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1 Introduction

An efficient grouping genetic algorithm (GGA) was proposed by R. Lewis and B.

Paechter (2007) to find feasible timetables for a version of the university course timetabling

problem (UCTP). The algorithm proved to be efficient to construct feasible solutions

for the UCTP benchmark instances (International Timetabling Competition 2002). In

addition, the authors proposed a new set of harder instances, in order to better analyze

their algorithm.

In this paper, we propose an adequate data structure for the algorithm and pre-

processing techniques that signficantly improve its efficiency. The organization of the

paper is as follows. Section 2 defines the UCTP and presents the main characteristics of

the GGA. Section 3 and 4 describes our contributions for the GGA applied to UCTP.

Finally, Section 5 presents computational experiments and the conclusions.

2 The University Course Timetabling Problem

A typical university timetabling problem consists of assigning a set u={u1, ..., ue} of

e events (classes, exams, lectures, etc.) to t timeslots and r rooms in such a way as

to satisfy a set of constraints and to optimize an objective function (R. Lewis and B.
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Paechter 2007). The constraints are classified into two types (Burke et al. 1997): (i) hard

constraints, which must be satisfied to a feasible timetable, and; (ii) soft constraints,

which should be satisfied if possible. The hard constraints considered to this problem

are:

1. Events requiring the same student should not be assigned to the same timeslot;

2. One room in one timeslot admits only one event;

3. All of the features required by an event should be satisfied by the room where the

event is allocated, which has adequate capacity.

The problem is NP-Complete (Garey and Johnson 1979), and the number of possi-

ble assignments grows exponentially with the input data. As a consequence, exact meth-

ods for UCTP are not proper for large instances. Therefore, heuristic-based methods

have been widely investigated in the literature (Costa 1994; Abramson, Krishnamoor-

thy and Dang 1996; Thompson and Dowsland 1998; Schaerf 1999; Paechter et al. 1998;

Socha and Samples 2003).

Lewis and Paechter (2007) describe the applicability of a GGA to the UCTP, and

propose a two-phase approach. In the first phase, the GGA improves the quality of

the solutions (within a specified time) using a set of solution-builder heuristics, which

speeds up the evolutionary process. In the second one, a local search algorithm does

final improvements to promising solutions. However, as the input data increases too

much (big cases of the proposed set), the convergence becomes slower and the first

phase ends with high infeasibility level solutions. It should be worth noting that this

paper deals with only the first phase and hard constraints.

3 Data Structures

Some of the data structs used by the GGA are trivial, such as the set u, implemented

as an array, and the timetable, represented by the rxt matrix T, where the element tij
is the event assigned to room i in timeslot j. Other matrices give the relation between

students and events and between features and rooms. For further information, see Lewis

and Paechter (2007).

The most complex data structure envolved in this GGA, called feasibility matrix

F, stores the places (one place is one room in one timeslot) where the events can be

feasibly allocated. Its most efficient implementation (by the processing aspect) consists

of a matrix whose rows correspond to places, and columns to events. It can be done by

initially converting a two-dimensional matrix (G, rooms by timeslots), that contains

the feasibility information of a given event, to a one-dimensional array of places H.

Figure 1 depicts this step.

G =







g11 · · · g1t
..
.

. . .
..
.

gr1 · · · grt






→ H =

(

g11 · · · g1t · · · gr1 · · · grt
)

=
(

h1 · · · hp

)

Fig. 1: Linearization of the feasibility matrix to an event
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Next, the resulting structure H is replicated e times (one for each event), resulting

in the structure F. The F element fij = 1 if event j can be feasibly assigned to a place

i, and 0 otherwise, i = 1,...,p and j = 1,...,e, see Figure 2.

F =
(

HT
1

· · · HT
e

)

=







f11 · · · f1e
.
.
.

. . .
.
.
.

fp1 · · · fpe







Fig. 2: Feasibility matrix construction

In order to find out if one given event can be feasibly assigned to a place, no search

is required, since the triple (event, room, timeslot) can be transformed into the pair

(event, place) that corresponds to only one element of F. In this way, the cost to

access this information is (in big-O notation) O(1) (Cormen et al. 2001; Knuth 1998).

It speeds up the generation of solutions, i.e. the GGA can performe a larger number

of generations for the same period of time compared to other relatively higher cost

data structures, such as dynamic lists and other non-static data structures. Moreover,

it is important to highlight that the larger the number of generations, the better the

quality of solutions at the end of the GGA.

4 Preprocessing Techniques

The values of the F elements are only related with the hard contraints satisfaction

(see Section 2). Based on this, the hard constraints can be classified into two types: (i)

static contraints, which define the assignment feasibility regardless the timetable state

(i.e. the events allocated in it), as constraint 3; and (ii) dynamic constraints, which can

change the feasibility of an assignment depending on the events already allocated in

a timetable place, as constraints 1 and 2. Thus, the feasibility related to constraint 3

can be determined a priori. If an event requires a set of features and is required by n

students, all the rooms that do not have all the required features or has the capacity less

than n can not be feasibly assigned to this event anytime. This information is stored in

matrix A (event by rooms) that lists the event-rooms conflicts. Element aij is 1 if the

event i can not be assigned to the room j, i=1...e, j = 1,...,r ; aij = 0 otherwise. Thus,

the values of F to a new solution can be obtained directly from A, avoiding unneeded

processing.

In addiction, the restriction number 1 can be modeled as a matrix B (event by

event) that lists the event conflicts. The element bij = 1 if the event i requires a

student also required by the event j, i = 1,...,e, j = 1,...,e, i 6= j ; bij = 0 otherwise.

Observe that every iteration of a solution building inserts one unallocated event into

the solution being built.
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5 Computational Results

The GGA and the proposed improvements was implemented in ANSI C under Linux

(Ubuntu 8.04 distribution) on a computer with an Intel Pentium Dual-Core 1.73 GHz

processor and 1 GB RAM. Considering the parameters as follow: timeslots number

t = 45 (five days a week of five timeslots), mutation rate mr = 2, inversion rate ir = 4,

recombination rate rr = 1.0, and population size ρ = 50. The input data is given by

the instance sets. The experimental results was compared to the obtained by Lewis

and Paechter (2007). The Figure 3 depicts the results obtained by the original im-

plementation of the GGA and the implemented with improvements. The vertical axis

corresponds to the distance to feasibility of the best solution present in the popula-

tion. See Lewis and Paechter (2007) for further details about parameters and GGA

implementation and run.

(a) (b)

(c)

——— Lewis and Paechter (2007) - - - - Santos and Delbem (2010)

Fig. 3: Behavior of the algorithm to (a) small, (b) medium, and (c) large instances.

As can be noticed, the larger the input data, the greater the difference between the

results obtained by the two implementations. It happens because as the input grows,

the solution building time becomes significantly greater and the time saved is more

expressive, showing the efficiency of the contributions proposed.
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