
A Novel Event Insertion Heuristic for Creating Feasible
Course Timetables

Moritz Mühlenthaler · Rolf Wanka

Abstract We propose a novel event insertion heuristic for finding feasible solutions for in-
stances of the University Course Timetabling Problem (UCTP). We introduce and apply
a new neighbourhood structure on partial timetables that permits to approach a feasible
timetable. The key insight is that an event can be inserted in a time slot if all the events con-
flicting with it are moved to other time slots. In order to prevent our event insertion heuristic
from running into local optima, a simple perturbation strategy is employed additionally. Our
experimental results show that our event insertion heuristic yields superior results compared
to other state-of-the-art feasible solution generation algorithms for a large number of corre-
sponding benchmark instances.

Keywords Course Timetabling Problems· Feasible Solution Generation· Kempe Move

1 Introduction

The task of creating course timetables such that certain constraints are satisfied occurs
periodically in all sorts of educational institutions such as high schools and universities.
Typically the constraints to be considered are divided into hard and soft constraints. Hard
constraints are “must haves,” i. e., timetables which violate any of the hard constraints are
considered infeasible. On the other hand, soft constraints are “nice to have,” i. e., timetables
with fewer soft constraint violations are more convenient for staff and students, and are thus
preferred. The University Course Timetabling Problem (UCTP) is an NP-hard combinatorial
optimisation problem in the setting of a university with the objective of finding a feasible
timetable with minimal soft constraint violations.

In this paper, we propose a novel heuristic approach for finding feasible timetables for
UCTP instances that is based on a new sophisticated neighbourhood structure for timeta-
bles. The research yielding the proposed heuristic was motivated by the authors’ university
administration, who posed the following question: “Do we have to rent additional rooms for

Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.

Moritz Mühlenthaler, Rolf Wanka
Department of Computer Science, University of Erlangen-Nuremberg, Germany
E-mail:{moritz.muehlenthaler,rwanka}@cs.fau.de

294

a temporarily increased course load, or is thereany way we can get away with the rooms
we have?” No specific soft constraints are imposed in this particular case, the generation
of a feasible timetable is sufficient. But feasible timetable generation is also an important
part of solving UCTPs when soft constraints are involved. Since hard and soft constraints
are typically considered in distinct phases of the optimisation process, a feasible solution is
required before even considering the soft constraint violations.

The proposed event insertion heuristic calledKempe insertion heuristicis built around
a novel neighbourhood structure for timetables, which is closely related to the distance to
feasibility. The key feature of this neighbourhood structure is that each move in the neigh-
bourhood brings a timetable closer to feasibility. The experimental results presented in Sec-
tion 4 show that our Kempe insertion heuristic outperforms current state-of-the-art feasible
solution generation algorithms with respect to solution quality and computation time for the
small and medium benchmark instances. This means, for such instances, solvers can spend
more time on minimising soft constraint violations and thus potentially find better timeta-
bles with the same amount of computation time. For the large instances, our results are on
par with the currently best performing algorithm by Tugaet al. [13], the HSA (hybrid simu-
lated annealing) algorithm. For a considerable number of instances, we only need a fraction
of CPU time compared to HSA. The advantage of our approach is that onlyone singleso-
phisticated neighbourhood structure is used whereas HSA uses three different, but simple
neighbourhood structures.

The remainder of this paper is organised as follows. In Section 2, the basic definitions
concerning the distance to feasibility of timetables and Kempe moves are reviewed. In Sec-
tion 3, the event insertion heuristic is discussed and we detail how to construct the neighbour-
hood structure. In Section 4, the performance of the Kempe insertion heuristic is evaluated
based on the timetables generated for the 60 benchmark instances proposed by Lewis et al.
in [5]. It is compared to the results of the HSA algorithm [13] and the Grouping Genetic
Algorithm and the Heuristic Search Algorithm, both from [4].

2 Preliminaries

In this section we give the necessary definitions of structures and operations used by the
Kempe insertion heuristic. First, we give a more formal definition of UCTPs, which were
informally described above and define the notion of apartial timetable. We also give a
short review of theKempe move, which is a popular technique in educational timetabling for
moving events in a timetable. The Kempe move is the main ingredient of the neighbourhood
structure used by our new Kempe insertion heuristic.

2.1 Problem Definition

A UCTP instanceI consists of the following data: A setE = {c0,c1, . . .} of events (or
courses), a setT = {t1, t2, . . .} of time slots, and a setR= {r0, r1, . . .} of rooms. Additionally,
we are given two relationsC⊆ E×E andS⊆ E×R. We say that eventsc andc′ are in
conflict if (c,c′) ∈C. We say that a roomr is suitable for an eventc if (c,r) ∈ S.

A feasible timetablefor a UCTP instanceI is an assignmentτ : E→ R×T of events to
(room, time slot)-pairs calledresourcessuch that each of the followinghard constraintsis
satisfied:

1. Each event is assigned to a suitable resource.

295

2. No conflicting events occur in the same time slot.
3. No room is double-booked.

This definition is the basis of our proposed algorithm. It is consistent with the UCTP for-
mulations for the benchmarking instances for feasible timetable generation from [5]. As
indicated above, no soft constraints are to be considered for our purpose of finding a feasi-
ble timetable.

A partial timetableis an assignment of events to resources such that hard constraints 2
and 3 are satisfied. Additionally, a relaxed version of hard constraint 1 is imposed: we re-
quire that all assigned resources are suitable for the respective events, but not all events have
to be assigned to a resource. Building on the notion of a partial timetable, feasible timetable
generation can be turned into an optimisation problem for which the single objective is to
minimise the number of events not assigned to a resource. Clearly, if no events remain unas-
signed, we have found a feasible timetable. Thedistance to feasibilityof a partial timetable
is the number of events which have not been assigned to a resource.

2.2 The Classical Kempe Move

TheKempe move[9] is a technique for moving events between time slots of a timetable. It
has been applied with great success in a wide range of feasible timetable generation and soft
constraint optimisation algorithms for educational timetabling [1,7,8,12,13]. The Kempe
move is the basic ingredient of the neighbourhood construction in our new Kempe insertion
heuristic proposed in the next section. The idea behind using Kempe moves for feasible
solution generation is that as long as a few simple requirements are met, applying a Kempe
move to a partial timetable results again in a partial timetable. As we will see below, the
resulting timetable has the same distance to feasibility as the original timetable. Hence, no
additional hard constraint violations are introduced by performing such Kempe moves. For
other definitions of the distance to feasibility (see for example [4,6,13]), similar properties
can be established.

A Kempe move is based on the identification of connected components in a bipartite
graph. Letτ be a partial timetable for a UCTP instanceI and let

Et = {c | c∈ E,∃r ∈ R : τ(c)= (r, t)}

be the events scheduled in time slott. Now we consider two timeslotss and t along with
the bipartite graphGs,t whose nodes areEs∪· Et and whose edges are induced by the conflict
relation of I . Without loss of generality, lete be any node inEs called thetrigger event
andD = Ds∪· Dt be the connected component ofe with Ds⊆ Es andDt ⊆ Et . None of the
events inDs can be moved to the time slott as long as the eventsDt are present int without
introducing conflicts that would violate the partiality requirements ofτ . However, when the
events inDs are swapped with those inDt , no such conflicts are introduced. A Kempe move
between time slotssandt triggered byeswaps the events inDs with those inDt and hence,
no conflicting events occur inEs or in Et after the Kempe move.

As an example, let us consider two timeslotss andt, which are populated by the events
{ci}0≤i<12 as shown in Figure 1. Any two events connected by an edge are in conflict.
The connected component of the trigger eventc0 is {c0,c3}∪· {c6,c7}, so the Kempe move
triggered byc0 exchangesc0 and c3 with c6 and c7. As indicated in Figure 1, the room
assignment may need to be rearranged when exchanging events between timeslots. If, for
example, eventc7 can only be scheduled in room 1,c1 needs to be moved to a different

296

Fig. 1 A Kempe move between time slotss andt which is triggered by the eventc0. Conflicting events are
connected by edges.

room. The task of assigning events to suitable rooms for a particular timeslott can be stated
in terms of a maximum cardinality bipartite matching problem, which can be solved, for
instance, by the augmenting paths algorithm given in [11] in timeO(min{|Et |, |R|} · |A|),
where|A| is the number of suitable room/time slot combinations. Please note that the Kempe
move can also be used for soft constraint optimisation with only a slight modification: if
the cost of assigning a particular event to a particular room is known, a minimum weight
bipartite matching algorithm can be used to determine a room assignment with minimal cost
for a particular time slot. See [7] for a UCTP solver using this technique.

For the purpose of finding feasible timetables, we have to consider the following if we
want to avoid introducing additional hard constraint violations: when reassigning rooms
for the events in a time slott, each event has to be assigned to a suitable room, i. e., the
cardinality of the matching has to be equal to|Et |. If this is the case, we say that a Kempe
move isadmissible. If we perform an admissible Kempe move on a partial timetable, the
result is again a partial timetable and its distance to feasibility, as defined in Section 2.1, is
not altered by the Kempe move.

3 Feasible Timetable Generation

The new algorithm for generating feasible course timetables consists of two consecutive
phases: In the first phase, a simple sequential heuristic, similar to the one used in [13],
is employed for quickly creating a partial timetable with as many events assigned to suit-
able resources as possible. Typically for harder instances, not all events can be assigned to
suitable resources by the sequential heuristic. Hence, in the second phase, we try to assign
feasible resources to the remaining events using the proposed newKempe insertion heuristic
(see Section 3.2). This heuristic uses a computationally heavier neighbourhood exploration
scheme based on the Kempe move in order to free suitable resources for the remaining
events and bring the timetable gradually closer to feasibility.

297

3.1 The Sequential Heuristic

Sequential event insertion heuristics generate for a given UCTP instance a partial timetable.
The essence of sequential heuristics is that, starting with an empty timetable, events are
inserted one by one such that those events are scheduled first, which are likely to be diffi-
cult to insert in an already populated timetable. For highly constrained instances, such as
the ones proposed by Lewis and Paechter in [5], sequential heuristics are very unlikely to
produce feasible timetables. It turns out however that combining the new Kempe insertion
heuristic with a sequential heuristic generally yields better timetables within limited com-
putation time than the Kempe insertion heuristic alone because sequential event insertion is,
in comparison, very fast.

Algorithm 1 shows the sequential heuristic used in conjunction with the Kempe inser-
tion heuristic for obtaining the experimental results in Table 1. SEQUENTIAL HEURISTIC

takes as input a UCTP instanceI , and returns a partial timetable. In the initialisation step,
the events to be scheduled are sorted lexicographically according to i) the number of suit-
able time slots and ii) the number of suitable rooms. Hence, events with the most time slot
constraints are scheduled first, and among them the ones with the least number of suitable
rooms. Then the sorted listµ of events is traversed in forward order, and for each event a
random suitable resource, i. e., a suitable(room, time slot)-pair, is picked. If none is available
for a particular event, it remains unassigned. As soon as all events inµ have been processed,
the resulting partial timetable is returned.

Algorithm 1 : SEQUENTIAL HEURISTIC

input : I : UCTP instance
output: τ : partial/feasible timetable

τ ← empty timetable
ρ ← list of all resources ofI arranged in random order
µ ← list of all events to be scheduled
sort items inµ by i) the number of suitable time slots and ii) the number of suitable rooms
foreach evente in µ do

if ρ contains a suitable resource fore then
r← first suitable resource fore in ρ
remover from ρ
assigne to r

end
end
return τ

The crucial part of the sequential heuristic is the determination of the order in which
events are inserted in the timetable. We have tried several approaches, including those
proposed by Burkeet al. in [2], as well as the combination of “least saturation degree
first”(LSD) and “largest degree first” (LD) used by Tugaet al. in [13]. We found that the
sorting criteria as given in Algorithm 1 yield the best results in conjunction with our Kempe
insertion heuristic. However, switching to the LSD/LD sequential heuristic used by Tugaet
al. changes the results only marginally.

298

3.2 The Kempe Insertion Heuristic

The proposed Kempe insertion heuristic is built around a novel neighbourhood structure for
partial timetable transformations, we dubKempe insertion neighbourhood. A neighbour-
hoodof a partial timetableτ is a collection of sequences of (admissible) Kempe moves onτ .
The Kempe insertion neighbourhood has been specifically designed such that each move in
the neighbourhood of a partial timetable decreases its distance to feasibility by one. Current
state-of-the-art solvers typically use a combination of different neighbourhoods, each one
with its individual strengths and weaknesses [3,7,10,13]. For example the hybrid simulated
annealing approach for feasible timetable generation by Tugaet al. [13] uses a combination
of the simple,swapandKempe chainneighbourhoods. Our objective however is to show
that the Kempe insertion neighbourhood is a very good general purpose neighbourhood for
feasible timetable generation, so our feasible solution generation approach relies exclusively
on the Kempe insertion neighbourhood.

Let E− ⊆ E be the set of events which are yet to be scheduled in a partial timetableτ .
The key observation behind the Kempe insertion neighbourhood is that an eventc can be
inserted in the time slots of a timetableτ if the following two conditions are met: First, all
events ins conflicting withc can be moved to a different time slot using admissible Kempe
such that no additional events conflicting withc are moved tos. And second, suitable rooms
can be assigned to all remaining events insandc. So for an eventc and a time slots, we can
define the set

N
τ

c (s) = {K | K is a sequence of admissible Kempe moves involving time slots
s. t.c can be inserted insafter performing the moves inK}.

For an eventc∈ E−, the objective is to find a time slots such thatN τ
c (s) is non-empty. If

such a time slot can be found, thenc can be inserted in the timetable. Hence, the Kempe
insertion neighbourhoodN τ

c of a timetableτ with respect to an eventc∈ E− is

N
τ

c =
⋃

s

N
τ

c (s) .

If N τ
c is non-empty, the eventc can be inserted in the timetable and as a consequence, the

distance to feasibility ofτ decreases by one. Hence the goal of the Kempe insertion heuristic
is to make a partial timetable feasible by finding a non-emptyN τ

c for eachc∈ E−.
Figure 2 shows, by example, how a single Kempe movek with (k)∈N τ

c (s) is performed
to fit an eventc in a time slots. In the example, the only event in conflict withc in s is c2,
which is moved to a time slott by k. None of the remaining events ins is in conflict withc,
so room assignment can be performed for the events{c}∪{c1,c3,c4,c5} using a maximum
cardinality bipartite matching algorithm as described in the previous section.

The full Kempe insertion heuristic is outlined in Algorithm 2. INSERTION HEURISTIC

takes as input a partial timetableτ of some UCTP instanceI , as well as the exploration pa-
rameterd and a time limit. It returns a feasible timetable as soon as one has been found or the
best partial timetable found before the time limit is hit. In each iteration, an evente is picked
at random from the listµ of unscheduled events. If some element inN τ

e can be found using
NEIGHBOURHOOD SEARCH (see Algorithm 3),e is added to the timetable, otherwisee re-
mains unscheduled. If less than two events were successfully added to the timetable within
max{k, |µ |} iterations, the search is considered stuck and we insert a randomly chosen event
e∈ µ in the timetable “by force.” This means a target time slots is picked foreand all events
Cs(e) in conflict with e in s are removed from the timetable so thate can be inserted ins.
This perturbation move increases the distance to feasibility by|Cs(e)|−1, and therefore, we

299

Fig. 2 Inserting an eventc in the time slots: A single Kempe movek with (k) ∈N τ
c removes froms all

events in conflict withc. Whens has been cleared of all such events,c can be inserted ins.

do not want to use this perturbation operation too often. On the other hand, when we have
tried to insert a number of events with only little success we have probably wasted CPU
time because we are stuck in a local optimum. We can influence how often the perturbation
operation is performed by setting the exploration parameterd, which is an upper bound for
the number of iterations of NEIGHBOURHOOD SEARCHbefore considering the perturbation
operation depending on how many events were successfully inserted in the timetable.

The key element of INSERTION HEURISTIC is the neighbourhood exploration shown
in Algorithm 3. In NEIGHBOURHOOD SEARCH, we try to find for an eventc an element
of N τ

c in a greedy fashion, so we can addc to the timetable. For each suitable time slot
for c, NEIGHBOURHOOD SEARCH tries to remove events conflicting withcby using Kempe
moves. If it succeeds to clean a time slot from all such events, it checks if additional rooms
need to be freed using another Kempe move. Now, if rooms can be assigned successfully to
all events inEs∪{c}, NEIGHBOURHOOD SEARCH has found an element ofN τ

c (s)⊆N τ
c

and returnss. It returns “invalid time slot” to indicate that no element ofN τ
c has been found.

It is possible that NEIGHBOURHOOD SEARCHcannot find a sequence of moves such that an
evente can be inserted in the timetable, althoughN τ

c is, in principle, non-empty. However,
trying to find any sequence of moves such thatecan be scheduled is not computationally fea-
sible and, as the experimental results in the next section show, NEIGHBOURHOOD SEARCH

is quite successful in finding such sequences.

In the worst case, NEIGHBOURHOOD SEARCH tries to fit an evente in every time slot
without success. Then for each time slots and for each eventc in the time slot in con-
flict with e, the algorithm has tried to find a time slott 6= s such thatc can be moved tot
without introducing new conflicts. This means, in the worst case, performing NEIGHBOUR-
HOOD SEARCH results inO(|T|2 · |C|) attempts to remove events from a time slot using
Kempe moves without finding an element ofN τ

e , where|T| is the number of time slots and
|C| the number of conflicts . To increase the likeliness of INSERTION HEURISTIC to find an

300

Algorithm 2 : INSERTION HEURISTIC

input : I : UCTP instance
input : k: max. number of iterations until perturbation
in/out : τ : partial timetable

τbest← τ
µ ← list of events to be scheduled
while time limit not hit andτ infeasibledo

success← 0
for max{k, |µ |} iterationsdo

e← random element fromµ
s← NEIGHBOURHOOD SEARCH(τ ,e)
if s is a valid time slotthen

inserte in s

success← success+1
end

end
if dist(τ)< dist(τbest) then τbest← τ
if success ≤ 1 then

pick e at random fromµ
force insertion ofe in τ
updateµ

end
end
return τbest

Algorithm 3 : NEIGHBOURHOOD SEARCH

input : e: event to be scheduled
in/out : τ : partial timetable

foreach suitable time slots for e do
cleanslot← s

/* try to reschedule all events in s conflicting with e */

foreach eventc in s conflicting withe do
find a time slott 6= s s.t. there is an admissible Kempe Move which movese to t without
introducing events conflicting withe in s

if suitablet was foundthen KempeMove(s,t,c)
else cleanslot← invalid time slot; break

end
/* if rescheduling failed, try to gather conflicting events in s */

if cleanslot = invalid time slotthen
T← suitable time slots not yet processed
find a time slott in T and a trigger eventc s.t.c triggers an admissible Kempe Move, which
increases the number of events conflicting withe in s

if suitablet andc were foundthen
KempeMove(s,t,c); break

end
end
if cleanslot 6= invalid time slotthen

if all rooms are booked incleanslot then
find a time slott and a trigger eventc s.t.c triggers an admissible Kempe Move, which
decreases the number of events ins without introducing events conflicting withe
if suitablet andc foundthen KempeMove(s,t,c)

end
if suitable rooms can be assigned to events(Ecleanslot∪{e}) then

return cleanslot
end
return invalid time slot

301

element ofN τ
e as early as possible, we do the following: If NEIGHBOURHOOD SEARCH

fails to free a time slots from all events conflicting withe, we gather events conflicting with
e from the time slots which are yet to be processed. More precisely, in the remaining time
slots we look for a time slott such that we can perform an admissible Kempe move which
increasesthe number of events conflicting withe in s. Experiments indicated that gathering
conflicts in this fashion improves the overall running time of INSERTION HEURISTIC con-
siderably when feasible solutions are found and also seems to have a beneficial impact on
the overall quality of the solutions obtained.

4 Experimental Results

Our experimental results were obtained for the 60 problem instances in [5]. These instances
were specifically designed to be hard to solve by sequential heuristics as described in Sec-
tion 3.1. For each instance however, it is guaranteed that there exists at least one feasible
solution. The 60 instances are divided in three categories: Small instances with 200 to 225
events and 5 to 6 rooms, medium instances with 390 to 425 events and 10 to 11 rooms, and
large instances with 1000 to 1075 events and 25 to 28 rooms. For all instances, the number
of time slots is 45, and all events can be scheduled in any of the 45 time slots if there are no
conflicting events in a time slot already.

Our solutions were obtained by running SEQUENTIAL HEURISTIC 150 times and then
using the best partial solution found so far as input for INSERTION HEURISTIC. Feasible
solutions were found by the sequential heuristic for the instancessmall 2, 6, 11, 12 and
20. In comparison, in [13], Tugaet al. performed their sequential heuristic 500 times for
each instance as a preprocessing step and found feasible solutions for 14 of the 60 instances
just using the sequential heuristic. It turned out however, that increasing the number of
iterations or modifying the sequential heuristic did not improve the overall solution quality
in our experiments. The exploration parameter for INSERTION HEURISTICwas set to 16 and
timeout values were set to 100 s for the small instances, to 200 s for the medium instances
and to 500 s for the large instances.

The results shown in Table 1 were obtained by performing 20 consecutive runs for each
instance on asinglecore of personal computer equipped with a Intel QuadCore CPU clocked
at 3 GHz. Running the sequential heuristic 150 times took between 0.2 s and 1.7 s, depending
on the size of the instance. For each instance, the lowest and average distance to feasibility
and the average CPU time were recorded. Table 1 shows our results along with the results
obtained by Tugaet al. in [13] (HSA) on a Pentium IV 3.2 GHz, and Lewis and Paechter
in [4] (Lewis I and II) for comparison. Note that different time limits were imposed in the
experiments run in [13] and [4]. Tugaet al. set the timeouts to 200, 400 and 1000 seconds
for the small, medium and large instances, respectively [13]. Lewis and Paechter imposed
timelimits of 30, 200 and 800 seconds for small, medium, and large instances to obtain their
results [4]. To the knowledge of the authors, no average running times were given in [4].

As shown in Table 1, to combine SEQUENTIAL HEURISTIC and INSERTION HEURIS-
TIC consistently outperforms the other algorithms for the small and medium benchmark
instances with respect to the distance to feasibility of the obtained solutions and CPU time
used. Our Kempe insertion heuristic found feasible timetables for all 40 small and medium
instances. Concerning the large instances, our algorithm performs better than both algo-
rithms proposed in [4]. Also, our algorithm is at least as good as the HSA approach by Tuga
et al.for 13 out of the 20 large instances despite the shorter timeout and uses much less CPU
time on average for many instances such asbig 2, 3, 12, 13, 14 and 16.

302

ins. heuristic HSA Lewis I Lewis II
Instance best(avg) avg time best(avg) time best(avg) best(avg)
small 1 0(0) 0.0 0(0) 0 0(0) 0(0)
small 2 0(0) 0.0 0(0) 0 0(0) 0(0)
small 3 0(0) 0.1 0(0) 9 0(0) 0(0)
small 4 0(0) 0.0 0(0) 0 0(0) 0(0)
small 5 0(0) 0.2 0(0) 5 0(1.05) 0(0)
small 6 0(0) 0.0 0(0) 0 0(0) 0(0)
small 7 0(0) 0.1 0(0) 0 0(0) 0(0)
small 8 0(0) 15 0(1.9) 79 4(6.45) 0(1)
small 9 0(0) 1.7 0(3.85) 84 0(2.5) 0(0.15)
small 10 0(0) 0.4 0(0) 15 0(0.1) 0(0)
small 11 0(0) 0.0 0(0) 0 0(0) 0(0)
small 12 0(0) 0.0 0(0) 0 0(0) 0(0)
small 13 0(0) 1.0 0(1) 15 0(1.25) 0(0.35)
small 14 0(0) 33 3(5.95) 136 3(10.5) 0(2.75)
small 15 0(0) 0.0 0(0) 0 0(0) 0(0)
small 16 0(0) 0.0 0(0) 13 0(0) 0(0)
small 17 0(0) 0.1 0(0) 13 0(0.25) 0(0)
small 18 0(0) 0.0 0(0.45) 36 0(0.7) 0(0.2)
small 19 0(0) 0.5 0(1.2) 25 0(0.15) 0(0)
small 20 0(0) 0.0 0(0) 0 0(0) 0(0)
med 1 0(0) 0.21 0(0) 0 0(0) 0(0)
med 2 0(0) 0.15 0(0) 0 0(0) 0(0)
med 3 0(0) 0.73 0(0) 8 0(0) 0(0)
med 4 0(0) 0.30 0(0) 3 0(0) 0(0)
med 5 0(0) 5.2 0(0) 85 0(3.95) 0(0)
med 6 0(0) 4.0 0(0) 20 0(6.2) 0(0)
med 7 0(0) 80 1(4.15) 440 34(51.65) 14(18.5)
med 8 0(0) 4.2 0(0) 12 9(15.95) 0(0)
med 9 0(0.1) 142 0(4.9) 269 17(24.55) 2(9.7)
med 10 0(0) 0.0 0(0) 0 0(0) 0(0)
med 11 0(0) 1.3 0(0) 25 3(13.35) 0(0)
med 12 0(0) 0.2 0(0) 54 0(0.25) 0(0)
med 13 0(0) 1.6 0(0.5) 172 30(43.15) 0(0.5)
med 14 0(0) 1.0 0(0) 59 0(0.25) 0(0)
med 15 0(0) 1.6 0(0.05) 72 0(4.85) 0(0)
med 16 0(0) 7.3 1(5.15) 733 30(43.15) 1(6.4)
med 17 0(0) 1.4 0(0) 39 0(3.55) 0(0)
med 18 0(0) 5.6 0(6.05) 429 0(8.2) 0(3.1)
med 19 0(0) 11 0(5.45) 511 0(9.25) 0(3.15)
med 20 0(0) 15 2(10.6) 457 0(2.1) 3(11.45)
big 1 0(0) 0 0(0) 0 0(0) 0(0)
big 2 0(0.05) 56 0(0) 283 0(0.7) 0(0)
big 3 0(0) 26 0(0) 447 0(0) 0(0)
big 4 0(1.4) 465 0(0) 406 30(32.2) 8(20.5)
big 5 5(8.4) 500 0(1.1) 743 24(29.15) 30(38.15)
big 6 29(40.3) 500 5(8.45) 893 71(88.9) 77(92.3)
big 7 100(109.2) 500 47(58.3) 966 145(157.3) 150(168.5)
big 8 0(0.25) 329 0(0) 210 30(37.8) 5(20.75)
big 9 0(0.7) 434 0(0.05) 419 18(25) 3(17.5)
big 10 9(12.5) 500 0(1.25) 660 32(38) 24(39.95)
big 11 8(10.2) 500 0(0.35) 444 37(42.35) 22(26.05)
big 12 0(0) 37 0(0) 240 0(0.85) 0(0)
big 13 0(0) 70 0(0) 274 10(19.9) 0(2.55)
big 14 0(0) 54 0(0) 271 0(7.25) 0(0)
big 15 0(11.4) 496 0(0) 255 98(113.95) 0(10)
big 16 0(0) 80 0(2) 755 100(116.3) 19(42)
big 17 13(57.5) 500 76(89) 998 243(266.55) 163(174.9)
big 18 0(0) 259 53(62) 764 173(194.75) 164(179.25)
big 19 161(171.5) 500 109(127) 998 253(266.65) 232(247.35)
big 20 6(13.0) 500 40(46.7) 827 165(183.15) 149(164.15)

Table 1 Experimental results for the 60 benchmark instances from [5]. Average time is given in seconds.

303

5 Conclusions

In this paper, the new Kempe insertion heuristic has been proposed for generating feasible
timetables for university course timetabling problems. Our approach is based on exploring
a sophisticated neighbourhood structure for partial timetables, the Kempe insertion neigh-
bourhood. Each move in the neighbourhood structure brings the partial timetable computed
so far closer to feasibility. In addition, a perturbation strategy has been proposed for pre-
venting the Kempe insertion heuristic from getting stuck in local optima.

The Kempe insertion heuristic has been tested on the 60 benchmark instances from [5].
Our results show that our algorithm consistently outperforms other state-of-the-art algo-
rithms for feasible solution generation [4,13] for the small and medium benchmark instances
with respect to the distance to feasibility of the timetables and CPU time used. For 13 of the
20 large instances, the Kempe insertion heuristic performs at least as good as the Hybrid
Simulated Annealing algorithm from [13] despite the shorter timeout and uses much less
CPU time on average for many instances. The Kempe insertion heuristic generally outper-
forms the Grouping Genetic Algorithm and the Heuristic Search Algorithm from [4].

References

1. Edmund K. Burke, Adam J. Eckersley, Barry McCollum, Sanja Petrovic, and Rong Qu. Hybrid variable
neighbourhood approaches to university exam timetabling.European Journal of Operational Research,
206(1):46–53, 2010.

2. Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong Qu. A graph-based
hyper-heuristic for educational timetabling problems.European Journal of Operational Research,
176(1):177–192, 2007.

3. Luca Di Gaspero and Andrea Schaerf. Neighborhood portfolio approach for local search applied to
timetabling problems.Journal of Mathematical Modeling and Algorithms, 5(1):65–89, 2006.

4. Rhydian Lewis and Ben Paechter. Finding feasible timetables using group-based operators.IEEE Trans-
actions on Evolutionary Computation, 11:397–413, 2007.

5. Rhydian Lewis and Ben Paechter. http://www.emergentcomputing.org/timetabling/harderinstances.htm,
accessed 2010.

6. Rhydian Lewis, Ben Paechter, and Barry McCollum. Post enrolment based course timetabling: A de-
scription of the problem model used for track two of the second international timetabling competition.
Cardiff Accounting and Finance Working Papers A2007/3, Cardiff University, Cardiff Business School,
Accounting and Finance Section, July 2007.

7. Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for course timetabling.European Journal of Oper-
ational Research, 200(1):235–244, 2010.

8. Liam T. G. Merlot, Natashia Boland, Barry D. Hughes, and Peter J. Stuckey. A hybrid algorithm for
the examination timetabling problem. InProc. 4th Int. Conf. on the Practice and Theory of Automated
Timetabling (PATAT), pages 207–231. Springer, 2003.

9. Craig Morgenstern and Harry Shapiro. Coloration neighborhood structures for general graph coloring.
In Proc. 1st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 226–235, 1990.

10. Tomáš Müller. ITC2007 solver description: A hybrid approach.Annals of Operations Research,
172(1):429–446, 2009.

11. Christos H. Papadimitriou and Kenneth Steiglitz.Combinatorial Optimization; Algorithms and Com-
plexity. Dover Publications, 1998.

12. Jonathan M. Thompson and Kathryn A. Dowsland. A robust simulated annealing based examination
timetabling system.Computers & Operations Research, 25(7-8):637 – 648, 1998.

13. Mauritsius Tuga, Regina Berretta, and Alexandre Mendes. A hybrid simulated annealing with Kempe
chain neighborhood for the university timetabling problem. InProc. 6th ACIS Int. Conf. on Computer
and Information Science (ACIS-ICIS), pages 400–405, 2007.

304

