Management Science, Norwegian School of Economics and Business
Administration, Norway.
E-mail: mario.guajardo@nhh.no

466

times, an undesirable matter for practical use. The current tournament of the Chilean

First Division League consists of 21 teams that play 420 games distributed over 42

rounds. There are 16 referees, who can be assigned to these games. The IP model for

this tournament contains about 6,700 variables and 10,000 constraints. Normally, the

managers of the Association would like to analyze different instances of the problems in

relatively short times. Furthermore, though at the beginning of the season they require

us to find a solution to assign the referees to all the games of the tournament, they

can also ask us to modify the assignment round by round, based on unexpected facts

such as a temporary non-availability of a given referee. They expect us to solve every

instance in a matter of minutes.

We have developed a solution approach based on patterns, inspired in the well-

known home and away pattern procedures that have been successfully utilized in a

number of articles aimed at scheduling sport games. While in the scheduling of games

the patterns indicate if a team plays at home or away (or if it is bye) in each round

of the tournament, the patterns we implement for the referee assignment indicate the

set of games to which a referee can be assigned in each round. Given the particular

geography of Chile, a very long and narrow country, we define these sets of games based

on the location of the venues where they are going to be played. Any other arbitrary

criteria to define the sets may also be suitable. Our solution methodology consists of

two stages. In the first stage, we generate the patterns for each referee by solving an

IP model that considers some of the constraints of the original problem. In the second

stage, we implement another IP model that incorporates the rest of the conditions and

assigns the referees to the games of the tournament. To the best of our knowledge,

this work is the first one developing an approach based on patterns to solve a referee

scheduling problem.

We implement the model for real instances of the problem and report results that

improve the traditional assignment significantly. For instance, while the traditional

assignment in the last tournament (generated manually) exhibits relatively large dif-

ferences in the number of times a referee is assigned to games where one or another

given team played, our assignment balances these amounts. Furthermore, by using the

patterns-based approach we obtain a solution in a couple of minutes, while by running

the natural formulation of the model it takes up to an hour (in both cases, we use an

up-to-date computer and the solver CPLEX).

Currently, we are working together with the managers of the Chilean Football

Association, evaluating the suitability of this referee assignment methodology for its

real use in their 2010 professional and young divisions tournaments. By using our ap-

proach, the managers intend to stop receiving complaints from the teams on the referee

assignment, a matter they have faced in multiple occasions by using their traditional

methodology.

We would expect a concrete application of this work to contribute to the state of

the art in sports scheduling and the related practices in football and other sports. In

fact, though the scheduling of games has shown a significant development in the last

decades, the literature on applications of sports scheduling techniques in real-world

referee assignment problems is still scarce.

Keywords Sports scheduling ⋅ Referee assignment ⋅ Chilean football ⋅ Integer linear

programming ⋅ Patterns

467

Tabu assisted guided local search approaches for freight
service network design

Ruibin Bai · Graham Kendall

1 Introduction

Service network design involves determination of the most cost-effective transportation net-
work and service characteristics subject to various constraints. Good progress has been made
in developing metaheuristic approaches that can compete or even outperform some commer-
cial software packages (Ghamlouche et al 2004; Pedersen et al 2009). However, since most
of these metaheuristic methods involve solving many capacitated multi-commodity mini-
mum cost flow problems, computational time tends to be a bottleneck. In this research, we
intend to build on the success of a guided local search metaheuristic (Bai et al 2010) in
reducing computational time, without compromising solution quality, and carry out a set
of experiments and analyses in an attempt to discover elements and mechanisms that could
improve the algorithmic performance further.

2 Freight Service Network Design

We focus on a specific service network design formulation that has been studied recently
in (Pedersen et al 2009). For the purpose of completeness, we also present it here. Let
G = (N ,A) denote a directed graph with nodes N and arcs A . Denote (i, j) be the arc
from node i to node j. Let K be the set of commodities. For each commodity k ∈ K ,
let o(k) and s(k) stand for its origin and destination respectively. Let yi j be boolean design
variables and yi j equals 1 if arc (i, j) is used in the final design and 0 otherwise. Denote xk

i j
be flow of commodity k on arc (i, j). Let ui j and fi j be the capacity and fixed cost of arc
(i, j). Denote ck

i j be the variable cost of moving one unit of commodity k along arc (i, j).
The service network design problem can be formulated as follows:

Ruibin Bai
Division of Computer Science, University of Nottingham Ningbo China
Tel.: +86-574-88180278
Fax: +86-574-88180125
E-mail: ruibin.bai@nottingham.edu.cn

Graham Kendall
School of Computer Science, University of Nottingham, Nottingham, UK
E-mail: gxk@cs.nott.ac.uk

468

min ∑
(i, j)∈A

fi jyi j + ∑
k∈K

∑
(i, j)∈A

ck
i jx

k
i j (1)

subject to

∑
k∈K

xk
i j ≤ ui jyi j ∀(i, j) ∈A (2)

∑
j∈N +(i)

xk
i j− ∑

j∈N −(i)
xk

ji = bk
i , ∀i ∈N ,∀k ∈K (3)

∑
j∈N −(i)

y ji− ∑
j∈N +(i)

yi j = 0 ∀i ∈N (4)

where xk
i j ≥ 0 and yi j ∈ {0,1} are decision variables. N +(i) (respectively N −(i)) stands

for the set of outward (respectively inward) neighbours of node i. We set bk
i = dk if i = o(k),

and bk
i =−dk if i = s(k), and 0 otherwise. Note that for a given set of design variables ȳi j, the

problem becomes a capacitated multicommodity minimum cost flow problem (CMMCF).
In (Bai et al 2010), we have shown that a variant of the guided local search (GLS)

approach is able to produce competitive results with much less computational time than a
recently proposed tabu search method (Pedersen et al 2009). Based on this initial success,
this research aims to investigate, in detail, components and mechanisms that may lead to
further improvement either in terms of computational time or solution quality. In particular,
we intend to investigate; a) how effectively the current GLS escapes from a local optimum.
b) whether more efficient mechanisms can be found and integrated within GLS.

3 Guided Local Search

Guided local search (GLS) is a metaheuristic for constraint satisfaction and combinatorial
optimization problems (Voudouris and Tsang 2003). Its main idea is augmenting the original
objective function so that the search not only escapes from local optima but also obtains high
quality solutions. In our implementation, the neighbourhood is defined by either closing or
opening an arc. The flow variables (xi j) are then determined by solving the corresponding
CMMCF problem using a free LP solver, LP Solve. More implementation details of this
approach can be found in (Bai et al 2010).

3.1 Local optima trap

In order to analyse how efficiently GLS escapes from local optima, we carried out experi-
ments based on some of the 24 C-set benchmark problems used in (Pedersen et al 2009). All
local optima that have been identified during the search are recorded together with its visit
frequency (i.e. the number of times a local optimum is visited). All algorithms are tested on
a same machine with the same amount of computational time. Initially we tested a simple
GLS approach and the multi-start GLS (denoted by M-GLS) proposed in (Bai et al 2010).
Figure 1 (a) and (b) show the corresponding information for instance C37 (similar results
were obtained for other instances). The horizontal axis represents the list of local optima
found during the search. One can see that both approaches revisited the same local optima
many times. For the simple GLS, a few local optima are revisited over 80 times. On aver-
age, it visits each local optimum 2.3 times. For M-GLS, to our surprise, the average number

469

of visits per local optimum is even higher (2.9). Nevertheless, high quality local optima by
M-GLS tend to attract higher visit frequencies which may be one of the reasons that lead
to better performance than the simple GLS. Overall, both versions of GLS wasted signifi-
cant time when the same solution is evaluated many times. It is also interesting to note that
GLS seems to converge to a good local optimum very quickly but is not so efficient when
escaping from some local optima.

���������
����

���
� ��� ��� ��� ��� ��� ��� ��� 	
���� ���� ���� ��

��� �� ��� ���� � !" �#� ���
���������
����

���
� ��� ��� ��� ��� ��� ��� 	
�������� ���� ��

��� �� ��� ���� � !"�#� ���
(a) Simple GLS (b) Multi-start GLS

Fig. 1 The number of visits to each local optima by the simple GLS and M-GLS (C37)

3.2 Tabu assisted GLS (T-GLS)

Since M-GLS cannot effectively prevent local optima revisits, we borrow the idea of the tabu
search metaheuristic and introduced a tabu list into the simple GLS. The tabu list contains a
list of arcs that have been modified recently in the current solution. The length of the tabu list
is fixed to a predefined parameter TabuLen. The list is then maintained on a first-in-first-out
basis. Figure 2 (a) and (b) plot the objective values and the revisit frequency by GLS with
TabuLen = 2 and TabuLen = 9 respectively. It can be seen that even a tabu list of length 2
is effective in reducing GLS visiting local optima many times. When we increase TabuLen
to 9, the majority of local optima are visited only once.

In order to measure the performance of these variants of GLS (namely simple GLS, M-
GLS and T-GLS), we have tested them on 24 widely used benchmark problem instances.
Details of the results are not included here but we will present them during the conference.
The general observation is that T-GLS obtains better results than the simple GLS for all
instances but is outperformed by M-GLS for the majority of instances. It seems, based on
our observations, that T-GLS lacks necessary random elements to diversify the search.

�������������
���

� ��� ��� ��� 	�� ���� ����
 ��������� ���� ��
��� �� ��� ��� � !"# �$ ���

���������
����

�����������������������
� ��� ��� ��� ���� ���� 	
�������� ���� ��

��� �� �������� !"�#����
(a) TabuLen=2 (b) TabuLen=9

Fig. 2 Revisit frequency of local optima by tabu assisted GLS (C37)

470

4 Discussions and future work

In this research, we carried out experiments to monitor the revisit frequency of local optima
by a GLS metaheuristic. Results show that in both the simple GLS and its multi-start version,
time is wasted due to revisiting. A simple tabu assisted GLS schema is implemented to
prevent this problem. Although improvements have been obtained when compared against
the simple GLS, this simple hybridisation fails to produce better results than the multi-start
GLS. One of the possibilities that causes this problem may be that the current tabu assisted
GLS does not contain random elements and it lacks efficient mechanisms to “jump” to a
distant point in the search space. We are currently trying to implement various schemata
to combine the multi-start GLS with a tabu list. Early experiments on a limited number of
instances have shown very promising results. Comprehensive tests will be carried out and
results will be reported during the conference.

In addition, our observations show that LP Solve struggles on some problem instances,
for which the majority of computational time is used when solving CMMCF problems (more
than 85%). For some instances, LP Solve even fails to solve one single CMMCF instance
within 300 seconds. In future, we will look at other more efficient LP solvers, including NAG

and CPLEX. It is hoped that a faster LP solver can improve the proposed algorithm further.

References

Bai R, Kendall G, Li J (2010) A guided local search approach for service network design problem with
asset balancing. In: 2010 International Conference on Logistics Systems and Intelligent Management
(ICLSIM 2010), January 9-10, Harbin, China, pp 110–115

Ghamlouche I, Crainic TG, Gendreau M (2004) Path relinking, cycle-based neighbourhoods and capacitated
multicommodity network design. Annals of Operations Research 131:109–133

Pedersen MB, Crainic TG, Madsen OB (2009) Models and tabu search metaheuristics for service network
design with asset-balance requirements. Transportation Science 43(4):432–454

Voudouris C, Tsang EP (2003) Guided local search. In: Glover F, Kochenberger G (eds) Handbook of Meta-
heuristics, Kluwer, pp 185–218

471

The Relaxed Traveling Tournament Problem

Extended Abstract

Renjun Bao · Michael A. Trick

Abstract The Traveling Tournament Problem (TTP) is a sports scheduling problem

that encapsulates two major aspects of some sports leagues: restrictions on acceptable

home/away patterns and limits on travel distances. One major assumption in the TTP

is that the schedule is compact: every team plays in every time slot. Some sports

leagues have both pattern restrictions and distance limits but are not compact. In

such schedules, one or more teams can have a bye in any time slot. We examine a

generalization of the TTP where byes are possible.

Keywords Sports Scheduling · Integer Programming · Constraint Programming

Over the last twenty years, there has been increased interest in computational

methods for creating sports schedules. This interest has been driven both by advances

in the combinatorial structure of sports schedules and in the practical need for schedules

by real sports leagues. There have been a number of recent surveys on the subject [5,

11,3] along with a recent annotated bibliography ([10]).

One path of research has revolved around the Traveling Tournament Problem

(TTP). In the TTP, there are 2n teams, each with a home venue. The teams wish

to play a double round robin tournament, whereby each team will play every other

team twice, once at each team’s home venue. This means that every team needs to

play 2n− 2 games. There are 2n− 2 time slots in which to play these games, so every

team plays in every time slot. Associated with a TTP instance is a distance matrix D

where Dij is the distance between the venue of team i and team j. Teams are assumed

to begin and end the tournament at their home venue. If team i plays consecutive

games at the venues of j and k, then i travels from its home venue to that of j then on

to k before returning home to i’s venue (and similarly for longer trips). The objective is

to minimize the total travel of the teams subject to some requirements on the number

R. Bao
Cleveland State University
Cleveland, OH USA E-mail: baorenjun@gmail.com

M.A. Trick
Tepper School of Business
Carnegie Mellon University
Pittsburgh, PA USA E-mail: trick@cmu.edu

472

of consecutive home (or road) games by each team. Those requirements can vary, but

the canonical TTP requires that each team play no more than three consecutive home

games or three consecutive road games.

The TTP was developed to abstract out the key issues in scheduling Major League

Baseball, the United States professional baseball league. For that league, there are

dozens of restrictions and requirements but the key issue was the tradeoff between dis-

tance traveled and home/away requirements. Since its introduction, the TTP has been

the subject of numerous papers (see, for instance, [6,2,12,9,4,14]) and is supported

by an active website. Despite this interest, the TTP has proven to be a computational

difficult challenge. For many years, the six-team instance NL6 was the largest instance

solved to provable optimality. In 2008, NL8 was solved; NL10 was solved in late 2009

along with other ten team instances. This leaves twelve teams as the smallest unsolved

instances, which still seems a remarkably small league size for such a simple problem

description.

The goal of the TTP is to find a compact schedule: the number of time slots

is equal to the number of games each team plays. This forces every team to play

in every time slot. There are a number of leagues which are concerned with both

home/away patterns and distance traveled but do not require compact schedules. Two

significant examples in the United States are the National Basketball Association and

the National Hockey League. Both leagues are economically significant, with yearly

revenues of US$3.6 billion and US$2.8 billion respectively. If we examine the schedule

for a team in each league, as shown in Figure 1, we can see a number of scheduling

similarities.

The timetable at the top of Figure 1 is the schedule for the NBA’s Cleveland

Cavaliers for December 2009. In that schedule, home games are represented by darker

background dates; away games have a white background. The timetable at the bottom

of Figure 1 is for the NHL’s Pittsburgh Penguins, with away games marked with an

”@” symbol. For both leagues, the dates on which games are played vary by team. In

fact, there are both NBA and NHL games every day of the months given. Over the

course of a season, there is approximately one off day for every game played by a team

(season lengths are 82 games per team for each league over approximately 160 days).

For both of these leagues, it is generally the case that teams with consecutive

road games travel between the road cities, rather than returning home in between.

This makes travel an important component of the schedule. For instance, the Penguins

schedule begins the month with road games at Anaheim, Los Angeles and San Jose (all

teams on the US west coast) before returning to the east coast to play at Boston and

then returning home. This is a much better trip than Anaheim, Boston, Los Angeles

and San Jose for a team based in eastern part of the United States, as Pittsburgh is.

These schedules lead to a natural generalization of the Traveling Tournament Prob-

lem which we call the Relaxed Traveling Tournament Problem (RTTP): instead of

fixing the schedule length to be 2n − 2, let the schedule length be 2n − 2 + K for

some integer K ≥ 0. For a given K, we will denote the corresponding problem as the

K-RTTP. For K = 0, the RTTP is just the TTP. For K > 0, each team has K slots

in which it does not play. We call such a slot a bye for the team. There are many

ways in which these byes could be counted. Initially, we will simply ignore byes when

determining consecutive home or away games. So a home(H)/away(A)/bye(B) pattern

of HHBHAABBA would be treated as having one three game home stand followed by a

three game road trip. The advantage of this definition is that solutions for the TTP

473

Fig. 1 NBA and NHL Schedules

are feasible for the K-RTTP for all K ≥ 0 (in fact, k1-RTTP are feasible for k2-RTTP

for k1 ≤ k2).

For relatively small K this treatment of byes is reasonable. But for large K, simply

ignoring the byes can lead to undesirable behavior whereby, for instances, a sequence

like ABBBBBBBBBBA is treated like a two game road trip, when any real team would

return home in the interim. For larger K (like K = 2n − 2, mimicking the NBA and

NHL), we can put lower and upper bounds on the number of consecutive byes, or have

other restrictions to have the patterns reflect playable schedules.

With this definition of K-RTTP, there are a number of interesting questions. Key

to some of these is the idea of the Independent Lower Bound (ILB). For the TTP, the

ILB is found by determining, for each team, the minimum distance that team must

travel to visit all other teams, respecting limits on trip length. The ILB is then the sum

of that value over all teams. Clearly the ILB is a lower bound for the TTP and for the

K-TTP for all K. It is a reasonable conjecture that the ILB is tight for TTPs of at least

a certain size. The work of Urrutia and Ribeiro [13] show this is not the case, even if

there are no upper bounds on trip length and the distance between i and j is 1 for any

i 6= j. Do byes help in this case? We conjecture that for sufficiently large K, the ILB is

tight for the K-TTP, where K depends on n, but not on D. Even stronger, it may be

that the ILB is tight for the 1-RTTP. While this may seem farfetched (can one bye per

474

team be enough?), the work of [7] shows that for avoiding “breaks” (consecutive homes

or aways), one bye per team is sufficient to reduce the number of breaks in a round

robin schedule on 2n teams from 2n − 2 to zero. Perhaps one break is also enough to

allow every team minimum travel. Our computational methods confirm this for NL4,

though that is extremely slender evidence.

Key to exploration of this and other issues is the need for a computational approach

for solving K-RTTPs. Over the last decade, there have been a number of approaches

proposed to exactly solve the TTP (not counting many more heuristic approaches which

are beyond the scope of this work). In [1], a number of alternative approaches were

proposed, including generalizations of the well-known three phase approach (finding

pattern sets, schedules, and game assignments) and trip formulations for the TTP. We

have implemented integer and constraint programming versions to determine optimal

schedules and are in the process of developing a system based on logic-based Benders

decomposition [8]. With our current implementations, we can state the following:

1. The RTTP appears to be even harder than the TTP to solve to optimality

2. Even small K leads to interesting, difficult instances

3. Current techniques for the TTP can be generalized to the RTTP, though the gen-

eralizations are not trivial or straightforward.

In the full version, we will outline the generalizations and describe how they work

computationally. We will also address issues of the structure of small K problems, and

the relationship to the ILB.

References

1. Bao, R.: Time Relaxed Round Robin Tournament and the The National Basketball Asso-
ciation Scheduling Problem. dissertation, Cleveland State University (2009)

2. Benoist, T., Laburthe, F., Rottembourg, B.: Lagrange relaxation and constraint pro-
gramming collaborative schemes for traveling tournament problems. In: Proceedings
CPAIOR’01, Wye College (Imperial College), Ashford, Kent UK (2001)

3. Briskorn, D.: Sports Leagues Scheduling: Models, Combinatorial Properties, and Opti-
mization Algorithms. Springer (2008)

4. Cheung, K.: A benders approach for computing lower bounds for the mirrored traveling
tournament problem. Discrete Optimization 6, 189–196 (2009)

5. Drexl, A., Knust, S.: Sports league scheduling: Graph - and resource - based models.
Omega (to appear) (2010)

6. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem: Description
and benchmarks. In: T. Walsh (ed.) Principles and Practice of Constraint Programming
- CP 2001, Lecture Notes in Computer Science, vol. 2239, pp. 580–585. Springer Berlin /
Heidelberg (2001)

7. Froncek, D., Meszka, M.: Round robin tournaments with one bye and no breaks in home-
away patterns are unique. In: S.P. G. Kendall E. Burke, M. Gendreau (eds.) MISTA 2003,
pp. 331–340 (2005)

8. Hooker, J., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming
96, 33–60 (2003)

9. Irnich, S.: A new branch-and-price algorithm for the traveling tournament problem. Tech-
nical Report OR-01-2009, Chair for Operations Research and Supply Chain Management,
RWTH Aachen University, Aachen (2009)

10. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers & Operations Research 37(1), 1 – 19 (2010)

11. Rasmussen, R., Trick, M.: A Benders approach for constrained minimum break problem.
European Journal of Operational Research 177(1), 198–213 (2007)

475

12. Urrutia, S., Ribeiro, C., Melo, R.: A new lower bound to the traveling tournament problem.
In: Proceedings of the IEEE Symposium on Computational Intelligence in Scheduling
(2007)

13. Urrutia, S., Ribeiro, C.C.: Maximizing breaks and bounding solutions to the mirrored
traveling tournament problem. Discrete Appl. Math. 154(13), 1932–1938 (2006)

14. Uthus, D.C., Riddle, P.J., Guesgen, H.W.: Dfs* and the traveling tournament problem.
In: CPAIOR ’09: Proceedings of the 6th International Conference on Integration of AI and
OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.
279–293 (2009)

476

Modelling Issues in Nurse Rostering

Burak Bilgin 1 · Patrick De Causmaecker 2 ·
Greet Vanden Berghe 1,3

Abstract The real world nurse rostering problem requires numerous extensions to the

nurse rostering models reported in the literature. In this work, we present some issues

in nurse rostering model and illustrate them with specific examples. The extensions to

our previous model [1] are inspired by the cases collected during collaboration with an

industrial partner (GPS Time Security NV).

De Causmaecker and Vanden Berghe have categorised the nurse rostering prob-

lems regarding to the personnel environment, work characteristics, and optimisation

objectives [2,3]. The skill type is an element of the personnel environment in this cate-

gorisation. Although there are several categories regarding the treatment of skill types,

we report the most complicated one in this abstract. In some wards, employees can

have multiple skill types and different levels of experience for each skill type. Consider

a senior regular nurse who is a trainee as a head nurse. She has two skill types: regular

and head nurse, but different levels of experience for each of them: senior and trainee.

In this type of problems, the minimum level of experience is also given in the coverage

constraints.

Domain. Domain is a new modelling element used in the definition of constraints. The

composition of a domain object is as follows:

– Date set

– Handling of the date set: individual or complete

– Shift type set

This research project is funded by IWT (Institute for the Promotion of Innovation by Science
and Technology in Flanders) within the project IWT 080356 - GPS Plan.

1 Combinatorial Optimisation and Decision Support (CODeS)
Department of Information Technology, KaHo Sint Lieven
{Burak.Bilgin, Greet.Vandenberghe}@kahosl.be

2 Combinatorial Optimisation and Decision Support (CODeS)
Department of Computer Science, KUL@K, K.U.Leuven
Patrick.DeCausmaecker@kuleuven-kortrijk.be

3 Katholieke Universiteit Leuven,
Department of Computer Science and Information Technology

477

– Skill type set

Absence request as a block. In the following examples, different domain objects are

used as parameters in the absence and assignment requests of the nurses. Consider a

nurse who plans a ski vacation over a period of five days with a fixed starting day. This

vacation request will be considered granted, if and only if all the days in the date set

are granted. Hence, the date set is handled as a single block.

Absence request on individual days. Another example is a nurse who wants to help

redecorating her house. This vacation request can be granted partially. The more days

are granted, the better it is for the nurse. Hence, the dates in the set are handled

individually.

Absence request on a specific shift types set. A common example encountered in Belgian

hospitals is a nurse who wants to take care of her children on Wednesday afternoons,

because Wednesday afternoons are school free in Belgium. In this case, the date set

consists of the Wednesdays in the planning period, and the shift type set consists of

the afternoon, evening, and probably also the night shifts.

Assignment request for a specific skill types set. There are also cases in which a nurse

is a senior caregiver but a trainee as a regular nurse. She wants to work as a regular

nurse as much as possible to gain experience in this skill type. In this case, the skill

type set of the domain element consists of “regular nurse”.

Individual bank holidays. The utilisation of domains is not limited to the employee

requests. Some institutions allow their nurses to define their own bank holidays. There

are two advantages of this practice. First, the shortage of the available nurses during

the public holidays is reduced, because not all nurses take leave at the same time.

Second, nurses can select their own holidays based on their religion and nationality.

Instead of defining a global holidays worked counter that applies to the whole ward,

counters with domains that represent the holidays of the individuals are defined to

address this practice.

Constraint period exceeding the planning period. The holidays worked counter poses

another challenge. The period of this constraint, a year, exceeds the planning period.

A typical planning period of four weeks is shorter than a year. The holidays before and

after the current planning period need to be taken into account as well. The threshold

values of the constraint need to be adjusted using the following formula. Let h be the

number of assignments on bank holidays before the current planning period. Let r be

the number of remaining holidays after the current planning period.

min′ = min− h− r (1)

max′ = max− h (2)

In academic models, the planning period is usually considered to be isolated. The

real world practice, however, requires the consideration of assignments in the previous

planning periods, as well as the structure of the upcoming planning periods. The hol-

idays worked counter is an example of this requirement. The continuity between the

478

planning periods is studied in greater detail by Glass and Knight [4]. They carried out

their studies on the Nottingham benchmarks, a collection of nurse rostering problem

instances from different countries [5].

Collaboration. The collaboration constraint restricts the composition of the nurses that

work together. The parameters of the collaboration constraint are as follows:

– Employee set

– Domain

– Threshold

– Weight

The employee set needs to consist of at least two employees that have to work

together or not. The collaboration can be defined regarding any domain element. The

threshold value determines the nature of the collaboration. If the maximum threshold

value is set to zero, this means that a collaboration among the nurses in the employee set

is not desired. A positive minimum threshold is needed in order to express a requirement

of nurses working together.

Training. The objective of the training constraint is to increase the level of experience

of the trainees. Usually, seniors of a skill type are engaged to supervise the work of

trainees of the same skill type. This supervision is considered as training. The training

constraint can occur in different ways in real world practice. Here is a common exam-

ple: a senior can train up to five trainees at the same time. There must be sufficient

numbers of seniors assigned for the trainees that are assigned to the same domain. The

parameters and the formula of the training constraint are as follows:

– Preceding level of experience (t)

– Succeeding level of experience (s)

– Ratio (r)

– Domain

– Weight

dr · te ≤ s (3)

In this work, we report extensions to the nurse rostering model in order to address

the real world problems. The publication of an XSD of the extended model, real world

data files with the extended features and experimentation on the data files constitute

the future work. The nurse rostering problem is dynamic in its nature and all the time

provides the industry professionals with new challenges. The models need to be in

continuous redevelopment to address the upcoming challenges.

References

1. Bilgin, B., De Causmaecker, P., Rossie, B., Vanden Berghe, G.: Local search neighbour-
hoods for dealing with a novel nurse rostering model. Tech. rep., KaHo Sint-Lieven, In-
formation Technology; K.U. Leuven Campus Kortrijk, Computer Science and Information
Technology (2009). Submitted to Annals of Operations Research - Patat Special Issue.

2. De Causmaecker, P., Vanden Berghe, G.: Categorisation of personnel rostering problems.
Working Paper K.U. Leuven (2009)

479

3. De Causmaecker, P., Vanden Berghe, G.: Towards a reference model for timetabling and
rostering. Accepted for publication in Annals of Operations Research (2010)

4. Glass, C., Knight, R.: The nurse rostering problem: A critical appraisal of the problem
structure. European Journal of Operational Research In Press (2009)

5. Burke, E.K., Curtois, T., Qu, R., Vanden Berghe, G.: A scatter search approach to the
nurse rostering problem. Journal of the Operational Research Society Accepted for Pub-
lication (2009)

480

Semidefinite Programming Relaxations in Timetabling
(Abstract)

Edmund K. Burke ⋅ Jakub Mareček ⋅ Andrew J. Parkes

Keywords timetabling ⋅ bounded colouring ⋅ vertex colouring ⋅ graph colouring ⋅ semidefinite
programming

Semidefinite programming has recently gained much attention as a powerful method for deriv-
ing both strong lower bounds and approximation algorithms in combinatorial optimisation. There
have not been, however, any applications to timetabling. We show one reason to believe that this
could well change, ultimately.

Definitions In linear programming (LP), the task is to optimise a linear combination cT x subject
to linear constraints Ax = b, together with the constraint that each in vector x of n variables is non-
negative. The non-negativity of x, x ∈ (R+)n, can be seen be seen as a restriction of the variables
to lie in the convex cone of the positive orthant. Using interior point methods, linear program-
ming can be solved to any fixed precision in polynomial time. These methods also work for other
symmetric convex cones.

Semidefinite programming (SDP, Bellman & Fan, 1963; Alizadeh, 1995; Wolkowicz, Saigal,
& Vandenberghe, 2000) is a generalisation of linear programming, replacing the vector variable
with a square symmetric matrix variable and the polyhedral symmetric convex cone of the positive
orthant with the non-polyhedral symmetric convex cone of positive semidefinite matrices. Note
that an n× n matrix, M, is positive semidefinite if and only if yT My ≥ 0 for all y ∈ Rn. As all
scalar multiplies of positive semidefinite matrices and convex combinations of pairs of positive
semidefinite matrices are positive semidefinite, positive semidefinite matrices do form a convex
cone in Rn2

. We denote Aર B whenever A−B is positive semidefinite, and use ⟨A,B⟩ for the inner
product of matrices, which is ∑i, j Ai, jB j,i. Formally, semidefinite programming is the minimisation
of ⟨C,X⟩ such that ⟨Ai,X⟩= bi ∀i = 1 . . .m and X ર 0, where X is a (primal) square symmetric
matrix variable, C and Ai are compatible symmetric matrices, m is the number of constraints, and
b ∈Rm.

Let us now consider a simple model of timetabling, underlying integer programming decom-
positions (Burke, Mareček, Parkes, & Rudová, 2010), for instance. The input consists of iden-
tifiers of events V, distinct enrolments U (“curricula”), rooms R, and periods P, plus mapping
F : U→ 2V ∖ /0 from “curricula” to non-empty sets of events. Conflict graph G = (V,E) is given

Automated Scheduling, Optimisation and Planning Group, School of Computer Science, The University of Notting-
ham, Nottingham NG8 1BB, UK. E-mail: {ekb,jxm,ajp}@cs.nott.ac.uk. For supplementary material, please see:
http://cs.nott.ac.uk/˜jxm/

481

http://cs.nott.ac.uk/~jxm/

by F , where events F(u) is a clique in G for all u ∈ U. The “core” decision variables are

Zp,v =

{
1 event v is taught at period p
0 otherwise,

(1)

which are subject to linear constraints

∀v ∈ V ∑
p∈P

Zp,v = 1 (2)

∀p ∈ P ∀u ∈ U ∑
v∈Fu

Zp,v ≤ 1 (3)

∀p ∈ P ∑
v∈V

Zp,v ≤ ∣R∣ (4)

Notice that there is only a single mention (4) of rooms, which makes the colouring of the conflict
graph ∣R ∣-bounded. This means the cardinality of each colour class or the number of uses of each
colour is at most ∣R ∣. Depending on the tightness of the ∣R ∣-bound, the chromatic number alone
is not necessarily a good lower bound.

Related Work There are a number of ways to bound the chromatic number of a graph using SDP.
Informally, the point is that a parameter of the graph, denoted theta, is at least as large as the clique
number and no more than the chromatic number, yet is computable in polynomial time using SDP.
The known theta-like bounds for unbounded colouring form a hierarchy (Szegedy, 1994):

α(G)≤ ϑ1/2(G)≤ ϑ(G)≤ ϑ2(G)≤ χ(G), or ω(G)≤ ϑ1/2(G)≤ ϑ(G)≤ ϑ2(G)≤ χ(G),

where α is the size of the largest independent set, ω is the size of the largest clique, χ is the
chromatic number, ϑ1/2 is the vector chromatic number (Karger, Motwani, & Sudan, 1998), ϑ is
the strict vector chromatic number (Karger et al., 1998), ϑ2 is the strong vector chromatic number
(Kleinberg & Goemans, 1998), and bar indicates complementation. For the corresponding vector
programming and semidefinite programming formulations, please consult the literature (Szegedy,
1994). In theory, all could be extended to bounded graph colouring, but none has been so far, up
to the best of our knowledge.

In terms of applications, the celebrated SDP relaxation of the maximum cut problem (MAX-
CUT, Goemans & Williamson, 1995) has been adapted to scheduling workload on two machines
(Skutella, 2001; Yang, Ye, & Zhang, 2003) and home-away patterns in sports scheduling (Suzuka,
Miyashiro, Yoshise, & Matsui, 2007). The techniques of “vector lifting” and “matrix lifting”
have been applied in signal decoding in multi-antenna systems (Mobasher & Khandani, 2007;
Mobasher, Taherzadeh, Sotirov, & Khandani, 2007). All of the above can be though of as rank-
minimisation matrix completion problems (Fazel, Hindi, & Boyd, 2004), whose applications range
from signal processing to statistics and system theory. We are now aware, however, of any appli-
cations to timetabling.

Bounding the Bounded Chromatic Number by SDP A clear application of semidefinite program-
ming is in the detection of infeasibility in timetabling (2–4). The infeasibility test is given by lower
bounding the ∣R ∣-bounded chromatic number of the conflict graph and comparing it against ∣P ∣,
the number of periods available. Here we follow the method and notation of (Dukanovic & Rendl,
2007), briefly reported also in PATAT 2004 (Dukanovic & Rendl, 2004). The underlying matrix
variable M is:

Mu,v =

{
1 if u and v are of the same colour
0 otherwise.

(5)

If we define Y = tM, we obtain legal colouring for integral t and Y ∈ {0, t}. In computing theta,
these integrality constraints are dropped, resulting in an instance of SDP.

482

Table 1: An illustration of the effects of bounding the ∣R ∣-bounded chromatic number of the in-
stance sta-f-83: Column χ ∣R ∣ lists the ∣R ∣-bounded chromatic number obtained using integer lin-
ear programming, within time listed under “χ ∣R ∣ Runtime” in seconds. Column ϑ ∣R ∣ lists the
bounds obtained using semidefinite programming and rounding up, within time listed under “ϑ ∣R ∣

Runtime” in seconds. Column ∣V ∣/∣R ∣ lists the lower bound on the colours obtained by simple
counting arguments and rounding up. Dash denotes the the omission of the ∣R ∣-bounding con-
straint, giving the standard theta function instead of ϑ ∣R ∣.

∣R ∣ χ ∣R ∣ χ ∣R ∣ Runtime ϑ ∣R ∣ ϑ ∣R ∣ Runtime ∣V ∣/∣R ∣
1 47 0.09 47 3.46 47
2 26 2.88 26 2.92 24
3 20 2.67 20 3.34 16
4 16 7.22 16 3.70 12
5 14 11.10 14 3.24 10
6 13 2.67 13 3.12 8
7 12 8.77 12 3.26 7
8 11 2.89 11 3.40 6
9 11 3.39 11 3.14 6
47 11 0.35 11 3.92 1
— 11 0.34 11 3.45 —

The theta relaxation can be modified to provide a bound on the bounded chromatic number by
the addition of linear inequalities. In bounded colouring, we expect ∑u Muv ≤ ∣R ∣ ∀v ∈ V . This
gives us the following SDP:

ϑ
∣R ∣(G) = min t (6)

s. t. : ∀v ∈V Yvv = t (7)

∀{u,v} ∈ E Yuv = 0 (8)

∀v ∈V ∑
u

Yuv ≤ t∣R ∣ (9)

Y − J ર 0 (10)

where J is the all-ones matrix. A closely related bound can be derived using the matrix lifting
operator M+(K) of Lovász and Schrijver (1991).

Numerical Experiments As a concrete example, we consider a small conflict graph from a stan-
dard benchmark problem. Specifically, we take the instance ”sta-f-83” from the Toronto examina-
tion timetabling benchmarks 1. There are 139 events, but the conflict graph has three connected
components of 30, 47 and 62 vertices. Here, we use the 47-vertex component to study semidef-
inite programs produced by YALMIP (Löfberg, 2004) and solved using SeDuMi 1.21 (Sturm,
1999) and MathWorks Matlab R2009a on an Intel Core Duo P8600 at 2.4 GHz with 2 GB of
RAM. For comparison, the bounded chromatic numbers are also provided. These were obtained
using the most straightforward integer linear programming formulation solved using the defaults
of ILOG CPLEX 12.10 on the same machine. Results are given in Table 1. Firstly, note that
∣R ∣ = 1 gives precisely the number of nodes, as would be expected. Secondly, note that ϑ ∣R ∣ is
generally much tighter than the lower bound ∣V ∣/∣R ∣ obtained by simple counting arguments. Ac-
cidentally, ϑ ∣R ∣ lower bounds actually happen to match the optima in this particular instance. For
example, at ∣R ∣ = 5, counting cannot rule out a 10-colouring, but the SDP bound shows that at
least 14 colours are required. A 14-colouring together with a certificate of its optimality can be
obtained using CPLEX, but not in polynomial time. As far as we know, SDP relaxations are the
only way to get such information in polynomial time.

1 See ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ and http://www.cs.nott.ac.uk/∼rxq/data.htm

483

We have also tried ∣R ∣-bounded modifications of the extensions to theta as given in (Dukanovic
& Rendl, 2007): ϑ ∣R ∣+ by keeping the Y ≥ 0 constraints, and ϑ ∣R ∣+△ keeping the Y ≥ 0 constraints
and also adding triangle inequality constraints. These, however, slow down the solver and do not
improve the bound on the tested instances. Also, theta can also be formulated on the comple-
ment graph, and this might be useful when the edge density is high, but we have not yet explored
∣R ∣-bounded versions.

Future Work In the SDP relaxation of bounded graph colouring above, the colour assignment was
not represented directly, but only in terms of the “same-time” classes of equivalence of nodes
assigned the same colour. This makes it naturally invariant under permutation of the colours. This
is sufficient for bounded colouring, but many objectives in timetabling refer to time-based patterns
of activities, e.g. whether events should be on the same day or not. These are not invariant under
“colour permutations” and so the “same-time” representation is no longer sufficient. For example,
in lower bounding the Surface component of integer programming decompositions (Burke et al.,
2010), i.e. the assignment of events to periods, including all the respective terms of the objective
function, we presumably need to re-introduce some matrix variable mapping events to timeslots as
in Surface (1). The matrix variable will need to be constrained so that there is only a single event
in each roomslot. This gives a constraint on the rank of the matrix variable, and this can then be
expressed in SDP. This can also be though of as an application of matrix-lifting operator M+(K)
of Lovász and Schrijver (Lovász & Schrijver, 1991). Work in this direction is in progress.

Conclusions The aim of this abstract was not to present a practical method for bounding the op-
tima in timetabling problems, yet. Indeed, SDP solvers are less well-developed than LP solvers,
in general. Current interior point methods for semidefinite programming are rather slow, albeit
running in time polynomial in the dimensions of the instance for any fixed precision. Our hope,
however, is that SDP solvers will improve significantly in the future. There is some evidence
that this could happen (Monteiro, 2003). The nascent bundle (Helmberg & Rendl, 2000; Helm-
berg, 2003) and augmented Lagrangian methods (Burer & Vandenbussche, 2006) are particularly
promising, as they seem to be able to cope with thousands of vertices in the conflict graph.

Notwithstanding the caveat above, SDP provides some of the strongest known relaxations in
timetabling. An extension of theta to bounded graph colouring gives a useful lower bound on
the number of periods required in the timetable, considering the conflict graph and the number
of rooms. More complex relaxations seem to allow for the optimisation over the assignments of
events to periods and rooms as well.

References

Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM J. Optim., 5(1), 13–51.

Bellman, R., & Fan, K. (1963). On systems of linear inequalities in Hermitian matrix variables.
In Proc. Sympos. Pure Math., Vol. VII (pp. 1–11). Providence, R.I.: Amer. Math. Soc.

Burer, S., & Vandenbussche, D. (2006). Solving lift-and-project relaxations of binary integer
programs. SIAM J. Optim., 16(3), 726–750 (electronic).

Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2010). Decomposition, reformulation,
and diving in university course timetabling. Comput. Oper. Res., 37(1), 582–597.

Dukanovic, I., & Rendl, F. (2004). Combinatorial tricks and Lovasz theta function applied to
graph coloring. In Proc. PATAT 2004 (p. 479).

Dukanovic, I., & Rendl, F. (2007). Semidefinite programming relaxations for graph coloring and
maximal clique problems. Math. Program., 109(2-3, Ser. B), 345–365.

Fazel, M., Hindi, H., & Boyd, S. (2004). Rank minimization and applications in system theory.
In American control conference (pp. 3273–3278). AACC.

484

Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6), 1115–1145.

Helmberg, C. (2003). Numerical evaluation of SBmethod. Math. Program., 95(2, Ser. B), 381–
406. (Computational semidefinite and second order cone programming: the state of the
art)

Helmberg, C., & Rendl, F. (2000). A spectral bundle method for semidefinite programming. SIAM
J. Optim., 10(3), 673–696.

Karger, D., Motwani, R., & Sudan, M. (1998). Approximate graph coloring by semidefinite
programming. J. ACM, 45(2), 246–265.

Kleinberg, J., & Goemans, M. X. (1998). The Lovász theta function and a semidefinite program-
ming relaxation of vertex cover. SIAM J. Discrete Math., 11(2), 196–204.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MATLAB. In Proc. of
CACSD. Taipei, Taiwan.

Lovász, L., & Schrijver, A. (1991). Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim., 1(2), 166–190.

Mobasher, A., & Khandani, A. K. (2007). Matrix-lifting semi-definite programming for decoding
in multiple antenna systems. CoRR, abs/0709.1674.

Mobasher, A., Taherzadeh, M., Sotirov, R., & Khandani, A. K. (2007). A near-maximum-
likelihood decoding algorithm for MIMO systems based on semi-definite programming.
IEEE Trans. Inform. Theory, 53(11), 3869–3886.

Monteiro, R. D. C. (2003). First- and second-order methods for semidefinite programming. Math.
Program., 97(1-2, Ser. B), 209–244.

Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling.
J. ACM, 48(2), 206–242.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw., 11/12(1-4), 625–653.

Suzuka, A., Miyashiro, R., Yoshise, A., & Matsui, T. (2007). The home-away assignment prob-
lems and break minimization/maximization problems in sports scheduling. Pac. J. Optim.,
3(1), 113–133.

Szegedy, M. (1994). A note on the theta number of Lovász and the generalized Delsarte bound.
In Sfcs ’94: Proceedings of the 35th annual symposium on foundations of computer science
(pp. 36–39). Washington, DC, USA: IEEE Computer Society.

Wolkowicz, H., Saigal, R., & Vandenberghe, L. (Eds.). (2000). Handbook of semidefinite program-
ming. Boston, MA: Kluwer Academic Publishers. (Theory, algorithms, and applications)

Yang, H., Ye, Y., & Zhang, J. (2003). An approximation algorithm for scheduling two parallel
machines with capacity constraints. Discrete Appl. Math., 130(3), 449–467.

485

A general approach for exam timetabling: a real-world and
a benchmark case

Peter Demeester · Patrick De Causmaecker ·
Greet Vanden Berghe

1 Introduction

We discuss, model and tackle two examination timetabling problems. The first is a real-

world case while the latter is a well-known benchmark problem. Both are solved with

the same hyper-heuristics approach. Unlike meta-heuristics, in which the search is exe-

cuted on the space of solutions, hyper-heuristics operate on a search space of heuristics

[Burke et al., 2003]. Hyper-heuristics were originally introduced for automating the low-

level heuristics’ selection, for example by applying machine learning techniques [Burke

et al., 2008]. The low-level heuristics employed in both examination timetabling cases

are built so that each of them can individually solve one specific part of the problem.

By combining the low-level heuristics, the particular properties of each of them can be

exploited to solve the problem.

Leaving the cost function aside, both approaches only differ in the low-level heuristics.

Peter Demeester
KaHo Sint-Lieven, Departement Industrieel Ingenieur, Gebroeders Desmetstraat 1, 9000 Gent,
Belgium
Tel.: +32-92658610
Fax: +32-92256269
E-mail: Peter.Demeester@kahosl.be

Patrick De Causmaecker
K.U. Leuven, campus Kortrijk, Computer Science and Information Technology, Etienne Sabbe-
laan 53, 8500 Kortrijk, Belgium
Tel.: +32-56246002
Fax: +32-56246052
E-mail: Patrick.DeCausmaecker@kuleuven-kortrijk.be

Greet Vanden Berghe
KaHo Sint-Lieven, Departement Industrieel Ingenieur, Gebroeders Desmetstraat 1, 9000 Gent,
Belgium
Tel.: +32-92658610
Fax: +32-92256269
E-mail: Greet.VandenBerghe@kahosl.be

486

2 Problem Description

First, the hyper-heuristics framework is applied to a real-world examination timeta-

bling problem at the School of Engineering of KaHo Sint-Lieven in Gent (Belgium).

The duration of a typical examination schedule is 4 weeks, which corresponds to 40

time slots of four hours each. In Belgium, there is a distinction between oral and

written exams. All written exams of the same subject should be organized in the same

time slot, while the organization of oral exams is a bit more complex. The maximum

number of examinees per time slot for oral exams is 20. This means that if, for example,

200 students take the course, at least 10 oral exams at different time slots should be

organized.

The hard constraints of the KaHo examination problem are:

– a student cannot take more than one exam per time slot;

– the number of students assigned to a room cannot exceed its capacity;

– all exams should be organized within the planning horizon of four weeks.

The corresponding soft constraints are:

– All written exams of the same subject should be scheduled in the same time slot.

– Oral and written exams should not be merged into the same room.

– All oral exams should be scheduled such that the maximum number of examinees

per timeslot is 20. Lecturers who take oral exams cannot examine more than one

group at the same time.

– Students should have sufficient study time between two consecutive exams. At

KaHo Sint-Lieven, the minimum study time between two consecutive exams for a

student should be at least 3 time slots.

This problem is of particular interest since the manual planner actually needed 48

time slots to organize all exams. He needed to incorporate time slots on Saturdays into

the schedule in order to arrange the exams in a 4 weeks period.

In order to compare the hyper-heuristic’s performance with the state of the art, we

also have applied it to the data sets of the examination timetabling track of the 2007

International Timetabling Competition (ITC 2007) [McCollum et al., 2009]. The hard

constraints of the ITC 2007 exam timetabling track are:

– a student cannot attend more than one exam per time slot;

– an exam cannot be split over several rooms;

– the room’s capacity cannot be exceeded;

– some exams require rooms with special properties;

– since every exam has a duration, its duration should be less than or equal to the

duration of the selected time slot where it is assigned to;

– some exams should be scheduled before, after, at the same time or not at the same

time as other exams.

As can be deduced from the hard constraints, the time slots have different durations.

Also, the order of the exams is important. These two constraints do not apply to the

KaHo problem.

The following soft constraints should be taken into account:

– two exams taken by the same student should not be scheduled on the same day or

in two consecutive time slots;

– exams should be spread as much as possible;

487

– exams with different durations should not be assigned to the same room;

– large exams should be scheduled early in the timetable;

– some of the time slots in the examination timetable should be avoided;

– some of the rooms should be avoided for examination.

The problems have some soft constraints in common, but there are also differences.

The distinction between oral and written exams at KaHo is not present in the ITC

2007 examination timetabling track. On the other hand, the ITC 2007 examination

timetabling track demands that large exams should be scheduled in the beginning of

the examination period, and that some of the time slots and rooms should preferably

be avoided.

3 Solution Approach

A typical hyper-heuristics framework consists of a heuristic selection mechanism and

move acceptance criteria [Özcan et al., 2008]. The heuristic selection mechanism that

is applied in both examination timetabling cases is simple random. This is actually

the simplest selection mechanism, since it randomly selects a low-level heuristic from

a list of low-level heuristics. Concerning the move acceptance criteria, we experiment

with four meta-heuristics: simulated annealing, great deluge, steepest descent, and late

acceptance [Burke and Bykov, 2008].

Both problems share the same solution representation: a two dimensional matrix,

of which the rows represents the rooms, and the columns the time slots. A room-time

slot combination can hold several exams.

Regarding the examination timetabling problem at KaHo, the following low-level

heuristics are employed:

– move a randomly chosen exam to a random room-time slot combination;

– move a randomly chosen exam to a random room within the same original time

slot;

– move a randomly chosen exam to a random time slot while maintaining the original

room.

The hyper-heuristic approach finds feasible solutions satisfying all the soft constraints

within only 40 time slots. The best performing move acceptance criteria appear to be

simulated annealing and late acceptance.

Due to the extra constraints of the ITC 2007 case, additional low-level heuristics

tackling them in particular had to be introduced. On top of the low-level heuristics

that were already present in the KaHo approach, the following constraints are also

applied to the ITC 2007 case:

– a randomly chosen exam is moved to the same room but to a time slot that intro-

duces no extra period penalty;

– a randomly chosen exam is moved to the same time slot but to a room that intro-

duces no extra room penalty;

– the size of a randomly chosen exam is analyzed. If it is recognized as a large exam,

it is moved to a time slot in the beginning of the examination period.

In fact, the ITC 2007 problem could also be solved with only the KaHo low-level

heuristics, but preliminary experiments showed that the quality of the solutions was im-

proved by introducing the extra low-level heuristics. Besides the extra low-level heuris-

tics, both approaches only differ in their respective cost functions, since both problems

488

consider other constraints. Actually, both cost functions consist of a linear combina-

tion of the violations of the soft constraints and those hard constraints that cannot be

expressed in the model. The remaining parts of both applications are the same. For

more details we refer to [Demeester, 2010].

4 Conclusion and Future Work

With the general approach that was originally developed for tackling a real-world

problem, we obtain results that are competitive with those generated during the com-

petition. In future research we plan to replace the simple random heuristic selection

mechanism by a more intelligent one, based on for example a learning automaton [Misir

et al., 2009].

Acknowledgement

This work was partially supported by the IWT/SBO 060837 (Dicomas) project.

References

E.K. Burke and Y. Bykov. A late acceptance strategy in hill-climbing for exam

timetabling problems. In E.K. Burke and M. Gendreau, editors, Proceedings of

the The 7th International Conference on the Practice and Theory of Automated

Timetabling, Montreal, Canada, August 2008.

E.K. Burke, E. Hart E., G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Handbook

of Meta-Heuristics, chapter Hyper-Heuristics: An Emerging Direction in Modern

Search Technology, pages 457–474. Kluwer Academic Publishers, 2003.

E.K. Burke, M. Misir, G. Ochoa, and E. Özcan. Learning heuristic selection in hy-

perheuristics for examination timetabling. In Proceedings of 7th International Con-

ference of Practice and Theory of Automated Timetabling (PATAT08), Montreal,

Canada, 2008.

Peter Demeester. Heuristic approaches for real world timetabling problems in education

and health care. PhD thesis, K.U. Leuven, 2010.

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A.J. Parkes, L. Di

Gaspero, R. Qu, and E.K. Burke. Setting the research agenda in automated

timetabling: The second international timetabling competition. INFORMS Jour-

nal on Computing, Articles in Advance:1–11, 2009.

M. Misir, T. Wauters, K. Verbeeck, and G. Vanden Berghe. A new learning hyper-

heuristic for the traveling tournament problem. In Proceedings of the 8th Metaheuris-

tic International Conference (MIC09), Hamburg, Germany, July 2009.

E. Özcan, B. Bilgin, and E.E. Korkmaz. A comprehensive analysis of hyper-heuristics.

Intelligent Data Analysis, 12(1):3–23, January 2008.

489

A Hybrid LS-CP Solver for the Shifts and Breaks Design
Problem

Luca Di Gaspero · Johannes Gärtner ·
Nysret Musliu · Andrea Schaerf · Werner

Schafhauser · Wolfgang Slany

1 Introduction

The problem of designing workforce shifts and breaks patterns is a relevant employee

scheduling problem that arises in many contexts, especially in service industries. The

issue is to find a minimum number of shifts, the number of workers assigned to them,

and a suitable number of breaks so that the deviation from predetermined workforce

requirements is minimized.

We tackle this problem by means of a hybrid strategy in the spirit of Large Neigh-

borhood Search, which blends a Local Search based procedure for determining the

shifts, with a Constraint Programming model for assigning breaks. This is a prelimi-

nary work and experimentation is currently underway on a set of benchmark instances

employed in the literature.

2 Problem definition

Formally, we are given a set D of days, which are subdivided into a set of equally long

timeslots. The planning horizon is therefore a set {τ1, τ2, τ3, . . . , τh} of consecutive

timeslots at a given time granularity, each belonging to a single day d. Moreover, for

each timeslot τ , we are given a staffing requirement rτ , which indicates the number of

employees that should be working during timeslot τ .

L. Di Gaspero, A. Schaerf
DIEGM, University of Udine
E-mail: l.digaspero@uniud.it, schaerf@uniud.it

J. Gärtner
Ximes Inc., Austria
E-mail: gaertner@ximes.com

N. Musliu, W. Schafhauser
DBAI, Technische Universität Wien, Austria
E-mail: musliu@dbai.tuwien.ac.at, schafha@dbai.tuwien.ac.at

W. Slany
IST, Technische Universität Graz, Austria
E-mail: wolfgang.slany@tugraz.at

490

The problem consists in designing the shifts and break patterns, i.e., determining

the starting time σi and the length λi of each shift si and, for each day d, the number of

employees assigned wid and the start αidw and length βide of breaks for each employee

e. An employee is considered to be working during the timeslots comprised in the shift

but not in any of his/her breaks in that shift. More formally, an employee e works on

timeslot τ ∈ d if τ ∈ [σi, σi + λi] and τ /∈ [αidw, αidw + βidw].

3 Local Search and Constraint Programming models

In the context of this problem it is useful to define an Interval as a structure of two

variables start and length, which entirely determines a shift, a working period or a

break.

Local Search deals with a search space composed of a set of shifts S, each of them

is characterized by the following decision variables:

– the interval spanned by the shift;

– the number of employee assigned on each day of the planning horizon;

– for each each day the number of breaks each employee has to take.

Notice that Local Search works on a partial representation of the solution, since the

breaks are only specified in their number and not in the intervals they span. To complete

this representation to a full solution we resort to a Constraint Programming model

(described below) whose purpose is to determine the interval variables of each break.

The Neighborhood relations considered are similar to those employed in [1], slightly

modified to deal with the addition of the number of breaks, plus some new move dealing

directly with the break component. In detail we make use of the following moves:

– Change Staff : the staff of a shift in a given day is increased or decreased by one

employee.

– Resize Shift : the length of a shift is increased or decreased by one timeslot, either

on the left-hand side or on the right-hand side.

– Insert Shift : insert a new shift in the solution belonging to a given shift type.

– Merge Shift : two shifts are merged together and the employees assigned to them

are added; the interval of the outcoming shift as well as the number of breaks for

each day are the average of those of the two shifts merged.

– Change Breaks: the number of breaks of a shift in a given day is increased or

decreased by one.

The cost function is the weighted sum of the deviation (excess and shortage, with

different weights) from the working requirements at each timeslot plus another weighted

component that accounts for the number of shifts employed in the solution. Notice that

for an accurate computation of the deviation from the requirements a full solution is

needed, therefore the cost function has to be computed only after a full solution has

been determined by the CP model.

4 Conclusions and Future work

The proposed idea is still at an early development stage and the solver experimentation

is currently underway on a set of benchmark instances available from the literature.

491

Preliminary results show that this approach can be feasible to find good quality so-

lutions employing a reasonable number of shifts. However, at present we do not have

a full understanding about the contribution of each neighborhood to solution qual-

ity. Moreover also the CP model could benefit of some improvement, for example by

adding implied constraints which allow for a more accurate constraint propagation

and performing a principled evaluation of different heuristics for variable and value

selection.

References

1. Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, Andrea Schaerf, and
Wolfgang Slany. The minimum shift design problem. Annals of Operations Research,
155(1):79–105, 2007.

492

DIAMANT

RUBEN GONZALEZ-RUBIO
DÉPARTEMENT DE GÉNIE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

UNIVERSITÉ DE SHERBROOKE

1. Introduction

Diamant is a software system used to produce timetables at the Université de Sherbrooke,
where it has been in use since 2001. Diamant allows the user to produce course and exams
timetables. The timetable production can be done manually or automatically. This paper
will detail the evolution of the system and its main features.

2. Motivation

Producing timetables at the Université de Sherbrooke is done at the Faculty level. Each
Faculty has its courses, instructors, students and rooms. The courses are offered for the
whole year, there are three terms within the year: Winter (January to April), Summer
(May to August) and Fall (September to December). A course timetable is prepared for
each term in each Faculty. Each Faculty has a different way to build their timetables, some
use curriculum-based and some use post enrolment based, another big difference is the slots
in the timetable some are 3 hours some are 30 minutes. A exam timetable is prepared for
the end of each term, in some cases a mid-term exam timetable is also prepared. The report
[GR07] is a detailed account of how timetables are produced at Université de Sherbrooke.

It can be said that the main motivation to develop Diamant was to satisfy the needs of
all Faculties.

Initialy, Diamant was developed to replace another system called Saphir, because this
system was to old to be updated. Saphir works in MS-DOS, and was programmed in a
variant of Pascal. We chose a very conservative approach to creating this new program. It
was first required to replace the existing system and then add new features. The program
was set up so that Diamant would work like Saphir; using the same files and producing the
same files. This process took about 18 months. Diamant has since been through several
stages of evolution and is still in continuous progress towards further and better stages of
development. Currently, the work is being done in a version adapted to produce timetables
for the full term.

Taking in account all differences mentioned above, we believed that to build a system
for each Faculty would be far too complex, especially for the maintenance of the program.
Therefore, it was decided that only one system would be built, one that can be customized
by changing the parameters for each Faculty. The development of the system was done using
object oriented programming with Java and using the design patterns [GHJV95] along with

1

493

various practices coming from eXtreme Programming [Bec00] or [Mar03] to facilitate the
evolution of Diamant.

3. Evolution

When Saphir was operational, there was a central system where data concerning courses,
instructors and students were stored. The information for room data was in a separate file.
All data was transmitted in files. Therefore, Diamant was a stand alone program which
read files coming from the central system, and then produced the timetables when conflicts
within the scheduling were eliminated. The timetable was then transmitted to the central
system in order to display the produced timetable information in a Web site.

There was no verification of the data when it is entered within the system, this means
that the produced files can contain errors that could drive Saphir to crash. In Diamant

it has been ensured that all of the data is verified and valid. Once this process has been
completed, a Web system called DiamantWeb, that was created for the process of validating
data, is used as a new interface where the data entry can be done. A timetable structure
can be defined in DiamantWeb, and each Faculty can have a customized timetable, which,
could include exams on Saturdays and Sundays. For example: A Faculty can decide that
the exams must be scheduled in 5 or 6 day according to their needs.

We are currently working to produce timetables for a whole term. The process begins
with a timetable structure where holidays are indicated in such a way so that no courses can
be placed on those days. Some courses are not given the same day each week, or the same
amount of time. DiamantWeb is easily accessible for many users, this is especially important
for instructors so that they can indicate their availability and preferences concerning each
course. In the past, this operation was completed using paper, whereby the instructor
and the data were entered manually into the system by another person in charge of that
particular operation.

The main aspect concerning this program is that DiamantWeb serves as a data entry point
where data validation and preparation take place easily. Diamant is then used to produce
timetables, and the user can eliminate conflicts manually or through an automatic build,
as well as a combination of both methods.

4. Diamant main features

Diamant can produce timetables manually or automatically for the three timetables types:

• exams [MMK+07].
• post enrolment [LPM07].
• curriculum based [DMS07].

This report was written to address the problems determined by the International Timetable
Competition ITC 2007. The International Timetable Competition ITC 2007 reported that
the current method of creating timetables for the various types were a problem and nu-
merated the ways that their solutions were evaluated, giving points or penalties in order to
compare different solutions. The tracks were prepared to offer problems close to the real
ones.

494

In this report the problems that are characterized by the ITC 2007 are used in order to
indicate the possibilities of Diamant. Let us present how courses are organized at Université
de Sherbrooke in order to justify why some details are different. In order to get a diploma,
for example a bachelor in computer engineering a student needs to accumulate 120 credits
of a well defined set of courses. Each course represent 3 credits. Normally the 3 credits
are given to the student if he or she succeeds in the exam, and reaches the other require-
ments. Therefore, in order to succeed all exams and requirements, a student must perform
different required activities during a term. A course is decomposed in differing events and
these events must be scheduled in the weekly timetable. For example: The course Program-
ming101 has 200 enrolled students and the classrooms that are available have room for 100
students, 50 students, and the computer laboratories have space for 25 respectively. This
means that the events scheduled could be 2 lectures for groups of a 100 students, 4 groups
of 50 students to make problem analysis and finally 8 groups in the computer laboratories
to write and validate programs. In some cases the lectures are 3 hours but in others there
are 2 hours + 1 hour lectures that are not on the same day. For the course Programming
101 there are 16 events to place in the timetable1. Enrolled students in Programming 101
must take one final examination. Only one exam is scheduled for all Programming 101
students. The exam can take place in different rooms but all exams start at the same hour.
Exam rooms can be shared by student sets taking two different exams.

The instructors are assigned during timetable process build. No instructor is able to be
in two different places at the same time. Normally there is one instructor who is responsible
to for the grading of the exams, but he or she can be associated only to certain events,
other instructors or assistants are assigned to the remaining events.

In the case of exams, the presence of the instructor responsible for the course is not
required. Survey exams are done by assistants.

4.1. Exam timetable. In Diamant we can define a timetable composed by n days, each
day can have a number of periods with a defined length. The length of the period could
between 5 minutes and 12 hours. University exams are all three hours in length. For this
problem the user needs a set of exams, a set of students and a set of rooms. The set of
students contains for each student all exams that he or she will take2.

Hard Constraints:

• No student can sit more than one examination at the same time. This is taken into
account.

• The capacity of individual rooms cannot be exceeded. The rooms will be filled as
much as possible.

• Period lengths are not violated. In our example the exams and periods have the
same length. Changing this can be easy because the only thing to add is the length
of each exam.

1There are 2 lectures groups, each has 2 lectures, 4 analysis groups and 8 laboratory groups.
2All courses where the student is enrolled

495

• Satisfaction of period related constraints e.g. ExamA after ExamB. This is not
taken in account this kind of constraint but users can do so manually.

• Satisfaction of room related constraints e.g. ExamA must be in Room1. This could
be done at any time. If a user sets two exams in the same room a conflict will be
indicated.

The constraints that are taken into account are exams that are in a row and exams set in
a day.

4.2. Post enrolment timetable. As in exam timetable, in Diamant we can define a
timetable where events can be placed. The rooms are classified in categories, this means
that the user can specify a room as "classroom" or "laboratory" then the system can take
care of the capacity and features of the room. Normally, all slots are equivalent, but there
some priorities to need to be decided upon if events should be placed in one particular slot.
There are no precedence requirements.

Hard Constraints:

• No student should be required to attend more than one event at the same time.
This is respected.

• In each case the room should be big enough for all the attending students and
should satisfy all the features required by the event. The first part is respected and
partially the second.

• Only one room is put into each room in a time slot. This is taken into account.
• Events should only be assigned to time slots that are pre-defined available for those

events. There is no list like that.
• Where specified, events should be scheduled to occur in correct order during the

week. There is no list like that.
• An extra requirement that we implement is that no instructor should be required to

attend more than one event at the same time. The instructors have an availability
that is respected.

We do not take care of specified soft constraints.

4.3. Curriculum based timetable. In Diamant we have an auxiliary program to take
care of Curriculum based timetables. The auxiliary program generates virtual student sets,
respecting the predictions. Furthermore, with these virtual student sets it is possible to
take in account sets of events that must be programmed in different slots, because some
virtual students follow the same set of courses.

Diamant takes care of all hard constraints for curriculum based timetables. We do not
take care of specified soft constraints

5. Conclusion

The system Diamant has been presented and as detailed the system can take care of
different types of timetable production. When the user is preparing to build a timetable
he or she prepares the data for a specific type of timetable as outlined above, with the
associated parameter the system works for this specific type of timetable. Users may enjoy

496

the facility of the system because they have already learned only one type of system with
few commands. We do not fullfil all hard and soft constraints for all types of timetables
because they are not requested by Faculties at the Université de Sherbrooke

References

[Bec00] K. Beck. Extreme Programming Explained. Addison-Wesley, 2000.
[DMS07] L. Di Gaspero, B. McCollum, and A. Schaef. The second international timetabling

competition (itc–2007): Curriculum-based course timetabling(track 3). Technical Report
QUB/IEEE/Tech/ITC2007/CurriculumCTT, Queen’s University, Belfast, 2007.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.
[GR07] R. Gonzalez-Rubio. La production et la consultation d’horaires dans une université. Technical

report, Université de Sherbrooke, 2007.
[LPM07] R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A de-

scription of the problem model used for track two of the second international timetabling
competition. Technical Report ISSN: 1750-6658, Cardiff University, Wales, 2007.

[Mar03] R. C. Martin. Agile Software Development. Prentice-Hall, 2003.
[MMK+07] B. McCollum, P. McMullan, E. K..Burke, A. J. Parkes, and R. Qu. The second

international timetabling competition: Examination timetable track. Technical Report
QUB/IEEE/Tech/ITC2007/Exam, Queen’s University, Belfast, 2007.

497

First International Nurse Rostering Competition 2010

Stefaan Haspeslagh · Patrick De

Causmaecker · Martin Stølevik · Andrea

Schaerf

Abstract Insert your abstract here. Include keywords, PACS and mathematical sub-

ject classification numbers as needed.

Keywords First keyword · Second keyword · More

Introduction

In hospitals much effort is spent producing rosters which are workable and of a high

quality for their nurses. Though the Nurse Rostering Problem is known to be a diffi-

cult combinatorial optimisation problem of practical relevance, it has received ample

attention mainly in recent years.

Building on the success of the two timetabling competitions, ITC2002 and ITC2007

[1], the First International Nurse Rostering Competition (INRC2010) aims to further

develop interest in the general area of rostering and timetabling while providing re-

searchers with models of the problems faced which incorporate an increased number of

real world constraints.

Stefaan Haspeslagh
CODeS, Department of Computer Science, KULeuven Campus Kortrijk
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: stefaan.haspeslagh@kuleuven-kortrijk.be

Patrick De Causmaecker
CODeS, Department of Computer Science, KULeuven Campus Kortrijk
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
E-mail: patrick.decausmaecker@kuleuven-kortrijk.be

Martin Stølevik
SINTEF ICT, Department of Applied Mathematics
P.O. Box 124, Blindern, NO-0314 Oslo, Norway
E-mail: martin.stolevik@sintef.no

Andrea Schaerf
DIEGM, University of Udine
via delle Scienze 206, 33100, Udine, Italy
E-mail: schaerf@uniud.it

498

A first important goal of INRC2010 is to generate new approaches to the associated

problems by attracting users from all areas of research. As with many cases in the

past, significant advancements have been made in research areas by attracting multi-

disciplinary approaches and comparing them on a common ground.

The second important goal is to close the gap which currently exists between re-

search and practice within this important area of operational research. Although for

the sake of the competitive element, we do not include all aspects of the ’real world’

problem, we do build on the recent developments to introduce significantly more depth

and complexity.

A third goal of INRC2010 is to further stimulate debate within the widening ros-

tering and timetabling research community.

The competition is composed of three tracks; called, after the Olympic disciplines,

1. Sprint, 2. Middle Distance, and 3. Long Distance. The tracks differ from each other

based on the maximum running times and on the size of the proposed instances, whereas

the problem formulation considered is the same throughout the competition. These

tracks represent distinct solution settings in practice. Track 1 (Sprint) requires a solu-

tion in a few seconds, and it is meant for interactive use. Track 2 (Middle Distance)

requires the solution in a few minutes and simulates the practical situation in which

the problem has to be solved a few times in a solving session. Track 3 (Long Distance)

grants the solver a few hours of running time and is related to overnight solving. The

algorithm features are often tuned to the available running time so that the three

tracks represent different challenges to the participants. For each track there are three

sets of instances. The Early instances are released immediately after the competition

launch. The Late instances will be made available two weeks prior to the end of the

Competition on 15 April 2010. A number of instances will be kept aside in order to test

the best performing algorithms. These are the Hidden datasets and will be released to

the community at a later stage once the competition ends.

Below, we provide information about the Nurse Rostering Problem considered in

the competition. The competition rules, a precise problem description, and more info

about the data formats can be found at the site of the competition[2] and in a technical

reports describing the competition[3].

1 The Nurse Rostering Problem

The nurse rostering problem involves assigning shifts to nurses taking several con-

straints into account. As usual, we consider two levels of constraints:

– hard constraints: constraints that must be satisfied

– soft constraints: the sets of constraints that should be to satisfied but for which

we expect that it will not be possible to satisfy them all

For example, the demand, i.e. the number of shifts to be covered per day, is a hard

constraint. Personal preferences of nurses, work regulations, legal issues, . . . provide the

soft constraints.

A feasible solution is one in which all hard constraints are satisfied. The quality of

the solution is measured in terms of soft constraint violations.

First a more detailed description of the problem is given. Second, we elaborate on

the hard and soft constraints and the evaluation of the solution.

499

1.1 Problem Description

The problem consist of the following:

– a roster is made for a number of days for one ward in a hospital

– shift types: a shift type represents a time frame for which a nurse with a certain

skill is required. E.g. between 08h30 and 16h30 a head nurse needs to be present.

– for each day and each shift type, the number of required nurses is provided

– the set of contracts representing the work regulations of the nurses. Each nurse

works according to exactly one contract. A contract provides the following infor-

mation:

– maximum number of assignments:

the maximum number of shifts that can be assigned to the nurse

– minimum number of assignments:

the minimum number of shift that must be assigned to the nurse

– maximum number of consecutive working days:

the maximum number of consecutive days on which a shift can be assigned to

a nurse

– minimum number of consecutive working days:

the minimum number of consecutive days on which a shift must be assigned to

a nurse

– maximum number of consecutive free days:

the maximum number of consecutive days on which a nurse has no shift assigned

– minimum number of consecutive free days:

the minimum number of consecutive days on which a nurse has no shift assigned

– maximum number of consecutive working weekends

– maximum number of working weekends in four weeks

– the number of days off after a series of night shifts

– unwanted shift patterns:

e.g. a nurse does not want to work the following shifts in a row: L-E-L (late-

evening-late)

– the nurses of the ward

– the nurses’ requests:

– day on/off requests: a nurse can request (not) to work on a certain day

– shift on/off requests: a nurse can request (not) to work a particular shift type

on a certain day

1.2 Constrains and Evaluation Function

We identify both soft and hard constraints. Note that our decision on which constraints

are hard and which are soft is rather arbitrary. In practice many different combina-

tions will be found. Furthermore, wards may assign different weights to certain soft

constraints in an attempt to produce solutions that are more appropriate for their

particular needs.

There are two hard constraints:

– all demanded shift types must be assigned to a nurse;

– a nurse can only work one shift type per day, i.e. no two shift types can be assigned

to the same nurse on a day.

500

A feasible solution is a solution that does not violate any of those two constraints.

All other constrains are soft. A formal description of the constraints can be found in

the technical report[3]. We provide a solution evaluator at the site[2].

References

1. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. Di Gaspero,
R. Qu, and E. K. Burke. Setting the Research Agenda in Automated Timetabling: The
Second International Timetabling Competition. INFORMS Journal on Computing, Vol. 22,
Issue 1. In press.

2. INRC2010 website: http://www.kuleuven-kortrijk.be/nrpcompetition
3. CODES/Technical Report/2010/1 https://www.kuleuven-kortrijk.be/CODeS/

501

A Weighted-Goal-Score Approach to Measure

Match Importance in the Malaysian Super

League

Nor Hayati Abdul Hamid

 e-mail: nhayati@tmsk.uitm.edu.my

Norazan Mohamed Ramli

e-mail: norazan@tmsk.uitm.edu.my

Universiti Teknologi MARA,

40450 Shah Alam, Selangor, MALAYSIA

Graham Kendall

e-mail: gxk@cs.nott.ac.uk

Automated Scheduling, Optimisation and Planning (ASAP) Group,

School of Computer Science, University of Nottingham,

Nottingham NG8 1BB, UK

Naimah Mohd Hussin

Universiti Teknologi MARA Perlis Kampus Arau,

02600 Arau, Perlis, MALAYSIA

e-mail: naimahmh@perlis.uitm.edu.my

1. Introduction

This work is a continuation of our previous work which aims to define the level of

importance of each fixture in the Malaysian Super League. Malaysian football is

witnessing a decrease in stadium attendance and scheduling fixtures into timeslots

so as to maximise the number of supporters is critical to the league administrators.

In our previous work (Abdul-Hamid et. al, (2010), we have applied AHP

(Analytic Hierarchy Process) in order to calculate the priorities of each fixture.

The aim of this study is to investigate a different method to measure match

importance. We propose to measure match importance using a statistical model.

502

The result will be used as an input to schedule the Super league fixtures with the

aim of maximising stadium attendance.

2. Related Work

Wright (2009) recently reviewed 50 years of sports research, with forecasting

being one of the categorized activities. Forecasting is usually associated with

gambling but in Malaysia betting on matches is prohibited by law. Nonetheless,

we consider forecasting as a tool to predict match importance, and thus enable us

to schedule more effectively.

 There are a number of papers that make use of statistical methods for

forecasting. Maher (1982) and Dixon and Coles (1997) use independent Poisson

distributions for the number of goals scored by the home and away teams. Dixon

and Robinson (1998) developed a model to predict the results of football matches

and updated their predictions during the course of a match. Koning (2000) also

used a statistical model to assess the balance of a competition. In the work of

Koning et al. (2003), they develop a simulation/probability model that identifies

the team that is most likely to win a tournament based on a scoring intensity

measure.

Min et al. (2008) developed a framework for sports prediction using

Bayesian inference and rule-based reasoning, together with an in-game time-series

approach. Based on the framework, they developed a football results predictor

called FRES (Football Result Expert System).

Other than football, there has been work on forecasting for other sports.

Boulier and Stekler (2003) evaluates power scores as predictors of the outcomes

of the NFL (National Football League) (1994–2000 seasons). There has also been

research on predicting success at the Olympic games. Condon et al. (1999) used

linear regression and neural network models to predict a country’s success during

the Summer Olympic Games, and Heazelwood (2006) used mathematical models

to predict elite performance in swimming and athletics at the Olympic games.

For additional information on sports research, the interested reader is

referred to Kendall et al. (2010) which references about 160 papers going back

over 40 years.

503

3. Proposed methodology

Based on previous research (Maher 1982, Dixon and Cole 1997, Dixon and

Robinson 1998), we can model soccer matches using Poisson distributions, for

example, the number of goals scored over a season. There are several factors to

be considered when modeling data with a Poisson distribution. For example,

competing teams should have comparable ability which in our case is reasonable

as we are considering the Malaysian Super League. Other factors include home

and away performance whereby (typically) teams perform better on their home

ground. The composition of teams is another factor as players change based on

their contracts.

We were initially going to adopt the independent Poisson model initially

used by Maher (1982) and also applied by Dixon and Coles (1997) and Dixon and

Robinson (1998). In this model, the home team’s and away team’s scores in any

one match are independent Poisson variables. In a match between team i and j, let

Xi,j and Yi,j be the number of goals scored by the home and away sides

respectively. We will assume that Xi,j is Poisson with mean αi βj , that Yi,j is also

Poisson with mean γi δj, and that Xi,j and Yi,j are independent. We can then

assume that αi represents the strength of team i’s attack when playing at home, βj

the weakness of team j’s defence when playing away, γi the weakness of team i’s

defence at home and δj the strength of team j’s attack away.

However, the Chi-Square Goodness of Fit test on our data showed that Xi,j

and Yi,j do not follow Poisson distribution. Thus we propose another statistical

approach which we call weighted-goal-score, inspired by the work of Norazan et

al. (2009) who proposed a weighted approach to downweight suspected outliers.

We adapt the approach in the context of goal scores by finding the level of

importance of each match using weighted scores. The motivation for using this

method is to investigate if replacing the priorities obtained through AHP (the

focus of our previous work) with a statistical model can provide comparable, or

even superior, results.

The weighted-goal-score is modeled as follows :

Let :

Xi = goals scored for team i in all their home matches.

Yj = goals scored for team j in all their away matches.

504

H = ∑
=

n

i
iX

1

A = ∑
=

n

j
jY

1

where n is the number of teams.

wi =
H
X i

wj =
A

Y j

Therefore, the level of importance l, of a match between team i and team j is given

by

l = wi . wj

We will use l, as a measure of match importance, in the mathematical

model of our previous work (Abdul-Hamid et al., 2010) in order to generate

schedules which are attractive to supporters.

 We will report our results at the conference.

4. References

Abdul-Hamid N., S. M., Pais T., Kendall G., Subramaniam E.R , Mohd-Hussin N.
(2010). A Combined Mathematical Modelling and AHP Approach to
Solve Sport Scheduling Problem. Under review.

Boulier, B. L., & Stekler, H. O. (2003). Predicting the outcomes of National
Football League games. International Journal of Forecasting, 19(2), 257-
270.

Condon, E. M., Golden, B. L., & Wasil, E. A. (1999). Predicting the success of
nations at the Summer Olympics using neural networks. Computers &
Operations Research, 26(13), 1243-1265.

Dixon, M. J., & Coles, S. G. (1997). Modelling Association Football Scores and
Inefficiencies in the Football Betting Market. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 46(2), 265-280.

Dixon, M. J., Robinson, M.E. (1998). A birth process model for association
football matches. Journal of the Royal Statistical Society Series D-the
Statistician, 47, 523-538.

Heazlewood, T. (2006). Prediction versus reality: The use of mathematical models
to predict elite performance in swimming and athletics at the Olympic
Games. Journal of Sports Science and Medicine, 5(4), 541-547.

Kendall, G., Knust, S., Ribeiro, C. C., & Urrutia, S. (2010). Scheduling in sports:
An annotated bibliography. Computers & Operations Research, 37(1), 1-
19.

505

Koning, R. H. (2000). Balance in competition in Dutch soccer. Statistician, 49,
419-431.

Koning, R. H., Koolhaas, M., Renes, G., & Ridder, G. (2003). A simulation model
for football championships. European Journal of Operational Research,
148(2), 268-276.

Maher, M. J. (1982). Modelling association football scores. Statistica
Neerlandica, 36(3), 109-118.

Min, B., Kim, J., Choe, C., Eom, H., & McKay, R. I. (2008). A compound
framework for sports results prediction: A football case study. Knowledge-
Based Systems, 21(7), 551-562.

Norazan, M. R., Habshah, M., & Imon, A. (2009). Weighted Bootstrap with
Probability in Regression. In S. Y. Chen & Q. Li (Eds.), Proceedings of
the 8th Wseas International Conference on Applied Computer and Applied
Computational Science - Applied Computer and Applied Computational
Science (pp. 135-141).

Wright, M. B. (2009). 50 years of OR in sport. Journal of the Operational
Research Society, 60, S161-S168.

506

Swiss National Ice Hockey Tournament (NLA)

Abstract: The National Swiss Association of Ice Hockey plans every ye-
ar a fourfold round-robin tournament. In this tournament every of the 12
teams plays 4-times against each team. In every of the 44 rounds each team
plays against another team. Furthermore, the 12 teams are partitioned in-
to 3 groups of 4 teams each, and within the groups each team has to play
two-times against each other. That means that another 6 rounds have to be
scheduled – the so-called “derby rounds”. Hence, in total 300 games have to
been scheduled within 50 rounds in a season.

Several hard conditions have to be considered:

1. In the first 25 rounds each team must play 2 (respectively 3) games
against each other in the other groups (respectively in the same group).

2. Home and away games must alternate as much as possible. (3) Each
teams should have the same number of home-game on a Saturday and
Sunday if possible.

3. Some “high risk-games” must be fixed in particulary rounds (at a fixed
date).

4. At various dates certain stadiums are occupied by other events and
game cannot be fixed at this locations.

The goal is to find a schedule that fulfills these condition as much as possible.
We shows a mixed integer approach to formulate the problem and solve it
with standard MIP-solvers.

507

http://diuflx71.unifr.ch/lpl/Solver.jsp?name=/NLA

An Approximation Algorithm for the
Unconstrained Traveling Tournament Problem⋆

Shinji Imahori1, Tomomi Matsui2, and Ryuhei Miyashiro3

1 Graduate School of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan.

imahori@na.cse.nagoya-u.ac.jp
2 Faculty of Science and Engineering, Chuo University,

Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan.
matsui@ise.chuo-u.ac.jp

3 Institute of Engineering, Tokyo University of Agriculture and Technology,
Naka-cho, Koganei, Tokyo 184-8588, Japan.

r-miya@cc.tuat.ac.jp

1 The Unconstrained Traveling Tournament Problem

A deterministic 3-approximation algorithm is proposed for the unconstrained
traveling tournament problem, which is a variant of the traveling tournament
problem. For the unconstrained traveling tournament problem, this is the first
proposal of an approximation algorithm with a constant approximation ratio.
In addition, the proposed algorithm yields a solution that meets both the no-
repeater and mirrored constraints.

In the field of tournament timetabling, the traveling tournament problem
(TTP) is a well-known benchmark problem established by Easton, Nemhauser,
and Trick [2]. The present paper considers the unconstrained traveling tourna-
ment problem (UTTP), which is a variant of the TTP. In the following, some
terminology and the TTP are introduced. The UTTP is then defined at the end
of this section.

Given a set T = {0, 1, . . . , n−1} of n teams, where n ≥ 4 and is even, a game
is specified by an ordered pair of teams. Each team in T has its home venue.
A double round-robin tournament is a set of games in which every team plays
every other team once at its home venue and once in an away game (i.e., at the
venue of the opponent). Consequently, 2(n− 1) slots are necessary to complete
a double round-robin tournament.

Each team stays at its home venue before a tournament and then travels to
play its games at the chosen venues. After a tournament, each team returns to
its home venue if the last game is played as an away game. When a team plays
two consecutive away games, the team goes directly from the venue of the first
opponent to the venue of another opponent without returning to its home venue.

⋆ The present study was supported in part by Grants-in-Aid for Scientific Research,
by the Ministry of Education, Culture, Sports, Science and Technology of Japan.

508

For any pair of teams i, j ∈ T , dij ≥ 0 denotes the distance between the
home venues of i and j. Throughout the present paper, we assume that triangle
inequality (dij + djk ≥ dik), symmetry (dij = dji), and dii = 0 hold for any
i, j, k ∈ T .

Denote the distance matrix (dij) by D. Given a constant (positive integer)
u ≥ 3, the traveling tournament problem [2] is defined as follows.

Traveling Tournament Problem (TTP(u))
Input: A set of teams T and a distance matrix D = (dij).
Output: A double round-robin schedule of n teams such that
C1. No team plays more than u consecutive away games,
C2. No team plays more than u consecutive home games,
C3. Game i at j immediately followed by game j at i is prohibited,
C4. The total distance traveled by the teams is minimized.

Constraints C1 and C2 are referred to as the atmost constraints, and Con-
straint C3 is referred to as the no-repeater constraint.

Various studies on the TTP have been conducted in recent years (see [4]
for detail), and most of these studies considered TTP(3) [5]. Most of the best
upper bounds of TTP instances are obtained using metaheuristic algorithms. On
the other hand, little research on approximation algorithms has been conducted
for the TTP. Recently, Miyashiro, Matsui, and Imahori [3] proposed a (2 +
O(1/n))-approximation algorithm for TTP(3). In addition, Yamaguchi, Imahori,
Miyashiro, and Matsui [6] proposed an approximation algorithm for TTP(u),
where u ≪ n. For TTP(3), the approximation ratio of [6] is better than that
of [3].

The unconstrained traveling tournament problem (UTTP) is a variant of the
TTP, in which Constraints C1 through C3 are ignored. In other words, the UTTP
is equivalent to TTP(n − 1) without the no-repeater constraint. Although the
UTTP is simpler than the TTP, no approximation algorithm for the UTTP has
yet been proposed. The method proposed in [6] cannot be applied to the UTTP
because the condition u ≪ n is necessary for the method. The method in [3],
proposed for TTP(3), can be applied to the UTTP with a few modifications.
However, this leads to a ((2/3)n+O(1))-approximation algorithm, which is not
a constant approximation ratio with regard to n.

In the present paper, we propose a deterministic 3-approximation algorithm
for the UTTP. In addition, the solution obtained by the algorithm meets both the
no-repeater and mirrored constraints, which are sometimes required in practice.

2 Approximation Algorithm

In this section, we describe the proposed approximation algorithm for the UTTP.
A key concept of the algorithm is the use of the circle method and a shortest
Hamilton cycle. The classical schedule obtained by the circle method satisfies the
property such that the orders of opponents in almost all teams are very similar
to a mutual cyclic order of teams. Roughly speaking, the proposed algorithm

509

constructs a short Hamilton cycle passing all venues, and finds a permutation
of teams such that the above cyclic order corresponds to the obtained Hamilton
cycle.

For a vertex set V = {0, 1, . . . , n − 1}, let G = (V,E) be a graph such that
the distance of edge (i, j) is given by dij for any i, j ∈ V . First, we assign aliases
t0, t1, . . . , tn−1 to teams 0, 1, . . . , n− 1 as follows.

1. For each v ∈ V , compute
∑

v′∈V \{v} dvv′ .

2. Let v∗ be a vertex that attains min v∈V

∑
v′∈V \{v} dvv′ , and designate the

team corresponding to v∗ as tn−1.
3. Using the Christofides’ 3/2-approximation algorithm for the traveling sales-

man problem with the triangle inequality [1], construct a Hamilton cy-
cle on the complete graph induced by V \ {v∗}. For the obtained cycle
(v0, v1, . . . , vn−2), denote the corresponding teams by (t0, t1, . . . , tn−2).

Next, we construct a single round-robin schedule. In the following, “schedule
without HA-assignment” refers to a “round-robin schedule without the concepts
of home game, away game, and venue.” Denote the set of n − 1 slots by S =
{0, 1, . . . , n − 2}. A single round-robin schedule without HA-assignment is a
matrix K of which (t, s) element, say K(t, s), denotes the opponent of team t in
slot s. Let K∗ be a matrix defined by

K∗(t, s) =

ts−t mod n−1 (t ̸= n− 1 and s− t ̸= t [mod n− 1]),
tn−1 (t ̸= n− 1 and s− t = t [mod n− 1]),
ts/2 (t = n− 1 and s is even),
t(s+n−1)/2 (t = n− 1 and s is odd).

Lemma 1. [6] The matrix K∗ is a single round-robin schedule without HA-
assignment. In addition, K∗ is essentially equivalent to the classical schedule
obtained by the circle method.

Then, by the mirroring procedure, form K∗ into a double round-robin sched-
ule without HA-assignment. Finally, we assign home and away so as to complete
a double round-robin schedule as follows:

– for team t ∈ {t0, t1, . . . , tn/2−1}, let the games in slots n+2t−1, n+2t, . . . , n+
2t+ n− 3 [mod 2(n− 1)] be away games, and let the other games be home
games.

– for team t ∈ {tn/2, tn/2+1, . . . , tn−2}, let the games in slots 2t − n + 2, 2t −
n+ 3, . . . , 2t be away games, and let the other games be home games.

– for team tn−1, let the games in slots 0, 1, . . . , n − 2 be away games, and let
the other games be home games.

The proposed double round-robin schedule, denoted by K∗
DRR, satisfies the no-

repeater and mirrored constraints.

We now prove the above-mentioned algorithm is a 3-approximation algorithm
for the UTTP. Designate the distance of a shortest Hamilton cycle on G as τ .
In addition, let the distance of the cycle (v0, v1, . . . , vn−2) obtained above be τ ′.
Note that τ ′ ≤ (3/2)τ .

510

Lemma 2. The following propositions hold for G.
(1) For any path of two edges, its distance is bounded by τ .
(2) The distance of any Hamilton cycle is bounded by nτ/2.

In K∗
DRR, team tn−1 plays n− 1 consecutive away games, and thus the distance

by team tn−1 can be bounded by nτ/2 from Lemma 2(2). In addition, analyzing
the structure of the proposed schedule reveals the following lemma.

Lemma 3. Let l(i, j, k) be the distance of path (i, j, k) for i, j, k ∈ V . In K∗
DRR,

the traveling distance of teams can be bounded by
τ ′ + l(v0, v

∗, v1) (t = t0),
τ ′ + l(vt, v

∗, vt+1) + l(vn−t−1, vt, vn−t−2) (t ∈ {t1, t2, . . . , tn/2−2}),
τ ′ + l(vn/2−1, v

∗, vn/2−1) (t = tn/2−1),
τ ′ + l(vt−1, v

∗, vt) (t ∈ {tn/2, tn/2+1, . . . , tn−2}),
nτ/2 (t = tn−1).

Although the following lemma is not obvious, we omit the proof due to space
limitations.

Lemma 4. Let v∗ be a vertex that attains min v∈V

∑
v′∈V \{v} dvv′ . Then, the

following holds:
∑

v∈V \{v∗} dvv∗ ≤ nτ/4.

Theorem 1. The proposed algorithm is a 3-approximation algorithm for the
UTTP.
Proof. Let the distance of K∗

DRR be d(K∗
DRR). From Lemmas 2 through 4, we

have:

d(K∗
DRR) ≤ τ ′(n− 1) +

∑
t∈{t0,t1,...,tn−3}

l(vt, v
∗, vt+1) + l(vn/2−1, v

∗, vn/2−1)

+
∑

t∈{t1,t2,...,tn/2−2}

l(vn−t−1, vt, vn−t−2) + nτ/2

≤ (3/2)τ(n− 1) +
∑

v∈V \{v∗}

2dvv∗ + τ + τ(n/2− 2) + nτ/2

≤ (3/2)τ(n− 1) + 2(nτ/4) + τ + τ(n/2− 2) + nτ/2

≤ 3nτ.

Since nτ is a lower bound of the distance of any double round-robin schedule,
this concludes the proof. �

References

1. Christofides, N.: Worst-case analysis of a new heuristic for the traveling sales-
man problem. Report 388, Graduate School of Industrial Administration, Carnegie-
Mellon University, 1976

2. Easton, K., Nemhauser, G., Trick, M.: The traveling tournament problem: descrip-
tion and benchmarks. Lecture Notes in Computer Science 2239 (2001) 580–585

511

3. Miyashiro, R., Matsui, T., Imahori, S.: An approximation algorithm for the traveling
tournament problem. Annals of Operations Research, to appear

4. Rasmussen, R.V., Trick, M.A.: Round robin scheduling — a survey. European Jour-
nal of Operational Research 188 (2008) 617–636

5. Trick, M.: Challenge traveling tournament problems. Web page, as of 2010
http://mat.gsia.cmu.edu/TOURN/

6. Yamaguchi, D., Imahori, S., Miyashiro, R., Matsui, T.: An improved approximation
algorithm for the traveling tournament problem. Lecture Notes in Computer Science
5878 (2009) 679–688

512

Data Formats for Exchange of Real-World Timetabling
Problem Instances and Solutions
Discussion Session (Abstract)

Jeffrey H. Kingston

Keywords Timetabling· Data Formats· Benchmarks

1 Abstract

The problem of exchanging timetabling data has been a perennial topic at PATAT confer-
ences. Indeed it was discussed at the very first (Cumming and Paechter 1995).

The principal difficulty is the large variety of kinds of requirements. To quote from a
recent paper (Post et al. 2008): ‘This complexity with the specification of the problem has
been addressed in several ways. Some papers have tried to generalize and unify the con-
straints (Chand 2004; Kitagawa and Ikeda 1988). Others have adapted existing technologies
in which constraints may be expressed, such as XML and the semantic web (Custers et al.
2005; de Causmaecker et al. 2000, 2002;Özcan 2003), or object-oriented modeling and
frameworks (Grobner et al. 2003; Ranson and Ahmadi 2006). Others have expressed con-
straints as logic expressions within specifically designed specification languages (Burke et
al. 1998; Kingston 2001; Mata et al. 1997). There has been at least one attempt to simply
enumerate every possible constraint (Reis and Oliviera 2001).

‘Another approach is to restrict the problem domain to one particular kind of timetabling,
then use judicious simplification to further reduce the specification burden while maintain-
ing the essence of the problem. The Carter data sets for examination timetabling (Carter
et al. 1996) omit many details, notably all data related to rooms, and similar simplifica-
tions appear in the Traveling Tournament Problem (Easton et al. 2001) and the International
Timetabling Competition (Paechter 2003). These are some of the most successful examples
of timetabling data exchange. However, judicious simplification has been criticized for con-
tributing to the gap between research and practice (Burke et al. 2006), at least in examination
timetabling; and the data transfer has almost always been in one direction only.’

The paper from which this quotation is taken goes on to define an XML format for
exchanging real high school timetabling problem instances and solutions. Since that paper

Jeffrey H. Kingston
School of Information Technologies
The University of Sydney, NSW 2006, Australia
http://www.it.usyd.edu.au/~jeff

E-mail: jeff@it.usyd.edu.au

513

was written, the format has been refined, and a set of instances and solutions from widely
varying institutions around the world has been collected and stored in the format (Post 2009).
An evaluator, which compares solutions against instances and produces badness values, has
been made available as a web service (Kingston 2009).

The purpose of this discussion session is to explore the idea that the general approach
taken by the high school timetabling project should be adopted for real-world data exchange
in other sub-disciplines of timetabling.

Two key points define this approach. First, the format was developed in consultation with
several groups of researchers, and is avowedly inclusive: if the accurate expression of real-
world instances requires that certain features be present, there is a commitment that they will
be added. Second, the format is not overly general: it is limited to high school timetabling,
and it does not attempt to define constraints by logic expressions that researchers are un-
likely to want to read and interpret. Instead, there is a fixed list of constraint types of prede-
termined meaning. At the time of writing there were 15 constraint types; more will be added
as required.

It might seem that this proposal offers nothing new compared with the formats used
by the Carter data set or the International Timetabling Competition cited above. The new
point is the demonstration that it is feasible to specifyreal-world instances from disparate
sources in complete detail, by limiting attention to a single sub-discipline and a fixed list of
constraint types.

The high school project was influenced by an earlier project in nurse rostering. After the
need for exchanging nurse rostering data had become clear (Burke et al. 2004; Cheang et
al. 2003), an XML data format was defined and a web site (Curtois 2009) set up in the year
2005 (personal communucation from T. Curtois). This is the earliest example known to this
author of real-world instances and solutions from disparate sources being brought together.

Another point for discussion is whether specific features of the high school format could
be re-used in formats for other sub-disciplines. To support this discussion, the remainder of
this abstract introduces the high school format.

The format allows any number of instances of the high school timetabling problem to
be stored in one file, along with any number of sets of solutions to those instances, each set
contributed by one researcher. The file may thus be a comprehensive archive, and the eval-
uator may produce tables comparing the solutions, of the kind frequently seen in research
papers. The existing evaluator (Kingston 2009) does this.

Each instance consists of a<Times> section (the concrete format is XML) listing the
times of the cycle in chronological order, a<Resources> section listing the resources (typ-
ically but not necessarily student groups, teachers, and rooms), an<Events> section listing
the events, and a<Constraints> section listing the constraints. Named sets of times, re-
sources, and events may be defined.

An event represents a meeting of arbitrary but fixed duration between any number of
resources, beginning at a particular time. It contains one time variable and any number of
resource variables, each of which may either be preassigned or left for solutions to assign,
subject to constraints.

Each constraint contains its type (one of the 15 types mentioned above), whether it is
a hard or soft constraint, its weight, the resources, events, or sets of events that it applies
to, and possibly other parameters specific to the constraint type. For example, there is an
<AvoidResourceClashes> constraint which would typically state that it applies to all re-
sources, and whose meaning, defined implicitly, is the usual one that those resources should
not have timetable clashes. If they do, the constraint indicates the penalty for each occur-
rence. Other constraints require sets of events to have the same starting time, impose domain

514

constraints on time and resource variables (e.g. requiring staff members to be suitably qual-
ified), and so on. Everything affecting the evaluation of solutions appears explicitly as a
constraint, allowing solutions to be evaluated unambiguously; this is the function performed
by the web service (Kingston 2009).

A solution is a simple collection of assignments to the time and resource variables of the
events of the corresponding instance.

The basic concepts of times, resources, events, and constraints seem applicable to other
sub-disciplines, but the constraint types naturally vary. A recent comprehensive formulation
of the curriculum-based university course timetabling problem (Cesco et al. 2008) is very
similar to high school timetabling, the main addition being a limit on travel time between
consecutive classes. Examination timetabling has times, resources (students and rooms), and
events (examinations); its constraint types include constraints that limit the number of ex-
aminations that a student is required to attend over a short period of time. In the personnel
rostering format (Curtois 2009) mentioned earlier, ‘shifts’ are times, ‘shift types’ are sets of
times, ‘employees’ are resources, and their ‘skills’ are sets of resources; there are complex
constraints on the timetable of each resource (at most one night shift per week, for exam-
ple). Sports scheduling has times, resources (teams and venues), and events (matches); its
constraints include the cost of travel between venues.

Despite some common structure, unifying all these problems into one is not advocated.
It would be difficult in practice and would yield no practical benefit.

References

Burke EK, Kingston JH, Pepper PA (1998) A standard data format for timetabling instances.
In: Practice and Theory of Automated Timetabling II, Burke EK and Carter M (Eds.),
Springer Verlag Lecture Notes in Computer Science 1408:213–222

Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004) The state of the
art of nurse rostering. Journal of Scheduling 7:441–499

Burke EK, McCollum B, McMullan P, Qu R (2006) Examination timetabling: a new formu-
lation. In: Proceedings of the Sixth International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2006), Brno, 373–375

Carter M, Laporte G, Lee ST (1996) Examination timetabling: algorithmic strategies and
applications. Journal of the Operational Research Society 47:373–383

Cesco F, Di Gaspero L, Schaerf A (2008) Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, and results. In: The
7th International Conference on the Practice and Theory of Automated Timetabling
(PATAT2008), Montreal

Chand A (2004) A constraint based generic model for representing complete university
timetabling data. In: Proceedings of the Fifth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2004), Pittsburgh, 125–148

Cheang B, Li H, Lim A, Rodrigues B (2003) Nurse rostering problems: a bibliographic
survey. European Journal of Operational Research 151:447–460

Cumming A, Paechter B (1995) Standard formats for timetabling data, Unpublished discus-
sion session at the First International Conference on the Practice and Theory of Auto-
mated Timetabling, Edinburgh

Curtois T (2009), Personnel scheduling data sets and benchmarks,
http://www.cs.nott.ac.uk/~tec/NRP/. Accessed 2009

515

Custers N, De Causmaecker P, Demeester P, Vanden Berghe G (2005) Semantic components
for timetabling. In: Practice and Theory of Automated Timetabling V, Burke EK and Trick
M (Eds.), Springer Verlag Lecture Notes in Computer Science 3616:17–33

De Causmaecker P, Demeester P, De Pauw-Waterschoot P, Vanden Berghe G (2000) Ontol-
ogy for timetabling. In: Proceedings of the Third International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2000), Konstanz, 481–482

De Causmaecker P, Demeester P, Lu Y, Vanden Berghe G (2002) Using web standards for
timetabling. In: Proceedings of the Fourth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2002), Gent, 238–257

Easton K, Nemhauser GL, Trick MA (2001) The travelling tournament problem: descrip-
tion and benchmarks. In: Principles and Practice of Constraint Programming (CP 2001),
Springer Verlag Lecture Notes in Computer Science 2239:580–585

Gröbner M, Wilke P, B̈uttcher S (2003) A standard framework for timetabling problems.
In: Practice and Theory of Automated Timetabling IV, Burke EK and De Causmaecker P
(Eds.), Springer Verlag Lecture Notes in Computer Science 2740:24–38

Kingston JH (2001) Modelling timetabling problems with STTL. In: Practice and Theory of
Automated Timetabling III, Burke EK and Erben W (Eds), Springer Verlag Lecture Notes
in Computer Science 2079:309–321

Kingston JH (2009) The HSEval high school timetable evaluator,
http://www.it.usyd.edu/au/~jeff.

Kitagawa F, Ikeda H (1988) An existential problem of a weight-controlled subset and its
application to school timetable construction. Discrete Mathematics 72:195–211

Da Mata JM, de Senna AL, de Andrade MA (1997) Towards a language for the specification
of timetabling problems. In: Proceedings of the Second International Conference on the
Practice and Theory of Automated Timetabling (PATAT’97), Toronto, 330–333

Özcan E (2003) Towards an XML-based standard for timetabling problems: TTML. In:
Multidisciplinary Scheduling: Theory and Applications (First International Conference,
MISTA ’03, Nottingham, Selected Papers), 163–185

Paechter B (2003) International timetabling competition.
http://www.idsia.ch/Files/ttcomp2002/

Post G, Ahmadi S, Daskalaki S, Kingston J et al. (2008) An XML Format for benchmarks in
high school timetabling. In: The 7th International Conference on the Practice and Theory
of Automated Timetabling (PATAT2008), Montreal

Post G (2009) Home Page,http://wwwhome.math.utwente.nl/postgf/
Ranson D, Ahmadi S (2006) An extensible modelling framework for the examination

timetabling problem. In Practice and Theory of Automated Timetabling VI, Burke EK
and Rudov́a H (Eds.), Springer Verlag Lecture Notes in Computer Science 3867:383–393

Reis LP, Oliviera E (2001) A language for specifying complete timetabling problems.
In: Practice and Theory of Automated Timetabling III, Burke EK and Erben W (Eds),
Springer Verlag Lecture Notes in Computer Science 2079:322–341

516

Solving the General High School Timetabling Problem
Abstract

Jeffrey H. Kingston

Keywords High School Timetabling· Benchmarks

1 Abstract

A set of instances of the high school timetabling problem, taken from a number of countries,
has recently appeared (Post 2009). These instances are expressed in complete detail in a
common XML format (Post et al. 2008, 2010). They make it possible, for the first time, to
tackle the high school timetabling problem in its full generality, that is, as it really exists in
high schools around the world.

This abstract describes work in progress on KHE, a general solver for high school
timetabling problems. KHE is a software library, written in C, that will eventually be re-
leased under a GNU public licence. It brings together several themes from the author’s
previous work and elsewhere.

KHE follows the XML format closely. Its data types parallel the categories of the format
(including instances, times, resources, events, and constraints), so that building an internal
representation of an XML instance is straightforward. It offers several basic operations for
modifying solutions, including assigning and deassigning times and resources, changing the
domains of time and resource variables, and splitting and merging events. Tree searches,
local searches, and other algorithms may be built on these basic operations. An efficient
hand-coded constraint network monitors the solution state and reports its current badness in
terms of violations of the constraints defined by the instance.

The spread of multi-processor computers has made it important to allow for coarse-
grained parallelism when solving timetabling problems. KHE does this by ensuring that in-
stances are immutable after creation (so that they may be shared) and that multiple solutions
can be created and operated on independently in parallel.

KHE supports the features of the author’s KTS timetabling system (Kingston 2007a) as
well as the XML format, and will eventually replace the current KTS solver. Internally it is

Jeffrey H. Kingston
School of Information Technologies
The University of Sydney, NSW 2006, Australia
http://www.it.usyd.edu.au/~jeff

E-mail: jeff@it.usyd.edu.au

517

based on the author’s layer tree data structure (Kingston 2007b) for hierarchical timetabling,
enhanced with operations for assigning resources as well as times (Kingston 2008).

Compared to the author’s earlier general solver (Kingston 2001), KHE is more efficient,
being written in C and employing ordinary function calls instead of command objects to
carry out its basic operations. And whereas the earlier solver handled assignment-type prob-
lems generally, KHE benefits from a specific focus on high school timetabling.

A major question raised by this work is whether the XML format can be supported in
full generality without an unacceptable loss of efficiency. For example, layer trees use un-
weighted bipartite matching to monitor resource assignment, but the XML format allows
each possible resource assignment to have its own integer cost, so that the equivalent mon-
itoring requires edge-weighted bipartite matching, which is significantly more expensive.
New kinds of constraints, such as limits on idle times, call for incremental algorithms which
evaluate them efficiently as the solution changes.

References

Kingston JH, Lynn BYS (2001) A software architecture for timetable construction. Practice
and Theory of Automated Timetabling III (Third International Conference, PATAT2000,
Konstanz, Germany, August 2000, Selected Papers), Springer Lecture Notes in Computer
Science 2079:342–350

Kingston JH (2007a) The KTS high school timetabling system. Practice and Theory of
Automated Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech
Republic, August 2006, Selected Papers), Springer Lecture Notes in Computer Science
3867:308–323

Kingston JH (2007b) Hierarchical timetable construction. Practice and Theory of Auto-
mated Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech Re-
public, August 2006, Selected Papers), Springer Lecture Notes in Computer Science
3867:294–307

Kingston JH (2008) Resource assignment in high school timetabling. 7th International Con-
ference on the Practice and Theory of Automated Timetabling (PATAT2008), Montreal

Post G (2009) Home Page,http://wwwhome.math.utwente.nl/postgf/. Accessed Dec
2009

Post G, Ahmadi S, Daskalaki S et al. (2008) An XML Format for Benchmarks in High
School Timetabling. 7th International Conference on the Practice and Theory of Auto-
mated Timetabling (PATAT2008), Montreal

Post G, Kingston JH, Ahmadi S et al. (2010) An XML Format for Benchmarks in High
School Timetabling II. Submitted to 8th International Conference on the Practice and
Theory of Automated Timetabling (PATAT2010), Belfast

518

Towards an Integrated Workforce Management System

Dario Landa-Silva · Arturo Castillo · Leslie
Bowie · Hazel Johnston

Abstract We describe progress towards a workforce management system in which person-
nel scheduling is integrated with other important processes such as payroll processing, atten-
dance and absence recording, staffing forecast and planning, etc. Our focus is on customer-
oriented sectors in which a considerable proportion of the available workforce is part-time.
First, we discuss the importance of having an integrated workforce management strategy
and then, we address the particular aspects of shift pattern design and staff allocation using
a fast-food restaurant and a leisure centre as examples.

Keywords workforce management · personnel scheduling · shift design · task allocation

1 Introduction

In addition to making an efficient use of the available personnel, a workforce management
strategy should align personnel skills to customer needs in order to help improving the over-
all customer satisfaction. Moreover, adequate integration of the scheduling process helps
businesses to quickly respond to customer needs that could affect the overall staffing strat-
egy. The integration of workforce scheduling within an overall workforce management strat-
egy is crucial to achieve high level workforce utilisation. According to (Belkin 2009), many
retailers do not have a workforce scheduling process in place and many do not integrate
scheduling within the overall workforce management strategy.

Many businesses with wide working hours and varying requirements use a form of man-
ual shift schedules to identify which staff will be working at any period. Simple rotation
procedures are used to ensure fairness. But in many scenarios, it is difficult to make an ac-
curate estimation of workforce demand and the shifts lead to over or under manning and
a high reliance on temporary staffing from agencies. Our research has shown that unless

D. Landa-Silva
ASAP Research Group
School of Computer Science, University of Nottingham
E-mail: dario.landasilva@nottingham.ac.uk

A. Castillo, L. Bowie, H. Johnston
Midland HR
E-mail: (a.castillo,leslie.bowie,hazel.johnston)@midlandhr.co.uk

519

Fig. 1 Holistic approach to workforce management by Midland HR.

the workload pattern is highly regulated, non-standard shift patterns are required. But truly
variable shift patterns can be unpopular with staff and a compromise is required between the
staff’s need for some sort of pattern and the business requirement to ensure minimum costs.

Midland HR is a UK company specialised in providing software solutions for HR man-
agement including payroll processing, attendance/absence management, staffing forecast
and planning, HR administration, workforce analytics, etc. The company aims to offer a
workforce management integral solution that focuses on putting the right employee in the
right place at the right time. Fig. 1 depicts the main components used by our system, iTrent,
when tackling rostering problems. Data is entered as part of concurrent non-rostering pro-
cesses and by different parts of the business. In our approach every allocation is made to a
position instead of to a person. This brings flexibility when replacing staff and allows future,
already planned rosters, to remain the same.

In general, we take into account employee skills and availability. Every employee has a
defined profile which could vary from time to time depending on career progression. This
profile tries to encapsulate employee skills that are of significant use to the business. Sim-
ilarly, every duty, task or assignment must have a record of the necessary skills needed to
perform it. Positions are then grouped in workforce pools which are completely user de-
fined, depending on the scenario. For management purposes, a set of rosters are organised
in projects. A project is a meaningful way of assigning common task and workforce pools
to several rosters. Finally, a work unit is a performed task in time, i.e. a pair duty-timeslot.
Work-units can be allocated or not. Constraints are taken into account when assigning staff
to rosters. Currently we have a reduced set of implemented yet flexible constraints but a long
list of future ones depending on the industry sector. Our aim is to integrate this rostering sys-
tem into a general HR and Payroll solution, and therefore, other aspects such as cost of staff
including (salary, pension, etc), absences and skills play a significant part in the system.

520

2 Workforce Scheduling Approach

The process of workforce scheduling usually involves several stages such as: 1) demand
modelling, 2) shift pattern design, 3) duty assignment and 4) staff assignment (Ernst et al
2004; Tien and Kamiyama 1982). Using a fast-food restaurant and a leisure centre as exam-
ple scenarios, we give an insight into our work towards developing an integrated solution.

2.1 Fast-Food Restaurant Scenario

The rostering period is 1 week. The manager receives from the head office the estimated
work demand in the form of a forecast with the number of employees needed in each times-
lot of the week to ensure that the restaurant runs efficiently. Following this forecast the man-
ager should assign shifts and duties to employees in order to construct the roster. The aim is
to follow the head office forecast as closely as possible while constructing a practical roster
that satisfies staff preferences and payroll budget. The forecast gives the estimated number
of employees needed for each of the duty types such as: ‘back-of-house’ (BoH) staff (work-
ing in the kitchen), ‘front-of-house’ (FoH) staff (interacting with customers), ‘management’
(MG) staff, etc. Most employees are part-time working a number of hours per week ac-
cording to their particular availability. A number of constraints exist in this scenario, but the
ones that relate directly to the design of shift patterns are: (a) an employee works a maximum
number of hours per week; (b) an employee works a maximum number of hours per day; (c)
the maximum length of a shift is 8 hours; (d) the minimum length of a shift is 3 hours; (e)
full-time employees must have 1 day-off per week; (f) shift splits are permitted with a 1 hour
break minimum; (g) a ‘closing’ shift must not be followed by an ‘opening’ shift (nights not
considered a break). The design of shift patterns (Musliu et al 2004; Di Gaspero et al 2007)
is very important in this scenario given the variability in workforce demand and availability.

2.2 Leisure Centre Scenario

The rostering period is 1 week but currently the centre uses a combination of 5 week, 4
week and 3 week shift patterns with a manual rotation of staff. Since the leisure centre pub-
lishes opening hours for many of its facilities, the boundaries of duties are known. A class
schedule is also agreed and published on a 10 week basis, approximating to school terms.
There are specific tasks that happen at set times daily (e.g. opening and closing the cen-
tre which requires 2 staff and manning the reception) and weekly (Tuesday afternoon staff
training session). However, within this seemly simple staffing requirement there are a num-
ber of variables: (a) the public can book private parties in the pool and/or children’s play area
(these require additional staff); (b) customer demand for public sessions can lead to more
lifeguards being required; (c) special sport events in the pool or other sports facilities. Week-
end and school holidays follow different routines. Staff fall into 3 categories: salaried staff
(managers, lifeguards, dry-side staff and receptionists), contracted staff (class instructors)
and ocassional staff (weekend staff and holiday staff). Most employees are part-time work-
ing an agreed number of hours per week. Adjustments to the roster are common because of
staff absences and because staff can change their assigned duty under certain circumstances.
While assigning staff and repairing changes to the roster are key in this scenario, designing
shift patterns is not because shifts are static most of the times (althouhg there is also a desire
to review and improve on the static rotating shift patterns being used).

521

Fig. 2 Structure to facilitate integration between scheduling and other processes such as demand modelling
and attendance/absence management.

2.3 Shift Pattern Design and Work Unit Allocation

To facilitate the integration of the scheduling process within the workforce management
strategy, we employ the structure shown in Figure 2. For each pair duty-timeslot, the cor-
responding node contains: the number of personnel required, a list of personnel that can be
selected (with the required ability and availability) and a heuristic selection strategy that is
used to make the assignment of staff to that duty-timeslot. This arrangement allows flexi-
bility to sort the list of personnel within each node according to different criteria to suit the
particular assignment heuristic strategy.

Shift Pattern Design and Work Unit Allocation Procedure. Steps to design shift patterns that
aim to satisfy work demand while also assigning staff to work units (i.e. pairs duty-timeslot).
Some variables are defined first:

Rdt : minimum number of employees required to work duty d on timeslot t.
Xdt : number of employees assigned to work duty d on timeslot t. It is assumed that only
employees with the required ability and availability are assigned.
Rc

dt : number of employees currently required to work duty d on timeslot t. This value is
given by Rdt −Xdt and it changes during the procedure.
Edt : initial number of employees with ability and availability to work duty d on timeslot t,
this value is fixed.
Ec

dt : current number of employees with ability and availability to work duty d on timeslot t.
This value is given by Edt −Xdt and changes during the procedure.
Adt : number of employees with the ability and availability to work duty d on timeslot t in
excess of the number currently available Ec

dt . This value indicates the current upper limit in
the number of employees with the required ability and availability.

522

Step 1. From those duty-timeslot(d, t) pairs with Rc
dt > 0, select the critical one based on

some criterion, e.g. Adt where the smaller the value the more critical the pair (d, t). Break
ties based on greater Rc

dt , duty priority or timeslot priority. Continue processing (d, t) pairs
with the target of Rc

dt = 0 for all but avoiding Adt to become zero or less.

Step 2. Select employees for assignment to the (d, t) critical pair. Assign consecutive (d, t)
pairs in line with existing constraints. The criteria used to select an employee for (d, t) can
be: least filled-in timeslot (those in the gap between two critical ones), least overstaffing,
priority of the employee, hours needed to meet employee request, etc. Continue until all Rc

dt
is zero or below.

Steps 1-2 are iterated to perform shift pattern design and work unit allocation simultane-
ously.

Step 3. Improvement phase to repair constraints and improve objective values. 3.1 Tackle
constraint violations using specific moves and rules taking intra-employee or inter-employee
schedules into account. 3.2 Improve on objective values using specific moves and rules.

Step 4. Perform swaps between assignments employee-duty-timeslot (e,d, t) to improve the
schedule, for example to reduce the changes of duties (restaurant scenario) or to reduce the
payroll cost (leisure centre scenario).

Step 5. Given a change in an assignment employee-duty-timeslot (e,d, t), repair the roster
using ejection chain moves while satisfying relevant constraints.

The above procedure helps us to design a roster for purpose by generating tailored
shift patterns when required (fast-food restaurant scenario), assigning staff to work units
(pairs duty-timeslot) and repairing the roster when necessary (leisure centre scenario). The
effort that a human planner normally puts in producing a roster, is reduced considerably
by this automated procedure which takes into account the changing work demand fore-
cast and variable workforce availability. Equally important is the integration of the above
workforce scheduling procedure with other processes such as payroll, attendance/absence
management, staffing forecast and planning, etc. In this short communication we discussed
the importance of integrating workforce scheduling with other HR&Payroll processes and
provided an insight into our progress towards developing Midland HR’s workforce manage-
ment integral solution.

Acknowledgements We thank the financial support from the Technology Strategy Board (TSB) in the UK
through the Knowledge Transfer Partnership scheme (project KTP 07074).

References

Belkin G (2009) Effective workforce scheduling helps retailers establish in-store service differentiation. URL
http://www.aberdeen.com/launch/report/sector insights/6457-SI-workforce-scheduling-retail.asp

Di Gaspero L, Gärtner J, Kortsarz G, Musliu N, Schaerf A, Slany W (2007) The minimum shift design
problem. Annals of operations research 155:79–105

Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: a review of applications,
methods and models. European journal of operational research 153:3–27

Musliu N, Schaerf A, Slany W (2004) Local search for shift design. European journal of operational research
153(1):51–64

Tien JM, Kamiyama A (1982) On manpower scheduling algorithms. Siam Review 24(3):275–287

523

The Home Care Crew Scheduling Problem

Jesper Larsen · Anders Dohn · Matias Sevel

Rasmussen · Tor Justesen

Abstract The Home Care Crew Scheduling Problem (HCCSP) of this paper has its

origin in the Danish healthcare system. The home care service was introduced in 1958

and since then, there has been a constant increase in the number of services offered.

The primary purpose is to give senior and disabled citizens the opportunity to stay in

their own home for as long as possible. The problem of scheduling the services for the

citizens as handled by the municipalities in Denmark can basically be decomposed into

two interesting optimization problems. The first long-term planning problem fixes visit

on days and assigns the visit a time window in accordance with the quality standarts of

the municipality. The second short daily problem assigns theses visits for a given day

to a given home carer therebye building the daily routes for a group of home carers. So

in this problem, denoted the HCCSP, home carers should be assigned tasks in a way

that maximizes the service level, possibly even at a reduced cost.

Keywords crew scheduling · vehicle routing · column generation · set partitioning

The Home Care Crew Scheduling Problem (HCCSP) of this paper has its origin

in the Danish healthcare system. The home care service was introduced in 1958 and

since then, there has been a constant increase in the number of services offered. The

primary purpose is to give senior and disabled citizens the opportunity to stay in their

own home for as long as possible. The HCCSP is the problem of scheduling home carers

in a way that maximizes the service level, possibly even at a reduced cost.

Jesper Larsen
Department of Engineering Management, Technical University of Denmark, Denmark
E-mail: jesla@man.dtu.dk

Anders Dohn
Department of Management Engineering, Technical University of Denmark, Denmark
E-mail: adohn@man.dtu.dk

Matias Sevel Rasmussen
Department of Management Engineering, Technical University of Denmark, Denmark
E-mail: mase@man.dtu.dk

Tor Justesen
Copenhagen Airports, Denmark
E-mail: tjustesen@mac.com

524

The methodology presented in this paper is built on the literature of the vehicle

routing problem with time windows (VRPTW). Column generation has proven an

invaluable tool in optimization of vehicle routing problems. The main differences to

regular vehicle routing problems are a limited number of home carers with individual

shifts, temporal dependencies between visits, and the presence of a number of soft

constraints. These exceptions must naturally be dealt with explicitly in the model.

When a citizen applies for home care service, a preadmission assessment is initiated.

The result of the assessment is a list of granted services. The services may include

cleaning and laundry assistance and support for other everyday tasks. They may also

include assistance with respect to more personal needs, e.g. getting out of bed, bathing,

dressing, preparing food, and dosing medicine. As a consequence of the variety of

services offered, people with many different competences are employed as home carers.

Given a list of services for each of the implicated citizens, a long term plan is

prepared. In the long term plan, each service is assigned to specific time windows, which

are repeated as frequently as the preadmission assessment prescribes. The citizens are

informed of the long term plan, and hence they know approximately when they can

expect visits from home carers. From the long term plan, a specific schedule is created

on a daily basis. In the daily problem, home carers are assigned to visits. A route is

built for each home carer, respecting the competence requirements and time window of

each visit and working hours of the home carer. In the following, we restrict ourselves

to look at the daily scheduling problem only. The problem is a crew scheduling problem

with strong ties to vehicle routing with time windows. However, we have a number of

complicating issues that differentiates the problem from a traditional vehicle routing

problem. One complication is the multi-criteria nature of the objective function. It is,

naturally, important to minimize the overall operation cost. However, the operation cost

is not very flexible in the daily scheduling problem. It is more important to maximize

the level of service that we are able to provide. The service level depends on a number

of different factors. Usually, it is very hard to fit all visits into the schedule in their

designated time windows. Hence, some visits may have to be rescheduled or cancelled.

In our solutions, a visit is either scheduled within the given restrictions or marked as

uncovered. The manual planner will deal with uncovered visits appropriately. The main

priority is to leave as few visits uncovered as possible. Also, all visits are associated with

a priority and it is important to only reschedule and cancel less significant visits. Also, it

is important to service each citizen from a small subgroup of the whole workforce, as this

establishes confidence with the citizen. Another complication compared to traditional

vehicle routing, is that we have shared visits. These are visits requiring the presence of

more than one home carer, and consequently each visit must be included in the route

of several home carers, where the interconnected visits must be synchronized.

HCCSP as described above is decomposed and modelled as a set partitioning prob-

lem (SPP) with side constraints. An elementary shortest path problem with time win-

dows (ESPPTW) is used for column generation. The SPP is denoted the master prob-

lem, and the ESPPTW correspondingly is the subproblem. This approach has pre-

sented superior results on VRPTW and the similarities to HCCSP are strong enough

to suggest the same approach here.

The model is solved in a Branch-and-Price framework. As the number of feasible

routes is exponential in the number of visits, it is impossible to include all routes a

priori. Instead, the most promising routes (columns) are generated dynamically in an

iterative process. The master problem is LP-relaxed and the columns are generated

based on a dual solution to the LP-relaxation.

525

The method is tested on authentic test instances from two Danish municipalities.

The results are compared to the current practice, which is based partly on an auto-

mated heuristic and partly on manual planning. We measure three quality parameters:

Uncovered visits, constraint adjustments, and total travel time. The uncovered visits

are visits, where a home carer has not been assigned in the schedule. In practice, this

may imply that the visit is cancelled or that a substitute is called in and assigned to

those uncovered visits. Another way of dealing with an uncovered visit is to adjust

the original constraints, so that we are able to fit the visit into the schedule anyway.

Possible options are to: reduce the duration of the visit, extend the time window of the

visit or extend the work shift of one of the home carers. This is done a lot in practice.

However, any of these adjustments will naturally decrease the overall quality of the

schedule. In the presented solution method, we have chosen to keep all the original

constraints intact, and let the constraint adjustment be a manual post-processing task.

This decision is also supported by the fact that it is hard to put a quantitative penalty

on all possible adjustments before solving. The number of constraint adjustments in

our solution will hence always be equal to 0.

The results clearly indicate that we are able to enhance the service level. There is

a significant decrease in the number of uncovered visits and a truly dramatic decrease

in the number of necessary constraint adjustments.

526

University course scheduling problem with traffic impact
considerations

LEE Loo Hay · CHEW Ek Peng · NG Kien Ming ·
HUNG Hui-Chih · WANG Jia · XIAO Hui

Abstract Motivated by a practical problem, we consider a course scheduling problem for
a university which is expanding its current campus in our work. In the new part of the
campus, various facilities will be built, such as lecture theaters, seminar rooms, educational
sport center, residential colleges, etc. The new part is designed to facilitate multi-disciplinary
teaching and learning. Therefore, students from different faculties/schools are expected to
have equal opportunities to enjoy these facilities. The two parts of campus are connected by
a vehicular and pedestrian bridge. Shuttle service will be used to transport students between
these two parts of the campus. Some courses may be reallocated to the new part.

Our problem is to assign courses to the new part of campus and to evaluate the re-
sponding load for students’ having class on transportation system subject to the new course
schedule. The goal is to find the best solution which satisfies the following main criteria:
1) Fairness, e.g. provide equal opportunities for students from different faculties/schools to
enjoy these new facilities, 2) Priority, e.g. give preference to freshman and sophomore stu-
dents in the usage of these new facilities, 3) Utilization of resources, e.g. balance the usage
of new facilities at certain threshold level. The minimum time for as student to go for his
next class is the 15 minute break time.

We first solve this problem by analyzing the historical data on student enrollment in
different courses. From this analysis, we cluster courses according to their correlations. We
assume a student has equal probability of moving to his next class during the interval from
his last class and next. Based on the existing course schedule, we predict the student move-
ment using worst 15 minute movements across campus parts. We build two models with the
difference in measuring the movement. The first one considers usual movements, including
both lecture and tutorial. The second one only considers lecture. It is because some tuto-
rial has multiple sessions selectable for a student. Through our analysis on historical course
schedules that were in the setting of one campus, some students tend to choose the tutorial
session mostly close to their last class, which will worsen the traffic in multi-campus-part
settings. Thus, the first model reveals the historical data more complete but the second model

LEE Loo Hay
Department of Industrial & Systems Engineering, National University of Singapore, 1 Engineering Drive 2,
Singapore 117576, Singapore
Tel.: +65-65162895
Fax: +65-67771434
E-mail: iseleelh@nus.edu.sg

527

focus on the part less affected by the input variance. For both models, we build a mixed in-
teger programming (MIP) model to decide the courses to be mounted at the new part of
campus, so as to minimize the traffic impact.

Numerical experiments in current stage are based on past year data, including nearly 800
courses across the whole universities. Given latest capacity of new campus part in prospect,
nearly 200 are selected to the new campus part. It is also revealed that the second MIP model
have decreased the objective value from up to 300 into 70, which is believed controllable
by the shuttle service. Through the numerical experiment, we have observed that faculty
fairness has a great influence on the speed of obtaining the initial feasible solution, and thus
it affects the solving time most. On the other hand, the traffic level is highly affected by
the percentage of the freshmen and sophomore we set. This can be explained by our course
relationship analysis, which reveals that higher-level courses are less correlated among each
other compared with that of lower level courses. More freshmen and sophomore lead to
lower level courses, therefore, it will eventually induce more traffic.

The future work includes developing and testing the automated and integrated systems
ready to select courses in next two years (although only half of the resources are available
during the first year) and evaluating the effectiveness of the model through simulation. At
the same time, more efficient algorithm is in pursuit to handle larger problem scale potential
from future situation.

Keywords University course scheduling · Traffic · Mathematical programming

528

Ground Crew Rostering with Work Patterns at a Major
European Airline

R. M. Lusby · A. Dohn · T. M. Range · J. Larsen

Received: June 21, 2010

Abstract Staff Rostering is a well known optimization problem in the Operations Research
literature. People are one of the most important resources, and the construction of efficient
rosters using tailored optimization algorithms can lead to significant potential savings for
the employer. In this paper we address one such problem arising in the ground operations at
a major European airline. This problem, termed the Ground Crew Rostering Problem with
Work Patterns (GCRPWP), entails assigning a set of employees to a set of shifts, which are
spaced over a given daily time horizon, in such a way that the required employee demand
on each shift is satisfied as closely as possible. Having too few staff on a given shift results
in undercoverage, which is undesirable. When assigning a sequence of shifts to a particular
employee one must respect several practical constraints. In particular, unlike traditional ros-
tering problems, one must satisfy a so called work pattern of length l days. A work pattern
specifies both the number of consecutive days of work (on-stretch) as well as the number
of consecutive days of rest (off-stretch) an employee must have and is repeated over the
rostering horizon.

We present a cutting stock based formulation and propose a column generation solution
approach to find an efficient set of roster lines, where a roster line is a legal sequence of on
and off-stretches that one or more employees can work. While the use of a repeating work
pattern limits the number of feasible roster lines, the work pattern can be staggered across the
employees to ensure all employees are not off on the same day. This staggering results in l
independent subproblems, each of which entails solving a resource constrained shortest path
in an appropriate acyclic network. To solve the model, we decompose the six month time
horizon into smaller, computationally tractable blocks. The column generation procedure is
combined with a variable fixing routine to find a roster for each block. The blocks are solved
sequentially and consistency between the rosters of successive blocks is enforced through
shift fixing in a prespecified overlapping duration between two consecutive blocks.

R. M. Lusby, A. Dohn, J. Larsen
Department of Management Engineering, Technical University of Denmark
Produktionstorvet, Building 426, 2800 Kgs. Lyngby, Denmark
E-mail: {rmlu,adohn,jesla}@man.dtu.dk

T. M. Range
Department of Business and Economics, University of Southern Denmark
Campusvej 55, 5230 Odense, Denmark
E-mail: tra@sam.sdu.dk

529

In addition, we describe an alternative time-based model that constructs roster lines sim-
ply using the forecast workload. Like the first model, this assumes the shifts have been pre-
determined; however, it does not assume that the required employee demand for each shift
is known. The number of employees working any shift is determined by the optimization as
part of the solution. By doing this we are able to circumvent one step of the conventional
roster planning process. This second model is very similar in structure to that of the first
and can be solved using the same methodology. With the second model, one attempts to
cover, as well as possible, the workload rather than the required employee demand on each
shift. We demonstrate that this second model is more flexible from a modelling perspective
in that one can more easily include robustness factors. Robustness factors of interest for the
airline in question include being able to cover a higher workload than anticipated as well as
a workload that has been delayed by a prespecified number of minutes.

Encouraging numerical results are reported using real-life data supplied by a major Eu-
ropean Airline. We also stress test the approach on 10 artificially constructed instances. All
instances have a time horizon of 189 days and contain as many as 139 employees. The
proposed methodology is shown to produce high quality rosters that outperform what is
currently done in practice. In particular, from a robustness perspective, we show that more
robust solutions can be obtained even with a 10-12% reduction in current staffing levels.

Keywords Staff Rostering · Decomposition · Robustness

References

Bruco MJ, Jacobs LW, Bongiorno RJ, Lyons DV, Tang B (1995) Improving personnel scheduling at airline
stations. Operations Research 43(5):741 – 751

Dowling D, Krishnamoorthy M, Mackenzie H, Sier D (1997) Staff rostering at a large international airport.
Annals of Operations Research 72:125 – 147

530

Properties of Yeditepe Examination Timetabling Benchmark
Instances

Andrew J. Parkes · Ender Özcan

1 Introduction

Examination timetabling is a type of educational timetabling which is a highly challeng-
ing field for the researchers and practitioners. Examination timetabling problems require a
search for the best assignment of examinations into a fixed number of time-slots possibly
along with other resources, such as, a set of rooms with certain capacities, subject to a set of
constraints. There are two common types of constraints: hard and soft. The hard constraints
must not be violated, while the soft constraints represent preferences that can be infringed.
Examination timetabling problems are proven to be NP-complete (Even et al 1976). A recent
survey on exam examination timetabling can be found in Qu et al (2009).

There are many variants of examination timetabling problems due to the fact that each
educational institution have their own rules, regulations and expectations resulting with var-
ious constraints. This situation also makes it extremely difficult to compare different so-
lution methods. Not only comparability but also reproducibility of the results is vital for
the research community, as pointed out in Schaerf and Gaspero (2006). McCollum (2006)
discusses real world issues in examination and course timetabling. Although practitioners
and researchers have to deal with different aspects of examination timetabling, it has been al-
ways of interest for both communities to design robust and flexible approaches that can solve
new problem instances. ITC2007 (http://www.cs.qub.ac.uk/itc2007/) competition is organ-
ised considering the real world examination timetabling complexities and capturing them
within the problem instances. The state of the art method for examination timetabling turned
out to be a hybrid multistage approach combining Iterated Forward Search (IFS) for feasi-
ble initial solution construction and great deluge for improvement as described in Müller
(2009). The source code of the solver is available from http://www.unitime.org/itc2007.

Yeditepe University (Faculty of Engineering) data set contains real problem instances
from a total of eight semesters in three consecutive years. Bilgin et al (2007) modified the
initial data set provided in Özcan and Ersoy (2005) with new properties and also generated
a variant of Toronto benchmarks (Carter et al 1996) that fits into the problem formulation
which will be referred to as modified Toronto benchmark. This problem is a capacitated
variant of examination timetabling. There is a maximum capacity of seating available during

School of Computer Science, University of Nottingham, NG8 1JX, UK
http://www.cs.nott.ac.uk/∼{ajp,exo}/

531

Table 1 Characteristics of the modified Toronto benchmark dataset.

No. of No. of No. of Conflict
Instance Exams Students Enrolments Density Days Capacity

car91 I 682 16925 56877 0.13 17 1550
car92 I 543 18419 55522 0.14 12 2000
ear83 I 190 1125 8109 0.27 8 350
hecs92 I 81 2823 10632 0.42 6 650
kfu93 461 5349 25118 0.06 7 1955
lse91 381 2726 10918 0.06 6 635
pur93 I 2419 30029 120681 0.03 10 5000
rye92 486 11483 45051 0.07 8 2055
sta83 I 139 611 5751 0.14 4 3024
tre92 261 4360 14901 0.18 10 655
uta92 I 622 21266 58979 0.13 12 2800
ute92 184 2749 11793 0.08 3 1240
yor83 I 181 941 6034 0.29 7 300

Table 2 Characteristics of the Yeditepe benchmark dataset.

No. of No. of No. of Conflict
Instance Exams Students Enrolments Density Days Capacity

yue20011 126 559 3486 0.18 6 450
yue20012 141 591 3708 0.18 6 450
yue20013 26 234 447 0.25 2 150
yue20021 162 826 5755 0.18 7 550
yue20022 182 869 5687 0.17 7 550
yue20023 38 420 790 0.2 2 150
yue20031 174 1125 6714 0.15 6 550
yue20032 210 1185 6833 0.14 6 550

exams at each time slot. The timetable size is fixed with three examination slots per day for
a given number of days. The characteristics of each problem instance of modified Toronto
and Yeditepe benchmark problem instances are summarised in Table 1 and 2, respectively.

Yeditepe examination timetabling problem has the usual hard constraints:

– Examination conflict (C1): A student must not sit for more than one examination at any
given time.

– Capacity (C2): At a given period, the overall number of students seated for all examina-
tions should not exceed the fixed capacity.

and the soft constraint

– Examination spread (C3): Examinations of a student in the same day should not be
scheduled consecutively.

As yet, to our knowledge, optimality has not been proven for any solutions of the exami-
nation timetabling problem instances in the Toronto and ITC2007 benchmarks, even includ-
ing the smallest problem instances. This study focuses on the smallest Yeditepe instances
which can be solved exactly, and so allows us to test and compare the optimal solutions
and the state of the art approach of Müller. Additionally, a multi-objective formulation of
the problem based on the trade-off between the room size (capacity) and solution quality is
analysed.

532

Table 3 The results for yue20023.

RoomCap. penalty time(secs) IFS-GD
132 70 1123 86, 94, 86
134 68 1468 100, 115, 105
135 65 935 72, 87, 87
136 64 1022 81, 74, 83
137 59 818 73, 73, 87
146 56 875 80, 65, 67
153 55 304 77, 76, 67
157 54 402 73, 73, 67
166 50 371 58, 65, 67
170 48 295 72, 72, 64
176 47 268 64, 76, 66
187 46 234 48, 63, 63

2 Some Exact Results

In this section, we report results of completely solving one of the smaller instances as a case
study; yue20023 (chosen simply because it was the largest that we could solve exactly). It
was solved using an encoding1 of the exam timetabling problem as described in (McCollum
et al 2008) into ILOG/IBM OPL and solved using CPLEX 11. The encoding is not opti-
mised (e.g. there is no branch and cut) and so timing results are purely for comparison of
the relative hardness of different cases. Also, in order to give a better insight into the prob-
lem, the size of the room used was varied, and the effect on the final penalty studied. The
results given in Table 3 are all illustrated in Figure 1. The last column simply gives the qual-
ity obtained from three 3 separate runs of 1200 seconds each and using Müller’s winning
submission to the examination timetabling track of ITC2007.

There are two main observations:
Firstly, the Pareto front is not trivial, there are fairly wide ranges of unsupported solu-

tions - that is, solutions that are Pareto optimal but not on the convex hull of the Pareto front,
and so are not optimal with respect to any linear combination of the objectives. In this case,
for example, the Pareto optimal solutions with room size of 153 or 157 will be missed if
solving optimally using a linear combinations of the room size and penalty; as any linear
combination will not be able to access the ’indented portion’ of the Pareto front.

Secondly, even though the hybrid approach tested was the clear winner of ITC2007,
it still did not manage to find optimal solutions. This suggests that even on these small in-
stances there is still significant room for improvement in the performance of meta-heuristics.

3 Summary

We have made available some exam timetabling instances from Yeditepe. Despite their in-
dependent origin, they fit reasonably well into the format of the ITC2007 benchmarks, sug-
gesting that this format captures real-world issues (McCollum et al 2008). On the smaller
instances, we were able to solve them completely using integer programming. In terms of a
multi-objective trade-off between the room size and solution quality, the Pareto fronts were
found to be interesting with large unsupported regions. This suggests that weighted sum

1 The website http://www.cs.nott.ac.uk/∼ajp/timetabling/exam/ gives the encoding, the in-
stances, and other supplementary material.

533

 0

 10

 20

 30

 40

 50

 60

 70

 130 140 150 160 170 180 190 200

co
st

 o
r

m
in

ut
es

room size, R

cost
PF

PF supported
time

Fig. 1 Results for the instance ’yue20023’ as given as a function of the room size. ’Cost’ is the optimal
(minimal) penalty. The ’PF’ are those solutions that are non-dominated. The ’supported PF’ are those on the
convex hull of the PF line. The ’time’ is minutes for CPLEX to solve the instance, which includes the proof
of optimality.

methods would potentially miss many interesting solutions. It was also interesting that even
the best meta-heuristic solver was consistently failing to find the optimal, suggesting that
this research area still has room for considerable improvement.

References

Bilgin B, Özcan E, Korkmaz EE (2007) An experimental study on hyper-heuristics and final exam schedul-
ing. In: Proc. of the International Conference on the Practice and Theory of Automated Timetabling
(PATAT’06), Lecture Notes in Computer Science, vol 3867, pp 394–412

Carter MW, Laporte G, Lee S (1996) Examination timetabling: Algorithmic strategies and applications. Jour-
nal of the Operational Research Society 47(3):373–383

Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicommodity flow problems. SIAM
Journal on Computing 5(4):691–703

McCollum B (2006) University timetabling: Bridging the gap between research and practice. In: Proc. of the
5th International Conference on the Practice and Theory of Automated Timetabling, Springer, pp 15–35

McCollum B, McMullan P, Burke EK, Parkes AJ, Qu R (2008) A new model for automated examination
timetabling (under review)

Müller T (2009) ITC2007 solver description: a hybrid approach. Annals of Operations Research 172:429–446
Özcan E, Ersoy E (2005) Final exam scheduler - FES. In: Proc. of the Congress on Evolutionary Computation,

IEEE, pp 1356–1363
Qu R, Burke EK, McCollum B, Merlot L, Lee S (2009) A survey of search methodologies and automated

system development for examination timetabling. Journal of Scheduling 12(1):55–89
Schaerf A, Gaspero LD (2006) Measurability and reproducibility in timetabling research: State-of-the-art

and discussion. In: Proc. of the 6th Int. Conf. on the Practice and Theory of Automated Timetabling, pp
53–62

534

Combined Blackbox and AlgebRaic Architecture (CBRA)

Andrew J. Parkes

1 Context

Combinatorial optimisation methods are concerned with an objective function defined over an (exponen-
tially) large search space. Often these are solved with metaheuristics, such as simulated annealing, various
evolutionary strategies, tabu search, and many others. However, such metaheuristics are generally rather
static creatures with relatively simple behaviours and with most intelligence delegated to the heuristics,
the neighbourhoods, selection/acceptance criteria and/or the local search methods that they oversee. This
static simpleness has often paid off in terms of simplicity of implementation: Often the metaheuristic is
merely tens to hundreds of lines of code, in comparison to maybe tens of thousands of lines to imple-
ment complex local search moves (with the associated data-structures needed for them to run quickly).
However, the metaheuristics do have some decisions to make, and simple static decisions tend to lead
to an over-reliance on careful tuning of parameters. There is a long-standing, but ever-growing, desire
that metaheuristics become much more dynamic, self-adaptive, and with inbuilt learning mechanisms, in
short, that they become more intelligent. There have been various attempts to add this intelligence. This
short abstract cannot hope to do justice to them all, however, some pointers into the recent literature are:
Hyper-heuristics (Burke et al 2003; Chakhlevitch and Cowling 2008; Burke et al 2009; Ross 2005; Özcan
et al 2008), reactive search Battiti et al (2008), and self-adaptive genetic algorithms. This position paper is
an attempt to give one view of how some different approaches are related. (Of course, this is just one view
and is not intended to supplant other views.) The starting point is that optimisation methods can often be
classified at a very high level according to whether they are blackbox or whitebox:

Blackbox optimisation A blackbox algorithm typically refers to an algorithm that has no insight into
the structure of the objective function. Part of the desired intelligence is surely that there is some
learning of the structure of the problem. However, in the blackbox case, only inductive learning will
be possible. Unfortunately, as known from the ugly duckling theorem (Watanabe 1969) and later the
No-Free-Lunch-Theorem (NFLT) (Wolpert. and Macready 1997), when nothing a priori is known
about the structure then induction (learning) can be no better than direct enumeration of the search
space.
Whitebox optimisation The full structure of the constraints and the objective function is exposed
to the solver, and explicitly exploited by it. The archetypal example would be integer programming;
the solver would be looking at the internal structure and trying to do deductive learning about new
structures, for example, by deriving new cutting planes.

School of Computer Science, University of Nottingham, NG8 1JX, UK
http://www.cs.nott.ac.uk/∼ajp/

535

Domain barrier

Hyper−heuristic

Domain level heuristics

Fig. 1 Hyper-heuristic view of blackbox optimisation. Note that all of the domain is hidden, including all variables.

Such methods are of course not mutually exclusive. The area of constrained blackbox optimisation (cBBO)
(e.g. see Wu et al (2006)), roughly speaking, is concerned with solving problems expressed as:

min f B(x) (1)

s.t. gW (0) = 0 (2)

where the objective function f B is blackbox, though the constraints gW are whitebox. In recent work
related to timetabling, one can perhaps regard one instantiation of this cBBO framework as the “RAMP”
formulation of Bykov1 in which variables are a set of finite-domain integers, subject to whitebox knapsack
and inequality constraints determining feasibility, but also with a blackbox objective function.

The standard selection hyper-heuristic framework is illustrated by the domain barrier of Figure 1 in
which the hyper-heuristics are a high-level control system that selects which of various low-level domain-
specific heuristics to use, and receives knowledge only of the resulting effect on the objective function.
(The term ‘hyper-heuristics’ also covers other methods, e.g. see Burke et al (2009), but the blackbox
selection of heuristics is the most common meaning.) Note that in the classical hyper-heuristic approach
the domain is hidden to the extent that the high-level hyper-heuristic controller does not even know of
the variables themselves. In contrast, many blackbox methods at least are given a representation of the
variables. In genetic algorithm approaches the variables are collected into a chromosome and the blackbox
is the objective function.

Hence, overall, there is no unique mix of blackbox and whitebox, which suggests that we should con-
sider more general ways of mixing black and white reasoning. For this, there are 3 general components:
the variables, the constraints and the objective(s), and so we discuss each in turn.

Visibility of the variables. The main observation is that work in this area rarely explicitly discusses the
black/white nature of the variables or the search space itself. Of course, in any given approach, it is always
clear, however, the choices made are often not discussed or modelled explicitly. However, there are a
range of possibilities. Here we are driven by some earlier work on the issues of coarse-grained distributed
solvers (Parkes 2001) in which the problem is divided into large chunks to be solved on separate solvers.
As a means of communication, each chunk is given some partial visibility of the variables of other chunks.
Variables within a chunk are hence split into those that are public, x, or private, y. This can also make sense
in that encoding many problems results in multiple kinds roles for variables. For example, some are key
decision variables, and others are ‘mere’ auxiliary variables needed to encode some complex expression
in the objective.

The primary observation of this paper is that such a public/private or white/black split in the variables
should also be explicitly considered as a possibility within general frameworks. In such cases, it seems
reasonable that only the public variables, x, are treated as whitebox, and others, y, are hidden inside a
blackbox.

The public variables, x, will often simply be a subset of the total set of variables, but in general could
be derived variables. So, if there are some underlying total set z of variables then we might express this
as:

x = p(z)

where p is a projection operator that picks out which ones are to be made public. The standard hyper-
heuristic corresponds to p(z) = {} so that no variables are public. Conversely, genetic algorithms generally

1 URL http://www.cs.nott.ac.uk/∼yxb/actispec/

536

take that p(z) = z so that the chromosome is a complete representation. Explicitly introducing such a
projection operator could allow an organised study of intermediates between these extremes.

Visibility of the objective(s). There does not seem to be any real, a priori, reason in the cBBO framework,
that the entire objective function needs to be completely blackbox, but it could well be a combination of
black and white. In this case, by definition, the whitebox portion will only be able to use the public
variables, and the objective becomes

f W (x)+ f B(x,y)

Visibility of the constraints Generally, there can be whitebox constraints over the public variables, but
the blackbox side is also likely to have to account for constraints over all the variables. Note that it could
well be that even whitebox constraints are converted to large penalties are then treated in a blackbox
fashion (many approaches to cBBO will do this). It is also common that they are treated implicitly within
the blackbox portions as hard constraints and so are used to limit the moves in the search space. In the
hyper-heuristic approach, it is quite common that the “low-level heuristics” are various neighbourhood
moves, but the neighbourhoods are selected so as to preserve feasibility. (For example, in timetabling, the
neighbourhood moves might swap times of events only if no new conflicts are created).

Putting all this together the proposed structure is (with z = (x,y)):

min f W (x)+ f B(z) (3)

s.t. gW (x) = 0 (4)

gB(z) = 0 (5)

implicitly with x = p(z) (6)

Whitebox constraints are often written in algebraic form, so I will refer to as a “Combined Blackbox and
algebRaic Architecture” (CBRA) formulation.

However, what would be the point of such a formulation? - Why not just go all black or all white? The
main potential advantage is that real-world problems are often a mix of components that most naturally
lean towards one or the other. For example, in timetabling the overall time and room choices are a mix
of graph colouring and assignment problems and so naturally suggest whitebox methods. On the other
hand the pattern constraints (no two events in a row, no more than three in a day, etc) tend to be relatively
hard to encode in whitebox style and instead are currently better handled by a good local search method
hidden in a blackbox. Note that it is effectively necessary to hide the local search in a blackbox because
trying to represent it integer programming or similar is generally awkward and ineffective. In particular,
the ability of the framework to exploit only public variables in a whitebox fashion could be useful. (For
example, the surface and deep formulations for Course Timetabling in Burke et al (2010) might well have
a natural expression in this form.)

Implementing this ‘architecture’ is future work, but can be mostly expected to be a judicious combi-
nation of techniques from cBBO, evolutionary algorithms, hyper-heuristic, and others. The main novelty
within this is the public/private variable split, so a key issue is whether this can be handled effectively.
Note that the CBRA might well want to fix some or all of the public variables, and so this will need to be
passed down to the blackbox objective. In standard hyper-heuristics all variables are blackbox and so this
would be handled by an operator requesting the blackbox domain-specific component to create an initial
state, but without the top-level getting to know anything about it other than its objective value.

The practical value of this proposal is to help move towards a system giving a good way to handle
simultaneously both the extremes of

– whitebox ‘algebraic’ reasoning about ‘simple’ constraints over simple public variable
– blackbox handling of complex local moves possibly designed to fix some objectives represented by

awkward private variables, and that cannot sensibly be handled with any generic whitebox solver

and also to be able to handle a range of intermediates. Note that this discussion has not really relied at
all on any particular choice of algorithms, but is attempting to formalise a representational scheme, and
associated overall architecture.

537

W

Blackbox constraints g (x,y)
B

Blackbox objective f (x,y)
B

Domain level heuristics on (x,y)

Whitebox constraints g (x)
W

Whitebox variables, x

Blackbox variables, y

Domain barrier

Variables

Whitebox objective f (x)

Fig. 2 Sketch of CBRA structure.

2 Conclusions

A framework is proposed that includes many existing variants of solvers from fully blackbox to fully
whitebox, and most specifically proposes that black/white and mixtures considerations be explicitly ap-
plied to variables as well as to objective functions and constraints. In a sense, this paper can be taken
as the suggestion that theoretical developments in this direction might well take as much account of the
partial hiding of variables as much as they do of the (partial) hiding of the details of objectives.

Two final comments:
Changing black to white? In some cases, in principle, it might well be possible to convert blackbox
components to white again by combining promises about the structure of the objective with analysis of
results of calls to obtain its value. For example, if the whitebox reasoner where promised that the blackbox
just encodes a TSP, then maybe with sufficient acumen it could actually deduce the edge lengths that were
hidden and so would then be able to reason directly. This is not so likely to be a practical issue, but could
well place limitations on what can be formally proven about such systems: the extra promise that is is an
encoding of some particular domain might sometimes lead to breakage of the domain barrier.
Adding “solution features”? In a machine learning hyper-heuristic framework we might well want some
features of the solution other than just its objective. For the whitebox components CBRA can use what-
ever features it decides are useful, but it might well need to also use features of the hidden variables.
Presumably these can simply be returned along with the objective function.

References

Battiti R, Brunato M, Mascia F (2008) Reactive Search and Intelligent Optimization, Operations Research/Computer Science
Interfaces Series, vol 45. Springer

Burke EK, Hart E, Kendall G, Newall J, Ross P, Schulenburg S (2003) Handbook of Meta-Heuristics,
Kluwer, chap Hyper-Heuristics: An Emerging Direction in Modern Search Technology, pp 457–474. URL
http://www.asap.cs.nott.ac.uk/publications/pdf/hhchapv002.pdf

Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward J (2009) A classification of hyper-heuristic approaches.
Tech. Rep. NOTTCS-TR-SUB-0907061259-5808, University of Nottingham, School of Computer Science.

Burke EK, Mareček J, Parkes AJ, Rudová H (2010) Decomposition, reformulation, and diving in university course
timetabling. Comput Oper Res 37(1):582–597, DOI http://dx.doi.org/10.1016/j.cor.2009.02.023

Chakhlevitch K, Cowling P (2008) Hyperheuristics: Recent developments. Studies in Computational Intelligence 136:3–29,
in Cotta C, Sevaux M, Sorensen K (eds) Adaptive and Multilevel Metaheuristics

Özcan E, Bilgin B, Korkmaz EE (2008) A comprehensive survey of hyperheuristics. Intelligent Data Analysis 12(1):3–23
Parkes AJ (2001) Exploiting solution clusters for coarse-grained distributed search. In: IJCAI01 Workshop on Distributed

Constraint Reasoning, Seattle, Washington, USA
Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search Methodologies: Introductory Tutorials in Optimization

and Decision Support Techniques, Springer, chap 17, pp 529–556
Watanabe S (1969) Knowing and Guessing: A Quantitative Study of Inference and Information. New York: Wiley
Wolpert DH, Macready WG (1997) No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computa-

tion 1:67
Wu Y, Ozdamar L, Kumar A (2006) Nonconvex Optimization and Its Applications, vol 85, chap Parallel Triangulated Parti-

tioning for Black Box Optimization, pp 487 – 506

538

Solving the Airline Crew Pairing Problem using
Subsequence Generation

Matias Sevel Rasmussen · David M. Ryan ·
Richard M. Lusby · Jesper Larsen

Abstract Good and fast solutions to the airline crew pairing problem are highly in-

teresting for the airline industry, as crew costs are the biggest expenditure after fuel

for an airline. The crew pairing problem is typically modelled as a set partitioning

problem and solved by column generation. However, the extremely large number of

possible columns naturally has an impact on the solution time.

In this work in progress we severely limit the number of allowed subsequent flights,

i.e. the subsequences, thereby significantly decreasing the number of possible columns.

Set partitioning problems with limited subsequence counts are known to be easier to

solve, resulting in a decrease in solution time.

The problem though, is that a small number of deep subsequences might be needed

for an optimal or near-optimal solution and these might not have been included by the

subsequence limitation. Therefore, we try to identify or generate such subsequences

that potentially can improve the solution value.

Keywords Airline crew pairing · Crew pairing · Subsequence generation · Column

generation · Limited subsequence

M.S. Rasmussen
Department of Management Engineering, Technical University of Denmark, Produktionstorvet,
Building 424, 2800 Kgs. Lyngby, Denmark
Tel.: +45-45254442
Fax: +45-45933435
E-mail: mase@man.dtu.dk

D.M. Ryan
Department of Engineering Science, University of Auckland, 70 Symonds Street, Auckland
1010, New Zealand

R.M. Lusby
Department of Management Engineering, Technical University of Denmark, Produktionstorvet,
Building 424, 2800 Kgs. Lyngby, Denmark

J. Larsen
Department of Management Engineering, Technical University of Denmark, Produktionstorvet,
Building 424, 2800 Kgs. Lyngby, Denmark

539

1 Introduction

Crew costs are the second largest expenditure in the airline industry. Only fuel costs

are larger, see [1]. Therefore, airline crew scheduling has received a lot of attention

in the literature, and consequently, optimisation is heavily used by the airlines. The

airline crew pairing problem which is dealt with in this work is a part of a larger series

of optimisation problems that together produce the schedule for an individual crew

member. In [1] a recent survey of airline crew scheduling can be found.

A pairing or a tour-of-duty is a sequence of flights which can be flown be a crew

member. A pairing must start and end at the same crew base and comply with several

rules and regulations in order to be feasible. The airline crew pairing problem then

finds the set of pairings that exactly covers all flights at minimum costs.

2 Solution Method

The pairing problem is modelled as a set partitioning problem. Each row corresponds

to a flight and each column corresponds to a pairing. Let m be the number of rows

and n be the number of columns, and let cj be the costs of column j ∈ {1, . . . , n}. The

entries of A, aij , are one if column j ∈ {1, . . . , n} covers row i ∈ {1, . . . , m} and zero

otherwise. The decision variables xj for j ∈ {1, . . . , n} are binary. The mathematical

programme can be written as

minimise c>x

subject to Ax = 1

x ∈ {0, 1}n .

The number of possible pairings in the set partitioning formulation is very large, so the

pairings are typically only enumerated implicitly by column generation. In the present

approach we will, however, not perform column generation, but subsequence generation.

The subsequences for a flight f are the set of subsequent flights that can follow f in

a feasible way in a pairing. In general terms for a zero-one matrix A, the subsequence

count, SC(s), for any row s is given by

SC(s) = |{t : [asj = 1, aij = 0 for s < i < t, atj = 1], j = 1, . . . , n}| .

Matrices with SC(s) ≤ 1 for all s ∈ 1, . . . , m are said to have unique subsequence,

and such matrices are balanced, see [2]. Exploiting results from graph theory, we know

that the LP relaxation of an SPP with a balanced A matrix has an integral optimal

solution. Also shown in [2], the closer we get towards unique subsequence, the closer

we get to naturally integral LP solutions.

Therefore, we severely limit the subsequence count for each flight when generating

pairings. This results in significantly fewer possible pairings and, as mentioned, fewer

fractions when solving the LP relaxation. The disadvantage, however, is that we might

exclude some optimal subsequences. To remedy this, we use the information in the

dual vector to identify missing subsequences. The dual vector is passed on to one or

several column generators that produce negative reduced costs columns on a richer set

of subsequences. These columns are analysed in order to identify potentially “good”

subsequences.

540

The goal is, of course, to be able to, as early as possible, identify the subsequences

that will end up in the optimal or near-optimal solution. Whenever a subsequence is

identified as a potentially “good” subsequence, the whole set of columns which include

the new subsequence are added to the LP. Furthermore, to prevent the LP from growing

too big, subsequences can be removed from the LP, i.e. the set of columns containing

the subsequence are removed.

3 Computational Results

In order to gain better understanding of the method, we have generated a set of set

partitioning instances with a cost structure reflecting the cost structure from crew

pairing problems. The results from the generated instances indicate that we can identify

the missing subsequences in reasonable time.

Currently, we are in the process of performing tests on a set of real-world crew

pairing problem instances.

4 Future Work

The results this far clearly justify further development. Firstly, as mentioned, real-

world crew pairing problems will be tackled. Secondly, the subsequence identification

process has room for improvements. Thirdly, the method is based on the dual vector,

therefore dual stabilisation is likely to speed up the method, as dual stabilisation would

make the duals more reliable. Lastly, the column generators can be run in parallel on

different processors.

References

1. Gopalakrishnan, B., Johnson, E.L. (2005). Airline crew scheduling: state-of-the-art. Annals
of Operations Research, 140, 305–337

2. Ryan, D.M., Falkner, J.C. (1988). On the integer properties of scheduling set partitioning
models. European Journal of Operational Research, 35, 442–456

541

Grouping Genetic Algorithm with Efficient Data

Structures for the University Course Timetabling Problem

Felipe Arenales Santos · Alexandre C. B. Delbem

Keywords Grouping Genetic Algorithm · Timetabling Problem

1 Introduction

An efficient grouping genetic algorithm (GGA) was proposed by R. Lewis and B.

Paechter (2007) to find feasible timetables for a version of the university course timetabling

problem (UCTP). The algorithm proved to be efficient to construct feasible solutions

for the UCTP benchmark instances (International Timetabling Competition 2002). In

addition, the authors proposed a new set of harder instances, in order to better analyze

their algorithm.

In this paper, we propose an adequate data structure for the algorithm and pre-

processing techniques that signficantly improve its efficiency. The organization of the

paper is as follows. Section 2 defines the UCTP and presents the main characteristics of

the GGA. Section 3 and 4 describes our contributions for the GGA applied to UCTP.

Finally, Section 5 presents computational experiments and the conclusions.

2 The University Course Timetabling Problem

A typical university timetabling problem consists of assigning a set u={u1, ..., ue} of

e events (classes, exams, lectures, etc.) to t timeslots and r rooms in such a way as

to satisfy a set of constraints and to optimize an objective function (R. Lewis and B.

Felipe Arenales Santos
University of Sao Paulo
Sao Carlos, SP
Brazil
E-mail: fearenales@grad.icmc.usp.br

Alexandre Claudio Botazzo Delbem
University of Sao Paulo
Sao Carlos, SP
Brazil
E-mail: acbd@icmc.usp.br

542

Paechter 2007). The constraints are classified into two types (Burke et al. 1997): (i) hard

constraints, which must be satisfied to a feasible timetable, and; (ii) soft constraints,

which should be satisfied if possible. The hard constraints considered to this problem

are:

1. Events requiring the same student should not be assigned to the same timeslot;

2. One room in one timeslot admits only one event;

3. All of the features required by an event should be satisfied by the room where the

event is allocated, which has adequate capacity.

The problem is NP-Complete (Garey and Johnson 1979), and the number of possi-

ble assignments grows exponentially with the input data. As a consequence, exact meth-

ods for UCTP are not proper for large instances. Therefore, heuristic-based methods

have been widely investigated in the literature (Costa 1994; Abramson, Krishnamoor-

thy and Dang 1996; Thompson and Dowsland 1998; Schaerf 1999; Paechter et al. 1998;

Socha and Samples 2003).

Lewis and Paechter (2007) describe the applicability of a GGA to the UCTP, and

propose a two-phase approach. In the first phase, the GGA improves the quality of

the solutions (within a specified time) using a set of solution-builder heuristics, which

speeds up the evolutionary process. In the second one, a local search algorithm does

final improvements to promising solutions. However, as the input data increases too

much (big cases of the proposed set), the convergence becomes slower and the first

phase ends with high infeasibility level solutions. It should be worth noting that this

paper deals with only the first phase and hard constraints.

3 Data Structures

Some of the data structs used by the GGA are trivial, such as the set u, implemented

as an array, and the timetable, represented by the rxt matrix T, where the element tij
is the event assigned to room i in timeslot j. Other matrices give the relation between

students and events and between features and rooms. For further information, see Lewis

and Paechter (2007).

The most complex data structure envolved in this GGA, called feasibility matrix

F, stores the places (one place is one room in one timeslot) where the events can be

feasibly allocated. Its most efficient implementation (by the processing aspect) consists

of a matrix whose rows correspond to places, and columns to events. It can be done by

initially converting a two-dimensional matrix (G, rooms by timeslots), that contains

the feasibility information of a given event, to a one-dimensional array of places H.

Figure 1 depicts this step.

G =

g11 · · · g1t
..
.

. . .
..
.

gr1 · · · grt

→ H =

(

g11 · · · g1t · · · gr1 · · · grt
)

=
(

h1 · · · hp

)

Fig. 1: Linearization of the feasibility matrix to an event

543

Next, the resulting structure H is replicated e times (one for each event), resulting

in the structure F. The F element fij = 1 if event j can be feasibly assigned to a place

i, and 0 otherwise, i = 1,...,p and j = 1,...,e, see Figure 2.

F =
(

HT
1

· · · HT
e

)

=

f11 · · · f1e
.
.
.

. . .
.
.
.

fp1 · · · fpe

Fig. 2: Feasibility matrix construction

In order to find out if one given event can be feasibly assigned to a place, no search

is required, since the triple (event, room, timeslot) can be transformed into the pair

(event, place) that corresponds to only one element of F. In this way, the cost to

access this information is (in big-O notation) O(1) (Cormen et al. 2001; Knuth 1998).

It speeds up the generation of solutions, i.e. the GGA can performe a larger number

of generations for the same period of time compared to other relatively higher cost

data structures, such as dynamic lists and other non-static data structures. Moreover,

it is important to highlight that the larger the number of generations, the better the

quality of solutions at the end of the GGA.

4 Preprocessing Techniques

The values of the F elements are only related with the hard contraints satisfaction

(see Section 2). Based on this, the hard constraints can be classified into two types: (i)

static contraints, which define the assignment feasibility regardless the timetable state

(i.e. the events allocated in it), as constraint 3; and (ii) dynamic constraints, which can

change the feasibility of an assignment depending on the events already allocated in

a timetable place, as constraints 1 and 2. Thus, the feasibility related to constraint 3

can be determined a priori. If an event requires a set of features and is required by n

students, all the rooms that do not have all the required features or has the capacity less

than n can not be feasibly assigned to this event anytime. This information is stored in

matrix A (event by rooms) that lists the event-rooms conflicts. Element aij is 1 if the

event i can not be assigned to the room j, i=1...e, j = 1,...,r ; aij = 0 otherwise. Thus,

the values of F to a new solution can be obtained directly from A, avoiding unneeded

processing.

In addiction, the restriction number 1 can be modeled as a matrix B (event by

event) that lists the event conflicts. The element bij = 1 if the event i requires a

student also required by the event j, i = 1,...,e, j = 1,...,e, i 6= j ; bij = 0 otherwise.

Observe that every iteration of a solution building inserts one unallocated event into

the solution being built.

544

5 Computational Results

The GGA and the proposed improvements was implemented in ANSI C under Linux

(Ubuntu 8.04 distribution) on a computer with an Intel Pentium Dual-Core 1.73 GHz

processor and 1 GB RAM. Considering the parameters as follow: timeslots number

t = 45 (five days a week of five timeslots), mutation rate mr = 2, inversion rate ir = 4,

recombination rate rr = 1.0, and population size ρ = 50. The input data is given by

the instance sets. The experimental results was compared to the obtained by Lewis

and Paechter (2007). The Figure 3 depicts the results obtained by the original im-

plementation of the GGA and the implemented with improvements. The vertical axis

corresponds to the distance to feasibility of the best solution present in the popula-

tion. See Lewis and Paechter (2007) for further details about parameters and GGA

implementation and run.

(a) (b)

(c)

——— Lewis and Paechter (2007) - - - - Santos and Delbem (2010)

Fig. 3: Behavior of the algorithm to (a) small, (b) medium, and (c) large instances.

As can be noticed, the larger the input data, the greater the difference between the

results obtained by the two implementations. It happens because as the input grows,

the solution building time becomes significantly greater and the time saved is more

expressive, showing the efficiency of the contributions proposed.

545

References

1. Abramson, D.; Krishnamoorthy, H.; Dang, H., Simulated Annealing Cooling Schedules for
the School Timetabling Problem, Asia-Pacific Journal of Operational Research, vol. 16, pp.
1-22 (1996).

2. Burke, E. K.; Kingston, J.; Jackson, K.; et al., Automated university timetabling: the state
of the art, The Computer Journal, vol. 40(9), pp. 565-571 (1997).

3. Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C., Introduction to Algorithms, Second
Edition. MIT Press and McGraw-Hill (2001).

4. Costa, D., A tabu search algorithm for computing an operational timetable, European

Journal of Operational Research, vol. 76, pp. 98-110 (1994).
5. Garey, M. R.; Johnson, D. S., Computers and intractability: a guide to the theory of NP-

completeness. Freeman and Company, New York (1979).
6. Knuth, D., The Art of Computer Programming, Volume 1: Fundamental Algorithms, Third
Edition. Addison-Wesley, pp. 107-123 (1997).

7. Lewis, R. and Paechter, B., Finding Feasible Timetables Using Group-Based Operators,
IEEE Transactions on Evolutionary Computation, vol. 11(3), pp. 397-413 (2007).

8. Paechter, B.; Rankin, R.; Cumming A.; Fogarty, T., Timetabling the Classes of an Entire
University with an Evolutionary Algorithm, in Parallel Problem Solving from Nature (PPSN)
V (Lecture Notes in Computer Science, vol. 1498), Baeck T.; Eiben A.; Schoenauer M.;
Schwefel, H., Eds. Berlin, Germany: Springer-Verlag, pp. 865-874 (1998).

9. Socha, K. and Samples, M., Ant Algorithms for the University Course Timetabling Prob-
lem with Regard to the State-of-the-Art, in Evolutionary Computation in Combinatorial

Optimization (EVOCop) III (Lecture Notes in Computer Science vol. 2611), Dorigo, M.; Di
Caro, G.; Sampels, M., Eds. Berlin, Germany: Springer-Verlag, pp. 334-345 (2003).

10. Thompson, J. M. and Dowsland, K. A., A Robust Simulated Annealing based Examination
Timetabling System, Computers and Operations Research, vol. 25, pp. 637-648 (1998).

546

Modelling and Solving the Generalised Balanced Academic
Curriculum Problem with Heterogeneous Classes

Andrea Schaerf · Marco Chiarandini · Luca

Di Gaspero

1 Introduction

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses
to teaching periods satisfying prerequisites and balancing students’ load in terms of
credits and number of courses. The BACP planning horizon is divided in academic

years, and each academic year is divided into terms. Each term of a year is a
teaching period in which courses can take place. The problem consists in finding an
assignment of courses to periods that satisfies certain load limits and prerequisites.

The first formulation of BACP has been proposed by Castro and Manzano
[2], and it has been included in CSPLib [5, prob. 30] along with three benchmark
instances. BACP, in the CSPLib formulation, has been studied by Hnich et al [6],
Castro et al [1], Lambert et al [7], and Monette et al [8]. However, BACP is a very
simplified model of the real problem that universities have to solve in practice. In
fact, in its formulation it is implicitly assumed that a student takes all delivered
courses without personal choices; whereas in practice a student can select among
alternatives.

To try to overcome such limitation and to deal with the real cases, the formu-
lation has been extended by Di Gaspero and Schaerf [4]. The problem defined by
Di Gaspero and Schaerf [4], called GBACP (G for Generalised), makes it possible
to specify several curricula, with courses shared among them. A curriculum is a
set of courses representing a possible complete selection of a student. In this new
formulation, courses have to be balanced for each single curriculum. Moreover,
GBACP includes professor’s preferences for teaching in specific terms, which are
often taken into account in real situations.

Andrea Schaerf · Luca Di Gaspero
DIEGM, University of Udine
via delle Scienze 208, I-33100, Udine, Italy
E-mail: {schaerf,l.digaspero}@uniud.it

Marco Chiarandini
IMADA, University of Southern Denmark
Campusvej 55, DK-5000, Odense, Denmark
E-mail: marco@imada.sdu.dk

547

Andrea Schaerf et al.

Instance Periods Courses Curricula Courses Courses Prereq. Pref.
(Years × Terms) per curr. per period

csplib8 8 (4 × 2) 46 1 46 5.75 33 0
csplib10 10 (5 × 2) 42 1 42 4.2 33 0
csplib12 12 (6 × 2) 66 1 66 5.5 65 0
UD1 9 (3 × 3) 307 37 34.62 3.847 1383 270
UD2 6 (2 × 3) 268 20 27.8 4.633 174 158
UD3 9 (3 × 3) 236 31 29.81 3.312 1092 198
UD4 6 (2 × 3) 139 16 25.69 4.281 188 80
UD5 6 (3 × 2) 282 31 34.32 5.72 397 162
UD6 4 (2 × 2) 264 20 27.15 6.787 70 110
UD7 9 (3 × 3) 302 37 33.89 3.766 1550 249
UD8 6 (2 × 3) 208 19 22.58 3.763 149 120
UD9 9 (3 × 3) 303 37 34.08 3.787 1541 255
UD10 6 (2 × 3) 188 15 25.07 4.178 214 110

Table 1 Statistics on the GBACP instances.

Di Gaspero and Schaerf [4] introduce six instances, called UD1 – UD6, obtained
from real data from University of Udine, which are much larger than the CSPLib
ones. They also propose a solution based on local search (LS), that finds easily the
optimal solution for the CSPLib instances and provides a solution for the instances
UD1 – UD6. Such instances turn out to be much harder to solve than the CSPLib
ones, and their optimal cost remains unknown.

The GBACP has been further investigated by Chiarandini et al. [3] who study
two solution approaches, one based on integer programming and one on local
search. This latter is an improved version of the approach by Di Gaspero and
Schaerf [4]. In addition, four new instances, called UD7–UD10 (still from University
of Udine), have been added to the repository. All data on GBACP is available
on the web at http://www.diegm.uniud.it/satt/projects/bacp/ together with a
program that validates the solutions.

Table 1, taken from [3], summarises the main features of the available instances.

2 GBACP with Heterogeneous Classes

In this work, we address another feature of academic curriculum scheduling that
may be of interest to university. In order to gain more flexibility in their planning,
some universities may wish to have heterogeneous classes, that is, having students
attending a course in different years of their curricula while still having the course
taught only once per year. In the GBAC model previously studied we did not
allow this because each course was assigned to a period, which corresponds to a
pair term/year that has to be the same for all students attending the course. Here,
we extend that model to include also the possibility of heterogeneous classes. We
call the extended model, GBACP with heterogeneous classes (GBACP-HC).

There are different ways to approach the new feature that a course can be
attended in different years by different curricula in GBACP-HC. The model we
investigated in this preliminary work consists in pairing a course with the curricula
in which it appears and scheduling each pair separately in the term and the year.
Then, since a course is taught only once during the academic year, the terms for all
pairs with the same course must be imposed to be equal. Instead, the assignment
of the year can be different for each pair. However, it is generally not advisable to
have classes with large discrepancies in the academic age of the students because

548

for pedagogical reasons the level of academic maturity should not differ too much.
Hence, excessive spread of year of the students taking a course must be penalized.

3 Local Search for GBACP-HC

We solved the model for GBACP-HC described in the previous section by local
search methods. Let C be the number of courses, Q the number of curricula, Y the
number of years, T the number of terms, and P = Y × Q the number of periods.
In the LS procedure for GBACP [3], the search space consists of the assignment
A : C → P . The neighbourhood relation is defined by moves that either change the
period p assigned to one course c or swap the periods p1, p2 of two courses c1 and
c2.

For GBACP-HC, we designed the search space to be made of two separate
assignments: courses to terms (A1 : C → T) and pairs course/curriculum to years
(A2 : C×Q→ Y). This new search space leads us to the definition of two different
neighbourhood relations. The first one is originated by the moves that either change
the term of one course or swap the term of two courses. The second one is originated
by the moves that either change the year of one pair course/curriculum or swap
the year of two courses in one given curriculum.

The objective function is defined by the same components used in the GBACP
[3], load balance and professors’ preferences, plus a new component determined
by the sum over the courses of the largest difference between the years in which
students are assigned to take the course.

Experiments of various local search procedure with different combinations of
the above given neighbourhoods on the instances UD1 – UD10 are currently on-
going and the results will be presented in the forthcoming full paper.

Two preliminary observations are worth mentioning. First, it is easy to see that
a solution to GBACP is also a solution to GBACP-HC, in which the same year
is assigned to all curricula. Therefore, one may wonder whether the best solutions
obtained by LS for GBACP are also the best obtainable by LS for GBACP-HC. Un-
less an extremely high penalisation of year discrepancies is defined, this is not the
case. Experimentally, we verified that all best known GBACP solutions provided
as initial solutions for GBACP-HC are improved by the local search procedure
that works on the space of the GBACP-HC solutions.

The second observation is that for solving a GBACP-HC instance it is helpful
to solve first the GBACP model on the same instance and then refine the search on
the GBACP-HC model. Indeed, at present the current best solutions for GBACP-
HC is a two phase local search obtained by first executing the LS procedure for
solving GBACP, and then executing the specific LS for GBACP-HC. This overall
procedure obtains results that are much better than those obtained by executing
directly the LS procedure for GBACP-HC.

References

1. Carlos Castro, Broderick Crawford, and Eric Monfroy. A quantitative approach for the
design of academic curricula. In HCI, volume 4558 of Lecture Notes in Computer Science,
pages 279–288. Springer, 2007.

549

2. Carlos Castro and Sebastian Manzano. Variable and value ordering when solving balanced
academic curriculum problems. In 6th Workshop of the ERCIM WG on Constraints, 2001.

3. Marco Chiarandini, Luca Di Gaspero, Stefano Gualandi, and Andrea Schaerf. The balanced
academic curriculum problem revisited. Available from http://www.optimization-online.
org/DB_HTML/2009/12/2506.html, December 2009. Submitted for publication to a journal.

4. Luca Di Gaspero and Andrea Schaerf. Hybrid local search techniques for the generalized
balanced academic curriculum problem. In Maria J. Blesa, Christian Blum, Carlos Cotta,
Antonio J. Fernández, José E. Gallardo, Andrea Roli, and Michael Sampels, editors, Hy-
brid Metaheuristics, volume 5296 of Lecture Notes in Computer Science, pages 146–157.
Springer, 2008.

5. I. P. Gent and T. Walsh. CSPLib: a benchmark library for constraints. Technical report,
Technical report APES-09-1999, 1999. Available from http://csplib.cs.strath.ac.uk/. A
shorter version appears in the Proceedings of the 5th International Conference on Principles
and Practices of Constraint Programming (CP-99), pp. 480-481, Springer-Verlag, LNCS
1713, 1999.

6. B. Hnich, Z. Kızıltan, and T. Walsh. Modelling a balanced academic curriculum problem.
In CP-AI-OR 2002, pages 121–131, 2002.

7. Tony Lambert, Carlos Castro, Eric Monfroy, and Frédéric Saubion. Solving the balanced
academic curriculum problem with an hybridization of genetic algorithm and constraint
propagation. In Artificial Intelligence and Soft Computing - ICAISC 2006, volume 4029
of Lecture Notes in Computer Science, pages 410–419. Springer, 2006.

8. J.N. Monette, P. Schaus, S. Zampelli, Y. Deville, and P. Dupont. A cp approach to the
balanced academic curriculum problem. In B. Benhamou, B.Y. Choueiry, and B. Hnich,
editors, Symcon’07, The Seventh International Workshop on Symmetry and Constraint
Satisfaction Problems, 23/09/2007 2007.

550

Optimizing Railway Schedules for the Simplon corridor∗

Ralf Borndörfer† Thomas Graffagnino‡ Thomas Schlechte† Elmar Swarat†

Today the railway timetabling process and the slot allocation of trains is one of the most
challenging problems to solve by a railway infrastructure company. Especially due to the
deregulation of the transport market in the recent years several suppliers of traffic have
entered the market. This leads to an increase of slot requests and then it is natural that
conflicts occur among them. Our goal is to resolve them by producing a feasible and conflict
free timetable where a maximum of utilization is attained.

From a mathematical point of view the optimization problem can be stated as a multi-
commodity flow problem through a extremely large network in space and time with certain
additional constraints. The problem is well known in the literature, but only recently practical
problem sizes are tractable due to development of improved models and algorithms. Nev-
ertheless a decomposition of the problem can be observed. On the one hand for networks,
or at least for long railway corridors, only simplified macroscopic models with a simplified
routing through the railway infrastructure are considered, as in [7, 4, 10, 2, 5, 3, 6, 12, 1].
On the other hand, routing through complex stations can be considered on a more detailed,
but of course only on a local level, see [15, 8, 14, 11]. The only recent reference, to the best
knowledge of the authors, describing the interaction of both approaches is [9] by using a
top-down approach.

In this paper an bottom-up approach of automatic simplification to complex microscopic
railway infrastructure data is presented and applied for the Simplon corridor. This aggrega-
tion technique condenses a microscopic representation of the railway system to its relevant
parameters from a planning and optimization point of view. We prove error estimations
for the transformation and evaluate the re-transformed solution schedules in the microscopic
simulation tool OpenTrack, [13]. We present computational results to different optimization
scenarios for the Simplon corridor using the integer programming based solver TS-OPT, [1].
Furthermore, the dimension of the Simplon corridor allows for extensive optimization exper-
iments with several aggregation levels in space and time. Finally, we present a sensitivity
analysis for the corridor capacity w.r.t. different discretizations.

References

[1] Ralf Borndörfer, Berkan Erol, and Thomas Schlechte. Optimization of macroscopic train
schedules via TS-OPT. In 3rd International Seminar on Railway Operations Modelling
and Analysis - Engineering and Optimisation Approaches, 2009.

∗This work was funded by the Federal Ministry of Economics and Technology (BMWi), project
Trassenbörse, grant 19M7015B.
†Zuse Institute Berlin (ZIB), Takustr. 7, 14195 Berlin-Dahlem, Germany, Email {borndoerfer,

schlechte, swarat}@zib.de
‡SBB AG Bern, Infrastruktur/Trassenmanagement, Switzerland, thomas.graffagnino@sbb.ch

551

[2] Ralf Borndörfer, Martin Grötschel, Sascha Lukac, Kay Mitusch, Thomas Schlechte,
Sören Schultz, and Andreas Tanner. An auctioning approach to railway slot allocation.
Competition and Regulation in Network Industries, 1(2):163–196, 2006.

[3] Ralf Borndörfer and Thomas Schlechte. Models for railway track allocation. In Christian
Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS 2007 - 7th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems,
Dagstuhl, Germany, 2007. Internationales Begegnungs- und Forschungszentrum für In-
formatik (IBFI), Schloss Dagstuhl, Germany.

[4] U. Brännlund, P. O. Lindberg, A. Nou, and J.-E. Nilsson. Railway timetabling using
langangian relaxation. Transportation Science, 32(4):358–369, 1998.

[5] Valentina Cacchiani. Models and Algorithms for Combinatorial Optimization Problems
arising in Railway Applications. PhD thesis, DEIS, Bologna, 2007.

[6] Valentina Cacchiani, Alberto Caprara, and Paolo Toth. A column generation approach
to train timetabling on a corridor. 4OR, 6(2):125–142, 2008.

[7] X. Cai and C. J. Goh. A fast heuristic for the train scheduling problem. Comput. Oper.
Res., 21(5):499–510, 1994.

[8] Gabrio Caimi, Dan Burkolter, and Thomas Herrmann. Finding delay-tolerant train
routings through stations. In Hein A. Fleuren, Dick den Hertog, and Peter M. Kort,
editors, OR, pages 136–143, 2004.

[9] Gabrio Caimi, Dan Burkolter, Thomas Herrmann, Fabian Chudak, and Marco Lau-
manns. Design of a railway scheduling model for dense services. Networks and Spatial
Economics, 9(1):25–46, March 2009.

[10] Alberto Caprara, Matteo Fischetti, and Paolo Toth. Modeling and solving the train
timetabling problem. Operations Research, 50(5):851–861, 2002.

[11] Alberto Caprara, Laura Galli, and Paolo Toth. Solution of the train platforming problem.
In Christian Liebchen, Ravindra K. Ahuja, and Juan A. Mesa, editors, ATMOS, volume
07001 of Dagstuhl Seminar Proceedings. Internationales Begegnungs- und Forschungszen-
trum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2007.

[12] Frank Fischer, Christoph Helmberg, Jürgen Janßen, and Boris Krostitz. Towards solv-
ing very large scale train timetabling problems by lagrangian relaxation. In Matteo
Fischetti and Peter Widmayer, editors, ATMOS 2008 - 8th Workshop on Algorithmic
Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl, Ger-
many, 2008. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany.

[13] Daniel Huerlimann. Opentrack - railway simulation.

[14] R. Lusby, J. Larsen, D. Ryan, and M. Ehrgott. Routing trains through railway junctions:
A new set packing approach. Technical report, Informatics and Mathematical Modelling,
Technical University of Denmark, DTU, Richard Petersens Plads, Building 321, DK-2800
Kgs. Lyngby, 2006.

[15] Peter J. Zwaneveld, Leo G. Kroon, H. Edwin Romeijn, Marc Salomon, Stephane
Dauzere-Peres, Stan P. M. Van Hoesel, and Harrie W. Ambergen. Routing Trains
Through Railway Stations: Model Formulation and Algorithms. Transportation Sci-
ence, 30(3):181–194, 1996.

552

A hyper-heuristic approach for assigning patients to
hospital rooms

Wim Vancroonenburg1 · Mustafa Mısır1 ·
Burak Bilgin1 · Peter Demeester1,2 · Greet

Vanden Berghe1,2

One of the tasks hospital admission administrators are faced with is the problem

of optimally exploiting the infrastructure. Patients need to be assigned to a room that

is suitably equipped and staffed for treating the patients’ clinical condition, taking

into account policies imposed by the hospital organisation. Given that the number of

(especially elderly) patients is growing, it is becoming increasingly difficult for admin-

istrators to handle this task manually in an efficient manner.

Demeester et al. (2010) introduced the Patient Admission Scheduling problem in

order to support this decision process. The problem can be described as follows. For

a given planning period, patients need to be assigned to a hospital room for each

night of their stay. Patients are characterised by their age, gender and pathology, and

should be treated in rooms and departments that are in correspondence with these

characteristics. In addition to that, it is assumed that patients are already attributed

an admission date, and that an expected average length of stay has been determined

for their diagnosis. Patients will stay in the hospital for this period without returning

home. This period is fixed and cannot be changed.

Treatment of the patient’s pathology may require the presence of certain equipment

in the assigned room. For example, certain patients might require a ventilation machine

to be present in their room. As such, their stay is also characterised by a set of needed

and preferred room properties. Patients may also express some preferences concerning

the room they wish to stay in. Finally, patients do not necessarily need to stay in the

same room for their entire stay. It is possible that it is beneficial to move a patient to

another room at some point during their stay. Transfers of patients are thus allowed,

but should be avoided as they cause patient discomfort.

The hospital is divided into several departments, each of which are specialised

in treating certain kinds of pathologies and which may or may not have some age

1

KaHo Sint-Lieven, Information Technology, Gebroeders Desmetstraat 1, 9000 Gent, Belgium
E-mail: {Wim.Vancroonenburg, Mustafa.Misir, Burak.Bilgin, Peter.Demeester,
Greet.VandenBerghe}@kahosl.be

2

Katholieke Universiteit Leuven Campus Kortrijk, Computer Science and Information
Technology, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium

553

restriction (for example, paediatrics may be restricted to patients younger than 16).

Each department has a set of rooms, which are equipped variably and have a certain

bed capacity. This capacity may not be exceeded. Furthermore, rooms can be restricted

to patients of a certain gender. A room can be restricted to male or female patients,

or it can be so that patients of a different gender may not be assigned to the same

room, but it does not matter whether either male or female patients stay in the room.

In other words, the gender of the room in this case is determined by the gender of the

first patient.

In practice, most of these constraints are considered soft. For the patient admission

scheduling problem, only the room capacity constraint and the fixed period of stay are

modelled as hard constraints. All other constraints are modelled as soft constraints.

The goal is to find a complete assignment of patients to rooms that minimises violations

of these (weighted) soft constraints.

Demeester et al. (2010) tackled the patient admission scheduling problem using

a hybrid tabu search method. In this study, we apply a hyper-heuristic method to

select perturbative low-level heuristics for solving this optimisation problem. Hyper-

heuristics have been progressively used for solving a wide range of combinatorial op-

timisation problems. The reason for applying them to different problems is related

to their generic nature. The generality is provided by isolating hyper-heuristics from

any problem dependent structure: a hyper-heuristic does not know anything about the

problem to be solved. It manages a set of lower level heuristics and tries to apply

them to the problem in an appropriate fashion. While solving a problem instance, a

hyper-heuristic determines which heuristics should be called in which order and when.

In effect, the hyper-heuristic method that we consider can be described as a “heuristic

to choose heuristics” (Burke et al. 2003a).

The characteristics of the low-level heuristics may affect the performance of a hyper-

heuristic. Their improvement capabilities and their speed concerning moving from one

solution to another solution are some important elements regarding the quality of a

heuristic set. Taking these elements into account during a heuristic selection process

may help to give more meaningful decisions. In Chakhlevitch and Cowling (2005) a

heuristic set with many heuristics was reduced into a small heuristic set for determining

a better heuristic subset. In Burke et al. (2003b) and Kendall and Hussin (2005a,b)

simple tabu strategies were proposed to make some heuristics tabu based on their

performances. In Han and Kendall (2003) a similar approach was utilised to prevent

the heuristics that do not affect the value of the objective function being called in a

genetic algorithm based hyper-heuristic.

In this study, we apply a heuristic exclusion procedure based on these elements for

improving the overall quality of the heuristic set. We divide the search into phases of a

certain number of iterations, which is a parameter to our algorithm. During each phase

we measure the performance of all heuristics. The performance metric used, is based

on the relative improvement per execution time of each heuristic. At the end of a phase

the better performing heuristics are retained, while the lesser performing heuristics are

made tabu for a certain number of phases (which is also a parameter to the algorithm).

This way we try to obtain an elite subset of heuristics, while still allowing for variation

of this subset as the search progresses. It is important that this subset can vary over

time. It is quite possible that a computationally expensive heuristic is not interesting at

the beginning of the search (where simpler, less expensive heuristics are also effective),

but necessary at the end of the search where it is more difficult to find solutions that

improve on the current solution.

554

For the patient admission scheduling problem we use the heuristics described by

Demeester et al. (2010) and Ceschia and Schaerf (2009), as well as some variations on

these heuristics. We will test our method on benchmarks available from the patient

admission scheduling website (Demeester et al. 2008) and we will compare our results

with those available from the literature.

References

E.K. Burke, E. Hart, G. Kendall, J. Newall, P. Ross, and S. Schulenburg. Handbook of Meta-
Heuristics, chapter Hyper-Heuristics: An Emerging Direction in Modern Search Technol-
ogy, pages 457–474. Kluwer Academic Publishers, 2003a.

E.K. Burke, G. Kendall, and E. Soubeiga. A tabu-search hyper-heuristic for timetabling and
rostering. Journal of Heuristics, 9(3):451–470, 2003b.

S. Ceschia and A. Schaerf. Multi-neighborhood local search for the patient admission problem.
In Hybrid Metaheuristics Ceschia and Schaerf (2009), pages 156–170.

K. Chakhlevitch and P. Cowling. Choosing the fittest subset of low level heuristics in a
hyperheuristic framework. LNCS, 3448:23–33, 2005.

P. Demeester, B. Bilgin, and G. Vanden Berghe. Patient admission scheduling benchmark
instances. http://allserv.kahosl.be/∼peter/pas/index.html, 2008.

P. Demeester, W. Souffriau, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search
algorithm for automatically assigning patients to beds. Artificial Intelligence in Medicine,
48 (1):61–70, 2010.

L. Han and G. Kendall. An investigation of a tabu assisted hyper-heuristic genetic algorithm.
In Proceedings of Congress on Evolutionary Computation (CEC’03), volume 3, pages
2230–2237, 2003.

G. Kendall and N.M. Hussin. An investigation of a tabu-search-based hyper-heuristic for
examination timetabling. In Multidisciplinary scheduling: theory and applications: 1st In-
ternational Conference, MISTA’03: Nottingham, UK, 13-15 August 2003: selected papers,
page 309. Springer Verlag, 2005a.

G. Kendall and N.M. Hussin. A tabu search hyper-heuristic approach to the examination
timetabling problem at the mara university of technology. In Proceedings of the 5th Prac-
tice and Theory of Automated Timetabling (PATAT’04), volume 3616 of LNCS, pages
270–293. Springer, 2005b.

555

The Design and Implementation of an Interactive
Course-Timetabling System

Anthony Wehrer and Jay Yellen

 Department of Mathematics and Computer Science

Rollins College
Winter Park

Florida, 32789 USA
awehrer@rollins.edu jyellen@rollins.edu

We describe the design and implementation of a multi-objective course-timetabling
system for the Science Division at Rollins College. In the traditional vertex-coloring
approach to timetabling, all conflicts are regarded as equally undesirable, but when all
such conflicts are considered, including those that might involve only one or two
students, a conflict-free timetable is rarely attainable. A more realizable objective is to
minimize total conflict severity, where conflicts are assigned different levels of
severity. This is a more natural model for an actual timetabling problem, where the
undesirability of assigning various pairs of courses to overlapping timeslots varies
significantly. Our second objective is to create timetables that result in relatively
compact schedules for the professors and students.

We report on our progress toward building a robust decision-support system for
course timetabling whose strategies are based on a weighted-graph model that the
second author has been developing since the early 1990’s [Kiaer and Yellen (1992)].
Starting from the exam-timetabling system developed in [Carrington, Pham, et al
(2007)] and [Burke, Pham, et al (2008)], there were several major changes and
complications we had to confront in adapting the exam-timetabling system and its
weighted-graph model to our course-timetabling system.

The primary objective (hard constraint) for the Toronto timetabling benchmark
problems on which the exam-timetabling system was applied is to produce conflict-
free schedules, and the secondary objective (soft constraint) is to minimize the
number of students taking back-to-back exams, or, more generally, taking exams in
close proximity [Carter, Laporte, et al (1996)]. Those objectives are in sharp contrast
to those described above for our course-timetabling system. Moreover, for the
Toronto problems, a conflict occurs only when one or more students are taking two
exams at the same time. For our Rollins course-timetabling problem, two courses
offered at the same time can conflict for several reasons of varying severity. The
conflict that occurs when two courses are taught by the same professor or require the
same room or equipment is clearly more severe than one that occurs when a few
students want to take both courses. Moreover, there are several gradations of conflict
severity between these two extremes.

556

Our weighted-graph model has several attributes that take into account gradations in
conflict severity and desirability for compact schedules, as well as other
complications such as room and timeslot suitability/availability and shared resources.
The vertex- and color-selection heuristics that drive our construction are derived from
the additional information that our model carries.

For the Toronto problems, the n timeslots are represented by the integers 1 through n,
whereas, at Rollins, as with most actual course-timetabling problems, the timeslots
usually consist of multiple days of the week, e.g., MWF 9-9:50, TTh 9:30-10:45, etc.
This makes conflict and proximity considerations more complicated. In particular,
different timeslots (colors) can still overlap, and the proximity between two timeslots
is no longer a simple function based on the difference between the corresponding
integers. Also, when a course is assigned a timeslot, there must be a suitable and
available room for that timeslot. Room assignments are not considered in the Toronto
problems.

Our system includes a graphical user interface (GUI) that enables the user to
participate in the input, construction, and modification of a timetable. In the input
phase, course incompatibility, instructor and student preferences, and desire for
compact schedules all require subjective judgments. The GUI allows the user to
quantify and convert this information to the weighted-graph model. In the
construction and modification phase, the GUI enables the user to directly assign or
reassign courses to timeslots while guided by heuristics.

Our recent work also includes the design and testing of continuous analogues of
certain heuristics that were used in [Carrington, Pham, et al (2007)] and new
combinations of other heuristics previously used, and we report on those results. In
addition, our construction now includes a backtracking component driven by many of
those same heuristics. For example, if, during the initial construction, a vertex is
selected for which there is no satisfactory color assignment (according to some pre-
defined threshold), then one or more vertices are selected for uncoloring to free up a
satisfactory color for the given vertex. Having implemented these changes, we
compare the timetables our system generates to the actual Rollins timetable that was
manually created.

Finally, we discuss how our current system lends itself to incorporating a learning
mechanism and feedback loop that uses characteristics of the solution generated to
adjust various weighted-graph parameters. This could lead naturally to a hyper-
heuristics approach (see, e.g., [Qu and Burke (2009)]).

References
[Burke, McCollum, et al (2008)] Burke, E.K., McCollum, B., McMullan, P., and Yellen, J.,

Heuristic Strategies to Modify Existing Timetables, presented at PATAT08, Montreal,
Canada, 2008.

[Burke, Pham, et al (2008)] Burke, E.K., Pham, N., Qu, R., and Yellen, J., Linear
Combinations of Heuristics for Examination Timetabling, submitted to Annals of
Operations Research, November 2008.

557

[Carrington, Burke, et al (2007)] J.R. Carrington, N. Pham, R. Qu, J. Yellen, An Enhanced
Weighted Graph Model for Examination/Course Timetabling, Proceedings of 26th
Workshop of the UK Planning and Scheduling, 2007, 9-15.

[Carter, Laporte, et al (1996)] Carter, M. W., Laporte, G., and Lee, S., Examination
Timetabling: Algorithmic Strategies and Applications, Journal of the Operations Research
Society 47 (1996), 373-383.

[Kiaer and Yellen (1992)] Kiaer, L., and Yellen, J., Weighted Graphs and University
Timetabling, Computers and Operations Research Vol. 19, No. 1 (1992), 59-67.

[Qu, Burke, et al (2006)] R. Qu, E.K. Burke, B. McCollum, L.T.G. Merlot, and S.Y. Lee. A
Survey of Search Methodologies and Automated Approaches for Examination Timetabling,
Technical Report NOTTCS-TR-2006-4, School of Computer Science, University of
Nottingham, 2006.

[Qu and Burke (2009)] Qu, R. and E. K. Burke, Hybridisations within a Graph Based Hyper-
heuristic Framework for University Timetabling Problems, Journal of Operational Research
Society 60, (2009), 1273-1285.

558

The Erlangen Advanced Time Tabling System (EATTS)
Version 5

Peter Wilke

Abstract The latest version of the Erlangen Advanced Time Tabling System

EATTS, a development and production environment to generate optimized timeta-

bles, is introduced. EATTS allows to describe timetabling problem with its associated

resources, constraints, events and solutions using XML files for information interchange.

A broad bandwidth of algorithms is available to generate solutions using single-core,

multi-core or cluster of networked computers.

Keywords Implementation · Distributed Time Tabling System · Time Tabling

Problem

1 Introduction

The Erlangen Advanced Time Tabling System EATTS is a development and

production environment to generate optimized timetables. Timetabling problems are

quite common and come in different versions, among them rosters, schedules and school

timetables. They have in common that given resources have to be used as efficient as

possible and that this requires planning with respect to the given constraints to obtain

a decent plan.

The example shown here is a school timetabling problem. EATTS is designed to

be capable to solve all types of timetabling problems, so the example shown here is

selected because it is quite common and requires no special explanation. Here we focus

on the overall structure of the systems. Its ability to describe timetabling problems is

describes in detail in a paper focusing on the XML-based specification [Ost10].

Peter Wilke
Universitaet Erlangen-Nuernberg, Informatik 5, Martensstrasse 3, 91058 Erlangen, Germany
Tel.: +49 (9131) 85-27998
E-mail: Peter.Wilke@Informatik.Uni-Erlangen.DE

559

2 Resources

When looking at a school timetable the events to be planned are lessons, to which the

resources like teachers, classes ans rooms have to be assigned. All resources are typed.

Each type has as many attributes created by the user as required. Planning a timetable

usually begins with compiling the resources, either by reading in a file or typing in them

manually. The screenshot fig. 1 shows the input dialogue to enter the attribute values

for a room. All resources of type ”Room” have attributes name, capacity and groups.

Groups indicated what type of subject can be taught in this room and to which pools

the rooms belongs.

Fig. 1 The EATTS dialog to edit resources

3 Constraints

The specification of constraints is usually more complex than describing resources or

events. On one hand a precise specification is required and on the other hand the current

setting should be presented clearly to find gaps and/or inconsistencies, which can’t be

avoided automatically by EATTS but its user. Constraints come in different flavours,

therefore a flexible way to specify them is necessary. EATTS allows to refer to resources,

their object classes and all attributes. Depending on the type of the attributes, among

them are integer, double and string, arithmetic and logical operators can be used

to specify the constraint. In addition the parameters of the cost function are set, to

compute the correct penalty point if the constraint is violated. The screenshot fig. 2

shows a constraint assigned to an event. Here the capacity of the class room ”Room

Size” must be greater than or equal (geq) to the number of students ”Class Size”. The

cost function is specified as 50 ∗ (1 ∗ x0 + 2). X denotes the number of violations of

this constraint and the constants a chosen by the user according to the problem, e.g.

severity of the constraint violation.

560

4 Modes of Operation

EATTS could be run in normal mode which interprets constraints the useual way.

A unique property of EATTS is the option to specify a constraint not only as ”has

to be fulfilled (hard)” or ”should be fulfilled (soft)” but also as ”can be violated in

exceptional case (soft hard)”. This allows to violate constraints when it is acceptable,

e.g. a room isn’t available due to a broken water pipe, a teacher isn’t available due

to a traffic jam. In these cases a timetable should be created which is similar to the

one currently in effect but violates some constraints to minimize changes. The mode

is called the emergency mode as this is a typical approach in these cases, but it is

not restricted to theses cases, e.g. finding out what effect a change in resources has on

the resulting timetable: is it critical or is an investment in this resource required or

efficient.

Fig. 2 The EATTS dialog to edit constraints

5 Events

The planning process is all about events. The timetable - as a result of the planning

process - determines which resource is assigned to which event. For every event it

can be declared how many resources of a certain resource type have to be assigned

as minimal or maximal value so that the resulting timetable is a valid solution. Two

additional subsets of resources of this type can be defined: one which is assigned fixed

to this event and/or one subset of resources which could be assigned, at least one of

them must exist.

561

6 Algorithms

Core of the planning are the algorithms. Depending on the nature of the given con-

straints and desired properties of the timetable the user can choose among a large

number of available algorithms, among them Genetic Algorithms - Evolutionary Al-

gorithms - Branch-and-Bound - Tabu Search - Simulated Annealing - Graph Color-

ing - Soft Computing - Swarm Intelligence - Great Deluge - Ant Colony - Jump Up

Walk Down. The beginner might choose one of the pre-configured algorithms while

the experienced user might prefer to set up his own parameter set or implement his

own algorithms. All algorithms can be arranged in experiments which allows arbitrary

computational sequences. The screenshot fig. 3 shows the parallel execution ”Parallel-

Algorithm” of two algorithms, namely ”Simulated Annealing” and ”Tabu Search”. The

results are compared and the best result is returned ”BestResultMerger”. All parame-

ters of an algorithms can be displayed and edited. The configuration of an experiment

can be saved and be used as template for a new experiment or just executed one more

time.

EATTS is written in Java. As all algorithms use the same interface to the frame-

work it is possible to excecute implementations of algorithms provided by the user. A

tool to generate a template for the source code is under development, the byte code

will be accessed via a class loader.

Fig. 3 The EATTS dialog to create experiments and to control algorithms

7 Running Experiments

The algorithms can be executed on a dedicated server or can be distributed over a

TCP/IP network on additional computers. The screenshot shows the dialogue where

the user can select the experiments and start their execution. The browser contacts

the server regularly and updates the status information, including the costs of the best

562

plan found so far and an estimated remaining computation time. At the end of the

computation results are stored and the data required for the views are generated. Now

the user decided whether the results are satisfactory or additional computations are

required.

Fig. 4 The EATTS dialog to control the parallel computations

8 Results

Timetables are the output of the planning algorithms and can be stored in different file

formats and views. The screenshot fig. 5 shows the view of a student on the generated

plan, e.g. he sees his personal timetable consisting of the lessons he has to attend to.

Other views can be created instantly, for a teacher, e.g. a headmaster or a caretaker.

All users access the EATTS through a browser providing an interface according to the

privileges of the user.

A common view indicates which constraints are currently not satisfied naming the

events and resources. Based on this information the administrator can decide if he

would like to edit the resources, events or constraints or use a different algorithm. The

screenshot shows timeslot clashes (Monday, 9:45, and Tuesday, 9:45) and therefore the

algorithm should be given more time to find a solution or another algorithm should be

given an shot.

9 Implementation

The software is implemented in Java and available for numerous platforms, among

them Windows and Linux operating systems. To run EATTS the following free-ware

software products are required:

563

Fig. 5

– Browser to display the user interface, JavaScript must be enabled

– Java Runtime Environment (JRE), v5.0 or above

– computers connected via TCP/IP, if additional computing power is required (op-

tional)

The EATTS Server is a software server, i.e. a PC or compute server can be used

to host the EATTS Server.

Fig. 6 The components of the Erlangen Advanced Time Tabling System

564

10 Conclusion

the Erlangen Advanced Time Tabling System is a framework to design and de-

velop solutions for all kinds of timetabling problems. It can be used to experiment with

algorithms and used as production system for real world systems.

If you would like to test the Erlangen Advanced Time Tabling System please

feel free to contact the author for details.

References

[Ost10] Peter Osterler, Johannes; Wilke. The erlangen advanced timetabling system (eatts)
unified xml file format for the specification of timetabling systems. page 18p, 2010.

Acknowledgements We would like to thank all our colleagues at EATTS for their support
and special thanks to: Norbert Oster, Stefan Büttcher, Dr. Matthias Gröbner, Dimo Korsch,
Sabine Helwig, Hichem Essafi, Marlene Gagesch, Monic Klöden, Georg Götz, Andreas Konrad,
Tarek Gasmi, Sabeur Sarai, Kerim Merdenoglu, Helmut Killer, Eugen Kremer and Johannes
Ostler.

565

Timetabling the major English cricket fixtures

Mike Wright

University of Lancaster
m.wright@lancaster.ac.uk

Every year the England and Wales Cricket Board (ECB) has to timetable all

the major cricket fixtures in England (plus a few in Wales, Scotland, Ireland and

the Netherlands), apart from those international matches which are timetabled by

the International Cricket Council. This is a major undertaking which currently

involves 21 clubs (mostly representing counties) playing about 420 matches in

three overlapping competitions, as well as another 70 or so matches involving

women’s teams, touring teams, ‘A’ teams, Under 19 teams and university teams.

Some of these matches will require four days, others only a single day or just an

evening.

Over the years the structure of the competitions has changed substantially, with

no one year being exactly like the last, with the speed of change increasing in

recent years. This is likely to continue as the competitive environment changes,

as marketers and broadcasters continue to try to maximise their commercial

returns and as the cricket authorities continue to strive to produce competitions

and formats which best serve the interest of the sport.

The ECB has several stakeholders to consider when timetabling the fixtures,

including clubs, spectators, administrators, sponsors, broadcasters and the

England national team. It is impossible to give all of these exactly what they

want, so the problem inevitably involves compromise, with the aim of giving a

good enough outcome for all stakeholders.

For the past 19 years this has been achieved using a semi-automated computer

system which has always been successful in producing timetables that are at least

satisfactory for everyone. Recently the use of the system has been extended to

undertake “what if” exercises for different structures that the ECB are

considering. Without such help it could be dangerous for the ECB to decide upon

significant changes, since there would always be the danger of unexpected

negative consequences, or even of the problem becoming infeasible. All runs are

566

mailto:m.wright@lancaster�

made by myself, the system creator, rather than by the ECB themselves, as the

levels of complexity are so high.

The first stage of the process is to ask the stakeholders what their constraints

and preferences are, following which some quick preliminary analysis is

undertaken leading to conversations between me and the ECB. For example, in

2010 there was one particular day on which more than half of the clubs in a

division wanted a home match, which is clearly impossible, so discussions had to

be undertaken before deciding who was going to be disappointed. In addition,

there are usually points of clarification to be discussed concerning the precise

meaning of the clubs’ requests and decisions to be made as to their relative

importance. While the main focus is on the 420 matches in the main three

competitions, the requirements of the other 70 matches need also to be considered.

The timetabling problem for the matches in the three main competitions is set

up as an optimisation model with large numbers of objectives and constraints,

derived from a wide variety of stakeholder requirements and preferences. The

solution procedure has changed slightly over the years, but has always been some

kind of metaheuristic approach. The current method involves a variety of

simulated annealing which uses a modified acceptance criterion depending on the

effect not only of the overall change in cost but also the change in the individual

subcosts, since this is a multi-objective problem.

However, before the whole timetable can be produced, the first stage is to

produce matches for TV that satisfy the broadcasters, since they are the most

powerful people involved. When doing this it is important to bear in mind the

effect of the televised matches on the overall pattern of remaining matches; this

effect can be quite substantial, especially for the home/away balance of the 4-day

competition. Thus preliminary analysis is essential before selecting possible TV

matches, including a series of “what if” runs of the model, so as to ensure that a

good schedule can still be produced for the other stakeholders.

When the TV matches have been agreed, the rest of the timetable is addressed.

However, this also cannot be a completely automatic process; interaction between

user and computer is necessary for a really good solution to be produced. This is

mainly because the weightings for the objectives have to be determined to some

extent by trial and error; since the nature of the problem changes from year to

year, it is never absolutely obvious which will be the hardest criteria to satisfy.

567

The proposed timetable is given to the ECB, who usually make some requests

for minor changes, and further runs are made to try to accommodate these if

possible. Then the timetable is passed on to the clubs, and again there will be a

few requests for changes, some of which may be reasonable and others not, and of

the reasonable ones some will be achievable but others not. Eventually, the

modified timetable is accepted and published, and while one or two stakeholders

may end up not entirely satisfied with what they have been given, the overall

satisfaction levels are high.

568

SYSTEM DEMONSTRATION

Timetabling a University Dental School

Hadrien Cambazard1, Barry O’Sullivan1, John Sisk1,
Robert McConnell2, and Christine McCreary2

1Cork Constraint Computation Centre, University College Cork, Ireland
2Dental Surgery School, University College Cork, Ireland

{h.cambazard|b.osullivan|j.sisk}@4c.ucc.ie,
{r.mcconnell|c.mccreary}@ucc.ie

Abstract. We present a constraint model for a real-world University Dental School
Timetabling problem, similar to post-enrolment timetabling. This model is used
in a timetabling system we have developed for this application.

1 Introduction

We present a timetabling problem that arises in the Dental School of University Col-
lege Cork (UCC). Due to an increasing number of students the school has begun con-
sidering automated approaches to generating the timetable for their five year academic
programme. A diverse variety of university timetabling problems exist, but three main
categories have been identified [3, 2, 5]: school, examination and course timetabling.
The Dental School at UCC is dealing with a problem, which is similar to the post-
enrolment university course timetabling problem [4] that occurs in a context whereby
a set of courses that have been chosen by students must be scheduled into timeslots.
University timetabling problems are usually solved using local search methods coupled
with a wide range of meta-heuristics. Complete methods such as constraint program-
ming (CP) are not yet scalable to real world instances. However, the problem tackled
here is relatively small and we took this opportunity to develop a CP approach reusing
many of the simple modeling ideas from [1]. A key feature of the resulting system is
that it can prove that the standard set of constraints used by the Dental School admits no
feasible timetables in the context of increasing student numbers. Therefore, the school
must perform simulations to study potential remedies for this situation, e.g. by increas-
ing capacity or by opening new timeslots. The application has been tested at UCC and
has been embedded within an online timetabling system.

2 Problem Definition

The weekly timetable to be designed comprises two or three timeslots per day (morn-
ing, midday and afternoon) for five days which gives ten to fifteen timeslots. A num-
ber of events are to be timetabled. The events taking place are each characterized by
a group of students and a subject. Several subjects exist, e.g “Dental Surgery”, “Or-
tho”, “OTL/Tutorial”, “OTL/Pros”, “Paedo”, “Restorative”, and ”Study” (see Figure 1).

569

Fig. 1. An example of a solution to the UCC Dental School timetabling problem.

Each has a specific maximum capacity, limiting the number of students who can attend
the class at the same time. In other words, the same subject is always taught in the
same room because each subject needs specific equipment. In a pre-processing step
performed by the school, the students of each year are allocated to groups, which sim-
ply correspond to sets of students who are following the same set of subjects. A student
group is defined by its curriculum, i.e., a multiset of subjects, and a size, i.e. the number
of students in the group. Notice that the same subject can occur several times in a weekly
period. For example, if group G1 comprises ten students who have to attend one “Or-
tho” session twice during the week, one “Restorative” session and one “Paedo” session,
size(G1) = 10 and the curriculum, c(G1), is{Ortho,Ortho,Restorative, Paedo}.

The events allocated in the timetable are basically defined by the curriculum of the
groups. Event e = (i, j) is associated with group i and the jth element of the curriculum
of i. For example event e = (1, 2) represents Group 1 attending “Ortho”. The goal is to
allocate all events to a timeslot of the timetable knowing that:

1. a group can only attend one subject in a given timeslot;
2. a group must attend all the subjects of its curriculum;
3. the number of students assigned to a given subject and timeslot must be smaller

than the capacity of the subject;
4. some pairs of groups cannot follow the same subject at the same time;
5. some timeslots are initially forbidden for some groups and subjects.

Figure 1 presents an example of a solution to the problem. The groups are labelled
X.Y (s) in this example where X denotes the year of the group, Y its index and s is the
size of the group. With each subject, we also indicate in square brackets the amount of
space used compared to the space available. Restorative the monday morning is filled
with 28 students out of the 32 seats available.

3 The Constraint Model

We use the following notation:

570

– S: the set of subjects. For a subject s ∈ S, capa(s) is its capacity.
– G: the set of groups. For a group g ∈ G, we denote by c(g) the curriculum of g and

size(g) the number of students in g.
– E: the set of events. For a given event e ∈ E, its group and index of the subject

of the corresponding group’s curriculum will be written grp(e) and sub(e). For
e = (1, 2), sub(e) = 2 and grp(e) = 1.

– I: the set of pairs of events with the same subject that are incompatible because the
corresponding pair of groups cannot attend the subject at the same time.

– F : the set of events, timeslots pairs expressing the initial forbidden timeslots for
some specific group and subject.

– nbt : the number of timeslots.

The timetabling is done using a Java open source constraint programming (CP)
system, Choco1. The CP model is based on a variable xij per event expressing the
timeslot in which the event is scheduled: ∀i ≤ |G|, j ≤ |c(i)| , xij ∈ {0, . . . , nbt− 1}.
The constraints are the following:

C1 : ∀ i < |G| ALLDIFFERENT(xi1, . . . , xi,|c(i)|)
C2 : ∀ t < nbt, s < |S|

P
e=(i,j)∈E with subject s(xij = t)× size(i) ≤ capa(s)

C3 : ∀(e1, e2) ∈ I xgrp(e1),sub(e1) 6= xgrp(e2),sub(e2)

C4 : ∀(e1, s) ∈ F xgrp(e1),sub(e1) 6= s

Constraint C1 states that a group cannot be in two rooms at the same time whereas
C2 enforces the total number of students attending a given subject to be lower than
the capacity of corresponding subject/room; recall that subjects are taught in uniquely
equipped rooms. C3 states the incompatible groups and C4, the forbidden timeslots.

The problem can be seen as list coloring, where events can be mapped to nodes
and timeslots to colors, combined with knapsack constraints for each color limiting
the amount of color that can be used in the coloring. One subject defines a 0-1 multi-
knapsack problem, i.e a bin-packing. The size of this timetabling problem is relatively
small, and this constraint model turns out to be efficient in practice. Nevertheless, hard
instances were met when increasing the number of timeslots to accomodate the new
students. Several redundant constraints can be added to improve performance:

1. If two events cannot fit together for a given subject because of their size, a redun-
dant inequality constraint can be added to the model. These constraints are redun-
dant given the knapsack but the presence of maximum cliques can considerably
strengthen the constraint propagation.

2. Cliques in the coloring graph can be exploited using ALLDIFFERENT constraints.
3. Among all the events that must be assigned to a given subject, we can compute the

k smallest that overload the capacity of the subject. The number of occurrences of
a given value (timeslot) amongst all the events that are related to the corresponding
subject is, therefore, bounded by k. A GLOBALCARDINALITYCONSTRAINT can
be stated over all the corresponding events enforcing an upper bound on the number
of occurrences of each timeslot to k. Notice that this constraint is a relaxation of
all the knapsacks associated with a given subject, but it performs reasoning on

1 http://choco.emn.fr

571

all the timeslots together as opposed to the knapsack constraints which operate
independently on each timeslot.

4. All events related to the same group and the same subject are symmetrical. Such a
set of events e1, . . . , ek can be ordered: xgrp(e1),sub(e1) < xgrp(e2),sub(e2) < . . . <
xgrp(ek),sub(ek) as all permutations of these variables in the same solution are also
solutions.

5. All events corresponding to groups of the same size with the same initial domain
and the same curriculum are also symmetrical and can be permuted in any solution.
We can safely order them in the timetable as explained above.

Redundant Constraints 1, 2, 4, 5 turn out to be critical to prove inconsistency of some
instances. The problem differs from the Post Enrolment University Course Timetabling
Problem [4] in terms of “room allocation”. In the Dental School problem a set of events
allocated to the same timeslot is subject to a knapsack constraint rather than a matching
(events-room) constraint. The model presented here augmented with the redundant con-
straints seems to be efficient, but the decomposition strategy presented in [1] could be
applied. In this context we would postpone the resolution of the knapsacks (using only
the relaxation based on the redundant Constraint 3) once a coloring has been found, and
infer cuts expressing that subsets of events cannot be together.

4 Conclusion

We have developed a simple timetabling system based on constraint programming for
the Dental School at University College Cork. Its ability to prove inconsistency is its
main originality and offers to the school a tool to simulate various scenarios to deal with
increasing student numbers. A online application was designed and proved to be very
useful to the school. We plan to add the computation of explanations to our system to
offer feedback to the school to help overcome situations where no consistent timetables
exist. By comparison, traditional timetabling system focus on minimizing the degree of
violation of hard constraints to counter inconsistency. We believe that it is interesting to
evaluate both approaches on this problem from the user’s perspective.

Acknowledgements. Supported by Science Foundation Ireland (Grant 05/IN/I886).

References
1. Hadrien Cambazard, Emmanuel Hebrard, Barry O’Sullivan, and Alexander Papadopoulos.

Local search and constraint programming for the post-enrolment-based course timetabling
problem. accepted to Annals of Operation Research, 2009.

2. M. W. Carter and G. Laporte. Recent developments in practical course timetabling. In PATAT,
pages 3–19, 1997.

3. D. de Werra. An introduction to timetabling. European Journal of Operational Research,
19(2):151–162, February 1985.

4. R. Lewis, B. Paechter, and B. McCollum. Post enrolment based course timetabling: A de-
scription of the problem model used for track two of the second international timetabling
competition. Technical report, Cardiff University, 2007.

5. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127,
1999.

572

573

construction of a timetable using minimal changes to an initial solution [5]. The work pre-
teractively controlled by the user in [2]. Earlier work by the present authors also examined
gramming to handle dynamic changes in the timetable. Generation of a timetable was in-
centrating on interactive removal of clashes. [1] investigated explanations in constraint pro-
timetable that inevitably occur. Interactive timetabling was previously explored in [7], con-

A major goal of the system design has been to facilitate requests for changes in the
among the finalists in all three tracks and the winner of two [4].
been successfully applied to the International Timetabling Competition 2007, where it was
solved using the solver library [3]. This constraint-based local search framework has also
ing problems are modeled as constraint satisfaction and optimization problems (CSOP) and
used by a university. The course timetabling, examination timetabling and student section-
or Oracle) and an XML interface can be used to tie the application with other systems
(J2EE). Hibernate is used to persist data in an SQL-enabled relational database (e.g., MySQL

UniTime has a completely web-based interface using the Enterprise Edition of Java
event management, and student sectioning.
graduate levels. The complete system includes course timetabling, examination timetabling,
lic university (39,000 students) with a broad spectrum of programs at the undergraduate and
an open source license, has been successfully applied at Purdue University [8], a large pub-
UniTime university timetabling system. This application, which is publicly available under
This system demonstration presents an approach to interactive timetabling used by the

1 Introduction

?áHana Rudov·Keith Murray·uller¨s MˇáTom

System Demonstration of Interactive Course Timetabling

E-mail: hanka@fi.muni.cz
a 68a, Brno 602 00, Czech Republic´Botanick

Faculty of Informatics, Masaryk University
áH. Rudov

E-mail: muller@unitime.org, kmurray@unitime.org
400 Centennial Mall Drive, West Lafayette, IN 47907-2016, USA
Space Management and Academic Scheduling, Purdue University

K. Murray·uller¨T. M

the research intent No. 0021622419.
a is supported by the Ministry of Education, Youth and Sports of the Czech Republic under´Hana Rudov?

574

a history of the changes made using the interactive solver (which can also be used to easily
Changes to preferences or requirements made between the original and the current timetable,
(room, instructor, etc.), a list of assigned classes, or a list of yet-to-be-assigned classes.
current timetable. The user can view the classes in a time-resource grid for each resource

The timetabling user interface contains a set of pages that display various aspects of the
violating the constraint.
hard constraints soft, but with too large of penalty imposed for the solver to suggest a change
different from the ones that were initially required. This is accomplished by making these
in the interactive mode. This means, for instance, that the user can put a class into a room
to avoid a need for changing the input data, some of the hard constraints can be relaxed
imposed on the rest of the solution with a knowledge of what those costs will be. Moreover,
then determines the best tradeoff between accommodating a desired change and the costs
associated costs) that can be reached via a backtracking process of limited depth. The user
make any decisions, It does, however, provide users with a set of feasible solutions (and their
along with several less important criteria. During interactive timetabling, the solver does not

time change (room changes are usually consider less harmful),
divergence from the original solution, expressed as the number of students affected by a–
in time or are back-to-back in rooms that are too far apart),
student conflicts (i.e., students that are expected to take two classes that either overlap–
back-to-back, or precedence),
distribution preferences that can be put between two or more classes (e.g., same room,–
preferences on time and rooms,–

the same objective function consisting of satisfaction of
The same constraint model is used for both automated and interactive timetabling, with

problem while trying to minimize changes between the original and the new solution.
the minimal perturbation solver [5] which creates a solution to the modified timetabling
are desired in the input data. In this case, a new timetable is built from scratch or by using
most changes are made using interactive timetabling. An exception is when multiple changes
solver is used to create an automated timetable for the given (sub)problem. Subsequently,
preferences or requirements. Once all data have been entered into the system, the timetabling
all constituent classes) are entered via a series of web forms along with any associated
course timetabling solver. Basic data related to rooms, instructors, and courses (including

The course timetabling user interface consist of two parts: a data entry portion and a
making interactive modifications to an existing timetable that may impact several others.
has already been created. This coordination across problems is especially important when
solved separately, each solution considers all of the other problems for which a timetable
ries of subproblems solved at the academic department level. Although each subproblem is
At Purdue, the complete university timetabling problem has been decomposed into a se-

2 Interactive Timetabling

rently being developed.
interactive phase of student sectioning (referred to as online student sectioning [6]) is cur-
within the application for examination timetabling and event scheduling. Furthermore, an
cuses on making interactive changes to the course timetable, a similar approach is also used
making them, which was also found to be necessary. While this system demonstration fo-
sented here encompasses an interactive mode for exploring possible changes, and easily

575

conflicts, and violation of other soft constraints are also available.
undo such a change if needed), and various reports displaying room utilization, student

resultant quality of the solution.
assign the class manually in the next step, e.g., if he or she is not satisfied with the
gether with the selected assignments. The user can still select another suggestion or try

One of the suggestions is selected by the user, it is displayed to-Select a suggestion.–
actual timetable.

The interaction is terminated without making any changes to theAbandon the change.–
interaction is terminated.
signments are assigned and the conflicting classes, if any remain, are unassigned. The

At this point, the actual timetable is modified, all the selected as-Commit the change.–

possibilities:
that result in a feasible timetable. In each step (of an interaction), the user has the following

are optional changes the user may choose fromSuggestionsof the selected assignments.
inform the user of any conflicts created in the timetable as a resultConflicting Assignments

describe changes already made to the timetable during the current interaction.Assignments
Selectedof changes to the class, commit selected choices, or discard all changes considered.

the selected class of interest. The user may explore different options, consider various types
illustrates the information available to the user during each step of considering changes to
vidual classes (beginning with the user selecting a class that needs to be changed). Figure 2

Each user interaction with the timetable can be seen as a sequence of changes to indi-
assignment of one or more classes by clicking on a class in any of these views.
ure 1 illustrates the timetable display provided for several rooms. The user can modify the
preferred, yellow and orange, respectively, for discouraged and strongly discouraged. Fig-
are marked in blue, prohibited in red, light green and dark green for preferred and strongly

A consistent color coding is used throughout the application. Required times or rooms

Display of a timetable for given rooms.Fig. 1

576

ments, trying all possible placements for the selected class and resolving hard conflicts cre-
tially allowing 2 additional changes). This process starts from the list of selected assign-

Suggestions are computed using a branch and bound algorithm of a limited depth (ini-
can be increased.
additional criteria or the number of allowed additional changes of the provided suggestions
help to find a desired change. For instance, the list of available suggestions can be filtered by

Besides the above actions, the user has a wide variety of additional choices that may

Suggestions are recomputed to include the selected class.
A different class (e.g., one of the conflicting classes) is selected.Select another class.–

signments, conflicts and suggestions are recomputed.
An assignment is removed from the list of selected as-Remove a selected assignment.–

conflicting with the new assignment.
may choose a different placement in the next step, e.g., if there are too many classes
signments and the list of conflicts is recomputed together with the suggestions. The user
manually (for the selected class). This assignment is added into the list of selected as-

Instead of choosing a suggestion, user picks a time and/or a roomSelect a placement.–

Interactive solver interface for MA 52700 after selection of a new time assignment.Fig. 2

577

, 2010. To appear.Scheduling
Journal ofuller, and Keith Murray. Complex university course timetabling.¨s Mˇáa, Tom´8. Hana Rudov

Springer-Verlag LNCS 3616, 2005.
, pages 34–50.Practice and Theory of Automated Timetabling Vmund Burke and Michael Trick, editors,

e Mandiau. An open interactive timetabling tool. In Ed-´7. Sylvain Piechowiak, Jingxua Ma, and Ren
Montreal, Canada, 2008.

,Proceedings of the 7th International Conference on the Practice and Theory of Automated Timetabling
PATAT 2008 –uller and Keith Murray. Comprehensive approach to student sectioning. In¨s Mˇá6. Tom

, pages 126–146. Springer-Verlag LNCS 3616, 2005.Revised Papers
Practice and Theory of Automated Timetabling, SelectedIn Edmund Burke and Michael Trick, editors,
a. Minimal perturbation problem in course timetabling.´ak, and Hana Rudov´uller, Roman Bart¨s Mˇá5. Tom

446, 2009.
, 127:429–Annals of Operations Researchuller. ITC2007 solver description: a hybrid approach.¨s Mˇá4. Tom

ematics and Physics, 2005.
. PhD thesis, Charles University in Prague, Faculty of Math-Constraint-based Timetablinguller.¨s Mˇá3. Tom

Practical Application Company Ltd, 1999.
, pages 529–535. Theings of the Practical Application of Constraint Technology and Logic Programming

Proceed-2. Hans-Joachim Goltz and Dirk Matzke. Combined interactive and automatic timetabling. In
3616, 2005.

, pages 190–207. Springer-Verlag LNCSPractice and Theory of Automated Timetabling VTrick, editors,
school timetabling problems using extensions of constraint programming. In Edmund Burke and Michael

1. Hadrien Cambazard, Fabien Demazeau, Narendra Jussien, and Philippe David. Interactively solving

References

sectioning problems.
real-life benchmark data sets for course timetabling, examination timetabling and student
mation about ongoing research, online documentation for the described system, and various

. This site also contains infor-http://www.unitime.orgloaded from the UniTime web site
, and can be down-1presented application is publicly available under an Open Source license

additional problem parameters and deciding whether to modify the previous solution. The
This interactive component allows the user to to find high quality options for meeting the
are necessary to accommodate new parameters added after a timetable has been published.
lows users to modify automatically computed timetables when a small number of changes
An extension of the UniTime course timetabling application has been presented that al-

3 Conclusion

suggestion is found) to recompute these suggestions with an increased time limit.
interactive; however, when the limit is reached, the user has the option (e.g., when no desired
the timetabling problem at Purdue). This time limit is important to keep the user interface
suggestion incorporating up to two additional changes in more than half of the cases (for
branch and bound solutions, that a 5 second time limit is sufficient to present an optimal
available in [8]. It is also shown here, based on comparison runs with no time limit on the
gestions to be displayed) bounds the search. A more formal description of the algorithm is

being the number of sug-n-th best solution found (nwhich along with the quality of the
ated by these changes. Only solutions that do not violate any hard constraints are allowed,

cation is available under GNU General Public License (GPL).
extensions is available under GNU Lesser General Public License (LGPL), the complete timetabling appli-

Constraint-based solver, including course timetabling, examination timetabling and student sectioning1

Author Index

A

Samad Ahmadi, 347

Fernando Alarcón, 466

Panayiotis Alefragis, 211

Eyjólfur Ingi Ásgeirsson, 81

Roberto Asín Achá, 42

Mohammed Azmi Al-Betar, 57, 392

B

Ruibin Bai, 468

Renjun Bao, 472

Andrzej Bargiela, 353

Zdenek Baumelt, 97

Bahari Belaton, 392

Greet Vanden Berghe, 477, 486, 553

Burak Bilgin, 477, 553

Patrice Boizumault, 259

Ralf Borndoerfer, 551

Leslie Bowie, 519

Peter Brucker, 113

Bregje Buiteveld, 122

Edmund Burke, 136, 305, 353, 481

C

Hadrien Cambazard, 569

Arturo Castillo, 519

Ek Peng Chew, 527

Marco Chiarandini, 547

Ademir Constantino, 152

Frederico Cruz, 1

D

Sophia Daskalaki, 347

Alexandre C. B. Delbem, 542

Federico Della Croce, 167

Peter Demeester, 486, 553

Patrick De Causmaecker, 477, 486, 498

Florent Devin, 176

Luca Di Gaspero, 490, 547

Mike DiNunzio, 193

Anders Dohn, 524, 529

Guillermo Durán, 466

F

Walter Marcondes Filho, 152

G

Johannes Gaertner, 490

Asvin Goel, 201

Christos Gogos, 211, 347

Ruben Gonzalez-Rubio, 493

George Goulas, 211

Thomas Graffagnino, 551

Author Index

Mario Guajardo, 466

Maik Güenther, 224

Aldy Gunawan, 241

H

Nor Hayati Abdul Hamid, 502

Zdenek Hanzalek, 97

Stefaan Haspeslagh, 498

Christian Heimfarth, 385

Erik Van Holland, 122

Efthymios Housos, 211

Hui-Chih Hung, 527

Tony Hürlimann, 507

Naimah Mohd Hussin, 502

I

Shinji Imahori, 508

J

Hazel Johnston, 519

Tor Justesen, 524

K

Graham Kendall, 1, 273, 283, 468, 502

Ahamad Tajudin Khader, 57, 392

Helmut Killer, 427, 440

Jeffrey H. Kingston, 26, 347, 513, 517

Vasilios Kolonias, 211

Serge Kruk, 193

Jari Kyngas, 347

L

Dario Landa-Silva, 152, 519

Jesper Larsen, 524, 529, 539

Hoong Chuin Lau, 241

Loo Hay Lee, 527

Samir Loudni, 259

Richard Lusby, 529, 539

M

Jakub Marecek, 481

Tomomi Matsui, 508

Jean-Philippe Métivier, 259

Mustafa Misir, 553

Ryuhei Miyashiro, 508

Douglas Moody, 273, 283

Moritz Mühlenthaler, 294

Tomáš Müller, 573

Keith Murray, 573

Nysret Musliu, 490

Barry McCollum 1, 353

Robert McConnell, 569

Christine McCreary, 569

Paul McMullan, 1

Author Index

N

Kien Ming NG, 527

Robert Nieuwenhuis, 42

Yannick Le Nir, 176

Volker Nissen, 224

Karl Noparlik, 417

Amotz Bar Noy, 273, 283

Amir Nurashid, 373

Cimmo Nurmi, 347

O

Johannes Ostler, 447

Barry O'Sullivan, 569

Ender Ozcan, 353, 531

P

Tiago Pais, 305

Andrew J. Parkes, 481, 531, 535

Nelishia Pillay, 321, 336

Gerhard Post, 122, 347

Q

Rong Qu, 113, 136

R

Syariza Abdul Rahman, 353

Troels Range, 529

Matias Sevel Rasmussen, 524, 539

Natalia J. Rezanova, 37

Ben Rorije, 347

Hana Rudová 573

David M. Ryan, 37, 539

S

Mohamed Said, 373

Fabio Salassa, 167

Felipe A. Santos, 542

Haroldo Santos, 347

Andrea Schaerf, 347, 490, 498, 547

Werner Schafhauser, 490

Thomas Schlechte, 551

Heinz Schmitz, 385

John Sisk, 569

Wolfgang Slany, 490

Dirk Smit, 122

Amr Soghier, 136

Martin Stolevik, 498

Premysl Sucha, 97

Elmar Swarat, 551

T

J. Joshua Thomas, 57, 392

Michael Trick, 472

V

Wim Vancroonenburg, 553

Author Index

W

Jia Wang, 527

Rolf Wanka, 294

Anthony Wehrer, 556

Stephan Westphal, 417

George White, 16

Peter Wilke, 427, 440, 447, 559

Mike Wright, 566

X

Hui Xiao, 527

Y

Jay Yellen, 556

	Proceedings
	Introduction
	Contents
	Plenary Papers
	Full Papers
	Extended Abstracts
	Demonstrations

	Presentations
	Plenary Presentations
	Graham Kendall
	George White
	Jeff Kngston
	David Ryan

	Papers
	Achá and Nieuwenhuis
	Al-Betar et al
	Ásgeirsson
	Baumelt et al
	Brucker and Qu
	Buiteveld et al
	Burke et al
	Constantino et al
	Croce and Salassa
	Devlin and Nir
	DiNunzio and Kruk
	Goel
	Gogos et al
	Güenther and Nissen
	Gunawan and Lau
	Métivier et al
	Moody et al
	Moody et al
	Mühlenthaler and Wanka
	Pais and Burke
	Pillay
	Pillay
	Post et al
	Rahman et al
	Said and Muhammad
	Schmitz and Heimfarth
	Thomas et al
	Westphal and Noparlik
	Wike and Killer
	Wilke and Killer
	Wilke and Ostler

	Abstracts
	Alarcón et al
	Bai and Kendall
	Bao and Trick
	Bilgin et al
	Burke et al
	Demeester et al
	Di Gaspero et al
	Gonzalez-Rubio
	Haspeslagh et al
	Hamid et al
	Hürlimann
	Imahori et al
	Kingston
	Kingston
	Lana-Silva et al
	Larsen et al
	Hay et al
	Lusby et al
	Parkes and Ozcan
	Parkes
	Rasmussen et al
	Santos and Delbem
	Schaerf et al
	Borndorfer et al
	Vancroonenburg et al
	Wehrer and Yellen
	Wilke
	Wright

	System Demonstrations
	Cambazard et al
	Muller et al

	Author Index

