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Abstract:  A lot of research has been conducted on hyper-heuristics for examination timetabling.  

However, most of this work has been focused on an uncapacitated version of the problem.  This 

study reports on evolving hyper-heuristics for a highly constrained version of the problem, 

namely, the set of problems from the second International Timetabling Competition (ITC ’07).  

Previous work has shown that using an evolutionary algorithm (EA) based hyper-heuristic with 

more than one chromosome representation is more effective than the standard EA using a single 

representation.  This study evaluates an EA hyper-heuristic, using three different chromosome 

representations, in solving the capacitated examination timetabling problem.  The results produced 

by the hyper-heuristic were found to be comparable to other methodologies applied to the same 

problem set.   
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1. Introduction   

The main aim behind hyper-heuristics is to generalize well in a particular domain rather than 

producing the best result for one or more problems in that domain (Burke et al. 2003 ; Ross et al. 

2005).  Hyper-heuristics select or combine either perturbative or constructive low-level heuristics.  

The study presented in this paper focuses on the combination of constructive heuristics.  There 

have been numerous studies investigating the use of constructive hyper-heuristics in the 

examination timetabling domain.  An overview of the most relevant studies follows.  

Qu et al. (2005) apply variable neighborhood search to a space of combinations of two or 

more constructive low-level heuristics.  Burke et al.  (2005; 2007) employ a tabu search to explore 

the space of heuristics combinations.  Qu et al. (2009b) analyze the heuristic combinations, found 

by a tabu search hyper-heuristic, that produce feasible timetables in order to identify patterns of 

low-level heuristics that lead to good quality solutions.  Qu et al. (2009a) compare the performance 

of different local search strategies in exploring the heuristic space.  Iterated local search produced 

the best results.  The study also revealed that searching the solution space whilst constructing the 

timetable using the heuristic combination output by exploring the heuristic space, produces better 
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quality timetables.  A Greedy Adaptive Search Procedure (GRASP) is used by Burke et al. (2009) 

to search a space of heuristic combinations of two constructive low-level heuristics.  The quality of 

the feasible timetable constructed using the heuristic combination returned by GRASP is further 

improved using steepest descent.  Asmuni et al. (2005; 2007; 2009) combine two or three 

constructive low-level heuristics using a fuzzy logic function.  This function estimates the 

difficulty of scheduling an examination.  Examinations are sorted according to their difficulty and 

scheduled in sequence.  Pillay et al. (2007) implement a genetic programming system to search a 

space of constructive heuristic combinations.  The length of the combinations in the initial 

population is randomly chosen to be between two and a preset maximum.   Tournament selection 

is used to choose parents, to which the crossover and mutation operators are applied to create the 

next generation.  The studies described thus far have combined heuristics linearly and applied 

them sequentially.  Pillay et al. (2009) achieve good results with combining constructive low-level 

heuristics hierarchically using logical operators and applying them simultaneously.  Four heuristic 

combinations are created and tested.  This work is extended further by Pillay (2009) by employing 

genetic programming to search a space of such heuristic combinations.   

All these studies have used the Carter benchmark set of timetabling problems (Carter et al. 

1996) to test the hyper-heuristics.  This set of benchmarks is comprised of 13 real-world problems.  

The hard constraint for this set of problems is that no students must be scheduled to sit two 

examinations at the same time and the soft constraint aims to spread the examinations for each 

student.  A more recent set of examination timetabling problems has been made available by the 

organizers of the second International Timetabling Competition (ITC ’07).   This set of eight 

problems is highly constrained and is representative of the current real-world examination 

timetabling problem.  At the time of writing this paper, studies into applying hyper-heuristics to 

such a highly-constrained, multi-objective examination timetabling problem as that represented by 

the ITC ’07 problem set had not as yet been conducted or published.   

The main contribution of the study presented in this paper is the evaluation of the performance 

of an evolutionary algorithm hyper-heuristic on the set of highly-constrained capacitated 

examination timetabling problems.  The study presented in this paper employs an evolutionary 

algorithm (EA) to search the heuristic space of linear combinations of constructive low-level 

heuristics.  In previous work three different representations, namely, fixed length, variable length, 

and n-times representation were evaluated for the Carter benchmark problems.  A separate EA run 

using each of the representations as well as an EA combining all three representations were 

implemented.  The study revealed that the EA combining all three representations performed better 

than the EAs using each of the representations separately.  Thus, the EA in this study combines the 

three chromosome representations.  Note that the aim of the study is not to compare the three 

representations but test the effect of an EA combining the three representations on a more highly 

constrained, capacitated version of the examination timetabling problem.  

The following section provides an overview of the examination timetable problem as defined 

for the second International Timetabling Competition.  Section 3 presents the EA-based hyper-

heuristic.  The experimental setup for testing the EA-HH is described in section 4.   
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The performance of the EA-HH on the eight problems is discussed in section 5.  The outcome of 

this study and future extensions of this work are summarized in section 6. 

2. The Examination Timetabling Problem for 
“ITC‘07” 

The examination timetabling problem requires the allocation of examinations to timeslots so 

that the hard constraints of the problem are satisfied and the soft constraint cost is minimized.  A 

timetable is said to be feasible if it meets all the hard constraints of the problem.  The hard and soft 

constraints differ drastically from one examination timetabling problem to the next.  The ITC ’07 

problem set has the following hard constraints: 

 

• All examinations must be scheduled. 

• There are no clashes, i.e. a student is not scheduled to sit two examinations during the 

same period. 

• The duration of the period that each examination is assigned to is not less than the 

duration required for the examination.  

• The number of students writing an examination does not exceed the capacity of the room 

the examination is assigned to. 

• Period related hard constraints must be met.  There are three such constraints:  some 

examinations must occur after other examinations; certain examinations must be written 

during the same period while others must not be scheduled in the same period. 

• Room related hard constraints must be satisfied.  In some cases an examination must be 

assigned exclusively to a room. 

The soft constraints for the ITC ’07 problem set are summarized below: 

 

• Two in a row – The number of examinations taken back to back by students is minimized. 

• Two in a day – The number of examinations written in the same day by students is 

minimized. 

• Period spread – The number of examinations written within a specified period, e.g. 5 

days, is minimized. 

• Mixed durations – Examinations are of different durations.  The number of examinations 

with different durations in the same room for a period is minimized. 

• Larger examinations scheduled earlier in the examination timetable – The number of 

examinations with a “larger” number of students scheduled in the latter part of the 

timetable is minimized. 

• Room penalties – Certain rooms have a penalty associated with using them.  The number 

of times rooms with penalties are utilized is minimized. 

• Period penalties – Certain periods also have a penalty associated with their use.  The 

number of times these periods are used is minimized. 
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A more detailed description of these soft constraints can be found in (McCollum, 2007).  The 

winner of the competition has taken a multi-phased approach to the problem (Muller, 2008).  An 

iterative forward search, using conflict-based statistics to prevent cycling, is firstly applied to find 

a feasible timetable.  The second phase employs hill-climbing to further improve the quality of the 

feasible timetable.  If hill-climbing can no longer improve the solution, a variation of the Great 

Deluge algorithm is applied for further improvement.  

Gogos et al. (2008), who were placed second, use a combination of the Greedy Randomized 

Adaptive Search Procedure (GRASP), simulated annealing and mathematical programming to 

solve the examination timetabling problem.   

A variation of GRASP incorporating tabu search is firstly used to find a feasible solution.  

This solution is then improved using simulated annealing.  In the last phase integer programming 

with branch and bound is used to further improve the quality of the timetable.   

Atsuta et al. (McCollum et al. 2009b) were placed third in the competition and implement a 

constraint satisfaction problem solver which uses tabu search and local iterated search in solving 

the examination timetabling problem.   

De Smet (2007) combines the use of the drools-solver and tabu search to solve the problem.  

This approach was placed fourth in the competition.   

Pillay (2007) takes a developmental approach (DA) to the examination timetabling problem.  

The DA mimics the processes of cell biology.  Each organism developed represents a timetable 

with each cell representative of an examination period.  The creation of an organism begins with a 

single cell which is developed into a fully grown organism by means of cell division, cell 

interaction and cell migration.  The fully grown organism then goes through a process of 

maturation in which cell migration is used to further improve the quality of the timetable.  The DA 

was placed fifth in the competition.   

The organizers of the competition take a two-phased approach to the problem (McCollum et 

al. 2009a; McCollum et al. 2009b).  The first phase is a construction phase which uses an adaptive 

ordering heuristic to create a feasible solution.  The feasible solution is improved using an 

extension of the Great Deluge algorithm.    

The results obtained by these methods are presented in section 5.   

3. The Evolutionary Algorithm 

The EA employs the generational control model (Koza 1992) and the population size remains 

fixed from one generation to the next.  An initial population is created and iteratively improved via 

the processes of evaluation, selection and recreation.  These processes are described in the sections 

below. 

3.1 Initial Population Creation 

Each element of the population is a string containing two or more characters representing the 

following constructive low-level heuristics: 
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• Largest degree (l) – Examinations involved in the largest number of clashes are scheduled 

first. 

• Largest enrolment (e) – Examinations with the largest number of students are given 

priority. 

• Largest weighted degree (w) – Examinations with the largest number of students involved 

in clashes are allocated first. 

• Saturation degree (s) – Examinations with the least number of feasible options available 

on the timetable developed thus far are given priority. 

• Spread heuristic (h) – Is an estimate of the spread of examinations over a range of periods 

for each student.  The estimate is defined in terms of the proximity of the examinations 

for a student to each other, and weighted by the number of students involved.  Thus, 

examinations with a higher value are given priority.  Like the saturation degree, this 

heuristic is not static and its value depends on the current state of the timetable.  Thus, it 

needs to be recalculated whenever an allocation is made to the timetable.   

These low-level heuristics are combined using one of the following representations: 

 

• Fixed length heuristic combination (FHC) – The length of the combination is equal to the 

number of examinations, e.g. well if the number of examinations is four.  One heuristic is 

used to schedule each examination. 

• Variable length heuristic combination (VHC) – Studies conducted by Cowling et al. 

(2002) and Han et al. (2003) applying a hyper-heuristic genetic algorithm to the trainer 

scheduling  problem have revealed that a chromosome representation with variable length 

produces better results than a fixed length representation as the GA is able to evolve a 

chromosome of the optimal length.  A similar representation is used in this study.  The 

length of each combination is randomly chosen to be between two and a specified 

maximum, e.g. lessh.  Each heuristic is used to schedule an examination.   

If the length of the combination is less than the number of examinations the 

combination is wrapped around beginning at the start of the string again.  If the 

combination is longer than the number of examinations, only a substring of the 

combination is applied.  Thus, two combinations of length larger than the number of 

examinations would essentially be clones of each other.  Due to this together with the fact 

that mutation and crossover may produce clones, the reproduction operator is not used.   

• N-times heuristic combination (NHC) – Each combination is composed of integers and 

characters representing low-level heuristics, e.g. 3h2l3s1w1s.  The integer preceding the 

heuristic specifies the number of examinations the heuristic will be used to schedule.  In 

the example the first three examinations will be allocated according to the spread 

heuristic, the next two with the largest degree heuristic and so on.  The sum of the integer 

values in the combination is equal to the number of examinations to be scheduled.  The 

reason for including this representation is that it may result in the algorithm converging 

quicker to certain areas of the heuristic space.  For example, it may take longer to evolve 
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the combination lesllllllllhh than it would take to evolve 1l1e1s8l2h.  In this way more of 

the heuristic space may be explored in a shorter time. 

The size of the initial population is a genetic parameter and differs for each problem domain.  

The population consists of an equal number of combinations of each type of representation. 

Previous work has shown that in the domain of EA-based hyper-heuristics for examination 

timetabling different representations are suitable for different problems.  Thus, an EA providing 

more than one chromosome representation in the initial population is more effective.  The EA 

converges to the most suitable representation. 

3.2 Evaluation and Selection 

Each heuristic combination is assigned a fitness measure.  The fitness measure of a 

combination is a function of the hard and soft constraint cost of the timetable constructed using the 

combination.  During the timetable construction process each examination is allocated to the 

feasible minimum cost timeslot.  If there is more than one option the period is randomly chosen 

from the possible options.  If a feasible period is not available, a period is randomly selected.  If 

there is more than one room available, the room with the best fit is chosen.  If there is more than 

room with the same best fit value, the lowest penalty is used to decide which room to use.  The 

fitness measure is the soft constraint cost multiplied by the hard constraint cost incremented by 

one.  Based on trial runs performed, this fitness function proved to be representative of the fitness 

of an individual without any processing overheads. The fitness measure is used by the selection 

method to choose parents of the next generation.  The tournament selection method is used in this 

study.   

A tournament of t individuals is randomly chosen.  The fittest individual in the tournament is 

returned as a winner and is used as a parent for the next generation.  The value of t is a genetic 

parameter and is problem dependant. 

3.3 Recreation  

Two genetic operators, namely, mutation and crossover are implemented to create the next 

generation.  The mutation operator randomly changes a low-level heuristic in a copy of the 

selected parent.  The tournament selection method is evoked to choose a parent.  For example, if 

welsh is a chosen parent, the offspring could be weesh.  In this case l was chosen to be replaced.  

The heuristic e was randomly chosen to replace l.  There is no limit set on the size of the offspring. 

The crossover operator randomly chooses two crossover points in two parents selected using 

tournament selection, and swaps the fragments at the crossover points to produce two offspring.  

For example suppose wehll and leh are the chosen parents and three is the crossover point in the 

first parent and two in the second.  The resulting offspring are weeh and lhll.  Trial runs have 

indicated that returning the fitter offspring is more effective than returning both offspring.  

Crossover occurs between parents of the same representation, i.e. both parents must be NHC or 

VHC.  Crossover is also permitted between VHC and FHC parents.  Crossover is structure-

preserving in the case of NHC ensuring that an integer value precedes each heuristic.   
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4. Experimental Setup 

The EA-HH was tested on the eight problems from the examination timetabling track of ITC 

’07.  The four hidden data sets are not publicly available.  The characteristics of the eight data sets 

as presented by McCollum et al. (2009a) are listed in Table 1.   

    Table 1: Characteristics of the Problem Set 

Problem Conflict 
Density (%) 

No. of Exams No. of Students No. of Periods No. of Rooms 

Exam_1 5.05 607 7891 54 7 
Exam_2 1.17 870 12743 40 49 
Exam_3 2.62 934 16439 36 48 
Exam_4 15.0 270 5045 21 1 
Exam_5 0.87 1018 9253 42 3 
Exam_6 6.16 242 7909 16 8 
Exam_7 1.93 1096 14676 80 15 
Exam_8 4.55 598 7718 80 8 
 

The genetic parameters used by the EA are tabulated in Table 2.  These values were obtained 

by performing test runs.  Due to the stochastic nature of evolutionary algorithms, ten runs were 

performed for each problem set, each with a different random number generator seed.  The EA 

was implemented in Java and simulations were run on a system with a 1995 Mhz Intel Core 2 Duo 

processor and 2 gigabytes of memory. 

Table 2: Genetic Parameters 

Parameter Value 
Number of generations 100 
Population size 500 
Maximum initial length 5 
Tournament size 10 
Crossover rate 0.3 
Mutation rate 0.7 

5. Results and Discussion 

The EA-HH produced feasible timetables for all eight problem sets.  The best soft constraint 

cost obtained over ten runs for each problem is listed in Table 3.  Although the main aim of a 

hyper-heuristic is to generalize well rather than producing the best result, for completeness Table 3 

compares the performance of the EA-HH to other methodologies applied to the same set of 

problems.  These methodologies are described in section 2.  Note that while these methodologies 

perform one or more improvement phases to reduce the soft constraint cost of the timetable, the 

EA-HH does not perform additional optimization once a feasible solution is found.  Furthermore, 

in this study the time limitation imposed by the competition was not adhered to and the time taken 

by the EA-HH was not monitored.  It is assumed that the EA-HH will have longer runtimes due to 

the overhead of solving the problem using each heuristic combination in each population. 
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    Table 3: A Comparison of Results 

Problem EA-HH Muller  
 

Gogos 
 

Atusta et al. 
 

De Smet 
 

Pillay 
 

McCollum et  
al.  

Exam_1 8559 4370 5905 8006 6670 12035 4633 
Exam_2 830 400 1008 3470 623 2886 405 
Exam_3 11576 10049 13771 17669 - 15917 9064 
Exam_4 21901 18141 18674 22559 - 23582 15663 
Exam_5 3969 2988 4138 4714 3848 6860 3042 
Exam_6 28340 26585 27640 29155 27815 33005 25880 
Exam_7 8167 4213 6572 10506 5436 17666 4037 
Exam_8 12658 7742 10521 14317 - 15592 7461 
 

Although the EA-HH does not further optimize feasible solutions, its performance is 

comparable to the other methodologies applied to this problem set.  For all problem sets the EA-

HH has produced better results than at least one to three other methodologies.  Table 4 lists the 

representation, i.e. FHC, VHC or NHC, of the best heuristic combination evolved for each 

problem over the ten runs.  Note that the representation converged to for each run maybe different 

and that the population at the end of the run will have a majority of the individuals with the same 

structure, because the EA has converged to a particular area of the heuristic space, but not all the 

individuals will necessarily have the same representation.  

      Table 4. Representations Converged to 

Problem Representation 
Exam_1 FHC 
Exam_2 VHC 
Exam_3 VHC 
Exam_4 VHC 
Exam_5 FHC 
Exam_6 NHC 
Exam_7 FHC 
Exam_8 NHC 

 
The algorithm converged to a combination with the NHC representation for two of the 

problem sets, with the FHC representation for three of the problem sets and with the VHC 

representation for three of the problem sets.  An analysis into a possible correlation between the 

representation converged to and the characteristics of each problem will be conducted as part of 

future work.  

6. Conclusion and Future Work 

This paper presents an EA-based hyper-heuristic for a highly constrained examination 

timetabling problem, namely, that used for the examination timetabling track of the second 

International Timetabling Competition.  The EA combines three different chromosome 

representations.  The EA-HH produced feasible timetables for all eight competition timetabling 

problems.  Furthermore, the quality of the timetables produced by the EA-HH was comparable to 

and in some cases better than the best timetable produced by other methodologies, even through 

the EA-HH did not perform additional optimization after a feasible solution was obtained.  

However, the time needed to find an optimal heuristic combination was not monitored and thus the 

343



approach may have the advantage of longer runtimes.  It is interesting to note that the 

representation of the heuristic combination producing the best quality timetable differed for each 

problem.  Future work will investigate whether there is a correlation between the representation of 

the best heuristic combination and the characteristics of the problem.   
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