
On-line timetabling software

Florent Devin · Yannick Le Nir

Abstract Timetable design is a really important and difficult task. Timetable hand-

building consumes a lot of time. In this paper we address two main difficulties of

automatic timetabling, that is data acquisition and timetable computation. The former

task is made using new advanced technologies in the area of Rich Internet Application.

This offers very powerful, and easy to use, interfaces to acquire data. The latter task

is the computation of the timetable itself. We use the constraint programming and one

implementation in swi-prolog to compute the timetable. Finally we show some results

of our application on a real case study.

Keywords Timetabling · CSP · Prolog · Java framework · ZK · Google API

1 Introduction

In this paper we present a timetabling software. Timetabling application can be split

into two different parts, the design of a valid solution and the data acquisition. Many

operational software need to hand-build a timetable. Computing helps are only given

to verify constraints and to acquire input data.

To acquire data, we create an RIA1. This choice allows us to provide an original

solution for timetabling. First we decide to use web services to allow us using a par-

ticular algorithm to solve the problem. Moreover by using web services we are able to

interact with Google Calendar. At last, this use allows the software to be built in our

IT system. The figure 1 shows the general architecture of our software. This distributed

approach, and using an RIA allows us to delegate data acquisition as we will see.

Florent Devin · Yannick Le Nir
EISTI, 26 avenue des Lilas, 64062 Pau Cedex 9
Tel.: +33 5 59 14 85 34
Fax: +33 5 59 14 85 31
E-mail: florent.devin@eisti.fr

E-mail: yannick.lenir@eisti.fr

1 Rich Internet Application

176

Fig. 1 General architecture system

The design part, in our solution, is made with an automated task as the solution

of a CSP2. Such approach based on CSP has already been studied for examination

and lectures timetabling in school and university (Abdennadher et al 2007)(Abbas

and Tsang 2001). We present in the last sections of this paper an instantiation of our

model in a similar way (university timetabling) with some computational results under

global parameters variation. Other computational models can be used, as mentioned

in (Qu et al 2009). We decide to choose CSP, that is easy to use and very powerful for

timetabling applications (Wallace 1996), especially in our general architecture where

compatibility and performance issues are not problematic.

2 Definitions

In this section, we introduce some definitions that we will use to present our solution

for an on-line timetabling software in next sections.

The first notions we have to define are timetable and time slot. The timetable is

defined as a consecutive list of time intervals. A time slot is the minimal time interval

we can find on the timetable. Its duration is fixed and then it is only specified with its

starting time.

Then, we have to define the resources we need to access, that is in our case the

resources that describe the context of the timetable. It is specific to every timetable

but belongs to one of the following categories:

2 Constraint Satisfaction Problem

177

– main resources: elements to be planed in the timetable (lectures, talks, meetings,

. . .),

– static resources: elements that are already linked to main resources before the

computation (peoples, holidays, . . .),

– dynamic resources: elements that will be linked to main resources by the compu-

tation (rooms, materials, . . .).

All these resources are the descriptive resources of the timetable. In our application,

they are collected in a relational database.

Now, we can define the availability of the different descriptive resources of the

database. The timetable is made of time slots, and then an availability can be associated

to each resource as a starting time slot and an ending time slot. We can also define

unavailability as the complementary of an availability. The (un)availabilities will be

considered as constraints in the following, mainly in the section on CSP.

The last notion we have to define is the timetabling. It consists to an assignment

of all the main resources of the database on the timetable for a specific period, with

respect of all constraints on descriptive resources.

Some more specific definitions will follow in the next sections. However, these

specifics terms are not a prerequisite for understanding.

3 Rich Internet Application for Timetabling

3.1 Motivation for rich interface

Whilst there is no need to argue for a tool for timetabling, we have to discuss why we

have to create a rich interface. In an ideal world, all constraints are known long before

they occur. In this same world, the constraints do not often change. But this never

happens in reality, where very often constraints are modified. There is a real need to

change the constraints, whatever the real motivation; for example, we need to provide

a tool for specifying unavailability3.

In this case, we have two choices:

– A centric application: This means that there is only one person who creates or edits

the timetable. This amounts to saying also, that only one person takes responsibility

for validating or invalidating the constraint. But this step is a little tricky, because

you must contact the person who has created the constraint.

– A distributed application: That means you delegate checking constraints to the

user.

The former approach has several disadvantages. Such as the problem of knowing

the validity of the constraints. The latter approach allows all users to input or delete

their constraints. This is a real advantage for the distributed approach.

Once we have chosen a distributed approach, again there are two choices:

– a classical third party application;

– a Rich Internet Application.

Rich Internet Application (RIA) does not require any installation on the client side.

Also, neither a particular operating system nor a particular software. RIA allows users

3 A constraint for a contributor can be an unavailability

178

to use the application without any requirement. Nevertheless using an RIA implies

that you have to look after the security of your software(Lehtinen 2009), mainly if this

one is accessible from the Internet.

3.2 Implementation

ZK is an open-source Ajax Web application framework written in Java(Seiler 2009).

It uses the server centric approach(Yeh 2007) so that the communication between

components is done by the engine. Security process is involve, synchronisation with a

database is easier. In the other hand as ZK can use Java, we are able to use Hibernate

framework. Also ZK provide a framework for mobiles(Yeh 2007). Even if we do not,

for instance, provide a mobile interface this can be very useful for several contributor.

Timetabling involve a lot of contributors. Some of them will have some constraints

to input, modify or delete, others will have to create the planning, etc. All of them need

to use the RIA. In addition, we want to keep the job process in a single location. This

can be done if you use a framework that keeps it on the server. For all these reasons,

and (Yeh 2006), we choose to use the ZK framework4.

3.3 Presentation

The entry point is the RIA. Currently in our application, users5 have different roles:

– User: a contributor who is allowed to submit some constraints on his own timetable

and view all timetables (rooms, class, users, etc).

– Admin : someone entitled to accept or refuse the constraints created by a user. The

admin can also generate a timetable and export it into all contributors’ Google

Calendar6, if they want to.

3.3.1 User

Fig. 2 User welcome screen

At present users have two options to enter their constraints: either through our

application or through Google Calendar application. If they choose the second option,

4 ZK framework : http://zkoss.org
5 users : someone who have to use our application. We use the term of contributor as well.
6 We will see the usage of Google Calendar, later on.

179

Fig. 3 Admin welcome screen

they have either to provide to the administrator a link to their Google Calendar, or to

log in into our application once to save this URL. Once this is done, the users may put

their constraints in their own calendar. Later on, the admin will validate or invalidate

users’ constraints. Validation by the admin is required by the policy of our institution

and to avoid any abuse. To allow the admin to make better decisions, in case he has

to invalidate a constraint, we plan to use a scale for fixing the degree of unavailability.

As soon as the admin creates the timetable, the corresponding time slot will appear in

all users’ calendar. The same operation can be done in our application. There is also

an interface to create, modify or delete any users’ constraints as is shown in figure 6.

3.3.2 Admin

The admin work load is significantly reduce thanks to our application.

Creating a timetable by hand is an extremely time consuming tasks, which might

take up to 3 days a week. This is a huge task, because of many reasons, for example:

A videoconferencing can be used for teaching. This is a really strong constraint because

it occurs in two different places. On another hand, in our institution a school term is

about 16 weeks long, during which many courses last for about 20. Each course has

different contributors and durations in a week, and in a period. This involves creating

a different timetable for almost every week. On top of this, contributors’ constraints

may change according to their other activities, rendezvous, and so on.

Fig. 4 Lecture time-line

180

By using our application the task of the admin comes down to putting all lectures in

a time-line, as is shown in figure 4. By doing this, the admin also specifies the number

of courses per week, number of time slots devoted to practice, . . . This simply task

takes roughly one hour per term. Then he has to specify which contributor will give

what lecture, and also which features are required, and for which class the lecture is

addressing as is show in figure 5. This step may take up to four hours once. This is

what we can call the initialisation phase.

Fig. 5 Courses, features, contributor association

Now we have all the elements to compute an intermediate solution. The result is

a timetable which does not take into consideration the users’ constraints. If no users’

constraint has been specified, this is a valid timetable. Otherwise the admin has to

validate or invalidate users’ constraints. To simplify this step, our application presents

two different screens.

One is textual screen, figure 6(a), and another one is a dashboard, figure 6(b),

which partitions all constraints into three categories:

– rooms (un)availability constraints;

181

(a) Constraints textual input screen shot (b) Constraints dashboard screen shot

Fig. 6 Constraints input

– contributors’ constraints, as we have seen before;

– free session, holidays, which are used to set some empty time slots for student

activities, or holidays.

For each category, the dash board uses a color code to show the state of the constraint.

There are three possibilities:

– Green : the constraint has already been validated. This usually means a recurrent

constraint. The admin can still invalidate it.

– Orange : the constraint has never been validated. The admin must validate it if he

wants to take it into account.

– Red : the constraint has been validated, but the contributor has changed it after-

wards.

Another possibility is to fix a time slot. This will later be taken by the computation

as a hard constraint. Eventually, the admin can create a real timetable, by invoking

the computational service as mentioned before. Figure 7 shows a computed timetable

involving all the required constraints.

4 Distributed approach

4.1 Motivation for using web services

Creating a new application entails deploying it in an existing IT system. In this system,

there is always a user identification process. This process can be used as a service.

That was the first reason why we decided to use web services; on the other hand, we

want to create an RIA, but we have to compute a timetable. To solve the timetabling

problem, as mentioned above, a backtrack search algorithm is used. This algorithm

was implemented in Prolog. This implies that the RIA, and the Prolog program have

to interact. We choose to use the web services technology for doing this.

182

(a) A compute timetable

(b) A partial zoom of a timetable

Fig. 7 Timetable

In addition, some contributors may wish to use their own calendar. In our insti-

tution there is no shared calendar, but we plan to use Google Calendar soon, which

183

many contributors are already using.. So we decided to allow the contributors to use

their own calendar. This implies that the contributors’ constraints are generated in two

different ways. Some can simply put their constraints on Google Calendar, the others

may use our application once again; we need web services7 to import and export some

slots. Some others reasons to use web services will be explained later.

4.2 Export and import from Google Calendar

4.2.1 Google API

If there are two main components that access the database, 1, there is one which does

not access the database. In our application, we have a component that can export from

or import to a Google Calendar. This component does not directly interact with the

database, but it can modify the database through the RIA. Google releases an API

to use a lot of their components. This API allows our contributor to use their own

calendar.

4.2.2 Constraints acquisition

A major feature of our application is the acquisition of the users’ constraints. This can

be done by the RIA, or by putting the constraints in the Google Calendar. The only

restriction is to have a particular calendar, which is used to show unavailability. This

calendar will be used later to input the compute time slot. The contributor has to put

his constraints on Google calendar. He can use all of the Google features. These con-

straints will be validated by the admin. When the admin checks the users’ constraints,

he has the choice to validate or to invalidate it. Both of the choices will inform the user

by putting a message in the appropriate time slot.

To perform this kind of operation, the contributor has to allow our application to

modify his own calendar. Ideally, the contributor creates a particular calendar, and

uses this one to manage his professional time slot.

4.2.3 Timetable visualisation

When we have full access to a contributor’s calendar, we are able to create a full

timetable. For instance, we have created a specific user. This user has several calendars,

one for each room, one for each class, and possibly one for each contributor. This allows

when needed, to visualize all timetables with all possible views. Of course, the compute

timetable can only be viewed by classes, but we provide any possible view.

As the contributor has a Google calendar, his own timetable is created on it. This

allows a convenient view for all who need it.

7 As Google calendar is accessible via web services.

184

5 Database modeling for Timetabling

5.1 Required resources for timetabling

The main goal of timetable generation is to compute time slots from descriptive re-

sources. Such resources are needed to provide the context model we want to use. For

example, to compute the timetabling of lectures, we need to know all information

dealing with lectures such as:

– who will follow this lecture

– who will teach this lecture

– how long is this lecture

– which material is needed

Less specifically, we can split such information in two distinct categories: inner and

outer properties. Inner properties deal with information directly linked to lectures (du-

ration, starting time, fixed time). Outer properties deal with information linked to

external resources (people, materials, calendar). Therefore, the global data architec-

ture is made of resources associated to time values. We can assume that time values

associated to each resource contain an interval of availabilities. Then, the database

should contain tables for each type of resource and at least a field for its availability.

Therefore, to compute a time slot associated to a main resource, we then first have to

collect all the associated availabilities that can be found in the records of the associated

resources. Without loss of generality, we can assume that in this particular case, the

values that we have to compute (time slots), can be represented by integers correspond-

ing to an interval of times between 1 and N , where N depends on the number of time

slots of the timetable. This value can change with the granularity of the timetabling,

that is the difference between two consecutive time slots. With this modeling, we can

transform our problem in a constraint satisfaction problem on finite domains (Apt and

Zoeteweij 2007), what is detailed in section 7.

6 Database implementation

6.1 Motivation to use a central database

Once we have all constraints, we need to compute a timetable which complies with all

of them. We need to save these constraints somewhere. This can be done by using a

database, XML or anything that stores data. As the computation is done by Prolog,

we have to provide an access to this data.

A central point to notice is that our application use the web services to commu-

nicate. This means that you design several small applications and assemble them to

make a bigger one. The communication between each part of the application has to

send or receive some data. Possibly we could use a data feed. It is really simple to

send the data to the computational part, and it is also as simple to receive the result.

But for providing the users with an interface, we have to keep the generated data.

Also, we have to keep the users’ entries. That means that we need something to save

the data. The best solution for us was to use a database. Indicating this has changed

the approach of our application. We choose to put the database at the center of the

application.

185

Also, using a central database allows the RIA to modify data, while Prolog is

computing a timetable. Why can this be done ? The database itself prevents multiple

modification on the same data. Therefore once Prolog has gathered the data to compute

the timetable, they are not missing anymore, while modifying another data. As the

computation is done by invoking a web service, we can focus the computation on a

particular week, and then begin to modify this week. In fact, the computation accesses

the data to get all the constraints in one shot, then computes the timetable and then

commits the result to the database. As a web service is an asynchronous method, we

can run the computation, and leave it. As the same time you may modify the data you

need. But if you want this new data to be considered, you have to rerun the process.

On the other side, we have the RIA that has to use the database. Since ZK frame-

work is a java framework, we can use Hibernate tools to do the mapping from database

to objects. By using this technology, we can save time(Minter and Linwood 2006) when

creating the RIA. It also provides us with a way to automatically create an RIA for a

CSP.

6.2 Shared Database for asynchronous communication

Currently, our application is made up of several black boxes. Each of these has to

access and modify the database. For now, there are two main components which use

the database : the RIA, and the computational program. The benefits of doing this is

that we can keep running the service at all times. There is no need to run all parts of

our application for it to work. You can use only the RIA to update the data, or use

only the computed part to create a timetable.

We use a web service to order the computational part to run. Whilst the web service

allows us to mix Java and Prolog in one application, it has some disadvantages too.

Among them, there is the timeout problem. This problem can occur at various times,

depending on the system, the network . . . Again using a central database helps us to

resolve this problem. Thus, we communicate via the database, when the RIA asks

to the computational part, this simply returns an acknowledgment message. Then,

later the RIA will check the database to see if the computational program has finished

computing the timetable. This approach has several advantages. One of them is that we

can use the RIA without waiting for the end of the computational timetable. Another

one is that the computational program can put some statistics in the database . The

RIA just has to query the database. Then we can create a report of the timetabling.

To simplify the work both of the component use an ODBC to interact with the

database. For Prolog we use a classical ODBC, and for ZK we use hibernate. Using the

ODBC allows us to change quite dynamically the database server. It also provides us

with a convenient way to access to the data. We do not have to consider the multiple

access. This job is done by the ODBC. We can have concurrent access, the processing

is solved by the database itself.

In this section, we now explain how we can make the design part of timetabling using

CSP on finite domain. We first define CSP and then formulate timetabling problem in

this context. Finally we give an example of the use of our model with an instantiation in

real case of university timetabling from which we explain some computational results.

186

7 CSP on finite domain

7.1 Definitions

A constraint satisfaction problem (CSP) is modeled with a triple P = (X,D,C) where

X = {X1, · · · , Xn} is a finite set of variables to assign, D is the domain function of

each variable, that is (D(Xi)) contains all the possibles values of variables. From this

point forward, we will consider to finite domains. The last element of the triple P is a

finite set of constraints C = {C1, · · · , Cm}. A constraint is a relation between sub-sets

of variables W ⊆ X, and a sub-set of values T ⊆ DW . A mapping is a set of pairs

(variable-value): A = {(Xj ← vj)} with Xj ∈ X and vj ∈ D(Xj). A mapping is total

if for each variable there is a value assigned. It is valid with C if every relation of Ci

is true for all variables in A. A solution to a CSP is a total and valid mapping.

7.2 Modeling of Timetabling in CSP

With this data description and computational model, we can describe the timetabling

problem in CSP as follow:

– X = {X1, · · · , Xn} is the finite set of time slots we have to assign to entities. Xj

is the starting time of jth entity. The number of entities (n) is obtained from the

database.

– D(Xi) is the interval of possible values for the ith entity. It depends on the avail-

ability of the entity, that is also obtained from the database.

– C = {C1, · · · , Cm} is the set of all constraints on variables and can be split to the

following categories :

– scattering constraint checks that among all pairs of distinct variables from a

subset S ∈ X, there is a break of at least ld:

scattering(S, ld) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi 6= Xj)) ⇒ ((Xj >

(Xi + di + ld)) ∨ (Xi > (Xj + dj + ld)))

where di is the duration of the ith entity

– overlapping constraint checks that among all pairs of distinct variables from a

subset S ∈ X, there is an overlap if we want a break of at least ld:

overlapping(S, ld) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi 6= Xj)) ⇒ ((Xi <

Xj < (Xi + di + ld)) ∨ (Xj < Xi < (Xj + dj + ld)))

– relation constraint checks that among variables of all couples from a subset

P ∈ X2, there is a relation r:

relation(P, r) ≡ ∀Xi∀Xj((Xi, Xj) ∈ P)⇒ r(Xi, Xj)

– separation constraint checks that around a specific value,vb, there is a break of

at least length lb between all pairs of variables from a subset S ∈ X:

separation(S, vb, lb) ≡ ∀Xi∀Xj ((Xi ∈ S) ∧ (Xj ∈ S) ∧ (Xi < vb) ∧ (Xj >

vb))⇒ (Xj > (Xi + di + lb)).

Therefore computing time slots consists of four consecutive steps:

1. Requests:

Extraction from the database of all the different entities we need to apply con-

straints and their availabilities. We can build the X part of the CSP modeling.

187

2. Domains:

Affectation of interval values to the variables from X, that is the D part of the

CSP modeling.

3. Constraints:

Application of the different constraints to each group of entities. We build the C

part of the CSP modeling for timetabling.

4. Computation:

Computing times slots for each entity, as a solution of the obtained CSP problem

in the two previous step.

8 Prolog implementation

Our application is built upon a SOA architecture. The CSP part is implemented in swi-

prolog and communicates with the RIA part using Web services and with the database

using classic ODBC. We use the clpfd library of swi-prolog to implement the CSP.

This library deals with finite domain, thus we can compute time slots as consecutive

integers on the interval {i1 · · · , in}, where i1 and in are the first and last available time

slots of the timetabling period.

We can express all the constraints in this library using arithmetic or domain con-

straints and then apply the ”labeling” predicate to obtain a solution to the CSP. This

implementation follow the classical model of constraint programming (Jaffar and Ma-

her 1994)(Frühwirth and Abdennadher 2003)

9 Model instantiation

9.1 A concrete example for lectures timetabling

Finally, we end this section with an application of our model to the generation of

lectures in a university U during a week S. The resources are the following:

– lectures and their properties (duration, type of classroom required, week, teachers,

groups of students),

– teachers and their availabilities,

– groups of students and their size,

– type of classrooms including their size and equipment.

9.2 Requests

In the first step of the computation, in this example, the resources we need to collect

to apply constraints to, are the following:

– general parameters of the system:

– list of time slots: lts(U,S)

– list of students groups: lg(U,S)

– list of teachers: lt(U, S)

– list of type of classrooms: lc(U, S)

– list of classrooms of a specific type C: lct(C)

188

– lectures lists:

– list of lectures for a specific students group G: llg(G)

– for a given group G, the list of pairs of lectures such that first one has to be

given before the second one: lpl(G)

– list of lectures for a specific teacher T : llt(T)

– list of lectures with the specific classroom type C: llc(C)

– availabilities list:

– list of availabilities for a specific teacher T : lat(T)

– list of availabilities for a specific students group G: lag(G)

9.3 Domains

In the second step, we assigned interval values to all variables (lectures):

– lectures are assigned to time slots:

∀G(G ∈ lg(U,S))⇒ (llg(G) ∈ lts(U,S))

– teacher availabilities:

∀T (T ∈ lt(U, S))⇒ (llt(T) ∈ lat(T))

– group availabilities:

∀G(G ∈ lg(U,S))⇒ (llg(G) ∈ lag(G))

9.4 Constraints

The third step of the computation is now an instantiation of constraints schemes 7.2:

– lesson lectures are always take place before practice lectures for a specific group:

∀G ∈ lg(U,S), relation(lpl(G),<)

– lunch break of at least duration d around time t for a specific group:

∀G ∈ lg(U,S), separation(llg(G), d, t)

– break of at least duration d between two lectures of a specific group:

∀G ∈ lg(U,S), scattering(llg(G), d)

– break of at least duration d between two lectures of a specific teacher:

∀T ∈ lt(U,S), scattering(llt(T), d)

– the number of overlapped lectures with classroom type C is less or equal than the

number of classroom of type C:

∀C,∀T, ((C ∈ lc(U, S)) ∧ (T ⊆ llc(C)) ∧ overlapping(T, lb))⇒ (|T | ≤ |lct(C)|)

10 Results

In this part we present results on computation time of the CSP part of the application

with different values for the following parameters:

– time slot number per day (from 120 to 140)

– break between two consecutive lectures (5, 10 or 15 minutes)

– lunch break (90 or 120 minutes)

189

(a) Lunch break: 90 minutes

(b) Lunch break: 120 minutes

Fig. 8 Computation times

190

The computation was done for 3 different classes (C1, C2 and C3). C1 was made

of two subgroups (C1a, C1b), as well as C3 (C3a, C3b). C1 consumes 590 time slots.

Among them 36 was shared between the two subgroups. C1a and C1b got 282 different

time slots. C2 only consumes 372. Finally C3 had 84 shared time slots, and each

subgroup was using 192.

There were only one global constraint : “Thursday afternoon is devoted to sport,

so we do not want to have courses on this particular period”.

The computation was launched once. In figure 8 the 50 seconds value, means that

the algorithm was not able to find an answer in the accorded time. It does not means

obligatory that there is no solution. Running more than once the computation does

not change the look of the results neither the interpretation that we can make on it.

There are some interesting things to notice :

– In the general case, 5 minutes break is longer to compute than 15 minutes break.

This can be explained by the fact that the definition domain is shorter for 15

minutes break than for 5 minutes break. This means that there is less case to test.

You can find this case in figure 8(a) from 123 slots per day, and in figure 8(b) from

129 slots.

– In the specific case, we can find a solution for 5 minutes break, but not for 15

minutes break. This means that if you want a solution you have to less restrain the

domain. You can find this case in figure 8(b) before 126.

– If we are not in the two previous case, the results may be inverted. We can explain

this. There is some solution, but they are more frequent with 5 minutes break,

than with 15. So the algorithm is able to find one quicker for 5 than for 15 minutes

break.

11 Conclusion

In this paper we have presented a modern approach to timetabling, mixing the ad-

vantages of RIA for data acquisition and the power of constraint programming to find

a solution. To validate this approach, we have created an application for university

timetabling from which we have computed results with some parameters variations.

The obtained application validate the choices we have made. This software is a very

useful tool to design timetable, as expected. But it also provide a tool to analyse the

complexity variation of timetabling under realistic data sets. In future works, we plan

to design other type of timetabling with our approach and to improve the result inter-

pretation with many more data, that is now possible thanks to our global architecture.

References

Abbas A, Tsang E (2001) Constraint-based timetabling-a case study. Computer Systems and
Applications, ACS/IEEE International Conference on

Abdennadher S, Aly M, Edward M (2007) Constraint-based timetabling system for the german
university in cairo. In: INAP/WLP, pp 69–81

Apt KR, Zoeteweij P (2007) An analysis of arithmetic constraints on integer intervals. Con-
straints 12(4):429–468

Frühwirth T, Abdennadher S (2003) Essentials of Constraint Programming. Springer Verlag
Jaffar J, Maher MJ (1994) Constraint logic programming: A survey. J Log Program 19/20:503–

581

191

Lehtinen J (2009) Ria security. In: JAZOON09
Minter D, Linwood J (2006) Beginning Hibernate: From Novice to Professional. Apress
Qu R, Burke EK, Mccollum B, Merlot L, Lee SY (2009) A survey of search methodologies and

automated system development for examination timetabling. J of Scheduling 12:55–89
Seiler D (2009) Ria with zk. In: JAZOON09
Wallace M (1996) Practical applications of constraint programming. CONSTRAINTS 1:139–

168
Yeh TM (2006) Zk ajax but non javascript
Yeh TM (2007) Server-centric ajax and mobile

192

