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1 The Unconstrained Traveling Tournament Problem

A deterministic 3-approximation algorithm is proposed for the unconstrained
traveling tournament problem, which is a variant of the traveling tournament
problem. For the unconstrained traveling tournament problem, this is the first
proposal of an approximation algorithm with a constant approximation ratio.
In addition, the proposed algorithm yields a solution that meets both the no-
repeater and mirrored constraints.

In the field of tournament timetabling, the traveling tournament problem
(TTP) is a well-known benchmark problem established by Easton, Nemhauser,
and Trick [2]. The present paper considers the unconstrained traveling tourna-
ment problem (UTTP), which is a variant of the TTP. In the following, some
terminology and the TTP are introduced. The UTTP is then defined at the end
of this section.

Given a set T = {0, 1, . . . , n−1} of n teams, where n ≥ 4 and is even, a game
is specified by an ordered pair of teams. Each team in T has its home venue.
A double round-robin tournament is a set of games in which every team plays
every other team once at its home venue and once in an away game (i.e., at the
venue of the opponent). Consequently, 2(n− 1) slots are necessary to complete
a double round-robin tournament.

Each team stays at its home venue before a tournament and then travels to
play its games at the chosen venues. After a tournament, each team returns to
its home venue if the last game is played as an away game. When a team plays
two consecutive away games, the team goes directly from the venue of the first
opponent to the venue of another opponent without returning to its home venue.

⋆ The present study was supported in part by Grants-in-Aid for Scientific Research,
by the Ministry of Education, Culture, Sports, Science and Technology of Japan.
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For any pair of teams i, j ∈ T , dij ≥ 0 denotes the distance between the
home venues of i and j. Throughout the present paper, we assume that triangle
inequality (dij + djk ≥ dik), symmetry (dij = dji), and dii = 0 hold for any
i, j, k ∈ T .

Denote the distance matrix (dij) by D. Given a constant (positive integer)
u ≥ 3, the traveling tournament problem [2] is defined as follows.

Traveling Tournament Problem (TTP(u))
Input: A set of teams T and a distance matrix D = (dij).
Output: A double round-robin schedule of n teams such that
C1. No team plays more than u consecutive away games,
C2. No team plays more than u consecutive home games,
C3. Game i at j immediately followed by game j at i is prohibited,
C4. The total distance traveled by the teams is minimized.

Constraints C1 and C2 are referred to as the atmost constraints, and Con-
straint C3 is referred to as the no-repeater constraint.

Various studies on the TTP have been conducted in recent years (see [4]
for detail), and most of these studies considered TTP(3) [5]. Most of the best
upper bounds of TTP instances are obtained using metaheuristic algorithms. On
the other hand, little research on approximation algorithms has been conducted
for the TTP. Recently, Miyashiro, Matsui, and Imahori [3] proposed a (2 +
O(1/n))-approximation algorithm for TTP(3). In addition, Yamaguchi, Imahori,
Miyashiro, and Matsui [6] proposed an approximation algorithm for TTP(u),
where u ≪ n. For TTP(3), the approximation ratio of [6] is better than that
of [3].

The unconstrained traveling tournament problem (UTTP) is a variant of the
TTP, in which Constraints C1 through C3 are ignored. In other words, the UTTP
is equivalent to TTP(n − 1) without the no-repeater constraint. Although the
UTTP is simpler than the TTP, no approximation algorithm for the UTTP has
yet been proposed. The method proposed in [6] cannot be applied to the UTTP
because the condition u ≪ n is necessary for the method. The method in [3],
proposed for TTP(3), can be applied to the UTTP with a few modifications.
However, this leads to a ((2/3)n+O(1))-approximation algorithm, which is not
a constant approximation ratio with regard to n.

In the present paper, we propose a deterministic 3-approximation algorithm
for the UTTP. In addition, the solution obtained by the algorithm meets both the
no-repeater and mirrored constraints, which are sometimes required in practice.

2 Approximation Algorithm

In this section, we describe the proposed approximation algorithm for the UTTP.
A key concept of the algorithm is the use of the circle method and a shortest
Hamilton cycle. The classical schedule obtained by the circle method satisfies the
property such that the orders of opponents in almost all teams are very similar
to a mutual cyclic order of teams. Roughly speaking, the proposed algorithm
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constructs a short Hamilton cycle passing all venues, and finds a permutation
of teams such that the above cyclic order corresponds to the obtained Hamilton
cycle.

For a vertex set V = {0, 1, . . . , n − 1}, let G = (V,E) be a graph such that
the distance of edge (i, j) is given by dij for any i, j ∈ V . First, we assign aliases
t0, t1, . . . , tn−1 to teams 0, 1, . . . , n− 1 as follows.

1. For each v ∈ V , compute
∑

v′∈V \{v} dvv′ .

2. Let v∗ be a vertex that attains min v∈V

∑
v′∈V \{v} dvv′ , and designate the

team corresponding to v∗ as tn−1.
3. Using the Christofides’ 3/2-approximation algorithm for the traveling sales-

man problem with the triangle inequality [1], construct a Hamilton cy-
cle on the complete graph induced by V \ {v∗}. For the obtained cycle
(v0, v1, . . . , vn−2), denote the corresponding teams by (t0, t1, . . . , tn−2).

Next, we construct a single round-robin schedule. In the following, “schedule
without HA-assignment” refers to a “round-robin schedule without the concepts
of home game, away game, and venue.” Denote the set of n − 1 slots by S =
{0, 1, . . . , n − 2}. A single round-robin schedule without HA-assignment is a
matrix K of which (t, s) element, say K(t, s), denotes the opponent of team t in
slot s. Let K∗ be a matrix defined by

K∗(t, s) =


ts−t mod n−1 (t ̸= n− 1 and s− t ̸= t [mod n− 1]),
tn−1 (t ̸= n− 1 and s− t = t [mod n− 1]),
ts/2 (t = n− 1 and s is even),
t(s+n−1)/2 (t = n− 1 and s is odd).

Lemma 1. [6] The matrix K∗ is a single round-robin schedule without HA-
assignment. In addition, K∗ is essentially equivalent to the classical schedule
obtained by the circle method.

Then, by the mirroring procedure, form K∗ into a double round-robin sched-
ule without HA-assignment. Finally, we assign home and away so as to complete
a double round-robin schedule as follows:

– for team t ∈ {t0, t1, . . . , tn/2−1}, let the games in slots n+2t−1, n+2t, . . . , n+
2t+ n− 3 [mod 2(n− 1)] be away games, and let the other games be home
games.

– for team t ∈ {tn/2, tn/2+1, . . . , tn−2}, let the games in slots 2t − n + 2, 2t −
n+ 3, . . . , 2t be away games, and let the other games be home games.

– for team tn−1, let the games in slots 0, 1, . . . , n − 2 be away games, and let
the other games be home games.

The proposed double round-robin schedule, denoted by K∗
DRR, satisfies the no-

repeater and mirrored constraints.

We now prove the above-mentioned algorithm is a 3-approximation algorithm
for the UTTP. Designate the distance of a shortest Hamilton cycle on G as τ .
In addition, let the distance of the cycle (v0, v1, . . . , vn−2) obtained above be τ ′.
Note that τ ′ ≤ (3/2)τ .
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Lemma 2. The following propositions hold for G.
(1) For any path of two edges, its distance is bounded by τ .
(2) The distance of any Hamilton cycle is bounded by nτ/2.

In K∗
DRR, team tn−1 plays n− 1 consecutive away games, and thus the distance

by team tn−1 can be bounded by nτ/2 from Lemma 2(2). In addition, analyzing
the structure of the proposed schedule reveals the following lemma.

Lemma 3. Let l(i, j, k) be the distance of path (i, j, k) for i, j, k ∈ V . In K∗
DRR,

the traveling distance of teams can be bounded by
τ ′ + l(v0, v

∗, v1) (t = t0),
τ ′ + l(vt, v

∗, vt+1) + l(vn−t−1, vt, vn−t−2) (t ∈ {t1, t2, . . . , tn/2−2}),
τ ′ + l(vn/2−1, v

∗, vn/2−1) (t = tn/2−1),
τ ′ + l(vt−1, v

∗, vt) (t ∈ {tn/2, tn/2+1, . . . , tn−2}),
nτ/2 (t = tn−1).

Although the following lemma is not obvious, we omit the proof due to space
limitations.

Lemma 4. Let v∗ be a vertex that attains min v∈V

∑
v′∈V \{v} dvv′ . Then, the

following holds:
∑

v∈V \{v∗} dvv∗ ≤ nτ/4.

Theorem 1. The proposed algorithm is a 3-approximation algorithm for the
UTTP.
Proof. Let the distance of K∗

DRR be d(K∗
DRR). From Lemmas 2 through 4, we

have:

d(K∗
DRR) ≤ τ ′(n− 1) +

∑
t∈{t0,t1,...,tn−3}

l(vt, v
∗, vt+1) + l(vn/2−1, v

∗, vn/2−1)

+
∑

t∈{t1,t2,...,tn/2−2}

l(vn−t−1, vt, vn−t−2) + nτ/2

≤ (3/2)τ(n− 1) +
∑

v∈V \{v∗}

2dvv∗ + τ + τ(n/2− 2) + nτ/2

≤ (3/2)τ(n− 1) + 2(nτ/4) + τ + τ(n/2− 2) + nτ/2

≤ 3nτ.

Since nτ is a lower bound of the distance of any double round-robin schedule,
this concludes the proof. �
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