
Bridging the gap between self schedules and feasible

schedules in staff scheduling

Eyjólfur Ingi Ásgeirsson

Abstract Every company that has employees working on irregular schedules must

deal with the difficult and time consuming problem of creating feasible schedules for

the employees. We introduce an algorithm that takes a partial schedule created by

requests from employees and creates feasible schedule where most of the employee’s

requests are unchanged, while still making sure that rules and regulations are not

violated. The algorithm is based on independent modules, which can be executed in

any order, and each module tries to emulate some action taken by a staff manager.

Our goal is to create a transparent and fair system that creates feasible schedules

of high quality, but also a system where the employees can get an explanation and

justification for every change that the algorithm makes to the employee requests. By

emulating the actions of staff managers, the algorithm is easily understood by staff

managers and, using detailed logs of any action, make any decision easy to explain to

the employees.

We will present the algorithm and show results from four real world companies

and institutions. The results show that a simple module based heuristic can get good

results and create fair and feasible schedules that encourage employees to participate

in the self-scheduling process.

Keywords Staff scheduling · Rostering · Heuristics · Local search

1 Introduction

Staff scheduling is a difficult and time consuming problem that every company or

institution that has employees working on shifts or on irregular workdays must solve.

A variant of the general staff scheduling problem focuses on scheduling the working

hours for nurses in the health industry, so called nurse rostering or nurse scheduling

Work done in collaboration with Vaktabestun ehf.

E. I. Ásgeirsson
Reykjavik University
School of Science and Engineering.
Menntavegur 1, 101 Reykjavik, Iceland.
E-mail: eyjo@ru.is

81

[6]. The nurse rostering problem is well known and has been studied for over 45 years.

The nurse rostering problem can include many types of constraints and covers a large

set of staff scheduling problems, so even though our work is not specific for hospitals

or nurses, most of the previous work focuses on nurse rostering.

There are three major approaches used in nurse rostering: cyclical scheduling [15],

self scheduling and preference scheduling [3]. In cyclical scheduling, several sets of

schedules are generated and then the nurses are assigned to a schedule that best fits

their preferences so that collectively they satisfy the manpower requirements. The

cyclical scheduling approach is rather rigid and therefore difficult to use in a flexible

and changing environment.

In preference scheduling, each employee gives a list of preferences to the personnel

manager who then creates a schedule that satisfies the demand for personnel and

work restrictions while trying to fulfill as many preferences as possible. Some form

of preference scheduling is widely used in real world environments and it has many

benefits, such as flexibility, individual tailoring of the schedule and so forth. The major

drawback to preference scheduling is the time required to create a high quality schedule

that fulfills as many preferences as possible.

The self scheduling approach moves the responsibility of creating a schedule to the

employees. The employees are given the required minimum and maximum number of

employees that should be on duty at each time. The employees are then asked to sign

up for the shifts that they want to work on, with the requirement that the resulting

schedule must be a feasible schedule. Pure self-scheduling is difficult to implement

fairly, in many instances it becomes easy for someone to manipulate the system, the

sign-up order is important, new employees are likely to be at a disadvantage due to

unfamiliarity with the system and, due to any number of reasons, some employees

might not sign up for any shifts. There are however potentially many motivational

benefits of self scheduling, such as improved co-operation, greater staff satisfaction

and commitment, and reduced staff turnaround [16]. In real-life, self-scheduling can

be implemented as a mixture of pure self-scheduling and preference scheduling. In this

approach the employees sign up for shifts, creating a preliminary schedule and the

staff manager then turns the preliminary schedule into an feasible staffing schedule,

making sure that no rules have been violated and the staffing load fits the manpower

need at each time. The final responsibility of creating a good schedule lies with the

staff manager, but the employees see the manpower need and the current staff levels

when signing up for shifts, so they share the responsibility of creating the schedule.

This approach can include an incentive scheme, such as priority on popular shifts, to

encourage the employees to create high quality preliminary schedules.

Mathematical programming techniques are in many cases too rigid to deal with

the multiple and often changing, objectives and goals of staff scheduling. The research

on staff scheduling is now mainly focused on more flexible metaheuristic approaches

such as genetic algorithms [1,2,13,18] and variable neighborhood search [7], with Tabu-

Search [5,12] and Simulated Annealing [4] being particularly successful [14]. Burke et.

al. [8] introduced a multi-criteria metaheuristic approach based on Tabu-search, which

is used in Belgian hospitals. Their system allows for user defined parameters, giving

the users the opportunity to adjust the algorithm to their need and to the specifics of

their problem.

There are two major problems with using black-box methods such as meta-heuristics

and mathematical programming methods with the self-scheduling scheme introduced

above. The first problem is that it is difficult to incorporate the experience and exper-

82

tise of the staff managers into such techniques [17]. Staff managers often have highly

valuable knowledge, experience, and detailed understanding of their specific staffing

problem, which will vary from company to company. The variation in the problem

specifics between the different companies makes it also difficult to incorporate a single

solution that fits all.

The second major problem is that the employees have spent time and effort into

creating the preliminary schedule, so they have an emotional attachment to their se-

lection. Since the staff manager has the final responsibility of the schedule, the staff

manager is also responsible to the employees for any changes that are made to the

preliminary schedule. The employees whose schedules are changed and whose wishes

are ignored will demand to know why. Having a black-box method makes it impossible

to see exactly why each choice is made, which makes it impossible to justify or explain

individual decisions made by the algorithm.

2 Staff Scheduling

The staff scheduling problem we look at is a mixture of self scheduling and preference

scheduling. The employees sign up for shifts and indicate periods where they cannot

work. During the selection process, every employee has full information of how many

employees are signed up for each shift and the required minimum and maximum staffing

levels. The resulting plan, or preliminary schedule, is then used by the management

as a foundation to create a feasible schedule. The quality of the preliminary schedule

determines how close we are to either pure self scheduling or preference scheduling.

If the preliminary schedule is close to feasible, then we have a self scheduling system,

but on the other hand, if the preliminary schedule is far from being feasible, then the

system is closer to preference scheduling, which entails the time consuming process of

creating a feasible schedule from the preliminary schedule.

Our goal is to automate the time consuming process of creating a feasible schedule

which is the drawback of preference scheduling systems. We will use a combination

of local search methods and heuristics to emulate the manual process of creating a

high quality schedule based on the preliminary schedule. The preliminary schedule is

unlikely to satisfy the minimum and maximum required number of employees on duty,

there might be some employees that have not signed up for any shifts or too few shifts

and there might even be employees with too many scheduled hours.

In the real world instances that we’ve analyzed, the schedules that are created

manually from the preliminary schedule are usually accepted as fair by the employees,

the problem is how time consuming the process is. Our system is designed to preserve

the perceived fairness of the current manual system, which we do by ensuring that the

decisions of the algorithm are transparent and easily justifiable using the available data.

There are no constrictions on the shifts that we use, each company or institution will

have a set of allowed shifts and the shifts can have different length, they can overlap

and different days of the week can have different set of allowed shifts.

We will present the algorithm and give results using real data to show how effec-

tively the local search methods and heuristics can create feasible schedules with high

quality, while still satisfying personnel preferences and preserving the trust that the

employees have in the current system.

83

3 Constraints

Staff scheduling problems have a large number of constraints, such as minimum or

maximum number of employee on duty at each time, the requests of employees, union

rules and other regulations that must be satisfied. We partition the constraints into

hard and soft constraints, where the hard constraints must always be satisfied while

we allow the soft constraints to be violated if necessary.

3.1 Hard Constraints

The hard constraints, i.e. the constraints that must be satisfied at all times, are mostly

based on union contracts and contracts with the employees. The system allows for hav-

ing different constraints for different employees. In our examples the main constraints

are usually the same for all the employees, with the exception of work limits. The hard

constraints that we use are the following:

– Restrictions on working hours and rest periods from employee contracts

and union regulations. Each employee can have restrictions on when they can

work, such as employees that will never work nights or weekends. Additionally,

there will be union regulations on rest periods, maximum lengths of continuous

work, minimum length of continuous rest between shifts and other limits.

– Vacation requests. We treat requests for vacations as hard constraints, so the

algorithm will never assign work duty to people on vacation.

– Working weekends. There can be limits on how many weekends particular em-

ployees are working. Common limits include working at most 2 or 3 out of every 4

consecutive weekends.

– Requests for time off. Each employee can have a some hours where they wish to

be off-duty. We treat such wishes as hard constraints, so the algorithm will never

violate such wishes. The number of such hours depends on the company and on

the employee contract.

– Special shifts, training sessions or meetings. In many instances, employees

have work related duties that are not flexible and are not necessarily included in

the number of people on duty. Such instances include training sessions, meetings or

other special functions. Since training sessions and meetings are often not flexible,

we make sure that the algorithm will not make any changes to such functions.

– Other limits on shifts or working hours, such as double shifts. Double

shifts are defined as two separate shifts in the same 24 hour period, where the

interval between the shifts is less than the minimum resting period between shifts.

The set of constraints that are used is flexible and different from one company

to the next. In one of our examples, the use of double shifts is not only allowed but

actually encouraged while other companies might consider schedules with double shifts

as infeasible.

To evaluate constraints such as working weekends or minimum rest, the actual

schedule from the previous period must be included in the input.

One of the problems with the hard constraints is that the employees are allowed

to be more flexible when they are creating their own schedule than staff managers or

improvement algorithms. For example, an employee might sign up for a 10 hour shift,

while a staff manager or an algorithm can only assign shifts of 8 hours or less to the

84

same employee. Since the employees have more flexibility, the preliminary schedules

often contain individual employee schedules that would be considered infeasible. To

make any improvements to such a schedule, the algorithm must accept the infeasibility

of the current schedule, but make sure that the proposed changes to the schedule do

not violate any hard constraints. We use a penalty score system to handle infeasible

schedules and to check if proposed changes are feasible. Each time an individual em-

ployee schedule violates a constraint, the schedule receives a penalty. If the cumulative

penalty is above a certain threshold then the schedule is considered infeasible. To han-

dle the fact that the schedules can be infeasible to start with, the penalty for any

schedule is calculated before and after a proposed change. If the penalty increase is

above the threshold, then the change is not allowed. Using a penalty for each constraint

violation and a threshold not only allows us to use requests that would be considered

infeasible, but it is also flexible since it allows us to specify exactly the number of times

a particular rule must be violated before the proposed schedule is considered infeasible.

3.2 Soft Constraints

The algorithm is designed so that the hard constraints are always satisfied. The soft

constraints can be broken at any time, and represent the goals of the scheduling process.

It is often impossible to satisfy all soft and hard constraints, so we must sometimes

settle for satisfying as many soft constraints as possible. The soft constraints we use

are the following:

– Minimum and maximum staff levels. An estimate for the demand for employ-

ees on duty at each time during the scheduling period is one of the prerequisites

of the scheduling process. Some companies use minimum and maximum number of

on-duty employees for each time slot in the scheduling period, while other compa-

nies simply state exactly how many employees should be on duty at each time. One

of the goals is to have the number of on-duty employees within the minimum and

maximum at all times, or as close to the exact number of employees that should be

on duty. Companies and institutions often use some type of forecasting to estimate

the required number of staff on duty, but the sophistication and the accuracy of

the demand predictions can vary greatly from one company to the next.

– Minimum and maximum number of on-duty hours for each employee.

Each employee is hired to work a specific number of hours per week, typically 40

hours per week for a full time employment. For each planning period, the number

of hours that the employee should sign up for is calculated, based on the number of

hours per week and the number of actual working hours in previous periods. Since

the employees are often working irregular hours, there must be some flexibility in

the system. For the scheduling period, each employee is assigned minimum and

maximum duty hours, and one of the goals of the rostering process is to make sure

that all employees are within the minimum and maximum duty hours.

– Employee requests for shifts. Before each scheduling period, the employees sign

up for shifts. One of the main goals of this project is to encourage employees to

create their own work schedules, so it is important to keep as much of the requests

as possible.

– Employees assigned to shifts on weekends adjacent to their vacations.

If an employee is starting his or hers vacation on a Monday, it is likely that the

85

employee wants the weekend free. We try to make sure that if an employee is on

a vacation on a Monday or Friday, the adjacent weekend will be free, unless the

employee has requested to work on that particular weekend.

Each company can have different priority rules for the soft constraints, which are

reflected in the order in which various modules and functions of the algorithm are

executed. A typical priority rule is that having all employees within minimum and

maximum duty hours takes highest priority, then the staff levels and finally the requests

of the employees.

4 The staff scheduling algorithm

The algorithm that we use is a collection of independent modules or functions, where

each module takes the current schedule and tries to improve it. We can call the mod-

ules in any order, here we present the order that we usually use, i.e. we first execute

Algorithm 1, then Algorithm 2 and so on. Some modules are executed more than once

with different input parameters, which we will elaborate on when we give detailed de-

scription of each module. Most of these algorithms are simple and some of them have

been introduced before, such as [10,11], but for completeness we will introduce and

explain all the algorithms.

Algorithm 1 RepairShifts

Input: set of employees E
Input: set of allowed shifts A
for all e ∈ E do

for all s ∈ e.shifts do

s← find closest shift to s from the shifts in A

end for

end for

Algorithm 1 is used to make sure that all employees are only working on shifts

that are allowed. The systems that the employees use to request shifts sometimes allow

the employees to sign up for any hours. However, the collaborating companies and

institutions restrict the employees to only work on certain shifts. The first step of

the algorithm is to take the preliminary input and make sure that all employees are

only signed up on shifts that are allowed. The variable e.shifts denotes the set of

shifts that employee e is signed up for. The distance between any two shifts s and t

is |s.start− t.start|+ |s.end − t.end|+ |s.length− t.length|, where s.start is the start

time of shift s, s.end is the end time of shift s and s.length is the length of shift s, and

similarly for shift t. The start and end times of the shifts are measured as the number

of hours from the start of the scheduling period while the length of a shift is measured

in hours. The length of a shift is included in the measure since we want to find an

allowed shift that is both similar to the chosen shift in time and length.

The module shown in Algorithm 2 uses a priority rule to determine which employee

is selected when the algorithm needs to remove an employee from an overstaffed shift.

The priority rule can be different from one company to the next, in the preliminary

version of the algorithm we use the number of working hours to determine which

employee should be removed from an overstaffed shift.

86

Algorithm 2 Overstaffing: Remove shifts from employees

Input: set of overstaffed shifts S
while S 6= ∅ do

s← select the maximum overstaffed shift from S

E(s)← {e ∈ E : s ∈ e.shifts}
e← select lowest priority employee from E(s)
e.shifts← e.shifts \ {s}
Update s

Update S

end while

Algorithm 3 Understaffing: Add shifts to employees

Input: Set of employees E

Input: Set of understaffed shifts S

while S 6= ∅ do

s← select the shift with the largest total understaffing from S

P (s)← select all employees that can work on shift s.
if P (s) 6= ∅ then

e← select the employee from P (s) with fewest scheduled working hours.
e.shifts← e.shifts ∩ {s}
Update S and E

else

S ← S \ {s}
end if

end while

The function described in Algorithm 3 tries to decrease understaffing by locating

understaffed shifts and then find employees that are available and can work on the shift.

We order the employees in ascending order of scheduled working hours to improve the

schedule of employees with too few scheduled hours.

Algorithm 4 Understaffing: Swap overlapping shifts

Input: Set of employees E

Input: Set of understaffed shifts S

for all e ∈ E do

for all s ∈ e.shifts do

O(s)← {s′ ∈ S : s′ ∩ s 6= ∅ ∧ e can work on shift s′}
if O(s) 6= ∅ then

s
∗ ← select the shift with the highest understaffing from O(s)

e.shifts← e.shifts \ s

e.shifts← e.shifts ∪ {s∗}
end if

end for

end for

Algorithm 4 is used to decrease understaffing while making only small changes

to the schedule. If we find an understaffed shift, we try to locate employees that are

working on shifts that overlap with the understaffed shift. If the understaffed hours are

not in the intersection of the two shifts, then moving the employee to the understaffed

shift can decrease understaffing.

After we run Algorithms 3 and 4 to improve the understaffing, we use Algorithms

5 and 6 to improve the individual schedules of employees that are below the minimum

87

Algorithm 5 Staff below working hours: Add shifts

Input: Set of employees with scheduled working hours below minimum duty hours, E

Input: Set of shifts with staffing levels below maximum staffing, S

for all e ∈ E do

for all s ∈ S do

if e can work on shift s then

e.shifts← e.shifts ∪ {s}
if Staffing level of s is at maximum staffing then

S ← S \ {s}
end if

end if

end for

end for

duty hours. Algorithm 5 selects an employee below duty hours and then tries to find a

feasible shift with enough space for the employee.

Algorithm 6 Move shifts from employees above duty hours to employees below duty

hours
Input: Set of employees with scheduled working hours above duty hours, Eabove

Input: Set of employees with scheduled working hours below duty hours, Ebelow

for all Pairs (ea, eb) : ea ∈ Eabove, eb ∈ Ebelow do

for all s ∈ ea.shifts do

if eb can work on shift s and ea can be removed from shift s then

ea.shifts← ea.shifts \ {s}
eb.shifts← eb.shifts ∪ {s}
if ea is at or below duty hours then

Eabove ← Eabove \ {ea}
end if

if eb is at or above duty hours then

Ebelow ← Ebelow \ {eb}
end if

end if

end for

end for

Algorithm 6 is used to improve the balance of the employees duty hours. We create

a set of employees above the duty hours and another set of employees that are below

their duty hours. Then we look at all pairs of employees and try to find a shift that we

can move from the above duty hours employee to the below duty hour employee. We

can run Algorithm 6 either by allowing the algorithm to modify the requested shifts, or

only allow modifications to shifts that were added by other modules of the algorithm.

If an employee is below duty hours, we can try to increase the number of working

hours by swapping shifts. Algorithm 7 looks at employees below the minimum duty

hours. For each employee, the module tries to swap an existing shift with a longer

overlapping shift. Since the employee is already working on this particular day, such

swaps are often feasible, assuming that the new shift has room for additional staff.

Algorithm 7 can be allowed to change requested shifts, or we can focus only on shifts

that have been added by other modules.

The experimental results in the next section are created by running Algorithms 1

to 7 in that order. Algorithms 6 and 7 were executed twice, first focusing only on shifts

88

Algorithm 7 Staff below working hours: Swap shifts to add working hours

Input: Set of employees with scheduled working hours below minimum duty hours, E

Input: Set of shifts with staffing levels below maximum staffing, S

for all e ∈ E do

for all s ∈ e.shifts do

O(s)← {s′ ∈ S : s
′ ∩ s 6= ∅ ∧ e can work on shift s

′}
if O(s) 6= ∅ then

s
∗ ← select the largest shift from O(s)

if |s∗| > |s| then

e.shifts← e.shifts \ {s}
e.shifts← e.shifts ∪ {s∗}
Update E

Update S

end if

end if

end for

end for

that had been added in previous steps, and then by allowing the modules to change

requested shifts.

5 Experimental Results

To evaluate the performance of our algorithm, we use actual data from four companies

and institutions. These companies and institutions include a nursing home, call centers

and airport services. We will present the details of each problem instance and show

examples of the preliminary schedule and the improved schedule. The scheduling period

is usually 6 weeks, but we will plot the preliminary schedule and the improved schedule

for only a single week for each problem instance. We tried to select a typical week for

each instance. For each employee we measure the percentage of requested hours that

are still in the improved schedule using the formula

Requested hours granted =

∑

t=N

t=1
Iprel(t) × Iimproved(t)
∑

t=N

t=1
Iprel(t)

where N is the number of time slots in the scheduling period, Iprel(t) = 1 if the

employee has requested to be working in time slot t, and 0 otherwise. Similarly the

indicator function Iimproved(t) is equal to 1 if the employee is working in time slot t

in the improved schedule and 0 otherwise. The percentage of requested hours is not

defined for the employees that do not make any requests, so those employees are not

included when we calculate the average requested hours granted.

We decided to use the number of hours instead of focusing on the shifts when mea-

suring how close the final schedule is to the requested schedule from the employees.

The reason is that we felt that if an employee has signed up for a 8 − 16 shift, and

we change it to 9 − 17, then the employee is getting a shift that’s very close to what

was requested. Therefore, measuring hours is in our mind often more fair than focusing

on shifts. However, this is not necessarily always the case, in some instances the mea-

sure should focus on the shifts instead of the hours. For the collaborating companies

and institutions, the requested hours granted measure was considered both fair and

appropriate.

89

Preliminary schedule Improved schedule
Scheduled hours 4669 5198
Man-hours overstaffed 478 220
Man-hours understaffed 777 21
Employees below minimum duty hours 3 0
Total unscheduled duty hours 905 545

Table 1 Results for the nursing home instance.

0 50 100 150 200 250 300
0

2

4

6

8

10

12
Preliminary schedule − Week 2

Time

E
m

p
lo

y
e

e
s
 o

n
 d

u
ty

0 50 100 150 200 250 300
0

2

4

6

8

10

12
Improved schedule − Week 2

Time

E
m

p
lo

y
e

e
s
 o

n
 d

u
ty

Fig. 1 Staffing levels for the nursing home problem instance. The gray area denotes the
number of employees on duty while the two lines denote the minimum and maximum required
staff on duty at each time.

Using the notation introduced by De Causmaecker [9], we can describe the following

problem instances as (AS|TVNO|PLGO).

5.1 Problem instance: Nursing home

The first problem instance comes from a nursing home with 55 employees. The schedul-

ing period is 6 weeks with 30 minute intervals. There are 1428 different shifts that are

allowed in the scheduling period. The length of each shift ranges from 4 hours up to 12

hours. If we sum up the total maximum working hours over the scheduling period, we

get that the maximum number of hours that we can assign, without any overstaffing,

is 5217 hours. However, the total duty hours of the employees is 5333 hours, so unless

we violate the overstaffing constraint, we can never satisfy all duty hour requirements

for the employees. The improved schedule has 5198 man-hours scheduled, not counting

vacations and shifts that do not contribute to the staffing requirements. The results

for the nursing home problem instance are shown in Table 1 while Figure 1 shows the

preliminary schedule and the improved schedule for a typical week in the scheduling

period.

The nursing home has the following hard constraints. An employee cannot work

on more than 6 consecutive days, the maximum length of a shift is 9 hours while the

minimum length of a shift is 4 hours. In any 24 hour period, each employee must get

at least 8 consecutive hours of rest, while the maximum number of working hours in

any 24 hour period is 9 hours.

90

Preliminary schedule Improved schedule
Scheduled hours 9424 11920
Man-hours overstaffed 390 791
Man-hours understaffed 1560 14
Employees below minimum duty hours 19 5
Total unscheduled duty hours 2108 234

Table 2 Results for call center A.

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
Preliminary schedule − Week 4

Time

E
m

p
lo

y
e

e
s

0 50 100 150 200 250 300
0

5

10

15

20

25

30

35

40
Improved schedule − Week 4

Time

E
m

p
lo

y
e

e
s

Fig. 2 Staffing levels for call center A. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.

Figure 1 shows that the requirements for the minimum and maximum number of

employees on duty have a very regular pattern. The nightshifts require 2 persons, while

the mornings require between 8-10 people on duty. The number of on-duty employees

decreases over the weekend, while Mondays require the highest number of on-duty

employees. The preliminary schedule has both understaffing and overstaffing. However,

in the improved schedule, the overstaffing has been reduced from a total of 478 hours

to 220 hours, and the understaffing has gone from a total of 777 hours down to 21

hours. The average percentage of requested hours still in the improved schedule was

97.2%.

5.2 Problem instance: Call center A

The second problem instance is a call center. We have two call centers in our set of real

world data so we will refer to them as call center A and call center B. Call center A has

92 employees and the scheduling period is 6 weeks in 30 minute intervals. The number

of possible shifts in the scheduling period is 8863 and their lengths are from 4 hours up

to 11 hours. The total maximum required on-duty employees is 11582, while the total

duty hours for all employees is 12054, so it will be impossible to satisfy both the duty

hour constraints and the overstaffing constraints. In the end, we actually schedule

a total of 11920 hours, not including vacations and shifts that do not contribute to

the staffing, so this instance has some overstaffing. Table 2 shows the data from the

preliminary schedule and the results of the improved schedule. There are 5 employees

91

Preliminary schedule Improved schedule
Scheduled hours 6623 7554
Man-hours overstaffed 795 609
Man-hours understaffed 1306 189
Employees below minimum duty hours 15 7
Total unscheduled duty hours 1551 529

Table 3 Results for call center B.

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35
Preliminary schedule − Week 2

Time

E
m

p
lo

y
e

e
s

0 100 200 300 400 500 600
0

5

10

15

20

25

30

35
Improved schedule − Week 2

Time

E
m

p
lo

y
e

e
s

Fig. 3 Staffing levels for call center B. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.

below the minimum duty hours in the improved schedule, but 3 of these employees are

less than two hours below the minimum, while the remaining 2 employees are 6 hours

and 22 hours below the minimum duty hours.

For call center A, the maximum number of consecutive working days is 6, the

maximum number of working hours in each 24 hour period is 9 hours and the maximum

length of a single shift is also 9 hours. In any 24 hour period, each employee must get

at least 11 consecutive hours of rest.

Figure 2 shows a typical week in the scheduling period for call center A. The

required number of on-duty employees peaks at around 30 − 35 during the afternoon

while the night shifts require only around 2 − 3 on-duty employees. The preliminary

schedule has both overstaffing and understaffing, while the improved schedule manages

to almost eliminate the understaffing problem. However, the total number of overstaffed

man-hours increases from 390 hours up to 791 hours. The increase in overstaffing is

not surprising since having employees within the minimum and maximum duty hours

has higher priority than overstaffing at this particular call center, and the call center

has more staff than it needs to satisfy the maximum required on-duty personnel.

5.3 Problem instance: Call center B

Call center B does the planning for only 4 weeks in advance, but the schedule is created

down to 15 minute intervals. This instance also does not use minimum and maximum

number of employees that should be on duty in each interval, but specifies only the

92

Preliminary schedule Improved schedule
Scheduled hours 3997 6670
Man-hours overstaffed 192 641
Man-hours understaffed 2464 517
Employees below minimum duty hours 23 0
Total unscheduled duty hours 2087 0

Table 4 Results for airport ground services.

exact number of employees that should be on duty at each time. Since there is no

flexibility in the required number of on-duty employees, the schedule is likely to have

both overstaffing and understaffing as the algorithm tries to fit the number of employees

to the exact number of required on-duty employees. The total number of employees

at call center B is 62. The call center is overstaffed, the total available man-hours for

the scheduling period is 8134 hours while the total required man-hours over the same

period is 7134 hours. Table 3 shows the difference between the preliminary schedule

and the improved schedule. In the improved schedule, there are still 609 man-hours of

overstaffing and 529 unscheduled duty hours. The majority of this overstaffing and the

unscheduled duty hours is due to the 1000 man-hour difference between the required

man-hours and the available man-hours.

The hard constraints that must be satisfied for call center B are that employees

cannot be working on more than 6 consecutive days, in every 24 hour period there must

be at least 11 consecutive hours of rest and at most 11 hours of work. The maximum

length of a shift is 11 hours while the length of a shift must be at least 4 hours.

Figure 3 shows a single week from the 4 week planning period. We see that there is

still much overstaffing and understaffing in the improved schedule, but the overstaffing

is more evenly distributed than in the preliminary schedule. One of the requests from

the call center was that if overstaffing is necessary then it should be distributed as

evenly as possible over the busiest periods. The improved schedule has problems with

understaffing, the nightshifts for the first two nights in this particular week do not

have anyone on duty, while the requirements call for at least one employee on duty at

all time. The average percentage of requested hours still in the improved schedule is

86%. The reason for the low ratio of requested hours still in the improved schedule is

mostly due to the fact that 12% of requested hours in the preliminary schedule were

overstaffed and had to be changed.

5.4 Problem instance: Airport ground service.

The fourth problem instance is an airport ground service company. The scheduling

period is six weeks in 30 minute intervals. The demand for on-duty employees depends

on the flight schedules at the airport. In this particular instance, there are many flights

that leave during the early morning, and then there is another concentration of flights

in the afternoon. Since there are almost no flights scheduled at any time apart from

the morning and afternoon busy periods, the requirements for employees peaks during

the two busy periods but drops sharply during other times. The airport ground service

has 53 employees. Due to the structure of the manpower requirements, the employees

often work a short morning shift and then another short afternoon shift with a few

hour break in-between. This problem instance is understaffed compared to the previous

93

0 50 100 150 200 250 300
0

5

10

15

20

25

30
Preliminary schedule − Week 3

Time

E
m

p
lo

y
e

e
s

0 50 100 150 200 250 300
0

5

10

15

20

25

30
Improved schedule − Week 3

Time

E
m

p
lo

y
e

e
s

Fig. 4 Staffing levels for the airport ground services problem instance. The gray area denotes
the number of employees on duty while the two lines denote the minimum and maximum
required staff on duty at each time.

examples, here the total maximum required man-hours is 8152 hours over the schedul-

ing period while the available man-hours is only 6350. Table 4 shows the results of the

improvements made to the preliminary schedule.

The hard constraints for the airport ground service are that there must be a mini-

mum continuous rest of 11 hours in any 24 hour period, each employee can not work

more than 5 consecutive days, employees cannot work more than 12 consecutive hours

while the number of working hours in any 24 hour period is also 12 hours.

Table 4 shows that there are 641 hours of overstaffing in the improved schedule,

even though the total available hours is much lower than the total maximum required

hours. Figure 4, which shows the preliminary schedule and the improved schedule for a

single week, gives an insight into why there is so much overstaffing. Due to the narrow

peaks of busy periods in the morning and the afternoon, it’s difficult to fit the employees

exactly to the manpower requirements. The hours between the busy periods are often

overstaffed due to employees working long shifts that cover both busy periods. The

average percentage of requested hours that are in the improved schedule is 94%.

Figure 4 shows that the preliminary schedule is very understaffed. One of the

reasons for the understaffing in the preliminary schedule is that out of 53 employees,

20 did not sign up for any shifts. However, the improved schedule does not have any

employees under the minimum duty hours, so the algorithm managed to create feasible

schedules for all the employees.

6 Conclusions

In this paper we have introduced an algorithm that is designed to emulate the behavior

of staff managers when creating a high quality feasible staff schedule from a partial

staff schedule based on requests from employees. Having a transparent system that the

employees can trust is important since it encourages the employees to complete their

own scheduling as well as possible, in the belief that the system will behave in a fair

manner, while also completing the schedules for the employees that haven’t completed

their schedule.

94

Using real data from four different companies and institutions, we have shown

that that the proposed algorithm does well in real world situations. The algorithm

manages to decrease understaffing and make sure that the working hours of almost all

employees are within the minimum and maximum bounds. Three of the examples that

we presented have the problem of having more staff than the manpower requirements

call for, so there is some overstaffing. The examples and the results demonstrate how

difficult the staff scheduling problem is and highlight the challenge of maintaining a

balance between overstaffing, understaffing, employee requests and the size of the staff

versus the demand for employees. The presented algorithm is simple, transparent and

easily understood, but still manages to perform well in our real world examples.

There is still more work that needs to be done, such as adding additional modules

to the algorithm and analyzing the order in which they are executed. An ideal system

based on this algorithm would have the option that each company would be able to

define exactly in which order the modules are executed, in order to emulate exactly

the behavior of the staff managers of the company. Being able to tailor-make the

software for individual companies would allow for seamless implementation of such a

staff scheduling system into companies that are currently spending time and effort into

finding manual solutions to the staff scheduling problem.

References

1. J. Ahmad, M. Yamamoto, and A. Ohuchi. Evolutionary algorithms for nurse scheduling
problem. Proceedings of CEC00, San Diego, pages 196–203, 2000.

2. U. Aickelin and K. Dowsland. Exploiting problem structure in a genetic algorithm ap-
proach to a nurse rostering problem. Journal of Scheduling, 3(3):139–153, 2000.

3. J. F. Bard and H. W. Purnomo. Preference scheduling for nurses using column generation.
European Journal of Operational Research, 164, 2005.

4. M. J. Brusco and L. W. Jacobs. Cost analysis of alternative formulations for person-
nel scheduling in continuously operating organisations. European Journal of Operational

Research, 86:249–261, 1995.
5. E. K. Burke, P. De Causmaecker, and G. Vanden Berghe. A hybrid tabu search algorithm

for the nurse rostering problem. SEAL98, LNCS 1585, pages 187–194, 1999.
6. E. K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state

of the art of nurse rostering. Journal of Scheduling, 7:441–499, 2004.
7. E. K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Variable neigh-

borhood search for nurse rostering problems. Metaheuristics: computer decision-making,
pages 153–172, 2004.

8. E. K. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe. A memetic approach
to the nurse rostering problem. Applied Intelligence special issue on Simulated Evolution

and Learning, Springer, 15(3):199–214, 2001.
9. P. De Causmaecker and G. Vanden Berghe. Towards a reference model for timetabling

and rostering. Annals of Operations Research, 2010.
10. P. De Causmaecker, P. Demeester, and G. Vanden Berghe. Relaxation of coverage con-

straints in hospital personnel rostering. Proceedings of the 4th International Conference

on Practice and Theory of Automated Timetabling, pages 187–206, 2002.
11. P. De Causmaecker, P. Demeester, Y. Lu, and G. Vanden Berghe. Agent technology for

timetabling. Proceedings of the 4th International Conference on Practice and Theory of

Automated Timetabling, pages 215–220, 2002.
12. K. Dowsland. Nurse scheduling with tabu search and strategic oscillation. European

Journal of Operations Research, 106:393–407, 1998.
13. F. Easton and N. Mansour. A distributed genetic algorithm for employee staffing and

scheduling problems. Conference on Genetic Algorithms, San Mateo, pages 360–367,
1993.

14. A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research,
153(1):3–27, February 2004.

95

15. J. P. Howell. Cyclical scheduling of nursing personnel. Hospitals, 40(2):77–85, 1966.
16. R. Hung. Improving productivity and quality through workforce scheduling. Industrial

Management, 34(6), 1992.
17. S. Petrovic, G. Beddoe, and G Vanden Berghe. Storing and adapting repair experiences

in employee rostering. Selected Papers from PATAT, LNCS 2740. Springer-Verlag., pages
149–166, 2002.

18. J. Tanomaru. Staff scheduling by a genetic algorithm with heuristic operators. Proceedings

of CEC95, pages 456–461, 1995.

96

