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Abstract 

We tackle the classroom assignment problem in a large University with the objective of 

minimising the total distance between all classrooms assigned to teaching activities in the same 

course. Additional requirements that should be satisfied include: making an efficient utilisation of 

the space, satisfying room preferences and complying with other administrative requirements. We 

present two iterated heuristic approaches, each one consisting of an iterative resolution of an 

assignment problem (the classical assignment problem in the first approach and the bottleneck 

assignment problem in the second approach) and a third algorithm based on the Variable 

Neighbourhood Search (VNS) meta-heuristic. We also present and discuss experimental results 

using real-world data from three consecutive academic sessions. 
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neighbourhood search. 
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1 Introduction 

The classroom assignment problem in an academic institution refers to assigning 

classes, that meet at different timeslots, to rooms while respecting a series of 

operational restrictions and preferences (Carter and Covey 1992). This paper deals 

with a real-world classroom assignment problem from a large university involving 

many courses and classrooms. In our case, like in many other scenarios, the 

underlying course timetabling problem is solved in two phases (Carter and 

Laporte 1998). In the first phase, timetables are constructed for each department 

and each course. Since different courses can share some rooms, the availability of 

rooms is usually not considered in this first phase (although some courses might 

have priority for using certain rooms). In the second phase, rooms are assigned 

centrally to all courses based on the timetables produced in the first phase. 

 

Although the classroom assignment problem is usually part of the well-known 

university course timetabling problem, it is also a very difficult problem and it has 

not been investigated on its own so extensively in the timetabling literature. 

Abdennadher et al. (2000) tackled this problem independently from the associated 

course timetabling problem and using constraint logic programming. Martinez-

Alfaro et al. (1996) employed simulated annealing to assign classrooms to a large 

number of classes in a University in Mexico. Many times, the classroom 

assignment problem is tackled as part of the University course timetabling 

problem or the School timetabling problem (see Adriaen et al. 2006, Dammak et 

al 2006 and Schaefer 1999). 

 

Carter and Tovey (1992) studied the classroom assignment problem and discussed 

its computational complexity. They suggested two versions of the problem, 

interval problem and nointerval problem, depending on how the concept of class 

is defined. In the interval problem, classes meet only once a week while in the 

noninterval (also called multiday) problem classes can meet more than once a 

week. Furthermore, when a class meets more than once a week, every meeting 

should occur in the same room. Following this classification, our work deals with 

a noninterval classroom assignment problem. Carter and Tovey (1992) showed 
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that this problem is NP-complete even for the satisfice case in which the problem 

is to find a feasible solution. 

 

This paper is organized in 5 sections. Section 2 describes the particular classroom 

assignment problem tackled in this paper. Section 3 introduces some definitions 

and the proposed algorithms. Section 4 gives an overview of the implementation 

and the results. Finally, we conclude the paper in Section 5. 

 

2 Problem Description 

This work is based on the timetabling problem faced by a public higher education 

institution which is divided in several administrative centres and each containing 

related departments. Departments are responsible for offering and coordinating 

the various courses within their competence. Specifically, the institution is divided 

in 7 administrative centres and 34 departments. A total of 49 courses are on offer 

with approximately 4,000 subjects/sections offered to serve approximately 16,500 

enrolled undergraduate students. There are 200 available classrooms for lectures 

plus special rooms or laboratories for practical classes. These practical classes 

have the special rooms assigned locally by their own departments and hence are 

not considered as part of the classroom assignment problem tackled here. 

 

Despite this administrative division, the assignment of classrooms is responsibility 

of the institution’s central administration. Students’ transfers and adjustments may 

occur some days before the classes start. This situation makes the problem more 

difficult because prior assignments might need to be modified and this provokes 

operational administrative problems. 

 

When assigning classrooms to classes, there are a number of restrictions and 

special needs for resources which hinder the classroom distribution. Several 

requirements must be taken into consideration: 

1. Except for lectures resulting from the union of groups with practical 

lessons, only one lesson can be assigned in the same classroom at the same 

time. The classroom must be accessible to groups in which there are 

students with special needs. 
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2. Except for some subjects determined by the course, the number of students 

in a classroom must not be superior to its capacity. 

3. Each course must have a defined geographic area for their academic 

activities and this serves as reference for the classroom assignment. The 

goal is to concentrate all classes in the same course within a geographic 

area of the campus. 

4. Classes must be assigned to classrooms numbered according to the class 

year, i.e. freshman, sophomore, junior or senior year. 

5. All the weekly meetings of a class should be preferably assigned to the 

same classroom. This facture increase the difficulty to solve the problem 

(noninterval case) as it was discussed by Carter and Tovey (1992).  

 

The goal is to assign all the groups of all the subjects and courses to classrooms, 

maximizing the concentration of students of the same course within a 

geographical area, thus, minimizing the movement of students inside the campus 

while also obeying the abovementioned restrictions. Notice that requirements 1, 3 

and 4 are considered preferences. In addition, some courses have preference for 

certain classroorns, these preferences are incorporated into the cost function (see 

Section 3). According to Carter and Tovey (1992) these preferences are non-

monotonic (arbitrary) and increase the complexity of the assignment problem. The 

present work proposes the use of heuristic algorithms to solve this problem. 

 

2.1 Definitions 

There are 6 timeslots every weekday for a total of 34 timeslots per week, as 

shown in Table 1. Note that these 34 slots are available in each week of the entire 

academic year and since the allocations are the same for every week, then the 

solution for one week is all that is needed. 

Table 1. Definition of timeslots during a week. 

Period Hour Week 

Mon Tur Wed Thu Fri Sat 

Morning 07:45 - 09:15 1 7 13 19 25 31 

09:30 - 11:45 2 8 14 20 26 32 

Afernoon 13:30 - 15:10 3 9 15 21 27 33 

15:30 - 17:10 4 10 16 22 28 34 

Night 19:30 - 21:10 5 11 17 23 29 - 

21:30 - 23:00 6 12 18 24 30 - 
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Consider the following notations for the indices: 

m =1...M for the timeslots with M = 34, 

k = 1...K for the courses, 

t = 1...Tm for the groups (classes) with their timetable in timeslot m, 

s = 1...Sk for the years of a course k, 

l = 1...L for the classrooms. 

 

A classroom area comprises of a building or an agglomerate of classrooms. 

Normally, the administrative centres have some preferred classroom areas for 

assigning classes in their courses. For each classroom area a Cartesian coordinate 

is given (area’s central position) which is called the area’s point. 

 

It is desirable to assign all weekly lessons of a given group to the same classroom 

and also to have all the classrooms used by the same course and year within a 

geographic delimitation. In order to achieve this, we defined a gravitational point 

as a point in Cartesian coordinates or a scalar. The gravitational point serves as 

reference for the arranging of groups, years and courses within a geographic 

space. Three kinds of gravitational points are considered regarding the course, 

year and group and identified as: PGCk, PGSs and PGTt, respectively. Each PGCk 

corresponds to the Cartesian coordinates extracted from an image of the campus 

layout. The gravitational points PGSs and PGTt correspond to the classroom 

number. These values are used when attempting to arrange the years and groups 

following the order of the classroom numbers, i.e., a group in the initial year is 

assigned to the classrooms with numbers smaller than the other groups of 

posterior years. The gravitational points are empirically initialised. However, they 

are self-adjusted while the algorithms are executed. 

 

3 Proposed Algorithms 

In order to tackle the above classroom assignment problem (CAP), this section 

describes two iterated heuristic algorithms. The first one (CAP-A) is based on the 

successive resolution of the linear assignment problem whereas the second one 

(CAP-BA) is based on the successive resolution of the bottleneck assignment 

problem. A third proposed algorithm (CAP-VNS) is based on the variable 
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neighbourhood search (VNS) meta-heuristic and uses an initial solution obtained 

from the first phase of the CAP-A algorithm. 

 

3.1. Algorithm CAP-A 

This algorithm is based on the successive resolution of the linear assignment 

problem. The linear assignment problem is a classic linear programming problem 

equivalent to the minimum-cost perfect matching in a bipartite graph. For each 

timeslot m an instance of the assignment problem is created. The formulation of 

the assignment problem may be described as: 
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where m

tlc  is the cost of assigning group t to room l within timeslot m, and m

tlx = 1 

if group t is assigned to room l and 0 otherwise. 

 

3.1.1 Phase 1 

This phase consists of solving M assignment problems, one for each timeslot. 

Each assignment problem is defined by the square matrix [ ]m

tlc ; however, the 

number of groups may be smaller than the number of available classrooms. Thus, 

LTTT
Ficticious

m

al

mm =+=
Re  will be considered, where al

mT
Re  is the actual number of 

existing groups and Ficticious

mT  is the number of fictitious groups created to make 

the square matrix. Therefore, the cost matrix can be split in two parts, as shown in 

Fig 1, having their elements defined as: 

Part I: For t = 1,2,…, al
mT
Re  and l = 1,2,…,L, we have ),( ltfc

m

tl =  where 

the function f (presented in the sequence) defines the cost of each 

assignment. 

157



 

Part II: For t= al
mT
Re +1,…,L (representing fictitious groups) and l = 1,2,…, 

L, m

tlc  is the cost of assign a fictitious group in a classroom, in this case a 

large cost ∞=
m

tlc . As already mentioned above, the fictitious group is 

created to complement the matrix and make it square. 

 Rooms 

Groups 

 

Part I 

),( ltfc
m

tl =  

Ficticious 

Groups 

Part II 

∞=
m

tlc  

Fig. 1 Matrix basic structure  

 

In Part I the function  f(t,l),  is defined as: 
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where:  

• d1(t,l) = Euclidian distance from the PGCk  associated to group t, to the 

area’s point related to room l. 

• SC(t) is the group of classrooms with accessibility for the group t and 

their priority use is assigned to the courses from the administrative 

centre to which the group t is linked. 

• Size(t) is the number of students in group t. 

• Cap(l) is the number of students that the classroom j can seat. 

• p1 is the penalty applied when the classroom size does not serve the 

group’s need. This penalty has been empirically defined as 2x10
3
. 

• p2 is the penalty defined as the biggest distance between classroom 

areas which belong to the same administrative centre to which the 

group t belongs. The penalty serves the purpose of forcing group t to 

be assigned to a room l belonging to SC(t). 

 

An iteration of this phase involves the resolution of M assignment problems, one 

for each timeslot. In the first iteration, the PGCk is empirically defined, normally a 
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point next to the classroom area desired for the course. For the following 

iterations, PGCk is the average point estimated from the coordinates among all the 

classroom areas used for course k in the previous iteration. This procedure is 

repeated until the PGCk of all the courses are not modified. 

3.1.2 Phase 2 

The purpose of this phase is to gather the groups of the same academic year in a 

course following the order by which the rooms are numbered, e.g. groups in the 

first year are in rooms with numbers smaller than the groups of the next academic 

year. 

 

The structure of the cost matrix used in this phase is the same as in the previous 

phase, although the cost formation is slightly different, as follows: 
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where: 

• d2(t,l) = | PGSs – Num(l)|, considering PGSs the gravitational point of 

the year s to which the group t is related and Num(l) is room number l. 

 

An iteration of this phase also solves M assignment problems. In the first iteration 

PGSs = s, s = 1…Sk, for the course k related to the group t. In the following 

iterations, PGSs will be the average value of all classroom numbers allocated to 

the year s. This procedure is repeated until the PGSs of all the years of every 

course are not modified. 

3.1.3 Phase 3 

The goal of this phase is to rearrange the groups gathered in phase 2 following a 

correspondence order for the group regarding the room numbering, e.g., if the 

group number 1 has been allocated to room 101, it is desirable that the group 

number 2 is allocated to room 102. 

As in phase 2, the cost matrix structure used is the same as in phase 1, with 

the cost defined as follows: 
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where: 

• d3(t,l)  = |PGT – Num(l)|, considering PGT the gravitational point of 

the group t and Num(l) is room number l. 

 

An iteration of this phase also solves M assignment problems. In the first 

iteration PGTt = t. In the following iterations, PGTt will be the average value of 

the numbers of all the rooms allocated for the M modules in the previous iteration. 

This procedure is repeated until the PGTt of all groups of every course are not 

modified. 

3.2 Algorithm CAP-BA 

This algorithm is equivalent to the algorithm CAP-A with the difference that the 

linear assignment model is replaced by the bottleneck assignment model. The 

bottleneck assignment problem is formulated as follows: 
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The cost matrix [ ]m

tlc  is defined in the same way as for the previous algorithm. 

While the linear assignment model minimises the cost sum of all assignments, the 

bottleneck assignment model minimises the cost of the biggest assignment. 

 

3.3. Algorithm CAP-VNS 

This algorithm is based on the variable neighbourhood search (VNS) meta-

heuristic, a local search procedure that explores the solution space by 

systematically changing the neighborhood structure (Hansen and Mladenovic, 
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2001). R neighbourhoods are defined for the problem in hand, N1, N2,...,NR and if 

the current solution is not improved using a particular neighbourhood, the next 

neighbourhood is explored and so on. 

 

Then, our CAP-VNS algorithm starts with a solution obtained in phase 1 of the 

algorithm CAP-A. Four neighbourhood structures Nr (r = 1, 2, 3 and 4) were 

defined. A neighbour Nr(s) is obtained by exploring every timeslot for every 

weekday, and then choosing another assignment at random (see below).  

 

The iterative improvement strategy used is the best descent, i.e., all solutions s” 

around s’ are assessed, and the one giving the best improvement is selected. The 

evaluation function of a solution, to be minimised, is defined as: 

∑∑∑
= = =
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34

1 1 1
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l
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tl
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xcsf                                                                                      (4) 

where m

tlc  is defined as in phase 3 for the algorithm CAP-A. 

 

The neighbourhood structures Nr can be defined as: 

1. N1: for each timeslot m = 1,...,M and for each classroom area (building) 

used in the solution, randomly select a classroom in the classroom area 

and move the groups to an idle room in the same area, if possible. 

2. N2: for each timeslot m = 1,...,M and for each classroom area used in the 

solution, randomly select two classrooms in the classroom area and change 

the groups from one room to another, if possible. 

3. N3: for each timeslot m = 1,...,M and for each course with classes in 

module m, randomly select two classrooms used for the same course 

(regardless of the classroom area) and interchange all the groups between 

the two classrooms, if possible. 

4. N4: for each timeslot m = 1,...,M and for each year with classes in module 

m, randomly select two classrooms used by the year of the same course 

(regardless of the classroom area) and have the groups change from one 

room to the other, if possible. 
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In each iteration of the CAP-VNS algorithm, every neighbourhood is explored 

and the algorithm stops when there is no improvement within 3 iterations. We 

then follow the VNS scheme presented in Fig 2. 

 

Fig 2. Steps of the VNS 

 

4 Results and Analysis 

To solve the linear assignment problem, the algorithm proposed by Carpaneto and 

Toth (1987) was implemented which combines the Hungarian method and the 

Shortest Augmenting Path method. To solve the bottleneck assignment problem, 

the algorithm presented by Carraresi and Gallo (1984) was used. 

 

All computational experiments were performed using a PC AMD Atlhon at 2.4 

MHz, with 1 GB RAM running on Windows XP. The definition of Cartesian 

coordinates, used to calculate the distance between classroom areas, was based on 

a sketch of the institution’s campus layout with a drawing scale of 2 cm = 1 m 

(1:50). The algorithms were tested with real data from three consecutive academic 

years. The characteristics of the test data used are summarised in Table 2. 

Table 2. Characteristics of the test instances 

Year Number of 

courses 

Number of  

rooms 

Number of 

groups 

Number of 

students 

2006 47 170 3,927 15,270 

2007 48 192 4,016 16,530 

2008 49 192 3,978 16,320 

Initialisation. Select the set of neighbourhood structures Nr (r = 1, 2, 3 and 4); 

find an initial solution s; choose a stopping condition; 

Repeat the following sequence until the stopping condition is met: 

(1) Set r ← 1; 

(2) Repeat the following steps until r = R: 

(a) Generate a random solution s’ from the r
th

 neighbourhood  

of s (s’ ∈ Nr(s)); 

(b) Local search. Find the best neighbour s” of s’ (s” ∈ Nr(s’)); 

(c) Move or not. If  f(s’’) < f(s) then s ← s’’ and r←1; 

otherwise, r←r+1; 
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Tables 3-5 present the results obtained by the proposed algorithms applied to the 3 

test instances. Column Total Cost results from applying the objective function 

(equation 4) defined in Section 3.3. The number of allocations which satisfied the 

classroom capacity restriction is shown in the column Favourable Allocations 

(FA) and the number that did not satisfy that restriction other are shown in the 

column Unfavourable Allocations (UF). Column Iterations corresponds to the 

number of times that each phase was executed in order to reach an improved 

solution. 

 

Table 3. Results for the test instance corresponding to year 2006  

Algorithm Phase 
Time 

hh:mm:ss 

Total 

cost 

FA 

 

UF 

 
Iterations 

 

CAP-A 

1 00:21:08 2,015,496 3,595 332 8 

2 00:04:52 1,751,583 3,595 332 2 

3 00:17:27 1,598,637 3,595 332 3 

 

CAP-BA 

1 00:12:18 2,632,801 3,586 341 4 

2 00:07:15 2,549,259 3,587 340 2 

3 00:18:05 2,507,436 3,591 336 3 

 

CAP-VNS 

Initial Solution 00:21:08 2,015,496 3,595 332 - 

Local Search 00:26:02 1,731,850 3,595 332 3 

 

Table 4. Results for the test instance corresponding to year 2007 

Algorithm Phase 
Time 

hh:mm:ss 

Total 

cost 

FA 

 

UF 

 
Iterations 

 

CAP-A 

1 00:12:10 1,979,099 3,708 308 6 

2 00:08:15 1,733,254 3,708 308 3 

3 00:18:41 1,581,791 3,708 308 3 

 

CAP-BA 

1 00:06:11 2,589,698 3,705 311 2 

2 00:07:13 2,529,129 3,705 311 2 

3 00:22:05 2,479,152 3,706 310 4 

 

CAP-VNS 

Initial Solution 00:12:10 1,979,099 3,708 308 - 

Local Search 00:35:27 1,693,173 3,708 308 4 

 

Table 5. Results for the test instance corresponding to year 2008 

Algorithm Phase 
Time 

hh:mm:ss 

Total 

Cost 

FA 

 

UF 

 
Iterations 

 

CAP-A 

1 00:11:30 1,960,146 3,677 301 6 

2 00:09:17 1,697,943 3,677 301 3 

3 00:17:09 1,580,312 3,677 301 3 

 

CAP-BA 

1 00:06:02 2,589,036 3,666 312 2 

2 00:05:43 2,506,241 3,669 309 2 

3 00:18:22 2,493,253 3,671 307 3 

 

CAP-VNS 

Initial Solution 00:11:30 1,960,146 3,677 301 - 

Local Search 00:34:47 1,690,372 3,677 301 4 
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Tables 6-8 summarise the results achieved by the three algorithms proposed here 

together with the solution quality of the manually constructed assignments 

produced by the human planners. Besides the costs calculated using the objective 

function, these tables present the sums of the distances between the assigned 

rooms and the Gravitational Point of each course, measured in meters. Note that 

these distances are calculated based on a sketch of the campus layout. The 

minimum, maximum and average distances are also shown. 

 

Table 6. Comparing results for the test instance corresponding to year 2006 

Approach Total cost FA UA Total  

distance 

Minimum 

Distance 

Average 

distance 

Maximum 

distance 

CAP-A 1,598,637 3,595 332 432,855 0 158 1,680 

CAP-BA 2,507,436 3,591 336 1,006,023 0 270 1,640 

CAP-VNS 1,731,850 3,595 332 577,379 0 223 1,710 

Manual 2,295,242 3,293 634 1,010,172 0 265 1,664 

 

Table 7. Comparing results for the test instance corresponding to year 2007 

Approach Total cost FA UA Total  

distance 

Minimum 

Distance 

Average 

distance 

Maximum 

distance 

CAP-A 1,581,791 3,708 308 506,620 0 172 1,762 

CAP-BA 2,479,152 3,706 310 1,152,620 0 289 1,724 

CAP-VNS 1,693,173 3,708 308 673,983 0 227 1,762 

Manual 2,282,502 3,385 631 1,099,214 0 273 1,675 

 

Table 8. Comparing results for the test instance corresponding to year 2008 

Approach Total cost FA UA Total  

distance 

Minimum 

distance 

Average 

distance 

Maximum 

distance 

CAP-A 1,580,312 3,677 301 504,543 0 167 1,724 

CAP-BA 2,493,253 3,671 307 1,149,892 0 286 1,724 

CAP-VNS 1,690,372 3,677 301 673,057 0 225 1,724 

Manual 2,281,593 3,348 630 1,098,053 0 271 1,675 

 

It can be observed that the algorithms CAP-A and CAP-VNS achieved the best 

results overall. By comparing these results with those obtained manually by the 

institution, a very considerable improvement in the quality of the solutions can be 

observed, mainly with respect to the number of unfavourable allocations (UA). 
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5 Conclusions 

In this paper, we tackled a real-world classroom assignment problem and 

proposed three algorithms: two iterated heuristic algorithms based on successive 

resolution of (linear and bottleneck) assignment problems and one algorithm 

based on VNS meta-heuristic. While the first and third algorithms try to minimise 

the total distance, the second one tries to minimise the maximum distance (min-

max problem). Overall, the CAP-A algorithm performed better and reduced by 

more than 50% the total distance between classrooms of the same course and it 

also reduced considerably the number of unfavourable allocations when compared 

to previous manual solutions. 

 

The computational performance of the proposed algorithms was very satisfactory 

regarding both solution quality and computational time. The computational time 

of approximately 30 to 40 minutes is quite acceptable since constructing a manual 

resolution for the problem can take days or weeks of work. 

 

It is particularly important to note that CAP-A and CAP-BA are both 

deterministic algorithms, so, given a particular input, they always give the same 

solutions, while the CAP-VNS is a stochastic algorithm. 

 

In particular, both algorithms CAP-A and CAP-BA are quite flexible with respect 

to the incorporation of new constraints. The required adaptation to accommodate 

new rules is only on the construction of the cost matrix for each assignment 

problem, but no change is required on the heuristic algorithms. A new hard 

constraint can be incorporated as an infinity cost in the cost matrix, whilst a soft 

constraint would be given a finite penalty cost. 
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