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Abstract: Examination Timetabling for Universities is a problem with significant practical 

importance. It belongs to the general class of educational timetabling problems and has been 

exposed to numerous approaches for solving it. We propose a parallel/distributed solution which is 

based on the metaheuristic method Scatter Search combined with Path Relinking in an attempt to 

diversify the search procedure by producing promising new timetables. Our approach improves on 

the best publicly available results for the datasets of ITC2007 (International Timetabling 

Competition 2007-2008). The constraint of limited execution time that was imposed by ITC2007 

was disregarded in an effort to pursue the best values our approach could reach. We consider this 

specific examination timetabling problem as a “test bed” for timetabling problems in general and 

we expect to provide insight for developing effective solution processes for other practical 

scheduling problems. 

Keywords: scatter search, path relinking, examination timetabling 

1. Introduction 

The advent of multicore processors, cloud computing and programmable Graphical Processing 

Units, to name just three of recent massive processing technologies, offer nowadays abundant 

processing power. Difficult practical problems can be revisited and new solution methods can be 

sought under the presence of distributed or parallel environments of execution. Under conditions 

of vast availability of computational resources, mixed integer and dynamic programming 

approaches, which generate provable optimal solutions, become interesting. Equally interesting are 

metaheuristic approaches that sacrifice optimality but are in general simpler to implement and can 

give very good results.  

The Examination Timetabling Problem (ETP) has received ample attention and numerous 

approaches from and across various disciplines have been proposed for solving it. Some of the 

approaches that have given satisfactory results are: Constraint Programming (David, 1998), Hybrid 

methods (Qu and Burke, 2009), Hyper Heuristics (Pillay and Banzhaf, 2008) and various 
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Metaheuristics (Ersoy et al., 2007). In this contribution the ITC2007
1
 model of the Examination 

Timetabling Problem is solved by a Scatter Search metaheuristic and the whole process is 

undertaken by our distributed execution framework called SchedScripter. The solutions that we 

have obtained indicate that significant potential of using analogous methods to similar problems 

exists. We also observed that the benefit of reaching better solutions was complemented by the 

robustness of the procedure. 

The rest of the paper is organized as follows. Section 2 describes the ETP. Section 3 presents an 

introduction to parallel/distributed execution environments and metaheuristics. The SchedScripter 

framework is also presented in the same section. SchedScripter is used for communications and 

workload management needed by the distributed Scatter Search application. Section 4 describes 

the distributed Scatter Search solution approach, with subsections describing Scatter Search and 

Path Relinking. Section 5 presents the experimental results. Section 6 concludes the paper 

asserting that distributed Scatter Search can outperform various single processor approaches in 

terms of solution quality. 

2. Problem Description 

The ETP belongs to the general class of timetabling problems which are known to be NP-complete 

under certain conditions (Schaerf, 1999). Several different formulations of ETP exist ranging from 

rather simple ones to more complicated (Qu et al., 2009). Historically, early formulations 

considered only the avoidance of exam conflicts thus drawing parallelism between ETP and graph 

coloring problems (Carter, 1996) while gradually details regarding rooms, periods and exams were 

added. The main objective of the ETP is to produce timetables giving adequate time between 

exams for all participating students.  

In our contribution, we use the ITC2007 formulation of the problem. Under this formulation a set 

of exams has to be scheduled in a set of time periods and rooms while at the same time a number 

of hard constraints have to be satisfied. Hard constraints are avoidance of conflicts between exams 

for all students, respect of room capacities, matching of exam duration with assigned period 

duration and various constraints regarding ordering between exams and pre-assignment of exams 

to certain rooms. The quality of the solution is measured against cost penalties imposed by a set of 

soft constraints. Examples of soft constraints considered are the presence of two exams in a row 

and two exams in the same day for a particular student, early scheduling of exams with large 

audiences, mixing of exams with different durations in the same room and the usage of rooms and 

periods that have been marked as undesirable. Period spread is also a soft constraint meaning that 

occurrences of consecutive exams for each student within a predefined range of periods are 

penalized. Every soft constraint is related with a weight that prescribes its penalty. Each university 

defines the weight of every constraint according to its preferences thus creating a vector called the 

Institutional Model Index (IMI). The objective function is a weighted sum of the soft constraint 

violations according to the weights defined in IMI.  

                                                 

1
 http://www.cs.qub.ac.uk/itc2007 
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A thorough description of the ITC2007 ETP formulation can be consulted in (McCollum et al. 

2009a) while further details regarding ITC2007 issues in general can be found in (McCollum et al. 

2009b). Twelve datasets were provided for benchmarking and data associated with them are 

presented in Table 1. The last four of the datasets were characterized as hidden indicating the 

intention of the organizers to make them publicly available after the completion of the 

competition. The 12 datasets present significant variation in their characteristics which is also 

observed in real life examination timetabling problems (McCollum, 2007). Therefore, a generic 

successful algorithmic approach should not make any assumptions about specific values. 

 

ITC2007-DATASETS 

  Exams Students Periods Rooms 

Period 

HC 

Room 

HC 

Two In 

A Row 

Penalty 

Two In 

A Day 

Penalty 

Period 

Spread 

Penalty 

No Mixed 

Durations 

Penalty 

Number 

Of 

Largest 

Exams 

Number 

Of Last 

Periods 

To Avoid 

Frontload 

Penalty 

Conflict 

Density 

Dataset 1 607 7891 54 7 12 0 7 5 5 10 100 30 5 5.05% 

Dataset 2 870 12743 40 49 12 2 15 5 1 25 250 30 5 1.17% 

Dataset 3 934 16439 36 48 170 15 15 10 4 20 200 20 10 2.62% 

Dataset 4 273 5045 21 1 40 0 9 5 2 10 50 10 5 15.00% 

Dataset 5 1018 9253 42 3 27 0 40 15 5 0 250 30 10 0.87% 

Dataset 6 242 7909 16 8 23 0 20 5 20 25 25 30 15 6.16% 

Dataset 7 1096 14676 80 15 28 0 25 5 10 15 250 30 10 1.93% 

Dataset 8 598 7718 80 8 20 1 150 0 15 25 250 30 5 4.55% 

Dataset 9 169 655 25 3 10 0 25 10 5 25 100 10 5 7.84% 

Dataset 10 214 1577 32 48 58 0 50 0 20 25 100 10 5 4.97% 

Dataset 11 934 16349 26 40 170 15 10 50 4 35 400 20 10 2.62% 

Dataset 12 78 1653 12 50 9 7 35 10 5 5 25 5 10 18.45% 

Table 1. Datasets characteristics 

3. Parallel / Distributed Execution Environments 

and Metaheuristics 

It is often the case that real life problems generate problem instances that require vast amounts of 

CPU time to create optimal feasible solutions. Although the use of metaheuristics allows 

significant reduction of the search process computational complexity, the wall clock time is still 

the major performance measurement. End-users in many application areas require that high quality 

solutions be obtained as soon as possible. In such applications the cost of hardware resources that 

may be required is considered a minor issue. A detailed presentation of the possibilities in 

metaheuristic design can be found in (Talbi 2009). Recently, parallel processing has again gained 

significant attention as various technology advancements has been performed in processor design 

(multicore processors, GPU computing) and interconnecting networks (e.g. Infiniband). Moreover, 

Grid technologies allow the exploitation of vast amounts of usually volatile loosely coupled 

computational resources, creating an opportunity to exploit such architectures for the design and 

implementation of parallel metaheuristics. 

Many aspects, design decisions and goals have to be considered during parallel metaheuristic 

algorithm design. The most usual goal is to speed up the search process or the improvement of the 

quality of the obtained solutions. The former allows the design of real-time or interactive 

optimization methods, while the latter allows the cooperating metaheuristics to obtain better 

convergence characteristics while reducing search time. Researchers or practitioners using parallel 

processing have managed to improve the robustness of the obtained solutions for various difficult 
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practical problems. This is usually achieved by reducing the sensitivity of the metaheuristics to 

their parameters and by managing to examine the search space in greater detail.  During parallel 

metaheuristic design, questions such as exchange decision criterion (when?), exchange topology 

(where?), information exchanged (what?) and integration policy (how?) have to be answered. 

Detailed presentation of various parallel metaheuristics can be found in (Alba, 2005).  

Our approach was to create a middleware architecture that isolates parallel algorithm design 

components from the mapping to parallel architectures, providing a toolbox to rapidly create 

different parallelization approaches. 

3.1 SchedScripter framework  

SchedScripter (Gogos et al., 2009), (Goulas et al., 2009) is a software framework to assist in the 

development of distributed, grid-based, human resources scheduling applications. SchedScripter 

covers an area between loosely-coupled grid-based workflow systems (Yu and Buyya 2005) and 

message passing libraries. Grid workflow systems create execution workflows based on 

independent jobs and their data dependencies, while message passing libraries assist in the creation 

of parallel/distributed applications using tight message passing protocols like the MPI (Gropp et 

al., 1999). SchedScripter applications main components are the SchedScripter registry, the 

SchedScripter worker nodes and the application coordination process (Figure 1). SchedScripter 

installs a web service container on every worker node to provide a set of services designed to 

allow the worker node to be considered as a single process of a worker collection. A single master 

node provides a registry for the worker node services and ensures that workers remain available. 

All SchedScripter services are offered as XML Web Services for interoperability and ease of 

access. A SchedScripter-based application needs to access the registry to find resources and then 

transfer tasks and code to worker nodes. This process is assisted by an application level task 

scheduler offered in the SchedScripter API. 

 

Figure 1. SchedScripter architecture 
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A natural coordination scheme for web services, supported by SchedScripter, is the use of 

Business Process Execution Language (BPEL
2
) workflows. BPEL allows for web service message 

interactions providing programming language constructs. BPEL tools offer graphical 

representation of application workflows which is a great visualization tool. In order to assist 

resource discovery and utilization using BPEL, the SchedScripter application-level task scheduler 

is available as a web service. Furthermore, since BPEL processes are themselves web services, 

BPEL can offer layers of abstraction, composite services and reuse. The SchedScripter master 

includes Apache ODE
3
 as a BPEL engine, compatible with both BPEL versions, BPEL4WS 1.1 

and WS-BPEL 2.0. 

While web services and BPEL are an easy way to create distributed applications, it was clearly 

demonstrated that it is common for developers to have difficulties in understanding the concepts of 

Service Oriented Architecture so as to use web services and BPEL effectively. To narrow this 

knowledge gap, SchedScripter tries to abstract the process of applying specific distributed 

application patterns and offers them as Application Templates in the form of a Java API. The main 

patterns supported are the master/worker paradigm and the swarm pattern. The master/worker is a 

very popular, centralized pattern where a single master process splits the workload into tasks and 

assigns them to worker nodes. The swarm pattern, also usually referred as peer-to-peer, assumes a 

set of independent processes, each of them deciding on the task to accomplish in order for the 

whole swarm to solve the general problem. These processes communicate frequently with 

broadcasted messages, in order to publish their findings and provide hints to the swarm, which 

may or may not be used. The swarm, in SchedScripter, has a single master, whose role is to 

monitor message exchanges and store the result at the end of the process. While SchedScripter was 

originally developed to be used in the EGEE
4
 grid infrastructure, the framework is generic and can 

be used outside EGEE as well, even in a cluster environment without grid middleware. Indeed, the 

results of this paper were collected during runs on the small cluster of servers of a newly acquired 

blade system running Ubuntu Karmic 9.10 server operating system. 

4. Solution Process 

The solution process that we have chosen is based on metaheuristic Scatter Search and uses data 

structures and algorithms from our previous work described in (Gogos et al, 2010). A stage of 

Simulated Annealing and a stage of Shaking are combined in a single improvement phase that is 

employed whenever an attempt to improve a solution occurs. In the Shaking stage a set of exams is 

formed based on the cost per student contribution of each exam giving preference to higher values. 

The selected exams are removed and then scheduled once again causing distortion to the timetable. 

                                                 

2
 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html 

3
 http://ode.apache.org 

4
 http://www.eu-egee.org 
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4.1 Scatter Search 

Scatter Search is a well known metaheuristic that was originally proposed by Glover for Integer 

Programming problems as a way of combining critical constraints in order to produce new 

“surrogate” constraints (Glover, 1977). It was also included as a stage in the original Tabu Search 

metaheuristic but it was seldom used in various implementations of it. Paper (Glover 1998) played 

a key role in establishing Scatter Search as an independent self contained metaheuristic. Detailed 

descriptions of Scatter Search can be found in (Glover et al., 2002), (Glover et al., 2003) and 

(Laguna and Marti, 2006) while in (Laguna and Armentano, 2000) several practical advices about 

implementing Scatter Search are illustrated. It has to be mentioned that Scatter Search has been 

recently employed in (Mansour et al., 2009) for tackling a modified formulation ETP giving 

promising results.  

Scatter Search is classified as an evolutionary algorithm. It maintains a population of solutions that 

are recombined in order for better solutions to be achieved. Similarities exist with the widely 

known Genetic Algorithm metaheuristic but Scatter Search maintain smaller population of 

solutions, is less dependent on randomization, improves the solution after each recombination of 

solutions and systematically injects diversity into the population. A key point of Scatter Search is 

the concept of reference points (RPs). RP is a “good” solution that has been obtained from a 

previous solution effort. RPs are systematically combined in order for new solutions to be 

generated. Scatter Search starts by generating a pool of good and diverse solutions. From this pool 

a reference set (RefSet) is formed that contains not only the best solutions but also solutions that 

are different from the other already included in the RefSet. Next, new solutions are formed by 

combining members of the RefSet. Each produced solution is improved through heuristic methods. 

The best improved solutions are inserted into the RefSet causing the removal of inferior solutions. 

The procedure continues in an iterative manner creating combinations of the newly inserted 

solutions with already existing solutions of the RefSet. When no new solutions can be inserted into 

the RefSet then either the procedure stops or certain actions are initiated that diversify RefSet by 

replacing solutions with less good but significantly different ones. The general template of Scatter 

Search consists of five methods forming a cycle of continuous improvement over a set of 

solutions. Our implementation of the Scatter Search is shown in (Figure 2) where each solution is 

depicted by a hexagon. The role that each method plays in solving the ETP is presented in the 

following paragraphs. 
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Figure 2. Scatter Search 5 method template 

 

Diversification Generation Method (DGM).   

The purpose of this method is to generate a collection of diverse timetables. In our approach we 

simply loaded a pool with 100 solutions from past experiments done in (Gogos et al., 2010).  

Alternatively, the pool could be generated on demand by running several time bounded 

constructions and improvements while modifying various parameters like construction over 

improvement time, simulated annealing cooling schema etc. Experiments showed that the exact 

method of populating the pool does not hinder the robustness of the approach. Then, an initial 

RefSet is constructed by selecting exams from the pool. Half of RefSet solutions are selected from 

the pool based on their cost. The other half is completed by selecting solutions that exhibit the 

biggest dissimilarity with the timetable of the RefSet that is more similar to the selected solution. 

It has to be noted that diversification is not the same as randomization because the whole process 

is biased towards selecting solutions that differ from other ones. 

Improvement Method (IM).  

Improvement of each solution is undertaken by a cycle of two stages. These stages are “simulated 

annealing” and “shaking”. Simulated annealing allows, in a systematic way, moves to inferior 

solutions thus enabling the possibility of escape from local best values basins. On the other hand 

the purpose of the shaking stage is to dislocate the current solution so as new searches for better 

values to start from yet unexplored points of the search space. In our distributed execution 

approach a master/slave schema is employed. The improvement method executes in parallel by 

worker nodes while a coordinator is responsible for collecting results and producing new jobs 

under the SchedScipter framework described in Section 3. 

RefSet Update Method (RSUM).  

Solutions become members of the RefSet based on their cost. Inferior timetables may also be 

accepted provided that they are sufficiently different from existing timetables in RefSet. The 
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similarity of two solutions is computed based on the number of exams that are scheduled in the 

same period and room in both solutions.  

Subset Generation Method (SGM).  

This method operates on the RefSet and produces a subset that will be used in order for solutions 

to be combined. In our approach pairs of solutions are formed ensuring that each pair has not 

already been examined in the past. 

Solution Combination Method (SCM).  

Path Relinking occurs in this method. Pairs of timetables are combined in order to construct new 

solutions. A given timetable is gradually transformed to another timetable (guiding solution) by 

repositioning exams to periods and rooms. In order for the solution to be in the feasible area 

backtracking moves that remove offending exams and then reschedule them might be necessary.  

4.2 Path Relinking 

Suppose the existence of two complete timetables A and B assuming that A is superior to B 

considering cost value. The objective during Path Relinking is to gradually transform A to B 

hoping that promising timetables will arise during the process (backward relinking). At each step 

of the procedure, certain attributes of A are modified so as to become identical with those of B. 

During the transformation process intermediate, but complete, solutions are stored whenever they 

are considered to be of value for subsequent stages of the overall process.  

More specifically timetable A becomes timetable B gradually in cycles. In each cycle a group of 

exams are selected from timetable A and rescheduled to new periods and rooms so as to comply 

with those found in timetable B. It is possible that the rescheduling of a group of exams in A will 

result in cascaded repositions of other exams in order to retain the feasibility of the solution. 

Whenever the resulting timetable has more differences than the original, a rollback is performed to 

the previous state of timetable A and an extra exam is added to the initial group of exams. The use 

of the Command design pattern (Gamma et al., 1994) made rollback moves easy to be 

programmed. The pseudo-code of the above process follows: 

 

Step 1:  Set N=1. Find differences between A and B and put them on set DIFFS. Set 

MIN_SIZE=|DIFFS|. Set LEVEL=MIN_SIZE 

Step 2:  If MIN_SIZE=0 then terminate. Else all exams of A which are members of DIFFS that 

can be scheduled to the same period and room as in B are repositioned accordingly. 

Step 3:  N exams are selected randomly from set DIFFS. For each selected exam other exams 

must be removed from the timetable so as to allow the scheduling of the selected exam to the 

period and room dictated by B. Priority for removal is given to exams that are not scheduled in the 

same period and room as in B. If removing these exams is not sufficient extra exams are selected 

on the basis of evoking minimum removals of other exams in previous stages of the algorithm. 

Extra exams are selected one by one until the selected exam can be scheduled in the correct period 

and room. Each one of the N exams are scheduled in the period and room found in solution B, 

while a set of exams called UNSCHED contains exams that no longer belong to the timetable. 

218



Step 4:  All exams of set UNSCHED are scheduled to any of the available periods and rooms until 

set UNSCHED become empty. In the process, removal of already scheduled exams is possible. If 

this is the case then exams for removal are selected based again as in Step 3 on the history of 

removals caused by each candidate exam. It should be mentioned that during this step no 

restrictions apply on which exams could be removed. 

Step 5:  Update set DIFFS by finding differences between solution A and B. If 

|DIFFS|>=MIN_SIZE then N=N+1 else MIN_SIZE=|DIFFS|. 

Step 6:  If MIN_SIZE<LEVEL then LEVEL=MIN_SIZE and N=1. Return to Step 2. 

5. Experiments 

While the application development and debugging has been carried out on a small cluster of 

desktop PCs and the South East Europe part of the EGEE infrastructure, the results were obtained 

running on a brand-new IBM Blade system. This system consists of 14 independent servers in a 

single enclosure, each of them powered by a quad core hyper-threaded CPU Xeon processor based 

on Nehalem architecture. These processors were coordinated by another server, which we call the 

head node, a dual CPU quad core Xeon based on Clovertown architecture. 

The head node hosts the SchedScripter master, which includes the services registry, as well as the 

Distributed Scatter Search application coordinator. The 14 blade servers host the worker node 

process and in order to fully exploit the 8 virtual cores (4 real ones hyper-thread), 8 processes start 

on each server. This system was installed recently, so there was little time to measure the impact of 

possible memory bandwidth bottlenecks. The different coordination process runs were managed 

using Sun Grid Engine and a local queue with one slot on the head node. Several configuration 

experiments were taking place at one or two nodes while the experiments were running, removing 

these servers eventually from the available resources, so the resource pool was varying from 12 to 

14 blades, or from 96 to 112 worker processes. The same experiment running on the EGEE grid 

would suffer much more uncertainty in resource numbers, as on the grid resources enter and leave 

at random times during runtime as the system lacks rendezvous mechanisms. 

Every time the coordinator finds a new worker node, it transfers the necessary executables and 

instructs it to load the problem dataset, which is about a minute long process. After this initial step, 

specific improvement tasks are sent to the worker nodes. An improvement task is an instruction to 

perform local search (Simulated Annealing and Shaking), starting from a specific solution with a 

specific set of local search parameters and a timeout period. When the worker node finishes the 

local search, it sends the resulting solution back to the coordinator, using a web service.  

SchedScripter, being a grid framework, is highly tolerant to resource failure events and 

dynamically resizes the resource pool at runtime. Distributed Scatter Search Coordinator as well, 

has been created as a fault-tolerant process, able to dynamically resize its workers pool. Indeed, 

since the biggest part of the debug sessions took place in the EGEE grid, where we submit about a 

couple of hundred of worker jobs, these jobs start at random times as the grid workload 

management system decides. These potential problems in reliability lead us to include fault-

tolerance as an inherent part of the coordination approach. 
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Table 2 displays the best results for each dataset of the problem under the runtime limit of about 

10 minutes imposed by the ITC2007 competition. The second column contains the best results 

collected from the winner of the competition, Tomas Muller, after 100 runs (Muller, 2008). It 

should be noted that no data exist in this paper for the former hidden datasets because at that time 

those datasets were not available. The next two columns are the best results collected after 51 

independent runs as cited in (McCollum et al., 2009). The last column of the table depicts the best 

results over 100 runs as cited in (Gogos et al., 2010). The last 4 values of the last column are not 

included in (Gogos et. al., 2010) so new runs for those datasets were made and the values recorded 

are the best results collected over 100 runs. 

 

Instance (Muller, 2008) (McCollum et al, 2009) 

(Post ITC2007) 

Muller  

(Post ITC2007) 

(Gogos et al, 2010)  

 

Dataset 1 4.356 4.663 4.370 4.775 

Dataset 2 390 405 385 385 

Dataset 3 9.568 9.064 9.378 8.996 

Dataset 4 16.591 15.663 15.368 16.204 

Dataset 5 2.941 3.042 2.988 2.929 

Dataset 6 25.775 25.880 26.365 25.740 

Dataset 7 4.088 4.037 4.138 4.087 

Dataset 8 7.565 7.461 7.516 7.777 

Dataset 9 X 1.071 1.014 964 

Dataset 10 X 14.374 14.555 13.203 

Dataset 11 X 29.180 31.425 28.704 

Dataset 12 X 5.693 5.357 5.197 

Table 2. Best results under time limit 

 

The configuration used in our experiment with Scatter Search included a RefSet of 20 solutions, 

collection of 4 solutions during each Path Relinking, 120 seconds available for each improvement 

attempt and total runtime of 4 hours. In Table 3 the results of our approach are presented and 

compared alongside with results obtained in (Gogos et al., 2009) with the current approach giving 

better results in all datasets. The last column of the table shows the percentage of improvement 

achieved over best results of Table 2. For all 12 datasets improvement was achieved, while for 

certain datasets improvement was beyond our initial expectations. 

 

Instance (Gogos et al, 2009) Current approach (Scatter 

Search) 

Percentage of improvement over best 

results of Table 2 

Dataset 1 4.699 4.128 5,23% 

Dataset 2 385 380 1,30% 

Dataset 3 8.500 7.769 13,64% 

Dataset 4 14.879 13.103 14,74% 

Dataset 5 2.795 2.513 14,20% 

Dataset 6 25.410 25.330 1,59% 

Dataset 7 3.884 3.537 12,39% 

Dataset 8 7.440 7.087 5,01% 

Dataset 9 X 913 5,29% 

Dataset 10 X 13.053 1,14% 

Dataset 11 X 24.369 15,19% 

Dataset 12 X 5.095 1,96% 

Table 3. Best results under no hardware or time limits 

 

In order to be fair in our comparisons a few points have to be stressed out. The execution 

environment is different between approaches included in Table 2 and Table 3. In the former case a 
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time limit of about 10 minutes was given while in the latter no practical time limit was imposed. 

Furthermore, the number of runs is different. In Table 2 the results are the best collected from 51 

or 100 runs while in Table 3 the results are collected from a single experiment that consumed more 

processing power than all runs in each dataset of Table 2. However, we believe that our approach 

demonstrates an effective method for using additional time and CPU resources if they are 

available. 

6. Conclusions 

Evolutionary algorithms usually can be well adapted for execution in parallel or distributed 

systems. This is the case for Scatter Search too. Creation of the initial population and processing of 

solution combinations can be greatly accelerated using distributed workers. In this contribution we 

have proposed a Scatter search technique for tackling the examination timetabling problem 

harnessing the processing power of a very powerful computer system. Results show improvements 

over best known values for all datasets of the ITC2007 ETP problem, which are for some cases 

significant. We acknowledge the fact that results we compare with were obtained under a small 

fraction of the processing time that we spent but we believe that for certain problems this extra 

time can be allocated. Consequently, whenever “very good” solutions for difficult practical 

problems are of significant importance over simply “good” solutions experimentation with scatter 

search or other evolutionary metaheuristics combined with distributed execution environments 

have increased possibilities to pay off. 
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