
Soccer Tournament Scheduling Using Constraint
Programming

Mike DiNunzio · Serge Kruk

Abstract Larger soccer tournaments of school-age children in Michigan can host as

many as 600 teams divided into three age groups, all of which must play a set number

of games, on a fixed number of fields, during a weekend. This leads to three scheduling

problems of roughly 200 teams that must be done concurrently. With side constraints

involving resting time, limited number of games in a day and playoffs, the task soon be-

comes unruly if done by hand. This paper summarizes the results of efforts to develop a

Constraint Programming solution to this Soccer Tournament Scheduling Problem, and

concludes that an appropriate model, combined with an appropriate search strategy,

can handle problems of practical size.

Keywords Tournament · Constraint Prohramming

1 Introduction

1.1 Background

Based on one of the authors’ multi-year experience, scheduling soccer tournaments is an

exercise typically done with pencil and paper. As a result, there is an inherent unfairness

in the schedules that are computed, as well as certain inefficiencies (empty fields, long

hours). Overflow games, or games that do not fit neatly into the Saturday/Sunday

preliminary schedule, are usually scheduled on the previous Friday night, bringing

players, referees, and tournament officials to the tournament site for an additional

evening. While commercial sports tournament scheduling software is available, most is

of the drag and drop variety (not functionally different from using pencil and paper), or

does not address the issues and requirements that are particular to soccer tournaments.

M. DiNunzio
Oakland University
MI, USA
E-mail: mrdinunz@oakland.edu

S. Kruk
Oakland University
MI, USA
E-mail: kruk@oakland.edu

193



This paper examines a practical solution to these issues through the use of con-

straint programming. A number of different approaches were considered, some of which

did not work at all, and others which worked moderately well (scheduling 10-50 teams).

Ultimately, tuning the search strategy, a solution technique was reached which works

well with over 200 teams.

1.2 How Soccer Tournaments are Organized

The first step in scheduling a soccer tournament is organizing the divisions, small

groups of three to five teams of comparable ability and skills. This aggregation is done

by the coaches to offer to the players a reasonable yet challenging experience. Then

divisions are paired to offer intra and inter-divisional games. Usually three preliminary

games are played, followed by a playoff game where the winners of divisions face off

against each other. Divisions of varying sizes are scheduled in the following manner:

(3 Teams) Each team plays the other two teams in their division, plus a team from

a 2nd division. A championship playoff game is scheduled pitting the winners of

the two divisions.

(4 Teams) Each team plays the other 3 teams within their division. The winner of

the division plays the winner of another division in a playoff game.

(5 Teams) Each team plays the other 4 teams within their division. A playoff game

may or may not be scheduled.

The ability to schedule divisions of 3,4, or 5 teams gives the tournament organizers

a great deal of flexibility in setting up the divisions and handling last minute team

additions. A typical tournament has preliminary games all day Saturday, and the 1st

half of Sunday. The 2nd half of Sunday is set aside for the playoff games. If necessary,

games can be played (local teams only) on the Friday night prior to the start of the

tournament.

Soccer fields are one of three sizes; 6v6, 8v8, and 11v11 referring to the number of

players on a side. Younger players, up to about age 9, play on the 6v6 fields. Players

from about the age of 9 through 11 play on the 8v8 fields. Older players use the 11v11

fields. There is no mixing of the three groups. Scheduling a soccer tournament then

becomes three completely separate problems, one for each of the three field sizes.

Based on the experience of one author, the following issues stand to be improved

through better soccer tournament scheduling:

1. Games are often widely spread throughout the day. It is not uncommon for a team

to play a game at 7 am, then have to return to play again at 7 pm. Most families

would prefer to play at 7 am and 11 am, for example, freeing up the rest of the day

to do something else. We would like to cap the length of time a team has to wait

between games.

2. Fields are not always efficiently used; there are often empty fields throughout the

day. Is it possible to compress the schedule for increased efficiency?

3. Related to 2, is that overflow and hard-to-schedule games are put into a Friday

night time slot, prior to the official start of the tournament. This uses tournament

resources as well as disrupting families Friday nights. Can we eliminate the need

for Friday night games?

194



4. Scheduling a tournament is a drawn out process, generally taking 2-3 weeks from

the time registration closes to several days before the start of the tournament.

Can we reduce that 2-3 week time period to under an hour even when scheduling

concurrently the three age groups?

5. When scheduling playoff games, we would like to begin playoff games for a particular

pair of divisions before the end of the preliminary schedule, provided the slots are

open and there is no chance of any preliminary games interfering with the playoffs

for that division.

6. A large soccer tournament can have 200 or more teams to be scheduled for each of

the three field sizes. Our solution has to be capable of handling that many teams.

1.3 Constraints to be Implemented

From the above observations, we formulate the problem. Our goal is to schedule all

preliminary games and playoff games, given a number of teams, divisions, playing fields,

and time slots. The following hard and soft constraints are under consideration.

1. No team plays more than 2 preliminary games in a day.

2. Each team plays the prescribed number of games against division and cross-division

opponents.

3. Each team needs a rest period between games.

4. There is a maximum time gap between games, so that families do not need to spend

all day at the field.

5. A playoff game can only be scheduled after the last scheduled preliminary game for

the divisions involved, with an appropriate rest period between the games.

6. Each fields use is maximized so that Friday night games do not need to be scheduled

(soft constraint).

7. Use the minimum number of time slots to fill the schedule, possibly allowing teams

to finish earlier and/or start later, thereby increasing goodwill (soft constraint).

1.4 Objectives

The soft constraints could be seen as an objective function: minimizing the total number

of time slots so that we do not schedule on Friday night. Note that minimizing more

than that is neither useful not required. A second additional objective (assuming that

the ’no Friday games’ is achieved) is to minimize the time between the first and last

game of each team in a day. Minimizing idle time provides the player and their families

a better experience.

1.5 Previous work in Sports Scheduling

The definitive annotated bibliography of sport scheduling is [3]. Much research has been

done in the area of starting with the pioneering work of de Werra [12,11,10]. Much of

the focus has been on round-robin or double round-robin tournaments, where a team

plays once home and once away, [1,6], or some other variation where a certain balance

between home and away is the goal [2]. Sometimes, there may be a limit on one or the

195



other tournament [1,8], possibly based on the strength of the team or the geographical

distance. Some other restrictions are based on the sharing of home facilities between

teams [13].

Much of this research has little connections with our problem since our teams are all

converging on a single venues, with multiple fields, for a weekend of games. More closely

related is the work of Schaerf [8] on a general Constraint Programming approach. Our

secondary objective of minimizing the time between the first and last game of a day

is related to the break minimization problem [9,7,4]. Our sharing of fields among all

teams is related to the work of [5] though they used a simulated annealing algorithm,

and the work of [2].

In addition to being a problem combining temporal as well as spacial constraints,

we are looking at a very large number of teams. A large scale soccer tournament for

one age group (say 200 teams) can be thought of as perhaps 30 small round robin

tournaments, each of which must be scheduled around each other, and fit into the

confines of a single weekend. The challenge, then, is to efficiently schedule each team

for the desired number of games while maintaining constraints discussed earlier. By

efficiently, we mean that, as late as on the Friday or even Saturday morning, it must be

possible to add teams and produce an amended schedule in a few seconds or minutes.

2 Moving Toward a Solution

It was decided early on to use constraint programming to work toward a solution.

ECLiPSe (http://eclipse-clp.org/) was chosen because it easily allows experimen-

tation and prototyping. Once the implementation proved correct, we could always, if

needed, re-implement using a faster library. In implementing, these steps were followed:

1. Choose an appropriate model, using only integer values.

2. Input the parameters: number of playing fields, time slots, start time, etc, in a form

that is compatible with the data structure and the organizers’ experience.

3. Apply as many constraints as possible to limit the search, prior to assigning the

variables.

4. Label for the variables, paying special attention to the order in which these variables

are chosen.

5. After scheduling the preliminary games, schedule playoff games using time/field

slots not used during the preliminary games.

6. Manipulate the results as necessary to present them in a format meaningful to the

organizers.

2.1 Failures

2.1.1 The Multi-Dimensional Array

One strategy that was unsuccessful was to simulate a large multi-dimensional array,

with a separate dimension for: team number, opponent team number, field number,

time, and day. If all the variables coincided, a 1 value would signify that the game was

on. Otherwise, the value of the variable was assigned 0.

This solution worked, but not for more than 10 teams. The search space was simply

too large (or pruning was too ineffective) to come up with a solution in a reasonable

196



time. To use this technique with 50 teams, and 15 fields, with 10 time slots over each

of 2 days, would require a total of 750,000 variables! And, the objective was to be able

to schedule 200+ teams, which would have involved a considerably larger search space.

2.1.2 The 2-Dimensional Array

The second approach involved simulating a 2-dimensional array, each dimension with

N entries, where N is the total number of Teams. Each variable in the array would

contain either a 0, or, if a game was to be played between those two teams, a game

number greater than 0. The game number was encoded to contain both time slot and

field information:

b(G− 1) Nc+ 1 = T

G− (T − 1)×N = F

where G is the game number, N is the number of fields, T is the time slot and F is

the field number of the game. For example, in the matrix

Team1 Team 2 Team 3 Team 4

Team 1 0 3 117 230

Team 2 3 0 238 239

Team 3 117 238 0 115

Team 4 15 239 115 0

Teams 1 and 4 will meet on game number 230. Since we have 15 playing fields available

and b(230− 1)/(15)c+ 1 = 16, the game will be played on time slot 16. Consequently,

230− (16− 1) ∗N = 5 which means it will be played on field 5.

A strictly triangular matrix could also be used . This approach also worked, but

not for the required number of teams. It was capable of scheduling a tournament with

about 50 teams in what we considered a reasonable time.

2.2 Success

It was decided that limiting the overall number of variables might yield better results,

so the following model was chosen. The Game Number encoding approach was kept but

the matrix was discarded in favour of lists. Note that every variable holds meaningful

data (none take the value 0). We introduced two lists of lists of the same size. One for

opponent and one for game. For example, the same schedule between teams 1, 2, 3 and

4 would be encoded as

OpponentList = [[2, 3, 4], [1, 3, 4], [1, 2, 4], [1, 2, 3], ...]

GameList = [[3, 117, 237], [3, 238, 239], [117, 238, 115], [15, ...],...]

The lists GameList and OpponentList contain all the coded information necessary

to represent a game Both Team Numbers, Time, Day, and Field Number. This model

was the one which ultimately provided a solution meeting the objectives stated earlier

in this paper. Note that there is still some redundancy that could be eliminated but

this structure proved to be small enough not to cause memory problems. It could be

allocated from the start, as we know exactly how many preliminary games each team

197



will play and the symmetry constraint (team 1 vs team 2 is identical to team 2 vs team

1) is easy to impose.

The playoff games were scheduled after all preliminaries games were scheduled. The

overall structure of the approach was:

solve(GameList,OpponentList):-

initialize(GameList,OpponentList,NumGames),

constrain(GameList,OpponentList),

labeling(OpponentList),!,

ourlabeling(GameList),

outputSchedule(OpponentList,GameList),

schedulePlayoffs(GameList,PlayoffGameList),

outputPlayoffs(PlayoffGameList).

After the appropriate model and the encoding that allowed us to have variable

domains representing with one integer both the spatial component (the field) and the

temporal component (the time slot), the key to success was the search strategy, i.e. the

labeling variable order and the value order. Specifically,

– We label the Opponent List first. When backtracking occurs in an effort to find

a solution, there is no need to swap opponents around. If 1 is scheduled to play

2, then swapping 2 for 3,is most likely not getting any closer to a solution. So we

label the Opponent List first, which is easy, and then focus primarily on getting

the Game List right.

– Labeling the games in order by team caused problems: too many backtracks. In-

stead, the variable ordering was to choose the team that has the most games to

be assigned. Followed by the possible opponent that has the most games to be

assigned. Assign a game number to those two teams at that point.

– The game is chosen to minimize the time to the last game assigned to the team,

while maintaining the appropriate rest period. This is done by pruning domains of

the games not yet assigned immediately after a game assignment, an easy constraint

given our encoding.

– Note that there is no need for one labeling on time slots and one on fields, with

possible ensuing conflicts. The encoding allowed, in a sense, both labellings at the

same time. This was also crucial for the success of the approach.

2.2.1 Objective function

Recall that we had two objectives: first to eliminate, if possible Friday games; second

to minimize the spread between the first and last game of a team. We aim at this

multiple objective by minimizing the time between first and last game of each team,

constraining time slots to avoid Fridays. If the time spent backtracking is too large, we

restart the search allowing Friday time slots. This is clearly heuristic and it is possible

to miss an optimal solution with small game spread and no Friday games. But on the

instances we tried, Friday games were never used.

2.3 Efficiency of the Solution

Actual tournament data was run through the application. We had available the data

for two tournaments. From these, we synthesised variations, by deleting playing fields,

198



deleting time slots, adding teams here and there more or less haphazardly to stretch

the implementation and test its robustness.

For the largest real tournament instance, comprised of 227 teams in the 11v11

bracket, the manually produced schedule used 23 fields, Friday evening games were

scheduled and some teams had to wait up to 10 hours between weekend games in a

given day. We now comment on the automated solution achieved for this instance and

whether the objectives were met.

1. Our ECLiPSe implementation was able to come up with a solution where the

maximum time between games was 4 time slots. This is a considerable improvement

over the 8,9, or 10 time slots that teams commonly have to contend with.

2. In the largest instance solved, 343 games were scheduled across 19 time slots using

19 fields (361 possible events). A clear improvement on the 23 fields required by

the manual solution. Theoretically, one needs b343/19c = 19 fields. Therefore 19

fields is the absolute minimum that can be used. After scheduling the preliminary

games field utilization was just over 95%. In addition, due to the value ordering of

our encoding, most of the unused slots were at the end of the preliminary game

schedule and were used later to schedule playoff games.

3. Playoff scheduling was efficient and made optimal use of the remaining time slots.

After filling the unused preliminary slots with playoff games, only 1 slot could not

be used, for an efficiency of 360/361 or over 99%.

4. It was not necessary to schedule any games on Friday evening.

5. Execution time was below 10 seconds on an average PC.

6. One unintended benefit is that each age group, since they were assigned team

numbers close to each other, tended to play similar schedules. So a coach of sev-

eral teams across different age groups has an excellent chance of attending all the

games. It is now conceivable, through applying additional constraints, to ensure

this additional constraint because the current solution technique is fast enough.

3 Conclusion

We defined a scheduling problem modeling school-age children soccer tournaments in

Michigan. We suspect the problem is almost identical elsewhere in the country. The

problem has temporal and spatial constraints, both soft and hard, and is fairly large

scale, as far as sport schedules are concerned. The first key element of the imple-

mentation is an encoding that allows scheduling time and place of a game with one

instantiation, allows efficient pruning of variable domains for hard constraints and also

allows simple minimization of violation of soft constraints. The second key element is

a search based on a dynamic choice of the variables ordered according to the number

of games yet to be scheduled.

Experiments with real data from two tournaments shows that our implementation

in ECLiPSe, can do an excellent job of scheduling large scale soccer tournaments;

much better, for the instances tested, than the manual schedules that were used. We

are now in a position to add a number of secondary constraints and further improve

the tournament experience for all participants, players, coaches, families and friends.

199



References

1. Easton, K., Nemhauser, G., Trick, M.: CP based branch-and-price. In: Constraint and in-
teger programming, Oper. Res./Comput. Sci. Interfaces Ser., vol. 27, pp. 207–231. Kluwer
Acad. Publ., Boston, MA (2004)

2. Hamiez, J.P., Hao, J.K.: Using solution properties within an enumerative search to solve
a sports league scheduling problem. Discrete Appl. Math. 156(10), 1683–1693 (2008).
DOI 10.1016/j.dam.2007.08.019. URL http://dx.doi.org/10.1016/j.dam.2007.08.019

3. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: an annotated
bibliography. Comput. Oper. Res. 37(1), 1–19 (2010). DOI 10.1016/j.cor.2009.05.013.
URL http://dx.doi.org/10.1016/j.cor.2009.05.013

4. Knust, S.: Scheduling sports tournaments on a single court minimizing waiting times.
Oper. Res. Lett. 36(4), 471–476 (2008). DOI 10.1016/j.orl.2007.11.006. URL
http://dx.doi.org/10.1016/j.orl.2007.11.006

5. Lim, A., Rodrigues, B., Zhang, X.: Scheduling sports competitions at multiple venues—
revisited. European J. Oper. Res. 175(1), 171–186 (2006). DOI 10.1016/j.ejor.2005.03.029.
URL http://dx.doi.org/10.1016/j.ejor.2005.03.029

6. Nemhauser, G., Trick, M.: Scheduling a major college basketball conference. Operations
Research 46, 1–8 (1997)

7. Régin, J.C.: Minimization of the number of breaks in sports scheduling problems using
constraint programming. In: Constraint programming and large scale discrete optimization
(Piscataway, NJ, 1998), DIMACS Ser. Discrete Math. Theoret. Comput. Sci., vol. 57, pp.
115–130. Amer. Math. Soc., Providence, RI (2001)

8. Schaerf, A.: Scheduling sport tournaments using constraint logic program-
ming. Constraints 4(1), 43–65 (1999). DOI 10.1023/A:1009845710839. URL
http://dx.doi.org/10.1023/A:1009845710839

9. Suzuka, A., Miyashiro, R., Yoshise, A., Matsui, T.: The home-away assignment problems
and break minimization/maximization problems in sports scheduling. Pac. J. Optim. 3(1),
113–133 (2007)

10. de Werra, D.: Scheduling in sports. In: Studies on graphs and discrete programming
(Brussels, 1979), Ann. Discrete Math., vol. 11, pp. 381–395. North-Holland, Amsterdam
(1981)

11. de Werra, D.: On the multiplication of divisions: the use of graphs for sports
scheduling. Networks 15(1), 125–136 (1985). DOI 10.1002/net.3230150110. URL
http://dx.doi.org/10.1002/net.3230150110

12. de Werra, D.: Some models of graphs for scheduling sports competitions. Dis-
crete Appl. Math. 21(1), 47–65 (1988). DOI 10.1016/0166-218X(88)90033-9. URL
http://dx.doi.org/10.1016/0166-218X(88)90033-9

13. de Werra, D., Jacot-Descombes, L., Masson, P.: A constrained sports scheduling problem.
Discrete Appl. Math. 26(1), 41–49 (1990). DOI 10.1016/0166-218X(90)90019-9. URL
http://dx.doi.org/10.1016/0166-218X(90)90019-9

200




