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Abstract In this paper we propose an approximation for the Traveling Tournament Problem
which is the problem of designing a schedule for a sports league consisting of a set of teams
T such that the total traveling costs of the teams are minimized. Thereby, it is not allowed
for any team to have more thank home-games ork away-games in a row. We propose an
algorithm which approximates the optimal solution by a factor of 2+ 2k/n+ k/(n− 1)+
3/n+3/(2· k) which is not more than 5.875 for any choice ofk ≥ 4 andn ≥ 6. This is the
first constant factor approximation fork> 3.

Keywords Sports Scheduling· Traveling Tournament Problem· Approximation Algo-
rithms

1 Introduction

During the last decades professional sports leagues worldwide have turned into million or
sometimes even billion dollar businesses. Soccer in Europe as well as American Football,
basketball, baseball or ice hockey in North America absorb thousands of fans inside the
stadiums and millions of spectators around the world. A crucial contribution to the success
of a season lies in the timetable or schedule of the league which determines what games are
arranged when and at which arenas. Thereby, the planers of those leagues have to balance not
only the expectations of the fans but also many requests stipulated by clubs and TV stations.
Created by hand in the past, nowadays most schedules of professional sports leagues are
obtained by computer-based applications of sophisticated mathematical models and tools.

In this paper we will focus on the Traveling Tournament Problem (TTP) introduced
by Easton et al. [6]. It is a quite well-known and practically difficult optimization problem
inspired by Major League Baseball. North American sports leagues have an incentive to
minimize the travel distance of the participants of a tournament due to the vast expanse of
their continent.

The task of the TTP is to find a schedule for a double round robin tournament (where
each team plays every other team twice: once at its home venue and once at the other team’s
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venue) which minimizes the overall travel distance of all teams in a sports league under two
specific constraints.

These constraints are the no-repeater constraint, enforcing that game A-B (B travels to
A’s venue) must not be placed directly after game B-A took place and the restriction on the
number of consecutive home games (home stands) and also on the away games (road trips).
This is due to economical reasons since the supporters might be bored by a too long home
stand a well as impatient during a long road trip.

1.1 Sports Scheduling and the Traveling Tournament Problem

Sports Schedulingin general deals with the design of tournaments. Asingle round robin
tournamenton n teams wheren is an even number consists of (n− 1) days (also called
slots). Each dayn/2 games which are themselves ordered pairs of teams take place. Every
team has to participate at one game per day and must meet every other team exactly once. It
is standard to assumen to be even since in sports leagues withn being odd, a dummy team is
usually introduced and whoever plays it has a day off, which is called abye. Adouble round
robin tournamentonn teams consists of 2(n−1) days and every team must meet every other
team twice: once at its own home venue (home game) and once at the other team’s venue
(away game). A popular policy in practice is to obtain a double round robin tournament
from a single round robin tournament by mirroring, that is repeating the matches of dayk
for k = 1, ...,n−1 on dayk+n−1 with changed home field advantage. Consecutive home
games are calledhome standand consecutive away games form aroad trip. Thelengthof a
home stand or road trip is the number of opponents played (and not the distance traveled).

TheTraveling Tournament Problem (TTP)as introduced in [7] is then defined as follows:

Input:

– a setV = {1,2, . . . ,n} of n teams withn even
– an n× n integer distance matrixD containing the metric travel distances between the

home venues of all teams
– integersL,k

Output: A double round robin tournament onV satisfying:

– The length of every home stand and road trip is betweenL andk inclusive.
– No pair of teams plays both of their matches against each other on two successive time

slots.
– The total distance traveled by all teams is minimized

In this paper, we assume thatL = 1 which is common in literature and means that we
forget aboutL. This assumption is reasonable since it is hard to imagine a sports league
planner who will insist on forbidding home stands or road trips of length 1 when facing his
many conflictive objectives.
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1.2 Previous Work

So far, most efforts concerning the TTP have led to a variety of algorithms aiming to min-
imize the total distance driven by the teams. Kendall et al. [9] provide a good overview of
the work done on the TTP and sports scheduling in general. Just to mention a very few
examples, hybrid algorithms with constraint programming (CP) exist by Benoist et al. [3]
who additionally use Lagrange relaxation. Easton et al. [7] merge CP with integer program-
ming while Henz [8] combines CP with large neighborhood search. Anagnostopoulos et
al. [1] and Hentenryck and Vergados [14] propose simulated annealing algorithms, whereas
Ribeiro and Urrutia [12] focus on the special class of constant distance TTP where break
maximization is equivalent to travel distance minimization.

The TTP is believed to beNP-hard although to the best of our knowledge no proof
has been published yet. For scheduling single round robin tournaments a rather general and
useful scheme calledcanonical schedulehas been known in sports scheduling literature for
at last 30 years [5]. One can think of the canonical schedule as a long table at whichn
players sit such thatn/2 players on one side face the other players seated on the other side
of the table. Every player plays a match against the person seated directly across the table.
The next day of the schedule is obtained when everyone moves one chair to the right with
the crucial exception that there exists one person at the end of the table who never moves
and always maintains the seat from his or her first day. Note that the canonical schedule only
specifies who plays whom when and not where.

Miyashiro et al. [10] provide a 2+(9/4)/(n−1) approximation for the intensively studied
special casek = 3 by means of theModified Circle Method, a variation of the canonical
schedule. In [15] Yamaguchi et al. obtain an algorithm with approximation ratio (2k−1)/k+
O(k/n) for k≤ 5 and (5k−7)/(2k)+O(k/n) for k> 5. Again they make use of the canonical
schedule, now refined such that the teams are ordered around the ’table’ such that most of
the distances driven are part of a near optimal traveling salesman tour which clearly has
positive effects on the length of many distances traveled. Ask≤ n−1, they showed this way
that a constant factor approximation for any choice ofk andn exists. However, they did not
show how this factor looks like exactly.

1.3 Our Results

Our aim however is to approximate the TTP by a constant ratio for arbitrary choices ofk
andn.

Applying the canonical schedule mentioned above, we choose a specific orientation of
the underlying graph which ensures that home stands and road trips do not contain more than
k matches and for which the total distance traveled is not too long. Whereas it is common
practice to derive the second half of the season by repeating the first half’s games in the
same order but with changed home field advantage, it is not suitable here, as road trips or
home stands might become too long. Thus, we derive the second half in a different way.
Finally, we show that the plan we construct approximates the optimal solution by a factor of
2+2k/n+k/(n−1)+3/n+3/(2·k). For the case ofk = 3 this guarantees an approximation
ratio of 5/2+12/(n−1) which is actually not better than the ratio of Miyashiro et al. cited
above. But for any choice ofk≥ 4 (and thusn≥ 6) this yields an approximation ratio of less
than 5.875, which is the first constant factor approximation fork> 3.
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2 Lower Bounds

The objective of the TTP, minimizing the total travel distance of all teams during a dou-
ble round robin tournament, can be estimated by various bounds. One of them is called
Independent Lower Bound (ILB) [6] and consists of finding the shortest tour for each team
individually, independent of the other team constraints. (primarily thatB has to be at home
when A visits B during one ofA’s road trips). Finding an ILB is equivalent to solving a
capacitated vehicle routing problem. In this paper we will use an even coarse version of ILB
where we focus only on a traveling salesman tour traversing all venues.

Theorem 1 Letρ be the length of a TSP in G. Every solution of the TTP has a total length
of at least n·ρ.

Proof Every team has to visit all the other teams. Thus, each team has to travel at least a
distance ofρ which gives a total distance ofn ·ρ.

As in [10], we denote the sum of the distances of all ordered pairs of teams as∆ =
∑

i, j∈T d(i, j). Miyashiro et al. [10] showed a lower bound of 2/3·∆ for the objective function
of TT Pwith k= 3. We generalize this result for arbitraryk:

Theorem 2 Every solution of the TTP has a total length of at least2/k·∆.

Proof Consider an arbitrary solution and suppose teami playsl ≤ k consecutive away games
at teamst1, t2, . . . , tl . The distancẽdi driven thereby is

d̃i = d(i, t1)+
l−1
∑

j=1

d(t j , t j+1)+d(tl , i)

Because of the triangle inequality we haved̃i ≥ 2 ·d(i, t j) for all j and thus we have

l · d̃i ≥ 2 ·
l
∑

j=1

d(i, t j) =⇒ d̃i ≥
2
k
·

l
∑

j=1

d(i, t j)

Summing up over all tours driven yields the desired lower bound of 2/k· ∆ for the total
distance driven by the teams in any solution.

3 Construction of the Tournament

For i ∈ V let s(i) :=
∑

j∈V d(i, j) be thestar-weightof i. Since
∑

i∈V s(i)=
∑

i∈V, j∈V d(i, j) = ∆,
there has to be onej ∈ V for which s(i)≤ ∆/n. Let Theu be a tour through all of the teams’
venues which has been found by applying the well known heuristic by Christofides [4].
Therefore, we know that this tour is not more than 1.5 times longer than the shortest possible
tour. We furthermore assume that the teams are named in a way such thatTheu traverses them
in the order 1,2, . . . ,n and thatn is the team with minimum star weight. Given this tour we
construct a solution of the TTP in the following way. Forn= 20 the games of the first two
days of the season are displayed in Figure 1 and 2. The Figures corresponding to other
choices ofn can be derived analogously. A solid arc (u,v) in this digraph means that teamu
is playing against teamv in the arena of teamv. The games of the other days can be derived
analogously by changing the positions of the teams counterclockwise. The only arc which

420



changes its orientation during one half of the season is the arc incident to noden which
changes its orientation everykth match. This way, the season starts for team 4 with a tour
visiting the teams 16,17,18 and 19 before coming home and then playing against the teams
1,2 and 3. Then, it starts offagain to play against 20,5,6,7, and has then a home stand again
consisting of matches against 8,9,10,11. Finally, there is a last road trip including 12 and
13 and a last home stand with 14 and 15. It is clear that no team has home stands or road
trips which are longer thank matches. And it is also clear that every two teams have met
each other during this firstn−1 games.

10

20

19 9 18 8 17 7 16 6 15

5144133122111

Fig. 1 Example for slot 1 withn= 20,k= 4 andl = 2

10

20

19 9 18 8 17 7 16 6

15514413312211

1

Fig. 2 Example for slot 2 withn= 20,k= 4 andl = 2

In order to construct a full tournament, it remains to construct the second half of the
season. If we just repeated the firstn−1 matches with changed locations (changed the ori-
entation of the arcs), we would obtain a solution, in which every pair of teams met twice and
these two games took place at different sites. Furthermore, no half of the season contained a
road trip or a home stand longer thank matches. However, this solution could contain road
trips and home stands being longer thank. For example, the team 4 we considered above
would start into the second half of the tournament with a home stand of length 4 after having
ended the first half with two home stands. In order to get rid of this problem, we start the sec-
ond half with the match of dayn−2, succeeded by the matches of the daysn−1,1,2, . . . ,n−3
in this order. The double round robin tournament obtained this way contains neither road trip
nor home stand longer thank. To see this, assume for the sake of a contradiction that there is
a teamt which has a road trip longer thank. It is clear from construction that no half of the
season completely contains such a tour. Thus, the tour has to include the daysn−1 andn.
In caset has away-games at both of these days, the other matches involving these opponents
will be home-games fort. By construction, these games will take place on the daysn−2 and
n+1 which means that the road trip had only a length of 2, contradicting the assumption.
The case for too long home stands follows along the same lines.

By looking at the figures presented above, one can see that every home stand or road
trip is defined by a set of consecutive arcs pointing in the same direction. We call such a
set of arcs ablock. Furthermore, any orientation of the arcs defining the schedule gives rise
to a feasible schedule, as long as the blocks do not contain more thank arcs. The leftmost
block is not even allowed to contain more thank−1 arcs because of the games teamn is
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Fig. 3 Example for slotn−1 with n= 20,k= 4 andl = 2
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11

1

Fig. 4 Example for slotn with n= 20,k= 4 andl = 2

involved in. As long as we obey these rules for the maximum sizes of blocks stated above,
we will always obtain a feasible plan for any choice of orientations of the arcs defining the
tournament.

In the following, we considerk different orientations. The main difference between them
is the width of the rightmost block. Forl ∈ {1, . . . ,k} let Ol be the orientation in which the
rightmost block has widthl, the blocks in the middle all have widthk and the leftmost block
contains the rest (see Figure 5). In case this leads to the leftmost block containing exactly
k arcs, we change the orientation of the edge (u1,v1), such that the arc incident to teamn
cannot prolong the road trips induced by this block to have a length ofk+1 matches. The
left- and rightmost arcs in a block always define the first and the last match of a trip.

4 Costs of the Tournament

In this section we will prove an upper bound for the total length of the tours defined by the
tournament constructed in the previous section.

We assume that every teamt having an away game against teamn will drive home
first before driving to teamn’s site and drives home after having played that match. By
construction,t has a home game before or after that game anyway. We just obtain one more
visit home this way. By the triangle inequality, the costs incurred this way are only higher
than before. Furthermore, we will apply the triangle inequality a second time by assuming
that every team drives home after the last game of the first half if it is not already at home.
Let the nodes of the underlying graph be denoted asu1,u2, . . . ,un/2−2 andv1,v2, . . . ,vn/2−2

(see Figure 5).

v1 v2 v3 v4 . . . vn/2−2 vn/2−1

un/2−1un/2−2. . .u4u3u2u1

Leftmost block Rightmost block

Fig. 5 The blocks defined by the orientationO2
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In the following we will estimate the distances related to the constructed tournament
separately:

1. Ch - the costs related to home-games of teamn
2. Ca - the costs related to away-games of teamn
3. Cs - the costs related to the first days of the season-halves and the costs of returning

home after the last days of the season-halves
4. Cl - the other costs incurred by the edge (u1,v1)
5. Cr - the other costs incurred by the edge (un/2−1,vn/2−1)
6. Co - the other costs

Ch - The costs related to home-games of team n :Every other team plays against teamn
once. As we can assume by application of the triangle inequality that all teams come from
their home venues to play against teamn and return to their home venues after the game, we
know that the cost incurred thereby is at most

Ch ≤

n−1
∑

i=1

d(i,n)+d(n,i) = 2 · s(n)≤ 2 ·∆/n

where the last follows from the assumption ofn being the node with the smallest star-weight.

Ca - The costs related to away-games of team n:Analogously, to the estimation of the
home-games of teamn, we can upper bound the costs incurred by the away games by first
assuming that teamn always returns home after each away-game. This way, we derive the
same upper bound of 2·∆/n for the costsCaincurred by the away-games of teamn.

Cs - The costs related to the first days of the season-halves and the costs of returning home
after the last days of the season-halves:At the first day of the season,n/2 teams have to
travel to their opponents. We do not consider the game that teamn is involved in, as we
have already taken care of these costs above. So, there aren/2− 1 distances traveled left
which correspond directly to the vertical arcs of Figure 1. After the games of dayn−1 the
first half of the season is over, and we assume that all teams drive home. The second half
of the season starts with the matches which have already taken place at dayn− 2 and it
ends with the second leg of the game of dayn−3. Observe, that the orientation of the arcs
does not have an effect on the total distance driven. It only affects the question who is driving
which is not of interest here. In the example mentioned above, for team 4 these are the teams
16,15,14 and 13. If team 4 did not start the season this way but with a match against team
15, then we would need to consider the distances to the teams 15,14,13 and 12. This way
we obtainn−1 different choices for the first and last trips of the two halves of the season.
Furthermore, it is easy to see that each edge of ({1, . . . ,n−1}×{1, . . . ,n−1}) is part of at most
four of these choices. So, summing up the distances of then−1 different possible choices
for day 1, we obtain a total of at most

n−1
∑

i=1

n−1
∑

j=i+1

4d(i, j) = 2∆−4 · s(n)

So, there has to be a choice for which we can estimate

Cs ≤ 2 · (∆−2 · s(n))/(n−1).
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Cl - The costs incurred by the edge(u1,v1): As we assumed that every team’s trip to teamn
starts at the home-site and leads back there after the match, there is always a trip ending or
starting with a trip along the edge (u1,v1). Apparently, these are always trips between teams
being neighbors on the heuristically obtained tourTHeu. As these teams will meet in both
halves of the games, the edges have to be counted twice and the cost incurred on that arc can
thus be estimated as

Cl ≤ 2d(n−1,1)+2
n−2
∑

i=1

d(i, i +1)≤ 2 ·d(THeu).

Cr - The costs incurred by the edge(un/2−1,vn/2−1): In the first half of the season, the edge
(un/2−1,vn/2−1) always marks the end of a trip, whereas it stands for the beginning of a trip
in the second half of the season. The costs incurred in both halves together can be estimated
as follows.

Cr = 2 ·

















n/2
∑

i=1

d(i, i +n/2−1)+
n
∑

i=n/2+1

d(i, i −n/2)

















=

n/2
∑

i=1

(d(i, i +n/2−1)+d(i +n/2−1,i))+
n
∑

i=n/2+1

(d(i, i −n/2)+d(i −n/2,i))

≤

n/2
∑

i=1

opti +

n
∑

i=n/2+1

opti = opt (1)

with opti denoting the length of teami driven in an optimal solution of total lengthopt.
Every possible solution has to contain a trip for any teami ∈ {1, . . . ,n/2}which covers team
i +n/2−1. For the length of this trip is not longer thand(i, i +n/2−1)+d(i +n/2−1,i) and
we can make similar observations for the other teams as well, inequality 1 follows.

Co - The other costs:As already mentioned earlier in this paper, we do not only consider
the orientation of the arcs as displayed in Figures 1 - 3. Instead, we will considerk differ-
ent orientations. The difference between them is the width of the rightmost block, the block
including the arc (un/2−1,vn/2−1) or resp. (vn/2−1,un/2−1). For l ∈ {1, . . . ,k} let Ol be the ori-
entation in which the rightmost block has widthl, the blocks in the middle have widthk
and the leftmost block contains the rest. In case, this leads to the leftmost block containing
exactlyk arcs, we change the orientation of the edge (u1,v1), such that the arc incident to
teamn cannot prolong the road trips induced by this block to have a length ofk+1 matches.

In every half, every teami is associated to one of the nodesv1,v2, . . . ,vn/2−1 exactly
once. When it is associated to nodev j it plays against the team (i+ j −1) mod (n−1)+1
which is associated to nodeu j at that time. In case the edge (uj ,v j) marks the first or the
last game of a road trip in the first or the second half of the tournament, we call this edge
a home-edge(the dashed arcs in Figure 5). If the home-edge corresponds to the beginning
of a trip in the first half of the season, it marks the end of a tour in the second half of
the season. Therefore, the distance associated with this edge is driven exactly twice in the
corresponding tournament. Let us have a closer look at the costs which are being incurred by
teams traveling along the home-edges. Since every direct travel from or toi’s home site can
only happen via exactly one home-edge, and as there are at most two orientations in which
some edge (uj ,v j) is a home-edge, the overall costs incurred by the home edges is at most
2∆. It still remains to estimate the distances traveled which are not from or to the traveling

424



teams’ home sites. A trip which visitsl teams consists of two drives along home-edges and
l −1 drives inbetween. By construction, thesel −1 rides are driven along edges which are
part of the heuristically obtained tourTHeu. Let u j be a node which does not represent the
beginning of a trip. Whenever a teami is assigned to this node, there is another teaml
visiting i after having played an away match at the teami −1, the predecessor ofi in THeu.
Thus, for any nodeu j or v j which does not represent the beginning of a trip, we can estimate
the sum of the distances driven to get to the teams assigned to this node as no more than
d(THeu). Since there are no more thann/2−2 such nodes, the distances driven here are not
more than (n−2)d(THeu).

For there arek different orientations, there has to be one with total distance incurred by
the home-edges not more than

Co ≤
2∆+ (n−2)d(THeu)

k

5 The Approximation ratio

If we choose the parameters in the above mentioned ways, we obtain an approximation ratio
of

Ch+ca+Cs+Cl +Cr +Co

opt

≤
2∆/n+2∆/n+2 · (∆−2s(n))/(n−1)+2 ·d(Theu)+opt+

2∆+(n−2)d(THeu)
k

opt

=
2∆/n+2∆/n+2 · (∆−2s(n))/(n−1)

2/k·∆
+

2 ·d(Theu)
n ·d(Topt)

+1+
2/k·∆
2/k·∆

+
(n−2)/k·d(THeu)

n ·d(Topt)

≤
4∆/n+2 ·∆/(n−1)

2/k·∆
+

3
n
+1+1+

(n−2)/k·3/2·d(TOpt)

n ·d(Topt)

≤
2/n+1/(n−1)

1/k
+

3
n
+2+3/(2·k)

= 2k/n+k/(n−1)+
3
n
+2+3/(2·k)

As k ≤ n−1, this bound cannot be larger than 5+ 3
n +3/(2· k) which is not more than

5.875 fork≥ 4 andn≥ 6.
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