

An efficient and robust approach to generate

high quality solutions for the Traveling

Tournament Problem

Douglas Moody, Graham Kendall and Amotz Bar-Noy

City University of New York Graduate Center and School of Computer Science

(Moody,Bar-Noy), University of Nottingham, UK (Kendall)

dmoody@citytech.cuny.edu, gxk@cs.nott.ac.uk,

amotz@sci.brooklyn.cuny.edu

The Traveling Tournament Problem (TTP) describes a typical

sports scheduling challenge. The TTP, which is based on the U.S.

Major League Baseball (MLB), has specific instances with results

available on the web. Several approaches have been proposed

since the problem’s creation. The “best” of these solutions use ex-

tensive resources in local search activities to find high quality so-

lutions. We propose a tiling method that can produce a good qual-

ity solution, using a fraction of the resources documented in other

approaches. Our solution can also be expanded to handle the ad-

ditional real-world scheduling requirements, including unbalanced

schedules within the MLB.

1 Introduction

The Traveling Tournament Problem (TTP) is a double round robin tour-

nament to be played by n teams over (2n-2) periods or weeks, where each

team plays in every period (we do not consider the “mirrored” version of

the problem). The three constraints of the TTP are:

1) Maximum “Road Trip” of three games: each team can play at most

three consecutive games away from the team’s home site before

playing again at the home site. For teams beginning the season with

an away game, it is assumed travel for that game would begin at the

home site. Likewise, teams ending the season with an away game,

would require to travel from that opponent’s location to the team’s

home site to complete the season.

2) Maximum “Home stand” of three games: each team can play at most

three consecutive games at its home site.

3) Repeater Rule: a team cannot play an opponent away in time period k

and then home in time period k+1, or vice versa.

The TTP seeks to minimize the distance traveled by each team. A dis-

tance matrix is available to define the distance between each team. This

calculation is used for each road trip, with the total being the accumulated

distance for all teams. The selection of opponents and their order within

273

the road trip is critical, while home stands have no bearing on the distance

calculation. Efficient road trips across all teams are more likely to yield

good quality solutions to the TTP.

The TTP has served as a benchmark problem for sports scheduling

over the past decade. Easton et al. [6] defines the problem, and the latest

results are available at [14]. However, the TTP definition notes its simpli-

fication of the actual Major League Baseball. This simplification elimi-

nates some key complexities of the MLB, notably:

Existence of unbalanced schedules – Teams in MLB play other teams

within their division more frequently than teams in other divisions.

Unequal home and away games – Due to Inter-league play, teams do

not play an equal number of home and away games against all teams. It

also introduces constraints of teams from the same city playing on the

same day. Kendall [7] notes this constraint in scheduling the English

football league.

These two simplifications enable many solution approaches to take ad-

vantage of round-robin tournament scheduling for the TTP. The solutions

that depend on a mirrored approach would not be able to produce an un-

balanced schedule. Other approaches use simple tournament generators

that also would not handle an unbalanced schedule. We propose an ap-

proach that can compete with existing TTP tournament based solutions

sets, and also be extendable to handle the real MLB problem.

2 Related Work

The TTP has spawned a variety of methodologies to find good quality

solutions. Kendall et al. [8] surveys this broad array of approaches. The

work to date can be viewed in two phases. The first phase consists of

traditional approaches including simulated annealing by Anagnostopou-

los [2], Lims’ [11] work on integer programming, the constraint pro-

gramming approach by Leong [10] , and tabu search proposed by Di Gas-

pero and Schaerf [5]. Also special heuristics have been developed as

used by Shen and Zhang [13]. The second phase focuses on the use of

parallel processing and server farms. Van Hentenryck and Vergados [16],

and Araujo [1] use a parallel implementation of existing algorithms to

improve on published results.

The majority of the above methods have focused almost exclusively on

local search operations to produce the best solutions. The initial neigh-

borhood for the local search is usually generated at random, and is not

necessarily feasible. Hence the starting “neighborhood” may be extreme-

ly far from the optimal solution, in terms of a distance measured by the

number of “swaps”, which are defined as moves between neighborhoods.

Our approach seeks to create an initial neighborhood that is a feasible

solution closer to the optimal solution than random initial solutions. We

use a tiling method, proposed by Kingston [9] for course scheduling.

Our tiling method creates an initial solution that has minimal hard con-

274

straint violations, and contains a core set of game assignments for a high

quality solution. The second phase of local search is used to remove con-

straint violations, and tune the solution.

The concept of modeling the problem using away trips was also consi-

dered by Trick [15]. A new variable, representing a road trip is introduced

into the model. The road trip variable is constructed as game assignments

are made. This variable affects the value of the objective function, and

hence the road trips are modified to reduce the objective function. Hence

many road trips are considered for a given team during the running of the

model. This approach differs from our approach, as we begin the schedul-

ing process with existing road trip (tile) formations. During our schedul-

ing phase, we do not re-formulate a tile, based upon other assignments.

We may break a tile into its component parts, but these parts are not reas-

sembled into another tile. Our approach is based on a fixed set of tiles.

3 Proposed Approach

Our approach is a two phase approach involving tiling, followed by a

local search phase. The tiling phase creates an initial solution, which may

not be feasible. The second phase (a local search) removes the hard con-

straint violations and improves the quality of the solution.

3.1 Tiling

We model the road trips of the TTP as “tiles”. Each tile contains

“blocks”, which represent individual games. A road trip of three oppo-

nents is considered as one tile, with three blocks. A teams’ schedule can

be thought of as a series of tiles, with home games as spacers between the

tiles. Figure 1 shows the scheduling grid and tiles for Team 1 and Team 2.

Fig. 1. Tile Placement for Teams 1 and 2 (shaded cells indicate an away game)

For each team a set of tiles is created that seeks to minimize the dis-

tance traveled for a particular team, without taking into account any con-

straints involving other teams. These tiles are placed in a scheduling grid

of n rows representing teams and (2n-2) columns representing weeks.

 As tiles are placed, other cells of the grid are filled in to maintain

schedule consistency with the tile placement. When no more tiles can be

275

placed, the tiles are broken into their component blocks, and placed sub-

ject to TTP constraints. If all blocks cannot be placed, the consecutive

home and away constraint is relaxed, allowing all blocks to be placed

albeit in an infeasible solution.

The creation of the tiles is carried out on a team by team basis. For

each team a minimum spanning tree (MST) is created by using the Prim

[4] algorithm. The algorithm begins with the selection of a root node, in

our approach this is a team. All distance edges in the distance matrix,

defined in the problem, are searched for the smallest edge. Each edge has

a vertex of a team in the tree, and a vertex of a team not in the tree. This

edge is then added between the two teams. For the first branch, we are

finding the nearest opponent of the root team. The second edge is the

nearest team to the root team, or its first opponent. Edges that are added

to an opponent will suggest that the two vertices or teams will be on the

same road trip or tile. Two edges having the same root node as a vertex,

suggest that the two opponents of the root team will be on different road

trips. Figure 2 presents an example MST for the team Pittsburgh (PIT) in

the NL6 problem documented in [14].

Fig. 2. Minimum Spanning Tree (MST) for PIT in NL6 and the accompanying

distance matrix.

Figure 2 suggests that the team PIT should have 2 road trips or tiles –

one with ATL and FLA, and the other with PHI, followed by NYM and

MON. If the team completes these two road trips, the team may have

travelled the optimal minimum distance. This does not imply the league

overall will have optimal minimal distance, but rather just this team.

We use a tree collapsing algorithm to create tiles from the tree struc-

ture. Separate trees are created with each tree having the root node of a

team. The collapsing approach merges child nodes into their parent node.

When the parent has three teams, a tile is created. When the parent must

decide among its children, a greedy method is used, to pick the best set of

three teams from the parent and children. Figure 3 provides a sample col-

lapsing process.

276

Fig. 3. Creation of Tiles through collapsing of the tree

The three team tile creation process creates ceiling((n-1)/3)*n tiles.

Note that all tiles have three blocks, with the possible exception of the last

tiles created for the team. At the root node, if both children have a weight

of two nodes, two tiles of two blocks are created for each child.

277

 After tile creation, each tile is given a cost. This cost is calculated to

capture some measurement of the impact on the objective function of

breaking up the tile. The cost is the sum of a round-trip of the home team

to each opponent within the tile, minus the actual distance to be traveled

between teams within the tile. This cost is then used to prioritize the or-

der that tiles will be placed in the schedule.

We select the tile with the highest cost. We place this tile on the first

available space on the schedule without violating any constraints. We

start with week one, and move forward checking all constraints for the

three games represented in the tile. If the tile cannot be placed in week 1,

we rotate the tile, by changing the order of the first and last teams in the

road trip. This rotation does not alter the distance associated with the tile.

The tile is moved through the schedule week by week until a placement

can be found.

The tile placement process is continued for each tile in cost priority or-

der. When no more tiles can be placed we break all tiles into individual

games. The games are then placed in the schedule, starting from the first

week of the schedule. We relax the maximum away games and home

stand rules as well as the repeater rule constraints at this point to allow for

placement of all games. When a game cannot be placed, given these re-

laxations, previous assignments are backtracked. If the backtracking of

the individual games does not produce a feasible schedule, then the last

place tile is backtracked.

One noteworthy aspect of our approach is that tiles are never broken

and then formed into new tiles, referred to as reconfiguration. This

process involves breaking two tiles in their component blocks, and re-

grouping the blocks into two new tiles.

3.2 Local Search

The local search phase of our approach is designed to remove any hard

constraint violations and improve the quality of the schedule. When it is

possible to place all tiles, a near optimal solution based on the quality of

our tile set can be generated. The breaking of the tiles is where our initial

solution degrades. Hence, the games placed singularly are the root of all

hard constraint violations, and higher than optimal travel distances. Our

local search seeks to reach the best local minimum of our initial solution,

after performing a variety of “swaps”. Each swap moves a set of games

within the schedule while maintaining, or improving, feasibility and the

objective function of the solution.

We employ the following sets of swaps during our local search phase:

 Home / Away Swap – We swap two games, involving the same

two teams, where each team is home in one game and away in the other

game. The swap is done between two weeks.

 Round Swap – All games for two weeks are moved between the

two weeks.

278

 Partial Round Swap - The partial round swap described in [2],

moves a set of connected games between two weeks. We begin this oper-

ation by selecting two games in different weeks. The teams in these

games create our swap set. We then add teams playing these two teams,

in either week, to the swap-set. The process continues until all teams, in

both weeks, are in the swap set or its complement. We then move all

games involving teams in the swap set between weeks. We can also

choose to move all teams in the complement of the swap set between the

weeks.

The local search phase is an iterative process to optimize the impact of

the above swap actions. We look at each swap in the order above, and

analyze the schedule improvement, if any, of each possible swap. The

swap with the largest improvement is performed to reach a new schedule.

If no improvement can be found, we move to the next type of swap in the

list above. The same process is used until no improvement can be found.

After performing all possible swaps of the last type (partial round), we

have reached a local minimum and stop the local search.

4 Results

Our two phase approach of tiling and local search enables us to produce a

high quality solution with minimal resources. We only use a small frac-

tion of the resources consumed by the best known approaches. Our plat-

form is a 2.13 Ghz Dell laptop, using a .NET software application.

We use three approaches for comparison, presented in Table A. The

first approach, described by Van Hentenryck and Vergados [16] is a pa-

rallel processing approach, carried out on clusters of dual-processor blade

servers. They use a simulated annealing based Traveling Tournament

approach first proposed by Anagnostopoulos [2]. The second approach

by Di Gaspero and Schaerf [5] uses tabu search. The final comparison is

with Araujo et al. [1], using parallel processing. This approach is also a

two phase approach, with a random initial neighborhood construction,

followed by a greedy search phase to reach a local minimum to produce a

mirrored solution. The local search phase is iterated after a perbutation of

the initial neighborhood.

279

Instance Tiling

Results

Van Hen-

tenryck

and Ver-

gados

Results

[16]

Di Gas-

pero and

Schaerf

Re-

sults [5]

Araujo et

al.

(GRASP)

Results

[1]

Average

% Dif-

ference

from Tiling

NL 16 317,764 267,194 279,465 285,614 14.54%

NFL 16 266,231 235,930 238,581 N/A 12.21%

NFL 18 339,822 296,638 N/A 299,134 14.08%

NFL 20 406,463 332041 352947 359,748 16.71%

NFL 22 482,374 412,812 439,626 418,086 13.90%

NFL 24 544,354 463,657 499017 465,491 14.34%

CON16 354 N/A 328 342 5.67%

CON18 466 N/A 418 432 9.64%

CON20 568 520 521 522 9.02%

Table A: Results Comparison (best solutions in bold)

Instance Tiling

Time

Van Hentenryck

and Vergados

Time – Best [15]

Di Gaspero and

Schaerf Time – [5]

NL 16 38 1,815 51,022.4

NFL 16 35 2,220 N/A

NFL 18 105 3,120 N/A

NFL 20 135 6,750 N/A

NFL 22 150 8,100 N/A

NFL 24 320 5,490 N/A

CON16 18 N/A 19,665

CON18 22 N/A 33,979

CON20 23 N/A 46,579

Table B: Time Comparison in seconds

We choose instances with a higher number of teams and the con-

strained constant distance instances of the problem, for comparison. The

instances with fewer teams have been addressed by a variety of algo-

rithms, whereas instances with 16 teams or more have been addressed

successfully by only the above approaches.

Table A compares the results and resources of our tiling approach with

the best-known approaches. Our tiling approach comes withinn 10-16%

of the objective function for the TTP for all approaches. The tiling ap-

proach produces slightly better results where the number of games to be

played by each team is divisible by three. This situation allows all games

for a team to be placed in 3-team tiles. Hence our 16 and 22 team in-

stances are slightly better in comparison with the other approaches.

For the constrained instances, our approach is even closer than the

higher NFL instances. The construction and costing of the tiles is not im-

portant, since all distances are constant. Hence each tile for a team has

the same cost, when the tile is broken. Our 16 team instance, dictating 5

280

tiles of 3 teams per tile, provides our best result. One factor in this result

is that the games for each team can be constructed into a set of tiles with 3

games each. This enables more tiles to be placed in the initial neighbor-

hood, increasing the quality of the initial solution.

 We use only a few seconds compared to the substantive time used in

the other approaches. Table B compares our times with the published

times of the approaches with comparable metrics.

The key difference between our tiling approach and the other ap-

proaches is the initial neighborhood. Our initial neighborhood is built

based upon tiles, which are high quality partial solutions. Hence our ap-

proach saves the time used by others in the local search to develop a high

quality initial solution. We follow our tiling phase with an efficient

greedy approach to quickly develop a solution relatively close to the best

known solutions.

 The most illuminating result is the NL16 figure for Araujo et al.

in Table A. The result of 285,614 was achieved by running the GRASP

algorithm in sequential mode outlined in [1] for 5 days. This algorithm is

similar to our local search, because of its greedy nature. Both algorithms

explore all possible swaps of a given category and perform the swap with

the greatest improvement. When no improvements can be made, the local

minimum is reached. Since the local search phases are similar, the key

difference between the approaches is the construction of the initial neigh-

borhood. The results in the table show the results of using GRASP on

neighborhoods created, over a 5 day time span. After each local minimum

is reached, random swaps are done to create a new neighborhood. Hence

large numbers of initial neighborhoods are created over the 5 day

processing period. The best of these neighborhoods led to only an 8.5%

improvement of creating one initial neighborhood solution through tiling.

5 Conclusion and further work

Our approach indicates substantial resource savings in finding good quali-

ty solutions for the TTP. Our initial neighborhood, along with a minimal

local search phase can produce high quality solutions. In our future work

we will compare solution results among the best approaches, to under-

stand the distance of our initial neighborhood from the best known solu-

tion sets. This will enable us to identify the transformations needed to

move from our initial neighborhood more directly to the best solutions.

We also plan to expand the TTP to handle a complete Major League

Baseball schedule, which was the original motivation for the problem.

Albeit the actual MLB schedule has a wide variety of real-world con-

straints, we look to expand the TTP by implementing the actual unba-

lanced team schedules and inter-league play of the MLB master schedule.

These instances will greatly increase the complexity of the schedule due

to its unbalanced nature.

281

References

1. Araújo, A., Boeres, M.C., Rebello, V.E., Ribeiro, C.C., Urrutia, S..,

Exploring Grid Implementations of Parallel Cooperative Metaheuris-

tics, A Case Study for the Mirrored Traveling Tournament Problem.

Chapter 16, Metaheuristics Volume 39, US:Springer, 2007.

2. Anagnostopoulos A., Michel L., Van Hentenryck P., Vergados Y. A

simulated annealing approach to the traveling tournament problem.

Journal of Scheduling 2006;9:pp. 177–93.

3. Bar-Noy, A. and Moody, D. “A Tiling Approach for Fast Implementa-

tion of the Traveling Tournament Problem,” Practice and Theory of

Automated Timetabling (PATAT06, Brno, August 2006), Conference

Proceedings, pp. 351-358.

4. Cormen, Thomas H. , Leiserson, Charles E., Rivest Ronald L., Stein,

Clifford, Introduction to Algorithms. pp. 570-573.Boston: McGraw-

Hill, 2001.

5. Di Gaspero L, Schaerf A. A composite-neighborhood tabu search ap-

proach to the traveling tournament problem. Journal of Heuristics

2007;13:pp. 189–207.

6. Easton K., Nemhauser G.L., Trick M.A. The travelling tournament

problem: description and benchmarks. In: Walsh T, editor. Principles

and practice of constraint programming. Lecture notes in computer

science, vol. 2239. Berlin: Springer; 2001. pp. 580–5.

7. Kendall G. Scheduling English football fixtures over holiday periods.

Journal of the Operational Research Society 2008; 59:743–55.

8. Kendall G., Knust S., Ribeiro C. C. and Urrutia S. Scheduling in

Sports: An Annotated Bibliography. Computers & Operations Re-

search (2009), 37: pp.1-19

9. Kingston, J. A tiling algorithm for high school timetabling, Proceed-

ings Practice and Theory of Automated Timetabling (PATAT04, Pitts-

burgh, August 2004, USA).,Conference Proceedings, pp. 208-225.

10.Leong, G. (2003). Constraint programming for the traveling tourna-

ment problem.

www.comp.nus.edu.sg/henz/students/gan_tiaw_leong.pdf

11.Lim, A., Zhang, X. (2003) Integer programming and simulated anneal-

ing for scheduling sports competition on multiple venues, Proceedings

of the Fifth Metaheuristics International Conference (MIC 2003).

12.Ribeiro CC, Urrutia S. Heuristics for the mirrored traveling tourna-

ment problem. European Journal of Operational Research

2007;179:pp. 775–87.

13.Shen, H., Zhang, H. (2004) Greedy Big Steps as a Meta-Heuristic for

Combinatorial Search. The University of Iowa AR Reading Group,

Spring 2004

14.Trick, M.A., Challenge Traveling tournament instances. Online docu-

ment at http://mat.gsia.cmu.edu/TOURN/.

15.Trick MA., Formulations and Reformulations in Integer Programming.

Lecture Notes In Computer Science; Integration of AI and OR Tech-

niques in Constraint Programming for Combinatorial Optimization

Problems, Volume 3524/2005 pp: 366-379. Springer 2005.

16.Van Hentenryck, P. and Vergados Y., “Population-Based Simulated

Annealing for Traveling Tournaments”, AAAI - National Conference

on Artificial Intelligence, 2007

282

