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The Traveling Tournament Problem (TTP) describes a typical 

sports scheduling challenge. The TTP, which is based on the U.S. 

Major League Baseball (MLB), has specific instances with results 

available on the web.  Several approaches have been proposed 

since the problem’s creation.  The “best” of these solutions use ex-

tensive resources in local search activities to find high quality so-

lutions.  We propose a tiling method that can produce a good qual-

ity solution, using a fraction of the resources documented in other 

approaches.  Our solution can also be expanded to handle the ad-

ditional real-world scheduling requirements, including unbalanced 

schedules within the MLB.  

1   Introduction 

The  Traveling Tournament Problem (TTP) is a double round robin tour-

nament to be played by n teams over (2n-2) periods or weeks, where each 

team plays in every period (we do not consider the “mirrored” version of 

the problem).  The three constraints of the TTP are:  

 

1) Maximum “Road Trip” of three games: each team can play at most 

three consecutive games away from the team’s home site before 

playing again at the home site.  For teams beginning the season with 

an away game, it is assumed travel for that game would begin at the 

home site. Likewise, teams ending the season with an away game, 

would require to travel from that opponent’s location to the team’s 

home site to complete the season. 

 

2) Maximum “Home stand” of three games: each team can play at most 

three consecutive games at its home site.   

 

3) Repeater Rule: a team cannot play an opponent away in time period k 

and then home in time period k+1, or vice versa. 

 

The TTP seeks to minimize the distance traveled by each team. A dis-

tance matrix is available to define the distance between each team. This 

calculation is used for each road trip, with the total being the accumulated 

distance for all teams. The selection of opponents and their order within 
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the road trip is critical, while home stands have no bearing on the distance 

calculation. Efficient road trips across all teams are more likely to yield 

good quality solutions to the TTP. 

 

The TTP has served as a benchmark problem for sports scheduling 

over the past decade.  Easton et al. [6] defines the problem, and the latest 

results are available at [14]. However, the TTP definition notes its simpli-

fication of the actual Major League Baseball. This simplification elimi-

nates some key complexities of the MLB, notably: 

 

Existence of unbalanced schedules – Teams in MLB play other teams 

within their division more frequently than teams in other divisions. 

 

Unequal home and away games – Due to Inter-league play, teams do 

not play an equal number of home and away games against all teams. It 

also introduces constraints of teams from the same city playing on the 

same day.   Kendall [7] notes this constraint in scheduling the English 

football league.  

 

These two simplifications enable many solution approaches to take ad-

vantage of round-robin tournament scheduling for the TTP.  The solutions 

that depend on a mirrored approach would not be able to produce an un-

balanced schedule. Other approaches use simple tournament generators 

that also would not handle an unbalanced schedule.  We propose an ap-

proach that can compete with existing TTP tournament based solutions 

sets, and also be extendable  to handle the real MLB problem.  

2  Related Work 

The TTP has spawned a variety of methodologies to find good quality 

solutions.  Kendall et al. [8] surveys this broad array of approaches.  The 

work to date can be viewed in two phases. The first phase consists of  

traditional approaches including  simulated annealing by Anagnostopou-

los [2],   Lims’ [11] work on integer programming, the constraint pro-

gramming approach by Leong [10] , and tabu search proposed by Di Gas-

pero and  Schaerf [5]. Also special heuristics have been developed as 

used by Shen and Zhang [13].  The second phase focuses on the use of 

parallel processing and server farms. Van Hentenryck and Vergados  [16], 

and Araujo [1] use a parallel implementation of existing algorithms to 

improve on published results.  

 

The majority of the above methods have focused almost exclusively on 

local search operations to produce the best solutions. The initial neigh-

borhood for the local search is usually generated at random, and is not 

necessarily feasible.  Hence the starting “neighborhood” may be extreme-

ly far from the optimal solution, in terms of a distance measured by the 

number of “swaps”, which are defined as moves between neighborhoods. 

 

Our approach seeks to create an initial neighborhood that is a feasible 

solution closer to the optimal solution than random initial solutions.  We 

use a tiling method, proposed by Kingston [9] for course scheduling.   

Our tiling method creates an initial solution that has minimal hard con-
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straint violations, and contains a core set of game assignments for a high 

quality solution.  The second phase of local search is used to remove con-

straint violations, and tune the solution.  

The concept of modeling the problem using away trips was also consi-

dered by Trick [15]. A new variable, representing a road trip is introduced 

into the model. The road trip variable is constructed as game assignments 

are made. This variable affects the value of the objective function, and 

hence the road trips are modified to reduce the objective function.  Hence 

many road trips are considered for a given team during the running of the 

model. This approach differs from our approach, as we begin the schedul-

ing process with existing road trip (tile) formations.  During our schedul-

ing phase, we do not re-formulate a tile, based upon other assignments. 

We may break a tile into its component parts, but these parts are not reas-

sembled into another tile. Our approach is based on a fixed set of tiles. 

3  Proposed Approach 

Our approach is a two phase approach involving tiling, followed by a 

local search phase.  The tiling phase creates an initial solution, which may 

not be feasible. The second phase (a  local search) removes the hard con-

straint violations and improves the quality of the solution.    

3.1  Tiling 

We model the road trips of the TTP as “tiles”. Each tile  contains 

“blocks”, which represent individual games. A road trip of three oppo-

nents is considered as one tile, with three blocks. A teams’ schedule can 

be thought of as a series of tiles, with home games as spacers between the 

tiles. Figure 1 shows the scheduling grid and tiles for Team 1 and Team 2. 

 

 

Fig. 1.  Tile Placement for Teams 1 and 2 (shaded cells indicate an away game) 

 

For each team a set of tiles is created that seeks to minimize the dis-

tance traveled for a particular team, without taking into account any con-

straints involving other teams. These tiles are placed in a scheduling grid 

of n rows representing teams and (2n-2) columns representing weeks.  

 

 As tiles are placed, other cells of the grid are filled in to maintain 

schedule consistency with the tile placement. When no more tiles can be 
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placed, the tiles are broken into their component blocks, and placed sub-

ject to  TTP constraints. If all blocks cannot be placed, the consecutive 

home and away constraint is relaxed, allowing all blocks to be placed 

albeit  in an infeasible solution. 

 

The creation of the tiles is carried out on a team by team basis. For 

each team a minimum spanning tree (MST) is created by using the Prim 

[4] algorithm.  The algorithm begins with the selection of a root node,  in 

our approach this is a team. All distance edges in the distance matrix, 

defined in the problem, are searched for the smallest edge. Each edge has 

a vertex of a team in the tree, and a vertex of a team not in the tree. This 

edge is then added between the two teams. For the first branch, we are 

finding the nearest opponent of the root team. The second edge is the 

nearest team to the root team, or its first opponent. Edges that are added 

to an opponent will suggest that the two vertices or teams will be on the 

same road trip or tile. Two edges having the same root node as a vertex, 

suggest that the two opponents of the root team will be on different road 

trips.  Figure 2 presents an example MST for the team Pittsburgh (PIT) in 

the NL6 problem documented in [14]. 

 

Fig. 2.  Minimum Spanning Tree (MST) for PIT in NL6 and the accompanying 

distance matrix. 

 

Figure 2 suggests that the team PIT should have 2 road trips or tiles – 

one with ATL and FLA, and the other with PHI, followed by NYM and 

MON.  If the team completes these two road trips, the team may have 

travelled the optimal minimum distance. This does not imply the league 

overall will have optimal minimal distance, but rather just this team.   

 

We use a tree collapsing algorithm to create tiles from the tree struc-

ture. Separate trees are created with each tree having the root node of a 

team. The collapsing approach merges child nodes into their parent node. 

When the parent has three teams, a tile is created. When the parent must 

decide among its children, a greedy method is used, to pick the best set of 

three teams from the parent and children. Figure 3 provides a sample col-

lapsing process. 
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Fig. 3.  Creation of Tiles through collapsing of the tree 

 

The three team tile creation process creates ceiling((n-1)/3)*n tiles. 

Note that all tiles have three blocks, with the possible exception of the last 

tiles created for the team. At the root node, if both children have a weight 

of two nodes, two tiles of two blocks are created for each child. 
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 After tile creation, each tile is given a cost.  This cost is calculated to 

capture some measurement of the impact on the objective function of 

breaking up the tile.  The cost is the sum of a round-trip of the home team 

to each opponent within the tile, minus the actual distance to be traveled 

between teams within the tile.  This cost is then used to prioritize the or-

der that tiles will be placed in the schedule. 

 

We select the tile with the highest cost.  We place this tile on the first 

available space on the schedule without violating any constraints.  We 

start with week one, and move forward checking all constraints for the 

three games represented in the tile.  If the tile cannot be placed in week 1, 

we rotate the tile, by changing the order of the first and last teams in the 

road trip. This rotation does not alter the distance associated with the tile. 

The tile is moved through the schedule week by week until a placement 

can be found.   

 

The tile placement process is continued for each tile in cost priority or-

der. When no more tiles can be placed we break all tiles into individual 

games.  The games are then placed in the schedule, starting from the first 

week of the schedule. We relax the maximum away games and home 

stand rules as well as the repeater rule constraints at this point to allow for 

placement of all games.  When a game cannot be placed, given these re-

laxations, previous assignments are backtracked. If the backtracking of 

the individual games does not produce a feasible schedule, then the last 

place tile is backtracked. 

 

One noteworthy aspect of our approach is that tiles are never broken 

and then formed into new tiles, referred to as reconfiguration. This 

process involves breaking two tiles in their component blocks, and re-

grouping the blocks into two new tiles. 

 

3.2  Local Search 

The local search phase of our approach is designed to remove any hard 

constraint violations and improve the quality of the schedule.  When it is 

possible to place all tiles, a near optimal solution based on the quality of 

our tile set can be generated.  The breaking of the tiles is where our initial 

solution degrades.  Hence, the games placed singularly are the root of all 

hard constraint violations, and higher than optimal travel distances.  Our 

local search seeks to reach the best local minimum of our initial solution, 

after performing a variety of “swaps”. Each swap moves a set of games 

within the schedule while maintaining, or improving, feasibility and the 

objective function of the solution. 

 

We  employ the following sets of swaps during our local search phase: 

 

 Home / Away Swap – We swap two games, involving the same 

two teams, where each team is home in one game and away in the other 

game.  The swap is done between two weeks.  

 

 Round Swap – All games for two weeks are moved between the 

two weeks.   
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 Partial Round Swap  -  The partial round swap described in [2], 

moves a set of connected games between two weeks.  We begin this oper-

ation by selecting two games in different weeks. The teams in these 

games create our swap set. We then add teams playing these two teams, 

in either week,  to the swap-set. The process continues until all teams, in 

both weeks, are in the swap set or its complement.  We then move all 

games involving teams in the swap set between weeks. We can also 

choose to move all teams in the complement of the swap set between the 

weeks. 

 

The local search phase is an iterative process to optimize the impact of 

the above swap actions. We look at each swap in the order above, and 

analyze the schedule improvement, if any, of each possible swap. The 

swap with the largest improvement is performed to reach a new schedule. 

If no improvement can be found, we move to the next type of swap in the 

list above. The same process is used until no improvement can be found.  

After performing all possible swaps of the last type (partial round), we 

have reached a local minimum and stop the local search.  

4  Results 

Our two phase approach of tiling and local search enables us to produce a 

high quality solution with minimal resources. We only use a small frac-

tion of the resources consumed by the best known approaches.  Our plat-

form is a 2.13 Ghz Dell laptop, using a .NET software application. 

 

We use three approaches for comparison, presented in Table A. The 

first approach, described by Van Hentenryck and Vergados  [16] is a pa-

rallel processing approach, carried out on clusters of dual-processor blade 

servers. They use a simulated annealing based Traveling Tournament 

approach  first proposed by Anagnostopoulos [2]. The second approach 

by Di Gaspero and Schaerf [5] uses tabu search. The final comparison is 

with Araujo et al.  [1], using parallel processing. This approach is also a 

two phase approach, with a random initial neighborhood construction, 

followed by a greedy search phase to reach a local minimum to produce a 

mirrored solution.  The local search phase is iterated after a perbutation of 

the initial neighborhood.  
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Instance Tiling 

Results 

Van Hen-

tenryck 

and Ver-

gados   

Results    

[16] 

Di Gas-

pero and 

Schaerf 

Re-

sults  [5] 

Araujo et 

al. 

(GRASP) 

Results 

[1] 

Average 

% Dif-

ference 

from Tiling 

NL 16 317,764 267,194 279,465 285,614 14.54% 

NFL 16 266,231 235,930 238,581 N/A 12.21% 

NFL 18 339,822 296,638 N/A 299,134 14.08% 

NFL 20 406,463 332041 352947 359,748 16.71% 

NFL 22 482,374 412,812 439,626 418,086 13.90% 

NFL 24 544,354 463,657 499017 465,491 14.34% 

CON16 354 N/A 328 342 5.67% 

CON18 466 N/A 418 432 9.64% 

CON20 568 520 521 522 9.02% 

Table A:  Results Comparison (best solutions in bold) 

 

Instance Tiling 

Time 

Van Hentenryck 

and Vergados   

Time – Best [15] 

Di Gaspero and 

Schaerf     Time – [5] 

NL 16 38 1,815 51,022.4 

NFL 16 35 2,220 N/A 

NFL 18 105 3,120 N/A 

NFL 20 135 6,750 N/A 

NFL 22 150 8,100 N/A 

NFL 24 320 5,490 N/A 

CON16 18 N/A 19,665 

CON18 22 N/A 33,979 

CON20 23 N/A 46,579 

 

Table B:  Time Comparison in seconds 

 

We choose instances with a higher number of teams and the con-

strained constant distance instances of the problem, for comparison. The 

instances with fewer teams have been addressed by a variety of algo-

rithms, whereas instances with 16 teams or more have been addressed 

successfully by only the above approaches. 

 

Table A compares the results and resources of our tiling approach with 

the best-known approaches. Our tiling approach comes withinn 10-16% 

of the objective function for the TTP for all approaches.  The tiling ap-

proach produces slightly better results where the number of games to be 

played by each team is divisible by three. This situation allows all games 

for a team to be placed in 3-team tiles. Hence our 16 and 22 team in-

stances are slightly better in comparison with the other approaches. 

 

For the constrained instances, our approach is even closer than the 

higher NFL instances. The construction and costing of the tiles is not im-

portant, since all distances are constant.  Hence each tile for a team has 

the same cost, when the tile is broken. Our 16 team instance, dictating 5 
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tiles of 3 teams per tile, provides our best result. One factor in this result 

is that the games for each team can be constructed into a set of tiles with 3 

games each. This enables more tiles to be placed in the initial neighbor-

hood, increasing the quality of the initial solution. 

  We use only a few seconds compared to the substantive time used in 

the other approaches.  Table B compares our times with the published 

times of the approaches with comparable metrics.  

 

The key difference between our tiling approach and the other ap-

proaches is the initial neighborhood. Our initial neighborhood is built 

based upon tiles, which are high quality partial solutions. Hence our ap-

proach saves the time used by others in the local search to develop a high 

quality initial solution.   We follow our tiling phase with an efficient 

greedy approach to quickly develop a solution relatively close to the best 

known solutions.  

 

  The most illuminating result is the NL16 figure for Araujo et al.  

in Table A. The result of 285,614 was achieved by running the GRASP 

algorithm in sequential mode outlined in [1] for 5 days. This algorithm is 

similar to our local search, because of its greedy nature.  Both algorithms 

explore all possible swaps of a given category and perform the swap with 

the greatest improvement. When no improvements can be made, the local 

minimum is reached.   Since the local search phases are similar, the key 

difference between the approaches is the construction of the initial neigh-

borhood.  The results in the table show the results of using GRASP on 

neighborhoods created, over a 5 day time span. After each local minimum 

is reached, random swaps are done to create a new neighborhood. Hence 

large numbers of initial neighborhoods are created over the 5 day 

processing period. The best of these neighborhoods led to only an 8.5% 

improvement of creating one initial neighborhood solution through tiling. 

5  Conclusion and further work 

Our approach indicates substantial resource savings in finding good quali-

ty solutions for the TTP. Our initial neighborhood, along with a minimal 

local search phase can produce high quality solutions.  In our future work 

we will compare solution results among the best approaches, to under-

stand the distance of our initial neighborhood from the best known solu-

tion sets.  This will enable us to identify the transformations needed to 

move from our initial neighborhood more directly to the best solutions. 

 

We also plan to expand the TTP to handle a complete Major League 

Baseball schedule, which was the original motivation for the problem. 

Albeit the actual MLB schedule has a wide variety of real-world con-

straints, we look to expand the TTP by implementing the actual unba-

lanced team schedules and inter-league play of the MLB master schedule.  

These instances will greatly increase the complexity of the schedule due 

to its unbalanced nature. 
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