
Semidefinite Programming Relaxations in Timetabling
(Abstract)

Edmund K. Burke ⋅ Jakub Mareček ⋅ Andrew J. Parkes

Keywords timetabling ⋅ bounded colouring ⋅ vertex colouring ⋅ graph colouring ⋅ semidefinite
programming

Semidefinite programming has recently gained much attention as a powerful method for deriv-
ing both strong lower bounds and approximation algorithms in combinatorial optimisation. There
have not been, however, any applications to timetabling. We show one reason to believe that this
could well change, ultimately.

Definitions In linear programming (LP), the task is to optimise a linear combination cT x subject
to linear constraints Ax = b, together with the constraint that each in vector x of n variables is non-
negative. The non-negativity of x, x ∈ (R+)n, can be seen be seen as a restriction of the variables
to lie in the convex cone of the positive orthant. Using interior point methods, linear program-
ming can be solved to any fixed precision in polynomial time. These methods also work for other
symmetric convex cones.

Semidefinite programming (SDP, Bellman & Fan, 1963; Alizadeh, 1995; Wolkowicz, Saigal,
& Vandenberghe, 2000) is a generalisation of linear programming, replacing the vector variable
with a square symmetric matrix variable and the polyhedral symmetric convex cone of the positive
orthant with the non-polyhedral symmetric convex cone of positive semidefinite matrices. Note
that an n× n matrix, M, is positive semidefinite if and only if yT My ≥ 0 for all y ∈ Rn. As all
scalar multiplies of positive semidefinite matrices and convex combinations of pairs of positive
semidefinite matrices are positive semidefinite, positive semidefinite matrices do form a convex
cone in Rn2

. We denote Aર B whenever A−B is positive semidefinite, and use ⟨A,B⟩ for the inner
product of matrices, which is ∑i, j Ai, jB j,i. Formally, semidefinite programming is the minimisation
of ⟨C,X⟩ such that ⟨Ai,X⟩= bi ∀i = 1 . . .m and X ર 0, where X is a (primal) square symmetric
matrix variable, C and Ai are compatible symmetric matrices, m is the number of constraints, and
b ∈Rm.

Let us now consider a simple model of timetabling, underlying integer programming decom-
positions (Burke, Mareček, Parkes, & Rudová, 2010), for instance. The input consists of iden-
tifiers of events V, distinct enrolments U (“curricula”), rooms R, and periods P, plus mapping
F : U→ 2V ∖ /0 from “curricula” to non-empty sets of events. Conflict graph G = (V,E) is given

Automated Scheduling, Optimisation and Planning Group, School of Computer Science, The University of Notting-
ham, Nottingham NG8 1BB, UK. E-mail: {ekb,jxm,ajp}@cs.nott.ac.uk. For supplementary material, please see:
http://cs.nott.ac.uk/˜jxm/

481

http://cs.nott.ac.uk/~jxm/


by F , where events F(u) is a clique in G for all u ∈ U. The “core” decision variables are

Zp,v =

{
1 event v is taught at period p
0 otherwise,

(1)

which are subject to linear constraints

∀v ∈ V ∑
p∈P

Zp,v = 1 (2)

∀p ∈ P ∀u ∈ U ∑
v∈Fu

Zp,v ≤ 1 (3)

∀p ∈ P ∑
v∈V

Zp,v ≤ ∣R∣ (4)

Notice that there is only a single mention (4) of rooms, which makes the colouring of the conflict
graph ∣R ∣-bounded. This means the cardinality of each colour class or the number of uses of each
colour is at most ∣R ∣. Depending on the tightness of the ∣R ∣-bound, the chromatic number alone
is not necessarily a good lower bound.

Related Work There are a number of ways to bound the chromatic number of a graph using SDP.
Informally, the point is that a parameter of the graph, denoted theta, is at least as large as the clique
number and no more than the chromatic number, yet is computable in polynomial time using SDP.
The known theta-like bounds for unbounded colouring form a hierarchy (Szegedy, 1994):

α(G)≤ ϑ1/2(G)≤ ϑ(G)≤ ϑ2(G)≤ χ(G), or ω(G)≤ ϑ1/2(G)≤ ϑ(G)≤ ϑ2(G)≤ χ(G),

where α is the size of the largest independent set, ω is the size of the largest clique, χ is the
chromatic number, ϑ1/2 is the vector chromatic number (Karger, Motwani, & Sudan, 1998), ϑ is
the strict vector chromatic number (Karger et al., 1998), ϑ2 is the strong vector chromatic number
(Kleinberg & Goemans, 1998), and bar indicates complementation. For the corresponding vector
programming and semidefinite programming formulations, please consult the literature (Szegedy,
1994). In theory, all could be extended to bounded graph colouring, but none has been so far, up
to the best of our knowledge.

In terms of applications, the celebrated SDP relaxation of the maximum cut problem (MAX-
CUT, Goemans & Williamson, 1995) has been adapted to scheduling workload on two machines
(Skutella, 2001; Yang, Ye, & Zhang, 2003) and home-away patterns in sports scheduling (Suzuka,
Miyashiro, Yoshise, & Matsui, 2007). The techniques of “vector lifting” and “matrix lifting”
have been applied in signal decoding in multi-antenna systems (Mobasher & Khandani, 2007;
Mobasher, Taherzadeh, Sotirov, & Khandani, 2007). All of the above can be though of as rank-
minimisation matrix completion problems (Fazel, Hindi, & Boyd, 2004), whose applications range
from signal processing to statistics and system theory. We are now aware, however, of any appli-
cations to timetabling.

Bounding the Bounded Chromatic Number by SDP A clear application of semidefinite program-
ming is in the detection of infeasibility in timetabling (2–4). The infeasibility test is given by lower
bounding the ∣R ∣-bounded chromatic number of the conflict graph and comparing it against ∣P ∣,
the number of periods available. Here we follow the method and notation of (Dukanovic & Rendl,
2007), briefly reported also in PATAT 2004 (Dukanovic & Rendl, 2004). The underlying matrix
variable M is:

Mu,v =

{
1 if u and v are of the same colour
0 otherwise.

(5)

If we define Y = tM, we obtain legal colouring for integral t and Y ∈ {0, t}. In computing theta,
these integrality constraints are dropped, resulting in an instance of SDP.

482



Table 1: An illustration of the effects of bounding the ∣R ∣-bounded chromatic number of the in-
stance sta-f-83: Column χ ∣R ∣ lists the ∣R ∣-bounded chromatic number obtained using integer lin-
ear programming, within time listed under “χ ∣R ∣ Runtime” in seconds. Column ϑ ∣R ∣ lists the
bounds obtained using semidefinite programming and rounding up, within time listed under “ϑ ∣R ∣

Runtime” in seconds. Column ∣V ∣/∣R ∣ lists the lower bound on the colours obtained by simple
counting arguments and rounding up. Dash denotes the the omission of the ∣R ∣-bounding con-
straint, giving the standard theta function instead of ϑ ∣R ∣.

∣R ∣ χ ∣R ∣ χ ∣R ∣ Runtime ϑ ∣R ∣ ϑ ∣R ∣ Runtime ∣V ∣/∣R ∣
1 47 0.09 47 3.46 47
2 26 2.88 26 2.92 24
3 20 2.67 20 3.34 16
4 16 7.22 16 3.70 12
5 14 11.10 14 3.24 10
6 13 2.67 13 3.12 8
7 12 8.77 12 3.26 7
8 11 2.89 11 3.40 6
9 11 3.39 11 3.14 6
47 11 0.35 11 3.92 1
— 11 0.34 11 3.45 —

The theta relaxation can be modified to provide a bound on the bounded chromatic number by
the addition of linear inequalities. In bounded colouring, we expect ∑u Muv ≤ ∣R ∣ ∀v ∈ V . This
gives us the following SDP:

ϑ
∣R ∣(G) = min t (6)

s. t. : ∀v ∈V Yvv = t (7)

∀{u,v} ∈ E Yuv = 0 (8)

∀v ∈V ∑
u

Yuv ≤ t∣R ∣ (9)

Y − J ર 0 (10)

where J is the all-ones matrix. A closely related bound can be derived using the matrix lifting
operator M+(K) of Lovász and Schrijver (1991).

Numerical Experiments As a concrete example, we consider a small conflict graph from a stan-
dard benchmark problem. Specifically, we take the instance ”sta-f-83” from the Toronto examina-
tion timetabling benchmarks 1. There are 139 events, but the conflict graph has three connected
components of 30, 47 and 62 vertices. Here, we use the 47-vertex component to study semidef-
inite programs produced by YALMIP (Löfberg, 2004) and solved using SeDuMi 1.21 (Sturm,
1999) and MathWorks Matlab R2009a on an Intel Core Duo P8600 at 2.4 GHz with 2 GB of
RAM. For comparison, the bounded chromatic numbers are also provided. These were obtained
using the most straightforward integer linear programming formulation solved using the defaults
of ILOG CPLEX 12.10 on the same machine. Results are given in Table 1. Firstly, note that
∣R ∣ = 1 gives precisely the number of nodes, as would be expected. Secondly, note that ϑ ∣R ∣ is
generally much tighter than the lower bound ∣V ∣/∣R ∣ obtained by simple counting arguments. Ac-
cidentally, ϑ ∣R ∣ lower bounds actually happen to match the optima in this particular instance. For
example, at ∣R ∣ = 5, counting cannot rule out a 10-colouring, but the SDP bound shows that at
least 14 colours are required. A 14-colouring together with a certificate of its optimality can be
obtained using CPLEX, but not in polynomial time. As far as we know, SDP relaxations are the
only way to get such information in polynomial time.

1 See ftp://ftp.mie.utoronto.ca/pub/carter/testprob/ and http://www.cs.nott.ac.uk/∼rxq/data.htm

483



We have also tried ∣R ∣-bounded modifications of the extensions to theta as given in (Dukanovic
& Rendl, 2007): ϑ ∣R ∣+ by keeping the Y ≥ 0 constraints, and ϑ ∣R ∣+△ keeping the Y ≥ 0 constraints
and also adding triangle inequality constraints. These, however, slow down the solver and do not
improve the bound on the tested instances. Also, theta can also be formulated on the comple-
ment graph, and this might be useful when the edge density is high, but we have not yet explored
∣R ∣-bounded versions.

Future Work In the SDP relaxation of bounded graph colouring above, the colour assignment was
not represented directly, but only in terms of the “same-time” classes of equivalence of nodes
assigned the same colour. This makes it naturally invariant under permutation of the colours. This
is sufficient for bounded colouring, but many objectives in timetabling refer to time-based patterns
of activities, e.g. whether events should be on the same day or not. These are not invariant under
“colour permutations” and so the “same-time” representation is no longer sufficient. For example,
in lower bounding the Surface component of integer programming decompositions (Burke et al.,
2010), i.e. the assignment of events to periods, including all the respective terms of the objective
function, we presumably need to re-introduce some matrix variable mapping events to timeslots as
in Surface (1). The matrix variable will need to be constrained so that there is only a single event
in each roomslot. This gives a constraint on the rank of the matrix variable, and this can then be
expressed in SDP. This can also be though of as an application of matrix-lifting operator M+(K)
of Lovász and Schrijver (Lovász & Schrijver, 1991). Work in this direction is in progress.

Conclusions The aim of this abstract was not to present a practical method for bounding the op-
tima in timetabling problems, yet. Indeed, SDP solvers are less well-developed than LP solvers,
in general. Current interior point methods for semidefinite programming are rather slow, albeit
running in time polynomial in the dimensions of the instance for any fixed precision. Our hope,
however, is that SDP solvers will improve significantly in the future. There is some evidence
that this could happen (Monteiro, 2003). The nascent bundle (Helmberg & Rendl, 2000; Helm-
berg, 2003) and augmented Lagrangian methods (Burer & Vandenbussche, 2006) are particularly
promising, as they seem to be able to cope with thousands of vertices in the conflict graph.

Notwithstanding the caveat above, SDP provides some of the strongest known relaxations in
timetabling. An extension of theta to bounded graph colouring gives a useful lower bound on
the number of periods required in the timetable, considering the conflict graph and the number
of rooms. More complex relaxations seem to allow for the optimisation over the assignments of
events to periods and rooms as well.

References

Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications to
combinatorial optimization. SIAM J. Optim., 5(1), 13–51.

Bellman, R., & Fan, K. (1963). On systems of linear inequalities in Hermitian matrix variables.
In Proc. Sympos. Pure Math., Vol. VII (pp. 1–11). Providence, R.I.: Amer. Math. Soc.

Burer, S., & Vandenbussche, D. (2006). Solving lift-and-project relaxations of binary integer
programs. SIAM J. Optim., 16(3), 726–750 (electronic).

Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2010). Decomposition, reformulation,
and diving in university course timetabling. Comput. Oper. Res., 37(1), 582–597.

Dukanovic, I., & Rendl, F. (2004). Combinatorial tricks and Lovasz theta function applied to
graph coloring. In Proc. PATAT 2004 (p. 479).

Dukanovic, I., & Rendl, F. (2007). Semidefinite programming relaxations for graph coloring and
maximal clique problems. Math. Program., 109(2-3, Ser. B), 345–365.

Fazel, M., Hindi, H., & Boyd, S. (2004). Rank minimization and applications in system theory.
In American control conference (pp. 3273–3278). AACC.

484



Goemans, M. X., & Williamson, D. P. (1995). Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. J. Assoc. Comput. Mach.,
42(6), 1115–1145.

Helmberg, C. (2003). Numerical evaluation of SBmethod. Math. Program., 95(2, Ser. B), 381–
406. (Computational semidefinite and second order cone programming: the state of the
art)

Helmberg, C., & Rendl, F. (2000). A spectral bundle method for semidefinite programming. SIAM
J. Optim., 10(3), 673–696.

Karger, D., Motwani, R., & Sudan, M. (1998). Approximate graph coloring by semidefinite
programming. J. ACM, 45(2), 246–265.

Kleinberg, J., & Goemans, M. X. (1998). The Lovász theta function and a semidefinite program-
ming relaxation of vertex cover. SIAM J. Discrete Math., 11(2), 196–204.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MATLAB. In Proc. of
CACSD. Taipei, Taiwan.

Lovász, L., & Schrijver, A. (1991). Cones of matrices and set-functions and 0-1 optimization.
SIAM J. Optim., 1(2), 166–190.

Mobasher, A., & Khandani, A. K. (2007). Matrix-lifting semi-definite programming for decoding
in multiple antenna systems. CoRR, abs/0709.1674.

Mobasher, A., Taherzadeh, M., Sotirov, R., & Khandani, A. K. (2007). A near-maximum-
likelihood decoding algorithm for MIMO systems based on semi-definite programming.
IEEE Trans. Inform. Theory, 53(11), 3869–3886.

Monteiro, R. D. C. (2003). First- and second-order methods for semidefinite programming. Math.
Program., 97(1-2, Ser. B), 209–244.

Skutella, M. (2001). Convex quadratic and semidefinite programming relaxations in scheduling.
J. ACM, 48(2), 206–242.

Sturm, J. F. (1999). Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones. Optim. Methods Softw., 11/12(1-4), 625–653.

Suzuka, A., Miyashiro, R., Yoshise, A., & Matsui, T. (2007). The home-away assignment prob-
lems and break minimization/maximization problems in sports scheduling. Pac. J. Optim.,
3(1), 113–133.

Szegedy, M. (1994). A note on the theta number of Lovász and the generalized Delsarte bound.
In Sfcs ’94: Proceedings of the 35th annual symposium on foundations of computer science
(pp. 36–39). Washington, DC, USA: IEEE Computer Society.

Wolkowicz, H., Saigal, R., & Vandenberghe, L. (Eds.). (2000). Handbook of semidefinite program-
ming. Boston, MA: Kluwer Academic Publishers. (Theory, algorithms, and applications)

Yang, H., Ye, Y., & Zhang, J. (2003). An approximation algorithm for scheduling two parallel
machines with capacity constraints. Discrete Appl. Math., 130(3), 449–467.

485




