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In this study, we investigate an adaptive decomposition strategy that automatically divides 

examinations into difficult and easy sets for constructing an examination timetable. The 

examinations in the difficult set are considered to be hard to place and hence are listed before the 

ones in the easy set. Moreover, the examinations within each set are ordered using different 

strategies based on graph colouring heuristics. Initially, the examinations are placed into the easy 

set. During the construction process, the examinations that cannot be scheduled are identified as 

the ones causing infeasibility and are moved forward in the difficult set to ensure earlier 

assignment than the others for the subsequent attempts. On the other hand, the examinations that 

can be scheduled remain in the easy set. Within the easy set, a new subset called the boundary set 

is introduced to accommodate shuffling strategies to change the given ordering of examinations. 

The proposed approach which incorporates different ordering and shuffling strategies is explored 

on the Carter benchmark problems. The empirical results show that its performance is promising 

and comparable to existing constructive approaches.
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1 Introduction

Timetabling attracts numerous researchers and practitioners due to its challenging 

nature. Timetabling problems are NP hard real-world problems (Even et al. 1976) 

that are hard to solve and often require considerable amount of either human or 

computational time or both. There are many types of timetabling problems e.g.

educational timetabling, nurse rostering, etc. The focus of this study is the 

university examination timetabling problem.  Principally, the examination 

timetabling problem is concerned with the scheduling of a list of examinations 

into a restricted number of time-slots while satisfying a defined set of constraints.

Hard constraints must be satisfied in creating a feasible solution e.g. no student 

should take two examinations at the same time. Soft constraints on the other hand

can be broken but it is desirable to satisfy them as much as possible. The 

evaluation of the degree these soft constraints are satisfied provides an indication 

of the overall quality of a given solution. In relation to examination timetabling, 

evaluating the average cost of student spread in the timetable as an indicator of 

how ‘good’ a given solution is was introduced by Carter et al. (1996). More 

overview information on the examination timetabling problem and associated

constraints can be found in (Carter and Laporte 1996; Carter et al. 1996; Petrovic 

and Burke 2004; Qu et al. 2009).

Considering that the only constraint dealt with is the requirement that no 

student should sit two examinations at the same time, the formulation of the 

examination timetabling problem is closely similar to other graph colouring

problems. Ülker et al. (2007) discusses a grouping representation for this type of 

examination timetabling problems. The vertices and edges of a graph denote the 

examinations and the conflicting examinations that should not be scheduled at the 

same time, respectively, where the colour of a vertex denotes a time-slot in the 

timetable. The heuristic ordering methods for graph colouring are considered 

constructive approaches. These approaches have been used to find an initial 

solution before getting further to the improvement phase. There are several 

heuristic ordering methods commonly used in examination timetabling i.e. largest 

degree, saturation degree, largest weighted degree, largest enrolment and colour 

degree (Carter 1986; Carter and Laporte 1996, Burke et al. 2004a). 

A wide variety of approaches have been applied to examination timetabling. 

The approaches vary from exact methods, such as, constraint logic programming 
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and constraint satisfaction to meta-heuristic approaches, such as, tabu search, 

simulated annealing and population based approaches, such as, evolutionary

algorithms. Recent applications of search methodologies, such as hyper-heuristics 

that perform search over the heuristics space (Burke et al. 2003; Özcan et al. 

2008) and case-based reasoning approaches to timetabling aim to work at a higher

level of generality than meta-heuristics. An overview of methodologies employed 

for examination timetabling is provided in Table 1.

Recent studies in timetabling have focused on the constructive approaches 

for obtaining high quality solutions. Graph colouring heuristics have been 

customized with the adaptive approaches to order the examinations based on their 

difficulty of timetabling (Burke and Newall 2004). We have utilised the 

framework of ‘squeaky wheel optimisation’ (Joslin and Clement 1999), where the 

difficulty of scheduling an examination is identified based on its feasibility versus 

infeasibility in a previous iteration. In this work, the difficulty indicator of 

scheduling an examination was subsequently increased based on a certain 

parameter to enable it be scheduled earlier in the next iteration. In 2009, Abdul 

Rahman et al. extended this study by introducing more strategies for choosing an 

examination to be scheduled and the time-slots. In another adaptive approach, 

Casey and Thompson (2003) developed a GRASP algorithm for solving the 

examination timetabling problems. In their approach, the next examination to be 

scheduled is chosen from the top items in the list (called candidate list) using 

roulette wheel selection and then assigned to the first available slot.

Table 1. Some representative methodologies for solving examination timetabling problems

Methodology Reference(s)

Cluster-based/decomposition Balakrishnan et al. (1992), Burke and Newall 

(1999), Qu and Burke (2007)

Tabu search Di Gaspero and Schaerf (2001), White and 

Xie (2001)

Simulated annealing Thompson and Downsland (1998), Merlot et 

al. (2003)

Great deluge algorithm Burke et al. (2004b)

Variable neighbourhood search Burke et al. (2010)

Large neighbourhood search Abdullah et al. (2007)

Iterated local search Caramia et al. (2001)
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GRASP Casey and Thompson (2003)

Genetic algorithms Burke et al. (1995), Ülker et al. (2007)

Memetic algorithms Burke and Newall (1999), Ozcan and Ersoy 

(2005), Ersoy et al. (2007)

Ant algorithms Eley (2007)

Exact method Boizumault et al. (1996), David (1998), 

Merlot et al. (2003)

Multi-objective Petrovic and Bykov (2003), Ülker et al. 

(2007)

Hyper-heuristic Bilgin et al. (2007), Ersoy et al. (2007), Pillay 

and Banzhaf (2009)

Case-based reasoning Burke et al. (2006)

Fuzzy approaches Asmuni et al. (2009)

Neural network Corr et al. (2006)

Constructive approaches Burke and Newall (2004), Abdul Rahman et 

al. (2009)

The study by Qu and Burke (2007) describes an adaptive decomposition 

approach for constructing an examination timetable.  This paper draws upon the 

research on similar adaptive approaches that make use of a decomposition 

strategy. We propose an approach which divides the problem into two sub-

problems. We adopt the same naming convention introduced by Qu and Burke 

(2007) for these sets as difficult and easy. In this study, the problem is 

decomposed into difficult and easy sets at each iteration. A timetable is 

constructed based on the associated heuristic ordering for each set. We also 

introduce an additional set of examinations which is located in between the 

difficult and easy sets, which is referred to as the boundary set. This study 

describes several mechanisms associated with the boundary set in order to vary 

the search space of solutions. In Section 2, we present the details of our approach 

based on adaptive decomposition and ordering for examination timetabling. 

Section 3 describes the experimental data and discusses the results. Finally, the 

conclusion is provided in Section 4.
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1. E={e1, e2,…., eN}
2. BoundarySetSize=δ 
3. EasySet=E; DifficultSet=ø; BoundarySet= ø; TempSet=ø
4. Divide E into subsets
5. FOR i=0 to MAXIter 
6.   OrderExamsWithinSubsets(DifficultSet, EasySet)
7.   BoundarySet=CreateBoundarySet(DifficultSet, EasySet)
8.   WHILE (there are examinations to be scheduled)
9.     Consider changing the ordering of examinations

     using Shuffling-Strategy
10.     Employ Selection-Strategy to choose an 

      unscheduled exam, e
11.     IF e can be scheduled THEN
12.        TempSet=TempSet  {e}
13.        Schedule e to the time-slot with the least penalty

         In the case of the availability of multiple 
         time-slots with the same penalty, 
         choose one randomly

14.     ELSE 
15.        Move exam e to DifficultSet
16.     END-IF
17.     EasySet=TempSet
18.    END-WHILE 
19.    Evaluate solution, store if it is the best found so far
20. END-FOR 

2 Automated Decomposition and Ordering of 
Examinations

Most of the timetabling approaches described do not make use of the information 

obtained from the process of building an infeasible timetable. The examinations 

causing the infeasibility of a solution provide an indication that those 

examinations are very difficult to place and should perhaps be treated in different 

ways. We propose a general constructive framework as presented in Pseudocode 1 

for solving the examination timetabling problem based on the automated

decomposition of a set of examinations into two sets i.e. difficult and easy. 

Pseudocode 1: Improvement and construction of a timetable based on automated decomposition 

and ordering of examinations.

During each iteration, a new solution is constructed from an ordered list 

of examinations. The difficult set consists of the examinations that cannot be 

placed into a time-slot within the timetable due to some conflicts with other 

examinations from the previous iteration. These examinations need to be 

associated with a large penalty imposed on the unplaced examinations. On the 

other hand, the examinations in the easy set cause no violations during the 
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timetabling. In our approach, all the examinations that contribute to the 

infeasibility in a solution are given priority. They are moved forward in the 

ordered list of examinations and treated first. Such examinations are detected and 

included in the difficult set at each iteration and a predefined ordering strategy is

employed before their successive assignment to the available timeslots. The 

remaining examinations that generate no feasibility issues are placed into the easy

set and the original ordering of those examinations is maintained. In order to 

incorporate a stochastic component for the selection of examinations from the 

generated ordering, some shuffling strategies are utilised. The following 

subsections discuss these strategies.

2.1 Interaction between Difficult and Easy Sets through a Boundary 
Set

An adaptive decomposition approach is experimented with using two graph 

colouring heuristics for generating the initial ordering of examinations. We have 

tested the largest degree heuristic that orders the examinations decreasingly with 

respect to the number of conflicts with each examination and the saturation degree 

heuristic that dynamically orders the unscheduled examinations based on the 

number of available time-slots for each during the timetable construction. The 

reason for testing these two graph colouring heuristics is to compare their 

achievement in terms of solution quality and the contribution of difficult set size, 

as they represent static and dynamic ordering heuristics. Initially, all the 

examinations are considered to be a member of the easy set (as illustrated in 

Figure 1(a)). 

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

(a)

e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

(b)

Difficult set Easy set

Easy set
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e7 e9 e5 e11 e10 e1 e3 e2 e6 e8 e12 e4

(c)

e3 e5 e9 e7 e6 e11 e10 e1 e2 e8 e12 e4

(d)

Figure 1. (a) All examinations are in a easy set in the first iteration and examinations that cause 

infeasibility are marked, (b) difficult and easy sets after an iteration resulting with an infeasible 

solution, (c) boundary set with a prefixed size is added to the difficult set after an iteration and 

reordering is performed, (d) the step in (a) is repeated and the infeasible examinations are placed in 

the difficult size, the size of difficult set increased.

During each iteration, the examinations causing infeasibility are identified. 

As in Figure 1(a), all such examinations are marked as a member of the difficult 

set to be moved forward towards the top of the list of examinations (Figure 1(b)), 

while the examinations that caused no violation during the assignment to a time-

slot remain in the easy set. In Figure 1(c), the boundary set is created between the 

difficult and easy set and is merged with the difficult set before a reordering is 

performed to the difficult set. In the next iteration, more infeasible examinations 

are detected and included in the difficult set. Consequently, the size of the 

difficult set is increased from one iteration to another.

2.2 Swapping the Examinations Between Difficult and Boundary Sets

This strategy shuffles the difficult set and the boundary set by swapping the 

examinations in between them randomly. Occasionally, the examination causing 

infeasibility is not necessarily the one that is very difficult to schedule. The 

infeasibility may happen due to the previous assignment and ordering. This 

strategy introduces the opportunity for some of the examinations in the difficult

set to be chosen later in the timetable. There is also a possibility that the 

examinations in the boundary set are swapped back to the original set because this 

process is done randomly. Figure 2 illustrates how the swapping of examinations

between two sets might take place.

Boundary set Easy setDifficult set

Boundary setDifficult set Easy set
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e7 e9 e5 e11 e7 e1 e3 e2 e6 e8 e12 e4

Figure 2: The boundary set is swapped with the difficult set and is reordered before assigning 

examinations to the time-slots.

2.3 Roulette Wheel Selection for Examinations

We utilised a roulette wheel selection strategy that incorporates a stochastic 

element in choosing examinations before assigning them to the time-slots. If there 

is no improvement evident for a certain time, a list of examination of size n was 

chosen from the ordered list in the difficult set from which and an examination is 

chosen based on a probability. The probabilities of an examination being chosen 

were calculated based on a score, si of each examination in the list of size n.  The 

new size of the difficult set will be the set which includes the size of boundary 

whenever there is improvement to the solution quality. The score value, si is a 

dynamic measure that is obtained from the largest and saturation degree values (as 

in equation 1), where Num_clashi is the number of examinations in conflict with 

the examination i, Max_clash is the maximum number of conflicts with all 

examinations, Sat_degreei is the saturation degree value for the examination i and 

Num_slots is the number of time-slots given to the specified problem. Sat_degree

value in this problem is initialised as 1.

slotsNum

reeSat

clashMax

clashNum
s ii

i _

deg_

_

_
 (1)

The probability, pi of an examination being chosen from n list of examinations is,







1

0

n

i
i

i
i

s

s
p , (2)

A random number from (0, 1) is obtained in order to choose an examination from 

a list of examination of size n. Those examinations with higher score values will 

have a greater chance of being chosen.

Boundary set Easy setDifficult set
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2.4 Comparison of Our Approach to a Previous Study 

Qu and Burke (2007) previously proposed an adaptive decomposition approach to 

construct examination timetables. Their approach starts with an initial ordering of 

examinations using a graph colouring heuristic, namely saturation degree. In the 

approach, a perturbation is made by randomly swapping two examinations in 

order to obtain a better ordering. Examinations are then decomposed into two 

sets: difficult and easy. 

The initial size of the difficult and easy sets are prefixed as half of the 

number of examinations in a given problem as shown in Figure 3(a). At each 

iteration, the size of the difficult set is modified according to the feasibility of the 

solution. If the solution is infeasible after the adjustment of the ordering of 

examinations then the first examination that causes infeasibility (e.g. e11) is 

moved forward for a fixed number of places (e.g., five as illustrated in Figure 

3(b)). The size of the difficult set is then re-set to the point where the difficult 

examination is placed. Otherwise, if feasible solution or an improved solution is 

obtained, the size of the difficult set is increased (Figure 3(c)). 

Our approach initialises with the easy set including all the examinations and 

the difficult set is formed during each construction phase at each iteration. The 

size of the difficult set depends on the number of unscheduled examinations that 

cannot be assigned to any time-slot from all previous iterations. The size of the 

difficult set never decreases and after a certain number of iteration, the number of 

examinations in the difficult set might be sustained. On the other hand, in the 

previous approach, the size of the difficult set is prefixed and increased when the 

feasible solution or improved solution is obtained statically. The set is also 

allowed to shrink. Additionally, the previously proposed approach uses an initial 

ordering and reorders all the examinations without using a heuristic, which is not 

the case in our approach. Although we have used the same approach for 

reordering the examinations in difficult and easy sets separately, examinations in 

different sets can be reordered based on a different heuristic at each iteration. 

e3 e10 e5 e7 e1 e9 e2 e6 e11 e8 e12 e4

(a)

Difficult set Easy set
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e3 e10 e5 e11 e7 e1 e9 e2 e6 e8 e12 e4

(b)

e3 e10 e5 e11 e1 e9 e2 e6 e7 e8 e12 e4

(c)

Figure 3. Difficult and easy sets (a) in the first iteration, (b) after an iteration is over (a) resulting 

with an infeasible solution, (c) after an iteration is over (a) resulting with a feasible solution.

3 Experiments 

The experiments were tested on benchmark problems introduced by Carter et al. 

(1996) and are publicly available at ftp://ftp.mie.utoronto.ca/pub/carter/testprob/. 

In this study, we used version I of the 12 problems that were adapted from Qu et 

al. (2009) to differentiate various versions of the problem. During the 

experiments, five runs are performed and the stopping conditioned has been set as 

10 000 iteration as to be equal with the experiment done by Qu and Burke (2007).

Two types of heuristic ordering for initialisation are investigated: largest degree

(LD) and saturation degree (SD). The difficult set is created using these two initial 

orders are then reordered with either largest degree or saturation degree. In this 

study, the same heuristic ordering is used for the examinations in the easy set. The 

heuristics used in a given approach will be denoted by a triplet as [heuristic used

for the initial ordering – heuristic used for ordering the examinations in the 

difficult set – heuristic used for ordering the examinations in the easy set] from 

this point onwards. The size of the boundary set is fixed as 5.

Table 2 summarises the experimental results obtained applying the proposed 

approach to the benchmark problem instances. By looking at the best ordering for 

the difficult sets, we observe that the adding boundary set strategy performed 

better with largest degree initial ordering where nine out of the twelve problem 

instances has performed significantly better than saturation degree initial ordering 

while the swapping strategy has performed better with saturation degree initial 

ordering with seven out of twelve problem instances are better compare to largest 

Difficult set

Easy set

Easy set

Difficult set

Examination that 
causes infeasibility
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degree initial ordering. The best combination ordering for adding boundary set 

strategy is [LD-SD-LD] while the swapping boundary set strategy performed the 

best with [SD-SD-SD]. From the perspective of the strategies, it is clear that by 

swapping the boundary set with the difficult set produced better solution quality 

as compared to just combining the boundary set as a part of the difficult set. The 

swapping strategy has obtained seven better results while the combining strategy 

produced the better results for only five problem instances.

Table 2. Comparing solution quality for (a) [LD-LD-LD], (b) [SD-LD-SD], (c) [LD-SD-LD], (d) 

[SD-SD-SD] by adding boundary set into difficult set and swapping examinations between 

boundary and difficult sets with δ=5. (LD: largest degree; SD: saturation degree) (Bold font 

indicates the best for different ordering and strategy and italic is the best of all for each problem 

instance).

Problem Add the boundary set (δ=5) into 

the difficult set 

Swap examinations in the 

boundary (δ=5) and difficult sets 

(a) (b) (c) (d) (a) (b) (c) (d)

car91 5.72 5.60 5.77 5.44 5.71 5.37 5.75 5.34

car92 4.97 4.76 4.90 4.85 5.03 4.87 4.95 4.91

ear83 I 41.36 41.42 42.53 42.51 41.90 42.48 43.38 42.78

hec92 I 12.98 12.76 12.24 12.45 13.32 13.15 12.72 12.52

kfu93 16.68 16.57 16.35 16.40 16.16 16.61 16.38 16.49

lse91 13.44 12.96 12.64 12.85 13.45 12.52 12.93 12.95

rye93 11.13 10.79 10.23 10.31 11.35 10.66 10.53 10.27

sta83 I 163.93 162.12 159.32 159.74 161.98 159.34 159.08 158.99

tre92 9.77 9.72 9.54 9.69 9.81 9.50 9.66 9.41

ute92 30.68 30.08 29.11 29.11 30.21 29.79 29.34 28.96

uta92 I 3.92 3.78 3.96 3.87 3.96 3.77 3.89 3.82

yor83 I 45.85 46.97 44.16 44.75 45.84 46.28 45.30 45.39

In the next set of experiments, the effect of incorporating the roulette wheel 

into the examination selection process is tested with n = 3. As we can see from the 

results in Table 3, the adding boundary set strategy with roulette wheel selection 

has performed better by providing eight better solutions as compared to the 

swapping strategy with roulette wheel selection. From the results, the adding 

boundary set and selection strategy performed the best with combination of [LD-

SD-LD] while the best combination ordering for swapping with selection strategy 

is [SD-LD-SD]. Comparing the best results obtained from the strategies without 
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roulette wheel selection in Table 2 and the strategies with roulette wheel selection 

in Table 3, it shows that when incorporating the selection strategy improves the 

performance of the approach.

Table 3. Comparing solution quality for (a) [LD-LD-LD], (b) [SD-LD-SD], (c) [LD-SD-LD], (d) 

[SD-SD-SD] with shuffling strategies of adding the boundary set into the difficult set and 

swapping examinations between the boundary and difficult sets with δ=5 and includes roulette 

wheel selection for examinations with n=3. (LD: largest degree; SD: saturation degree) (Bold font 

indicates the best for different ordering and strategy and italic is the best of all for each problem 

instance).

Problem Add the boundary set (δ=5) into 

the difficult set + Roulette wheel 

selection (n=3)

Swap examinations in the 

boundary (δ=5) and difficult sets 

+ Roulette wheel selection (n=3)

(a) (b) (c) (d) (a) (b) (c) (d)

car91 5.67 5.28 5.64 5.43 5.67 5.57 5.77 5.48

car92 4.98 4.91 4.81 4.76 4.90 4.95 4.86 4.89

ear83 I 41.29 40.60 41.39 42.74 41.67 42.24 42.14 42.51

hec92 I 12.09 12.36 12.45 12.70 12.20 12.97 12.38 12.48

kfu93 16.25 16.22 16.04 16.43 16.43 16.07 16.20 16.05

lse91 12.70 12.03 12.76 12.67 13.06 12.75 12.14 12.82

rye93 10.52 10.25 10.40 10.41 10.45 10.45 10.20 10.54

sta83 I 160.20 162.26 158.68 160.00 158.60 160.43 158.39 161.75

tre92 9.31 9.72 9.08 9.55 9.43 9.79 9.21 9.63

ute92 27.81 27.93 28.57 27.90 28.01 27.84 27.30 27.55

uta92 I 3.95 3.73 3.83 3.81 3.88 3.92 3.89 3.74

yor83 I 45.48 45.24 45.76 44.36 545.04 44.33 44.51 44.81

Table 4 compares our best results obtained from the strategy of roulette 

wheel selection to the other previous results based on constructive approaches. 

Given by Qu and Burke (2007) is the closest comparison to our approach as they 

have also implemented a decomposition strategy. Comparing the solutions across 

all problem instances, it is observed that our approach does not yield the best 

results. However, it provides one better result when compared to the approach 

proposed by Qu and Burke (2007) for car91. Moreover, we have obtained better 

results than the approach by Asmuni et al. (2009) for four problems (car91, lse91, 

rye93 and ute92), Carter et al. (1996) for two problems (car91, car92), 
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respectively. However, Burke and Newall (2004) and Qu and Burke (2007) do not 

provide the result for rye93.

Table 4. Comparison of different constructive approaches (LD: largest degree; SD: saturation 

degree; RWS: roulette wheel selection) (The bold entries indicate the best results for constructive 

approaches only, while the italic ones indicate the best results for the decomposition approach).

Problem Burke & 

Newall 

(2004)

Carter et 

al. (1996)

Asmuni 

et al. 

(2009)

Abdul 

Rahman 

et al. 

(2009)

Qu & 

Burke 

(2007)

SD-LD-

SD(RWS)

car91 4.97 7.10 5.29 5.08 5.45 5.28

car92 4.32 6.20 4.54 4.38 4.5 4.91

ear83 I 36.16 36.40 37.02 38.44 36.15 40.60

hec92 I 11.61 10.80 11.78 11.61 11.38 12.36

kfu93 15.02 14.00 15.80 14.67 14.74 16.22

lse91 10.96 10.50 12.09 11.69 10.85 12.03

rye93 - 7.30 10.38 9.49 - 10.25

sta83 I 161.90 161.50 160.40 157.72 157.21 162.26

tre92 8.38 9.60 8.67 8.78 8.79 9.72

ute92 27.41 25.80 28.07 26.63 26.68 27.93

uta92 I 3.36 3.50 3.57 3.55 3.55 3.73

yor83 I 40.88 41.70 39.80 40.45 42.2 45.24

The overall results once again highlight the importance of the methodology 

used to change the ordering of difficult examinations, particularly the ones 

causing infeasibility. In our approach, the ordering of the examinations within the 

difficult set with respect to the others appears to be vital combined with the 

assignment strategy. As shown in Figure 4, for the experiments adding and 

swapping boundary set and difficult set without roulette wheel selection, the 

average number of the examinations in the difficult set varies with different 

ordering strategies. The approach using the largest degree ordering generates 

infeasibility more often for a given solution during the time-slot assignments as 

compared to the one using the saturation degree ordering. On the other hand, 

saturation degree ordering might easily create a feasible solution for some

problem instances (e.g. car91 and uta92 I). However, using the saturation degree 

alone does not for guarantee a good solution quality. 
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Figure 4. Average number of examinations in the difficult set (its size) over all problems

considering all shuffling strategies using different initialisation and reordering heuristics. (LD: 

largest degree, SD: saturation degree, B: boundary set, D: difficult set, a: add, s: swap).

In some cases, using the saturation degree ordering may easily create a 

feasible solution when adding or swapping with the boundary set, the infeasible 

examinations can be obtained in this approach since this approach gives priority 

of ordering the difficult set. Consequently, adding or swapping the boundary set 

with the difficult set might have increased the number of examinations in the 

difficult set. 

Figure 5((a), (b), (c)) illustrate the number of infeasible at each 100 iteration 

for different combination of initial ordering and reordering heuristics for the 

difficult set for car91, kfu93 and yor83 I, respectively. It shows that using largest 

degree causes increasing number of examinations to generate infeasible solution 

when compared to the saturation degree. car91 has an obvious difference in the 

number of infeasible examinations when comparing with the other two types of 

ordering i.e. [LD-LD-LD] and [LD-SD-LD]. In the other problem, kfu93 and 

yor83 I the number of infeasible examinations for different ordering is 

approximately the same but still using [SD-LD-SD] and [SD-SD-SD] are slightly 

advantageous. In all problems, the number of infeasible examinations is 

converged to a steady state after some point.

Avr. no. of examinations in the difficult set 
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Figure 5. The change in the size of the difficult set and the solution quality at every 100 iteration

during the sample runs for (a) car91, (b) kfu93, (c) yor83 I. (LD: largest degree, SD: saturation 

degree).

4 Conclusion

This study discusses a novel approach based on adaptive strategies that 

decomposes the examinations in a given problem into two sets: a set of difficult to 

schedule and a set of easy to schedule examinations. This decomposition is 

performed automatically at each iteration, and is augmented with suitable ordering 

of examinations within each set. In this study, it is observed that by merging or 

swapping the boundary set with the difficult set could improve the solution 

quality. A stochastic component based on roulette wheel selection is embedded 

into the approach in order to shuffle the order of examinations. This mechanism 

gives a higher chance to an examination with a higher score to be selected for 

timetabling. It is observed that using saturation degree could decrease the 

possibility of creating infeasible solution and that dynamic ordering gives better 

ordering of examinations in the list. This preliminary study shows that the 

proposed approach is simple to implement, yet it is competitive to the other 

previous constructive approaches. In this study, the same ordering heuristics are 

used for reordering the examinations in the difficult and easy sets. In fact, the 

proposed framework allows the use of different strategies. As a future work, 

iteration

No. of examinations in the difficult set
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different strategies will be investigated for reordering of examinations and 

choosing the examinations from the difficult set.
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