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Abstract In this paper we present a constructive heuristic approach based on Cho-

quet integral. We use this method to combine the information given by different basic

heuristics. We use a fuzzy measure to model the importance of each heuristic as well

as the interaction between them. We test our approach on 2 different testbeds and

compare its performance against the individual heuristics. Moreover, we also compare

the results against the best results reported in the literature.
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1 Introduction

Problems related to timetabling are present in daily life. Solving timetabling problems

is a crucial task and affects many institutions and services like hospitals, transportation

enterprizes, educational establishments, among many others. These problems have been

the object of increasing interest by the research community. Many interesting proposals

have been presented, particulary in the field of Operations Research and Artificial

Intelligence, to solve timetabling problems in sports (Easton et al. 2004; Trick 2001),

transportations (bus,railways,planes) (Isaai and Singh 2001; Caprara et al. 2001; Qi

et al. 2004), schools (Abramson et al. 1999; Colorni et al. 1998; Ribeiro Filho and Lorena

2001; Hansen and Vidal 1995; Schaerf 1999) and universities (Awad and Chinneck 1998;

Burke et al. 2006; Burke and Newall 2003; Caramia et al. 2001; Casey and Thompson

2003; Carter et al. 1994, 1996; Corr et al. 2006; Dowsland and Thompson 2004; Erben

2001; Di Gaspero 2002; Di Gaspero and Schaerf 2001; Kendall and Mohd Hussin 2004;

Merlot et al. 2003; Paquete and Fonseca 2001; Petrovic and Bykov 2002; Schimmelpfeng

and Helber 2007; Thompson and Dowsland 1996, 1998; White and Xie 2001; Yang and

Petrovic 2004).

A general definition of timetabling was given by Burke, Kingston, and de Werra

(2004):
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“A timetabling problem is a problem with four parameters, T a finite set of

times, R a finite set of resources, M, a finite set of meetings: and C, a finite set

of constraints. The problem is to assign times and recourses to the meetings so

as to satisfy the constraints as far as possible.”

Hence, if we consider exams as meetings then we are facing exactly the problem

that we want to tackle in this paper, that is, the exam timetabling problem.

In Burke and Newall (2004) an iterated construction algorithm is described.

They make use of a construction ordering heuristic as the basic method for

scheduling the exams. However, the authors introduce an iterated adaptive

method which consists of changing the “degree” of each exam in each iteration.

They proposed an incremental and exponential adaptation scheme. In the first

case the “degree” is modified by one unit at each iteration. On the other hand,

the exponential scheme increments the “degree” by 2n, where n is the num-

ber of iterations by which a particular “degree” was modified. Moreover, they

compare the performance of the algorithm when using different basic ordering

heuristics. They use the largest degree first (LD), a flat ordering (which initial-

izes every “degree” on 0), smallest degree first (SmD), saturation degree (SD)

and random ordering. They tested the algorithm using the Toronto’s data set

(Carter et al. 1996). It can be observed that the adaptation mechanism helps

to improve the initial timetable given by the original order of the exams.

In Asmuni et al. (2009) a fuzzy multiple heuristic ordering approach is pre-

sented. In this work a simple heuristic ordering was implemented, based on the

Carter and Laporte (1996) algorithm. The following three different criteria were

used to order exams: (1) largest degree (LD); (2) largest enrolment (LE); (3)

and least saturation (SD) degree criterion. They use a fuzzy inference system

to combine the different criteria previously mentioned. All possible combina-

tions were tested (LD + LE, SD + LE and LD + SD). The Mandani type

fuzzy system that they used has a 9 rule structure, meaning that two linguistic

variables were used to evaluate the exam “quality” and for each variable three

linguistic terms were defined: “small”, “medium” or “high”. The output linguis-

tic variable “examweight” is also defined by the same three linguistic terms. A

pre-normalisation of data was also performed before computing the fuzzy in-

ference system. In this process a linear transformation was used. Furthermore,

a tuning process was also implemented. It consists, basically, of changing si-

multaneously, by small steps, the upper bound, centre and lower bound of the

three membership functions. All results obtained for each instance used the

best “tuned system”. All approaches were tested using the Toronto’s data set

(Carter et al. 1996). They conclude that the approach using a tuned fuzzy

system with the SD and LE as input variables gave, overall, the best results.

Qu et al. (2009a) presented an adaptive hybridisation of basic graph heuristics

within a graph hyper-heuristic framework. They first started studying some

statistical properties of a random constructive graph hyper-heuristic. They ob-

served that sequences of SD heuristic hybridised with Largest Weighted Degree

(LWD) gave better results than if hybridised with LD or LE heuristic. Fol-

lowing that, they proposed an adaptive approach which uses sequences of SD

heuristic hybridized with LWD. This new method consists of two steps. Firstly,

they iteratively hybridise the LWD heuristic into the first half of a sequence

based on SD heuristic. At the end of each iteration, if the solution obtained

was feasible, the hybridisation amount was increased by 0.03. On the other
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hand, if that solution was feasible but had a higher cost than the best solution

previously found, the hybridisation amount was decreased by 0.01. Secondly,

they hybridised the entire sequence with LWD. However, in this step only the

best sequences obtained from the previous step were used.

The paper is organized as follows. Section 2 presents the mathematical for-

mulation of the exam timetabling problem that we adopted in this work. It is

followed, in section 3, by a brief description of the key concepts for a better

understanding of the proposed method. Section 4 contains all the details about

the construction algorithm and how to combine all the basic heuristic values

using Choquet integrals. Afterwards, a description of the experimental design

is given in Section 5, as well as the experimental results and discussion. Finally,

the conclusions are drawn in Section 6.

2 Exam Timetabling Problem Definition

The exam timetabling problem can be formulated as a combinatorial optimisa-

tion problem. In order to compare our approach with other methods proposed

in the literature, we adopt the following formulation followed by many authors.

Let,

E = total number of exams, (1)

P = total number of periods, (2)

S = total number of students, (3)

cij = number of students enroled in exam i and j for i, j = 1, . . . , E, (4)

aij =

{
1 if cij > 0

0 otherwise
for i, j = 1, . . . , E, (5)

and consider the following variables:

xi = period in which exam i is scheduled , i = 1, . . . , E (6)

The formulation is:

min f =

∑E
i=1

∑E
j=1 proximity cost(xi, xj) ∗ cij

2S
(7)

subject to: |xi − xj | ≥ aij for i, j = 1, . . . , E and i 6= j (8)

1 ≤ xi ≤ P and integer for i, j = 1, . . . , E (9)

where proximity cost is defined as:

proximity cost(xi, xj) =

{
25−|xi−xj | if 0 < |xi − xj | < 6

0 otherwise
(10)

for i, j = 1, . . . , E and i 6= j
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The objective function (7) penalizes the proximity of exams with students in

common, using as weights the number of students involved in both examinations

and a factor that depends on the proximity of the periods, ranging from 16 to

0 (Carter et al. 1996). The constraint 8 ensures that any two exams indexed by

i and j with students in common are not assigned to the same period.

3 Essential Concepts

Let us briefly present some useful concepts for our work before we describe the

construction algorithm in more detail.

3.1 Fuzzy Sets

Definition 1 (Zimmermann (1996)). If X is a collection of objects designated

by x then a fuzzy set Ã in X is defined by a set of pairs:

Ã = {(x, µ(x))|x ∈ X}
where µ

Ã
(x) is the membership function of x em Ã.

From now on we are going to refer to a membership function as f
Ã

instead of

the traditional way, as presented in the previous definition, µ
Ã

to avoid any

confusion with the representation of a fuzzy measure µ (see Section 3.3).

For example we can consider the age of a person. Let X be the age domain and

x the age of a certain person. Then the fuzzy set YOUNG may be defined by:

Ã = {(x, f(x))|x ∈ X}
where

f
Ã

(x) =





0 , if x ≥ 65
65−x

30 , if 35 ≤ x ≤ 65

1 , if x ≤ 35

Fuzzy sets are often represented by triangular, trapezoidal (triangular as a par-

ticular case) or gaussian membership functions. The membership function for

YOUNG presented above is an example of a trapezoidal function. Generalising,

a trapezoidal function is given by the following membership function:

f
Ã

: D ⊂ X → [0, 1]

where

f
Ã

(x) =





0 , if x ≤ a ∨ x > d
x−a
b−a , if a < x ≤ b

1 , if b < x ≤ c
d−x
d−c , if c < x ≤ d

(11)

where x ∈ D ⊂ X and Ã is a fuzzy set in X .

The triangular function is a trapezoidal function where b = c.
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3.2 Linguistic Variable

The linguistic values or terms of a linguistic variables are concepts defined by

words or expressions of a natural language.

Definition 2 (Zadeh (1975)). A linguistic variable is characterized by the quin-

tuple (H, T (H), U, G, M) , where H is the name of the variable, T (H) is the set

of terms or linguistic values of H, U is the universe of the variable, G the

semantic rule that generates the terms in T (H) and M is the semantic rule as-

sociating to each term or linguist value its meaning trough the fuzzy set M(X)

(M(X) is a fuzzy set on U).

Let us consider the linguistic variable TEMPERATURE as in (Klir and Yuan

1995). We can have a pure numerical interpretation for this concept as depicted

in case (b) in Figure 1, but we can represent it as a linguistic variable (case (a)),

characterised by the linguist values { Very Low, Low, Average, High, Very High}.

Very Low Low Average High Very High

1
Very Low Low Average High Very High

a)

b)

Very Low Low Average High Very High

1
Very Low Low Average High Very High

a)

1
Very Low Low Average High Very High

a)

b)

Fig. 1: a) Temperature as Linguistic Variable - b) Numerical representation of Tem-

perature

3.3 Fuzzy Measures

Since here we are working with finite spaces, we are going to present a simplified

definition of a fuzzy measure. More details about this topic can be found in

Wang and Klir (1992).

Definition 3 (Grabisch (1995)). A fuzzy measure µ defined on the measurable

space (X, X) is a set function µ : X → [0, 1] satisfying the following axioms:

i µ(∅) = 0, µ(X) = 1. This is the usual convention, although in general µ(X)

can be any positive finite (or infinity) quantity.

ii A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity).

where X , {x1, . . . , xn}, and generally X is a σ-algebra on a space X.

(X, X, µ) is said to be a fuzzy measure space.

In this work, we assume that the σ-algebra X is the power set of X. Hence, in

this case we have X = {SD, CD, LD, LWD, LE} and X = P(X).
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3.4 Choquet Integral

Again, as in Section 3.3, we present a definition of Choquet integral for the

particular case of discrete spaces.

Definition 4. (Grabisch (1995)): Let (X, X, µ) be a fuzzy measure space. The

Choquet integral of a function f : X → [0, 1] with respect to µ is defined by

Cµ(f(x1), ..., f(xn)) ,
n∑

i=1

(f(x(i))− f(x(i−1)))µ(A(i))

where ·(i) indicates a permutation such that 0 ≤ f(x(1)) ≤ . . . ≤ f(x(n)) ≤ 1,

A(i) , {x(i), . . . , x(n)}, and f(x(0)) = 0.

To better illustrate how Choquet integral works we present the same example

described in Murofushi and Sugeno (1989) paper. Consider that there is a rare

book collection which consists of two volumes (let us label y1 as volume 1, and

y2 as volume 2). There is a bookseller who is interested in buying this rare collec-

tion. Therefore, he offers: µ({y1}) monetary units (m.u.) per volume 1; µ({y2})
m.u. per volume 2; and µ({y1, y2}) m.u. for each entire collection. Obviously, he

sets a higher values for the complete set, i.e. µ({y1, y2}) ≥ µ({y1}) + µ({y2}).
Suppose now, that there is a person that sells x1 = h(y1) units of volume 1

and x2 = h(y2) units of volume 2, where x1 ≤ x2. We can say that he of-

fers x1 complete collections and (x2 − x1) volumes 2. Therefore, he would get

x1 × µ({y1, y2}) + (x2 − x1)× µ({y2}) m.u.

4 Construction Heuristic

We implemented a simple construction algorithm. The construction heuristic

block is composed by two secondary order heuristics. These are: exam ordering

heuristic; and period ordering heuristic. The former one concerns the order in

which exams are scheduled. As the latter chooses in which period a particular

exam should be scheduled. Furthermore, we also implemented a backtracking

procedure which is based on the one described in Carter et al. (1996). A pseu-

docode of the algorithm is depicted in Algorithm 1.

Algorithm 1 Construction algorithm pseudocode

unscheduled exams ← all exams
while unscheduled exams is not empty do

Select an exam from the list unscheduled exams using a exam ordering heuristic
Select a feasible period to schedule the previous selected exam using a
period ordering heuristic
if it is impossible to select a feasible period then

Use the backtracking procedure described in Carter et al. (1996)
if it is impossible to backtrack then

break
end if

end if
Update unscheduled exams list

end while
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The four period ordering heuristics implemented in this work are the following:

1. random: a random feasible period is chosen using an uniform distribution;

2. first period: the first feasible period is chosen;

3. biased: a roulette-wheel scheme is used to choose the period. The weights

are computed using Eq. 7;

4. deterministic and random: the periods are sorted according to the weights

obtained by using Eq. 7. Ties are broken randomly.

We implemented three different types of exam ordering. The logic behind them

is similar to the one used for period ordering. The description of the heuristics

is given below.

1. random: a random exam is chosen from the unscheduled ones using a uni-

form distribution;

2. biased: a roulette-wheel scheme is used to choose one of the unscheduled ex-

ams using an empirical distribution based on one of six heuristics described

below;

3. deterministic and random: the exams are sorted according to one of six

heuristics described below. Ties are broken randomly.

The heuristics implemented represent how “hard” it is to schedule a particular

exam. Each one of the five basic heuristics are described below.

1. Saturation Degree (SD): increasingly order exams by the number of feasible

periods in which an exam can be scheduled;

2. Colour Degree (CD): decreasingly order exams by the number of total con-

flicts that an exam has with the already scheduled exams;

3. Largest Degree (LD): decreasingly order exams by the number of total con-

flicts;

4. Largest Weighted Degree (LWD): decreasingly order exams by the number

of total conflicts weighted by the number of students involved in each one;

5. Largest Enrolment (LE): decreasingly order exams by the number of enrol-

ments;

4.1 Construction Heuristic using Choquet Integral

The more traditional aggregation methods (e.g. Weighted Sum, OWA) are easy

to interpret but are too restrictive since they are not able to represent the

interaction between the criteria. It is assumed that the criteria is independent,

when in most practical cases that does not happen. The motivation to use this

method is so that we can represent the information given by the individual

heuristics (given above), as well as the interaction between those heuristics by

using a fuzzy measure (see Section 3.3) in an understandable way. This way we

can model criteria that are not independent.

Choquet integral can be regarded as an extension of Lebesgue integral. That

is, if the measure at hand is additive, or in other words, it is a classical mea-

sure, then Choquet integral coincides with Lebesgue integral (Murofushi and

Sugeno 1989). Therefore, it is easier to interpret its output than other fuzzy

integrals. Moreover, Choquet integral has some algebraic properties that other

fuzzy integrals do not have (Grabisch 1995). Hence, it makes it more suitable for

multicriteria decision making problems (Murofushi and Sugeno 1989; Grabisch

1995, 1996).
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Since the information given by the heuristics had different units, we used fuzzy

sets (see Section 3.1) to normalise its values into the unit interval. The goal of

using this information is to decide which exam is “harder” to schedule. Bearing

that in mind, we modeled each basic heuristic as a linguistic variable (see Section

3.2). Hence, we used a triangular membership function (see Eq. 11) to represent

the linguistic terms, such as “low SD” value, “high CD” value, “high LD” value,

“high LWD” value and “high LE” value. The membership functions are relative

to each iteration, e.g., if the highest SD value is 5 (in one particular iteration)

all exams with that value are going to have a membership of 0. The membership

functions for each linguistic term are defined below.

f ˜lowSD
(xSD) =

maxSD − xSD

maxSD
(12)

f ˜highCD
(xCD) =

xCD

maxCD
(13)

f ˜highLD
(xLD) =

xLD

maxLD
(14)

f ˜highLWD
(xLWD) =

xLWD

maxLWD
(15)

f ˜highLE
(xLE) =

xLE

maxLE
(16)

Where maxSD, maxCD, maxLD, maxLWD and maxLE is the maximum

SD, CD, LD, LWD, LE value in the current iteration, respectively.

Moreover, if some of the maxCD, maxLD, maxLWD, maxLE values are equal

to zero, in some iteration, the respective function returns 0 by default. On the

other hand, if maxSD value is equal to zero the function returns 1 by default.

The weights presented in Table 1 and 2 were chosen using a “rule of thumb”. We

set the individual weights according to how each individual heuristic performed

. The interaction’s weights were defined by analysing the information given

by the heuristics, i.e., if the heuristics present some kind of complementary

information, the weight given to that interaction should be at least higher than

the sum of the individual weights. For example, the SD and CD heuristic

values capture different information of the timetable being constructed. One

could expect that the interaction between these two criteria to be synergetic,

i.e. it provides a better understanding of the problem than both heuristics

separately. Hence, the weight given to the interaction between these two is

higher than the sum of both together. On the other hand, if heuristics present

similar information a lower weight should be given. For instance, the LD and

LWD heuristic values share, to some degree, the same information; hence the

weight given to the interaction between these two is less than the sum of both

together. For both individual and interaction weights, we used a trial-and-error

approach based on how well the heuristic performed on the hec-s-92 data set.
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Table 1: Individual and two-way interaction weights for µ fuzzy measure

Weight Individual Criterion Weight Criteria
0 empty 0.51 SD,LD

0.5 SD 0.515 SD,LWD
0.01 LD 0.52 SD,LE
0.015 LWD 0.8 SD,CD
0.02 LE 0.02 LD,LWD
0.2 CD 0.04 LD,LE

0.21 LD,CD
0.045 LWD,LE
0.3 LWD,CD
0.32 LE,CD

Table 2: Interaction’s weights for µ fuzzy measure

Weight Criteria Weight Criteria
0.6 SD,LD,LE 0.7 SD,LD,LWD,LE
0.62 SD,LWD,LE 0.9 SD,LD,LWD,CD
0.85 SD,LD,CD 0.98 SD,LD,LE,CD
0.88 SD,LWD,CD 0.95 SD,LWD,LE,CD
0.9 SD,LE,CD 0.6 LD,LWD,LE,CD
0.35 LD,LWD,CD 1 SD,LD,LWD,LE,CD
0.06 LD,LWD,LE
0.4 LD,LE,CD
0.43 LWD,LE,CD
0.55 SD,LD,LWD

With all the values fuzzyfied and a fuzzy measure set we can use the Choquet

Integral (see Section 3.4) to combined all the information. As we did with

the other basic heuristics, the exams are ordered decreasingly according to the

values obtained by using this method. That is, if one exam is attributed value 1

it means that it is very hard to schedule, according to the information given by

the five basic heuristics. Hence it should be scheduled before all other exams.

To better illustrate how the process works, an example is here presented. Con-

sider two exams,e1 and e2. After the basic heuristic values were computed and

normalized, we obtained the following values: xe1 = (0.4, 0.5, 0.5, 0.6, 0.8) and

xe2 = (0.8, 0.4, 0.7, 0.7, 0.4), corresponding to the SD, CD, LD, LWD, LE

heuristic, respectively. The Choquet integral value for exam e1 is computed as:

Cµ(xe1) =µ{SD,CD,LD,LWD,LE}xe1SD+

+ µ{CD,LD,LWD,LE}(xe1CD − xe1SD )+

+ µ{LD,LWD,LE}(xe1LD − xe1CD )+

+ µ{LWD,LE}(xe1LW D − xe1LD )+

+ µ{LE}(xe1LE − xe1LW D ) =

=1× 0.4 + 0.6× (0.5− 0.4) + 0.35× (0.5− 0.5)+

+ 0.045× (0.6− 0.5) + 0.02× (0.8− 0.6) =

=0.4685
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An analogous process is also applied to exam e2, giving the value Cµ(xe2) =

0.6150. Hence, the next exam to be scheduled would be the exam e2.

5 Experimental Design

To test the performance of the algorithm we used two data sets. The first one

was a collection of real problems and is available in an online repository created

by Michael Carter1. The second data set was put online for the International

Timetabling Competition2 (ITC 2007) (McCollum et al. 2007). In this work,

we used the average performance to test whether the algorithm performs signi-

ficatively better when distinct heuristics are used for ordering exams. For this

purpose, we performed 330 runs for each heuristic and for each data file. In total,

we ran the algorithm 41580 times ( 330runs× 6heuristics× 21datafiles). For

each data file and each heuristic, we computed an average of 33 runs. This way,

we obtained 10 samples of the average performance of the algorithm for each

data file and each heuristic. We assumed that the 10 samples were normally

distributed since we were dealing with averages of 33 random independent and

identically distributed variables. Hence, to compare the performance of differ-

ent heuristics we used the statistical t-test with a significance level of 0.95. The

following null hypothesis was used:

H0 : µdfi1hj1 ≥ µdfi2hj2 (17)

where µ represents the mean value and dfi1, dfi2, hj1, hj2 are the data files

i1, i2 ∈{Carter’s data files, ITC’s data files} and the heuristics j1, j2 ∈{SD,

CD, LD, LWD, LE, CI}, respectively.

In the next section we only present the results regarding the determinist or-

der of exams and periods. The results of the other ordering strategies were

considerably worse when compared to the aforementioned ones.

5.1 Computational Results

Tables 3 and 4 depict the minimum (min), maximum (max) and average (avg)

values over the 330 runs for all data files (lines) and for each heuristic (columns).

The best results are presented in boldface.

We also computed how many time each heuristic was statistically better than

other k heuristics (with k = 0, 1, 2, 3, 4, 5) across all 21 data files. The results

are depicted in Figure 2. For instance, we can observe that SD heuristic (see

Figure 2a) performed better than 1 heuristic in 2 data files and was also better

than all other heuristics in the other 2 data files.

5.2 Discussion

From analysing Figure 2 it can be seen that amongst the basic heuristics, the

one that performs better is the SD heuristic followed by the CD heuristic.

1 ftp://ftp.mie.utoronto.ca/pub/carter/testprob
2 http://www.cs.qub.ac.uk/itc2007/
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Table 3: Computational results of the basic and Choquet heuristics for the Carter’s

data set

Data Set SD CD LD LWD LE CI

car-f-92
min 4.56 4.74 5.15 5.17 5.03 4.44
max 6.17 7.51 7.61 7.44 7.54 6.99
avg 5.07 5.77 6.07 6.06 6.12 5.28

car-s-91
min 5.25 5.39 5.54 5.69 5.83 5.18
max 7.15 7.76 8.77 8.33 8.34 6.95
avg 5.73 6.25 6.70 6.65 6.82 5.66

ear-f-83
min 40.74 40.22 41.02 43.65 43.67 39.55
max 58.78 61.46 58.73 60.06 61.34 57.53
avg 46.56 49.00 49.13 51.03 51.04 45.43

hec-s-92
min 12.59 12.68 14.16 14.14 12.73 12.20
max 22.80 26.61 27.14 23.15 23.40 25.27
avg 16.07 17.22 18.41 17.53 18.11 16.48

kfu-s-93
min 15.92 16.12 16.41 16.05 16.70 15.46
max 26.00 29.44 26.12 26.81 26.98 22.98
avg 18.55 19.23 20.57 20.00 20.44 17.54

lse-f-91
min 11.96 12.03 12.95 12.28 12.48 11.83
max 19.25 19.43 19.25 20.01 19.08 15.55
avg 14.25 14.81 14.24 14.96 15.30 12.89

pur-s-93
min 4.95 4.96 5.04 5.05 5.15 4.93
max 5.85 6.01 6.05 7.42 7.82 5.81
avg 5.33 5.38 5.37 5.58 5.64 5.19

rye-s-93
min 10.48 10.65 12.35 10.33 10.92 10.04
max 17.84 19.15 19.02 18.49 19.17 16.07
avg 12.78 13.35 15.07 13.76 14.14 11.85

sta-f-83
min 159.35 159.71 162.11 163.09 161.71 160.50
max 185.63 182.97 199.70 192.51 202.30 184.89
avg 169.94 169.95 180.09 173.50 174.71 169.46

tre-s-92
min 8.90 9.04 10.18 9.25 9.47 8.71
max 12.40 13.12 13.34 13.73 12.67 11.07
avg 10.10 10.76 11.66 11.20 11.27 9.27

uta-s-92
min 3.64 3.67 4.04 3.76 3.86 3.49
max 4.69 5.49 6.09 6.80 6.70 5.17
avg 3.95 4.22 4.83 4.74 4.84 3.80

ute-s-92
min 28.93 28.65 31.34 29.55 29.45 29.44
max 43.78 45.25 45.21 46.60 49.48 39.15
avg 34.91 34.09 36.82 37.12 36.55 33.44

yor-f-83
min 43.29 43.07 45.27 46.38 45.74 42.19
max 56.59 59.20 58.13 56.27 58.62 54.77
avg 49.10 50.64 51.65 51.07 51.46 47.94

This can be somewhat explained since these two heuristics have a dynamic

behaviour, while the other three are static, as mentioned in Section 4.

As it can be observed in Table 3 and 4, the CI heuristic almost always obtained

the best results across all data sets. It obtained the best minimum, maximum

and average results in 15, 17 and 18 out of 21 data files, respectively. Figure 2f

shows that the CI heuristic was significatively better than all of other heuristics

in 81% of the instances. Moreover, this heuristic was better than at least 4

heuristic in 90% of the cases.

Only two of the constructive methods (Burke and Newall 2004; Qu et al. 2009a)

seem to perform better than the rest. However, as was described in Section 1, all

methods (with the exception of Carter and Laporte (1996)) have incorporated a
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Table 4: Computational results of the basic and Choquet heuristics for the International

Timetabling Competition (ITC) data set

Data Set SD CD LD LWD LE CI

ITC1
min 1.20 1.20 1.30 1.22 1.22 1.12
max 1.51 1.49 1.55 1.42 1.44 1.30
avg 1.36 1.36 1.42 1.31 1.33 1.21

ITC2
min 0.28 0.28 0.30 0.28 0.28 0.26
max 0.40 0.38 0.40 0.39 0.39 0.35
avg 0.34 0.33 0.35 0.33 0.34 0.30

ITC3
min 1.91 1.90 1.99 1.88 1.93 1.81
max 2.29 2.31 2.29 2.25 2.23 2.06
avg 2.10 2.09 2.10 2.07 2.07 1.93

ITC4
min 13.99 13.66 14.49 15.77 15.91 13.54
max 22.82 24.63 25.28 28.10 29.59 28.49
avg 16.91 17.48 18.46 20.95 20.90 16.67

ITC5
min 0.49 0.50 0.59 0.53 0.55 0.44
max 0.72 0.73 0.82 0.69 0.74 0.61
avg 0.60 0.60 0.71 0.60 0.63 0.52

ITC6
min 4.63 4.78 4.87 4.43 4.67 4.50
max 6.09 6.29 6.88 7.65 7.41 5.49
avg 5.27 5.34 5.63 5.47 5.77 4.90

ITC7
min 0.10 0.11 0.13 0.14 0.14 0.11
max 0.17 0.17 0.19 0.19 0.19 0.16
avg 0.14 0.14 0.16 0.17 0.16 0.13

ITC8
min 0.18 0.18 0.23 0.22 0.24 0.18
max 0.32 0.33 0.33 0.33 0.35 0.30
avg 0.25 0.25 0.28 0.28 0.30 0.25

more sophisticated method to improve the construction process. Therefore, the

heuristic described in this work held a much greater potential since the fuzzy

measure used in this work was not a subject of any kind of sophisticated tuning

procedure. Nevertheless, if we compare the results obtained by the CI heuristic

with some other constructive methods described in the literature (which are

depicted in table 5) we can observe that it presents very competitive results

in most of the instances of the Carter’s data set. Moreover, the CI heuristic is

faster (see Table 6) than most of the construction heuristics depicted in Table 5.

This makes it suitable to be used as a generator for population based algorithms

since it builds good quality timetables.

6 Conclusions

In this work we presented a construction algorithm which uses a fuzzy measure

and Choquet integral to combine the information given by 5 basic heuristics

(see Section 4). The exams are then decreasingly ordered according to the value

obtained by the Choquet integral and scheduled into a time period. This is

chosen in virtue of minimising the total cost of the timetable (which is given

by Equation 7).

The new method proposed in this work performs better than all basic heuris-

tics in most of the test instances. However, in some of them the SD heuristic

obtained better results. Nevertheless, we expect to enhance the performance of
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Fig. 2: Histogram of the number of times that each heuristic performed better than k

others

CI heuristic by using other techniques (e.g. differential evolution (Price et al.

2005)) to tune the weights of the fuzzy measure. Moreover, instead of tuning

the weights for each instance we can use a training data set. Through this, we

expect the heuristic to perform well across a different range of instances with

different characteristics.
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Table 5: Best computational results of some constructive methods and the Choquet

heuristic for the Carter’s data set

Data Set (Carter
and La-
porte
1996)

(Burke
and
Newall
2004)

(Asmuni
et al.
2009)

(Qu
et al.
2009a)

Best re-
ported
(Qu et al.
2009b)

CI

car-f-92 6.2 4.32 4.54 4.32 3.93 4.44
car-s-91 7.1 4.97 5.29 5.11 4.5 5.18
ear-f-83 36.4 36.16 37.02 35.56 29.3 39.55
hec-s-92 10.8 11.61 11.78 11.62 9.2 12.20
kfu-s-93 14.0 15.05 15.80 15.18 13.0 15.46
lse-f-91 10.5 10.96 12.09 11.32 9.6 11.83
pur-s-93 3.9 - - - - 4.93
rye-s-93 7.3 - 10.38 - 6.8 10.04
sta-f-83 161.5 161.91 160.42 158.88 134.9 160.50
tre-s-92 9.6 8.38 8.67 8.52 7.9 8.71
uta-s-92 3.5 3.36 3.57 3.21 3.14 3.49
ute-s-92 25.8 27.41 28.07 28.00 24.4 29.44
yor-f-83 41.7 40.77 39.80 40.71 36.2 42.19

Table 6: Computational times (in seconds) for the CI heuristic. The values are an

average of 300 runs.

Data Set car-f-92 car-s-91 ear-f-83 hec-s-92 kfu-s-93 lse-f-91 pur-s-93
Times 5.03 9.13 0.34 0.15 2.89 1.66 382.81

Data Set rye-s-93 sta-f-83 tre-s-92 uta-s-92 ute-s-92 yor-f-83 -
Times 3.42 0.11 0.60 6.97 0.24 0.43 -
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