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Abstract Sub-daily personnel planning, which is the focus of our work offers considerable
productivity reserves for companies in certain industries, such as logistics, retail and call
centers. However, it also creates complex challenges for the planning software. We compare
particle swarm optimisation (PSO), the evolution strategy (ES) and a constructive agentba-
sed heuristic on a set of staff scheduling problems derived from a practical case in logistics.
All heuristics significantly outperform conventional manual full-day planning, demonstra-
ting the value of sub-daily scheduling heuristics. PSO delivers the best overall results in
terms of solution quality and is the method of choice, when CPU-time is not limited. The
approach based on artificial agents is competitive with ES and delivers solutions of almost
the same quality as PSO, but is vastly quicker. This suggests that agents could be an inter-
esting method for real-time scheduling or re-scheduling tasks.

Keywords personnel planning · sub-daily scheduling · metaheuristics · artificial agents

1 Introduction

Staff scheduling involves the assignment of an appropriate employee to the appropriate
workstation at the appropriate time while considering various constraints. This work de-
scribes a method for solving the problem of subdaily staff scheduling with individual work-
stations. According to current research employees spend on average 34.3% of their working
time unproductively [26]. Major reasons include a lack of planning and controlling. The
problem can be faced with demandoriented staff scheduling. Key planning goals are increased
productivity, reduction of staff costs, prevention of overtime, better motivation of employees
with positive results for sales and service [29].

In practice, the application of a system for staff scheduling has not been very prevalent
up to now. Most often planning takes place based on prior experience or with the aid
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of spreadsheets [2]. It is obvious that the afore-mentioned goals of demand-oriented staff
scheduling cannot be realised with these planning tools. Even with popular staff planning
software employees are regularly scheduled for one workstation per day. However, in many
branches, such as logistics and trade, the one-employee-one-station concept does not corre-
spond to the actual requirements and sacrifices potential resources. Intra-day variations in
demand require more flexible changes of employees among workstations. This is the only
way to prevent or at least reduce phases of over- and understaffing. This issue is critical in our
application domain logistics, because on the one hand a high service level is contractually
obligated to the customers and on the other hand the level of competition is high and strict
cost management is required. Therefore, sub-daily planning should be an integral component
of demand-oriented staff scheduling.

It may be argued that the introduction of sub-daily scheduling is likely to generate
resistance among the workers. However, in markets with intense competition, such as lo-
gistics, a company must use it’s opportunities to provide good service at a reduced cost level
to secure the long-term competitiveness and survival of the firm. This is ultimatively also in
the interest of employees. Moreover, in industries with similar characteristics and require-
ments, such as retailing and call centers, the concept of sub-daily scheduling is already in
use.

In our work, we pursue three intertwined research goals. According to Puppe et al. [27],
centralized scheduling approaches are difficult to employ successfully. One of our research
goals is, therefore, to investigate whether this is actually true for sub-daily staff scheduling
problems. To this end, we develop different variants of centralized scheduling approaches
based on modern metaheuristics, namely the evolution strategy (ES) and particle swarm
optimisation (PSO).

The ES was chosen, because our earlier experiments on other application problems [22]
[21] showed great potential of the ES for combinatorial optimisation, even though this is
still a rather neglected field of research and the vast majority of publications on ES deals
with real-valued parameter optimisation. PSO was chosen, because our prior work on staff
scheduling [23] demonstrated that this metaheuristic can produce very good results on this
type of application. We build upon our previous work here by adding a repair heuristic to
further improve results.

The metaheuristics are tested and compared on a set of eight problem instances gen-
erated from a practical logistics case. Here, a second research goal is to contribute to the
comparison of metaheuristics on practical problems of realistic size and complexity. We
compare the results to the manually generated plan (as taken from the cooperating company)
as well as results from a constructive approach.

Ernst et al. [10] provide a comprehensive overview of problems and solution methods
for personnel scheduling and rostering from more than 700 analysed sources. Constructive
methods were applied in 133 of those works. Because of it’s popularity, this method is
included in our comparison. We develop a constructive heuristic approach that builds a
single solution by interaction of multiple artificial agents, following other successful agent-
based scheduling approaches in the literature [27] [18] [9].

Finally, with our research we aim to contribute to the solution of a practical and non-
trivial optimisation problem that is gaining significance in industries such as trade and lo-
gistics as well as call centers. We use real-world data sets and the results of our heuristic
approaches were conceived very positively by the management of the respective company.
However, we have so far not integrated the new solution methods in a commercial software
product. It is worth mentioning here that workforce management consists of many facets
besides optimization that should be adressed within a holistic commercial software solution.

225



In the following section, the application problem is described and the mathematical
model is given. Then, we discuss work related to our own research before developing
approaches based on particle swarm optimisation, the evolution strategy and artificial agents
in section 4. The experimental setup and empirical results are presented and discussed in
section 5. The paper concludes with a short summary and some indications for future work.

2 Description of the Practical Application Problem

The present problem originates from a German logistics service provider. This company
operates in a spatially limited area. The planning problem covers seven days (20 hours each),
divided into 15-minute intervals. It includes 65 employees and, thus, an uncompressed total
of 36,400 dimensions for the optimisation problem to be solved. The planning task is to
find a staff schedule that respects certain hard constraints and minimizes the violation of
soft contraints. Nine different workstations need to be filled, with seven having qualification
requirements. For real-world data sets and benchmarks see [37].

The problem starts out assuming a set of employees E = {1, . . . ,E}, a set of worksta-
tions W = {1, . . . ,W} and a discrete timeframe T with the index t = 0, . . . ,T − 1, where
each period t of the range has a length lt greater than zero. The demand dwt of employees
per workstation and period cannot be negative.

lt > 0 ∀t ∈T
dwt ≥ 0 ∀w ∈W and ∀t ∈T

(1)

The general availability of the employees is known for each interval from the previous
full-day planning. Employees are quite flexible in terms of their working hours, which
results in a variety of shifts. Shift planning was done for 13 possible shifts plus a planned off-
shift. Several considerations are included, such as presence and absence, timesheet balances,
qualifications and resting times etc. Therefore the availability of employees is known at the
beginning of the sub-daily planning and is determined using the binary variable aet .

aet =
{

1 if employee e is available at period t
0 otherwise (2)

The assignment of an employee to a workstation is controlled using the binary variable
xewt .

xewt =
{

1 if e is assigned to w at t
0 otherwise (3)

An employee e can only be associated with a workstation w in the period t if he or she
is actually present. Additionally, an employee can only be designated to one workstation at
a time.

W

∑
w=1

xewt = aet ∀e ∈ E and ∀t ∈T (4)

A staff schedule is only valid if any one employee is assigned to one workstation at a
time and if absent employees are not included in the plan. These hard constraints can be
contrasted with soft constraints, such as the avoidance of understaffing or qualifications.
The violation of soft constraints is penalized with error points. The error points used in our
work are from an interview with the logistics service provider and reflect that company’s
requirements. Basically, they reflect a ranking of constraint violations.
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Special attention must be paid during the scheduling process to compliance with the
required qualifications. The tasks of employees concern loading and unloading, short dis-
tance transportation and other logistic services. There are regulations especially with regard
to qualifications because the assignment of unqualified employees might lead to significant
material damage and personnel injury. The employer regularly invests substantial time and
money in qualification measures. Thus, many employees can work at several different work-
stations. The variety of qualifications was summarised in four qualification groups. Any
workstation can require a set of qualifications Qw, and employees have a set of qualifica-
tions Qe at their disposal. If an employee is planned for a workstation but does not meet
all necessary qualifications, error points Pq are generated for the duration of the assignment
according to the error point size cq. The error point size itself is independent of the particular
workstation or employee.

Pq =
T−1

∑
t=0

W

∑
w=1

E

∑
e=1

cqltxewt

cq > 0 if e is not qualified
for w,

cq = 0 else
(5)

The personnel requirements for each workstation are known in advance and even short-
term alterations occur extremely rarely, which yields a high certainty in planning. If a
discrepancy arises from the workstation staffing target dwt , error points Pd are generated for
the duration and size of the erroneous assignment according to the error point size. Three
types of errors can be distinguished: cdo represents overstaffing when the demand dwt > 0,
cdn signals overstaffing when the demand dwt = 0, cdu signals cases of understaffing. Again,
the three error point sizes are not dependent on the particular workstation.

Pd =
T−1

∑
t=0

W

∑
w=1

(cdn + cdo + cdu)lt

∣∣∣∣∣
(

E

∑
e=1

xewt

)
−dwt

∣∣∣∣∣ ,
with: (6)

cdn > 0 if w is overstaffed at t and dwt = 0, else cdn = 0

cdo > 0 if w is overstaffed at t and dwt > 0, else cdo = 0

cdu > 0 if w is understaffed at t and dwt > 0, else cdu = 0

To avoid an excessive number re of sub-daily workstation (job) rotations for any em-
ployee cr error points arise for such rotations.

Pr = cr

E

∑
e=1

re (7)

Therefore, the objective function to be minimised becomes:

minP = Pq +Pd +Pr. (8)

Currently, monthly staff scheduling is carried out manually within MS EXCELTM. The
personnel demand for the workstations is subject to significant variations during the day.
However, employees are generally scheduled to work at the same workstation all day, caus-
ing large phases of over- and understaffing. This lowers the quality of service and the
motivation of employees and leads to unnecessary personnel costs as well as downtime.
Today, sub-daily workstation rotation is only rarely used in the planning. Usually, department
managers intervene directly on site and reassign the employees manually. Obviously, demand-
oriented staff scheduling cannot be realised with this approach.
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3 Related Work

In [10] Ernst et al. offer a summary of papers related to the issue of staff scheduling – about
700 papers between the years 1954 and 2004 have been included. They identify certain
categories of problems, such as the category flexible demand. This category is characterised
by little available information on schedules and upcoming orders. In our problem a demand
per time interval is given as well as a required qualification. Thus, the application problem
discussed here can be classified in the group flexible demand schemes. It can additionally be
classed under task assignment. Task assignment is used to generate assignments requiring
certain qualifications and needing to be completed in a certain period of time, which are then
distributed amongst the employees. The employees have already been assigned shifts.

As work related to our research Vanden Berghe [33] presents a heuristic to sub-daily
planning. Here, demand is marked by sub-daily time periods, which allows the decoupling
of staff demand from fixed shifts resulting in fewer idle times. However, scheduling ist not
performed at the detailed level of individual workstations as in our research.

In [20] Schaerf and Meisels provide a universal definition of an employee timetabling
problem. Both the concepts of shifts and of tasks are included, whereby a shift may include
several tasks. Employees are assigned to the shifts and assume tasks for which they are
qualified. Since the task is valid for the duration of a complete shift, no sub-daily changes
of tasks (or rather workstations) are made. Blöchlinger [6] introduces timetabling blocks
(TTBs) with individual lengths. In this model employees may be assigned to several se-
quential TTBs, by which subdaily time intervals could be represented within a shift. Blöch-
linger’s work also considers tasks; however, a task is always fixed to a TTB. Essentially, our
problem of the logistics service provider represents a combination of [20] (assignment of
staff to tasks) and [6] (sub-daily time intervals), but with the assignment periods (shifts) of
the employees already being set.

Staff scheduling is a hard optimisation problem. In [12] Garey and Johnson demonstrate
that even simple versions of staff scheduling problems are NP-complete. Kragelund and
Kabel [17] show the NP-hardness of the general employee timetabling problem. Moreover,
Tien and Kamiyama prove in [32] that practical personnel scheduling problems are generally
more complex than the TSP which is itself NP-hard. Thus, heuristic approaches appear
justified for our application.

Apparently, there exists no off-the-shelf solution approach to the kind of detailed sub-
daily staff planning problem considered here. Approaches based on particle swarm optimisation
(PSO), the evolution strategy (ES), and multiple artificial agents for this application are
outlined in the following section.

We now give a short general overview of particle swarm optimisation and the evolution
strategy. For more details, the reader ist referred to [16] [11] for standard-PSO and [4] [5]
for standard-ES. Thereafter, some research of others on agent-based scheduling is outlined
to complete the picture of related work.

The basic principles of PSO were developed by Kennedy and Eberhart among others
[15] [16]. Swarm members are assumed to be massless, collision-free particles that search
for optima with the aid of a fitness function within a solution space. In this process each
single particle together with its position embodies a solution to the problem [34]. While
looking for the optimum, a particle does not simply orient itself using its own experience
but also using the experience of its neighbours [11]. This means that the particles exchange
information, which can then positively influence the development of the population in the
social system as a whole [24].
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Modifications of standard real-valued PSO exist for binary variables, where the speed of
a particle is used as the probability for the change of the binary value [16]. This approach,
however, has several limitations and was changed from binary to decimal variables in [35].
Another PSO-variant was developed for sequence planning tasks [31]. In 2007 Poli analysed
the IEEE Xplore database for the thematic grouping of PSO applications [25]. Of approxi-
mately 1100 publications only one work is focused specifically on timetabling [8] which is
related to our own application problem. In [8], the authors adjust PSO to the combinatorial
domain. No longer is the position of a particle determined by its speed but rather by using
permutation operators. In [7] university timetabling was also approached with PSO.

The evolution strategy (ES) was originally invented by Rechenberg and Schwefel [5]
and soon applied to continuous parameter optimisation problems. Like genetic algorithms
the evolution strategy belongs to the class of evolutionary algorithms that form broadly
applicable metaheuristics, based on an abstraction of the processes of natural evolution [3]
[4]. There is some work on the evolution strategy in combinatorial and discrete optimisation.
Herdy [14] investigates discrete problems with some focus on neighbourhood sizes during
mutation. Rudolph [28] develops an evolution strategy for integer programming by construc-
ting a mutation distribution that fits this particular search space. Bäck [3] discusses mutation
realized by random bit-flips in binary search spaces. Nissen [21] modifies the coding and
the mutation operator of the evolution strategy to solve combinatorial quadratic assignment
problems. Schindler et al. [30] apply the evolution strategy to combinatorial tree problems
by using a random key representation which represents trees with real numbers. Schwefel
and Beyer [5] present permutation operators for the evolution strategy in combinatorial
ordering problems. Li et al. [19] develop a mixed-integer variant of the evolution stra-
tegy that can optimize different types of decision variables, including continuous, normal
discrete, and ordinal discrete values. Nissen and Gold [22] propose an evolution strategy
for a combinatorial network design problem that successfully utilises a repair heuristic
and domain-specific mutations. However, continuous parameter optimisation is still the
dominant field of application for the evolution strategy, as the operators of the standard
form are particularly well adapted to this type of problem.

Next to these metaheuristics, there is also some related work on agent-based scheduling.
Puppe et al. [27] present two concepts for artificial agents on scheduling in hospitals. In the
resource-oriented view each resource or the associated organizational unit is represented as
an agent. This concept is more applicable, when the problem is static. In the patient-oriented
view, an agent is created for every patient examination, which is more adapted to dynamical
problems.

Krempels [18] also creates a staff schedule by using agents. The agent approach is di-
vided in several phases. Initially a planner agent creates a plan ignoring staff preferences.
Thereafter, the planner tries to improve the plan by incorporating preferences. A knowledge
tank stores all relevant aspects of the resources. In case of a conflict, an agent is created for
each staff member, followed by a negotiation phase.

De Causmaecker et al. [9] make comments on negotiation schemes for course time-
tabling. Only necessary information should be exchanged among agents. Moreover, a nego-
tiation process should not take exceedingly long. More recent agent-based approaches for
scheduling are, for instance, presented in [1] and [36].
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4 PSO Approach and Evolution Strategy

4.1 Problem Representation

To apply PSO and the evolution strategy, the sub-daily staff scheduling problem needs to be
conveniently represented. A two-dimensional matrix is applied. Each particle in the swarm
(for PSO) has an own matrix that determines its position. Also, each individual in the ES-
population uses a matrix to represent its solution to the application problem. The rows of
the matrix signify employees and the columns signify each time period of the length lt > 0.
To mark times in which an employee is not present due to his work-time model, a dummy
workstation is introduced (in Table 1: workstation 0). For example, employee two is absent
in the first period and then is assigned to workstation 2. Assignment changes can only be
made to non-dummy workstations, so that no absent employee is included.

To lower the complexity the number of dimensions should be reduced. This can be
realised via a suitable depiction of time. Within the planned day, time is viewed with a
time-discrete model. An event point (at which a new time interval begins) occurs when the
allocation requirement for one or more workstations or employee availability change. With
this method, however, the periods are not equally long any more, so that their lengths need
to be stored.

Table 1 Assignment of workstations in a matrix.

periodemployee
1 2 3 4 5 6 ...

1 1 1 1 1 1 1
2 0 2 2 2 2 2
3 0 1 1 2 2 2
4 0 6 6 6 6 2
5 3 3 2 2 0 0
...

4.2 Repair Heuristic

Both scheduling metaheuristics outlined in this paper employ an identical repair heuristic to
reduce the total error points of a solution. This repair heuristic corrects constraint violations
in the following order based on error point size:

– qualification: employees not qualified for the currently assigned workstation are given
an apropriate assignment whilst ignoring under- or overstaffing

– no demand: employees currently assigned to a workstation with zero demand are given
a different assignment (if possible) whilst simultaneously considering their qualification

– understaffing: if workstations are understaffed employees are reassigned from other
workstations with overstaffing (if possible) also considering their qualification. Thus,
simultaneously the problem of overstaffing is reduced.
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4.3 PSO for this Application

The following pseudocode presents an overview of the implemented PSO. Here, pBest
represents the best position found so far by the particle while gBest corresponds to the best
position of all particles globally.

01: initialise the swarm
02: evaluate the particles of the swarm
03: determine pBest for each particle and gBest
04: loop
05: for i = 1 to number of particles
06: calculate new position // use the 4 alternative actions
07: repair the particle
08: evaluate the particle
09: if f(new position)<f(pBest) then pBest=new position // new pBest
10: if f(pBest)<f(gBest) then gBest=pBest // new gBest
11: next i
12: until termination

At the start of PSO the initialisation of the particle position creates valid assignments
w.r.t. the hard constraints by using information from the companys current full-day staff
schedule. Therefore, valuable prior knowledge is not wasted. Based on this plan, improved
solutions can now be determined that include plausible workstation changes.

In each iteration the new particle position is determined by traversing all dimensions
of the particle and executing one of the following actions with predefined probability. The
probability distribution was heuristically determined in prior tests. The behaviour of the
PSO-heuristic is relatively insensitive to changes of p1, p3, and p4. The optimal value for
p2 depends on the problem size (smaller probabilities for larger problems).

– No change (p1=9.7%): The workstation already assigned remains.
– Random workstation (p2=0.3%): A workstation is randomly determined and assigned.

Only those assignments are made, for which the employee is qualified. The probability
function is uniformly distributed.

– pBest workstation (p3=30%): The corresponding workstation is assigned to the particle
dimension from pBest. Through this, the individual PSO component is taken into ac-
count.

– gBest workstation (p4=60%): The corresponding workstation is assigned to the particle
dimension from gBest. gBest was found to work best as a neighbourhood topology for
this type of application in [13]. By considering the best position of all particles, the
swarm’s experience is included in the position calculation.

Once created, a solution is repaired with the heuristic described above before it undergoes
evaluation.

The characteristics of PSO have not been changed with these modifications. There are
merely changes in the way to determine a new particle position, so that the calculation of
the velocity is not needed. The current form of position determination makes it unnecessary
to deal with dimension overruns. All other peculiarities of PSO regarding social or global
behaviour remain. Even all neighbourhood topologies established as part of continuous
parameter optimisation in standard-PSO remain and can be used without restrictions. In
our implementation, PSO terminates after 400,000 inspected solutions. Alternatively, con-
vergencebased termination criteria could be employed.
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4.4 Evolution Strategy for this Application

The following pseudocode presents an overview of the implemented ES.

01: initialise the population with µ individuals
02: repair the µ individuals
03: evaluate the µ individuals
04: loop
05: copy and recombine parents to generate λ offspring
06: mutate the λ offspring
07: repair the λ offspring
08: evaluate the λ offspring
09: select ((µ +λ ) or (µ,λ )) µ best individuals as new generation
10: until termination

The ES population is initialized with valid solutions w.r.t the hard problem constraints.
Again, information from the company’s current full-day staff schedule is used. We use
the same initialisation as for PSO. (µ,λ )-selection (comma-selection) as well as (µ + λ )-
selection (plus-selection) are used as well as different population sizes. In plus-selection
parents compete with their offspring and can, thus, survive to the next generation cycle.
By contrast, comma-selection assumes that only offspring compete during the selection
process. The best solution found during an experimental run is always stored and updated
in a ”golden cage”. It represents the final solution of the run. Following suggestions in the
literature [4] [5], the ratio µ/λ is set to 1/5 – 1/7 during the practical experiments.

Ten alternative recombination variants were evaluated in a pre-test. The best perform-
ance was achieved with a rather simple form that is based on the classical one-point cross-
over. The recombination of parents to create an offspring solution works as follows: A
common crossover point is determined at random for all employees (rows) of a solution
and the associated parts of the parents are exchanged (see fig. 1).

Fig. 1 Recombination operator employed.

Mutation is the main search operator employed in ES. In standard-ES mutation is per-
formed using normally-distributed random variables so that small changes in a solution are
more frequent than large changes. In [23] we developed a search operator that adheres quite
closely to this classical form of mutation and produced fairly good results.

In this paper, a different approach to mutation is employed that takes the characteris-
tics of the discrete search space better into account. It is based on the work of Rudolph
[28]. He developed an approach to construct a mutation distribution for unbounded integer
search spaces. The concept of maximum entropy is used to select a specific distribution from

232



numerous potential candidates. Rudolph tested his ideas on five nonlinear integer problems.
Some adaptations were required for the staff scheduling problem, though. The search space
in our problem domain is bounded and hard constraints must be considered. In short, the
main differences to Rudolph’s approach are as follows:

– dimension boundaries are introduced to account for the bounded search space
– mutation produces only changes that consider employee availability
– the assignment of workstations during mutation respects necessary qualifications
– the mutation intensity is increased to account for the high-dimensional search space

Before a solution is evaluated it is repaired using the same repair heuristic as was the
case for PSO. The ES terminates when 400,000 solutions have been inspected to allow for a
fair comparison with PSO.

4.5 Artificial Agents for this Application

The two metaheuristic approaches that are based on searching the solution space are con-
trasted with a constructive method that is based on a multitude of interacting artificial agents.
Following the suggestion of Puppe et al. [27], resource-oriented agents are used for this
static staff scheduling application. In our problem, constraints and preferences come from
two directions. On one side is the employer who aims at reduced overall costs, a high service
level, the consideration of qualifications in the schedule etc. On the other side there are the
employees, that try to enforce their rights, such as legal regulations and the minimization of
workstation rotations during the day. Consequently, following Krempels [18], our approach
is structured in two phases associated with employer and employees.

Fig. 2 Representation of the agent approach for the logistics problem.

Fig. 2 shows a schematic representation of our multi-agent approach, which also respects
the recommendations in [9]. The individual steps, that finally construct a staff schedule, can
be described as follows:

– First, the properties of existing resources, current demands and conditions of the prob-
lem space are stored in the knowledge tank (0). This information includes absence of
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employees, required qualifications, error-point values for violations of restrictions, per-
sonnel requirements of each interval etc.

– The information in the knowledge tank is supplied (1) to three agents (2), (5) and (6).
– Before starting to plan, service agent (2) initialises the schedule by assigning all em-

ployees to a dummy workstation. This indicates, that these employees are not currently
assigned to an actual workstation.

– Following that, service agent (2) ranks the nine workstations, with the highest priority
going to workstations for which the least number of employees are qualified. Should the
number of qualified staff for two or more workstations be identical, then the priorities
are ordered at random.

– Scheduling agents (3) are sequentially initialised by the service agent (2), according to
priority. Each scheduling agent (3) represents one of the nine workstations. Only one
scheduling agent (3) exists at any time. The scheduling agent for which the fewest em-
ployees are qualified begins. He schedules qualified employees, who are present and
have not yet been assigned. Over- and understaffing should be minimised as much as
possible. The planning result of the first scheduling agent is passed (4) to service agent
(2), which in turn gives feedback regarding the schedule to the knowledge tank (1). Then,
service agent (2) initiates the next scheduling agent (3), which also attempts to cover its
personnel demand as good as possible. During this process, previously assigned em-
ployees may not be deployed to subsequent workstations. Service agent (2) sequentially
initiates scheduling agents (3) until all nine workstations have been processed.

– After an assignment plan was created, there could still be employees in some timeslots,
who have not yet received an assignment. Switching employees to other workstations
could result in better coverage of demand. The service agent (2) calls a scheduling agent
(5), also connected (1) to the knowledge tank. Scheduling agent (5) finalises the schedule
by deploying all workers, who are still unassigned, necessarily accepting overstaffing.
Possible switches are again checked as to whether they would lead to better demand
coverage and those that would are carried out.

– Assignment planning was done up to now from the point of view of the company. This
occurred while neglecting employee needs – the reduction of the number of workstation
rotations. For this reason, scheduling agent (5) initiates another service agent (6) in
order to consider employee preferences. This service agent (6) is also connected to the
knowledge tank (1).

– Service agent (6) examines each timeslot in the schedule and checks whether a worksta-
tion rotation occurs. If this is the case, all workers are identified for whom a negotiation
could occur for this timeslot. They must be present in the timeslot and qualified for the
switch. Service agent (6) simultaneously generates a staff agent (7) for each relevant
employee. In contrast to the scheduling agents (3), more than one staff agent exists at
the same time.

– Two staff agents (7) negotiate a workstation assignment switch (8) in the following way:
The staff agent where the service agent (6) identified a workstation rotation sequentially
asks the other staff agents for a swap. Each staff agent knows its current workstation
assignment at times t, t − 1 und t + 1. The two communicating staff agents exchange
only information about their assignments at time t. Without re-calculating the whole
fitness function they can now decide, if a swap would reduce the overall error count
of the schedule. If this is the case, they agree to swap and communicate (9) this to the
service agent (6). Then, the swap is executed and all staff agents are deleted. If a swap
would not reduce the error count, the process continues by asking the next staff agent
in the queue. As a result, a swap may or may not occur for each staff agent where a
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workstation rotation was identified, depending on the availability of a swap option that
improves the overall error count of the schedule.

– In addition to the negotiation (8) between staff agents (7), a negotiation is also carried
out between the service agent (6) and the staff agent, for which the workstation rotation
was identified. The goal of this negotiation is not to execute a switch with another staff
agent, but rather to carry out a switch at time t for the workstation at which the em-
ployee is working at times t−1 or t +1. This also helps reduce the number of worksta-
tion rotations. Service agent (6) only agrees to the switch, if the overall quality of staff
assignments does not deteriorate. The result of the negotiation is either the assignment
to a different workstation at time t (and thus the reduction of workstation rotations) or
keeping the assignment as is. This decision is reported to service agent (6) and carried
out.

– Service agent (6) repeats the last three steps up to the point where no further improve-
ments occur.

5 Results and Discussion

The full-day manual staff schedule for the logistics service provider problem without sub-
daily workstation changes results in 411,330 error points after an evaluation that included
the penalties arising from the afore-mentioned constraints.

Table 2 Comparison (error points) of the different sub-daily scheduling heuristics, based on 30 independent
runs each. Best results are bold and underlined.

error number wrong under- overstaffing in minutes
of job qualifi- staffingheuristic

mean min changes cations in in
demand demand

minutes minutes
>0 =0

Manual Plan 411330 411330 0.0 1545.0 20130.0 14610.0 33795.0
Agents 51829 51801 1579.0 0.0 7365.0 28395.0 7245.0
PSO (10) 51752 51736 1502.2 0.0 7365.0 28395.0 7245.0
PSO (20) 51781 51763 1531.4 0.0 7365.0 28395.0 7245.0
PSO (100) 51826 51811 1575.8 0.0 7365.0 28395.0 7245.0
PSO (200) 51841 51817 1591.2 0.0 7365.0 28395.0 7245.0
ES (10,50) 51870 51842 1620.3 0.0 7365.0 28395.0 7245.0
ES (10+50) 51843 51816 1592.5 0.0 7365.0 28395.0 7245.0
ES (30,200) 51855 51835 1604.5 0.0 7365.0 28395.0 7245.0
ES (30+200) 51846 51820 1596.3 0.0 7365.0 28395.0 7245.0

Table 3 t-test results for pairwise comparison of heuristics.

signi- mean 95% confidence
ficance diffe- intervall of

H1 T d f H0 rence differences
(l-tailed) lower upper

PSO(10) < ES(10+50) -26.40 58.00 < 0.001 -90.67 -97.54 -83.79
PSO(10) < Agents -23.57 47.17 < 0.001 -77.27 -83.86 -70.67
Agents < ES(10+50) -3.26 58 = 0.002 -13.40 -21.64 -5.16

The results of the various scheduling approaches are shown in table 2. Thirty inde-
pendent runs were conducted each time for each of the experiments to allow for statistical
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testing. All test runs were conducted on a PC with an Intel 4 x 2.67 GHz processor and 4 GB
of RAM. An individual run with the multi-agent approach takes approx. 1 sec of CPU-time.
The runtime requirements for the PSO and ES approaches are much higher and in the order
of 50 minutes per run (including the repair heuristic). This effort, however, is acceptable as
there is sufficient time available for creating the schedule. Moreover, the required CPU-time
could certainly be reduced, for instance through parallelization, but this was not the focus of
our work.

All heuristics for sub-daily staff scheduling significantly outperform the manual full-day
schedule in terms of total error points. This demonstrates the value of sub-daily scheduling
as compared to today’s standard staff scheduling approach which not only wastes resources
but also demotivates personnel and deteriorates quality of service. Generally, the problems
of understaffing and overstaffing for periods without demand are greatly reduced. On the
other hand, all heuristics lead to more overstaffing in periods with demand > 0 as compared
to the initial plan. This approach, however, is sensible because employees can still support
each other instead of being idle when demand = 0.

The fact that all heuristics arrive at the same value for ’wrong qualifications’, ’un-
derstaffing’ and ’overstaffing in minutes’ should be interpreted cautiously. PSO and ES
find these values due to the use of the repair heuristic, which includes domain-specific
knowledge, just as the agent approach is tailored to the problem at hand. Finding these
values is, thus, not really an easy task.

However, the true complexity of the application lies in the additional requirement to
also reduce the number of job rotations to a minimum. Each job rotation is punished with
only one error point, according to the companies ranking of constraint violations as inquired
through interviews with the management. Thus, the total error counts of individual schedules
by different solution approaches are often quite close. But a schedule that includes many
absurd job rotations will not have acceptance of the planners and the employees. Thus,
even relatively small differences in the overall error count of distinct plans can be quite
meaningful in practice.

Interestingly, the PSO heuristic provides the best results with a rather small swarm size
of 10 particles, but also larger swarm sizes produce good results. Many steps are required
to arrive at a good schedule. Thus, it seems preferable to track changes for more iterations
as compared to richer knowledge (through larger swarm size) of the solution space in each
iteration. This effect is less clear for the ES with solution repair. It was visible for the ES,
though, when no solution repair was employed as in [23].

Apparently, the plus-selection has a slight advantage over the comma-selection for the
ES on this problem instance, but this should not be generalized. The mutation scheme based
on maximum entropy provides better results for the ES than a more traditional approach
based on rounded Gaussian mutations as given in [23]. This result underlines the importance
of adapting the mutation operator to fit the characteristics of the search space as well as
possible.

PSO(10) and ES(10+50) provided the best mean error results in their respective groups.
With 30 independent runs for each heuristic it is possible to test the statistical significance
of the performance difference between both solution methods with a t-test (see table 3).
A Levene-test revealed the homogeniety of variances (test level 5%) between both groups
(F = 3.55, p = 0.065). The corresponding t-test with a 95% confidence interval confirms the
better performance of PSO(10) with a very high statistical significance (p < 0.001 for H0).
The result remains the same, if heterogeniety of variances is assumed. This success of PSO
must be attributed to its operators since the coding of PSO and ES are identical. A second
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reason concerns the fewer strategy parameters in our PSO-approach which are more easily
adapted to the application domain.

Fig. 3 Convergence chart for PSO(10) and ES(10+50).

Fig. 3 shows the convergence behaviour of best variants from PSO and ES in com-
parison. Not only does PSO generate the better final solution, but it also demonstrates a
more rapid convergence towards good solutions. This is generally a desirable characteristic,
particularly when the available time for an optimisation is rather limited (not the case here).

Notwithstanding the fact that the PSO heuristic was able to provide better results for
this problem, it also has one technical advantage over ES. The PSO outlined in this paper
only requires the varying of two parameters (swarm size and p2), which can both be easily
set. ES, on the other hand, offers more parameterisation possibilities (selection pressure,
recombination scheme, plus or comma selection etc.), resulting in greater heuristic com-
plexity from a user’s perspective.

The results from the multi-agent system are quite close to the schedules created by PSO
and in fact better than those generated by ES. A t-test was conducted to compare the best
parameterisation of PSO (swarm size 10) and the multi-agent approach (see Table 3). A
Levene-test revealed the heterogeneity of variances (test level 5%) between both groups
(F = 6.585, p = 0.013). The t-test with a 95% confidence interval confirms the better per-
formance of PSO (10) with a very high statistical significance (p < 0.001 for H0).

A corresponding t-test was conducted between the best parametrisation of ES (10+50)
and the agent approach. The Levene-test here showed a homogeneity of variances (test level
5%) between both groups (F = 0.049, p = 0.826). The t-test confirms the better performance
of the multiagent approach with a very high statistical significance (p = 0.002 for H0).

An advantage of the multi-agent approach over the metaheuristics, alongside the low
CPU-requirements, is the relative simplicity of its scheduling strategy. While it is hard for
a staff planner to grasp what is really happening during optimisation with PSO or ES, the
acceptance for the agent-derived solution is likely to be far higher, since the individual steps
of the planning and negotiation procedure are relatively straightforward and familiar for
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staff managers. The importance of this comprehensibility for the acceptance of the resulting
schedule should not be underestimated.

The agent approach does not violate qualification constraints and over- as well as un-
derstaffing are reduced to the possible minimum as found by PSO and ES. It is only the
number of sub-daily workstation rotations that is different in the solutions produced by the
constructive multi-agent method. To achieve an improved solution quality, an extended re-
scheduling and swapping of assignments would have been required. It must consider more
than two staff members in parallel as well as large parts of the planning horizon. This is
beyond what is possible through one-to-one negotiation of a staff agent with the service
agent or other staff agents. It can only be achieved with the aid of a central planning instance,
that partly ignores the individual preferences of agents for a better overall result of the entire
schedule. Such a central planning instance, however, is not in line with the distributed nego-
tiation and decision scheme that is generally associated with multi-agent systems.

The different solutions approaches were also tested on the smaller problem sets, repre-
senting the individual days of the week. Table 4 shows the respective mean errors (based
again on 30 runs) for each day. The relative performance is similar to the more complex
week problem discussed before, supporting our previous conclusions.

Table 4 Mean results for individual days of the week problem (30 runs each). Best results are bold and
underlined.

Mo Tu We Th Fr Sa So
Manual Plan 85185 178260 91140 15465 11850 14850 14580
Agents 7727 5917 8183 8272 5528 8861 7337
PSO (10) 7712 5900 8161 8248 5500 8838 7330
PSO (20) 7726 5910 8171 8257 5508 8846 7325
PSO (100) 7725 5909 8170 8255 5508 8844 7325
ES (10,50) 7726 5910 8171 8257 5508 8846 7325
ES (10+50) 7725 5909 8170 8255 5508 8844 7325
ES (30,200) 7736 5918 8184 8262 5515 8857 7336
ES (30+200) 7737 5919 8183 8263 5514 8857 7335

6 Conclusion and Future Work

Sub-daily staff scheduling is a meaningful practical problem area. Using a complex, high-
dimensional and highly constrained practical planning scenario from logistics, it was de-
monstrated that sub-daily planning with modern heuristic approaches produces far better
results than traditional spreadsheet-based full day scheduling. Thus, sub-daily scheduling
significantly increases the value contributions of individual staff members. This success of
PSO and ES also contradicts Puppe et al. [27] who suggest that, in contrast to distributed
multi-agent systems, centralized scheduling methods (in our case metaheuristics with a
centrally supervised optimisation approach) are likely to fail due to the many constraints
and complexity of the task.

Because PSO and ES in their traditional forms are not suitable for the planning problem
at hand, the metaheuristics were adapted to the combinatorial domain without sacrificing
their basic mechanisms. PSO outperformed different variants of the evolution strategy on
this problem. The superior performance must be attributed to the operators and parameters
of PSO since the coding of PSO and ES are identical.
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A constructive heuristic, based on interacting agents, performed competitively with the
ES and only slightly inferior to PSO. Based purely on solution quality, PSO should be
favored when runtime is not a seriously limiting factor for optimisation. In our practical
application this is the case.

The agent approach is vastly quicker in finding good solutions. This result suggests
that artificial agents could be useful for real-time scheduling or re-scheduling tasks where
runtime for the optimisation is usually very limited. This conclusion is in line with findings
of other authors in the literature, such as in [1] for crew rescheduling.

Our agent approach also has benefits in terms of user-acceptance, since the generation
of planning results is here more comprehensible than with metaheuristics. In future work we
will take a closer look at other recent agent-based approaches for related problems such as
the ones presented in [1] and [36].

In addition to the results presented in this paper, we have also experimented with Tabu
Search (TS) as a well-known and not population-based local search metaheuristic. Although
TS was tailored to the problem at hand, the results achieved so far are not competitive
with the three heuristics outlined here. Moreover, TS appears to be strongly influenced by
characteristics of the initial solution. Additionally, TS displays slower convergence and,
thus, uses more fitness evaluations than PSO and ES to arrive at results of reasonable quality.

In our current research, similar scheduling problems from the domain of trade are inves-
tigated. Here, a particularly flexible form of demand-oriented personnel planning is gaining
significance. The assumption of fixed shifts is given up and automatic generation of work-
ingtime models and staff scheduling are done in parallel, which further increases the com-
plexity of the task. The results achieved so far confirm the value of sub-daily staff schedu-
ling. Moreover, metaheuristics demonstrate a more robust performance than a constructive
approach when the application problem is slightly varied.
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18. Krempels, K.H.: Lösen von Scheduling-Konflikten durch Verhandlungen zwischen Agenten. In: Sauer J.

(ed.): Proc. of PuK 2002, 86–89 (2002)
19. Li R., Emmerich M.T.M., Bovenkamp E.G.P., Eggermont J., Bäck T., Dijkstra J., Reiber J.H.C.: Mixed
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