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Abstract This work deals with the problem of rostering employees at an
airport. There are about a hundred different shifts in order to handle the ir-
regular coverage constraints. Together, with the strict constraints, given by
the collective agreement, the problem becomes difficult to solve. Common one
stage algorithms, applied to this problem, produce rosters containing too many
isolated days-on and days-off which makes the roster unusable. This paper sug-
gests a three stage approach for the employees rostering problem where a set
of different shifts is needed to satisfy the coverage requirements. The solution
is based on the problem transformation to a simpler problem, thereupon, an
evolutionary algorithm is used to determine a rough position of the shifts in
the roster. The maximal weighted matching in the bipartite graph is used as
the inverse transformation of the problem and the final roster is obtained by
the optimization based on a Tabu Search algorithm.

Keywords high diversity of shifts · multistage approach · evolutionary
algorithm · employee rostering

1 Introduction

This paper deals with a problem from the traffic sphere belonging to the do-
main of employee timetabling/employee rostering/personnel scheduling prob-
lems (ETPs). The main difference to the classical Nurse Rostering Problem
(NRP) [1], [14] is in the shift coverage demand. A typical NRP considers a small
set of shifts, e.g. {day, night} [9] or {early, late, night} [13]. On the contrary, in

Z. Bäumelt · P. Š̊ucha · Z. Hanzálek
Department of Control Engineering, Faculty of Electrical Engineering
Czech Technical University in Prague
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Fig. 1 The coverage function fC examples

the ETP, motivated by real problems from the public transport (e.g. airport
companies), the set of shifts can be quite large. This is caused by the fact
that the coverage constraints are given by a so called coverage function fC [6]
determining the number of employees required each hour (see Fig.1). The fC

reflects the changes in the workforce demand during the day, that are caused
by the traffic peaks and, in our case, it also fluctuates for different days and
different seasons of the year. There are two basic possibilities how to cover
peaks in the fC . Either it can be fit using the ‘classical’ set of shifts, or it can
be satisfied with an extended set of shifts with the size of dozens or hundreds
of shifts. The extended set of shifts consists, not only, of shifts with different
start and finish times, but also contains split shifts and on-call shifts. The split
shifts facilitate coverage of the traffic peaks during the day, while the on-call
shifts are used as an alternative for employees’ sick leaves and other unantici-
pated causes. This approach makes the ETP more difficult, but it allows one to
minimize the personnel expenses caused by the over coverage of the workforce.
Two examples of fC , corresponding to real data, are shown in Fig. 1. The first
one is fC typical for NRPs considering three shifts {early, late, night}. The
second one is fC typical for airport companies, where coverage requirements
are depicted by a dotted curve. A dashed line corresponds to the over coverage
of the workforce demand when a set of shifts with a small size is used. The
gray blocks at the second fC represent another feature – on-call hours. There
are also before shift on-calls, when the employee is on the phone and comes to
work one or two hours earlier if necessary. On the other hand, there are also
after shift on-calls where the head of the ward decides whether the employee
stays longer or leaves at the regular end of the shift. These before and after
on-calls can resolve unpredictable changes in the fC , e.g. traffic peak delays
caused by bad weather conditions.

It is obvious that a high diversity of shifts is needed to cover the fC in the
second problem depicted in Fig. 1. We denote this problem as the Employee
Timetabling Problem with a High Diversity of shifts (ETPHD).

The ETPHD is not only specific with a large variety of shifts but also
through its set of constraints. The constraints that make this problem more
complex are so called block constraints. These constraints are an extension
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of the ‘classical’ constraints limiting the number of consecutive days and are
described in detail in Section 2.1.

1.1 Related Works

Summaries of the approaches for solving problems from the timetabling/ros-
tering domain are published in [1], [4]. The most reviewed part of the ETPs
belongs to the health care branch [2], [3]. In the ideal case, i.e. a small set of
shifts, a small set of employees and a simplified set of constraints, the problem
can be solved by Integer Linear Programming (ILP) [9] leading to the optimal
solution.

The ETPs can also be modeled as Constraints Satisfaction Problems (CSP),
solved by constraint programming techniques [8]. A hybrid approach from the
domain of the declarative programming was presented in [7] on a simplified
NRP where the authors proposed an automatically implied constraint gen-
eration. Through this hybrid technique, the ratio of the solved NRPs can
be increased. Furthermore, this approach allows one to discover non-solvable
problems before search, for some instances.

It is impracticable to use the optimal approaches like ILP when more dif-
ficult ETPs are considered. In this case, heuristic approaches are applied or
the solved ETP is separated into its subproblems. These two possibilities are
sometimes joined together to attain suboptimal solutions.

One of the most applied metaheuristic approaches for ETPs is a Tabu

Search Algorithm (TSA). A two stage approach is described in [10] where, in
the first step, a feasible solution with respect to hard constraints is found and,
in the second step, a TSA based optimization is used. Similar stage separation
is described in [5] where the comparison of two approaches (TSA and Memetic

Algorithm (MA)) for the optimization stage were introduced. In a general way,
TSA is faster than MA, but its computation time considerably depends on the
previous initialization stage.

The nearest problem to the problem described in this paper, from the cov-
erage constraints point of view, is described in [6]. The coverage is expressed
as a varying number of staff needed for each grade throughout the day. The
presented method is a two stage approach, previously described in [11] where a
MA is used in the initialization stage and a TSA is employed in the optimiza-
tion stage. The time interval coverage constraints are met by different combi-
nations of shifts applied in the second stage with TSA. However, the number
of shifts (not their combinations) considered in this work for one grade is less
than ten.

In terms of the NRP classification proposed in [12], the presented ETPHD
can be categorized as ASBI|TVNO|PLGM.
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1.2 Contribution and Outline

In this paper, we introduced a multistage approach for handling the ETPHD
specified by the high diversity of shifts. The basic idea lies in a transforma-
tion of the extended set of shifts to a simpler one. The transformed timetable
is initialized by an evolutionary algorithm (the first stage) and the problem
instance is transformed back by an algorithm based on matching in the bipar-
tite graph (the second stage). The objective of these stages is to determine the
rough position of the blocks of shifts. The final roster is obtained during the
optimization based on the TSA (the third stage). This stage uses our adap-
tation of the TSA suggested in [5]. The contributions of the paper are: a) a
transformation allowing one to solve the ETPHD described in Sections 3 and
5, b) an ILP model presented in Section 3 and c) an algorithm for the first
stage based on a evolutionary algorithm (EA) shown in Section 4.

The paper is organized as follows: Section 2 outlines the motivation prob-
lem at the airport. Section 3 explains the problem transformation to a problem
with a reduced set of shifts and shows its ILP model. The transformed problem
is solved in Section 4 by an EA. The inverse transformation is described in Sec-
tion 5. Experiments and performance evaluation are summarized in Section 6
and the last section concludes the work.

2 Problem Statement

The problem solved in this paper is inspired by a real ETPHD from the traffic
sphere. This problem is outstanding through its extended set of shifts where
the shifts differ, not only, in the starting and finish times. There are also
different split shifts and shifts prolonged by several before and after on-call
hours.

The goal of the ETPHD is the same as in the NRP, to assign the requested
shifts from the set of shifts to the employees with respect to the given con-
straints that are discussed below in detail.

2.1 Constraints

Constraints considered in the ETPHD are divided into two groups. The first
group is stated as hard constraints that have to always be fulfilled. On the other
hand, soft constraints can be violated, but their non-fulfillment is penalized
in the objective function. Considering all mandatory rules of ETPHD, given
by the labour code and the collective agreement, as hard constraints makes
the problem over constrained. Therefore, the constraints separation is not firm
in our approach, i.e. some hard constraints are considered as soft constraints
with large penalties.

The hard constraints considered in this problem are:

(c1) An employee cannot be assigned to more than one shift per day.
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(c2) Shifts requiring a certain grade has to be covered by employees with this
grade.

(c3) Over coverage of shifts is not allowed.
(c4) Under coverage of shifts is not allowed.
(c5) The minimal time gap of free between shifts must be kept.
(c6) Personnel requests must be considered – like fixed shift assignment, day-off

requests, partial day-off requests (e.g. an employee is able to work to 5pm).
(c7) The maximum and minimum number of consecutive days-on and maximum

hours have to be kept.
(c8) The minimal block rest between the blocks have to be fulfilled.
(c9) Valid blocks of shifts must be respected, e.g. no more than one split shift

is allowed in the block.
(c10) The minimal block rest after 2 consecutive night shifts must be kept, e.g.

70 hours free.

The constraint (c5), which is considered differently than normal is remark-
able for this restriction. It defines a minimal time gap between two shifts equal
to 12 hours. This minimal time gap can be shortened down to 10 hours subject
to a condition that the following minimal time gap will be prolonged by the
time equal to the previous shortage. The hard constraint (c6) keeps the fixed

shifts in the roster from unacceptable assignments, e.g. a planned business trip
or holidays must be respected.

What makes this ETPHD problem difficult are the hard constraints (c7)
and (c8) dealing with the so called block of shifts (c9). This block is defined
as a sequence of consecutive shifts where block rest between each two shifts
in the block does not exceed the defined minimal block rest covered by (c8),
e.g. 45 hours. The hard constraint (c7) defines that the count of working shifts
in each block is less than or equal to the maximal shift count. Likewise, the
number of working hours in the block is limited. The last block constraint
(c9) limits the number of certain shifts in the block. These constraints make
the situation more complex since the position of the blocks is crucial for the
quality of the resulting schedule. Therefore, in our opinion, it rules out the
majority of the single stage approaches since the rough position of the block
should be determined in the first stage respecting the fixed shifts in the roster
(e.g. planned holidays, planned business trips, etc.).

The soft constraints, considered in the ETPHD, are:

(c11) The maximum number of shifts of a given type performed in the planning
period should not be exceeded, e.g. a max. of 7 night shifts during 5 weeks.

(c12) Overtime hours should be balanced according to an employee workload.
(c13) Weekend and night working hours should be in balance according to an

employee workload.
(c14) Hours of a certain shift kind (early, late, night, split and on-call shifts)

should be balanced.

In order to simplify the benchmarks, only the constraints (c1), (c3)–(c9) and
(c12) are taken into account in the rest of the paper. The remaining constraints
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(c2), (c10) and (c11) can be easily incorporated into the mathematical model
as well.

2.2 Problem Formalization

Let E be a set of employees, D represents a set of days from the whole planning
period and S denotes the extended set of shifts. Consequently, the roster is
represented by R, a binary matrix such that ∀i ∈ E,∀j ∈ D,∀s ∈ S

Rijs =

{

1, the shift s is assigned to the employee i on the day j

0, otherwise
(1)

When the roster contains a fixed shift s, defined due to (c6), the corresponding
Rijs = 1 is a constant and another shift can not be assigned to this position.

The coverage constraints (c3) and (c4) from Section 2.1 are expressed by a
binary matrix RS where RSsj = 1 iff the shift s ∈ S is required on the day
j ∈ D. Subsequently, in relationship to constraint (c5), we can define a binary
matrix with shift precedences SP so that

SPs1s2
=

{

1, the shift s1 can be followed by s2 on the subsequent day
0, otherwise

(2)
where s1, s2 ∈ S.

Even though there is a large number of different shifts, set S can still be
joined into groups given by a mapping M : S 7−→ K where K = {F ,H, E ,L,N ,

S,O} is a set of shift kinds. The set of shift kinds consists of {free F , required
free or holiday H, early shifts E , late shifts L, night shifts N , split shifts S

and on-call shifts O}. Let KW ,KF and KS be subsets of K defined as follows

KW = {E ,L,N ,S,O}

KF = {F ,H}

KS = {S,O}.

(3)

In other words, KW is a subset of working shift kinds, where KF represents
free shift kinds. The last subset KS consists of split shift kinds and on-call shift

kinds. Furthermore, for each k ∈ K, let Lk be an average shifts length of kind
k so that Lk = avgs∈S|M(s)=k |s| where |s| is the length of the shift s ∈ S.

Finally, workloads of all employees E are defined by a non-negative vector
W according to the length of planning period.

3 Mathematical Model of the Transformed Problem

The goal of the first stage of the algorithm is to design the rough position of
the blocks where the shifts should be placed in an accordance to the given
constraints. The rough blocks of shifts can be modeled as blocks of days-on
separated by days-off. The output of the first stage, presented in this paper,
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gives extra information in the form of which kind of shift k ∈ K should be
assigned on which day in the block. The first stage is described in this and
the following section. This section presents a mathematical model based on a
transformation used in the first stage.

3.1 Transformation SK

Let SK be a transformation following from the mapping M : S 7−→ K. The

SK transforms the ETPHD to ETPHD
K

, specifically R to R
K

where R
K

ijk
= 1

iff the shift kind k is assigned to the employee i on the day j. In the same

way, RS becomes RS
K

where RS
K

kj
is number of required shifts of kind k for

the day j. Finally, SP becomes SP
K

such that SP
K

k1k2
expresses, whether the

shifts of kind k1 can be followed by the shifts of kind k2. The transformation
is defined by equations (4), (5) and (6).

R
K

ijk
=

{

1, ∃s ∈ S | Rijs = 1 ∧M(s) = k

0, otherwise
, ∀i ∈ E,∀j ∈ D,∀k ∈ K

(4)

RS
K

kj
=

∑

s∈S|M(s)=k

RSsj , ∀k ∈ K,∀j ∈ D (5)

SP
K

k1k2
=















































−1, ∀s1, s2 ∈ S

SPs1s2
= 0

M(s1) = k1

M(s2) = k2

0, ∀s1, s2 ∈ S

SPs1s2
= 1

M(s1) = k1

M(s2) = k2

a, otherwise

, ∀k1, k2 ∈ K (6)

The positive penalty cost a of SP
K

k1k2
reflects the cases, when the prece-

dence of the shift kinds k1, k2 ∈ K is not obvious in general, but for most of
the combinations of shifts s1, s2 ∈ S | M(s1) = k1 ∧M(s2) = k2 is permitted,

e.g. SP
K

L,E
.

3.2 Integer Linear Programming Model of ETPHD
K

The roster formed by rough blocks can be stated by an ILP model. The model
uses a multicriteria objective function Z considering a linear combination of
the constraints (c3), (c4) and (c12) fulfillment, where α, β > 0 are weights of
the criterions. These criterions are evaluated by the piecewise linear functions
(e.g. absolute value function) penRS and penW. The penRS function reflects
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the over and under coverage of the assigned shift kinds, while the penW func-
tion corresponds to the coverage of the employees’ workloads. These functions
are represented in the ILP model by a set of auxiliary variables that are not
incorporated into equations (7)–(13) in order to make the model more read-
able.

minZ = min







α ·
∑

k∈KW

∑

j∈D

penRS

(

RS
K

kj
−
∑

i∈E

R
K

ijk

)

+

β ·
∑

i∈E

penW



Wi −
∑

j∈D

∑

k∈K

Lk · R
K

ijk











(7)

subject to

∑

k∈K

R
K

ijk
= 1, ∀i ∈ E,∀j ∈ D (8)

R
K

ijk1
+ R

K

i,j+1,k2
− SP

K

k1k2
≤ 2, ∀i ∈ E,∀j = 〈1, |D| − 1〉,∀k1, k2 ∈ K (9)

t+BmaxL
∑

j=t

∑

k∈KW

R
K

ijk
≤ BmaxL, ∀i ∈ E,∀t = 〈1, |D| − BmaxL〉 (10)

∑

k∈KW

(

R
K

ijk
− R

K

i,j+1,k
+ R

K

i,j+t,k

)

≥ 0,

∀i ∈ E,∀t = 〈2, BminL〉,∀j = 〈1, |D| − t〉

(11)

∑

k∈KW

(

R
K

ijk
− R

K

i,j+t−1,k
+ R

K

i,j+t,k

)

≤ 1,

∀i ∈ E,∀t = 〈2, BRminL〉,∀j = 〈1, |D| − t〉

(12)

t+d
∑

j=t

∑

k∈KS

R
K

ijk
≤ 1 + M ·

t+d
∑

j=t

∑

k∈KF

R
K

ijk
,

∀i ∈ E,∀d = 〈BminL, BmaxL〉,∀t = 〈1, |D| − d〉

(13)

The constraints of the ILP model are stated by equations (8) – (13). The
first constraint equation (8) corresponds to the constraint (c1), i.e. one shift per
day is assigned. Similarly, equation (9) matches the constraint (c5) represented

by SP
K

k1k2
.

The constraints (c7), (c8) are given by (10), (11), (12). A maximal block
length BmaxL of the working shift kinds is constrained by (10), while the follow-
ing equation (11) considers the minimal length of the blocks BminL. The last
inequality from the block constraints (12) defines the minimal block rest length
BRminL between the block of shifts. Since the ILP model of the first stage
is formulated on shift kinds, constraints (10)–(12) consider the average shift
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length Lk. Therefore, these equations limit the number of consecutive shift
kinds instead of the sum of hours. Typical values for (BmaxL, BminL, BRminL)

used in the solved ETPHD
K

are (5, 3, 2). In the last stage these constraints
(c7), (c8) are reflected in the complete form.

The last equation (13) stands for (c9) to avoid more shifts of the same
kind in one block, e.g. it is not feasible to have more than one split shift, i.e.

k ∈ KS , in one block. The term M ·
∑

t+d

j=t

∑

k∈KF
R

K

ijk
on the right side of

(13) eliminates the equation in effect, when d consecutive days contain a free
shift kind k ∈ KF , i.e. it is not a block of the consecutive shifts. M is a big
integer number.

4 Solution of the First Stage by an Evolutionary Algorithm

The transformation and the subsequent solution of the ILP model from Sec-
tio 3.2 is the output of the algorithm’s first stage. Due to enormous size of the
ILP model it is not possible to find its feasible solution in a reasonable amount
of time. Therefore, the solution of the first stage is found heuristically by the
EA described below.

The roster is represented in the EA so that a couple of consecutive days are
joined together. It reduces the overhead with the roster constraints’ verification
and the roster evaluation.

4.1 Modified Mathematical Model for the EA

The evolutionary algorithm, solving the first stage, uses the roster representa-
tion where the shift kinds assigned to the fixed number of consecutive days con-
stitute a gene. The number of days representing the gene is called a gene length

denoted as l. The consecutive genes are placed into gene slots GS indexed by
p such that p ∈ GS = {

j

l
| j ∈ D ∧ (j mod l) = 0}. Thereafter, the gene

R
K

[i, p] is a submatrix of R
K

given by R
K

[i, p] = R
K

ijk
| (p − 1) · l < j ≤ p · l.

Both soft and hard constraints are taken into account as penalties in the

objective function Z
E

.

min Z
E

= min







α ·
∑

k∈KW

∑

j∈D

penRS

(

RS
K

kj
−
∑

i∈E

R
K

ijk

)

+

β ·
∑

i∈E

penW



Wi −
∑

j∈D

∑

k∈K

Lk · R
K

ijk



+

γ ·
∑

i∈E

∑

p∈GS

penUnsuit
(

R
K

[i, p]
)

+

δ ·
∑

i∈E

∑

p∈〈1,|GS|−2〉

penPrec
(

R
K

[i, p] , R
K

[i, p + 1] , R
K

[i, p + 2]
)







(14)
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The first two elements correspond to the objective function Z mentioned
in (7), i.e. penalties of the under and over coverage of the required shift kinds
and penalties of the unbalanced workload of the employees. The next two

terms follow from the roster encoding. The third element of Z
E

penalizes the

suitability of the gene R
K

[i, p] given by the constraints expressed in (10)–(13).
The last element is focused on the gene precedences. It is necessary to take

into account the borders of the genes after the recombination, i.e. the kind

precedences SP
K

and the block constraints related to the neighborhood genes
have to be checked and updated. Furthermore, the other constraints, e.g. (c10)
can be easily appended through this criterion.

4.2 Evolutionary Algorithm

The Preprocessing function of the EA (shown in Alg. 1) contains the de-
scribed transformation SK. Consequently, in the GeneratePopulation func-
tion, all permutations with a repetition of shift kinds k ∈ K of length l are
generated and evaluated with respect to the considered constraints. Similarly,
the precedences of genes are assessed with respect to (9)–(13). This static part

of EA accelerates the evaluation of Z
E

.
The roster R

K

containing the genes R
K

[i, p] represents an individual I of
a population P. The initial population P0, containing pSize0 individuals, is
created randomly by the GeneratePopulation function in the following way.
For each individual I ∈ P0, the employees i ∈ E are selected according to their
count of the fixed shifts. The selection itself is similar to the rank selection of

Input : ETPHD instance

Output: Roster R
K

0 ETPHD
K ← Preprocessing(ETPHD);

1 P0 ← GeneratePopulation(ETPHDK
, pSize0);

2 foreach I ∈ P0 do Evaluate(I);
3 P ← P0;
4 while stop condition is not met do

5 P ← Select(P, pSize); // select the pSize I ∈ P
6 PN ← ∅; // clear population PN

7 for i← 1 to oCount do // breed oCount offsprings

8 [I1, I2]← ChooseParents(P);
9 Iofs ← Crossover(I1, I2);

10 Iofs ← Mutate(Iofs) with probability pM ;
11 PN ← PN ∪ Iofs; // add offspring Iofs

12 end

13 foreach I ∈ PN do Evaluate(I); // evaluate PN

14 P ← P ∪ PN ; // merge populations

15 end

16 R
K
← I ∈ P with the lowest value of Z

E
;

17 return R
K

Algorithm 1: An Evolutionary Algorithm pseudo-code
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the EA. The top employees have the higher probability to be selected earlier
than the others. When the employee is selected, it is necessary to choose the
gene slot p ∈ GS where the gene could be assigned. The gene slots selection
is similar to the employees selection, i.e. according to the position of the fixed

shifts in the slot R
K

[i, p].

The multicriteria objective function Z
E

, given by (14), is used in the
Evaluate function. The stop condition of the evolutionary algorithm is based

on the ratio of the Z
E

improvement to Z
E

during the last 20 populations. If
this ratio is under a given threshold, the algorithm stops.

The rank selection is used in the Select function to reduce the number
of individuals of P to pSize. Furthermore, the applied selection keeps the
population unique, i.e. ∀I1, I2 ∈ P holds I1 6= I2. Finally, the elitism set is
supplemented during the computation to keep the best I ∈ P alive.

There are two basic possibilities, how to perform the Crossover function

in the ETPHD
K

. A uniform crossover in a horizontal dimension, i.e. with the

certain probability pCH , the better roster of employee i with respect to Z
E

,
is chosen from the individuals I1, I2. A typical value of pCH = 0.6 makes
the better roster from two individuals more favorable. An advantage is that
there is no need to apply any repair operators for the horizontal crossover,
because the whole rosters of the employees are copied to the offspring, i.e.
all constraints related to precedences (kind precedence, gene precedence) are
satisfied. The influence of the crossover to the ‘vertical’ constraints, e.g. shift

kinds coverage, is incorporated to the objective function Z
E

.

On the contrary, for a vertical dimension, it is better to apply the 1-point
crossover instead of the uniform one. For each point of the crossover, it follows

that the objective function Z
E

increases rapidly due to precedence constraints
violations. Then, the repair mechanism has to be applied to these violations
at the point of the crossover. It is realized by the repeatedly applied mutation
in order to fix all violated precedences of the genes. This repair mechanism
is applied on each employee where the gene precedence is violated. Therefore
the crossover in the vertical dimension is noticeably time consuming in a com-
parison to the rest of the evolutionary algorithm. For that reason, this type of
crossover is suitable for the solution diversification only, when the algorithm
is caught in a local optima.

The mutation operator is applied on the offspring Iofs after the crossover a
with probability pM . The value of pM is typically 0.2. The mutation is focused
on randomly selected employees from the roster. For each employee, a few

genes R
K

[i, p] are changed in a random way, too.

5 The Second Stage – Inverse Transformation KS

The objective of the first stage is to determine the rough position of the blocks
and to assign a shift kind k ∈ K to each position of the block. The second
stage transforms the roster back when the shift kinds K are substituted by the
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required shifts s ∈ S | RSsj = 1 for the day j ∈ D. This inverse transformation
is based on the maximum weighted matching in a bipartite graph Gj where
j ∈ D is an index of the day.

For a day j ∈ D, let Gj be a bipartite graph with bipartition V (Gj) =
S(j) ∪ E, where S(j) is a set of shifts required for the day j, so that S(j) =
{s ∈ S | RSsj = 1}. Furthermore, let c : E(Gj) → R be the weights on the

edges. There is an edge (i, s) ∈ E(Gj) with c
(

(i, s)
)

= 1 iff
(

R
K

ijk
= 1 | M(s) =

k ∧ k ∈ KW

)

∧
(

SPsprev,s = 1 | sprev ∈ S(j − 1) ∧ Ri,j−1,sprev
= 1

)

where
sprev is a shift assigned to i ∈ E on the previous day. Moreover, there are
also edges (i, s) ∈ E(Gj) with lower weight c

(

(i, s)
)

= ǫ(s, sprev) < 1 iff
(

∃k ∈

KW | R
K

ijk
= 1
)

∧
(

SPsprev,s = 1 | sprev ∈ S(j − 1) ∧ Ri,j−1,sprev
= 1
)

. These
edges represent an assignment which is still possible but it is not preferred,
i.e. M(s) is not the kind assigned to this position in the block. Thereafter,
the weight ǫ(s, sprev) reflects how the shift s fits into the block when sprev is
placed on the day before.

The algorithm of the inverse transformation consecutively, for j = 1 to
j = |D|, generates graphs Gj and looks for the maximal weighted matching
MW . When (i, s) ∈ MW the shift s ∈ S(j) is assigned to the employee i ∈ E

on the day j, i.e. Rijs = 1.

The result of the second stage (R) is optimized in the third stage which
can be based on common techniques, e.g. a Tabu Search algorithm [5] or other
heuristic approaches.

6 Experiments

The presented experiments show results obtained on real data from the air-
port. The three stage approach suggested in this paper is compared with a
one stage algorithm presented in [5]. Our implementation of the algorithm de-
scribed in [5] differs in the Tabu List implementation. In our realization the
neighborhood of the swaps was excluded from the Tabu List representation
since it does not provide better results on instances of ETPHD. The three
stage approach uses the same algorithm in the third stage, but its execution
is preceded by two initialization stages described in this paper. Weights in the
objective functions were the same in both approaches. Both algorithms were
implemented in C# and experiments were executed on a PC with Intel Core
2 at 2.4 GHz.

The mathematical model of the transformed problem contains |E| · |D| · |K|

binary and |K| · |D| + |E| continuous variables. Due to size of the model, the
problem solution can be found in reasonable time for up to |E| ≤ 3 using
non-commercial ILP solver GLPK [15] and up to |E| ≤ 5 using CPLEX [16].
Since the number of employees |E| in our problem instance is more than one
hundred the first stage cannot be directly solved by ILP.

The length of the gene used for our instances was tuned during the ex-
periments and the best results were reached with the gene length l = 4. This
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value correlates with the constants BmaxL, BminL and BRminL of the block
constraints.

The computational results are summarized in Tab. 1. For each test period
the table shows the period length |D|, the number of employees |E|, the number
of shifts |S| considered in the period and the ratio of the fixed shifts F . The
approaches are compared on the number of unplaced shifts |S|, the number of
isolated days-on/days-off CS and the number of two consecutive days-on CD.
The overall objective function improvement is presented in the last column
∆Z.

The last instance in Tab. 1 with the largest set of shifts and employees is
remarkable. For this instance, a few of the shifts have not been assigned, but
in the objective function and all other measures point of view, the obtained
roster for this problematic planning period is much better. This period was
made more difficult by the additional mandatory courses (reflected in the value
of fixed assignments of shifts F ) that all of the employees should have passed,
if at all possible, during this period.

The CPU time of the three stage approach is higher due to the first stage
of the algorithm where the EA determines the rough position of the shifts.
The average CPU time of the first stage is around 5 minutes depending on
the number of the fixed shifts. On the other hand, the extra 5 minutes given
to the algorithm used in the one stage approach does not lead to a significant
objective function improvement. The computation time of the second stage is
negligible with respect to the first stage and it is smaller than 6 seconds.

7 Conclusion

In this paper, we introduced a three stage heuristic algorithm for the employee
timetabling domain. The solved problem, motivated by a real employee ros-
tering at the airport, is characterized in that the coverage function typically
consists of two peaks and the level of the workforce demand differs from hour
to hour by up to five employees. In order to satisfy the coverage requirements
and to minimize the personnel expenses it is necessary to cover the require-
ments by an extended set of shifts. In our case, it is more than one hundred
shifts. This fact together with the strict roster constraints, given by the col-
lective agreement, makes the employee rostering very difficult. Therefore, the
problem solution was decomposed into three stages, where the first one de-

Table 1 Experiments

period |D| |E| |S| F [%]
1 stage approach 3 stage approach

∆Z[%]
|S| CS/CD |S| CS/CD

nov09 28 90 79 33.71 16 37/25 2 9/8 15.5
dec09 28 90 82 32.16 13 35/21 0 8/6 20.3
jan10 35 90 89 32.97 12 39/22 0 9/6 17.9
mar09 35 94 103 41.64 24 43/28 5 11/9 13.8
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signs a rough position of the shift kinds (i.e. early shifts, late shifts, etc.), the
second stage assigns shifts into the roster and the final stage fine-tunes the
final roster.

The experiments have shown that the common single stage approaches are
not applicable on the ETPHD. The resulting roster suffers from the presence
of isolated days-on and days-off, which makes the roster unusable.

On the contrary, the improvement of the objective function reaches about
15 percent with the proposed three stage approach. The rosters produced by
our algorithm are more compact, the count of isolated days-on and days-off is
suitable and all the required shifts are assigned to the roster.
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List of Variables

fC coverage function
d, i, j, k, p, s, t indices
α, β, γ, δ positive weights of the objective function
Z objective function
S set of shifts
S(j) set of shifts required on the day j ∈ D

D set of days from the planning period
E set of employees
K set of shift kinds, i.e. early, late, night, etc.
Lk average shift length of shift kind k

BminL minimal block length (in days)
BmaxL maximal block length (in days)
BRminL minimal block rest length (in days)
M big M – big integer number
KW set of working shift kinds
KF set of non-working shift kinds
KS set of split shift kinds
W vector of employees workloads
R binary matrix representing the roster, where Rijs = 1

iff shift s ∈ S is assigned to the employee i ∈ E on day
j ∈ D

RS matrix of requested shifts, where RSsj = 1
iff the shift s ∈ S is requested on day j ∈ D

SP matrix of the shift precedences, so that SPs1s2
= 1

iff the shift s1 ∈ S can be followed by s2 ∈ S on the con-
secutive days

a penalty cost of shift precedence SP
K

k1k2

R
K

binary matrix representing the roster, where R
K

ijk
= 1

iff shift of kind k ∈ K is assigned to the employee i ∈ E on
day j ∈ D

RS
K

matrix of the requested shifts, where RS
K

kj
is the number

of the required shifts of kind k ∈ K on day j ∈ D

SP
K

matrix representing the feasibility of two consecutive shifts
precedence

R
K

[i, p] submatrix of R
K

– a gene
l gene length (in days)
P population in the evolutionary algorithm
pSize, pSize0 size of the population, size of the initial population
oCount count of the offsprings breed in each iteration of the EA
I individual of the population P

pCH probability of the better roster acceptance in the horizontal
crossover

pM probability of mutation
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Gj bipartite graph
V (Gj) set of vertices of Gj

E(Gj) set of edges of Gj

c, ǫ weights of the edges E(Gj)
MW maximal weighted matching MW ⊆ E(Gj)
CS count of isolated days-on/days-off
CD count of two consecutive days-on
F ratio of the fixed shifts (count of fixed days divided by the

count of all days in the roster)
S set of unplaced shifts
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