
Son, Norway, Tues. 28th - Fri. 31st August 2012
9th International Conference on the Practice and Theory of Automated Timetabling

PATAT 2012

PATAT 2012

Proceedings of the 9th International Conference on the
Practice and Theory of Automated Timetabling

29 - 31 August 2012, Son, Norway

Edited by:

Dag Kjenstad, SINTEF ICT, Norway
Atle Riise, SINTEF ICT, Norway
Tomas Eric Nordlander, SINTEF ICT, Norway
Barry McCollum, Queen’s University Belfast, UK
Edmund Burke, University of Nottingham, UK

ISBN 978-82-14-05298-5
Published by SINTEF

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 1

Preface
The International Series of Conferences on the Practice and Theory of Automated
Timetabling (PATAT) is held bi-annually as a forum for both researchers and practitioners
to exchange experience and ideas. I am delighted to welcome you to the 9th conference here
at Quality Spa & Resort in Son, Norway.

The conference is organized in sessions covering the topics of Admission and Surgery
Scheduling, Nurse Rostering, High School Timetabling, University Course Timetabling,
Examination Timetabling, Generalized Timetabling, Personnel Rostering, Task Scheduling
and Sports Scheduling. The fusion of research and practice is a central theme of PATAT.
Five separate sessions are therefore devoted to the practice of timetabling, and researchers,
software vendors and practitioners alike will be able to give presentations and participate in
discussions on relevant timetabling issues. A separate session will be devoted to the 3rd
International Timetabling Competition, ICT 2011. This year the competition focuses on the
field of High School Timetabling, and final results will be presented at the conference.
Altogether the program features 63 presentations which represent the state-of-the-art in
automated timetabling: 4 plenary presentations, 20 full papers, 26 extended abstracts, 5
system demos, 5 extended abstracts from ITC 2011, and 8 keynote practitioner talks.

As was the case in the two preceding conferences, a post-conference volume of selected and
revised papers is to be published in a Special Issue of the Annals of Operations Research.
Authors of full papers and extended abstracts are encouraged to submit full papers to this
special issue after the conference.

I would like to express my gratitude to the many individuals who have helped organize this
conference; the members of the Steering Committee who continue to ensure the ongoing
success of the series; the members of the Program Committee who have worked hard to
referee the conference submissions; our sponsors who have helped fund student participation,
local transportation and invited presentations from renowned plenary speakers; and as always
we are most grateful to all authors and delegates.

Finally I would like to thank SINTEF for hosting this year's conference. SINTEF is among
Europe’s largest contract research organizations and a non-profit organization with 2100
employees from 69 countries. Special thanks go to Janet Skallerud, Atle Riise and Tomas
Nordlander in the local organizing committee for help and support in preparing this
conference to the highest possible standard. I wish you an enjoyable time in Son and a
successful conference for all.

Welcome to the conference!

Dag Kjenstad

2 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.sintef.no/home/

PATAT 2012 Conference Program Committee

Salwani Abdullah Universiti Kebangsaan Malaysia, Malaysia
Panayiotis Alefragis TEI of Mesolonghi, Greece
Hesham Alfares King Fahd University, Saudi Arabia
Viktor Bardadym Trasys, Belgium
Peter Brucker University of Osnabrück, Germany
Peter Cowling University of York, UK
Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium
Kathryn Dowsland Gower Optimal Algorithms Ltd. UK
Wilhelm Erben University of Applied Sciences, Germany
Luca Di Gaspero Università di Udine, Italy
Michel Gendreau Université de Montréal, Canada
Alain Hertz Ecole Polytechnique de Montréal, Canada
Graham Kendall University of Nottingham, UK
Jeffrey Kingston University of Sydney, Australia
Raymond Kwan University of Leeds, UK
Gilbert Laporte HEC Montréal, Canada
Rhyd Lewis Cardiff University, UK
Arne Løkketangen Molde University College, Norway
Amnon Meisels Ben-Gurion University, Beer-Sheva, Israel
Paul McMullan Queen's University of Belfast
Keith Murray Purdue University, USA
Tomáš Müller Charles University Prague, Czech Republic
Ender Ozcan University of Nottingham, UK
Ben Paechter Napier University, UK
Gilles Pesant Ecole Polytechnique de Montréal, Canada
Sanja Petrovic University of Nottingham, UK
Nelishia Pillay University of KwaZulu-Natal, South Africa
Gerhard Post University of Twente, The Netherlands
Jean-Yves Potvin Université de Montréal, Canada
Rong Qu University of Nottingham, UK
Louis-Martin Rousseau Ecole Polytechnique de Montréal, Canada
Celso C. Ribeiro Universidade Federal Fluminense, Brazil
Hana Rudova Masaryk University, Czech Republic
Andrea Schaerf Università di Udine, Italy
Jan Schreuder University of Twente, Enschede, The Netherlands
Jonathan Thompson Cardiff University, UK
Paolo Toth University of Bologna, Italy
Michael Trick Carnegie Mellon University, USA
Pascal Van Hentenryck Brown University, USA
Greet Vanden Berghe KaHo St.-Lieven, Belgium
Stefan Voss University of Hamburg, Germany
Dominique de Werra EPF-Lausanne, Switzerland
George White University of Ottawa, Canada
Michael Wright Lancaster University, UK
Jay Yellen Rollins College, USA

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 3

Table of Contents

Plenary Presentations
Personnel scheduling - Challenging combinatorial optimisation problems with a personnel
scheduling component ... 10

Greet Vanden Berghe

Full Papers
Repairing High School Timetables with Polymorphic Ejection Chains.................................. 16

Dr. Jeffrey H. Kingston

Application of a parallel computational approach in the design methodology for the Course
timetabling problem ... 31

Jorge Alberto Soria-Alcaraz, Martin Carpio, Héctor J. Puga and Marco Sotelo-Figueroa

A Combined Local Search and Integer Programming Approach to the Traveling Tournament
Problem .. 45

Marc Goerigk and Stephan Westphal

Real-life Curriculum-based Timetabling ... 57
Tomáš Müller and Hana Rudová

Schedule Pattern: an Innovative Approach to Structuring Time in Secondary Schools
Scheduling .. 73

Baiyun Tao and Rick Dwyer

Using the PEAST Algorithm to Roster Nurses in an Intensive-Care Unit in a Finnish
Hospital .. 83

Nico Kyngäs, Kimmo Nurmi, Eyjólfur Ingi Ásgeirsson and Jari Kyngäs

A Tour Scheduling Problem with Fixed Jobs: use of Constraint Programming 94
Tanguy Lapègue, Damien Prot and Odile Bellenguez-Morineau

4 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fairness in Academic Course Timetabling .. 114
Moritz Mühlenthaler and Rolf Wanka

The effect of neighborhood structures on examination timetabling with artificial bee colony
 ... 131

Bolaji Asaju Laaro, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, Mohammed
Awadallah and J.Joshua Thomas

A matheuristic approach to the shift minimisation personnel task scheduling problem 145
Pieter Smet and Greet Vanden Berghe

 A stepping horizon view on nurse rostering ... 161
Fabio Salassa and Greet Vanden Berghe

 The Patrol Scheduling Problem ... 175
Hoong Chuin Lau and Aldy Gunawan

 Patient-to-room assignment planning in a dynamic context .. 193
Wim Vancroonenburg, Patrick De Causmaecker and Greet Vanden Berghe

 Decomposing the High School Timetable Problem .. 209
Christos Valouxis, Christos Gogos, Panayiotis Alefragis and Efthymios Housos

 Near-Optimal MIP Solutions for Preference Based Self-Scheduling 222
Eyjólfur Ingi Ásgeirsson and Guðríður Lilla Sigurðardóttir

 Application of Particle Swarm Optimization to the British Telecom Workforce Scheduling
Problem .. 242

Maik Günther and Volker Nissen

 Integer Programming Techniques for the Nurse Rostering Problem 257
Haroldo Gambini Santos, Túlio Toffolo, Sabir Ribas and Rafael Gomes

 A Survey on Workforce Scheduling and Routing Problems ... 283
J. Arturo Castillo-Salazar, Dario Landa-Silva and Rong Qu

 A Constraint Programming Approach to the Traveling Tournament Problem with
Predefined Venues .. 303

Gilles Pesant

 Hyper-Heuristics for Educational Timetabling ... 316
Nelishia Pillay

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 5

Extended Abstracts
Scheduling the Brazilian Football Tournament in Practice ... 342

Celso Ribeiro and Sebastián Urrutia

Scheduling Cricket Umpires Using Neighbourhood Search – The Dramatic Impact of a
Simple Change in Neighbourhood Definition .. 346

Mike Wright

 A Column Generation Approach for Solving the Patient Admission Scheduling Problem . 349
Troels Martin Range, Richard Lusby and Jesper Larsen

 Timetabling and field assignment for training youth football teams in amateur leagues 352
Celso Ribeiro, Renatha Capua and Simone Martins

 Rostering RAF Air Traffic Control Personnel ... 355
Richard Conniss, Tim Curtois, Sanja Petrovic and Edmund Burke

 High School Timetabling: Modeling and solving a large number of cases in Denmark 359
Matias Sørensen and Thomas Stidsen

 Adaptive large neighborhood search for student sectioning at Danish high schools 365
Simon Kristiansen and Thomas Stidsen

 Investigation of fairness measures for nurse rostering .. 369
Pieter Smet, Simon Martin, Djamila Ouelhadj, Ender Özcan and Greet Vanden Berghe

 Patient Admission Scheduling with Operating Room Constraints 373
Sara Ceschia and Andrea Schaerf

 Timetabling of sorting slots in a logistic warehouse ... 377
Antoine Jouglet, Dritan Nace and Christophe Outteryck

 Days off scheduling - A 2-phase approach to personnel rostering 381
Sophie van Veldhoven, Gerhard Post and Egbert van der Veen

 Self-Rostering applied to case studies .. 384
Suzanne Uijland, Egbert van der Veen, Johann Hurink and Marco Schutten

 Towards Fair and Efficient Assignments of Students to Projects 388
Marco Chiarandini, Rolf Fagerberg and Stefano Gualandi

 Regulation-based University Course Timetabling .. 391
Michael Zeising and Stefan Jablonski

6 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

 Co-evolving add and delete heuristics .. 395
Jerry Swan, Ender Ozcan and Graham Kendall

 Semidefinite Programming Relaxations in Timetabling II: Algorithms (Abstract) 400
Jakub Marecek and Andrew J. Parkes

 A GRASP Algorithm for the University Timetabling Problem .. 404
Walace Rocha, Maria Boeres and Maria Rangel

 Using integer linear programming methods for optimizing the real-time pump scheduling 407
Louise Brac De La Perriere, Antoine Jouglet, Alexandre Nace and Dritan Nace

 A study of hyper-heuristics for examination timetabling ... 410
Ender Özcan, Anas Elhag and Viral Shah

 Nurse Timetabling: Linking Research and Practice ... 415
Barry McCollum

 Next Steps for the Examination Timetabling Format and Competition 418
Barry McCollum, Paul McMullan, Tomas Muller and Andrew J. Parkes

 Directing selection within an extended great deluge optimisation algorithm 421
Ryan Hamilton-Bryce, Paul McMullan and Barry McCollum

 Academic Timetabling: Space Sharing Strategies .. 423
Dr Barry McCollum

 A Hybrid Evolutionary Algorithm for the Generalized Surgery Scheduling Problem 426
Atle Riise, Carlo Mannino and Edmund K. Burke

 An exact decomposition approach for the optimal real-time train rescheduling problem ... 428
Carlo Mannino and Leonardo Lamorgese

 A real world personnel rostering problem with complex objectives 433
Oddvar Kloster

System Demonstrations
An Intelligent, Interactive & Efficient Exam Scheduling System (IIEESS v1.0) 437

Chun Bao Zhu and Tha Nu

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 7

Aspen Scheduler: a Web-based Automated Master Schedule Builder for Secondary Schools
 ... 451

Baiyun Tao and Rick Dwyer

 A Open source timetable production system for courses and exams 460
Ruben Gonzalez-Rubio and Balkrishna Sharma Gukhool

 School Time Tabling ITT software .. 466
Ilana Cohen-Zamir and Doron Bar

The Third International Timetabling Competition
The Third International Timetabling Competition ... 479

Gerhard Post, Luca Di Gaspero, Dr. Jeffrey H. Kingston, Barry McCollum and Andrea
Schaerf

 An Evolutionary Algorithm for High School Timetabling .. 485
Jonathan Domrös and Jörg Homberger

 An Adaptive Large Neighborhood Search algorithm .. 489
Matias Sørensen, Simon Kristiansen and Thomas K. Stidsen

 A SA-ILS approach for the High School Timetabling Problem .. 493
George Henrique Godim Da Fonseca, Haroldo Gambini Santos, Túlio Ângelo Machado
Toffolo, Samuel Souza Brito and Marcone Jamilson Freitas Souza

HySST: Hyper-heuristic Search Strategies and Timetabling ... 497
Ahmed Kheiri, Ender Ozcan and Andrew Parkes

8 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Plenary Presentations

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 9

Personnel scheduling

Challenging combinatorial optimisation problems with a
personnel scheduling component

Greet Vanden Berghe

Abstract Personnel scheduling can become a particularly difficult optimisa-
tion problem due to human factors. And yet: people working in healthcare,
transportation and other round the clock service regimes perform their duties
based on a schedule that was often manually constructed. The unrewarding
manual scheduling task deserves more attention from the timetabling com-
munity so as to support computation of fair and good quality results. The
present abstract touches upon a set of particular characteristics of personnel
rostering problems for which, for the time being, only very scattered models
and algorithms exist.

Besides being hard to solve, personnel scheduling never occurs as an iso-
lated problem in real life. The interconnectedness of personnel scheduling and
other vertical decision levels of the organisation constitutes the second focus
of this extended abstract. Not only is it difficult to produce an acceptable
solution to a personnel rostering problem, it is also cumbersome to detect pos-
sible infeasibilities or conflicting constraints, caused by decisions at a higher
level than the scheduling level. Part of the contribution is dedicated to mutual
parameters at the manpower, staffing and rostering level.

Next to the vertical influences, personnel scheduling cannot be ignored as
an optimisation problem that is influenced by other optimisation problems in
an organisation, e.g. patient admission scheduling, operating theatre schedul-
ing and personnel scheduling cannot really be solved independently. Another
interesting set of problems consists of strongly intertwined personnel rostering
and other problems, such as vehicle routing and rostering combined in the
home care scheduling problem.

G. Vanden Berghe
KAHO Sint-Lieven, Computer Science, CODeS, Gebr. De Smetstraat 1, 9000 Gent, Belgium
KU Leuven, Department of Computer Science, E. Sabbelaan 53, 8500 Kortrijk, Belgium
Tel.: +32-9-2658610
Fax: +32-9-2256269
E-mail: greet.vandenberghe@kahosl.be

10 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

2 Greet Vanden Berghe

Each separate decision level includes challenging research questions and op-
portunities. Large margins for improvement exist when crossing the borders of
decision levels or optimisation problems interfering with personnel scheduling.

Keywords Personnel scheduling · automated rostering · decision levels

1 Introduction

Personnel scheduling is a relevant logistic problem in healthcare, transporta-
tion and the service industry [10]. It covers a wide range of optimisation prob-
lems [4], most of them dealing with tasks or shifts that need to be covered
by a team of people over a given planning horizon. Manual planners as well
as scientists optimising schedules generally agree that personnel scheduling is
a difficult problem to solve. Some characteristics, including personnel’s skills,
round the clock work, large sets of contractual and individual constraints con-
tribute to the hardness of the problem.

The academic side of personnel scheduling reveals a rather well-established
combinatorial optimisation problem, while only little supporting theory is
available. The actual problem definitions and constraints differ considerably
among academic papers [7], which has led to a very large variety of models
and algorithms, e.g. [2,3,8,12,15,16,19,20].

Personnel scheduling offers plenty of challenges to the timetabling commu-
nity, both in terms of theory and application development.

2 Manual versus automated scheduling

Despite many years of excellent advancements in personnel scheduling re-
search, only little results have made it to practical decision support systems
[13]. This is rather unfortunate for organisations spending a large budget on
human resources and, in particular, for the planners who are responsible for
generating weekly or monthly rosters without advanced software systems.

Many explanations can be given for the lack of effective decision support.
Addressing the shortcomings probably requires multi-disciplinary approaches,
rather than faster or better optimisation algorithms. The main research chal-
lenges include:

- precisely capturig the actual coverage needs, the actual meaning of required
skills and experience, time definitions, etc. Manual planners are inclined to
controlling out every possible detail of the scheduling problem. How much
detail should be contained in the model for automated decision support?

- correctly interpreting the complex hard and soft constraints. Working time
regulations that have been interpreted in contradictory ways within one
single organisation are very common indeed. How should they be modelled
in an automated system?

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 11

dagk
Typewritten Text

Personnel scheduling 3

- capturing information on the perceived importance of constraints and ob-
jectives. The implicit ranking of constraints and objectives differs surpris-
ingly often from the official ranking. This may lead to unwanted situations
in which the personnel prefers a low quality schedule over a high quality
one because of a different quality perception. Should the implicit ranking
be ignored? If not, how can it be determined?

- accurately modelling the human factors [17]. The planner’s expertise con-
cerning fairness among members of staff, the actual skill level of people,
the private life of individuals, the personal preferences and concerns, etc.
cannot be ignored. This implicit information is again very hard to capture.

- developing mechanisms for dealing with unpredictable issues. The need for
quick rescheduling in case of unexpected staff shortage has been studied,
e.g. [18]. Which other urgent decision or optimisation problems cannot be
ignored in the context of automated decision support?

- implement state of the art personnel scheduling approaches within central
software systems of the organisation, if such systems exist at all. How
should the new approach be implemented, integrated and maintained?

3 Personnel scheduling and other decision levels

3.1 Vertical decision levels

Personnel scheduling is subject to constraints set at other decision levels. One
of the most restrictive constraints is determined by the estimated workload per
hour, shift, day and department. It is quite common that the corresponding
coverage constraints are unsatisfiable, given the available people, their con-
tracts and the set of regulations. Eventual schedules executed in practice are
indeed not always feasible.

Without going into methodologies for accurately determining the work-
load, the estimations cannot be made independently from assumptions on the
available members of staff per department. The number of personnel is one
issue but their contracts and skills are at least as important.

The individual members of personnel have been assigned to each depart-
ment at the staffing level. These decisions should ideally be influenced by the
potential subsequent schedule quality. Unfortunately, there exists no analyti-
cal relationship between the personnel composition and the schedule quality,
not even when the workload is precisely known. One possible decision aid is to
compute personnel schedules for varying compositions of personnel. The out-
come may help to select particular contract and skill mixes for staffing each
department.

The management should be concerned about manpower planning, which is
a long term organisation wide decision to be made. Besides determining how
many people the organisation should hire at a certain point in time, it should
also consider which skill and age mix is required and which mechanisms, e.g.
recruitment, training, dismissal, are necessary to attain this staff composition

12 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

4 Greet Vanden Berghe

in a certain period in time. Including future scheduling concerns into manpower
planning is an interesting research direction, which should lead to improved
long-term schedule qualities.

3.2 Horizontal decision levels

Some optimisation problems are solved by people responsible for completely
different structural parts of an organisation, without any hierarchical depen-
dency. Nurse rostering, operating theatre scheduling [5] and patient admission
scheduling [6,9], for example, are three demanding optimisation problems in
hospitals. A good solution for one of the thee problems strongly constrains the
other two problems. Some interaction among the three planners would defi-
nitely help a hospital to increase its service level and personnel satisfaction at
the same time.

Besides the previous challenge at the operational level, departmental per-
sonnel scheduling cannot always be dealt with in an isolated manner. Depart-
mental planners try hard to improve the quality of their own schedule. They
sometimes need to do that by temporarily transferring a member of staff from
one department to another, while having only subjective information about
workload differences. This interesting negotiation process can be automatised
in an objective manner [14], which opens up many perspectives for better
decision support.

A different issue arises when personnel scheduling is strongly interwoven
with other combinatorial optimisation problems, in such a way that the prob-
lems cannot be solved independently at all. Problems like this are called ‘struc-
tured problems’. Home care scheduling [1,11] is one example of a problem that
requires nurse rostering and vehicle routing to be solved at the same time. A
good quality home care schedule should optimise service to the patients while
also optimising individual nurses schedules and minimising driving time or dis-
tance. One possible way to address the problem could be to develop one single
model and a general purpose heuristic to generate a solution. It may be better,
however, to take advantage of the existing knowledge on nurse rostering and
vehicle routing and include some aspects in a dedicated approach.

Task scheduling is another example of a structured personnel schedul-
ing problem, common in the retail, production and health care sector. Shift
scheduling is too course grained to produce satisfactory solutions to the task
scheduling problem, but the tasks need to be composed such that good quality
shift schedules are obtained for the personnel.

The connection with other problems makes it obviously harder to arrive
at acceptable solutions. Nevertheless, it is interesting to have sufficient supply
of new personnel scheduling problems for the timetabling community to keep
improving existing optimisation approaches and developing completely new
ones.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 13

Personnel scheduling 5

References

1. S. Bertels and T. Fahle. A hybrid setup for a hybrid scenario: combining heuristics for
the home health care problem. Computers & Operations Research, 33(10):2866–2890,
2006.

2. B. Bilgin, P. De Causmaecker, B. Rossie, and G. Vanden Berghe. Local search neigh-
bourhoods to deal with a novel nurse rostering model. Annals of Operations Research,
194(1):33–57, 2012.

3. E.K. Burke, T. Curtois, G. Post, R. Qu, and B. Veltman. A hybrid heuristic ordering
and variable neighbourhood search for the nurse rostering problem. European Journal
of Operational Research, 188:330–341, 2008.

4. E.K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state
of the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

5. Brecht Cardoen, Erik Demeulemeester, and Jeroen Beliën. Operating room planning and
scheduling: A literature review. European Journal Of Operational Research, 201(3):921–
932, 2010.

6. Sara Ceschia and Andrea Schaerf. Local search and lower bounds for the patient ad-
mission scheduling problem. Computers and Operations Research, 38(10):1452–1463,
2011.

7. P. De Causmaecker and G. Vanden Berghe. A categorisation of nurse rostering problems.
Journal of Scheduling, 14:3–16, February 2011.

8. F. Della Croce and F. Salassa. A variable neighborhood search based matheuristic for
nurse rostering problems. In B. McCollum, E. K. Burke, and G. White, editors, Pro-
ceedings of the 8th International Conference on the Practice and Theory of Automated
Timetabling (PATAT 2010), pages 167–175. Queen’s University Belfast, 2010.

9. Peter Demeester, Wouter Souffriau, Patrick De Causmaecker, and Greet Vanden Berghe.
A hybrid tabu search algorithm for automatically assigning patients to beds. Artificial
Intelligence in Medicine, 48(1):61–70, 2010.

10. A.T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research,
153:3–27, 2004.

11. P. Eveborn, P. Flisberg, and M. Ronnqvist. Laps Care–an operational system for staff
planning of home care. European Journal of Operational Research, 171(3):962–976,
2006.

12. M. Isken. An implicit tour scheduling model with applications in healthcare. Annals of
Operations Research, 128:91–109, 2004.

13. D. L. Kellogg and S. Walczak. Nurse scheduling: From academia to implementation or
not? Interfaces, 37(4):355–369, 2007.

14. Ruben Lagatie, Stefaan Haspeslagh, and Patrick De Causmaecker. Negotiation Proto-
cols for Distributed Nurse Rostering. In Toon Calders, Karl Tuyls, and Mykola Pech-
enizkiy, editors, Proceedings of the 21st Benelux Conference on Articial Intelligence,,
pages 145–152, 2009.

15. Z. Lü and J.-K. Hao. Adaptive neighborhood search for nurse rostering. European
Journal of Operational Research, 218(3):865 – 876, 2012.

16. B. Maenhout and M. Vanhoucke. An electromagnetic meta-heuristic for the nurse
scheduling problem. Journal of Heuristics, 13:359–385, 2007.

17. E.J. Lodree Jr., C.D. Geiger, and X. Jiang. Taxonomy for integrating scheduling the-
ory and human factors: Review and research opportunities. International Journal of
Industrial Ergonomics, 39(1):39 – 51, 2009.

18. M. Moz and M.V. Pato. A genetic algorithm approach to a nurse rerostering problem.
Computers & Operations Research, 34(3):667–691, 2007.

19. K. Nonobe. An approach using a general constraint optimization solve. Proceedings of
PATAT2010, 2010.

20. C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos. A systematic two phase
approach for the nurse rostering problem. European Journal of Operational Research,
219(2):425–433, 2012.

14 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Papers

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 15

Repairing High School Timetables with Polymorphic
Ejection Chains

Jeffrey H. Kingston

Received: date / Accepted: date

Abstract This paper introduces polymorphic ejection chains, and applies them to
the problem of repairing time assignments in high school timetables while preserving
regularity. An ejection chain is a sequence of repairs, each of which removes a defect
introduced by the previous repair. Just as the elements of a polymorphic list may have
different types, so in a polymorphic ejection chain the individual repairs may have
different types. Methods for the efficien realization of these ideas, implemented in
the author’s KHE framework, are given, and some initial experiments are presented.

Keywords High school timetabling · Ejection chains

1 Introduction

Most work in timetabling utilizes two phases: a construction phase, in which an initial
solution is built, for example by a construction heuristic, and a repair phase, in which
the solution is improved, for example by local search.

Local search works well initially, but its effectiveness declines, for two reasons.
The solution’s defects (specifi points where it is deficient become few and isolated,
but local search continues to change parts of the solution where there are no defects
to remove. And a point is reached where the small changes it typically makes (moves
and swaps) have all been tried and have little chance of improving the solution.

Some repair methods attempt to avoid these problems. One well-known example
is very large-scale neighbourhood search (Ahuja et al. 2002; Meyers and Orlin 2007).
It repeatedly deassigns and reassigns many related variables. It can be targeted at
specifi defects by building neighbourhoods around them (Ryan and Rezanova 2010),
and it may make many more changes than one move or swap.

Jeffrey H. Kingston
School of Information Technologies
The University of Sydney
E-mail: jeff@it.usyd.edu.au

16 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

This paper repairs time assignments in high school timetables using ejection
chains. An ejection chain is a sequence of repair operations (also called repairs),
which are usually but not necessarily moves and swaps. The f rst repair removes one
defect but introduces another; the next removes that defect but introduces another;
and so on. Starting at defects and coordinating repairs like this avoids the problems
with local search identif ed above. A key point is that defects that appear as the chain
grows are not known to have resisted attack before. It might be possible to repair one
of them without introducing another, bringing the chain to a successful end.

Ejection chains are not new. Augmenting paths, found in matching algorithms, are
examples of them, and they occur naturally to anyone who tries to repair a timetable
by hand. They were brought into focus and named by Glover (1996), who applied
them to the travelling salesman problem. In timetabling, they have been applied to
nurse rostering (Dowsland 1998), teacher assignment (Kingston 2008), and time re-
pair (Kim and Chung 1997). Kim and Chung (1997) is very cryptic, unfortunately.

This paper tells three interwoven stories. The f rst story is concerned with repair
operations for high school timetables which improve them without disrupting their
regularity. Informally, a regular timetable is one whose events occur at similar times.
For example, the well-known arrangement followed by many North American uni-
versities, in which each course occupies one of the sets of times {Mon1,Wed1,Fri1},
{Mon2,Wed2,Fri2}, and so on, is perfectly regular. Although this paper uses these
repairs as steps in ejection chains, they could equally well be used in the conventional
way, to def ne neighbourhoods for local search algorithms.

The second story concerns the design of ejection chain software. This paper seems
to be the f rst to explicitly recognize the polymorphism inherent in ejection chains:
each repair in the chain may have a different type. This insight leads to a framework in
which any number of different types of defects can be repaired together, bringing the
method to a level of generality (in the sense of applicability to many combinatorial
optimization problems) approaching that of metaheuristics.

The third story concerns the implementation of these ideas within the author’s
KHE high school timetabling framework (Kingston 2010a), including data structures
for expressing regularity and marshalling defects for repair. Ejection chain algorithms
are white-box algorithms (Parkes 2010): they need access to more information about
the current solution than just its cost, so the implementation effort is quite high.

This paper uses the recently developed XML format for high school timetabling
as its specif cation of the high school timetabling problem (Kingston 2010b; Post et
al. 2012, 2011). This specif cation will not be repeated here, since it is enough to
understand that the problem is to assign times and resources (teachers, rooms, and
so on) to a collection of events so as to avoid clashes and satisfy a number of other
constraints, as far as possible. More detail is given as needed throughout the paper.

2 Defects

Local search algorithms need access to the cost of the solution and to the repair
operations that may be used to change it (moves, swaps, and so on). Ejection chain
algorithms also need access to its defects: the specif c points where problems lie.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 17

In high school timetabling, as in most real-world combinatorial optimization
problems, there are several types of defects (clashes, events scheduled at undesirable
times, and so on), and several types of repairs. This inherent polymorphism is partly
obscured in most timetabling work: repair types may be recognized, but the defects
are lumped together into a single number, the overall cost. Fully polymorphic repair,
in which defects are repaired in ways specif c to their types, is rare in the timetabling
literature. One recent paper used it to improve staff rosters (Ásgeirsson 2010).

Surprisingly, for the time repair problem which is the focus of this paper, there
are only three defect types. The XML format has 15 constraint types, and there is one
defect type for each constraint type, but only two of them matter here: the prefer times
defect, which occurs when an event is assigned an undesirable time (for example, an
afternoon time when the event is supposed to occur during the morning), and the
spread events defect, which occurs when the events for one subject are supposed to
be spread evenly through the cycle (the chronologically ordered sequence of all times
when events may occur), but instead some of them occur close together in time.

The third defect type is not derived from any constraint in the XML format, but it
is nevertheless the most important type of all. Suppose a time assignment assigns six
Science events, each requiring one Science laboratory, to the third time on Tuesdays,
and suppose the school has only f ve Science laboratories. Then when rooms are
assigned later on, one of these six events must miss out.

As is well known, such problems can be detected by building a biparite matching
graph for each time of the cycle. Each graph contains one supply node for each re-
source in the instance, and one demand node for each demand for a resource made by
the events running at the graph’s time. Each demand node is connected to the supply
nodes that represent resources capable of satisfying the demand. To decide whether
the demands of the events running at one time can all be satisf ed, f nd a maximum
matching in this graph. If it fails to touch every demand node, there is a problem.

For example, the six Science events produce six demand nodes connected to the
f ve supply nodes representing the f ve Science laboratories (plus other demands for
student groups and teachers). One of the six demand nodes will fail to match.

KHE has matching graphs, and considers each unmatched demand node to be a
defect called a demand defect. Demand defects include clashes and use of resources
at times when they are unavailable as special cases. For example, a clash turns up as
two demand nodes, both linked only to a single supply node representing the resource
in contention. So two of the constraints of the XML format that apply to resources,
the avoid clashes and avoid unavailable times constraints, are taken account of in
this way. Some other constraints on the timetables of resources are relevant to time
assignment when the resources involved are preassigned. They are not treated here,
but the polymorphic approach makes it straightforward to do so.

3 Time assignment in KHE

This section explains how time assignment is modelled by the author’s KHE platform.
There is a lot of detail, and it will be necessary to introduce some of KHE’s jargon.

18 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

In KHE, an instance of the high school timetabling problem (a case of the problem
for a given school in a given year or semester) is a structured object which remains
immutable after creation. A solution of an instance is a mutable structured object
containing the time and resource assignments which def ne the solution. Keeping
solutions separate from instances has several advantages. For example, it helps when
constructing multiple solutions in parallel.

The lessons for one subject usually need to be spread evenly through the cycle.
For example, a class might attend Mathematics for a total of six times, which are to
be spread through the f ve days of the week. On the day when the class meets for two
times, it is usually best for those times to be adjacent, forming one lesson of twice
the usual duration. It is common for the total number of times devoted to one subject
to be rigidly prescribed, but for the way in which that total is split into individual
lessons of varying duration to be more f exible. This is handled as follows.

An instance contains events of f xed duration, each representing a single subject,
plus constraints saying how they may be split into lessons. For the Mathematics ex-
ample just given, there might be one Mathematics event of duration 6, and constraints
saying that 5 or 6 lessons are required, whose durations may be 1 or 2.

In KHE, the solution contains the individual lessons, which are called meets. Each
meet has a f xed integer duration, meaning that it runs for that many consecutive
times; a starting time, which is a variable requiring assignment; and a set of tasks,
each of which is a variable requiring the assignment of one resource, such as a stu-
dent group, a teacher, or a room. Tasks contain demand nodes and are the source of
demand defects. Meets and tasks may be preassigned.

Although the aim is to assign a starting time to each meet, KHE does this in an
indirect way, by assigning one meet to another. The meaning is that the two meets
must have the same starting time, but that time is yet to be determined. Assignment
is directed (it assigns one meet to another, not two meets to each other) and includes
an offset. For example, suppose meet m1 has duration 1 and meet m2 has duration 2.
Then m1 may be assigned to m2 with offset 0, meaning that m1 starts at the same time
as m2, or with offset 1, meaning that it starts at the second time of m2. The assigned
meet may not run outside the interval of time that the meet it is assigned to is running.
For example, m2 may not be assigned to m1 at any offset.

Assigning one meet to another supports hierarchical timetabling, in which a few
meets are timetabled together, then the whole assembly is timetabled into a larger
context, and so on until the complete timetable is built. When this is done, a sequence
of assignments builds up, from one meet to another, from that meet to a third, and so
on. Special meets called cycle meets are available such that assignment to a cycle meet
effectively assigns a time. When every assignment sequence ends at a cycle meet,
every meet has a starting time. There is usually one cycle meet for each sequence of
adjacent times in the cycle not spanning a meal break or the end of a day.

One use for hierarchical timetabling is to link meets whose events are required to
run simultaneously. For example, suppose there are f ve Mathematics events of equal
duration, one for each of f ve Year 8 student groups. These events are required to
run simultaneously so that the Year 8 students can be regrouped by ability at Math-
ematics. To handle this, break the events into meets of the same durations, choose
one student group to be the leader, and assign the meets of the non-leader student

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 19

groups to corresponding meets of the leader student group, with offset 0. This forces
the events to be simultaneous. The common starting times of the meets will be deter-
mined later, when assignments are made to the leader student group’s meets.

There are good reasons to remember that certain meets are derived from one
event. For example, they usually need to be spread evenly through the cycle, which
might involve f nding assignments for them all at the same point during solving. In
KHE, meets may be grouped together into sets called nodes. Usually, one node holds
the meets derived from one event, but there are exceptions, such as runaround nodes,
which hold small timetables in which several student groups attend several subjects.
There is also a cycle node holding the cycle meets.

By convention, a non-cycle meet lies in a node if and only if its assignment may
be changed. The meets of the leader student group in the example above would lie in
a node, but the other meets, which already have f nal assignments, would not.

In addition to holding meets, each node except the cycle node usually has a parent
node, forming the nodes into a tree rooted at the cycle node that the author has called
the layer tree (Kingston 2006). When a meet lies in a node, it may only be assigned
to meets in the parent of that node, forcing all sequences of assignments to eventually
end in cycle meets as desired. Although it is not forbidden, there is an assumption that
meets which share a node will not be assigned so as to overlap in time. For example,
it is not desirable for two meets derived from the same event to overlap in time.

4 Regularity

Regularity has two forms. Meet regularity occurs when the sets of times at which two
meets are running are either disjoint, or one is a subset of the other. For example,
two meets of duration 2, one starting at the f rst time on Wednesdays, the other at
the second time, are not regular. When all meets have duration 1, meet regularity is
automatic. In practice, most meets have duration 1 or 2, and it only takes a little care
to achieve very good meet regularity.

Node regularity occurs when the sets of times at which the meets of two nodes are
running are either disjoint, or one is a subset of the other. Since most nodes contain
several meets, node regularity is harder to achieve than meet regularity.

Node regularity is important. In the author’s experience, based on Australian high
schools, the main type of defect left over at the end of solving is the split assignment,
in which one teacher attends some of the meets of an event, and another teacher
attends the others. Split assignments are permitted, but they are undesirable. Some of
their causes are inherent in instances: part-time teachers who are diff cult to utilize
effectively, and tight teacher workload limits that force every teacher to be used to
capacity. But node irregularity also causes split assignments, and it is the one cause
that solvers can do something about.

Because node regularity depends on coordinating the assignments of many meets
(perhaps f ve derived from one event and f ve from another), it is not likely to arise by
chance in the course of repairing the assignments made to individual meets, not even
if the solver explicitly measures irregularity and favours assignments that reduce it.
(KHE does not do this at present, and the argument just given explains why it is not

20 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

a priority.) On the other hand, when constructing a time assignment node by node to
begin with, it is easy to f nd previously assigned nodes with compatible sets of meets
whose assignments can be re-used.

The author’s current strategy for achieving node regularity, then, is as follows.
When constructing the initial time assignment, give priority to node regularity, even
ahead of minimizing demand defects. KHE offers a function that does this. Its algo-
rithm is a descendant of the tiling algorithm published some years ago by this author
(Kingston 2005), so it will not be described in detail here (the KHE User’s Guide
has a full description). Then repair the initial assignment, but restrict the repairs to
operations which do not disrupt such node regularity as is already present.

The algorithm which constructs the initial time assignment begins by assigning
the nodes of whatever student form seems likely to serve best as a template for as-
signing the others (usually the most senior form). It tries hard to f nd a very good
assignment for this form; since no other forms have been timetabled yet, it should
be possible to assign it with no defects at all. For each node of this f rst form, the
set of times that its meets are running is called a zone. The algorithm stores these
zones permanently in the cycle node (the common parent of the forms’ nodes). When
assigning subsequent forms, it tries to ensure that each node’s meets are assigned
entirely within one zone, as far as possible.

This approach is only effective if the chosen form attends classes at every time
of the cycle, since if not, some times will receive no zone, or at any rate no guid-
ance on which zone they should lie in. A more general approach, not implemented
yet, would be to look through the instance and decide on a set of zones in advance.
This is effectively what North American universities do when they def ne zones
{Mon1,Wed1,Fri1}, {Mon2,Wed2,Fri2}, and so on.

5 Repair operations that preserve regularity

The picture of the data that a time repair algorithm has to work with is now complete:
meets grouped into nodes and assigned to meets in parent nodes with zones. The
assignment of a node is considered regular if it places all its meets into one zone.
Deeper in the tree there will be nodes with no zones; they may be considered to have
a single zone holding all their meets.

Several repair operations preserve existing node regularity within this structure.
Given two nodes which are children of the same parent node and which have

meets with the same durations, the assignments of corresponding meets may be
swapped. Each node will be as regular after the swap as the other was before it.
This node swap repair operation will usually be neutral with respect to prefer times
and spread defects, and it could well reduce demand defects. For example, if the Year
12 students attend both Mathematics and English for 6 times per week, in lessons
of equal durations, then the times they attend Mathematics can be swapped with the
times they attend English without reducing regularity.

The assignments of two meets of equal duration may be swapped when they are
assigned to the same zone, whether or not they lie in the same node. For example, sup-
pose some zone includes a double time containing the f rst two times on Wednesday,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 21

and that the Year 10 students attend History at the f rst of these times and Science at
the second. Then these two events may be swapped without reducing regularity. This
meet swap repair operation is also available, in a slightly different form, when the
two meets’ durations differ, provided their assignments are adjacent in time. When
the meets are derived from the same event, a meet swap accomplishes nothing and
would not be tried. Two meets may also be swapped if they are the only meets in their
nodes, but in that case the operation is better classif ed as a node swap.

It is possible to go further when irregularity is already present. For example, if a
meet lies in a different zone from all the others in its node, it can be moved to any
zone without increasing irregularity. The algorithm presented in this paper does not
yet check for such cases.

Node and meet swaps can be applied at any level of the layer tree. Here is one
surprisingly high-level application. Make a new node with the same number of meets
as the cycle node, and the same durations. Make the new node a child of the cycle
node and assign its meets to the corresponding meets of the cycle node. Let the new
node have the same zones as the cycle node, and delete the zones of the cycle node.
Then move all the other child nodes of the cycle node so that they become children of
the new node, and assign all their meets to the meets of the new node corresponding to
their previous assignments. This reorganization does not change the timetable, nor its
node regularity as measured by zones; it merely interposes a redundant node between
the cycle node and its child nodes.

Apply meet swaps to the meets of the new node. The cycle node now has no zones,
so these meets are free to swap with each other whenever they have the same durations
or are adjacent in time. Since the cycle node has one meet for each set of consecutive
times not spanning a break, one swap might swap the entire Wednesday morning
timetable with the entire Thursday morning timetable, for example. Depending on
how meet-regular the timetable is, it may also be possible to break these meets into
smaller ones, and swap half-mornings and so on.

In the Australian instances which are this author’s main focus, virtually all student
group resources are preassigned to events whose total duration equals the number of
times in the cycle. Under those circumstances, the only practical repair is the meet
swap (or several meet swaps, as in the node swap) between meets containing the
same preassigned student group resources. However, there are European instances in
which students attend for fewer times, and even in Australian instances there are staff
meetings which just need to occur whenever the teachers involved are most available.
Thus, there is a need for a repair operation which moves one meet to a new time.
This time should be one when the meet’s preassigned resources are not busy—just
the opposite of what is required when swapping.

Meet moves and swaps can be unif ed into a single well-known repair operation,
here called the Kempe meet move. It starts by moving one meet, say from time t1 to
time t2. If that causes clashes with other meets, those other meets are moved from t2
to t1. If that in turn causes clashes with other meets, the other meets are moved from
t1 to t2, and so on for as long as new clashes appear. A Kempe meet move could fail
for several reasons, but when it succeeds, it has moved the meet without increasing
the overall number of clashes or the number of cases where a preassigned resource
attends a meet at a time when it is unavailable.

22 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

All the meets moved are required to have the same duration, except in the special
case where the second meet moved is adjacent to the f rst in time. In that case, all
the meets moved on odd-numbered steps are required to have the same duration, all
the meets moved on even-numbered steps are required to have the same duration, and
each meet moves to the other end of the block of adjacent times during which the f rst
two meets to be moved were originally running.

The ejection chain algorithm of this paper uses two repair operations: node swaps
and Kempe meet moves. Kempe meet moves conveniently avoid the clumsiness of
having one repair operation which swaps a meet to some times and another which
moves it to the rest. Node regularity is preserved by allowing only repairs that do not
increase the number of zones to which the meets of any affected node are assigned.

6 From defects to repairs

The repairs just def ned may be applied in the traditional way to build neighbourhoods
for local search which preserve node regularity. However, if they are to be used to
repair defects, a path must be def ned from each defect to a set of alternative repairs,
each of which removes that defect.

Given a defect, the f rst step is to f nd the contributing meets: those meets whose
assignments contribute to the defect and may be changed. For a prefer times de-
fect, look through the meets derived from its event to f nd those assigned undesirable
times. For a spread events defect, look through the monitored meets to f nd those for
which a move to some other day would reduce the spread cost. For a demand defect,
query the matching graph to f nd the demand nodes that are competing for the insuff -
cient supply. (KHE offers an operation for this. For the Science laboratories example
given some time ago, it would return all six Science laboratory demand nodes.) From
each demand node, proceed to its task and from there to the task’s meet.

For each meet identif ed by these steps, ascend its sequence of assignments to
other meets. Any non-cycle meet on this sequence that lies in a node is a contributing
meet: changing its assignment is permitted and might f x the defect.

For each contributing meet m, a Kempe meet move is possible to each legal offset
in each meet of the parent node of m’s node (except m’s current meet and offset),
provided the move does not change m’s zone. Ejection chains work best when repairs
do actually remove the defects that provoked them, so each of these moves is only
tried if it will do this: when repairing prefer times defects, only moves that will give
the meet a preferred time are tried; when repairing spread events defects, only moves
which will reduce the spread cost are tried; and when repairing demand defects, all
moves are tried, since they all move m away from the insuff cient supply.

KHE offers a layer data structure which groups together nodes with the same
parent node and the same preassigned resources. After all Kempe meet moves of m
have been tried without success, node swaps are tried between m’s node and the other
nodes of its layer which have meets of the same durations as m’s node. Node swaps
are not likely to be very effective at removing prefer times defects and spread events
defects, since they merely shift these defects from one event to another, but they are
potentially very valuable for removing demand defects.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 23

7 Polymorphic ejection chains

The previous section showed how to identify the meets whose assignments contribute
to a defect, and a set of alternative repairs that remove that defect. But it is very
likely that removing one defect will create another. This is where ejection chains
enter the picture: they chain repairs together, with each repair removing a defect
created by the previous repair, until, with luck, a repair occurs which creates no new
defects. This section introduces ejection chains and shows how to implement them
polymorphically, that is, so that any number of types of defects, and any number of
types of repairs, can be incorporated in a uniform way.

The heart of the ejection chain algorithm is a function that will be called Augment,
since it is based on the well-known function for f nding an augmenting path in bipar-
tite matching. Augment targets one defect and tries a set of alternative repairs on it.
Each repair removes the defect, but may create new defects. If no new defects of sig-
nif cant cost appear, Augment terminates successfully. If one signif cant new defect
appears, Augment calls itself recursively in an attempt to remove that defect; in this
way a chain of coordinated repairs is built up. If two or more signif cant new defects
appear, Augment undoes the repair and continues with alternative repairs. It could try
to remove all the new defects, but that would rarely succeed in practice.

The author’s formulation of Augment has the following interface:

bool Augment(Defect d, Solution s, Cost c);

It has precondition

cost(s) >= c && cost(s) - cost(d) < c

where cost(s) is the current overall cost of solution s, and cost(d) is the contri-
bution to this cost made by d, which is one of s’s defects.

If Augment can change s so as to reduce cost(s) to less than c, it does so and
returns true; otherwise it leaves s unchanged and returns false. The second part of
the precondition implies that removing d without adding any new defects, if that can
be done, would achieve success. Here is an abstract implementation:

bool Augment(Defect d, Solution s, Cost c)

{

repair_set = RepairsOf(d);

for(each repair r in repair_set)

{

new_defect_set = Apply(s, r);

if(cost(s) < c)

return true;

for(each e in new_defect_set)

if(cost(s) - cost(e) < c && Augment(e, s, c))

return true;

UnApply(s, r);

}

return false;

}

24 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

It begins by f nding a set of repairs for d. For each of those, it applies the repair and
receives the set of new defects introduced by that repair, checks for success, then
if success has not been achieved it unapplies the repair and continues with the next
repair, returning false when all repairs have been tried without success.

Success could come in two ways. Either one of the repairs reduces cost(s) to
below c, or some new defect e has cost large enough to ensure that removing it
alone would constitute success, and a recursive call targeted at e succeeds. Notice
that cost(s) may grow without limit as the chain deepens, provided that there is a
single defect e whose removal would reduce the cost of the solution to less than c.

When there are several defect types, several Augment algorithms are needed, one
for each defect type, dynamically dispatched on the type. Ejection chains are naturally
polymorphic: repairing a demand defect could create a spread defect, repairing that
defect could create a prefer times defect, and so on. Repairs can usually be generated
and applied directly, rather than being represented as a set of objects as above.

The tree searched by Augment as presented may easily grow to exponential size,
which is not the intention. The author has tried two methods of limiting its size, both
of which seem to be useful. They may be used separately or together.

The f rst method is to limit the depth of recursion to a f xed constant, perhaps 3
or 4. The maximum depth is passed as an extra parameter to Augment, and reduced
by one on each recursive call, with value 0 preventing further recursion. Not only is
this method attractive in itself, it also supports iterative deepening, in which Augment
is called several times on the same defect, with the depth parameter increased each
time. Another idea is to use a small depth limit on the f rst iteration of the main loop
(see below), and increase it on later iterations.

The second method is the one used by the augmenting path method from bipartite
matching. Just before each call on Augment from the main loop, the entire solution is
marked unvisited (by incrementing a single global visit number, not by traversing the
entire solution). When a repair changes some part of the solution, that part is marked
visited. Repairs that change parts of the solution that are already marked visited are
tabu. In this way, the size of the tree is limited to at most the size of the solution.

Given a solution and the set of all its defects, or a subset of its defects that it is
expedient to target, the main loop cycles through the set repeatedly, calling Augment

on each defect in turn, with c set to cost(s). The set of defects and cost(s) change
with each successful Augment. The main loop exits when Augment has been tried on
every defect since the last successful call to Augment. At that point, no further suc-
cessful augments are possible, assuming that Augment contains no randomness. This
is a very clear-cut stopping criterion compared with, say, the stopping criteria used
by metaheuristics. Under reasonable assumptions, it ensures that the whole algorithm
runs in polynomial time, for the same reason that hill-climbing does.

8 Realizing ejection chains in KHE

This section sketches how the author’s KHE platform supports ejection chains. Full
details are available in KHE’s documentation.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 25

KHE has monitor objects, each of which monitors one point of application of one
constraint, or one demand node of one matching graph. Each monitor contains a cost,
which KHE keeps up to date as the solution changes. For example, for each set of
meets which are required to spread evenly through the cycle there is a monitor. This
monitor is notif ed whenever the starting time of any of its meets changes, triggering
it to update its cost and notify any change.

Group monitors may be created to monitor other monitors. These other monitors
notify their group monitor of any change in cost, rather than notifying the solution
directly. The cost of a group monitor is the total cost of the monitors it monitors, so
when any of its monitors’ costs change, the group monitor’s cost does too, and it must
notify its own group monitor, and so on.

Group monitors are useful when several nominally distinct monitors monitor the
same thing in reality. Take the example of several events required by a link events
constraint to run simultaneously. These are usually handled by a preprocessing step
which links their meets together so that only simultaneous assignment is possible
thereafter. Each event may have its own spread events monitor, but these all monitor
the same thing in reality and are best treated as a single monitor, which is done by
grouping them. It is the group monitor that appears on lists of monitors, with the
monitors it groups hidden from view below it.

The object representing the solution as a whole is (among other things) a group
monitor. Provided each monitor reports its cost to this special group monitor, either
directly or via intermediate group monitors, this special group monitor will hold the
current total cost of all non-group monitors, which is the cost of the solution.

A defect (of type Defect in the algorithm above) is realized in KHE as a monitor,
often a group monitor, of non-zero cost. For each type of defect (or group of related
defects), the user has to write an implementation of Augment specialized to that type
of defect, and register it with an ejector object def ned by KHE, which also holds
other useful information, such as the desired method of limiting depth. Each of these
functions iterates over a set of repairs of the user’s choice, applying and unapplying
each repair in turn, and calling a function supplied by KHE which handles the testing
for success and the recursive call, dynamically dispatching it to one of the functions
registered with the ejector. KHE also supplies an implementation of the main loop.
So the user only has to implement the code that converts a defect into a set of repairs
and applies and unapplies each repair in turn; the rest comes for free.

Each group monitor makes available the set of its child monitors whose cost is
non-zero. Keeping this set up to date requires a small constant amount of work each
time a monitor reports a change in its cost from zero to non-zero or vice versa. The set
of defects iterated over by the main loop of the ejection chain algorithm is just this set
of monitors, for some particular group monitor given to the ejector object by the user.
This group monitor could be the special solution group monitor, in which case every
defect in the solution is open to repair, or it could be a group monitor whose children
are just some of the monitors, in which case only defects among those children are
open to repair. For example, the time repair ejector object is given a group monitor
whose children are those monitors concerned with time assignment.

While a repair is being applied, KHE’s tracing feature records which children of
the ejector’s group monitor changed in cost during the repair, and by how much. The

26 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

subset of these monitors whose cost increased is the new defect set used by Augment.
KHE also offers a transactions feature which allows the operations carried out since
some starting point to be recorded, and subsequently undone and redone. This makes
it easy to undo a complex repair, such as a Kempe meet move, as required by the
UnApply step of Augment. Transactions are also used by a variant of the algorithm
which tries all ejection chains, remembers the best, and redoes it at the end.

9 Experiments

This paper has been concerned with explaining how ejection chains can be applied
to real-world timetabling problems, in particular to repairing time assignments while
preserving regularity. It is not empirical in orientation. Accordingly, the experiments
of this section have very modest aims: to show that the algorithm for repairing time
assignments produces a reasonable result in a reasonable time, and to shed light on
some design choices, without claiming to be def nitive.

The algorithm tested here is KHE’s standard ejection chain solver, conf gured to
use a simple form of iterative deepening (Sect. 7), and loaded with augment functions
that make Kempe meet moves and node swaps after carrying out the mapping from
defects to repairs described in Sect. 6.

In the XML format, each constraint has an integer weight which is multiplied by
the number of defects to produce a cost. Each constraint also has a Boolean required
attribute. If this attribute is true, the constraint is ‘hard’ and its cost is added to a
total called the infeasibility value i(s) of the solution s. If the attribute is false, the
constraint is ‘soft’ and its cost is added to a different total called the objective value
o(s) of the solution. A solver aims to minimize the ordered pair (i(s),o(s)). The
experiments reported here are conf ned to one diff cult real-world instance (BGHS98
from the XHST2011 archive (Post 2011)). It has no prefer times constraints, and its
spread constraints are soft with weight 1. Demand defects are treated as hard with
weight 1. So, in these experiments, the hard cost is the number of demand defects,
and the soft cost is the number of spread defects.

A student form, or just form, is a set of resources, each representing one group of
students from the same age cohort. The construction algorithm assigns times to the
meets of one form at a time. The f rst question, then, is whether repair is needed at all,
and if so, whether it is needed after assigning each form. Repair is certainly needed
after assigning the f rst form: it is important to assign that form as well as possible,
because its assignments guide the assignments of the other forms. Accordingly, two
runs were performed, the f rst repairing after the f rst and last forms only, taking 10.0
seconds (all times include both construction and repair), and the second after each
form, taking 16.1 seconds.

The results appear in Fig. 1. Repair after each form is superior, producing 17
fewer demand defects in the end, and more at intermediate points. This is not sur-
prising: more repairs succeed when the timetable is only partly assigned and resource
demands are not pressing.

The difference between the f nal number of demand defects when only the f rst
form is repaired (104) and when every form is repaired (64) is important, because

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 27

12 11 10 9 8a 8b 7a 7b

0
20
40
60
80

100
120

Repair after firs and last forms
Repair after each form

12 11 10 9 8a 8b 7a 7b

0

20

40

60

80
Repair after firs and last forms
Repair after each form

Fig. 1 Effectiveness of repair. The vertical axis represents hard cost in the f rst graph, soft cost in the
second. The horizontal axes have one label for each student form, in order of assignment. For each form
there is one data point representing the cost after constructing the time assignment of that form, possibly
followed by a second point representing the cost after repair. Some repairs increase soft cost, because
decreasing hard cost takes priority. The f rst four forms (12, 11, 10, and 9) are complete forms, the next
four (8a, 8b, 7a, and 7b) are half-forms. Other ‘forms’ containing staff meetings follow these forms, but
they add virtually no cost so have been omitted.

12 11 10 9 8a 8b 7a 7b

0
20
40
60
80

100
120

All node swaps
Demand node swaps only
No node swaps

12 11 10 9 8a 8b 7a 7b

0

20

40

60

80
All node swaps
Demand node swaps only
No node swaps

Fig. 2 Effectiveness of node swaps. Details as in Fig. 1.

12 11 10 9 8a 8b 7a 7b

0
20
40
60
80

100
120

With extra node
Without extra node

12 11 10 9 8a 8b 7a 7b

0

20

40

60

80
With extra node
Without extra node

Fig. 3 Effectiveness of an extra node under the cycle node. Details as in Fig. 1.

repairs that sacrif ce regularity will need to be applied to these remaining defects.
After the runs reported here, the author’s solver removes all zones and interior nodes,
thereby removing all requirements for regularity, and runs the repair algorithm again.
Demand defects then drop dramatically, typically to just 5 or 6, at the cost of some
loss of regularity that shows up in split resource assignments later.

The author’s long-term goal is to solve high school instances reliably in about
10 seconds, including resource assignment, which follows after time assignment and
takes several seconds. This raises the question (also interesting for its own sake) of

28 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

whether there are unproductive parts of the algorithm that could be removed, saving
time without degrading performance.

Node swaps are one possibility. As explained previously, they seem likely to be
effective at removing demand defects, but unlikely to be effective at removing spread
defects. This is investigated by continuing with repair after assigning each form, but
now trying it with all node swaps (taking 16.1 seconds as before), node swaps when
repairing demand defects only (12.9 seconds), and no node swaps (23.3 seconds). The
apparent contradiction in the last run time, of doing less work but taking longer, is
quite common with ejection chains. It is a sign that node swaps are removing defects
effectively, so that the algorithm struggles without them.

The results appear in Fig. 2. Omitting all node swaps is inferior, producing signif-
icantly more demand defects from form 8a onwards. There is some support for using
node swaps on demand defects only (the end results, at least, are indistinguishable),
and it does save time (3.2 seconds).

Another possibility for reducing run time is to omit the extra node directly under
the cycle node. Its presence more than doubles the number of Kempe meet moves
available to most repairs. This is investigated by repairing after each form, with node
swaps for demand defects only, but now trying with this extra node (taking 12.9
seconds as before) and without it (8.0 seconds).

The results appear in Fig. 3. The extra node leads to 3 fewer demand defects in the
end, but may not be worth its cost in run time (4.9 seconds). More data are needed.

10 Conclusion

This paper introduces polymorphic ejection chains and shows that they are effective
for repairing time assignments in high school timetables while preserving regularity.
Unlike local search, polymorphic ejection chains target specif c defects and build
sets of coordinated repairs. Based on the results in this paper and other papers cited
earlier, it seems likely that they would be effective in improving solutions to many
real-world combinatorial optimization problems.

There is little more to do in the area of time repairs that preserve regularity, but
other applications beckon. Within high school timetabling, removing resource defects
such as split assignments and unwanted gaps in teachers’ timetables requires complex
repairs that reassign times and resources together. That promises to be an even richer
area of application for polymorphic ejection chains than the one explored here.

References

R. Ahuja, Ö. Ergun, J. Orlin, and A. Punnen, A survey of very large-scale neighbour-
hood search techniques, Discrete Applied Mathematics, 123, 75–102 (2002)

Eyjólfur Ingi Ásgeirsson, Bridging the gap between self schedules and feasible sched-
ules in staff scheduling, PATAT10 (Eighth international conference on the Practice
and Theory of Automated Timetabling, Belfast, August 2010)

Kathryn A. Dowsland, Nurse scheduling with tabu search and strategic oscillation,
European Journal of Operational Research, 106, 393–407 (1998)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 29

Fred Glover, Ejection chains, reference structures and alternating path methods for
traveling salesman problems, Discrete Applied Mathematics, 65, 223–253 (1996)

Myoung-Jae Kim and Tae-Choong Chung, Development of automatic course
timetabler for university, Proceedings of the 2nd International Conference on the
Practice and Theory of Automated Timetabling, 182–186 (1997)

Jeffrey H. Kingston, A tiling algorithm for high school timetabling, Practice and The-
ory of Automated Timetabling V, Springer Lecture Notes in Computer Science
3616, 208–225 (2005)

Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Au-
tomated Timetabling VI, Springer Lecture Notes in Computer Science 3867, 294–
307 (2007)

Jeffrey H. Kingston Resource assignment in high school timetabling, PATAT08
(Seventh international conference on the Practice and Theory of Automated
Timetabling, Montreal, August 2008)

Jeffrey H. Kingston, The KHE High School Timetabling Engine,
http://www.it.usyd.edu.au/˜jeff/khe (2010)

Jeffrey H. Kingston, The HSEval High School Timetable Evaluator,
http://www.it.usyd.edu.au/˜jeff/hseval.cgi (2010)

Carol Meyers and James B. Orlin, Very large-scale neighbourhood search tech-
niques in timetabling problems, Practice and Theory of Automated Timetabling
VI, Springer Lecture Notes in Computer Science 3867, 24–39 (2007)

Andrew J. Parkes, Combined Blackbox and AlgebRaic Architecture (CBRA),
PATAT2010 (Eighth international conference on the Practice and Theory of Au-
tomated Timetabling, Belfast, August 2010)

Gerhard Post, Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs,
Cimmo Nurmi, and David Ranson, An XML format for benchmarks in high school
timetabling, Annals of Operations Research 194, 385–397, 2012

Gerhard Post, Jeffrey H. Kingston, Samad Ahmadi, Sophia Daskalaki, Christos Go-
gos, Jari Kyngäs, Cimmo Nurmi, Haroldo Santos, Ben Rorije and Andrea Schaerf,
An XML format for benchmarks in high school timetabling II, Annals of Opera-
tions Research (online), http://10.1007/s10479-011-1012-2, 2011

Gerhard Post, High school timetabling web site,
http://wwwhome.math.utwente.nl/˜postgf (2011)

David M. Ryan and Natalia J. Rezanova, The train driver recovery problem – solution
method and decision support system framework, PATAT2010 (Eighth international
conference on the Practice and Theory of Automated Timetabling, Belfast, August
2010)

30 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Application of a parallel computational approach in the
design methodology for the Course timetabling problem

Soria-Alcaraz Jorge A. · Carpio Mart́ın ·
Puga Héctor · Sotelo-Figueroa Marco A.

the date of receipt and acceptance should be inserted later

Abstract The process of gathering enough experimental statistical data over
a set of instances of the Course timetabling problem (CTTP) could take a
lot of time to an interested researcher. There exist several parallel computing
models capable to accelerating the execution process of metaheuristic algo-
rithms. This paper explores the idea to use a parallel model in a metaheuristic
algorithm over the Course Timetabling Problem in order to reduce the time
that a investigator needs to collect enough data to make a proper conclusion.
our parallel approach uses the Methodology of design model for CTTP. The
methodology of design is a strategy applied before the execution of an algo-
rithm for timetabling problem. This strategy has recently emerged and aims to
generalize and provide a context-independent layer to different versions of the
Course timetabling problem. Finally a well-know set of instances was tested
with a parallel GA and a sequential GA in order to determine the advantages
of the proposed approach for CTTP.

Keywords Methodology of design · Parallel computing · Genetic Algorithm ·
Cellular Genetic Algorithm

1 Introduction

The timetabling problem is one of the most difficult, common and diverse
problems inside an university. This problem tries to assign several activities
into timeslots to make a timetabling. The main objective of this problem is to
obtain a timetabling with the minimum conflicts between assigned activities.
[1]

There exist several university timetabling problems as described by Adri-
aen et. al [2] for example the Faculty timetabling tries to assign teachers to

León Institute of Technology, División de Estudios de Posgrado e Investigación, León Gua-
najuato, México E-mail: soajorgea@gmail.com,jmcarpio61@hotmail.com

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 31

subjects Class-teacher timetabling assigns subjects to a fixed group of stu-
dents. Classroom assignment ensures that every pair teacher-subject have a
classroom. Examination timetabling assigns events like final exams to a set of
individual student and Course timetabling assigns subjects to individual stu-
dents minimizing the conflicts (usually time-conflicts) between the assigned
events. This paper is focused into the last timetabling problem type.

Like most timetabling problems, the Course timetabling is NP-Complete
[3] [4]. The reason for this is attributed by the literature to a combinatorial
explosion of possible events assigned into time slots, as well as the constraints
that each university uses in its own course timetabling creation.

The course timetabling problem (CTTP) is also considered by Rodriguez y
Quezada[5], like a ”offline” problem meaning that the resolution of the course
timetabling is not needed in real time i.e the final user of a solver for the
CTTP can wait a reasonable time (several days or even a week) in order
to get a ”good” solution. However in the academic or experimental field the
researcher needs to perform a high number of test with his/her proposed al-
gorithm in order to accumulate enough statistical data to prove the quality of
the proposed approach.

That is why the researcher of CTTP have an added challenge: in addition
to create an algorithm that is at least comparable with the current state of
the art, such algorithm needs to be reasonably fast in order to perform enough
experiments and gather statistical evidence to finally make a conclusion. This
paper explores the possibility by means of parallel metaheuristics and parallel
computing to create fast algorithms for the CTTP with good performance over
a well-know instances of the CTTP.

It is an undisputed fact that the CTTP problem usually differs greatly from
one university to another. So the researcher has the risk that once he tuned
his algorithm to a specific college and moving to testing in another university
his approach could do not replicate desired characteristics or ,in the worst of
cases, cannot be possible to obtain a solution applicable to reality. In this sense
a new approach has emerged ,The Methodology of Design, this approach give
us a generic methodology to resolve a widely set of CTTP problems by means
of the application of a context-independent layer. [1] In this paper we use this
Methodology of Design in order to build a parallel algorithm capable to: A)
being applied to the ITC2002, ITC2007 instances and B) have a higher speed
than its sequential counterpart making faster the process of experimentation
and gathering data.

The paper is organized as follows. Section 2 presents a brief explication of
the Methodology of Design, the parallel build-up for the course timetabling
problem, the solution approach and its justification. Section 3 contains the
experimental set-up, results, their analysis and discussion. Finally Section 4
include some conclusions and future work.

32 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 1 MMA Matrix

2 Solution Approach

2.1 Problem Definition

A clear and concise definition of the CTTP is given by Conant-Pablos [6]: A
set of events(courses or subjects) E = e1, e2, . . . , en is the basic element of a
CTTP. Also there are a set of periods of time T = t1, t2, . . . , ts, a set of places
(classrooms) P = p1, p2, . . . , pm, and a set of agents (students registered in
the courses) A = a1, a2, . . . , ao. Each member e ∈ E is a unique event that
requires the assignment of a period of time t ∈ T , a place p ∈ P and a set of
students S ⊆ A, so that an assignment is a quadruple(e, t, p, S). A timetabling
solution is a complete set of n assignment, one for each event, which satisfies
the set of hard constraints defined usually by each university of college. This
problem is documented to be at least as a NP-complete problem [3] [4].

2.2 Methodology of Design for the Course Timetabling Problem

In the literature it can be seen that there is a problem with the diversity of
course timetabling instances due different university policies. This situation
directly impacts in the reproducibility and comparison of course timetabling
algorithms[7]. The state of art indicates some strategies to avoid this problem.
For example, a more formal problem formulation [7] as well as the construc-
tion of benchmark instances [8]. These schemes are useful for a deeper un-
derstanding of the university timetabling complexity, but the portability and
the reproducibility of a timetabling solver in another educational institution is
still in discussion[1]. In this sense, we use a context-independent layer for the
course timetabling resolution process. This new layer integrates timetabling
constraints into three basic structures MMA matrix, LPH list and LPA list.

MMA matrix: This matrix contains the number of students in conflict be-
tween subjects i.e. the number of conflicts if two subjects are assigned in
the same timeslots. An example of this matrix can be seen in the Figure 1.

LPH list :This structure have in its rows the subjects offered. In its columns
have the offered timeslots, So this list give us information about the allowed
timeslots per subject. one example of this list can be seen on 1.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 33

Table 1 LPH list

Day 1 Day 2
e1 < t3 > < t2 >
e2 < t2 > < t2 or t1 >

LPA list :This list shows in its rows each event and the classrooms available
to be assigned to each event without conflict.

Table 2 LPA list

event Classrooms
e1 < p4, pl1, pc2 >
e2 < plab, pc2 >
e3 < p6, pb2, pb3, pb4 >
e4 < plab, pl2 >
...

...
e530 < pd7 >

Once we obtain these structures by means of the natural/original inputs
of our CTTP problem, we ensures by design the non-existence of violations
by the selection of any values shown in LPH and LPA. Our problem now is
to deal with students conflicts only. We work with these conflicts by means of
the next minimization function:

min(FA) =

k∑
i=1

FAVi (1)

FAVj =

(MVj
)−1∑

s=1

MVi
−s∑

l=1

(Aj,s ∧Aj,s+l) (2)

Where: FA= Student conflicts of current timetabling. Vi= Student con-
flicts from ”Vector” i of the current Timetabling. Aj,s ∧Aj,s+l= students that
simultaneously demand subjects s and s+ 1 inside the ”Vector” j. A means a
student that demands subject s in a timetabling j.

Now we can talk about the most important element in the design method-
ology: the concept of vector. This vector is a binary representation of an
event.[9][1] We can construct them as seen on table 3 where each vi is a vector
who represents event ei.

The vectors can be easily added and subtracted allowing them to form
sets. the symbols used for these sets of vectors are VA, VB , . . . and so on. One
characteristic is that the number of vectors sets is related with the number
of timeslots offered by the current timetabling. The main idea about vectors
is to have a space where we can work with events without assigned them yet
to a fixed timeslot. This independent layer of context generalizes in some way
the solution process of the CTTP problem.

34 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Our problem now is to construct a fixed number of vectors sets (usually the
cardinality of timeslots set) in order to obtain zero conflict on MMA, LPH and
LPA. It is precisely for the vector sets construction that we build a parallel
metaheuristic algorithm, but once we have it, if other CTTP problem can be
expressed by means of the Methodology of design then we expect work with
it without any modification in the algorithm.

Table 3 Vector Construction

Events e1 e2 . . . ea−1 ea
v1 1 0 . . . 0 0
v2 0 1 . . . 0 0
...

...
... . . .

...
...

va−1 0 0 . . . 1 0
va 0 0 . . . 0 1

2.3 Parallel Computing and Cellular Genetic Algorithms

The main objective of parallel computing is to execute code concurrently on
different processors i.e in the simplest sense, parallel computing is the simul-
taneous use of multiple compute resources to solve a computational problem
for example: To be run using multiple CPUs, To solve a problem broken into
discrete parts that can be executed concurrently and instructions from an
algorithm executed simultaneously on different CPUs [10].

Also we use a genetic algorithm. A genetic algorithm (GA) is a search
heuristic that mimics the process of natural evolution.[11] This heuristic is rou-
tinely used to generate useful solutions to optimization and search problems.
Genetic algorithms belong to the larger class of evolutionary algorithms (EA),
which generate solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance, mutation, selection, and crossover
[11].

With these two concepts we built a Cellular Genetic Algorithm (cGA). the
cellular genetic algorithm was initially designed for working in massive parallel
machines composed of many processors executing simultaneously the same
instructions on different data.[12]. The first cGA model know was proposed by
Robertson in 1987 [13] implemented on a CM1 computer. It was a model were
all steps of GA algorithm(selection, replacement, recombination and mutation)
were executed in parallel.[12]. This approach has shown great execution speed
as well as better fitness performance against sequential or canonical GA.

Many researchers still think about the equivalence between cGA and mas-
sive parallel machines. Today with technologies like Java Threads or CUDA
cores, we do not need a massive parallel computer in order to build and execute
a cGA.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 35

The cGA model simulates the natural evolution from the point of view of
the individual. The essential idea of this model is to provide the population of a
special structure defined as a connected graph, where each vertex is a common
GA individual or Cell that is only allowed to communicate with its nearest
neighbours. Particularly, individuals are conceptually in a toroidal mesh and
are only allowed to recombine with close individuals.[12] An example of this
type of interaction can be seen on figure 2.

Fig. 2 Simple toroidal population and interaction

The neighborhood of a specific individual on the cellular grid is overlapped
by its neighbors. This ensures that good traits and characteristics can travel
throughout the grid. In cGAs the reproductive cycle is execute inside the
neighborhood of each individual and, generally, consists in selecting among its
neighbors with a certain criterion (Tournament selection or Roulette wheel) a
parent with witch the cell can apply any recombination operators and finally
update its own genetic material.

The mutation is simply performed by selecting randomly one cell and min-
imum change its genetic material. This reproduction cycle can be execute in
parallel, executing each cell in a different java thread or CUDA core. A pseudo-
code of canonical cGA proposed by Alba Et.al [12] can be seen on algorithm
1.

Algorithm 1 Pseudo-code of a canonical cGA
1: procEvolve(cga)
2: GenerateInitialPopulation(cga.pop)
3: Evaluation(cga.pop)
4: while !StopCondition() do
5: for individual← 1 to cga.popsize do
6: neighbors← CalculateNeighborhood(cga, position(indicidual));
7: parents← Selection(neighbors);
8: offspring ← Recombination(cga.Pc, parents);
9: offspring ←Mutation(PM);

10: Replacement(position(individual), auxiliaryPop, offspring);
11: end for
12: cga.pop← auxiliaryPop;
13: end while
14: return Best(cga.pop)

36 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 4 Cell Codification

e1 e2 . . . el
cell1 VB VD . . . VB

cell2 VA VB . . . VC
...

...
...

. . .
...

celln VD VA . . . VC

From algorithm 1 we seen that the cGA algorithm not differ greatly from a
sequential GA. The differences of cGA approach are simply the Grid/Toroidal
interaction and its parallelism.

2.4 Combining methodology of Design with cGA for the CTTP problem

As seen in previously sections the definition of the cGA have similar operators
and parameters as a Sequential GA(sGA). In this section we define the cod-
ification, operators and parameters used as well as several details of our grid
configuration.

We use the Methodology of Design approach shown in section 2.2 in order
to have a CTTP solver to test over different CTTP type instances. We have
for each instance 3 list MMA,LPH and LPA. The construction of each of these
lists is beyond the scope and purpose of this article. These list ensures by
design that every 3-tuple (e, t, p) will be an allowed selection so it can be
applied to reality. The main optimization exercise is to minimize the conflict
of students S ⊆ A by means of the permutation of the events/vectors into
timeslots/Vector-sets and the MMA matrix.

The Codification of each Cell or individual is an array of Integer values each
integer represent an ID of a Vector set and its size is equal that the cardinality
of the event set. The number of Vector sets is defined by the cardinality of
the desire timeslots set. So basically from table 4 we can read for the Cell 1:
event 1 is assigned into V ector − set B, event 2 is assigned into V ector − set
D... and so on.

The operators used in each cell are simple. For Selection we use Roulette
wheel so every neighbour may have the chance to reproduce with the selected
cell but better solutions have more probability to do it. Given the integer
representation the recombination operator is single point crossover, in each
generation a random crossover point is selected so the genetic material of
parents is interchanged from it. The Mutation operator is done at the final
of each generation, where we randomly selects a cell and a single integer to
change. Also we implement a form of Elitism: in each execution the best cell
from the grid will not be modify it all i.e the best cell can interact and update
genetic information to its neighbors but no one neighbor can change its own
genetic material.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 37

The Parameters used are: for stop criteria we use a fixed number of func-
tions points (a function point means a single decoding of the information of the
cell and its execution in the fitness function), for recombination and mutation
we use a percentage fixed by the user.

For the grid configuration we divide our population (cells) into several
islands. At the beginning of each iteration, all the islands send the cells of their
first/last column/row to their neihgbor islands. After receiving the individuals
from the neighbors, a sequential cGA is executed in each island/subpopulation
(figure). This approach has been documented by Alba et al [12] with good
results. Finally the neighborhood model used by each cell and island is the
NEWS model (North, West, East, South) similar to figure 3. Each island is
executed in a JAVA Thread and synchronously waits for all the other islands
ends a generation to interchange cells to continue.

Fig. 3 Grid configuration model used. From Alba et. al

3 Experiments and Results

Once we have cGA proposed algorithm we can do several experiments in order
to find the speed-up or performance difference between our cGA and sGA. In
this section we will explain each experiment as well as the characteristics of
the used benchmark.

3.1 Instances Used

We chose a set of well-known instances for the TTP such as ITC2002, ITC2007
from PATAT. The timetabling problem instances ITC 2002 has been designed
by Ben Paechter for the Metaheuristics Network.[15] It is a reduction of a
typical university course timetabling problem. It consists of a set of events to
be scheduled in 45 timeslots (5 days of 9 hours each), a set of rooms in which

38 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

events can take place, a set of students who attend the events, and a set of
features satisfied by rooms and required by events. Each student attends a
number of events and each room has a size.

The ITC2007 instances has been uses as benchmark for the the second In-
ternational Timetabling Competition contest sponsored by PATAT and WATT.
These instances are similar to the ITC2002 ones but, these instances have 3
more constraints: a subset of valid timeslots for subject, an ordering between
subjects and a preferred set of timeslots per subject.

3.2 Experimental design

According to Alba et.al [12] the recommendations used to compare parallel-
sequential algorithm we will use two algorithms: Our parallel proposed ap-
proach (cGA) defined in section 2.4 and its sequential counterpart(sGA). For
the cGA we implement 16 isles divided into a 4x4 grid, each island have a
inner grid of 16 Cells in a 2D array of 4x4 cells similar to figure 3 making
256 individuals/cells in total with an elitism of 16 cells per generation(one
cell per island). For the sGA we can say that it is a normal GA without any
special modifications. Its recombination, selection and mutation operators are
the same that the proposed cGA. Its Elitism is implemented by selecting the
best 16 individuals from a population of 256 elements the same of our cGA.

We use a the weak speedup metric proposed by Alba et.al [12] because
it compares the parallel algorithm developed by a researcher against his own
sequential version. For the experiment we execute 100 independent test in
each instance from ITC2002 and ITC2007 with cGA and sGA. Each algorithm
executes exactly 1000 functions points before stop, the results are shown on
table 5.

Our tables 5 and 6 shown the results for our test over ITC2002 and
ITC2007 instances. Our fitness function evaluates the number of conflicts (stu-
dent conflicts) on the timetabling built by the algorithms, so a less value of
fitness means a better solution for the CTTP.We need to say that these eval-
uations was made just only considering hard constraints for ITC2002 and
ITC2007. The column Best fit shows the best fitness reached by the Algo-
rithm (sGA or cGA) in our experiments. Avg fit shows the average fitness
from our algorithms over 100 independent test. stddevf shows the standard
deviation value for the fitness obtained from our series of test. Avg.time shows
the average time in seconds needed for the algorithm to finish one single test.
std devt shows the standard deviation value of the time used. Finally the
speedup column shows the weak speed-up metric proposed by Alba et.al [12].

3.3 Analysis of results

As it can be seen on table 5 we achieve a better speed in the cGA against the
sGA, this is not a surprise because we utilize JAVA Threads so each island

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 39

Table 5 Results experiment ITC2002

Instance Best fit Avg fit Std devf Avg.time std devt Speedup
ITC2002-1 sGA 281 324.3 18.8 12.59 2.96

cGA 149 188 14.9 2.35 0.09 5.35
ITC2002-2 sGA 262 305.5 18.2 7.97 2.50

cGA 146 179 14.0 2.97 0.15 2.68
ITC2002-3 sGA 296 330.4 15.3 10.96 2.58

cGA 165 202.7 13.0 2.95 0.17 3.71
ITC2002-4 sGA 429 485.5 23.9 8.30 2.25

cGA 255 304 22.9 3.01 0.10 2.75
ITC2002-5 sGA 424 480.18 26.57 6.82 2.09

cGA 246 293.3 21.4 2.78 0.13 2.45
ITC2002-6 sGA 427 481.8 26.56 7.09 2.24

cGA 247 294.8 21.06 2.65 0.15 2.67
ITC2002-7 sGA 419 503.4 30.55 7.21 2.23

cGA 238 287.9 24.9 2.63 0.16 2.74
ITC2002-8 sGA 311 371.94 25.14 8.25 2.51

cGA 168 210.2 18.65 3.01 0.19 2.74
ITC2002-9 sGA 299 346.8 20.54 12.99 2.82

cGA 186 207.9 16.56 3.2 0.20 4.05
ITC2002-10 sGA 285 335.15 21.24 9.67 2.74

cGA 176 201.9 14.2 3.0 0.19 3.22
ITC2002-11 sGA 304 350.4 19.4 12.12 2.43

cGA 174 208.2 14.56 3.12 0.32 3.88
ITC2002-12 sGA 268 312.1 19.15 10.03 3.12

cGA 148 188.5 14.25 3.40 0.52 2.95
ITC2002-13 sGA 343 396.44 24.26 9.51 1.42

cGA 186 231.6 19.54 2.30 0.32 4.13
ITC2002-14 sGA 455 520.15 28.17 7.79 0.877

cGA 251 313.3 23.20 3.21 0.19 2.42
ITC2002-15 sGA 362 449.5 28.65 8.06 0.8

cGA 209 261.4 22.44 3.10 0.22 2.6
ITC2002-16 sGA 304 369.67 20.44 10.14 1.69

cGA 191 223.6 18.22 3.70 0.36 2.74
ITC2002-17 sGA 396 468.9 29.22 7.33 2.46

cGA 231 289.4 22.19 3.18 0.05 2.30
ITC2002-18 sGA 250 307.14 20.3 12.19 2.55

cGA 148 181.5 14.98 3.59 0.06 3.39
ITC2002-19 sGA 408 497.1 28.95 9.45 2.97

cGA 224 297.9 23.0 3.60 0.13 2.28
ITC2002-20 sGA 380 449.14 26.35 8.35 2.47

cGA 224 266.0 21.54 3.18 0.16 2.62

or sub population is working in a parallel way. However we obtained not only
a better speed but a good performance as well, as seen on the results table,
our cGA presents a lower fitness value and a lower standard deviation value
for both the time and the objective function. This result can be explained
because the elitism used in the cellular model. This approach conserves several
cell/individual with different genetic value, then in the phase of interchange
this genetic material travels over the grid. In the sGA cells preserved by the
elitism have similar genetic material. An snapshot of the Celular Grid as well
as its performance graph can be seen on fig 4 and 5.

40 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 4 Snapshot of cGA grid after a test

Fig. 5 Performance of cGA over a test

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 41

Table 6 Results experiment ITC2007

Instance Best fit Avg fit Std devf Avg.time std devt Speedup
ITC2007-1 sGA 1253 1362.4 55.0 11.1 3.0

cGA 881 975.3 45.96 3.92 1.05 2.83
ITC2007-2 sGA 1251 1388.5 56.87 11.21 3.06

cGA 892 999.0 42.78 4.57 0.37 2.45
ITC2007-3 sGA 434 556.8 57.80 4.79 1.11

cGA 215 286.75 27.0 2.66 0.28 1.80
ITC2007-4 sGA 527 619.2 44.0 4.71 1.08

cGA 275 342.8 30.55 2.56 0.29 1.83
ITC2007-5 sGA 698 805.3 35.70 9.73 3.04

cGA 479 564.4 32.28 4.68 0.42 2.07
ITC2007-6 sGA 723 794.81 36.72 10.73 3.41

cGA 480 552.18 33.15 3.8 0.39 2.82
ITC2007-7 sGA 265 334.9 28.96 4.5 1.27

cGA 154 187.8 15.5 2.46 0.39 1.82
ITC2007-8 sGA 287 375 36.14 5.75 0.93

cGA 147 196.3 18.72 2.5 0.42 2.3
ITC2007-9 sGA 1190 1403.1 69.77 10.52 3.26

cGA 860 979.23 52.67 4.29 0.70 2.45
ITC2007-10 sGA 1256 1400.3 53.58 11.05 3.41

cGA 899 1011.6 47.38 3.83 0.45 2.88
ITC2007-11 sGA 488 612.84 58.64 4.55 0.97

cGA 235 319.21 32.20 2.68 0.14 1.69
ITC2007-12 sGA 433 588.11 65.15 4.83 1.24

cGA 249 317.74 28.55 1.56 0.16 3.09
ITC2007-13 sGA 751 843.75 34.24 8.26 2.66

cGA 521 590.17 31.19 2.75 0.20 3.00
ITC2007-14 sGA 724 813.11 36.41 8.20 2.62

cGA 512 572.86 26.77 2.28 0.08 3.59
ITC2007-15 sGA 231 300.96 30.23 4.67 1.04

cGA 131 154.0 12.20 1.43 0.06 3.26
ITC2007-16 sGA 237 326.85 34.47 4.59 0.96

cGA 113 147.21 16.82 1.41 0.06 3.255
ITC2007-17 sGA 286 432.15 69.81 3.23 0.21

cGA 46 160.15 35.05 1.10 0.05 2.93
ITC2007-18 sGA 865 1000.59 56.14 4.47 0.95

cGA 512 635.17 38.87 1.47 0.04 3.04
ITC2007-19 sGA 686 814.96 58.10 7.14 2.24

cGA 426 482.5 32.52 1.88 0.05 3.79
ITC2007-20 sGA 738 879.07 59.34 10.53 2.86

cGA 430 497.52 38.96 2.38 0.05 4.42
ITC2007-21 sGA 761 847.17 28.99 12.97 4.34

cGA 516 614.27 26.82 3.03 0.07 4.28
ITC2007-22 sGA 1400 1556.15 59.93 16.87 4.98

cGA 1084 1185.74 75.48 3.84 0.08 4.39
ITC2007-23 sGA 2595 2882.6 114.88 7.93 2.42

cGA 1902 2137.85 88.12 2.36 0.07 3.36
ITC2007-24 sGA 757 886.48 52.31 8.78 2.61

cGA 453 527.9 35.12 2.41 0.06 3.64

42 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

4 Conclusions and future work

This paper has presented a comparison between a parallel computing model
for a genetic algorithm and a sequential genetic algorithm for the context of
CTTP problem. The cGA proposed aims to help the researcher of CTTP to
obtain good solutions in a relative short lapse of time against sequential Ge-
netic Algorithm. The cGA proposed utilizes a toroidal grid configuration that
ensures the interchange of good genetic material over the whole population.
The proposed approach utilizes the Methodology of Design model to general-
ize the process of CTTP solution by means of generic structures, this model
ensures that if any other type of CTTP can be produce the same structures the
proposed algorithm will be capable to work over it with similar performance.
This paper has explored the use of parallel computing for a well known set of
instances for the CTTP. The cGA has show a better performance against a se-
quential GA in a better time allowing the researcher to accelerate the process
of gathering statistical data.

For future work we propose to apply this approach to Unitime.org in-
stances. Also we Propose to apply this model over not only Java Threads but
CUDA Nvidia cores in order to perform a faster experimentation.

Acknowledgement

Authors thanks the support received from the Consejo Nacional de Ciencia y
Tecnologia (CONACYT) México.

References

1. J.A. Soria-Alcaraz, Diseño de horarios con respecto al alumno mediante tcnicas de
cmputo evolutivo. Master’s thesis, Instituto Tecnologico de Len (2010)

2. M. Adriaen, P. Causmaecker, Proccedings PATAT 1, 330 (2006)
3. T.B. Cooper, J.H. Kingston, The compexity of timetable construction problems. Ph.D.

thesis, The University of Sydney (1995)
4. R.J. Willemen, School timetable constructrion: Algorithms and complexity. Ph.D. the-

sis, Institutefor Programming research and Algorithms (2002)
5. R. Martinez, Q. Aguilera, COMCEV 1, 169 (2005)
6. S.E. Conant-Pablos, D.J. Magaa-Lozano, H. Terashima-Marin, MICAI Mexican inter-

national conference on artificial intelligence 1, 408 (2009)
7. A. Schaerf, L.D. Gaspero, Practice and Theory of Automated Timetabling, PATAT,

Springer-Verlag Berlin Heidelberg, LNCS 3867 1, 40 (2007)
8. R. Lewis, Metaheuristics for university course timetabling. Ph.D. thesis, University of

Notthingham. (August 2006)
9. J.A. Soria-Alcaraz, M. Carpio, H. Puga, Dcima Primera Reunin de Otoo de Potencia,

Electrnica y Computacin del IEEE, XI ROPEC, Morelia 1, 24 (2009)
10. B. Barney. Introduction to parallel computing. URL

https://computing.llnl.gov/tutorials/parallel comp/
11. J. Holland, The University of Michigan Press, Ann Harbor (1975)
12. E. Alba, B. Dorronsoro, Cellular Genetic Algorithms 1, Springer Science+Business Me-

dia, LLC (2008)
13. G. Robertson, in In Proc. of the Second International Conference on Genetic Algo-

rithms(ICGA) (1987), pp. 140–147

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 43

14. E. Alba, B. Dorronsoro, Cellular Genetic Algorithms Springer Science+Business Media,
LLC (2008)

15. B. Paechter. The course timetable problem (2002). URL
http://www.metaheuristics.net/index.php?main=4&sub=44

44 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A Combined Local Search and Integer Programming
Approach to the Traveling Tournament Problem

Marc Goerigk · Stephan Westphal

Received: date / Accepted: date

Abstract The traveling tournament problem is a well-known combinatorial
optimization problem with application to sport leagues scheduling, that sparked
intensive algorithmic research over the last decade. With the Challenge Trav-
eling Tournament Instances as an established benchmark, the most successful
approaches to the problem use meta-heuristics like tabu search or simulated
annealing, partially heavily parallelized. Integer programming based methods
on the other hand are hardly able to tackle larger benchmark instances.

In this work we present a hybrid approach that draws on the power of
commercial integer programming solvers as well as the speed of local search
heuristics. Our proposed method feeds the solution of one algorithm phase to
the other one, until no further improvements can be made. The applicability
of this method is demonstrated experimentally on the galaxy instance set, re-
sulting in currently best known solutions for most of the considered instances.

Keywords traveling tournament problem · tabu search · integer program-
ming · sports scheduling

1 Introduction

Before the start of each season, every sports league is faced with the problem
of scheduling the games among their teams such that a variety of require-

Partially supported by grant SCHO 1140/3-2 within the DFG programme Algorithm Engi-
neering.

M. Goerigk and S. Westphal
Institut für Numerische und Angewandte Mathematik
Universität Göttingen Lotzestr. 16-18
D-37083 Göttingen
Germany
Tel.: +49-551-3920035
Fax: ++49-551-393944
E-mail: s.westphal@math.uni-goettingen.de

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 45

ments is taken into account. The planners have to synchronize every feasible
schedule to the availability restrictions of the sports sites, the most interesting
games have to be matched to available TV slots and specific league-requested
matchups have to be taken care of. Additionally, there is a wish to minimize
the total distances driven by the teams over the season, which becomes even
more important for bigger countries.

In this paper we will focus on the problem of minimizing the total dis-
tances driven by the teams in the way addressed by the well-known Traveling
Tournament Problem (TTP). This sports scheduling problem which has been
introduced by Easton et al. [ENT01] is inspired by Major League Baseball and
is considered to be practically hard to solve.

1.1 Sports Scheduling and the Traveling Tournament Problem

Sports Scheduling in general deals with the design of tournaments. A single
round robin tournament on n teams, where n is an even number, consists
of (n − 1) rounds (also called slots). In each round n/2 games, which are
themselves ordered pairs of teams, take place. Every team has to participate
in one game per round and must meet every other team exactly once. It is
standard to assume n to be even since in sports leagues with n being odd,
usually a dummy team is introduced, and whoever plays it has a day off,
which is called a bye. For scheduling single round robin tournaments a rather
general and useful scheme called the canonical schedule has been known in
sports scheduling literature for at least 30 years [dW81]. It is based on the
polygon/circle method, which was first suggested by Kirkman in 1847 [Kir47].
One can think of Kirkman’s method as a long table at which n players sit such
that n/2 players on one side face the other players seated on the other side of
the table. Every player plays a match against the person seated directly across
the table. The next round of the schedule is obtained when everyone moves
one chair to the right with the crucial exception that there exists one person
at the end of the table who never moves and always maintains the seat from
his or her first round. Note that this method only specifies who plays whom
when and not where. The canonical schedule introduced by de Werra defines
for each of the encounters specified by the method described above, at whose
site they take place such that the number of successive home or away games
is minimized [dW81].

A double round robin tournament on n teams consists of 2(n−1) rounds and
every team must meet every other team twice: once at its own home venue
(home game) and once at the other team’s venue (away game). A popular
policy in practice is to obtain a double round robin tournament from a single
round robin tournament by mirroring, that is repeating the matches of round
k for k = 1, ..., n − 1 in round k + n − 1 with changed home field advantage.
Consecutive home games are called a home stand and consecutive away games
form a road trip. The length of a home stand or road trip is the number of
opponents played (and not the distance traveled).

46 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

In this work we consider the traveling tournament problem (TTP) as de-
scribed in [ENT01]:

Definition 1 (The Traveling Tournament Problem TTP(k) [ENT01])
Let a set of n teams and a distance matrix (dij) be given. Find a feasible double
round robin tournament of the teams satisfying the following condition:

1. The length of any home stand is at most k.
2. The length of any road trip is at most k.
3. Game j at i is not followed immediately by game i at j.
4. The sum of the distances traveled by the teams is minimized.

As it is the case in most real-world applications, we henceforth assume
k = 3 throughout the paper. The third requirement is known as no-repeater
constraint.

An example instance from [Tri11] is given in Table 1: For every team,
the distance to every other team is known. Table 2 shows the corresponding
optimal solution with objective 416: On day 1, team 1 plays away against team
4, then away against team 2, at home against team 3 on day 3 and so on. Note
that, as demanded, there is no home stand or road trip with length larger than
3.

Team 1 Team 2 Team 3 Team 4

Team 1 0 10 15 34

Team 2 10 0 22 32

Team 3 15 22 0 47

Team 4 34 32 47 0

Table 1 Instance galaxy4.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6

Team 1 -4 -2 3 4 2 -3

Team 2 3 1 4 -3 -1 -4

Team 3 -2 -4 -1 2 4 1

Team 4 1 3 -2 -1 -3 2

Table 2 Optimal solution to galaxy4.

1.2 Previous Work

So far, most efforts concerning the TTP have led to a variety of algorithms
aiming to minimize the total distance driven by the teams. Kendall et al.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 47

[KKRU10] provide a good overview of the work done on the TTP and sports
scheduling in general. Just to mention a very few examples, hybrid algorithms
with constraint programming (CP) exist by Benoist et al. [BLR01] who addi-
tionally use Lagrange relaxation. Easton et al. [ENT01] merge CP with inte-
ger programming while Henz [Hen04] combines CP with large neighborhood
search. Anagnostopoulos et al. [AMHV06], Hentenryck and Vergados [vHV06],
Gaspero and Schaerf [GS07] and Lim et al. [LRZ06] propose neighborhood
search-based algorithms, whereas Ribeiro and Urrutia [Rib11] focus on the
special class of constant distance TTP where break maximization is equiva-
lent to travel distance minimization.

On the theoretical side, Thielen and Westphal settled the complexity by
showing that the TTP is strongly NP -hard [TW11]. Miyashiro et al. [MMI08]
provide a 2 + (9/4)/(n − 1) approximation for the intensively studied spe-
cial case k = 3 by means of the Modified Circle Method, a variation of the
canonical schedule. In [YIMM09] Yamaguchi et al. obtain an algorithm with
approximation ratio (2k−1)/k+O(k/n) for k ≤ 5 and (5k−7)/(2k)+O(k/n)
for k > 5. Again they make use of the canonical schedule, now refined such
that the teams are ordered around the ’table’ such that most of the distances
driven are part of a near optimal traveling salesman tour which clearly has
positive effects on the length of many distances traveled. As k ≤ n − 1, they
showed this way that a constant factor approximation for any choice of k and
n exists. However, they did not show how this factor looks exactly. This was
done later by Westphal and Noparlik [WN12], whose algorithm was also able
to compute new bests for all galaxy instances with at least 22 teams.

1.3 Contribution

Due to its computational difficulty, exact solution approaches already fail from
a size of 12 teams on [Tri11]. In this paper we propose a combination of local
search heuristics with integer programming methods to overcome local optima.
In an experimental evaluation, we were able to calculate new best known
solutions on most instances of the considered benchmark set.

1.4 Overview

In Section 2, we describe the algorithmic details of our heuristic approach to
the traveling tournament problem, which we evaluate extensively in Section 3.
Section 4 concludes the paper and gives an outlook on further research.

2 A Combined Local Search and Integer Programming Heuristic

The heuristic we consider consists of two separate phases: The local search
phase, which is described in Section 2.1, and the integer programming phase

48 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

as described in Section 2.2. After explaining these phases, we give an overview
of the whole algorithm in Section 2.3

The motivation for combining these methods is the following: Local search
heuristics are an effective means to improve solutions even for large instances,
but local minima pose complications. When the search is not able to leave such
a minimum anymore, it helps to use a view that does not consider the same
neighborhood as before. Therefore, breaking up the current solution structure
by applying integer programming methods is able to provide the local search
with a fresh start from an even improved solution. Within the VLNS classifi-
cation framework [AEOP02], we are using restrictions on the original problem,
but they are not likely solvable in polynomial time.

2.1 Phase 1: Tabu Search

The first part of the proposed algorithm consists of a local search phase. This
might be steepest descent, simulated annealing, or any other suitable (meta-
)heuristic. In this work we specifically considered a tabu search heuristic that
uses the standard neighborhood as described in [AMHV06] and [DGS05]. The
five neighborhood search moves are presented in Table 3.

Neighborhood Input Effect

Swap Homes t1, t2 ∈ T Swap home/away pattern for
matches between t1 and t2. No
further adjustments necessary.

Swap Teams t1, t2 ∈ T Swap all matches of teams
t1 and t2. Adjust opponents
accordingly.

Swap Days d1, d2 ∈ D Swap two days. No further ad-
justments necessary.

Swap Teams Partial t1, t2 ∈ T, d ∈ D Swap opponents of teams t1
and t2 on day d. This will cause
more swaps to resolve resulting
conflicts.

Swap Days Partial t ∈ T, d1, d2 ∈ D Swap the opponents of team
t on days d1 and d2. This
will cause more swaps between
these days to reestablish feasi-
bility.

Table 3 Local neighborhood for tabu search algorithm.

Furthermore, we the following algorithm specifications are used:

1. Neighborhood: In every iteration, the whole neighborhood is considered.
That is, all moves of the types given in Table 3 are evaluated, and the best
non-tabu move is chosen.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 49

2. Tabu List: The list contains whole solutions, not just partial properties.
The list length is dynamic in the sense that every considered solution be-
comes tabu, until a new global optimum is found, which triggers the list
to be cleaned.

3. Stopping criterion: If a prescribed number max idle iterations of iter-
ations have passed without finding a new global optimum, the search is
resetted: The current global optimum is restored and the tabu list cleaned.
After a given number max restarts of resets, the search is aborted.

4. Objective: In order to expand the search space to infeasible solutions, we
add a penalty to the original problem objective for every violated home
stand, road trip and no-repeater constraint (Constraints 1.-3. in the prob-
lem definition), but do not forbid schedules that violate these constraints.

5. Dynamic Penalty: The infeasibility penalty is dynamically adapted through-
out the search process, such that sequences of feasible solutions decrease
the penalty, and sequences of infeasible solutions increase it.

6. Dominance: Feasible solutions in the neighborhood that are better with
respect to the original objective than the current best solution are always
preferred to infeasible solutions, even if their modified objective might be
better.

Though there are of course many more possibilities concerning the fine-
tuning of the tabu search, this approach turned out to be most promising in
preliminary experiments.

2.2 Phase 2: Integer Programming

In order to leave a local optimum of the local search procedure, we apply
integer programming methods that do not depend on the neighborhood as
presented in Table 3. For our experiments, we use a variation of the simple for-
mulation presented in [Rib11] with O(n3) variables. The variables xijk(i, j =
1, . . . , n, k = 1, . . . , 2n−2) represent the decision if team i plays away against
team j on day k, while ytij(i, j, t = 1, . . . , n) denotes that team t travels from
team i to team j anywhere in the schedule.

min
n∑

i,j=1

dijxij1 +
n∑

t,i,j=1

dijytij +
n∑

i,j=1

djixij,2n−2 (1)

xiik = 0 (i = 1, . . . , n, k = 1, . . . , 2n− 2) (2)
n∑

j=1

(xijk + xjik) = 1 (i = 1, . . . , n, k = 1, . . . , 2n− 2) (3)

2n−2∑
k=1

xijk = 1 (i, j = 1, . . . , n, i 6= j) (4)

50 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3∑
l=0

n∑
j=1

xij,k+l ≤ 3 (i = 1, . . . , n, k = 1, . . . , 2n− 2− 3) (5)

3∑
l=0

n∑
i=1

xij,k+l ≤ 3 (j = 1, . . . , n, k = 1, . . . , 2n− 2− 3) (6)

xijk + xjik + xij,k+1 + xji,k+1 ≤ 1 (i, j = 1, . . . , n, k = 1, . . . , 2n− 3)
(7)

ziik =
n∑

j=1

xijk, (i = 1, . . . , n k = 1, . . . , 2n− 2) (8)

zijk = xijk (i, j = 1, . . . , n, i 6= j, k = 1, . . . , 2n− 2) (9)

ytij ≥ ztik + ztj,k+1 − 1 (t, i, j = 1, . . . , n, k = 1, . . . , 2n− 3) (10)

xijk, zijk, ytij ∈ {0, 1} (t, i, j = 1, . . . , n, k = 1, . . . , 2n− 2) (11)

As there is little hope in solving this program directly, we divide it into
two smaller problems based on the provided input solution: Optimizing the
home-away-pattern (HA-opt) and optimizing the rest of the schedule with
fixed home-away-pattern (non-HA-opt). Both subproblems are described in
the following.

Optimize Home-Away-Pattern. In order to optimize the home-away-pattern
for a given solution, we have to fix the decisions when two teams face another.
Let x̃ be the given solution to the x variables. We now add the Constraint (12)
to the original problem:

xijk + xjik = x̃ijk + x̃jik (i, j = 1, . . . , n, k = 1, . . . , 2n− 2) (12)

By doing so, we fix if team i plays against team j on day k, but leave the venue
open. In terms of the solution format as described in Table 2, we restrict the
optimization process to the signs +,− of the schedule.

The resulting problem is also known as the Timetable Constrained Distance
Minimization Problem, and has been introduced in [RT06].

Fix Home-Away-Pattern. The resulting second partial problems consists of
finding optimal team matchups, when travel and home days are fixed for every
team. As before, let x̃ be the given solution. We add Constraints (13) and (14)
to the problem formulation:

n∑
i=1

xijk =
n∑

i=1

x̃ijk, (j = 1, . . . , n, k = 1, . . . , 2n− 2) (13)

n∑
j=1

xijk =
n∑

j=1

x̃ijk, (i = 1, . . . , n, k = 1, . . . , 2n− 2) (14)

These constraints force a team to play away if this is the case for the input
solution, and to play at home otherwise. For the solution format of Table 2,
this means that we fix the signs, but can change the actual opponents.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 51

2.3 Phase Combination

Having described the two phases separately, we now focus on how to combine
them. In Figure 1, a diagram of the proposed algorithm structure is given.

Fig. 1 Algorithm overview.

The solution process needs to be provided with a starting solution, whose
creation is described in the experimental setup of Section 3. First, a local
search is performed until its stopping criterion is satisfied. If it was possible
to improve the solution, we pass it to the second phase, and end the solution
process otherwise. In the second phase, we repeatedly optimize the home-away-
pattern and its counterpart problem, until both partial problems are not able
to improve the current solution anymore. If the phase was able to improve the
given solution at all, we repeat phase 1, and end the algorithm otherwise.

Additionally, we propose another feature that turned out to be valuable in
our experiments. The local search phase considers many solutions that may
be inferior to the current best solution, but are structurally so different that a
home-away optimization might create a new current best solution. Therefore,
even if the local search was not able to improve its input, we feed the last found
local optimum to the second phase. Only if this does not create a solution that
is better than the current best, we consider the local search phase as being
not successful.

3 Experimental Results

In this section we present experimental experience on the performance of the
proposed combination of local search and integer programming techniques.

Environment All experiments were conducted on a PC with 99 GB main mem-
ory and an Intel Xeon X5650 processor, running with 6 cores at 2.66 GHz and

52 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

12MB cache. All code is written in C++ and has been compiled with g++
4.4.3 and optimization flag -O3. For the integer programming phase, we used
the Gurobi optimizer [Inc11] in version 4.5.

Setup The conducted experiment was scheduled the following way:

1. The considered benchmark set are the galaxy instances from [Tri11]. As
instances with team size up to 10 have already been solved to optimality,
we only used those which are larger.

2. We construct canonical schedules [dW81] as input solutions using the ro-
tation scheme as described in [WN12]. Of these, only the best three are
used per instance.

3. The described algorithm is run for the resulting 45 solutions. The param-
eter set we used is presented in Table 4. Note that the factor we multiply
the infeasibility penalty of the local search with is chosen in a way that
penalty increase faster than they decrease.

4. For the best solution found so far for every problem instance, we restart
the algorithm with the second parameter set of Table 4.

Teams 12-14 16-22 24-36 38-40
max idle iterations, first 10,000 1,000 500 250

max restarts, first 2
max idle iterations, second 100,000 4,000 1500 500

max restarts, second 3
starting inf. penalty input objective /1, 000

inf. penalty factor 0.97 and 1/0.93
timelimit HA-opt 1800s

timelimit Non-HA-opt 3600s

Table 4 Parameter choice.

Results We summarize the achieved results in Table 5. In the first column, the
instance size in terms of number of teams is given, followed by the objective
value of the best currently known solution as of January 2012 in column two.
We then present the initial objective values of the three best initial solutions,
and the improved objective value after the first run of the algorithm, together
with the corresponding number of algorithm phases. As described in the setup
paragraph, these solutions are further improved by restarting the algorithm.

In the last column, we present a lower bound for each instance, and mark
bounds that were previously unknown with an asterisk (*). These bounds are
found by calculating an optimal tour for each team separately, and summing
up the respective tour lengths. Finding these tours was done using a flow-based
integer programming formulation with a timelimit of 3600 seconds, which was
hit in only a few cases.

As can be seen, it was possible to further improve the currently best solu-
tion in 9 out of 15 cases by at least 0.1%, and up to 3.2%. There seems to be

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 53

Teams Best Known Initial 1st Number 2nd LB
Solutions Improvement of phases Improvement

12 7197
8223 7642 2

7555
(5.0%)

69338364 7720 2
8408 7639 2

14 10918
13017 11566 2

11552
(5.8%)

1022113047 12008 2
13126 11636 2

16 14900
16257 15769 2

15704
(5.4%)

13619*16315 15897 2
16372 16094 2

18 20907
21635 21426 2

21346
(2.1%)

19050*21658 21437 2
21728 21346 2

20 26289
28237 26921 4

26749
(1.7%)

23738*28332 27121 3
28368 26749 4

22 35516
35832 35624 4

35584
(0.2%)

31461*35882 35812 2
36021 35584 2

24 45728
45962 45671 3

45657
(-0.2%)

41287*46029 45657 2
46130 45705 2

26 60962
61617 58991 4

58991
(-3.2%)

53802*61634 59889 4
61703 59894 4

28 77577
77683 77381 2

77320
(-0.3%)

69992*77732 77320 3
77736 77361 3

30 96765
97270 96756 2

96710
(-0.1%)

88831*97321 96712 2
97384 96710 4

32 120683
122567 120053 3

119996
(-0.6%)

108187*122655 120130 4
122661 119996 4

34 147742
148194 147644 3

147612
(-0.1%)

133976*148223 147612 4
148363 147763 3

36 173640
174475 173532 3

173532
(-0.1%)

158363*174595 173716 3
174734 173670 2

38 209463
212706 205876 3

204980
(-2.1%)

188935*212809 204980 8
213072 205870 7

40 249002
249976 247017 9

247017
(-0.8%)

226794*249996 248295 3
250081 248223 6

Table 5 Results overview.

a connection between the instance size and the number of algorithm phases,
which can be explained by the increasingly larger neighborhood, which makes
it more difficult for the local search to find an actually close, better solution.
Therefore, combining local search with integer programming methods is espe-
cially beneficial for large instances.

54 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Of course, many more experimental setups are possible to pursue: As an
example, we not only examined the best three initial solutions of galaxy22,
but all 22 of them. As a result a solution of objective 35467 was found, which
is 0.1% below the current best solution.

4 Conclusion and Outlook

We proposed an algorithm to the traveling tournament problem that is able
to overcome local optima arising in local search heuristics by solving integer
optimization subproblems. Its applicability is demonstrated by an extensive
experiment on a well-known benchmark set, resulting in new best known solu-
tions for all instances of size greater or equal to 24. Experiments with further
instance sets are currently being conducted.

It seems promising to use further parameter setups and local search heuris-
tics to find better solutions than presented in this work. Also, we plan to use
the described algorithmic ideas to include robustness issues in the schedule
design, i.e., to find tournament schedules that are insensitive to disruptions
like bad weather conditions that may increase travel time between two venues,
or even render a stadium unusable for certain days.

References

[AMHV06] Aris Anagnostopoulos, Laurent Michel, Pascal Van Hentenryck, and Yannis Ver-
gados. A simulated annealing approach to the traveling tournament problem. J.
Scheduling, 9(2):177–193, 2006.

[AEOP02] Ravindra K. Ahuja, zlem Ergun, James B. Orlin, and Abraham P. Punnen.
A survey of very large-scale neighborhood search techniques. Discrete Applied
Mathematics, 123(13):75 – 102, 2002.

[BLR01] T. Benoist, L. Laburthe, and B. Rottembourg. Lagrange relaxation and con-
straint programming collaborative schemes for traveling tournament problems.
In Proceedings of the 3rd International Workshop on the Integration of AI and
OR Techniques (CP-AI-OR), pages 15–26, 2001.

[DGS05] Luca Di Gaspero and Andrea Schaerf. A tabu search approach to the traveling
tournament problem. In Proceedings of the 6th Metaheuristics International
Conference (MIC-2005), Vienna, Austria, August 2005. Available as electronic
proceedings.

[dW81] D. de Werra. Scheduling in Sports. In P. Hansen, editor, Studies on graphs and
integer programming, volume 11, pages 381–395. Annals of Discrete Mathemat-
ics, North Holland, 1981.

[ENT01] K. Easton, G. Nemhauser, and M. Trick. The traveling tournament problem
description and benchmarks. Principles and Practice of Constraint Program-
mingCP 2001, pages 580–584, 2001.

[GS07] Luca Di Gaspero and Andrea Schaerf. A composite-neighborhood tabu search
approach to the traveling tournament problem. Journal of Heuristics, 13:189–
207, April 2007.

[Hen04] M. Henz. Playing with constraint programming and large neighborhood search
for traveling tournaments. In Proceedings of the 5th International Conference
on the Practice and Theory of Automated Timetabling (PATAT), pages 23–32,
2004.

[Inc11] Gurobi Optimization Inc. Gurobi optimizer, 2011. Version 4.5.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 55

[Kir47] Thomas P. Kirkman. On a problem in combinations. The Cambridge and Dublin
Mathematical Journal, 2:191–204, 1847.

[KKRU10] Graham Kendall, Sigrid Knust, Celso C. Ribeiro, and Sebastián Urrutia. Invited
review: Scheduling in sports: An annotated bibliography. Comput. Oper. Res.,
37:1–19, January 2010.

[LRZ06] A. Lim, B. Rodrigues, and X. Zhang. A simulated annealing and hill- climbing
algorithm for the traveling tournament problem. European Journal of Operations
Research, 174:1459 – 1478, 2006.

[MMI08] R. Miyashiro, T. Matsui, and S. Imahori. An approximation algorithm for the
traveling tournament problem. In Proceedings of the 7th International Confer-
ence on the Practice and Theory of Automated Timetabling (PATAT), 2008.

[Rib11] Celso C. Ribeiro. Sports scheduling: Problems and applications. International
Transactions in Operational Research, 2011.

[RT06] Rasmus Rasmussen and Michael Trick. The timetable constrained distance min-
imization problem. In J. Beck and Barbara Smith, editors, Integration of AI
and OR Techniques in Constraint Programming for Combinatorial Optimization
Problems, volume 3990 of Lecture Notes in Computer Science, pages 167–181.
Springer Berlin / Heidelberg, 2006.

[Tri11] Michael Trick. Challenge traveling tournament problems benchmark, 2011.
http://mat.gsia.cmu.edu/TOURN/.

[TW11] C. Thielen and S. Westphal. Complexity of the traveling tournament problem.
Theoretical Computer Science, 412(4-5):345–351, 2011.

[vHV06] P. van Hentenryck and Y. Vergados. Traveling tournament scheduling: A sys-
tematic evaluation of simulated annealing. LNCS, 3990:228–243, 2006.

[WN12] S. Westphal and K. Noparlik. A 5.875-approximation for the traveling tourna-
ment problem. Annals of Operations Research, 2012.

[YIMM09] D. Yamaguchi, S. Imahori, R. Miyashiro, and T. Matsui. An improved approx-
imation algorithm for the traveling tournament problem. In Proceedings of the
20th International Symposium on Algorithms and Computation (ISAAC), vol-
ume 5878 of LNCS, pages 679–688, 2009.

56 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Real-life Curriculum-based Timetabling

Tomáš Müller · Hana Rudová

June 2012

Abstract This paper presents an innovative approach to curriculum-based
timetabling. Curricula are defined by a rich model that includes optional
courses and course groups among which students are expected to take a sub-
set of courses. Transformation of the curriculum model into the enrollment
model is proposed and a local search algorithm generating corresponding en-
rollments is introduced. This enables curriculum-based timetabling in any
existing enrollment-based course timetabling solver. The approach was im-
plemented in a well established enrollment-based course timetabling system
UniTime. The system has been successfully applied in practice at the Faculty
of Education at Masaryk University for about 7,500 students and 260 curric-
ula. Experimental results related with this problem are demonstrated for two
semesters.

Keywords Course timetabling · Curriculum-based timetabling · Local
search · UniTime

1 Introduction

Curriculum-based timetabling belongs to the class of university course time-
tabling problems (Burke and Petrovic, 2002; Lewis, 2008). Much research has
been done in the area of curriculum-based timetabling (Di Gaspero et al,
2007; Bonutti et al, 2012), typically using a base curriculum model. In this

T. Müller
Space Management and Academic Scheduling, Purdue University
400 Centennial Mall Drive, West Lafayette, USA
E-mail: muller@unitime.org

H. Rudová
Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic
E-mail: hanka@fi.muni.cz

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 57

model, besides the usual classes, instructors and rooms tied together by various
constraints (e.g., a room must be of large enough size, or an instructor can only
teach one class at a time), there is a set of curricula defined. Each curriculum
contains a list of courses that are to be attended by the same students (students
of the curriculum). This is usually backed up by a hard constraint ensuring
that classes of the same curriculum cannot overlap in time.

In the real world (McCollum, 2007), on the other hand, students are usually
not required to attend all courses of a curriculum. Besides compulsory courses
(courses that students must, or at least are expected, to take), there are elective
courses (usually forming groups, where students are expected to take n of m
courses) and optional courses that students may or may not take. Moreover, for
some courses, students may decide during which semester they will take them.
Typically, compulsory and elective courses cannot overlap in time, except there
may be some overlaps of elective courses that are of the same group. For
instance, if students are to take one of the given three courses, these three
courses can be timetabled during the same time. Optional courses are usually
only required to be at times that are not blocked by some other compulsory
or elective course of the same curriculum. It is important to note here that
each course may be present in multiple curricula, and it may be required for
some curricula and only optional for another.

The whole problem is usually made even more complicated by the fact
that courses tend to have multiple course sections (Hertz, 1991; Rudová et al,
2011). Courses with many students are usually split into several seminar groups
and/or lectures. Furthermore, a course can be offered in various configurations
(e.g., a lecture only, a lecture and a lab), with multiple lectures and labs avail-
able and some restrictions on what combinations of lecture and lab students
are allowed to take. There can also be some mapping between curricula and
specific classes of a course (e.g., the first lecture of a course may be reserved
for students of an engineering major), but often there is none. Even simple
course sectioning into several seminars leads to the inability to map curricula
onto pairs of classes with no overlap in time. This is a very important aspect
of the problem which must lead to more complex models and solutions.

1.1 Our Work

In our work, we rely on the UniTime1 university timetabling system, con-
taining an enrollment-based course timetabling solver which already deals
with course sections and configurations of courses. In UniTime, students are
assigned to classes based on student course demands (e.g., taken from pre-
enrollment or from a previous semester) in a way that tries to keep students
with similar courses together (Müller and Murray, 2010). A class is under-
stood to be a part of the course which needs a time and a room assignment
(e.g., each of the seminar groups or a lecture is a class). The course timetabling

1 http://www.unitime.org

58 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.unitime.org

process looks for a proper assignment of times and classrooms to classes with
the goal to optimize a set of criteria. It aims to minimize the number of stu-
dent conflicts, i.e., cases when students are not able to attend classes due to
their overlap in time or due to their placement of one right after the other in
rooms that are too distant. Student conflicts can be decreased by assignment
of a proper time as well as by swapping students between alternative classes
or configurations of a course. Other important criteria include time and room
preferences and restrictions for assignment of particular classes as well as dis-
tribution preferences specifying relations among several classes. A detail de-
scription of UniTime features and algorithms as well as its application to the
Purdue University timetabling problem can be found at (Rudová et al, 2011).

This paper introduces a curriculum model which is applicable to solve
real-life curriculum-based timetabling problems at large universities such as
Masaryk University (Czech Republic) or Purdue University (USA). We also
propose a transformation of this curriculum model into an enrollment model
where each course is associated with a set of enrolled students (Lewis et al,
2007). A hybrid model of combining curricula with historic student enrollment
data is also possible and briefly discussed in this paper. We describe a local
search algorithm (Hoos and Stützle, 2005) which allows us to generate student
course demands for the enrollment timetabling problem which respect char-
acteristics of curricula. Given the curriculum model, transformation into the
enrollment model, and the algorithm for generating student enrollments, it is
possible to enable curriculum-based timetabling in any existing enrollment-
based timetabling solver.

The proposed curriculum model and algorithm is implemented in UniTime
and an application of this approach is presented on real-life curriculum-based
timetabling problems from the Faculty of Education at Masaryk University.
Timetables generated by UniTime have been used at the college in practice
since Fall 2011. Here we have about 260 different curricula for about 7,500
students. This corresponds to timetabling of present, combined and lifelong
forms of study. Overall computational results are presented on problems from
two semesters, Fall 2011 and Spring 2012. We present results of the curricula
to enrollments transformation for each of the three different forms of study,
each representing a curriculum model with different characteristics. The num-
ber of curricula is very high since most of the programs in the college combine
two different majors in order to educate teachers in two different subject areas
(e.g., Math and Physics or Physics and Chemistry). A curriculum is defined
for each allowed combination. This makes the overall timetabling very com-
plex since there is a wide range of combinations with largely varying numbers
of students in them. In particular, there are many combinations such as Math
and Music, with only a few students, whose curriculum must still be respected.
The initial requirement actually was to create timetables for compulsory and
elective courses of all curricula with almost no student conflicts. In the pa-
per, we demonstrate that timetabling of about 1,500 classes was possible with
only about 100 student conflicts, i.e., 99.8 % of student course demands in
curricula were satisfied for compulsory and elective courses. This was accom-

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 59

panied by consideration of a set of other problem characteristics including
time and room preferences on individual classes as well as various relations
among classes. During the timetabling process, the solution generated by fully
automated methods was also interactively adjusted to reflect additional needs
of the faculty and the students. The main results for the initial automated
timetables, as well as for the final interactively corrected timetables that were
used at the Faculty of Education in practice, are presented for both semesters.

In the following section we propose a curriculum model and the next chap-
ter specifies a possible mapping between curriculum and enrollment models as
a transformation of curricula to student course demands. Consequently we de-
scribe a local search algorithm that computes student course demands. Finally
we provide experimental results from the application of the resultant system
at the Faculty of Education.

2 Curriculum Model

We propose a curriculum model that is able to tackle an advanced set of
real-life characteristics of timetabling problems. A curriculum, usually tied to
students by their academic area (program of study) and one or more majors
(further specializations) is split between different semesters. The tuple speci-
fying curriculum and semester is called classification. A number of students is
associated with each classification. This number may be known or may be esti-
mated from previous semesters using various student projections. In addition
to the number of students, each curriculum has an associated set of courses
defined for each semester. Each course has a percentage which evaluates to
the number of students that are expected to attend the course out of all those
in the classification. These course percentages may also be replaced by the
number of students from the classification expected to attend the course.

To model the relations between courses in a curriculum, various groups
are defined. Each group contains a subset of courses in the curriculum. It
is possible to create two types of groups. A conflicting group expresses that
students are expected to take all courses in the group. A non-conflicting group
indicates that students are expected to attend just one course in the group.
During timetabling this means that courses in a non-conflicting group may
overlap in time. Courses in a conflicting group must be timetabled so that all
students in one course are able to attend all other courses in the conflicting
group.

An illustrative example of a curriculum is presented in Figure 1. A bache-
lors degree in the curriculum is offered over three years. Students are required
to take courses A and B during their first year of study, C and D during their
second year of study, and E and F during their last year of study. They are
also expected to take course G either the first or the second year (though
80 % of students usually take the course during the second year). Similarly,
they can take course H during their second or third year. During the first

60 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 1 Example of a curriculum prepared in UniTime timetabling system.

year, they should also take I1 or I2 (note that these two courses are put into
a non-conflicting group “I1 or I2”). During their second year, they should also
take two of courses J1, J2, J3 (this is solely modeled by the curriculum course
percentages). There are also optional courses L1 and L2, which are either not
taken at all or are taken together (this is modeled by the conflicting group “L1
and L2”).

It is also possible for a course to be in multiple groups, as demonstrated in
Figure 2. Due to the transitive closure relationship between groups discussed
in Section 2.1, this allows modeling cases where a student needs to take a
certain pair of courses (M1 together with M2 or N1 together with N2 or O1
together with O2) or other more complex cases.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 61

Fig. 2 Example with courses in multiple groups.

Please note that a curriculum may not contain all courses that a student
in the curriculum may take during his/her study, but only courses that are
offered in the term that is to be timetabled. For instance, if we are creating
the Spring 2012 timetable, only courses that are offered in Spring 2012 will
be present, but there will still be students associated with a curriculum that
are in different years or semesters of their study. Also, if there has been a
curriculum change starting in Spring 2011, students in their third year will
take courses from the old curriculum whereas students in their first and the
second years will need to follow the new curriculum.

A typical curriculum for the combined form of masters study taking two
years is shown in Figure 3. In the Course Projections table, the columns titled
01 and 02 contain the expected enrollments for each course and semester. The
columns titled Last are optionally displayed columns which indicate the num-
ber of students enrolled in the course during the last-like semester (Fall 2010).
Courses in the conflicting groups P 01 and P 02 represent compulsory courses
in the first and the second year respectively. Courses in the non-conflicting
groups PV 01, PVJ 01, PV 02 represent elective courses. Students in this cur-
riculum are expected to take two electives in the first year (one from each
group PV 01 and PVJ 01) and only one elective in the second year (group
PV 02). Optional courses do not belong to any group (column Group in the
Course Projections table is empty). Note that the groups P 01 and P 02 are
not necessary as all the courses in these two groups expect attendance by all
the first year or second year students respectively.

2.1 Formal Model

More formally, there is a set of courses c ∈ Ca for each curriculum a ∈ A. The
set of all courses in the whole timetabling problem corresponds to

⋃
a∈A C

a.

Since a course may appear in more than one curriculum, sets Ca and Cb for
curricula a, b ∈ C may possibly have a non-empty intersection. A curriculum
a is associated with student counters xa1 , x

a
2 , . . . x

a
n where n is the number of

semesters and xai is the number of students in curriculum a and semester i.

62 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 3 Example of curriculum from Fall 2011 at the Faculty of Education.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 63

Note that the tuple (a, i) defines a classification. To simplify formulations, we
define the set AI as a set of all classifications (a, i).

Furthermore, there is a matrix with values eac,i between 0 and 1. For each
course c and semester i, the value eac,i defines the proportion of the number of
students xai expected to attend the course c. Each course c ∈ Ca is expected
to be attended by eac,ix

a
i students from classification (a, i). Finally, there are

groups of courses Ga
1 ⊆ Ca, . . . , Ga

k ⊆ Ca representing conflicting groups and
Ha

1 ⊆ Ca, . . . ,Ha
l ⊆ Ca representing non-conflicting groups in the curriculum.

It is also important to mention that for each pair of courses c, d ∈ Ca,
we expect the following proportion of the number of students in classification
(a, i) represented by values from interval 〈0, 1〉.

tac,d,i =

0 ∃j : c, d ∈ Ha

j ,
1 ∃j : c, d ∈ Ga

j ,
eac,ie

a
d,i otherwise.

We call this number the target share of a curriculum between the two courses.
For the above example with Figure 1, the target share between courses L1

and L2 is 1 (all students attending L1 are expected to attend L2 and vice
versa), it is 0 between courses I1 and I2 (students are taking either I1 or I2,
but not both), and it is 0.44 between J1 and J2 for the second year students
(44 % of students are expected to take both J1 and J2).

If there are courses in multiple groups, a special graph needs to be con-
sidered. Here the nodes are represented by courses and the edges are defined
by the existence of a (conflicting or non-conflicting) group between the two
courses. More precisely, there is an edge between c, d ∈ Ca if courses c and d
are present in the same group. The target share tac,d,i is set to zero if there is a
path c = c1, c2, . . . , cm−1, cm = d in the graph where at least one of the groups
defining edges on the path is non-conflicting. The target share tac,d,i is set to
one if the path has all the groups conflicting. Note that correct computation of
all target share values necessitates computation of the transitive closure in the
graph. For the above example with Figure 2, this means that we also expect no
students to be between course M1 and N2, between M2 and N1, and between
M2 and N2 (and similar for O1 and O2 courses).

3 Curriculum to Enrollment Model Transformation

We now show that the proposed curriculum model can be transformed into
an enrollment model. In the enrollment model, each course has a set of students
enrolled in it. Our goal is to find an assignment of students to courses in
the enrollment model such that the curricula are respected. This means that
student conflicts in the enrollment model should correspond with the number
of broken requests given by curricula. For instance, two compulsory courses
in a curriculum with 10 students timetabled at the same time corresponds to
10 student conflicts in the enrollment model.

64 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

First, consider the target share between two courses in a curriculum. We
propose relating the target share with the number of students who must be
able to attend both courses. This corresponds with the number of student
conflicts in the enrollment model. Further, particular target shares specify the
characteristics of an ideal enrollment model in which student conflicts fully
correspond with the unmet curricular course requirements in the curriculum
model. Having this in mind, we define an optimization criterion evaluating
assignments of students to courses in the enrollment model. This criterion
evaluates the affinity of this assignment to an ideal enrollment model. Gener-
ally, we can summarize distances from optimality based on a comparison of
characteristics (target shares) of the ideal enrollment model with characteris-
tics of the assignment. Certainly our goal is to find an assignment with the
minimal distance. For instance, if there are two courses with target share of
15 students in a curriculum a and our assignment has only 14 students that are
enrolled in both of these courses from a, then the contribution to the distance
corresponds to 1.

3.1 Formal Transformation

In the curriculum model, there are xai students for each classification (a, i).
We summarize characteristics of the ideal enrollment model with respect to
the curriculum model.

1. There are eac,ix
a
i students from the classification (a, i) enrolled in the course c.

2. The target share tac,d,i between courses c and d of the classification (a, i)
specifies the number of students tac,d,ix

a
i enrolled in both courses c and d.

If we expect that each student is enrolled in only one curriculum2, all
curricula are independent and do not share any students. Also, it is clear that
each student is enrolled in only one semester of the curriculum a. This means
that there are different students in the two semesters i, j of curriculum a.
This extends characteristics of the ideal enrollment model with respect to the
curriculum model.

1. There is a total of
∑

(a,i)∈AI e
a
c,ix

a
i students enrolled in the course c.

2. For each two courses c, d ∈ Ca, the total number of students enrolled in
both courses corresponds to

∑
(a,i)∈AI t

a
c,d,ix

a
i .

Next we consider an assignment θ of students to courses defining an en-
rollment model which will be evaluated with respect to the ideal enrollment
model. We also expect that each such student belongs to a curriculum a ∈ A
and its semester i and the number of students in curriculum a equals to xai for
the semester i. In the assignment θ, we denote the number of students xai in
classification (a, i) belonging to both courses c, d ∈ Ca as an actual share sac,d,i.

2 This is typical for the vast majority of students in our case. Only students wanting to
study two different topics would not satisfy this condition.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 65

The assignment θ is evaluated by the distance

F (θ) =
∑

(a,i)∈AI

∑
c,d∈C,c6=d

|tac,d,ixai − sac,d,i| =
∑

(a,i)∈AI

F (θ, a, i) .

Clearly an ideal assignment ω (assignment with the ideal enrollment model)
has a distance F (ω) = 0. Since such an assignment may not necessarily exist,
our goal is to find an assignment σ with the minimal distance F (σ). We also
defined F (θ, a, i) since students in each classification (a, i) are different from
students in all other classifications. Following that, the assignment of students
for each classification is independent of assignments in all other classifications
and the following statement holds.

minF (θ) =
∑

(a,i)∈AI

minF (θ, a, i) (1)

3.2 Using Historical Data

It is also possible to make adjustments to the target share matrix based on
historical data, typically from the last-like semester (e.g., last-like semester
for Spring 2012 is Spring 2011). For instance, if we know from past experience
that students attending J1 are more likely to attend J2 than J3, we can use
this information to adjust the values of the matrix to reflect this.

More formally, the target share is tac,d,i = p rac,d,i+(1−p)eac,iead,i where rac,d,i
is the percentage of students from classification (a, i) that took both courses c
and d in the last-like semester, and p a number between 0 and 1 defining how
much we want to stick with the past. Note that this new target share only
applies to pairs of courses for which we have historical data. In other words, if
either course c or d is newly offered, the target share is only defined by eac,ie

a
d,i

matrices and the groups in the previous chapter.
Given this, we can take assignment θ of students in the last-like semester,

compute its distance F (θ) and consider it as an initial assignment when looking
for an (sub-)optimal solution to the timetabling problem using the curriculum
model.

4 Construction of Enrollments

We specified how students should be assigned to courses to respect the cur-
riculum model by minimization of the distance F (θ). In this section, we de-
scribe a local search algorithm which allows computation of a “reasonable”
sub-optimal assignment θ of students to courses with respect to F (θ). As dis-
cussed in the second paragraph of Section 3.2 and demonstrated in Equation 1,
we expect different students for each classification (a, i). This means that the
assignment θ can be computed per partes, i.e., the local search algorithm is
applied to each classification separately.

66 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

First, it is important to discuss computation of the target share between
two courses c, d ∈ Ca. We will concentrate on computation of the number
of students t

a
c,d,i that are expected to be assigned to both courses c and d.

Corresponding to Section 2.1, this is counted based on tac,d,ix
a
i . However, it is

also bounded by the number of students in courses c and d, respectively. To
account for this, the number of students in the course c for classification (a, i) is
denoted xac,i = round(eac,ix

a
i). For instance, if there are 20 students in the given

semester of a curriculum, and courses c and d are expected to be attended by
10 and 15 students respectively, the share of the two courses must be between
5 and 10.

t
a
c,d,i =

max(0, xac,i + xad,i − xai) ∃j : c, d ∈ Ha

j ,

min(xac,i, x
a
d,i) ∃j : c, d ∈ Ga

j ,

max
(

min
(

round(eac,ie
a
d,ix

a
i), xac,i, x

a
d,i

)
, xac,i + xad,i − xai

)
otherwise.

The overall distance F (θ, a, i) for classification (a, i) is counted incremen-
tally for each course as the difference ∆F (θ, a, i, c, znew,⊥) between the dis-
tance before and after assignment of a student znew into a course c. It also
allows for a swap of a course between two students znew and zold (denoted by
∆F (θ, a, i, c, znew, zold)). Pseudo-code of this function is presented in Figure 4.

1: function ∆F (θ, a, i, c, znew, zold)
2: f = 0
3: for d ∈ Ca such that d 6= c

(for each course other than c, f is increased by the difference
between target share and actual share before and after the change)

4: t := t
a
c,d,i

5: s := sac,d,i
6: f := f − |t− s|
7: if znew ∈ students(d) then s := s+ 1
8: if (zold 6=⊥ and zold ∈ students(d)) then s := s− 1
9: f := f + |t− s|

10: return f

Fig. 4 Pseudo-code of function ∆F (θ, a, i, c, znew, zold).

The search for assignment of students to courses for the given classifica-
tion (a, i) is processed in two phases as can be seen in Figure 5. In the first
phase (lines 3-7) a simple construction heuristic is used. In each iteration,
a single student is assigned to a particular course until each course has the
desired number of students. Courses are ordered dynamically by the number
of remaining spaces (if there are two or more courses with the same number of
remaining spaces, one is selected randomly — see line 4). For a selected course,
all students that are not yet assigned to it are checked, and one of the students
that has the best impact on the overall distance is selected randomly (line 5).

In the second phase (lines 8-18) a great deluge approach (Dueck, 1993) is
used. The initial bound UB is set to 1.25 of the initial solution’s distance f

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 67

1: procedure search(a, i, α)
2: f := 0

(construction phase)
3: while ∃u ∈ Ca such that ‖students(u)‖ < xac,i
4: c := random(d ∈ Ca such that maximal(xad,i − ‖students(d)‖))
5: z := random(v 6∈ students(c) such that minimal(∆F (θ, a, i, c, v,⊥))
6: f := f +∆F (θ, a, i, c, z,⊥)
7: students(c) := students(c) ∪ {z}

(great deluge phase)
8: UB = 1.25 ∗ f (upper bound)
9: while (UB ≥ 0.75 ∗ f and f > 0)

10: c := random(d ∈ Ca such that ‖students(d)‖ < xad,i and xad,i > 0)

11: zold := random(v ∈ students(c))
12: znew := random(v 6∈ students(c))
13: ∆f := ∆F (θ, a, i, c, znew, zold)
14: if (∆f ≤ 0 or f +∆f ≤ UB) then
15: f := f +∆f
16: students(c) := students(c)\{zold}
17: students(c) := students(c) ∪ {znew}
18: UB := UB ∗ (1− α)

Fig. 5 Pseudo-code of the algorithm computing enrollments for classification (a, i).

(line 8) and it is decreased by the coefficient α (typically 0.0001 %) in each
iteration (line 18). The search is stopped when a solution with zero distance is
found or when the bound reaches 0.75 of the solution’s distance (line 9). In each
iteration, a possible change of a single student in a course is generated (lines 10-
12) and accepted if the resultant solution’s distance does not exceed the bound
(lines 14-17). Changes that do not increase the distance are also accepted.
A course, a student that is removed from this course and a student that is
assigned to this course are selected randomly (lines 10, 11, 12, respectively).

When an assignment θ with zero distance F (θ, a, i) is found during the first
phase, the second phase is not executed. When historical data are available
and we want to take them into account, the first phase starts with last-like
semester enrollments (see Section 3.2).

5 Experimental Results

The following experiments are based on Fall 2011 and Spring 2012 data from
the Faculty of Education at Masaryk University. Fall 2011 is the first semester
for which UniTime was used to build the course timetable for the college.
Experiments in Section 5.1 were computed on an Apple MacBook Pro with
a 3.06 GHz Intel Core 2 Duo processor and 8 GB RAM, running Mac OS X
10.7.3 and Java 1.6.0. Results in Section 5.2 are presented from the installation
for the Faculty of Education and the Faculty of Arts (Rudová and Müller,
2011) running on a virtual machine hosted on a machine with two Intel X5560
processors and 96 GB RAM (8 GB dedicated to the UniTime virtual machine).

68 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5.1 Curriculum to Enrollment Transformation

Table 1 shows results from the curriculum to enrollment solver. All of the cur-
ricula are split into three groups based on the student’s form of study. Results
are presented for all curricula together as well as for particular sets. For each
set, the number of curricula, classifications and students is specified. We also
present the number of students per classification and the number of courses
per classification. For these data sets, the average distance F (θ, a, i), the aver-
age distance achieved after the construction phase of the search algorithm (see
Figure 5), and the average computational time is presented for 10 independent
runs.

We can see that curricula of the present form of study introduce the largest
data set with the highest computed distance. Curricula of the combined form
of study can be transformed into a better enrollment model (the distance
is lower) and it takes a longer time. Curricula of the lifelong form of study
introduce the smallest data set and are easiest to transform. To understand
the achieved quality of the solution we note that the distances 7.05 and 6.66
for the present form of study correspond to 0.60 % and 0.69 % of the worst
possible distance, respectively.

Certainly we tried to find the best possible distance F (θ, a, i) in a reason-
able time. We ran the set of experiments with varying size of α (see line 18 of
Figure 5 and description of the algorithm) influencing progress of the search

Fall 2011 All together Present (P) Combined (K) Lifelong (C)

Spring 2012

Curricula 265 210 28 27

258 202 25 31

Classifications 574 470 56 56

543 442 53 48

Students 7,569 4,301 2,562 706

6,803 3,852 2,362 589

Students 13.19 9.15 45.75 14.71

per classif. 12.53 8.71 44.57 12.27

Courses 30.61 34.63 18.32 5.67

per classif. 27.44 31.06 15.62 7.21

F (θ, a, i) 7.05± 0.01 8.24± 0.01 3.14± 0.03 0.00± 0.00

6.66± 0.01 8.04± 0.01 1.02± 0.03 0.13± 0.00

F (θ, a, i) 11.97± 0.13 13.25± 0.13 11.53± 0.14 0.04± 0.06

after 1. phase 10.87± 0.11 11.99± 0.12 11.03± 0.12 0.31± 0.06

CPU time [s] 3.36± 0.06 3.08± 0.05 8.58± 0.12 0.01± 0.00

3.53± 0.07 2.88± 0.06 12.14± 0.16 0.02± 0.03

Table 1 Computing enrollments for two semesters.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 69

algorithm. The smaller α is the slower the upper bound decreases and the
great deluge algorithm has more time for optimization. Results of this exper-
iment are available in Figure 6. Here we can see that the algorithm is able to

3 3.5 4 4.5 5 5.5 6 6.5 7
6.5

7

7.5

8

8.5

0

10

20

30

40

F(θ,a,i)

CPU Time [s]

x

F
(θ

,a
,i
)

C
P

U
 T

im
e

 [
s
]

Fig. 6 Graph depicting dependency of the distance F (θ, a, i) and the computational time
on the value α = 10−x for the problem with all curricula and semester Spring 2012.

improve the distance with a reasonable demands on computational time up
to the value α = 0.0001 % (corresponding to x = 6 in the graph). Decreasing
this value further does not achieve significant improvements in the distance in
a reasonable computational time.

5.2 Course Timetabling

Table 2 contains results from the course timetabling (courses from the present
form of study only) at the Faculty of Education. For each semester, there
are results from the automated solver as well as the published solution, after
a few interactive changes were made. Note that published solutions were used
in practice. The table shows the overall number of courses and the number
of compulsory and elective courses (in parenthesis). Similarly, the number of
classes and the number of student enrollments in each problem are presented.
The second part of the table presents the main characteristics of the computed
solution. The most important factor of the problem was the number of student
conflicts among compulsory and elective courses. As we can see, we have only
112 and 96 conflicts for 1,575 and 1,408 timetabled classes, respectively. This is
certainly a very strong result given all of the complexities and the size of both
problems (recall from Table 1 that we have 210 and 202 curricula for 4,301
and 3,852 students, respectively). The number of student conflicts among all
courses is slightly higher, it is mostly due to overlaps between optional and
compulsory or elective courses. These numbers, together with results for time,
room, and distribution preferences, correspond with priorities of the school and
the importance of particular criteria. The better results for Spring semester
were achieved due to a smaller number of classes timetabled into the same

70 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fall 2011 Fall 2011 Spring 2012 Spring 2012

automated published automated published

Courses (comp. & elect.) 1,225 (1,156) 900 (870)

Classes (comp. & elect.) 1,831 (1,575) 1,665 (1,408)

Enrollments (comp. & elect.) 57,861 (52,396) 45,786 (45,400)

Student conflicts 418 (0.63 %) 456 (0.69 %) 477 (1.02 %) 417 (0.89 %)

among comp. & elect. 112 (0.17 %) 140 (0.21 %) 96 (0.20 %) 93 (0.20 %)

Time preferences 89.27 % 89.93 % 94.88 % 95.32 %

Room preferences 78.03 % 79.92 % 85.15 % 86.50 %

Distribution preferences 84.50 % 80.41 % 90.49 % 90.49 %

Interactive changes 355 275

of time 183 105

of room 300 218

Table 2 Results from timetabling at the Faculty of Education for two semesters.

amount of available classrooms. Finally, the number of interactive changes
with the initial solution is demonstrated. These low numbers show that it is
not necessary to adjust solutions much. Still, it is important to allow some
adjustments to the solutions to make them more acceptable for the school.

6 Conclusion

We presented a new approach to curriculum-based timetabling and applied it
to solve large-scale problems at the Faculty of Education where it is imple-
mented in the UniTime system and used for timetabling since Fall 2011. Auto-
mated timetabling simplified the process for the college where about 40 sched-
ule deputies cooperated on creating timetables manually until Spring 2011.
Presently, they provide only inputs, such as desirable assignments of times and
rooms to classes, and the timetables are constructed by UniTime. It is also
important to mention the existence of Information System3 at Masaryk Uni-
versity where curriculum data are maintained and can be used for timetabling
directly. Resultant timetables are also available here4.

Further generalization of the approach involves inclusion of students in
more than one curriculum. This is fully compatible with the proposed search
algorithm where students can be used in different curricula and additional
courses will be generated for them from each curriculum. However, this ap-
proach is not yet implemented. Also, some reformulation of the curriculum
model related to the proposed distance function is necessary. Our intent to
include this functionality lies in easier management of existing curricula. Hav-
ing many curricula composed of two different majors (examples are Math and

3 http://is.muni.cz
4 http://is.muni.cz/rozvrh/?fakulta=1441&lang=en

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 71

http://is.muni.cz
http://is.muni.cz/rozvrh/?fakulta=1441&lang=en

Physics or Physics and Chemistry as discussed before), it would be easier to
maintain the smaller set of majors and an additional set of acceptable combi-
nations of majors defining curricula.

Acknowledgements This work is supported by the Grant Agency of Czech Republic under
the contract P202/12/0306. The access to the MetaCentrum computing facilities provided
under the program ”Projects of Large Infrastructure for Research, Development, and Inno-
vations” LM2010005 funded by the Ministry of Education, Youth, and Sports of the Czech
Republic is highly appreciated.

References

Bonutti A, De Cesco F, Di Gaspero L, Schaerf A (2012) Benchmarking
curriculum-based course timetabling: formulations, data formats, instances,
validation, visualization, and results. Annals of Operations Research To ap-
pear

Burke EK, Petrovic S (2002) Recent research directions in automated
timetabling. European Journal of Operational Research 140:266–280

Di Gaspero L, McCollum B, Schaerf A (2007) The second international
timetabling competition (ITC-2007): Curriculum-based course timetabling
(track 3). Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0,
University, Belfast, United Kingdom

Dueck G (1993) New optimization heuristics: The great deluge algorithm and
the record-to record travel. Journal of Computational Physics 104:86–92

Hertz A (1991) Tabu search for large scale timetabling problems. European
Journal of Operational Research 54(1):39–47

Hoos HH, Stützle T (2005) Stochastic Local Search Foundations and Applica-
tions. Elsevier

Lewis R (2008) A survey of metaheuristic-based techniques for university
timetabling problems. OR Spectrum 30(1):167–190

Lewis R, Paechter B, McCollum B (2007) Post enrolment based course
timetabling: A description of the problem model used for track two of the
second international timetabling competition. Cardiff Working Papers in
Accounting and Finance A2007-3, Cardiff Business School, Cardiff Univer-
sity

McCollum B (2007) A perspective on bridging the gap between theory and
practice in university timetabling. In: Burke E, Rudová H (eds) Practice
and Theory of Automated Timetabling VI, Springer-Verlag LNCS 3867, pp
3–23

Müller T, Murray K (2010) Comprehensive approach to student sectioning.
Annals of Operations Research 181:249–269

Rudová H, Müller T (2011) Rapid development of university course timeta-
bles. In: Proceedings of the 5th Multidisciplinary International Scheduling
Conference – MISTA 2011, pp 649–652

Rudová H, Müller T, Murray K (2011) Complex university course timetabling.
Journal of Scheduling 14(2):187–207

72 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Schedule Pattern: an Innovative Approach to

Structuring Time in Secondary Schools

Scheduling

Baiyun Tao, Rick Dwyer

Follett Software Company/X2 Development Corporation, Hingham, MA, USA

btao@FollettSoftware.com

rdwyer@FollettSoftware.com

1 Introduction

This extended abstract describes the structure of time used by secondary schools

in the United States, three common scheduling models each utilizing time

differently, and an innovative approach using schedule patterns to efficiently and

flexibly schedule classes into a master schedule. The content of this extended

abstract is based on over 20 years of practical experience scheduling secondary

schools in the United States. During that time the authors have built thousands of

high school and middle school schedules using various versions of timetabling

software we created.

The school year in a typical secondary school in the United States is comprised of

180 days. Each school day consists of about 5½ - 6 hours of instruction resulting

in approximately 1000 hours of instructional time per student per school year.

Partitioning instructional time between the various curriculum content areas

(math, science, social studies, language, art, music, technology, etc.) is a key

challenge. The structure of time in the school schedule provides the framework

for how this partition is accomplished.

In section 2 we define three fundamental parameters that govern the structure of

time in a secondary school schedule: terms per year (TPY), days per cycle (DPC),

and periods per day (PPD). The value of these parameters determines the kind of

schedules possible.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 73

mailto:btao@FollettSoftware.com
mailto:rdwyer@FollettSoftware.com

In section 3 we describe three common scheduling models and some of their

variations. Each model makes specific choices regarding the values of TPY, DPC,

and PPD which impact not only the student and teacher experience but the

challenges involved in scheduling the school.

In section 4 we describe schedule patterns, an innovative approach to grouping

time slots into valid schedule instances. By combining schedule patterns into

pattern sets and assigning pattern sets to courses we can significantly reduce the

work involved in scheduling each course.

In section 5 we describe schedule rotations. A schedule rotation remaps time slots

from one schedule matrix (DPC x PPD) to another schedule matrix with the same

dimensions or one with different dimensions. Rotations are applied post schedule

build. They allow a user to schedule their school using simple, uniform patterns

and then transform it into a schedule with more complex varied patterns.

2 Structure of time in secondary school schedules

In everyday life time is organized around clocks and calendars. The calendar splits

up the year into months, weeks, and days while the clock splits up the day into

hours, minutes, and seconds. A week is a block of seven days that repeats

throughout the year. These structures provide a universal way to talk about time

and schedule our lives. In the same way secondary schools in the United States

use analogous time structures to meet their scheduling needs.

2.1 School Year

The school year consists of 180 school days. A school year typically starts in

August or September and ends in May or June. The specific start and end dates

depend on state requirements as well as the number and duration of school

vacations and holidays.

74 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

2.2 Schedule Term

A schedule term is a portion of a school year. Common schedule terms are full

year (180 days), semester (90 days each), and quarter (45 days each) (see Fig.1.1).

Schools can define as many different schedule terms as the schedule requires.

Fig 1.1 Typical scheduling terms

Typically a course is scheduled over a single schedule term. But courses can be

schedule over multiple schedule terms. For example an art course could be

scheduled over two trimesters (120 days or 2/3 of the school year) (see Fig 1.2).

Fig 1.2 Combine schedule terms consecutively and non-consecutively

2.3 Schedule Cycle

The schedule cycle is analogous to a week on a standard calendar. It is a fixed

block of days that repeats throughout the school year. The school defines the

number of days in the schedule cycle. Most schools do not use a 5 day cycle and

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 75

therefore the days in the schedule cycle do not correspond to the days of the week.

An even number of days such as a 6 day cycle is more common and allows

multiple sections of a partial cycle course to be scheduled in the same period on

alternate days.

2.4 Day

The schedule day is simply a day in session. Public schools in the United States

are only in session during the week – they do not meet on Saturday or Sunday.

2.5 Period

The school day is broken up into periods. Each day has the same number of

periods and each period has the same duration. This uniformity allows courses to

be scheduled during any period of the day. Typically a bell rings to mark the start

and end of each period. Between each period students usually have 3-5 minutes

get to their next class.

The structure of a schedule is therefore defined by three fundamental parameters:

the number of term per year (TPY), the number of days per cycle (DPC) and the

number of periods per day (PPD).

The number of days per cycle and the number of periods per day (DPC x PPD)

defines a simple schedule matrix.

The shape of the schedule matrix ultimately has the biggest impact on the day-to-

day experience of students and teachers in a schedule. It governs the amount of

time a student spends in each course during a day and the variety of courses

encountered during the cycle.

76 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3 Three Common Scheduling Models

In this section we look at three common scheduling models: traditional, block, and

hybrid.

3.1 Traditional Schedule

The most common traditional secondary school schedule has 7 periods per day

and 6 days per cycle. Traditional schedules usually vary between 6 – 8 periods per

day – the more periods the shorter the duration of each period.

Academic classes (English, math, science, and social studies) in a traditional

schedule usually run for a single period every day for the full school year. Non-

academic classes (art, music, or physical education) often receive less

instructional time. Changing the instructional time a course is schedule is

accomplished by reducing the number of days in the cycle or the number of terms

per year the course is scheduled. Partial cycle or partial year courses are common

in a traditional schedule. For example, physical education could be scheduled

every other day rather than every day and may only run a semester rather than a

full year. Typically a traditional schedule includes both semester and quarterly

courses.

In a traditional (7 x 6) schedule, students take 7 or more classes in the same term.

Teachers teach for 5 periods per day and usually have at least one period free for

planning the other period could be scheduled as a duty.

3.2 Block Schedule

The most common block schedule has 4 periods per day and 1 day per cycle. This

is called a 4x4 block schedule [1,2]. Each course meets 90 minutes per day for a

semester.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 77

A popular variation on the 4x4 block schedule is the A/B block schedule. The A/B

block schedule also has 4 periods per day but each course meets every other day

for the entire school year rather than every day for a semester.

With a smaller number of periods per day the block schedule allows extended

learning time each day in each class. Students and teachers also have fewer

classes meeting on each day.

3.3 Hybrid Schedule

A hybrid schedule is one which combines the traditional schedule and the block

schedule. A common hybrid schedule has 8 periods per day and 2 days per cycle.

Courses in a hybrid schedule are usually scheduled in 1 period (traditional) or in 2

consecutive periods (block).

4 Schedule Patterns

The master schedule builder schedules sections of courses. A course defines the

curriculum content while a section defines an instance of that content in the

schedule. For example a high school schedule will typically include a geometry

course. If 100 students request geometry, multiple sections of geometry will be

scheduled. A section represents a specific instance of the course scheduled at a

particular time, in a particular room, by a particular teacher.

Schedule patterns represent the valid ways a particular course such as geometry

can be scheduled and provide a visual representation of the shape of a course in

the schedule. The following are common schedule patterns in a traditional 6 day

schedule (1 period every day, 2 periods every day, 1 period every other day, and 1

period on 4 days and 2 periods on 2 days).

The defining attributes of a schedule pattern are the following:

- Days: number of days scheduled in the cycle

- Periods: number of periods scheduled during the day

78 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

- Terms: portion of the school year the pattern covers. By default a

schedule pattern is term agnostic so that it can be used in conjunction

with any schedule term to represent different time slots cross the

school year. (see Fig.2.1) It can also be term aware and specifies the

particular terms covered (see Fig.2.2).

- Shape: the distribution pattern of time slots (see Fig.2.1).

Fig 2.1 Term-agnostic schedule patterns: every day, every other day and lab

Fig 2.2 Term-aware schedule pattern: period 1 on S1 Period 2 on S2 (focus on S2)

Schedule patterns are grouped together as pattern sets. Each course in the schedule

is assigned a pattern set containing the valid schedule patterns for that course.

Courses scheduled in the same way typically share the same pattern set. However

a schedule patterns can be used by multiple pattern sets. So a course that should

only be scheduled in the morning could be associated with a pattern set containing

only morning schedule patterns.

Schedule patterns allow the system to efficiently and effectively schedule course

sections into valid time slots. For example, there are 20 possible day combinations

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 79

for a partial cycle course scheduled on 3 days in a 6 day cycle (in a single period).

In reality, however, only 2 of the 20 possible day combinations are typically valid

– the odd and even day combinations (1,3,5) and (2,4,6).

Schedule patterns allow the user to visually “paint” only the valid time slots

available for each course. This can significantly reduce the amount of work the

schedule builder expends in scheduling each course.

5 Schedule Rotations

Another common scheduling practice among secondary schools in the United

States, especially in middle schools, is a rotated schedule [3]. A schedule rotation

remaps time slots from one schedule matrix (DPC x PPD) to another schedule

matrix with the same dimensions or one with different dimensions. Rotations

allow users to schedule their schools using simple, uniform patterns and then

transform it into a schedule with more complex varied patterns post build.

In a flat schedule a course scheduled during the first period of the day is schedule

in the first period of the day on each day of the cycle. A simple rotation can vary

the period each class is scheduled across the different days in the schedule. This

allows a student to learn math at different times of the day on different days in the

schedule.

Rotations also allow schools to change the structure of a schedule post build. A

common scheduling rotation swaps the periods per day and the days per cycle. For

example a 7 x 5 schedule could become a 5 x 7 schedule. In the old schedule an

every-day class met for 45 minutes. In the new schedule the same every-day class

now only meets 5 days out of 7 but for 63 minutes each meeting. (See Fig.3.1)

80 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig.3.1 Define a rotation: from a 5-day 7-period to a 7-day 5-period schedule

To handle such flexible scheduling modes, simple flat schedule patterns are

created and used to build the master schedule. When the scheduling is finished the

schedule is transformed into more complex patterns through the rotation. Sections

are then being rotated based on the rotation definition. An example of simple flat

pattern and the more complex rotated patterns is shown in Fig.3.2.

Fig.3.2 Original and rotated schedule patterns

6 Conclusions

In the United States, secondary schools structure time in a variety of different

ways resulting in very different types of schedules. By allowing schools to define

the number of periods per day, the number of days per cycle, and the number of

terms per year, they have the flexibility to create a broad spectrum of different

schedules each meeting variety of different scheduling needs. We looked at three

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 81

scheduling models and some variations on these in this extended abstract: the

traditional schedule, the block schedules and the hybrid schedules.

The approach reported in this paper is implemented in Aspen master schedule

builder, a web-based automate master schedule builder that has been used by

many secondary schools in United States and abroad.

References

1. Irmsher, Karen, Block Scheduling, ERIC Digest, Number 104

http://www.ericdigests.org/1996-4/block.htm, 1996

2. John W. Cooper, Block Scheduling: Is this Right for America’s Public Schools?,

http://www.johnwcooper.com/papers/blockscheduling.htm, 2001

3. Williamson, R, Scheduling the Middle Level School to Meet Early Adolescent Needs,

Reston VA, National Association of Secondary School Principals, 1993

82 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.ericdigests.org/1996-4/block.htm
http://www.johnwcooper.com/papers/blockscheduling.htm

Using the PEAST Algorithm to
Roster Nurses in an Intensive-Care Unit

in a Finnish Hospital
Nico Kyngäs

1
, Kimmo Nurmi

1
, Eyjólfur Ingi Ásgeirsson

2
, Jari Kyngäs1

1 Satakunta University of Applied Sciences

Tiedepuisto 3, 28600 Pori, Finland
2 Reykjavík University, School of Science and Engineering, Menntavegur 1, 101 Reykjavík, Iceland

Abstract. Workforce scheduling has become increasingly important for both the public sector

and private companies. Good rosters have many benefits for an organization, such as lower costs,

more effective utilization of resources and fairer workloads and distribution of shifts. This paper

presents a successful way to roster nurses in an intensive-care unit in a Finnish hospital. The

rosters are generated using a population-based local search method called the PEAST algorithm.

The algorithm has been integrated into market-leading workforce management software in

Finland.

Keywords: Nurse Rostering, Staff Scheduling, Workforce Optimization, PEAST algorithm.

1 Introduction

Workforce scheduling, also called staff scheduling and labor scheduling, is a difficult and time

consuming problem that every company or institution that has employees working on shifts or on

irregular working days must solve. Different variations of the problem are NP-hard and NP-

complete (Garey and Johnson 1979, Bartholdi 1981, Tien and Kamiyama 1982, Lau 1996), and

thus extremely hard to solve. Good overviews of workforce scheduling are published by Alfares

(2004), Ernst et al. (2004) and Meisels and Schaerf (2003).

Nurse rostering (Burke 2004) is by far the most studied application area in workforce

scheduling. Other successful application areas include airline crews (Dowling et al. 1997), call

centers (Beer et al. 2008), check-in counters (Stolletz 2010), ground crews (Lusby et al. 2010),

nursing homes (Ásgeirsson 2010), postal services (Bard et al. 2003), retail stores (Chapados et al.

2011) and transport companies (Nurmi et al. 2011).

Most of the workforce scheduling cases in which academic researchers have announced that

they have signed a contract with a customer concern nurse rostering (Van Wezel and Jorna 1996,

Meyer auf’m Hofe 2001, Diaz et al. 2003, Kawanaka et al. 2003, Bard and Purnomo 2005, Burke

et al. 2006, Bilgin et al. 2008, Beddoe et al. 2009). Hospitals tend to be very open about their

operational details, enabling easy cooperation with academics who wish to publish the results of

their work. However, we believe there is still a gap between academic and commercial solutions.

The commercial products may not include the best academic solutions. Yet we have experienced

that nurse rostering cooperation between a commercial software vendor and academics does work.

According to our experience, the best action plan for real-world nurse rostering research is to

cooperate both with a problem owner and a software vendor. Collaboration with software vendors

and problem owners allows academics to concentrate on modeling issues and algorithmic power

instead of user interfaces, financial management links, customer reports, help desks, etc.

The need for effective commercial workforce scheduling has been driven by the growth in the

customer contact center industry and retail sector, in which efficient deployment of labor is of

crucial importance. The balance between offering a superior service and reducing costs to generate

revenues must constantly be found. There are five basic reasons for the increased interest in nurse

rostering optimization. First, hospitals around the world have become more aware of the

possibilities in decision support technologies and no longer want to handle the schedules manually.

Second, human resources are one of the most critical and most expensive resources for hospitals.

Careful planning can lead to significant improvements in productivity. Third, good schedules are

very important for the welfare of the staff, resulting in increased happiness and reduction of sick-

leaves. Fourth, new algorithms have been developed to tackle previously intractable nurse

rostering instances, and, at the same time, computer power has increased to such a level that

researchers are able to solve large-scale instances. Finally, one further significant benefit of

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 83

automating the scheduling process is the considerable amount of time saved by the administrative

nurses involved.

The goal of this paper is to show that the PEAST (Population, Ejection, Annealing, Shuffling,

Tabu) algorithm can be used to roster nurses in Finnish hospitals. Section 2 introduces the

workforce scheduling process with notes on nurse rostering. It also introduces the necessary

terminology. In Section 3 we describe the characteristics of the nurse rostering problems occurring

in intensive-care units in Finnish hospitals. Section 4 gives an outline of the PEAST algorithm.

Section 5 presents our computational results.

2 Workforce Scheduling and Nurse Rostering

Workforce scheduling consists of assigning employees to tasks and shifts over a period of time

according to a given timetable. The planning horizon is the time interval over which the

employees have to be scheduled. Each employee has a total working time that he/she has to work

during the planning horizon. Furthermore, each employee has competences (qualifications and

skills) that enable him/her to carry out certain tasks. Days are divided into working days (days-on)

and rest days (days-off). Each day is divided into periods or timeslots. A timeslot is the smallest

unit of time and the length of a timeslot determines the granularity of the schedule. A shift is a

contiguous set of working hours and is defined by a day and a starting period on that day along

with a shift length (the number of occupied timeslots). Shifts are usually grouped in shift types,

such as morning (M), day (D) and night (N) shifts. A specific sequence of shifts, such as DDDNN,

is called a stint. Each shift is composed of a number of tasks that should be completed during the

shift. A shift or a task requires the employee assigned to it to possess one or more competences. A

work schedule for an employee over the planning horizon is called a roster. A roster is a

combination of shifts and days-off assignments that covers a fixed period of time.

We classify the real-world workforce scheduling process as given in Figure 1. Workload

prediction, also referred to as demand forecasting or demand modeling, is the process of

determining the staffing levels – that is, how many employees are needed for each timeslot in the

planning horizon. Shift generation is the process of determining the shift structure, tasks to be

carried out on particular shifts and the competences needed on different shifts. Traditionally,

hospitals work in three shifts – morning, day and night – but in the intensive-care units the

customer flow should be considered when constructing the shift structure, as is the case in, e.g. the

call center and retail sector businesses. The shifts generated from a solution to the shift generation

problem form the input for subsequent phases in the workforce scheduling. Another important goal

for shift generation is to determine the size of the workforce required to solve the demand. Note

that shifts are created anonymously, so there is no direct link to the employee that will eventually

be assigned to the shift.

Fig. 1. The real-world workforce scheduling process.

In preference scheduling, each employee gives a list of preferences and attempts are made to

fulfill them as well as possible. It is very important to pay attention to employee requests. Kellog

and Walczak (2007) report that any academic nurse rostering model that does not include some

opportunity for preference scheduling will probably not be implemented. Nurses tend to use

complex decision-making skills when selecting their personal schedules. The employees’

preferences are considered in the days-off scheduling and staff rostering phases.

84 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Days-off scheduling deals with the assignment of rest days between working days over a given

planning horizon. Days-off scheduling also includes the assignment of vacations and special days,

such as union steward duties and training sessions. Staff rostering, also referred to as shift

scheduling, deals with the assignment of employees to shifts. Days-off and shifts are often

scheduled simultaneously. However, if a hospital scheduled days-off every tenth week and

rostering staff every second week, the nurses would be able to plan their free time more

conveniently.

Rescheduling deals with ad hoc changes that are necessary due to sick leaves or other no-shows.

The changes are usually carried out manually using some level of computer support. Finally,

participation in evaluation ranges from the individual employee through personnel managers

(administrative nurses) to executives (head nurses). A reporting tool should provide performance

measures in such a way that the personnel managers can easily evaluate both the realized staffing

levels and the employee satisfaction. When necessary, the workload prediction and/or shift

generation can be reprocessed and focused, and the whole workforce scheduling process restarted.

3 Nurse Rostering in an Intensive-Care Unit
in a Finnish Hospital

We have experience in solving workforce scheduling problems occurring in the transportation

industry, see for example (Nurmi and Kyngäs 2011, Nurmi et al. 2011, Kyngäs et al. 2012). Our

current research is focused on workforce scheduling in call centers and hospitals. Based on our

experiences, we believe that the framework for implementation-oriented staff scheduling we

presented in (Ásgeirsson et al. 2011) can be used to model a considerable number of real-world

workforce scheduling scenarios. With the help of administrative staff from Finnish hospitals we

used the framework to describe the problem occurring in intensive-care units in Finnish hospitals.

This problem includes five characteristics that are not always present in the nurse rostering cases

reported in the academic literature:

1. The number of nurses is over 100

2. The nurses are grouped in four categories based on their total working hours within the

planning horizon (100%, 78.43%, 50% and 40% of the full-time work)

3. Some shifts last more than 14 hours and actually include two consecutive shifts

4. Some nurses should always work on the same shifts

5. The nurses’ wishes for days-off and shifts cover as much as 50% of their total work.

The implementation should present a wide variety of real-world constraints and be tractable

enough to enable the addition of new constraints. It is important to concentrate on the acceptance

by and satisfaction of both the administrative staff and the nurses. Despite the fact that the

algorithm should be as robust as possible, no parameter tuning should be expected from the end-

users. On the other hand, it should be possible for the end-users to influence different aspects of

the algorithm, like weighting between constraints or limiting running times, if he/she wishes to.

We are well aware that it is difficult to incorporate the experience and expertise of the

administrative nurses into a nurse rostering system. They often have extremely valuable

knowledge, experience and detailed understanding of their specific staffing problem, which will

vary from hospital to hospital. To formalize this knowledge into constraints is not an easy task.

Still, we believe that the model given in this section builds up a solid foundation for nurse

rostering scenarios in hospitals and specifically in intensive-care units.

The most important goal is to minimize understaffing and overstaffing. Low-quality rosters can

lead either to an undersupply of nurses with a need to hire part-time nurses or an oversupply of

nurses with too much idle time, implicating a loss of efficiency. The overall objective is to meet

daily staffing requirements and personal preferences at minimum penalty without violating work

contracts and government regulations. The framework presented in (Ásgeirsson et al. 2011) makes

no strict distinction between hard and soft constraints; that will be given by the instances

themselves. The goal in an instance is to find a feasible solution that is most acceptable for the

hospital, that is, a solution that has no hard constraint violations and that minimizes the weighted

sum of the soft constraint violations. The weights will also be given by the instances themselves

and will vary between hospitals. Still, one should bear in mind that an instance is usually just an

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 85

approximation of practice. In reality, hard constraints can turn out to be soft, if necessary, while

giving weights to the soft constraints can be difficult.

The framework classifies the constraints into coverage, regulatory and operational

requirements, and operational and personal preferences. The coverage requirement ensures that

there are a sufficient number of nurses on duty at all times. The regulatory requirements ensure

that the nurses’ work contract and government regulations are respected. Operational and personal

preferences should be met as far as possible; this leads to greater staff satisfaction and

commitment, and reduces staff turnover.

We discuss the problem occurring in intensive-care units (ICU) in Finnish hospitals using an

example from the Satakunta Hospital District which offers specialized medical care services for

the 231,000 residents of the Satakunta region. The number of nurses in the ICU is 130. The

problem can be modeled as follows; the constraint numbers refer to the constraints presented in

(Ásgeirsson et al. 2011):

Coverage requirement

(C1) An employee cannot be assigned to overlapping shifts

(C2) A minimum number of employees with particular competences must be guaranteed for

each shift

(C4) A balanced number of surplus employees must be guaranteed in each working day

Regulatory requirements

(R1) The required number of working days, working hours and days-off within a timeframe

must be respected

(R2) The required number of holidays within a timeframe must be respected

(R3) The required number of free weekends (both Saturday and Sunday free) within a

timeframe must be respected

(R5) The minimum time gap of rest time between two shifts must be respected

(R6) The number of special shifts (such as union steward duties and training sessions) for

particular employees within a timeframe must be respected

(R7) Employees cannot work consecutively for more than w days

Operational requirements

(O1) An employee can only be assigned to a shift he/she has competence for

(O2) At least g working days must be assigned between two separate days-off breaks

(O5) An employee assigned to a shift type t1 must not be assigned to a shift type t2 on the

following day (certain stints are not allowed)

Operational preferences

(E1) Single days-off should be avoided

(E2) Single working days should be avoided

(E3) The maximum length of consecutive days-off is d

(E4) A balanced assignment of single days-off and single working days must be guaranteed

between the employees

(E5) A balanced assignment of different shift types must be guaranteed between the

employees

(E7) A balanced assignment of weekdays must be guaranteed between employees

(E8) Assign or avoid a given shift type before or after a free period (days-off, vacation)

Personal preferences

(P1) Assign or avoid assigning given employees to the same shifts

(P2) Assign a requested day-on or avoid a requested day-off

(P3) Assign a requested shift or avoid an unwanted shift.

Often, a nurse cannot be assigned to more than one shift per day. However, two consecutive

shifts per day are allowed in Finnish hospitals (see shift types C and E described later). The

definition of constraint C1 allows two or more shifts to be assigned provided they do not overlap.

Employees have seven possible competences: casting skill, intravenous skill, transportation skill,

help skill, novice-nurse, intermediate-nurse and top-nurse. It is obvious that a nurse can only be

assigned to a shift he/she has competence for (O1). The minimum number of employees of

particular competences for time of day (C2) is given in Table 1. Note that the competences may

overlap, e.g. a top nurse probably has an intravenous skill as well. Quite often, hospitals and ICUs

have more nurses working than are needed to cover the minimum number of nurses each working

day. The surplus nurses are used to cover the expected sick leaves and other no-shows. In our

example case a balanced number of surplus nurses must be guaranteed in each working day (C4).

86 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1. Minimum number of employees with particular competences for each time of day.

Within the last two years the hospital has started to consider the patient flow as a basis for the

shift structure. Even though the shift structure is not near-optimal, it is a good start towards

generating the shifts based on real workload prediction in the near future. The shift structure for

the ICU is given in Table 2. Note that C and E are so-called double-shifts that last 14 hours and 30

minutes.

Table 2. The shift structure.

The planning horizon is six weeks. The total working hours for each full-time nurse are 229

hours and 30 minutes (R1). The working hours can also be 180h, 114h 45min or 181h 30min if a

nurse is on part-time pension or has small children. The holidays (R2) and special shifts (R6) are

included in the working hours.

The working days and shifts are built up using the following rules. The number of free

weekends within a timeframe must be at least two (R3). At least nine hours of rest are required

between two shifts (R5). Nurses cannot work consecutively for more than nine days (R7). At least

two working days must be assigned between two separate days-off (O2). Single days-off and

single working days should be avoided (E1 and E2). The maximum length of consecutive days-off

is four (E3). A balanced assignment of single days-off and single working days must be

guaranteed between the employees (E4). A nurse assigned to a night shift (code Y) must not be

assigned to an early shift (A,X,U,B,E,C) the following day (O5). Furthermore, a night/early shift

should be avoided before/after a free period (E8).

Each six-week planning horizon is preceded with a phase where nurses express their wishes for

days-off and shifts (P2 and P3). These wishes cover as much as 50% of their total work on

average. This is why a balanced assignment of different shift types cannot be guaranteed between

the employees as given in constraint E5. The same holds for balancing the assignment of

weekdays (E7). A special request is that some nurses should always work on the same shifts

because they travel together to work from the nearby cities (P1).

As per the nurse rostering problem classification given in (De Causmaecker and Vanden Berghe

2011), the problem could be classified as ASBC|V3O|PX.

 min #emp

Casting skill 1

Intravenous skill 11

Transportation skill 1

Help skill 1

Novice-nurse 0

Intermediate-nurse
5 (at night)

10 (otherwise)

Top-nurse 4

Code Description From To

A Morning 07.30 15.15

X Transport I 07.30 15.15

U Admin 07.30 15.30

B Help I 07.30 16.00

C Double 07.30 22:00

E Transport D 07.30 22.00

O Acute I 10.00 18.00

Z Acute II 12.00 20.00

F Special 14.00 22.00

I Evening 15.00 22.00

P Help II 15.00 23.00

J Transport II 15.00 23.00

R Help III 16.00 24.00

D Acute III 17.00 24.00

Y Night 21.30 07.45

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 87

The next section gives an outline of the PEAST algorithm that is used to solve the problem

occurring in intensive-care units (ICU) in Finnish hospitals and especially in the Satakunta

Hospital District. Section 5 presents our computational results.

4 The PEAST Algorithm

The usefulness of an algorithm depends on several criteria. The two most important are the quality

of the generated solutions and the algorithmic power of the algorithm (i.e. its efficiency and

effectiveness). Other important criteria include flexibility, extensibility and learning capabilities.

We can steadily note that our PEAST algorithm (Kyngäs 2011) realizes these criteria. The

acronym PEAST stems from the methods used as Population, Ejection, Annealing, Shuffling and

Tabu. It has been used to solve real-world school timetabling problems (Nurmi and Kyngäs 2007),

real-world sports scheduling problems (Kyngäs and Nurmi 2009) and real-world workforce

scheduling problems (Kyngäs and Nurmi 2011).

The PEAST algorithm is a population-based local search method. As we know, the main

difficulty for a local search is

1) to explore promising areas in the search space that is, to zoom-in to find local optimum

solutions to a sufficient extent while at the same time

2) avoiding staying stuck in these areas for too long and

3) escaping from these local optima in a systematic way.

Population-based methods use a population of solutions in each iteration. The outcome of each

iteration is also a population of solutions. Population-based methods are a good way to escape

from local optima. The PEAST algorithm uses GHCM, the Greedy Hill-Climbing Mutation

heuristic introduced in (Nurmi 1998) as its local search method. The outline of the algorithm is

given in Figure 2 and the pseudo-code of the algorithm is given in Figure 3.

Fig. 2. The outline of the population-based PEAST algorithm.

88 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The reproduction phase of the algorithm is, to a certain extent, based on steady-state

reproduction: the new individual replaces the old one if it has a better or equal objective function

value. Furthermore, the least fit is replaced with the best one when n better individuals have been

found, where n is the size of the population. Marriage selection is used to select an individual from

the population for a single GHCM operation. In the marriage selection we randomly pick an

individual, A, and then we try at most k – 1 times to randomly pick a better one. We choose the

first better individual, or, if none is found, we choose A.

Set the time limit t, no_change limit m and the population size n

Generate a random initial population of individuals

Set no_change = 0 and better_found = 0

WHILE elapsed_time < t

REPEAT n times

 Select an individual A by using a marriage selection with k = 3

 (explore promising areas in the search space)

 Apply GHCM to A to get a new individual A’

 Calculate the change Δ in objective function value

 IF Δ < = 0 THEN

 Replace A with A’

 IF Δ < 0 THEN

 better_found = better_found + 1

 no_change = 0

 END IF

 ELSE

 no_change = no_change + 1

 END IF

END REPEAT

IF better_found > n THEN

 Replace the worst individual with the best individual

 Set better_found = 0

END IF

IF no_change > m THEN

 (escape from the local optimum)

 Apply shuffling operators

 Set no_change = 0

END IF

 (avoid staying stuck in the promising search areas too long)

Update simulated annealing framework
Update the dynamic weights of the hard constraints (ADAGEN)

END WHILE

Choose the best individual from the population

Fig. 3. The pseudo-code of the PEAST algorithm.

The heart of the GHCM heuristic is based on similar ideas to the Lin-Kernighan procedures

(Lin and Kernighan 1973) and ejection chains (Glover 1992). The basic hill-climbing step is

extended to generate a sequence of moves in one step, leading from one solution candidate to

another. The GHCM heuristic moves an object, o1, from its old position, p1, to a new position, p2,

and then moves another object, o2, from position p2 to a new position, p3, and so on, ending up

with a sequence of moves.

Picture the positions as cells, as shown in Figure 4. The initial cell selection is random. The cell

that receives an object is selected by considering all the possible cells and selecting the one that

causes the least increase in the objective function when only considering the relocation cost. Then,

another object from that cell is selected by considering all the objects in that cell and picking the

one for which the removal causes the biggest decrease in the objective function when only

considering the removal cost. Next, a new cell for that object is selected, and so on. The sequence

of moves stops if the last move causes an increase in the objective function value and if the value

is larger than that of the previous non-improving move. Then, a new sequence of moves is started.

A tabu list prevents reverse order moves in the same sequence of moves. The initial solution is

randomly generated.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 89

Fig. 4. A sequence of moves in the GHCM heuristic.

In the nurse rostering problem, each row corresponds to a nurse, and each column to a day. An

object is a shift. A move involves removing a shift from a certain day and inserting it into another

day.

The decision whether or not to commit to a sequence of moves in the GHCM heuristic is

determined by a refinement (Nurmi 1998) of the standard simulated annealing method (Laarhoven

and Aarts 1987). Simulated annealing is useful to avoid staying stuck in the promising search areas

for too long. The initial temperature T0 is calculated by

T0 = 1 / log(1/X0) . (1)

where X0 is the degree to which we want to accept an increase in the cost function (we use a value

of 0.75). The exponential cooling scheme is used to decrement the temperature:

Tk = Tk-1 , (2)

where is usually chosen between 0.8 and 0.995. We stop the cooling at some predefined

temperature. Therefore, after a certain number of iterations, m, we continue to accept an increase

in the cost function with some constant probability, p. Using the initial temperature given above

and the exponential cooling scheme, we can calculate the value:

 = (–1/(T0 log p))
–m

 . (3)

We choose m equal to the maximum number of iterations with no improvement to the cost

function and p equal to 0.0015.

A hyperheuristic (Cowling et al. 2000) is a mechanism that chooses a heuristic from a set of

simple heuristics and applies it to the current solution, then chooses another heuristic and applies

it, and continues this iterative cycle until the termination criterion is satisfied. We use the same

idea, but the other way around. We apply shuffling operators to escape from the local optimum.

We introduce a number of simple heuristics that are normally used to improve the current solution

but, instead, we use them to shuffle the current solution - that is, we allow worse solution

candidates to replace better ones in the current population. In the nurse rostering problem the

PEAST algorithm uses two shuffling operations:

1) Move a random shift to a random day and repeat this l1 times.

2) Swap two random shifts and repeat this l2 times.

A random shuffling operation is selected every l/20th iteration of the algorithm, where l equals

the maximum number of iterations with no improvement to the cost function. The best results were

obtained using the values l1 = 5 and l2 = 3.

We use the weighted-sum approach for multi-objective optimization. A traditional penalty

method assigns positive weights (penalties) to the soft constraints and sums the violation scores to

the hard constraint values to get a single value to be optimized. We use ADAGEN, the ADAptive

GENetic penalty method introduced in (Nurmi 1998) to assign dynamic weights to the hard

constraints. This means that we are searching for a solution that minimizes the (penalty) function

Σiαifi(x) + Σicigi(x), (4)

where

αi = a dynamically adjusted weight for hard constraint i

fi(x) = cost of violations of hard constraint i

ci = a fixed weight for soft constraint i

gi(x) = cost of violations of soft constraint i

90 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The hard constraint weights are updated every kth generation using the method given in (Nurmi

1998).

5 Computational Results

This section presents our results for solving a nurse rostering instance occurring in an intensive-

care unit in the Satakunta Hospital District in Finland. The unit has 130 employees. Section 3

outlined the characteristics and constraints of the problem. Table 3 summarizes the hard and soft

constraints of the problem. As the hard constraints state, the most important goal is to find a

solution that has no overlapping shifts and guarantees a sufficient number of competences for each

shift, and where employees do not work consecutively for more than nine days, have sufficient rest

time between shifts and are not assigned to a forbidden shift before/after a night shift. As the soft

constraint penalties state, the most important goal is to find individual rosters with exactly the

required number of working hours. The rosters with less than 229 hours and 30 minutes for full-

time nurses are considered as bad as the rosters with more than 229 hours and 30 minutes. The

second most important goal is to fulfill the employee’s requests.

Table 3 shows the manual solution and the PEAST solution to the problem. Neither solution has

any hard constraint violations. The PEAST algorithm only needed 100 employees for generating a

feasible and acceptable schedule. Note that the employees on vacation are not counted in this

value. The PEAST algorithm was able to find a solution where all but one employee had exactly

the required number of working hours. The algorithm also found a solution where 99% of all the

employees’ wishes were fulfilled even though those wishes covered as much as 50% of the

employees’ total work on average. Furthermore, the PEAST solution is clearly better at the

number of single working days and finding a suitable weekend solution (see R3 and E7).

Table 3. The hard and soft constraints of the problem, the penalties for soft constraint violations, the manual

solution and the solution obtained by the PEAST algorithm. The solutions indicate the number of violations

for the constraints.

Constraint Description Penalty Manual solution PEAST solution

C1 Overlapping shifts Hard 0 (108*) 0 (100*)

C2 Number of competences Hard 0 0

C4 Balanced surplus employees 2 22 4

R1 Working hours / nurse 10 140 3

R3 Free weekends 4 50 16

R5 Sufficient rest time Hard 0 0

R7 Consecutive working days Hard 0 0

O1 Sufficient competence Hard 0 0

O2 Working days in between 1 285 53

O5 Forbidden stints Hard 0 0

E1 Single days-off 4 274 124

E2 Single working days 2 285 53

E3 Consecutive days-off 2 34 0

E4 Balanced singles 1 18 5

E5 Balanced shift types 1 37 46

E7 Balanced weekdays 1 343 127

E8 Forbidden shifts 4 0 0

P1 Same shifts 5 0 0

P2 Requested days-on 6 76% fulfilled 99% fulfilled

P3 Requested shifts 6 57% fulfilled 99% fulfilled
* The required number of employees needed for generating the schedule

The PEAST solution was found by generating ten solutions and selecting the best one. The

algorithm was run on an Intel Core 2 Extreme QX9775 PC with a 3.2GHz processor and 4GB of

random access memory running 64bit Windows Vista Business Edition. The best solution was

found in 18 hours of computer time. The time may appear to be long. However, the point here is

not to find a solution fast enough and with sufficient quality, but to find a solution of high quality.

It is perfectly reasonable to run the algorithm overnight, because the solution is only needed once

every six weeks. Note also that the manual solution took three weeks to generate. The detailed data

for the instance can be obtained from the authors by email.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 91

The Hospital Board members were very satisfied with our results. We are currently negotiating

with them to optimize their overall workforce management process. This includes 1) generating an

optimal shift structure based on the predicted patient flow, 2) optimizing the employees’

preferences with a centralized self-scheduling system and 3) optimizing the days-off and shift

assignments. As was stated in Section 1, the best action plan for real-world nurse rostering

research is to cooperate with both a problem owner and a software vendor. We have a business

partner that has workforce management software that already includes our optimization

component. We are now looking to include nurse rostering in that software as well.

6 Conclusions and Future Work

We described an effective method for rostering nurses in an intensive-care unit in a Finnish

hospital. The rosters were generated using a population-based local search method called the

PEAST algorithm. The acronym PEAST stands for Population, Ejection, Annealing, Shuffling and

Tabu, which represent the building blocks of the algorithm. The PEAST algorithm is flexible,

easily extended and has good learning capabilities. The algorithm is based on a thorough local

search method while still containing a strong global search element through the population based

setup and randomized shuffling. The hospital was very satisfied with our results. We are currently

negotiating with them to optimize their overall workforce management process. The PEAST

algorithm has been integrated into market-leading workforce management software in Finland.

Future work includes modeling the instance presented in this paper using the xml-based

modeling format introduced and managed by Tim Curtois (2010). We will also use the PEAST

algorithm to solve the benchmark instances in (Curtois 2010). Our direction for future research is

to strengthen our competence in workforce optimization concerning contact centers.

References

Alfares, H.K. (2004). Survey, categorization and comparison of recent tour scheduling literature. Annals of

Operations Research 127, 145-175.

Ásgeirsson, E. I. (2010). Bridging the gap between self schedules and feasible schedules in staff scheduling.

In Proc of the 8th Conference on the Practice and Theory of Automated Timetabling, Belfast, Ireland.

Ásgeirsson, E.I., Kyngäs, J. Nurmi, K., Stølevik, M. (2011). A Framework for Implementation-Oriented Staff

Scheduling. Proceedings of the 5th Multidisciplinary International Scheduling Conference: Theory and

Applications, Phoenix, USA.

Bard, J. F., Binici, C., Desilva, A. H. (2003). Staff Scheduling at the United States Postal Service. Computers

& Operations Research 30, 745-771.

Bard, J., Purnomo H. (2005). Hospital-wide reactive scheduling of nurses with preference considerations. IIE

Trans. 37(7), 589–608.

Bartholdi, J.J. (1981). A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and Set Covering.

Operations Research 29, 501–510.

Beddoe, G.R., Petrovic, S., Li, J. (2009). A Hybrid Metaheuristic Case-based Reasoning System for Nurse

Rostering. Journal of Scheduling 12, 99–119.

Beer, A., Gaertner, J., Musliu, N., Schafhauser, W., Slany, W. (2008). Scheduling breaks in shift plans for

call centers. In Proc. of the 7th Int. Conf. on the Practice and Theory of Automated Timetabling,

Montréal, Canada.

Bilgin, B., De Causmaecker, P., Rossie, B., Vanden Berghe G. (2008). Local Search Neighbourhoods to Deal

with a Novel Nurse Rostering Model. In Proc. of the 7th Int. Conf. on the Practice and Theory of

Automated Timetabling, Montréal, Canada.

Burke, E., De Causmaecker P., Petrovic S., Vanden Berghe G. (2006). Metaheuristics for Handling Time

Interval Coverage Constraints in Nurse Scheduling. Applied Artificial Intelligence, 743–766.

Burke, E.K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H. (2004). The State of the Art of

Nurse Rostering. Journal of Scheduling 7(6), 441–499

Chapados, N., Joliveau, M., Rousseau L-M. (2011). Retail Store Workforce Scheduling by Expected

Operating Income Maximization, CPAIOR, 53–58.

Cowling, P., Kendall, G., Soubeiga, E. (2000). A hyperheuristic Approach to Scheduling a Sales Summit.

Proceedings of the 3rd International Conference on the Practice and Theory of Automated Timetabling,

176–190.

Curtois, T. (Last update August 2010). Staff Rostering Benchmark Data Sets [Online]. Available:

http://www.cs.nott.ac.uk/~tec/NRP/.

De Causmaecker, P., Vanden Berghe, G. (2011). A categorisation of nurse rostering problems. Journal of

Scheduling, 14 (1), 3-16.

92 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.cs.nott.ac.uk/~tec/NRP/

Diaz, T., Ferber, D., deSouza C., Moura A. (2003). Constructing nurse schedules at large hospitals. Internat.

Trans. Oper. Res. 10(3), 245–265.

Dowling, D., Krishnamoorthy, M., Mackenzie, H., Sier, D. (1997). Staff rostering at a large international

airport. Annals of Operations Research 72, 125-147.

Ernst, A. T., Jiang H., Krishnamoorthy, M., Sier, D. (2004). Staff scheduling and rostering: A review of

applications, methods and models. European Journal of Operational Research 153 (1), 3–27.

Garey, M.R., Johnson, D.S. (1979). Computers and Intractability. A Guide to the Theory of NP-

Completeness, Freeman.

Glover, F. (1992). New ejection chain and alternating path methods for traveling salesman problems.

Computer Science and Operations Research: New Developments in Their Interfaces, edited by Sharda,

Balci and Zenios, Elsevier, 449–509.

Kawanaka, H., Yoshikawa T., Shinogi T., Tsuruoka S. (2003). Constraints and search efficiency in nurse

scheduling problem. In Proc. Internat. Sympos. Comput. Intelligence Robotics Automation 1, 312–317.

Kellogg D.L., Walczak S. (2007). Nurse Scheduling: From Academia to Implementation or Not. Interfaces

37(4), 355–369.

Kyngäs, J. (2011). Solving Challenging Real-World Scheduling Problems. Dissertation. Dept. of Information

Technology, University of Turku, Finland.

Kyngäs, J., Nurmi, K. (2009). Scheduling the Finnish Major Ice Hockey League. Proceedings of the IEEE

Symposium on Computational Intelligence in Scheduling, Nashville, USA.

Kyngäs, J., Nurmi, K. (2011). Shift Scheduling for a Large Haulage Company. Proceedings of the 2011

International Conference on Network and Computational Intelligence, Zhengzhou, China, 2011.

Kyngäs, N., Nurmi, K., Kyngäs, J. (2012). Optimizing Large-Scale Staff Rostering Instances. Lecture Notes

in Engineering and Computer Science: Proceedings of The International MultiConference of Engineers

and Computer Scientists, Hong Kong.

Lau, H. C. (1996). On the Complexity of Manpower Shift Scheduling. Computers and Operations Research

23(1), 93-102.

Lin, S., Kernighan, B. W. (1973). An effective heuristic for the traveling salesman problem. Operations

Research 21, 498–516.

Lusby T., Dohn A., Range T., Larsen J. (2010). Ground Crew Rostering with Work Patterns at a Major

European Airlines. In Proc of the 8th Conference on the Practice and Theory of Automated Timetabling,

Belfast, Ireland.

Meisels, A., Schaerf, A. (2003). Modelling and solving employee timetabling problems. Annals of

Mathematics and Artificial Intelligence 39, 41–59.

Meyer auf’m Hofe, H. (2001). Solving rostering tasks by generic methods for constraint optimization.

Internat. J. Foundations Comput. Sci. 12(5), 671–693.

Nurmi, K. (1998). Genetic Algorithms for Timetabling and Traveling Salesman Problems. Dissertation. Dept.

of Applied Math., University of Turku, Finland, 1998. Available: http://www.bit.spt.fi/cimmo.nurmi/

Nurmi, K., Kyngäs, J. (2007). A Framework for School Timetabling Problem. Proceedings of the 3rd

Multidisciplinary International Scheduling Conference: Theory and Applications, Paris, France, 386–393.

Nurmi, K., Kyngäs, J. (2011). Days-off Scheduling for a Bus Transportation Staff. International Journal of

Innovative Computing and Applications Volume 3 (1), Inderscience, UK..

Nurmi K., Kyngäs J., Post G. (2011). Driver Rostering for Bus Transit Companies. Engineering Letters 19(2),

125–132.

Stolletz, R. (2010). Operational workforce planning for check-in counters at airports. Transportation Research

Part E 46, 414-425.

Tien J, Kamiyama A. (1982). On Manpower Scheduling Algorithms. SIAM Rev. 24 (3), 275–287.

van Laarhoven, P.J.M., Aarts, E.H.L. (1987). Simulated annealing: Theory and applications, Kluwer

Academic Publishers.

Van Wezel, W., Jorna R. (1996). Scheduling in a generic perspective: Knowledge-based decision support by

domain analysis and cognitive task analysis. Internat. J. Expert Systems 9(3), 357–381.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 93

A Tour Scheduling Problem with Fixed Jobs: use of

Constraint Programming

Tanguy Lapègue · Damien Prot ·
Odile Bellenguez-Morineau

Received: date / Accepted: date

Abstract This paper presents a constraint programming approach to solve a speci�c

scheduling problem arising in a company specialized in drug evaluation and pharmacol-

ogy research. The aim is to build employee timetables covering the demand given by a

set of �xed tasks. The optimality criterion concerns the equity of the workload sharing.

A solution to this problem is the assignment of all tasks whose resulting working shifts

respect tasks requirements as well as legal and organizational constraints. Scheduling

problems usually consider a �xed set of shifts which have to be assigned to a given

number of employees whereas in our problem shifts are not �xed and must be deduced

from the task assignment.

Keywords Tour Scheduling Problem · Fixed Job Scheduling Problem · Constraint
Programming

1 Introduction

Personnel scheduling problems tackle the di�cult task of building employee rosters

respecting legal and organizational constraints in order to satisfy the demand. These

problems are of tremendous importance for services oriented companies, especially for

those working around the clock. Consequently, many researchs have been carried out

into this area (see [12] for an overview). These complex and highly constrained problems

proved to be very di�cult to solve in a satisfactory way and even more to optimality.

In this paper, we present a real-world problem which arises in a company special-

ized in drug evaluation and pharmacology research. The problem at hand is to build

�ne rosters which respect legal and organizational constraints. This task is currently

hand-performed on a weekly basis by the chief nurse, which is very time-consuming.

The remainder of the paper is organized as follows: section 2 is devoted to the

description of the problem, section 3 presents some related works, in section 4 we

LUNAM Université, École des Mines de Nantes, IRCCyN (UMR CNRS 6597), 44307 Nantes
Cedex 3, Nantes (France),
E-mail: {tanguy.lapegue, damien.prot, odile.morineau}@mines-nantes.fr

94 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

propose a modelling of our problem, section 5 describes some branching strategies

which aim at �nding quickly a good solution. Our approach is validated by experimental

results in section 6.

2 Problem description

The company carries out clinical studies on behalf of pharmaceutical laboratories which

need to control the impact of newly developed drugs on the human body. The company

recruits volunteers who are hospitalized during the whole study so that nurses could

perform each required task on each volunteer. Laboratories deliver to the company

a very speci�c study procedure which contains a description of all the clinical tasks

to be performed, along with their relative starting time and duration. Based on this

protocol, the company needs to assign these tasks to quali�ed and available employees.

The individual plannings resulting from this task assignment have to respect a set of

legal and organizational constraints, and also, up to a point, they are expected to be

as fair as possible, which makes the scheduling task very di�cult and time-consuming

for the chief nurse.

During a week, employees divide their working time between three kinds of job:

1. Clinical tasks are �xed by the protocol and must be performed at the given

starting minute, which means that the granularity of the problem drops to the

minute. These tasks are �xed whenever during the day of the week and the hour

of the day. The chief nurse has to assign one employee to every clinical task.

2. Compulsory administrative tasks are also �xed but they are already assigned

before the shift-building procedure. This kind of tasks, such as meetings and train-

ings, are counted as working time, but not as clinical working time, and they could

be assigned to more than one employee (in case of meetings within the company).

These assignments lead to �xed periods of clinical unavailability that have to be

included in designed shifts.

3. Free administrative tasks, such as medical reports writing, are not �xed and do

not require any speci�c skills. Each employee has a speci�c set of administrative

tasks to do during the week, and they are free to work on it whenever they want,

provided they are not already assigned in the mean time to clinical or compulsory

administrative tasks. Consequently, these tasks do not appear in the �nal timetable.

One characteristic of the problem lies in the lack of �xed shifts: employees could

start and end their day whenever it is necessary, provided the resulting shift sequences

respect the set of hard constraints due to work regulation, company organization, and

nurses agreements. Consequently, working days refer to working periods and they may

overlap two calendar days if needed. The main constraints are summarized in the fol-

lowing.

Organizational constraints

� HC 1: Employees cannot perform tasks which require unmastered skills.

� HC 2: Employees cannot perform tasks while unavailable.

� HC 3: Every clinical task must be assigned to one employee.

� HC 4: The assignment of compulsory administrative tasks must be respected.

� HC 5: Employees must �nish a task before starting another one.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 95

Work regulation / nurses agreements constraints

� HC 6: The daily working load must not exceed 10 hours.

� HC 7: The weekly working load must not exceed 48 hours.

� HC 8: The duration of a working day must not exceed 11 hours.

� HC 9: The duration of a rest period must not be less than 11 hours.

� HC 10: The duration of the weekly rest must not be less than 35 hours.

� HC 11: Series of consecutive working days must not exceed 6 days.

� HC 12: Depending on their working days, nurses have di�erent breaks.

During the task assignment process, the chief nurse takes into account this whole

set of hard constraints which might lead to dead end, meaning that the problem admits

no solution. In this case, the chief-nurse strengthen the workforce with externals, who

abide by the same rules as regular workers.

Objective function

Hard constraints must be satis�ed, but they only ensure the feasibility of schedules.

In order to build �ne schedules, the chief nurse takes into account multiple criteria

based on equity among employees. In this paper, we consider the most important of

these criteria: we want to share the workload resulting from clinical and writing tasks

in a fair way. However, some nurses are less con�dent with the writing of medical

reports than others. As a consequence, the chief nurse associates to each employee a

weekly targeted clinical load: nurses who are less con�dent with writing tasks have a

higher targeted clinical load in order to counterbalance the higher administrative load

of nurses who are more con�dent with writing tasks. The idea of our objective is to

�t with this targeted clinical load in order to get "fair" schedules. As a consequence

our objective is to minimize the di�erence between the highest and the lowest nurse's

gap value which is de�ned as the di�erence between the clinical targeted time and the

clinical assigned time. A small di�erence between the highest gap and the smallest gap

means that the workload is well balanced among nurses.

Dimensions of the problem

A typical problem involves 200 tasks, whose durations range from 5 minutes to 4 hours,

which have to be assigned to about 20 nurses whose set of skills is closed to 30 di�erent

skills. One characteristic of our problem lies in the time granularity which drops to the

minute over a scheduling horizon of a week. This might look like an excess of preci-

sion, but it is very important for the company to follow scrupulously the given protocol.

To highlight this fact, one can state the use of synchronised clocks in the whole building.

Problem studied

As a �rst step towards the resolution of this industrial problem, we propose to focus

on the problem of designing schedules and assigning tasks to the regular workforce,

i.e. externals are not taken into account. By doing this, we simulate the �rst step of

the hand-performed resolution process which is done by the chief nurse. In order to

provide as much information as possible regarding to needs on externals, we relax the

constraint HC 3, which allows us to �nd solutions with an incomplete assignment of

tasks to workers.

96 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Constraints related to nurses breaks are particularly complicated because they deal

with several kind of breaks which depends on the kind of shift performed:

� some of them have to occur on a given time window whereas others are not time

constrained,

� some of them are included in the working time whereas others are not,

� some of them last a few minutes whereas others last one hour.

From our point of view, ensuring these breaks would require heavy constraints

without improving much schedules. This may be explained in two steps:

1. because of the �xed start and end of clinical tasks, it is highly probable that short

breaks will be respected automatically,

2. the chief nurse pointed out that nurses are very �exible regarding to their breaks,

and they are free to exchange some tasks in order to improve their schedules.

Consequently, in this paper, we decided to put aside the constraint HC 12. However,

warnings are displayed in a post-processing step to alert the chief nurse about these

breaks.

In this paper, compulsory administrative tasks are considered to be �xed in time

because they are scheduled by the chief nurse before the assignment of clinical tasks,

which is the part of the problem we focus on. It would have been possible to give some

freedom to these tasks in order to schedule them during the resolution, but it would

have make the problem much harder to solve. Consequently, we consider them as data,

which is exactly the way it is done in the company.

3 Related work

Over the years, many approaches have been proposed in order to model and solve Per-

sonnel Scheduling Problems (see [12] for an overview). Mathematical models, usually

based on the Dantzig set-covering formulation, often achieve the lowest cost solutions

but they are di�cult and time-consuming to implement. In particular, speci�c con-

straints and objectives may be di�cult to express easily. Consequently, research often

focus both on simpli�ed problems and general methods. In [3] for instance, the au-

thors proposed a general mathematical model covering several personnel scheduling

problems. Another important trend has been to develop implicit modeling in order

to tackle more complex problems. In [2] for instance, the authors present an implicit

integer linear programming formulation for the inclusion of meal/rest-break �exibil-

ity. On the contrary, metaheuristics, such as Tabu Search, Simulated Annealing and

Genetic Algorithms, o�er the opportunity to incorporate problems speci�cities. These

approaches do not guarantee the optimality of the solution, but they are quite robust

and they could be adapted even to the smallest problem speci�city. They have been

successfully tested to varying kind of real-world problems (see for instance [5] and [8]).

Constraint Programming (CP) o�ers a promising alternative: CP is very close to a

form of declarative programming, and consequently, it o�ers very powerful tools to

state complex problems and produce �exible implementations, which is desirable in

a business context. For instance, the Nurse Rostering Problem (NRP), and also the

Crew Rostering Problem (CRP), which are some of the most constrained personnel

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 97

scheduling problems, belong to the set of problems that could be e�ectively stated as

a constraint satisfaction problem (see [21] and [9]).

Tour Scheduling Problem

Personnel scheduling problems could be adressed in two steps: the �rst step, referred

to as the days-o� problem, aims at assigning days-o� to workers whereas the second

one, referred to as the shift scheduling problem, consists of assigning shift sequences to

workers. The combined version of these two problems is referred to as the Tour Schedul-

ing Problem ([17]). This last problem o�ers a wide range of combinations which enables

substantial improvements in the labor utilization. Consequently, many approaches have

been proposed and tested (see [1] for an overview).

Loucks and Jacobs ([16]) present a heuristic approach to the dual problem of Tour

Scheduling and Task Assignments involving workers who di�er in their availabilities

and quali�cations. In this problem, two ranked objectives are considered: the �rst one

is the minimization of the total man-hours of oversta�ng, and the second one is the

minimization of the sum of the squared di�erences between the number of tour hours

scheduled and the number targeted for the workers. However, the approach requires

to divide the horizon into one-hour periods, which is far too big for our own problem.

More generally, to our knowledge, the Tour Scheduling Problem with one-minute pe-

riods has not been studied yet. This may be explained in three steps, as mentioned

by [16]: �rst of all, working with one-minute periods means that the demand is known

with a one-minute precision, which makes no sense if the demand comes from fore-

casting methods. Besides, managers would be under the obligation to make e�orts so

that employees respect their schedules. Finally, managers often prefer to keep some

�exibility in schedules in order to cope with potential delays, and other uncertainties.

Fixed Job Scheduling Problem

Given a set of jobs along with their �xed starting times and processing times, the Fixed

Job Scheduling Problem (FJSP), also known as the Interval Scheduling Problem, con-

sists of deciding whether or not to accept a job, knowing that chosen jobs have to be

assigned to available ressources (see [15] for an overview). The assignment part of our

problem could consequently be seen as a FJSP, where every job has to be accepted. In

this last case, deciding whether a feasible schedule exists is NP-Complete ([15]).

As pointed out in [15], the FJSP constitutes the core of a variety of applications,

such as the well-known Crew Rostering Problem. For instance, in [9] the authors pro-

pose a mixed approach based on CP and OR techniques to solve a speci�c CRP.

However, they consider only the rostering step, meaning the sequencing of the given

duties, and not the scheduling step, meaning the generation of duties. Moreover, many

CRPs integrate some constraints on the feasible sequences of tasks in order to take

into account the geographical location of the tasks, which is not relevant in our case.

However, CRPs also consider the scheduling of ground station personnel, which

is closer to our problem since the geographical location is absent. In [11] the authors

present a decision support system designed for the aircraft maintenance departement of

KLM Royal Dutch Airlines. However the scheduling problem of KLM is di�erent from

our own problem in several points: �rst of all, ground station personnel operates in a

four-shift system with �xed shifts. Besides, members of the same team are assigned to

98 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

the same shifts. In [4] the authors present an approach in two steps based on column

generation and simulated annealing in order to schedule the work of the ground sta-

tion personnel in airport. In order to solve this problem, they used a 15-minutes period

interval on a weekly horizon, which is too coarse-grained for our problem. Moreover,

they assume that shifts of the same tour are the same, which means that employees

are assigned to the same shift during the whole week.

Nurse Rostering Problem

The core of NRPs is to assign shifts to nurses over a scheduling period so that the

resulting rosters respect a set of constraints and cover the demand. Most NRPs are

NP-Complete [13] and real-world applications, due to their large set of speci�c con-

straints, are very challenging and hard to solve.

Our problem clearly shares some characteristics with the NRP as described in [6]:

constraintsHC 1 andHC 2 are common personnel constraints of the NRP, constraints

HC 3 to HC 5 can be seen as coverage constraints and constraints HC 6 to HC 11

are common work regulation constraints of the NRP. However, the core of the problem

is di�erent since both the demand and the work assignment are di�erent: in the NRP,

the demand is given by a number of nurses for each skill category and for each demand

period, whereas in our problem, it is given by a set of tasks with any possible starting

and ending times. Moreover, in the NRP, the work assignment corresponds to a shift

assignment with usually a very limited number of shifts (see for instance [7], [14] and

[10]), whereas in our problem, the work assignment is given by a tasks assignment

from which shifts have to be deduced. In addition to these di�erences, NRPs usually

consider patterns to penalize or favour, such as consecutive night shifts, stand-alone

day-o� shift or complete weekends, which are not taken into account in our problem.

Consequently, our problem is much closer to the Tour Scheduling Problem ([17]) and

from the Fixed Job Scheduling Problem ([15]) than from the NRP.

The problem of designing schedules by taking into account skills, availabilities and

work regulation constraints in order to cover personnel requirements has been widely

studied in several business environnements (NRP, TSP). In these problems, person-

nel requirements are usually given for a set of �xed time slots/shifts, whereas in our

problem personnel requirements are given by a set of �xed tasks which cannot be

preempted. Translating our personnel requirements into the classical time index rep-

resentation would lead to allow preemption which is not possible. On the contrary, the

problem of assigning �xed tasks to ressources (FJSP) do not take into account some

basic constraints related to work regulations, such as the minimal resting time between

two worked days. Finally, the design of schedules for ground stationned personnel seems

to be the closest problem in the related literature ([4]). However, in practice, addition-

nal constraints related to the internal organization of airports are often taken into

account. Besides, even if the equity among workers may be an interesting objective in

these kind of problems it is also often important to minimize iddle times in order to

improve the productivity of workers, whereas in our problem it is required to let some

iddle time so that nurses could work on their free administrative tasks.

On the whole, even if some related problems are relatively close to the one we

consider, none of them allow to grasp its full complexity (the time granularity which

drops to the minute, the lack of �xed shifts and the optimality criterion are good

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 99

Table 1: Data

Data De�nition

N = {1, .., N} Set of nurses
D = {1, .., D} Set of days
T = {1, .., T} Set of clinical tasks

A = {T + 1, .., A} Set of compulsory administrative tasks
∀n ∈ N ,An ⊂ A Set of tasks assigned to the nurse n

O = {O1, .., Ocard(O)} Set of sets of overlapping tasks
∀t ∈ T ∪ A, s[t] Starting minute (over the week) of task t
∀t ∈ T ∪ A, e[t] Ending minute (over the week) of task t
∀n ∈ N ,Wo[n] Targeted clinical working time over the week
∀n ∈ N , Lo[n] Number of worked days since the previous day-o�

∀n ∈ N , U [n] = {u0, .., uk} Periods of unavailability for employee n

Table 2: Variables

Variables De�nition

Tu ⊂ T Set of unassigned tasks

∀n ∈ N For every employee n
Ta[n] ⊂ T ∪ A Set of weekly assigned tasks

Bs[n] ∈ [0; 7980] Start of the weekly break
Ww[n] ∈ [0; 2880] Weekly working load

Go[n] ∈ [-2880; 2880] Gap between Ww[n] and Wo[n]

∀n ∈ N , ∀d ∈ D For every employee n and every day d
Da[d][n] ⊂ T ∪ A Set of daily assigned tasks
At[d][n] ∈ [0; 660] Daily attendance time
Wd[d][n] ∈ [0; 600] Daily working load

Sh[d][n] ∈ {O�; Worked} Daily assigned shift
Fi[d][n] ∈ {ω} ∪ {s[t], t ∈ T ∪ A} Start of the daily working period
La[d][n] ∈ {α} ∪ {e[t], t ∈ T ∪ A} End of the daily working period

examples). Consequently, we propose in the following a dedicated method based on

Constraint Programming. The use of CP is motivated by recent works which highlight

its ability to tackle highly constrained problems with very speci�c objectives.

4 Constraints Modeling

Data and variables notations related to our model are presented in Tables 1 and 2.

The main idea of the model is to assign tasks to nurses using set variables. Since every

task is �xed, the search of a solution amounts to �nding a weekly set of tasks for each

nurse: the vector Ta gives, for each nurse, the set of assigned tasks. However, most of

the constraints deal with daily work instead of weekly work, which requires additional

variables. Consequently, the matrix Da gives, for each nurse and for each day, the set

of assigned tasks. In order to check constraints over shift sequences, the matrix Sh,

gives for each nurse and day whether it is a working day or a day-o�. Matrices Fi

and La stand for the starting and ending time of each day of each nurse. Domains

100 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

of Fi (respectively La) correspond to the starting (respectively ending) time of tasks.

In order to deal with days o�, domains of Fi (respectively La) are completed with a

constant ω = 8 × 24 × 60 (respectively α = -24 × 60). The matrix At gives for each

nurse and for each day the minimal attendance time (i.e. the attendance time resulting

from clinical and compulsory administrative tasks). Finally, the vector Bs gives for

each nurse the starting time of the weekly break.

Based on these variables, organizational and legal constraints could then be written.

Some constraints refer directly to legal or organizational constraints whereas others

simply ensure the consistency between variables. The �rst set will be referred to as

business constraints whereas the second set will be denoted by channeling constraints.

Finally, some legal constraints could be ensured from the creation of the variables, by

reducing their domain of de�nition. This last set of constraints will be referred to as

preprocessing constraints since once stated, they do not impact the solver anymore.

In the following, preprocessing constraints, business constraints and �nally channeling

constraints are explained.

Preprocessing constraints

The domains of Ta and Da are reduced during the creation of variables by comparing

both the mastered skills of each employee with the required skills of each task and the

starting and ending times of each task with the availabilities of each employee. Basically,

a task t which requires the skill s will be removed from the domain of the variable Ta[n]
if the nurse n does not master s. Besides, if the processing interval of t, which is given

by [s[t]; e[t]] overlaps any periods of unavailibility of employee n, which are given by

U [n], then t will also be removed from Ta[n]. The same process holds for Da. Moreover,

the domain of the variables of Da could be even more reduced by taking into account

the day of the week: tasks which are �xed on Wednesday, for instance, could not be

performed on Monday, and so on. More precisely, a working period d could gather every

task whose starting time belongs to the interval : [60×(6+24×d); 60×(6+24×(d+1))],
which corresponds to a period of 24 hours starting every day at 6 am. Consequently,

employees who start working around 9 pm a day could �nish their work at 6 am the

following day. Thus, constraints HC 1 and HC 2 are veri�ed from the creation of the

problem, without any cost (i.e. the solver will not have to check these constraints during

the resolution). The bounds of working period intervals have been �xed to correspond to

the earliest starting time and the latest ending time applied by the company. Domains

ofWd andWw variables are also bounded from their creation, so that employees could

neither be assigned to more than 10 hours of work over a day (HC 4), nor to more

than 48 hours of work over the week (HC 5).

Business constraints

Constraints (1a) to (1c) aim at assigning the exact number of required employees

to each task (HC 3). More precisely, constraint (1a) aims at assigning at least one

employee to every task. Constraint (1b) ensures that tasks which have to be assigned

to one employee, are not assigned to several employees. Constraint (1c) ensures that

employees do not perform the same task several days. Constraint (2) ensures that the

assignment of compulsory administrative tasks is respected (HC 4). Constraint (3)

prevents employees from starting a new task before �nishing the previous one (HC 5).

Constraints (4) and (5) aim respectively at respecting the daily maximum attendance

time (HC 8) and the minimum resting time between two working days (HC 9). The

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 101

constraint (6a) aim at building a weekly break of at least 35 hours (HC 10) by ensuring

that no work is assigned to employees on an interval of 35 hours. Constraint (7) ensures

that the maximal number of consecutive worked days does not exceed 6 days (HC 11).

Tu ∪
⋃

n∈N
Ta[n] = T ∪ A (1a)

∀(n1, n2) ∈ N 2 |n1 6= n2, Ta[n1] ∩ Ta[n2] = An1 ∩ An2 (1b)

∀n ∈ N , ∀(d1, d2) ∈ D2 | d1 6= d2, Da[d1][n] ∩Da[d2][n] = ∅ (1c)

∀n ∈ N , An ⊂ Ta[n] (2)

∀d ∈ D, ∀n ∈ N ,∀Oi ∈ O, card(Oi ∩Da[d][n]) ≤ 1 (3)

∀d ∈ D, ∀n ∈ N , At[d][n] ≤ 60× 11 (4)

∀d ∈ D�{D},∀n ∈ N , F i[d+ 1][n]− La[d][n] ≥ 60× 11 (5)

∀n ∈ N , ∀d ∈ D, (Fi[d][n] ≥ Bs[n] + 35× 60) ∨ (La[d][n] ≤ Bs[n]) (6a)

∀n ∈ N , card{d ∈ [0; 6− Lo[n]] |Sh[d][n] = O�} ≥ 1 (7)

Channeling constraints

Constraint (8) ensures that the daily and the weekly assignments of each employee are

consistent. Constraints (9) and (10) ensure that the weekly working load and the daily

working load of each employee correspond to the task assignment. Constraint (11) en-

sures that the matrix Sh is consistent with the matrix Da. Constraints (12a) and (12b)

aim at �nding the beginning and the end of the working days of each employee when

daily assigned sets are not empty. Empty sets, which refer to days-o�, are handled by

constraints (13a) and (13b). This last point might need some deeper explanations: �rst

of all, empty sets have to get a starting and ending times because of the construction

of Fi and La. In order to respect constraints HC 8 and HC 9, Fi and La are assigned

respectively to the end and the beginning of the week. This setting is also consistent

with constraint (6a). Constraint (14) aims at computing the daily attendance time of

each employee: for non-empty sets, the attendance time corresponds to the di�erence

between the end and the start of the corresponding day, for empty sets, the atten-

dance time corresponds to 0. Finally, constraints (15a) to (15d) calculate the objective

value. In constraint (15a) we substract compulsory administrative time from the weekly

workload, in order to keep only the clinical workload.

102 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

∀n ∈ N ,
⋃
d∈D

Da[d][n] = Ta[n] (8)

∀n ∈ N , Ww[n] =
∑

t∈Ta[n]

e[t]− s[t] (9)

∀n ∈ N , ∀d ∈ D, Wd[d][n] =
∑

t∈Da[d][n]

e[t]− s[t] (10)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇔ Sh[d][n] = Worked (11)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇒ Fi[d][n] = min
t∈Da[d][n]

s[t] (12a)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇒ La[d][n] = max
t∈Da[d][n]

e[t] (12b)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) = 0⇔ Fi[d][n] = ω (13a)

∀n ∈ N ,∀d ∈ D, card(Da[d][n]) = 0⇔ La[d][n] = α (13b)

∀d ∈ D,∀n ∈ N , At[d][n] = max(La[d][n]− Fi[d][n], 0) (14)

∀n ∈ N , Go[n] = (Ww[n]−
∑
t∈An

e[t]− s[t])−Wo[n] (15a)

∀n ∈ N , Gmin ≤ Go[n] (15b)

∀n ∈ N , Gmax ≥ Go[n] (15c)

Obj = 10 000× card(Tu) +Gmax−Gmin (15d)

Choice of the model

This model is oriented from a task assignment point of view, meaning that our con-

cern is to assign tasks to nurses. Based on this assignment, additional information

(such as starting times, ending times, daily load, weekly load, etc...) could then be

easily deduced. Another way of modeling the problem is to assign one nurse to every

task. However, a lot of constraints which are easily written with task sets, seem more

di�cult to write with such a model. Consequently, we decided to focus on the task

assignment instead of the nurse assignment. Another common way of modeling person-

nel scheduling problems with constraint programming is based on the use of a general

matrix giving the activity of each nurse (on lines) for each time period (on rows). For

instance, The Nurse Rostering Problem has been stated and solved by constraint pro-

gramming in such a way ([21]). However, this kind of approach requires to consider

identical time periods, or slots. Since the time granularity of our problem drops to the

minute over a planning horizon of a week, the use of identical time periods would lead

either to an explosion of the number of variables or to some approximations on the

duration of the tasks, which is not desirable. Consequently, our approach, based on

task assignment seems to handle the complexity of the problem in a more promising

way.

5 Variable and value strategies

When using constraint programming in order to build a good solution, it is very impor-

tant to implement a dedicated search strategy. Basically, CP aims at �nding a satisfying

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 103

solution, not the optimal one. However CP could still be used to �nd the optimum by

solving the given problem in an iterative way: at each iteration, the cost of the solution

is constrained to be less (when minimizing) than the cost of the last solution.

The aim of a dedicated search strategy is to avoid backtracking time in the huge

space of unfeasible and unsatisfying solutions, by using the speci�cities of the problem.

Once the �ltering process is over, if every variable is not yet instantiated, the solver

has to branch on a variable. The variable ordering strategy (VarOS) aims at choosing

the most promising variable in order to branch on this variable, and the value ordering

strategy (ValOS) aims at starting the branching with the most promising value. This

value is chosen from the domain of the chosen variable. In our model, set variables are

represented by two sets: the kernel and the envelope. The �rst one represents the set

of values which belong to every solution whereas the second one refers to the set of

values which belong to at least one solution. Consequently, the kernel of a set variable

is a subset of its envelope. The chosen value must belong to the envelope, but not to

the kernel. This set of possible values is called the open domain.

Concerning set variables, the default strategy select the variable with the small-

est open domain, and among this domain, it selects the smallest value. However, this

strategy do not use the speci�cities of the problem. Consequently, two VarOS and �ve

ValOS are proposed and discussed in the following.

VarOS Among the variables of the vector Ta:

� Choose the variable corresponding to the nurse whose numerical di�erence between

the assigned clinical working time and the targeted clinical working time is the

smallest. The idea of this VarOS, which will be referred to as LW (Less Working),

is to start assigning tasks to the less working nurse, as soon as possible, in order

to improve the solution.

� Find the variable corresponding to the nurse whose weekly working load is the

highest among those which are under a �xed limit, controlled by a parameter l,

expressed in minutes. More precisely, among the variables respecting the following

inequality:

Ww[n]−Wo[n] ≤ l

choose the variable which maximizes (Ww[n]−Wo[n]). If such a variable does not

exist, choose a variable randomly. This strategy, which will be referred to as MW

(Most Working), could be used in two di�erent ways depending on the value of l.

For instance, setting l to a positive value allow the solver to keep assigning tasks to

nurses who are already above their targeted clinical load, in order to keep room for

further assignments and consequently, avoid dead ends. Consequently, this will not

lead to well-balanced solutions, but the idea is to evaluate the number of feasible

solutions which could be found by this way. On the contrary, setting l to a negative

value aim at ensuring a minimum working load for each nurse. Even if setting l

to a negative value is also a way of �nding good solutions, there is an important

di�erence between LW and MW : LW tries to improve the solution at every node

whereas MW allow the solver to deteriorate the solution, hoping to improve it in

104 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

the end.

ValOS Among the open domain (referred to as O(Ta[nc])) of the chosen variable:

� Find the task which produces the highest increase of work density. The work den-

sity of a day corresponds to the working load of this day divided by the attendance

time of the day. If the highest increase of work density is higher than a given limit

controlled by a parameter δ, then choose the corresponding task, else choose the

�rst possible task. More formally, for each possible task t, we can compute the new

daily working load W t+
d [d][nc] and the new attendance time Att+[d][nc] resulting

from the addition of t to the corresponding working day of nc. We refer to the

increase of density produced by t as δ[t]:

δ[t] = Wd[d][nc]
At[d][nc]

− W t+
d [d][nc]

Att+[d][nc]
∈ [-1; 1]

Among tasks whose corresponding δ[t] is above δ, choose the task t which maximizes

δ[t]. If such a task does not exist, choose the �rst possible task. The idea of this

ValOS, which will be referred to as ID (Increase Density), is to produce compact

schedules, in order to avoid wasting time.

� Choose the task which belongs to the biggest set of overlapping tasks. The idea of

this ValOS, which will be referred to as BO (Biggest Overlap), is to assign as soon

as possible tasks which are �xed on activity peaks. Since employees cannot work

simultaneously on overlapping tasks, choosing such a task may also be interesting

because of the �ltering process which may lead to many deductions (the employee

could not anymore perform the other overlapping tasks).

� Choose the task which can be performed by the smallest number of nurses. The

idea of this ValOS, which will be referred to as LN (Lack of Nurses), is to avoid

backtracking procedure by avoiding dead ends.

� Find the task with the biggest duration. If this duration is higher than a given limit

controlled by a parameter p, then choose this task, else choose the �rst possible

task. More precisely, among the tasks which respect the following inequality:

e[t]− s[t] ≥ p

choose the longest task. The idea of this ValOS, which will be referred to as BT

(Biggest Task), is to assign biggest tasks as soon as possible.

Mixed Strategy

Based on these simple heuristics we implement a more complex one, which will be

referred to as Mx (Mixed). The idea of this ValOS, which is presented in detail in

Algorithm 1, is to use the previously described heuristics in a combined way. More

precisely, the global idea of Mx is to avoid dead ends by using Lack of Nurses and

Biggest Overlap, then, if possible choose an interesting task by using Biggest Task and

Increase Density, otherwise, choose a task which has a big impact on the search by

using Biggest Overlap.

In the �rst step of Mx (lines 1 to 5), we compare the number of employees available

for a task t with the number of tasks overlapping t. The idea is to avoid the assignment

of employees available for t to other tasks. In the second step (lines 6 to 10), we compare

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 105

the highest processing time with the parameter p. The idea of this threshold is to focus

on the duration of tasks only when it is a highly distinguishing criterion. In the third

step (lines 11 to 15), we compare the highest increase of density with the parameter

δ. Again, this comparison aims to avoid making a decision on a hardly distinguishing

criterion. Finally (lines 16 to 18), we choose the task which corresponds to the highest

activity peak.

Algorithm 1 Mx ValOS: combine simple heuristics to choose the most promising task

Require:

p ∈ N, δ ∈ [-1; 1]
∀t ∈ O(Ta[nc]), available[t]: the number of available employees for task t
∀t ∈ O(Ta[nc]), overlapping[t]: the number of tasks overlapping task t
findIndex(value, vector): returns the index of value in the given vector.

1: for all t ∈ O(Ta[nc]) do
2: if available[t] ≤ overlapping[t] then
3: return t
4: end if

5: end for

6: maxP ← max
t∈O(Ta[nc])

e[t]− s[t]

7: tMaxP ← findIndex(maxP, p)
8: if maxP ≥ p then

9: return tMaxP
10: end if

11: maxD ← max
t∈O(Ta[nc])

δ[t]

12: tMaxD ← findIndex(maxD, δ)
13: if maxD ≥ δ then
14: return tMaxD
15: end if

16: maxO ← max
t∈O(Ta[nc])

overlapping[t]

17: tMaxO ← findIndex(maxO, overlapping)
18: return tMaxO

6 Experimental results

We implemented our model with Choco, a Java Constraint Satisfaction Problem Solver

[20]. Each instance has been runned on an Intel Core i3 (3.06 GHz) with a time limit of 5

minutes under default (see section 5) and dedicated ordering strategies, in optimization.

The time limit has been �xed to 5 minutes because the company would like to use the

method as a simulation tool, which requires great responsiveness.

6.1 Instances generation

In order to test our model, we have generated 720 instances gathered in 24 sets of 30

instances. Each set of instances corresponds to a speci�c combination of three parame-

ters: the number of tasks, the kind of skills required and the tightness of the workload

compared to the work capacity. The number of tasks ranges from 100 to 400 which

106 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

allows us to check the behavior of the method for normal activity (200/300 tasks) and

extreme cases (100/400 tasks). Moreover we have generated two kinds of skills require-

ments: the �rst one considers only common skills, meaning that each skill is mastered

by most of the nurses whereas the second one considers also rare skills, meaning that

some skills are mastered by only a few nurses. For each instance the targeted clinical

workload of each employee is generated in order to �t to the global workload (+/-

5h). The tightness is de�ned as the average clinical working time of nurses: a usual

tightness does not exceed 700 minutes. The �rst set of instances has a tightness of 600

minutes, which corresponds to a usual workload. The second one has a tightness of 800

minutes which corresponds to a big workload. The tightness of the last set of instances

amounts to 1000 minutes which aims at testing the limit of the model. Finally, the task

distribution and pro�le are also based on realistic data: tasks are distributed all along

the week, with a density peak around 8 a.m. and three kinds of tasks, with speci�c

probabilities of occurrence:

1. small tasks ranging from 5 to 15 minutes, with a probability of occurrence of 5%.

2. medium tasks with a processing time close to one hour, with a probability of oc-

currence of 65%.

3. big tasks ranging from 2 to 5 hours, with a probability of occurrence of 30%.

Then, a simple procedure computes the required number of workers along with their

personal data (skills, availabilities, etc...). It ensures that the tightness of the instance

is respected but it does not ensure the feasibility of the instance. Consequently some

instances do not admit a complete assignment. In the following, we de�ne the size of

an instance as its number of tasks.

6.2 Parameters design

Parameter l (in minutes) has been tested with values: −180, 0 and 180. Increasing
l leads some ValOS, such as BO, to a higher number of complete assignments and

a smaller number os unassigned tasks. However this improvement is obtained at the

expense of the mean equity value. Moreover, some strategies such as BT and Mx do

not pro�t from this increase of l, on the contrary, it leads only to worsen the equity.

Parameters p and δ have been tested separately within the BT (Biggest Task) and

the ID (Increase Density) ValOS respectively.

Parameter δ has been tested from -1 to 0 with a range of 0.1. We did not try

to set δ to strictly positive values, because it seems unlikely to be possible to use

this strategy during the whole search. Results show no signi�cant di�erences for these

various settings, which means that making a big increase of density is not so important

compared to completing working days (whether it is by increasing or decreasing the

density). In order to get a well balanced Mx strategy, we set δ to 0, but when used

inside ID we set it to −1.
Parameter p (in minutes) has been tested with values 5, 30, 50, 120, 180 and 240

which enables us to consider either every task or only subsets of tasks. Increasing p

leads to a higher number of complete assignments and a smaller number of unassigned

tasks, but it worsen the equity. The best solutions (considering equity) are obtained

with values 5 and 30. Above 30 the equity value starts to decrease. Consequently, we

set p to 30. By doing this, we put aside small tasks whose durations range from 5 to

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 107

30 minutes, but when used inside BT we set it to 5.

6.3 Results analysis

In order to evaluate our results, which are presented in detail in Table 3, we used 4

indicators:

1. "Complete": the number of solutions with a complete assignment.

2. "Equity": the mean equity value of best solutions, in minutes (over complete as-

signments only).

3. "Left": the average number of unassigned tasks.

4. "Time": the mean computation time of best solutions, in seconds (over complete

and incomplete assignments).

Table 3: Results (time limit: 5 min)

Strategy Indicator
Size

100 200 300 400 All

LW
Complete 27/180 43/180 45/180 52/180 167/720

BO
Equity 304 301 295 293 297

Left 6 8 9 11 8

Time 44 23 23 41 32

LW
Complete 30/180 43/180 64/180 61/180 198/720

BT(p = 5)
Equity 49 41 39 34 39

Left 5 6 7 6 6

Time 22 26 19 36 26

LW
Complete 57/180 89/180 104/180 108/180 358/720

ID(δ = −1) Equity 248 268 290 297 280

Left 4 5 3 3 4

Time 60 27 32 39 37

LW
Complete 54/180 75/180 90/180 93/180 312/720

LN
Equity 227 261 271 277 263

Left 4 5 5 5 5

Time 70 30 31 36 39

LW
Complete 33/180 50/180 64/180 72/180 219/720

Mx(p = 30, δ = 0)
Equity 42 43 40 36 40

Left 5 6 6 6 6

Time 35 5 16 37 23

LW
Complete 71/180 101/180 116/180 124/180 412/720

All
Equity 119 146 121 117 126

Left 3 3 2 2 2

Time 109 53 50 53 66

MW(l = −180) Complete 43/180 56/180 60/180 64/180 223/720

BO
Equity 389 471 500 540 483

108 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Strategy Indicator
Size

100 200 300 400 All

Left 5 8 7 8 7

Time 73 40 54 95 66

MW(l = −180) Complete 41/180 60/180 70/180 66/180 237/720

BT(p = 5)
Equity 286 363 390 414 372

Left 5 7 5 5 6

Time 96 58 59 78 71

MW(l = −180) Complete 79/180 102/180 126/180 125/180 432/720

ID(δ = −1) Equity 354 439 514 544 476

Left 4 5 3 3 4

Time 75 74 73 106 83

MW(l = −180 Complete 68/180 82/180 96/180 112/180 358/720

LN
Equity 349 477 551 579 505

Left 4 5 4 4 4

Time 101 89 94 100 96

MW(l = −180) Complete 45/180 63/180 75/180 77/180 260/720

Mx(p = 30, δ = 0)
Equity 312 369 375 419 376

Left 5 6 5 5 5

Time 66 69 77 75 73

MW(l=-180)
Complete 92/180 109/180 135/180 144/180 480/720

All
Equity 283 365 414 458 380

Left 3 3 2 2 2

Time 146 129 127 147 137

MW(l = 180)
Complete 59/180 71/180 78/180 81/180 289/720

BO
Equity 802 1056 1113 1185 1056

Left 4 6 6 7 6

Time 151 109 148 142 138

MW(l = 180)
Complete 63/180 85/180 96/180 97/180 341/720

BT(p = 5)
Equity 903 1102 1217 1284 1150

Left 5 6 5 4 5

Time 146 138 134 140 139

MW(l = 180)
Complete 91/180 108/180 128/180 128/180 455/720

ID(δ = −1) Equity 783 1003 1132 1213 1054

Left 3 4 3 3 3

Time 141 143 135 148 142

MW(l = 180)
Complete 90/180 108/180 127/180 144/180 469/720

LN
Equity 763 989 1122 1190 1043

Left 4 4 3 3 4

Time 168 155 139 162 156

MW(l = 180)
Complete 69/180 88/180 101/180 107/180 365/720

Mx(p = 30, δ = 0)
Equity 908 1104 1212 1282 1149

Left 5 6 5 4 5

Time 140 143 139 141 141

MW(l = 180)
Complete 103/180 123/180 139/180 152/180 517/720

All
Equity 732 952 1063 1152 975

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 109

Strategy Indicator
Size

100 200 300 400 All

Left 2 2 1 2 2

Time 222 226 223 226 224

All
Complete 106/180 127/180 142/180 153/180 528/720

All
Equity 205 260 210 238 228

Left 2 2 1 1 2

Time 256 246 244 251 249

Table 3 gives for each size the value of the various indicators depending on the

branching strategy. Results obtained with l = 0 are not presented because they stand

between those obtained with l = −180 and l = 180. The column "All" gives for each

con�guration the sum of the indicator "Complete" along with the mean values of indi-

cators "Equity", "Left" and "Time". The line LW-All (respectively MW-All) gives the

results which can be found by using in parallel each ValOS with LW (respectivelyMW).

Results regarding to feasibility

The default strategy gives similar results on each size: it �nds around 70 instances

with a complete assignment with a mean equity of 1600 minutes in 90 seconds. Com-

pared to the default strategy, dedicated strategies �nd more solutions, especially with

the MW VarOS, which illustrates the importance of using dedicated strategies.

Generally speaking, the number of solutions is bigger with the MW VarOS than

with the LW strategy, which is coherent with the idea of these strategies. The ID Va-

lOS gives the highest number of solutions for both VarOS, which means that building

compact schedules is a good lead to get a feasible solution. On the contrary, BO gives

few solutions for both strategies. This comes from the data speci�cities: the activity

peak turns around 8 a.m. every day, consequently, by systematically choosing these

tasks over the others we set to many shifts around the same time slot, which makes

the assignment of night tasks much more di�cult. The average number of unassigned

tasks turns around 5 which is quite small.

On the whole, small instances turned out to be more di�cult than bigger instances,

which comes from the variations of the number of employees: instances with 100 tasks

which corresponds to a small industrial activity have a smaller number of available

workers than instances with 400 tasks which corresponds to a big activity. On the

whole, tested ValOS perform di�erently on each instance, which means that they can

complete one another, at least to some extent. Consequently, a practical way of �nding

solutions is to solve the problem in series with various ValOS, which is highlighted by

the lines LW-All, MW-All and All-All. For instance, using each ValOS in parallel with

LW increases the number of found solutions by 54. Another way to make up for the

lack of solutions is to combine simple heuristics, as we do with Mx.

Instances with rare skills are harder to solve than those with only common skills.

On average the relative di�erence of the number of complete assignments between

these two sets turns around 10 to 20%. However, the average number of unassigned

tasks does not change between these two sets. Instances with a high tightness are much

110 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

more di�cult to solve than those with a common tightness. On the whole, 96%, 85%

and 39% of the instances with a respective tightness of 600, 800 and 1000 minutes are

solved with a complete assignment. This means that the method encounters di�culties

to cope with heavy workload. However the number of unassigned tasks do not increase

much.

Results regarding to equity

On average, between �rst solutions and best solutions, the improvement of the objective

is not very big, which may be explained by the choice of the method: CP aims more at

�nding a solution rather than improving a solution. Consequently it is very important

to �nd a good solution from the beginning, especially for the biggest instances. LW-

BT �nds the best results regarding to the equity, but only on a very small subset of

instances. The LW-Mx strategy �nds more solutions than the LW-BT strategy, and

their value is relatively close to the best known value. Consequently, this heuristic is a

successful combination of the more simple heuristics.

6.4 Operational point of view

On the whole, the method is quite fast: the �rst solution is found within a few seconds

and the best solution is found in less than 3 minutes, which �ts the requirements of

the company. Given that some instances are not feasible without externals, the method

�nds a relatively good number of instances with a complete assignment and the number

of unassigned tasks is very small. Depending on the running con�guration, the number

of complete assignments along with the value of the equity may be very di�erent: LW-

BT and LW-Mx strategies perform very well on equity but they have some di�culties

to �nd complete assignments. On the contrary, LW-ID and LW-LN strategies perform

relatively well on the assignment but not so well regarding to the equity.

7 Concluding remarks

We have presented a CP model along with several branching strategies in order to

solve a real-world problem which shares similarities both with the Tour Scheduling

Problem and the Fixed Job Scheduling Problem. For the sake of clarity we did not

mention the problem into its full complexity, but this model could be extended in or-

der to deal with additional legal constraints such as break constraints but also more

complex equity objectives such as the distribution of night or weekend shifts which are

also important for the company. This would lead to the interesting problem of de�ning

a good solution when facing multiple objectives. This approach deals simultaneously

with the task assignment problem and the design of personnel scheduling. We intend to

compare this approach with a sequential one which deals with the design of personnel

schedules before the task assignement problem.

We believe that our model could be improved in two ways. The �rst one is to work

on the branching strategies which clearly have a big impact on results. For instance,

it may be interesting to design a more complex variable ordering strategy, able to

mediate between the need to improve a solution and the need to keep room to avoid

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 111

dead ends. The second lead is to strengthen the �ltering process by using redundant

constraints: set variables are a powerful tool which makes constraints easy to write, but

they su�er from a weak �ltering. Consequently, adding integer variables and channeling

constraints may increase the �ltering and therefore the performances of the model.

Our results show that branching strategies can successfully complete one another

by being used, either in series or in a combined way. A more thorough study of the

impact of parameters would allow to get sharpened conclusions, but the main con-

clusions remain: many results are good enough to be used by the company whereas

others need to be improved. Since the model encounters some di�culties to improve a

solution, it may be interesting to use another method such as a Large Neighbourhood

Search ([19]), as a following of our method. Since the number of unassigned tasks is

on average very small, it may be much more e�cient to explore some targeted neigh-

bourhood rather than following the basic tree exploration in order to �nd complete

assignments. In order to evaluate in a better way the quality of our approach, future

work may also focus on the search of optimal solutions and lower bounds regarding to

the equity and the number of externals required to perform each tasks. However our

optimal criterion makes this task di�cult. Working on the sequential approach (shifts

are �xed) makes this task a bit easier. In this context, we proposed two lower bounds

for the equity value ([18]). However they do not correspond to the lower bound for the

general problem studied in this paper and hence need to be adapted which seems very

challenging.

References

1. Alfares, H.K.: Survey, Categorization, and Comparison of Recent Tour Scheduling Liter-
ature. Annals of Operations Research 127, 145�175 (2004)

2. Bechtold, S.E., Jacobs, L.W.: Implicit modeling of �exible break assignments in optimal
schift scheduling. Management Science 36(11) (1990)

3. Brucker, P., Qu, R., Burke, E.K.: Personnel scheduling: Models and complexity. European
Journal of Operational Research 210(3), 467�473 (2011)

4. Brusco, M.J., Jacobs, L.W., Bongiorno, R.J., Lyons, D.V., Tang, B.: Improving personnel
scheduling at airline stations. Operations Research 43(5), 741�751 (1995)

5. Burke, E.K., Cowling, P.: A Memetic Approach to the Nurse Rostering Problem. Applied
Intelligence 15(3), 199�214 (2001)

6. Burke, E.K., De Causmaecker, P., Berghe, G.V., Landeghem, H.V.: The state of the art
of nurse rostering. Journal of Scheduling 7, 441�499 (2004)

7. Burke, E.K., Li, J., Qu, R.: A hybrid model of integer programming and variable neigh-
bourhood search for highly-constrained nurse rostering problems. European Journal of
Operational Research 203(2), 484�493 (2010)

8. Cai, X., Li, K.N.: A genetic algorithm for scheduling sta� of mixed skills under multi-
criteria. European Journal Of Operational Research 125, 359�369 (2000)

9. Caprara, A., Focacci, F., Lamma, E., Mello, P., Milano, M., Toth, P.: Integrating Con-
straint Logic Programming and Operations Research Techniques for the Crew Rostering
Problem. Software Practice and Experience (28), 49�76 (1998)

10. Cheng, B.M.W., Lee, J.H.M., Wu, J.C.K.: Speeding Up Constraint Propagation By Redun-
dant Modeling. In: 2nd Int. Conf. on Principles and Practice of Constraint Programming
(1996)

11. Dijkstra, M.C., Kroon, L.G., Salomon, M., Van Nunen, J.A.E.E., van Wassenhove, L.N.:
Planning the Size and Organization of KLM's Aircraft Maintenance Personnel. Interfaces
24(6), 47�58 (1994)

112 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

12. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Sta� scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research
153(1), 3�27 (2004)

13. Garey, M.R., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman (1979)

14. Jaumard, B., Semet, F., Vovor, T.: A generalized linear programming model for nurse
scheduling. European Journal Of Operational Research 2217(97) (1998)

15. Kolen, A.W.J., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.R.: Interval Scheduling:
A Survey. Naval Research Logistics 54, 530�543 (2007)

16. Loucks, J.S., Jacobs, R.F.: Tour Scheduling and Task Assignment of a Heterogeneous Work
Force: A Heuristic Approach. Decision Sciences 22(4), 719�738 (1991)

17. Mabert, V.A., Watts, C.A.: A Simulation Analysis of Tour-Shift Construction Procedures.
Management Science 28(5), 520�532 (1982)

18. Prot, D., Lapègue, T., Bellenguez-Morineau: Lower bounds for a �xed job scheduling
problem with an equity objective function. In: 25th European Conference on Operational
Reserach (2012)

19. Shaw, P.: Using Constraint Programming and Local Search Methods to Solve Vehicle
Routing Problems. In: Principles and Practice of Constraint Programming (CP'98), vol-
ume 1520 of LNCS. pp. 417�431 (1998)

20. Team, C.: choco: an open source java constraint programming library. Research report,
Ecole des Mines de Nantes (2010)

21. Weil, G., Heus, K., Patrice, F., Poujade, M.: Constraint Programming for Nurse Schedul-
ing. Engineering in Medicine and Biology Magazine, IEEE 14(4), 417�422 (1995)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 113

Fairness in Academic Course Timetabling

Moritz M ühlenthaler · Rolf Wanka

Abstract We consider the problem of creating fair course timetables in the setting of a
university. Our motivation is to improve the overall satisfaction of individuals concerned
(students, teachers, etc.) by providing a fair timetable to them. The central idea is that un-
desirable arrangements in the course timetable, i. e., violations of soft constraints, should be
distributed in a fair way among the individuals. We propose two formulations for the fair
course timetabling problem that are based on max-min fairness and Jain’s fairness index, re-
spectively. Furthermore, we present and experimentally evaluate an optimization algorithm
based on simulated annealing for solving max-min fair course timetabling problems. The
new contribution is concerned with measuring the energy difference between two timetables,
i. e., how much worse a timetable is compared to another timetable with respect to max-min
fairness. We introduce three different energy difference measures and evaluate their impact
on the overall algorithm performance. The second proposed problem formulation focuses on
the tradeoff between fairness and the total amount of soft constraint violations. Our exper-
imental evaluation shows that the known best solutions to the ITC2007 curriculum-based
course timetabling instances are quite fair with respect to Jain’s fairness index. However,
the experiments also show that the fairness can be improved further for only a rather small
increase in the total amount of soft constraint violations.

Keywords Curriculum-based Course Timetabling, Max-Min Fairness, Fairness Index

1 Introduction

We consider the problem of creating fair course timetables in the setting of a university.
In academic timetabling, the courses need to be assigned to a limited number of resources
(rooms and timeslots) such that certain constraints are satisfied There are typically two
kinds of constraints called hard and soft constraints. The hard constraints are basic require-
ments, so a timetable which does not satisfy all hard constraints is considered useless. The

Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.

Moritz Mühlenthaler, Rolf Wanka
Department of Computer Science, University of Erlangen-Nuremberg, Germany
E-mail: {moritz.muehlenthaler, rwanka}@cs.fau.de

114 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

soft constraints characterize certain undesirable properties of a timetable for students and
teachers, as well as for abstract entities such as courses and curricula. The quality of a
timetable is determined by the extent to which soft constraints are violated: the fewer soft
constraint violations, the better. The usual approach is to use an objective function which
penalizes the soft constraint violations so the goal is to f nd a timetable with a minimal total
penalty. Situations may arise however, in which a large part of penalty hits only a small
group of individuals, who would thus receive a poor timetable in comparison to others. In
other words, a timetable may be unfair due to an unequal distribution of penalty.

Fairness and inequality in the distribution of resources are a major concern for instance
in economics [15,36] and computer networks [4–6,17,18,20,31,35]. In the area of opera-
tions research, fairness criteria have been applied for example to the aircraft landing prob-
lem [37]. To the best of our knowledge, no previous paper on academic timetabling ad-
dresses fairness explicitly. In this paper, we investigate two approaches that avoid unfair
distributions of penalty in the context of academic course timetabling. The f rst approach
uses a purely qualitative measure of fairness, i. e., given two timetables the fairness measure
determines which of the two is better. In contrast, the second approach is based on a quan-
titative fairness measure, which represents the fairness of a timetable as a number between
zero and one.

The f rst approach considers groups of students ranked by the quality of the course
timetable from the students’ perspective. The goal is to improve the student satisfaction by
imposing the following fairness conditions: The courses should be assigned to rooms and
timeslots such that the worst course schedule for any of the students is as good as pos-
sible with respect to the various soft constraints. Under this condition, the second-worst
course schedule for any student should be as good as possible, and so forth. This fairness
concept is called lexicographic max-min fairness. For the sake of succinctness, we will re-
fer to this fairness concept just as max-min fairness. In the literature, max-min fairness
has for example been applied to network bandwidth allocation problems [31,35]. In this
work, we propose the MMF-CB-CTT problem model, a max-min fair variant of the popular
curriculum-based course timetabling (CB-CTT) problem formulation from [13]. We further
propose MAXMINFAIR SA, an optimization algorithm based on simulated annealing (SA),
for solving max-min fair optimization problems. Although our evaluation of MAXMIN-
FAIR SA focuses on MMF-CB-CTT problems, the algorithm can be tailored to other max-
min fair problems by choosing an appropriate neighborhood exploration mechanism and a
suitable evaluation function. A delicate part of the algorithm is the energy difference func-
tion, which quantif es how much worse one solution is compared to another solution. We
propose three different energy difference functions and evaluate their impact on the perfor-
mance of MAXMINFAIR SA on the 21 standard instances from [13].

The fairness conditions imposed by max-min fairness are rather strict in the sense that
no tradeoff arises between fairness and total penalty. When creating course timetables for a
university, however, it may be desirable to pick a timetable from a number of solutions with
varying tradeoffs between fairness and total penalty. Our second proposed approach offers
this f exibility. The approach is based on a bi-criteria problem formulation which includes
fairness as an option, but does not enforce it like max-min fair optimization. In this problem
formulation, referred to as JFI-CB-CTT, we use Jain’s fairness index, an inequality measure
proposed by Jain et al. in [17]. The fairness index allows us to quantify the fairness of a
timetable explicitly. Please note that since max-min fairness is a purely qualitative fairness
measure, it is not applicable in this setting. We investigate the tradeoffs between fairness
and total penalty for the six standard instances from [13] whose known best solutions have
the highest total penalty compared to the other instances. Our motivation for this choice of

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 115

instances is simply that if the total penalty of a timetable is very small, then there is not much
gain in distributing the penalty in a fair way. Our conclusion regarding this approach is that,
although the known best solutions for the six instances are quite fair, we can improve the
fairness further with only a rather small increase in total penalty. For a theoretical treatment
of the price of fairness on so-called convex utility sets with respect to proportional fairness
and max-min fairness, see the recent work by Bertsimas et al. [6].

The remainder of this paper is organized as follows. In Section 2, we will provide a
brief review of the curriculum-based course timetabling (CB-CTT) problem model as well
as the two fairness concepts max-min fairness and Jain’s fairness index. In Section 3 we
will propose two fair variants of the CB-CTT model, and in Section 4, we will introduce the
optimization SA-based algorithm MAXMINFAIR SA for solving max-min fair allocation
problems. Section 5 is dedicated to our experimental evaluation of the fairness of the known
best solutions to 21 standard instances from [13] with respect to max-min fairness and Jain’s
fairness index, and the performance of the MAXMINFAIR SA algorithm.

2 Preliminaries

In this section, we provide a brief review of the curriculum-based course timetabling prob-
lem formulations as well as relevant def nitions concerning max-min fairness and Jain’s
fairness index.

2.1 Curriculum-based Course Timetabling Problems

Curriculum-based Course Timetabling (CB-CTT) is a problem formulation for a class of
optimization problems which arise when creating course schedules in the setting of a uni-
versity. A central entity in the problem model is the curriculum. Each curriculum consists of
a set of courses which must be attended by a common group of students and thus must not
be held simultaneously. Our experimental evaluation of fairness in academic timetabling is
based on the CB-CTT problem formulation introduced for Track 3 of the Second Interna-
tional Timetabling Competition (ITC2007) [27]. This formulation has emerged as one of the
standard problem formulations in academic timetabling – both in research and in practice.

CB-CTT problems are NP-hard and a lot of effort has been devoted to f nding heuristic
approaches which provide high quality solutions within reasonable time. A wide range of
techniques has been employed for solving CB-CTT instances including but not limited to
approaches based on Max-SAT [2], mathematical programming [24,8], local search [12,
26], evolutionary computation [1] as well as hybrid approaches [29]. There has been a lot of
progress in terms of the achieved solution quality in the recent years. Interestingly however,
there seems to be no single approach which is superior to the other approaches on all (or
even most) ITC2007 instances (see [13] for current results).

A CB-CTT instance consists of the following data: We are given a set of days and each
day is divided into a f xed number of timeslots. A pair composed of a day and a timeslot
will be referred to as period. A period in conjunction with a room is called a resource.
Additionally, we are given sets of teachers, courses, rooms and curricula. Each course has
a teacher and consists of a number of lectures; each curriculum is a set of courses. For
each room, we are provided with the maximum number of students it can accommodate.
Now, given a CB-CTT instance I, the task is to create a course timetable τ , i. e., to f nd an
assignment of lectures to resources such that hard constraints are satisf ed and soft constraint

116 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

violations are minimal. A comprehensive description of the problem model and the rationale
behind it can be found in [11].

A timetable which satisf es all hard constraints is called feasible. The hard constraints
ensure that no student and no teacher has to be present at two lectures at the same time
and no two lectures can occupy a room at the same time. Additionally, all lectures have
to be assigned to a suitable resource and, for each lecture, the teacher has to be available
in the given period. For our purpose of creating fair course timetables, we will consider
the distribution of soft constraint violations among the curricula. The CB-CTT formulation
features the following four soft constraints:
S1 RoomCapacity: Each lecture should be assigned to a room of suff cient size.
S2 MinWorkingDays: The lectures of each course should be distributed over a certain min-

imum number of days.
S3 IsolatedLectures: For each curriculum, all lectures associated to the curriculum should

be scheduled in adjacent timeslots.
S4 RoomStability: The lectures of each course should be assigned to the same room.
Each violation of one of the soft constraints results in a penalty for the timetable. The ob-
jective function aggregates individual penalties by taking their weighted sum. Detailed de-
scriptions of how hard and soft constraints are evaluated and how much penalty is applied
for a particular soft constraint violation can be found in [11].

2.2 Fairness in Resource Allocation

Fairness issues typically arise when scarce resources are allocated to a number of individ-
uals with demands. E. g., fair resource allocation has received much attention in economic
theory [15], but also occurs in a wide range of applications in computer science includ-
ing bandwidth allocation in networks [5] and task scheduling [34]. In many optimization
problems related to resource allocation, the goal is to maximize the amount of resources
allocated to each individual. Fairness conditions can be imposed implicitly or explicitly in
order to prevent unfair distributions of the allocated resources.

Consider a resource allocation problem with n entities or, in the following, individuals
receiving resources. A particular resource allocation (an admissible solution) induces an al-
location vector X = (X1, . . . ,Xn), where each item Xi,1 ≤ i ≤ n, corresponds to the amount
of resources allocated to individual i. There are various approaches to determining the fair-
ness of a resource allocation from the corresponding allocation vector. A fairness concept
which allows for a qualitative comparison of two allocation vectors is (lexicographic) max-
min fairness. It has received attention in the area of network engineering, in particular in
the context of f ow control [4,20,35,41]. Another class of approaches are inequality mea-
sures such as the Gini index [16] and Jain’s fairness index [17,25]: an inequal distribution
of resources is considered unfair. The inequality of a resources distribution is typically rep-
resented as a number, which allows for a quantitative comparison of the fairness of resource
allocations. Inequality measures have been studied in economics [15], in particular in the
context of income distribution. Furthermore, in many resource allocation problems, the no-
tion of fairness is implicitly contained in the objective function. Depending on the notion of
fairness, the task can be to f nd allocations maximizing or minimizing the sum of the indi-
vidual allocations, the mean allocation, the root mean square (RMS), the smallest allocation,
and so forth [30,37].

Our evaluation of fairness in academic course timetabling focuses on the two fairness
criteria max-min fairness and Jain’s fairness index.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 117

Max-min Fairness. Max-min fairness can be stated as iterated application of Rawls’s Sec-
ond Principle of Justice [33]:

“Social and economic inequalities are to be arranged so that they are to be of greatest
benef t to the least-advantaged members of society.” (the Difference Principle)

Once the status of the least-advantaged members has been determined according to the dif-
ference principle, it can be applied again to everyone except the least-advantaged group in
order to maximize the utility (in the economic sense) for the second least-advantaged mem-
bers, and so on. The resulting utility assignment is called max-min fair. A max-min fair
utility assignment implies that no member can improve its utility at the expense of any other
member who received less utility. A max-min fair resource allocation is Pareto-optimal.

In order to def ne max-min fairness more formally, we introduce some notation. Let X
be an allocation vector. Then let ~X be the corresponding vector containing the values of
X arranged in nondecreasing order. Let Y be another allocation vector. We write X �mm

Y if X is at least as good as Y in the max-min sense, that is if ~Y �lex ~X , where �lex is
the usual lexicographic comparison. A resource allocation X is called max-min optimal, if
X �mm Y holds for all feasible resource allocations Y . Since the allocations are sorted, max-
min fairness does not discriminate between individuals, but only between the amounts of
resources assigned to them.

A weaker version of max-min fairness results if the fairness conditions are not applied
iteratively as stated in the above def nition. This means that we are just concerned with
chosing the best possible outcome for the least-advantaged individuals. In the literature,
related optimization problems are referred to as bottleneck optimization problems [14,32].
In the context of academic timetabling however, this weaker fairness concept does not lead
to desirable results: although, from the perspective of the least-advantaged group a timetable
may be optimal, the quality of the timetable from the perspective of other stakeholders is not
considered.

Jain’s Fairness Index. While max-min fairness enforces a certain eff ciency in resource uti-
lization and provides a qualitative measure of fairness, Jain’s fairness index [17] quantif es
the inequality of a given resource distribution. An equal distribution of resources is consid-
ered fair, while an inequal distribution is considered unfair. It is the crucial fairness measure
that is applied in the famous AIMD algorithm used in TCP Congestion Avoidance [10]. The
fairness index J(X) of an allocation vector X is def ned as

J(X) =

(

∑
1≤i≤n

Xi

)2

n · ∑
1≤i≤n

X2
i

. (1)

It has several useful properties like population size independence, scale and metric inde-
pendence, it is bounded between 0 and 1, and it has an intuitive interpretation. In particular
J(X) = 1 means that X is a completely fair allocation, i. e., the allocation is fair for every
individual, and if J(X) = 1/n then all resources are occupied by a single individual. Further-
more, if J(X) = x% then the allocation X is fair for x percent of the individuals.

3 Fairness in Academic Course Timetabling

Course timetabling problems f t quite well in the framework of fair resource allocation prob-
lems described in the previous section: A timetable is an allocation of resources (rooms,

118 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

timeslots) to lectures. In this section, we will def ne two fair versions of the CB-CTT prob-
lem model. The f rst one, MMF-CB-CTT, is based on max-min fairness. Since max-min
fairness enforces eff ciency (maximum utility) as well as fairness at least to some extent, it
is not a suitable concept for exploring the tradeoff between fairness and eff ciency. There-
fore we propose a second fair variant of CB-CTT called JFI-CB-CTT that is based on Jain’s
fairness index.

In order to employ the fairness concepts mentioned in the previous section, we need
to def ne how to determine the allocation vector for a timetable. The central entities in the
CB-CTT problem model are the curricula. Therefore, in this work, we are interested in a
fair distribution of the penalty values assigned to the curricula. Please note that we interpret
utility as the opposite of penalty. Hence, a timetable which receives less penalty than an-
other timetable has a higher utility. We achieve the transformation from penalty to utility by
simply changing the signs of the penalty values. Let I be a CB-CTT instance with curricula
c1,c2, . . . ,ck and let fc be the usual CB-CTT objective function from [11], which evaluates
(S1)-(S4) restricted to curriculum c. This means fc determines soft constraint violations only
for the courses in curriculum c. For a timetable t the corresponding allocation vector is given
by the allocation function

A(t) = (− fc1(t),− fc2(t), . . . ,− fck(t)) . (2)

Definition 1 (MMF-CB-CTT) Given a CB-CTT instance I, the task is to f nd a feasible
timetable t such that A(t) is max-min optimal.

If a feasible timetable corresponds to a max-min optimal allocation, then any curriculum
c could receive less penalty only at the expense of other curricula which receive more penalty
than c. Since each student is struck only by the penalty assigned to his or her curriculum the
group of students with the worst timetable receive the best possible timetable and under this
condition, the students with the second-worst timetable receive the best possible timetable,
and so on.

In order to explore the tradeoff between eff cient and fair resource allocation in curricu-
lum-based timetabling, we propose another fair variant of CB-CTT called JFI-CB-CTT that
is based on Jain’s fairness index [17]. In order to get meaningful results from the fairness
index however, we need a different allocation function. Consider an allocation X , where all
penalty is allocated to a single curriculum while the remaining k− 1 curricula receive no
penalty. Then J(X) = 1/k, which means that only one curriculum is happy with the alloca-
tion (see [17]). In our situation however, the opposite is the case: k− 1 curricula are happy
since they receive no penalty at all. The following allocation function shifts the penalty
values such that the corresponding fairness index in the situation described above becomes
(k−1)/k, which is in much better agreement with our intuition:

A′(t) = (fmax− fc1(t), fmax− fc2(t), . . . , fmax− fck(t)) , (3)

with
fmax = max

1≤i≤k
{ fci(t)} .

Definition 2 (JFI-CB-CTT) Given a CB-CTT instance I, the task is to f nd the set of fea-
sible solutions which are Pareto-optimal with respect to the two objectives of the objective
function

F(t) = (f (t),1− J(A′(t))) , (4)

where f is the CB-CTT objective function from [11] and J is def ned in Eq. (1).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 119

In a similar fashion, other classes of timetabling problem such as post-enrollment course
timetabling, exam timetabling and nurse rostering can be turned into fair optimization prob-
lems. For example, for post-enrollment course timetabling, the central entities of interest
would likely be the individual students, not the curricula as for CB-CTT problems. There-
fore, the goal would be a fair distribution of penalty over all students. Once an appropriate
allocation function has been def ned, we immediately get the corresponding fair optimiza-
tion problems.

Our proposed problem formulations are concerned with balancing the interests within
one group of indiviuals, namely the students. In practice however, there are often several
groups of individuals with possibly conf icting interest, for example students, lecturers and
administration. The proposed models can be extended to multiple groups of stakeholders in
a straight-forward manner: The penalty values for all individuals (in all groups) are stored in
the allocation vector, and since all values are just penalty values, the fairness concepts can be
applied as proposed above. This approach requires some additional thought however, since
the interest of all individuals are considered to be equally important, which may or may
not be intended in practice (weighting can be applied of course). Another approach, which
avoids the problem of giving explicit priorities to the interests of different groups extends the
problem formulation based on Jain’s fairness index: The fairness index can be determined
independently for each group and the problem model can be extended to a (d+1)-objective
optimization problem, where d is the number of groups of stakeholders under consideration.
The set of Pareto-optimal solutions characterizes the tradeoffs between the interests of the
different groups and the total penalty.

4 Simulated Annealing for Max-Min Fair Course Timetabling and Three Measures
for Energy Difference

Simulated Annealing (SA) is a popular local search method which works surprisingly well
on many problem domains [19]. SA has been applied successfully to timetabling prob-
lems [21,38] and some of the currently known best solutions to CB-CTT instances from the
ITC2007 competition were discovered by simulated annealing-based methods [13]. Our SA
for max-min fair optimization problems shown in Algorithm 1 below (algorithm MAXMIN-
FAIR SA) is conceptually very similar to the original SA algorithm proposed by Kirkpatrick
et al. [19]. Since max-min fairness only tells us which of two given solutions is better, but not
how much better, the main challenge in tailoring SA to max-min fair optimization problems
is to f nd a suitable energy difference function, which quantif es the difference in quality
between two candidate solutions. In the following, we propose three different energy differ-
ence measures for max-min fair optimization and provide details on the acceptance criterion,
the cooling schedule, and the neighborhood exploration method used for the experimental
evaluation of MAXMINFAIR SA in the next section.

Acceptance Criterion. Similar to the original SA algorithm proposed by Kirkpatrick et al.
in [19], algorithm MAXMINFAIR SA accepts an improved or equally good solution snext
with probability 1. If snext is worse than scur then the acceptance probability depends on the
current temperature level ϑ and the energy difference ∆E. The energy difference measures
the difference in quality of the allocation induced by snext compared to the allocation induced

120 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Algorithm 1: MAXMINFAIR SA
input : scur: feasible timetable, ϑmax: initial temperature, ϑmin: f nal temperature, timeout
output: sbest: Best feasible timetable found so far
sbest ← scur
ϑ ← ϑmax
while timeout not hit do

snext ← neighbor(scur)
if Paccept ≥ random() then scur ← snext
if A(scur)�mm A(sbest) then sbest ← scur
ϑ ← next temperature(ϑ)

end
return sbest

by the current solution scur. The acceptance probability Paccept is def ned as:

Paccept =

1 if snext �mm scur

exp
(

−
∆E(X ,Y)

ϑ
)

otherwise,

where X = A(scur) and Y = A(snext). With max-min fair optimization in mind, we propose
the following three energy different measures for the energy difference, ∆Elex, ∆Ecw, and
∆Eps, which are based on lexicographic comparison, component-wise ratios and the ratios
of the partial sums of the sorted allocation vectors, respectively. Our experiments presented
in the next section indicate that choosing one energy difference function over another has a
clear impact on the performance of Algorithm MAXMINFAIR SA. Hence the choice of the
energy difference function is a critical design choice.

For two allocation vectors X and Y of length n, let the energy difference ∆Elex be (note
~Xi denotes the ith entry after sorting the entries of X ,~Yi is def ned analoguously)

∆Elex(X ,Y) = 1−
1
n
·

(

min
1≤i≤n

{

i | ~Xi >~Yi

}

+1
)

. (5)

∆Elex determines the energy difference between X and Y from the index of the sorted al-
location vectors at which the comparison X �mm Y shows that X is better than Y . Thus,
sorted allocation vectors which differ at the most signif cant indices have a higher energy
difference than those which differ at later indices. In order to make the numerical range of
∆Elex independent of the actual size of the allocation vector, which may vary from instance
to instance, the result is normalized by the length nof the allocation vectors.

∆Elex only considers the earliest index at which two sorted allocation vectors differ
but ignores how much the actual entries differ. We additionally propose the two energy
difference measures ∆Ecs and ∆Eps which take this information into account. These two
energy difference measures were inspired by the def nitions of approximation ratios for max-
min fair allocation problems given by Kleinberg et al. in [20]. An approximation ratio is a
measure for how much worse the quality of a solution is relative to a possibly unknown
optimal solution. In our case, we are interested in how much worse one given allocation
is relative to another given allocation. Despite the different context, we can use the same
general ideas. Let µX ,Y be the smallest value of the two allocation vectors X and Y offset by
a parameter δ > 0, i. e.,

µX ,Y = min{~X1,~Y1}−δ . (6)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 121

The component-wise energy difference ∆Ecw of two allocations X and Y is def ned as:

∆Ecw(X ,Y) = max
1≤i≤n

{

µX ,Y −~Xi

µX ,Y −~Yi

}

−1 (7)

Unlike ∆Elex, the component-wise energy difference does not take into account explicitly
which entries of the sorted allocation vectors are responsible for X �mm Y . There is however
a bias towards the ratios of entries which occur early in the sorted allocation vectors. Since
all entries are subtracted from µX ,Y , the ratios of the most signif cant entries with respect to
�mm tend to govern the value component-wise energy difference. Consider for example the
situation that Y is much worse than X , say, min{~X1,~Y1} occurs more often in X than in Y .
Then for δ ≪ 1 the energy difference ∆Ecw(X ,Y) becomes large. On the other hand, if X is
nearly as good as Y then the ratios are all close to one and thus ∆Ecw(X ,Y) is close to zero.

The third proposed energy difference measure ∆Eps is based on the ratios of the partial
sums σi(X) of the sorted allocation vectors.

σi(X) = ∑
1≤ j≤i

X j .

The intention of using partial sums of the sorted allocations is to give the individuals who
receive the most penalty, and hence occur early in the sorted allocation vectors, more inf u-
ence on the resulting energy difference compared to ∆Ecw. The energy difference ∆Eps is
def ned as

∆Eps(X ,Y) = max
1≤i≤n

{

i ·µX ,Y −σi(~X)

i ·µX ,Y −σi(~Y)

}

−1 . (8)

Cooling Schedule. In algorithm MAXMINFAIR SA, the function next temperature up-
dates the current temperature level ϑ according to the cooling schedule. We use a standard
geometric cooling schedule

ϑ = α t ·ϑmax ,

where α is the cooling rate and t is the elapsed time. Geometric cooling schedules de-
crease the temperature level exponentially over time. It is a popular class of cooling sched-
ules which is widely used in practice and works well in many problem domains including
timetabling problems [23,22,39]. Geometric cooling was chosen due to its simplicity, since
the main focus of our evaluation in Section 5 is the performance impact of the different en-
ergy difference functions. We have made a slight adjustment to the specif cation of the geo-
metric cooling schedule in order to make the behavior more consistent for different timeouts.
Instead of specifying the cooling rate α , we determine α from ϑmax, the desired minimum
temperature ϑmin and the timeout according to:

α =

(

ϑmin

ϑmax

)
1

timeout
. (9)

Thus, at the beginning (t = 0) the temperature level is ϑmax and when the timeout is reached
(t = timeout), the temperature level becomes ϑmin. We chose to set a timeout rather than a
maximum number of iterations since this setting is compliant with the ITC2007 competition
conditions, which are a widely accepted standard for comparing results.

122 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1: Fairness of the known best timetables from [13] for the ITC2007 CB-CTT instances.

Instance Curricula f (sbest) J(A′(sbest)) −~A(sbest)

comp01 14 5 0.8571 52,012

comp02 70 24 0.9515 4,210,059

comp03 68 66 0.9114 13,103,9,72,64,513,4,26,037

comp04 57 35 0.8964 7,63,54,42,2,046

comp05 139 291 0.8277 412,367,355,325,316,309,28,277,262,2514, . . . ,2,03

comp06 70 27 0.9657 12,72,54,23,060

comp07 77 6 0.9870 6,076

comp08 61 37 0.9020 7,63,54,42,22,049

comp09 75 96 0.8047 105,9,710,66,510,4,2,041

comp10 67 4 0.9701 22,065

comp11 13 0 − 013

comp12 150 300 0.9128 45,3014,28,272,265,2519,224,216,208,19, . . . ,22,03

comp13 66 59 0.8830 8,7,65,57,42,23,047

comp14 60 51 0.9023 84,7,52,26,047

comp15 68 66 0.8495 103,93,7,64,513,4,27,036

comp16 71 18 0.9176 72,57,4,061

comp17 70 56 0.9248 102,63,59,24,052

comp18 52 62 0.9009 17,15,14,13,11,10,92,519,22,023

comp19 66 57 0.9612 13,7,64,52,4,27,050

comp20 78 4 0.9744 22,076

comp21 78 76 0.8838 12,11,104,9,74,64,512,4,23,12,045

Neighborhood. In our max-min fair SA implementation, the function neighbor picks at
random a neighbor in the Kempe-neighborhood of scur. The Kempe-neighborhood is the set
of all timetables which can be reached by performing a single Kempe-move, which is a well-
known and widely used operation for swapping events in a timetable [7,26,28,39,40]. A
prominent feature of Kempe-moves is that they preserve the feasibility of a timetable. Since
the algorithm MAXMINFAIR SA only uses Kempe-moves to modify timetables the output
is guaranteed to be feasible if the input timetable is feasible. In the future, more advanced
neighborhood exploration methods similar to those proposed for example in [12,26] could
be used, which may well lead to an improved overall performance of MAXMINFAIR SA.

5 Evaluation

In this section, we will f rst address the question how fair or unfair the known best timetables
for the ITC2007 CB-CTT instances are with respect to Jain’s fairness index and max-min
fairness. Table 1 shows our measurements of how fair the best existing solutions to the CB-
CTT instances comp01, comp02, . . . , comp21 are (see [13] for instance data). Please note
that the known best timetables were not created with fairness in mind, but the objective was
to create timetables with minimal total penalty. In Table 1, sbest refers to the known best
solution for each instance. A and A′ refer to the allocation functions given in (2) and (3),
respectively. The data indicates that the timetables with a low total penalty are also rather
fair. This can be explained by the fact that these timetables do not have a large amount
of penalty to distribute over the curricula. Thus, most curricula receive little or no penalty
and consequently, the distribution is fair for most curricula. We will show in Section 5.2

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 123

Table 2: The performance of MAXMINFAIR SA with ∆E = ∆Ecw for different values of δ .

δ 100 10−2 10−3 10−6

100 – 02 02,05 02

10−2 10,19,20 – 09 19

10−3 01,10,19,20 – – 03,19

10−6 01,10,20 – – –

however, that for timetables with a comparatively large total penalty there is still some room
for improvement concerning fairness.

The rightmost column of Table 1 contains the sorted allocation vectors of the best so-
lutions. For a more convenient presentation, all entries of the sorted allocation vectors are
multiplied by -1. The exponents denote how often a certain number occurs. For example,
the sorted allocation vector (−5,−5,0,0,0) would be represented as 52,03. The sum of the
values of an allocation vector is generally much larger than the total penalty shown in the
second column. The reason for this is that the penalty assigned to a course is counted for
each curriculum the course belongs to. With a few exceptions the general theme seems to be
that the penalty is assigned to only a few curricula while a majority of curricula receives no
penalty. In the next section we will show that the situation for the curricula which receive
the most penalty can be improved with max-min fair optimization for 15 out of 21 instances.

5.1 Max-Min Fair Optimization

In Section 4, we presented a SA-based algorithm for solving max-min fair resource allo-
cation problems. A crucial part of this algorithm is the energy difference measure which
determines how much worse a given solution is compared to another solution, i.e. the en-
ergy difference of the solutions. We evaluate the impact of the three energy difference mea-
sures (5), (7) and (8) on the performance of MAXMINFAIR SA.

Our test setup was the following: For each energy difference function we independently
performed 50 runs with MAXMINFAIR SA. The temperature levels were determined ex-
perimentally, we set ϑmax = 5 and ϑmin = 0.01; the cooling rate α was set according to (9).
In order to establish consistent experimental conditions for fair optimization, we used a
timeout, which was determined according to the publicly available ITC2007 benchmark
executable. On our machines (i7 CPUs running at 3.4GHz, 8GB RAM), the timeout was
set to 192 seconds. The MAXMINFAIR SA algorithm was executed on a single core. We
generated feasible initial timetables for MAXMINFAIR SA as a preprocess using standard
sequential heuristics [9]. The soft constraint violations were not considered at this stage.
Since the preprocess was performed only once per instance (not per run), it is not counted
in the timeout. However, the time it took was negligible compared to the timeout (less than
1 second per instance).

Table 2 shows the impact of the parameter δ on the performance of MAXMINFAIR SA
with energy difference measure ∆Ecw. For each pair of values we performed the one-sided
Wilcoxon Rank-Sum test with a signif cance level of 0.01. The data indicates that for best
performance, δ should be small, but not too small. For δ = 1, MAXMINFAIR SA beats the
other shown conf gurations on instance comp02 but performs worse than the other conf g-
urations on instances comp10 and comp20. For δ = 10−6 the overall performance is better
than for δ = 1, but worse than for the other conf gurations. With δ = 10−2 and δ = 10−3,

124 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 3: The performance of MAXMINFAIR SA with energy difference measures ∆Elex, ∆Eps and ∆Ecw.

∆E ∆Elex ∆Eps ∆Ecw

∆Elex – – –
∆Eps all except 01,06,08,11,17 – 18

∆Ecw all except 11 06,07,08,17,21 –

MAXMINFAIR SA shows the best relative performance. Thus, for our further evaluation we
set δ = 10−3.

Table 3 shows the relative performance of Algorithm MAXMINFAIR SA for the pro-
posed energy difference measures (5), (7) and (8). The table shows for any choice of two
energy difference measures i and j, for which instances MAXMINFAIR SA with measure i
performs signif cantly better than MAXMINFAIR SA using measure j. Again, we used the
Wilcoxon Rank-Sum test with a signif cance level of 1 percent. The data shows that ∆Ecw

is the best choice among the three alternatives, since it is a better choice than ∆Elex on all
instances except comp11 and a better choice than ∆Eps on f ve out of 21 instances. However,
although ∆Ecw shows signif cantly better performance than the other energy difference mea-
sures, it did not necessarily produce the best timetables on all instances. For the instances
comp03, comp15, comp05 and comp12 for example, the best solution found with ∆E = ∆Eps

was better than with ∆E = ∆Ecw.
The data in Table 4 shows a comparison of the sorted allocation vectors of the known

best solutions from [13] with the best solutions found by the 50 runs of MAXMINFAIR SA
with ∆E = ∆Ecw. First of all, for instances comp01 and comp11, the allocation vectors of
the best existing solutions and the best solution found by MAXMINFAIR SA are identical.
This means that MAXMINFAIR SA f nds reasonably good solutions despite the certainly
more complex f tness landscape due to max-min fair optimization. We can also observe that
the maximum penalty any curriculum receives is signif cantly less for most instances and
the penalty is more evenly distributed across the curricula. This means that although max-
min fair timetables may have a higher total penalty, they might be more attractive from the
students’ perspective, since in the f rst place each student notices an unfortunate arrangement
of his/her timetable, which is tied to the curriculum. Furthermore, we can observe that if the
total penalty of a known best solution is rather low, then it is also good with respect to
max-min fairness. For several instances in this category, (comp01, comp04, comp07, comp10
and comp20), the solution found by MAXMINFAIR SA is not as good as the known best
solution with respect to max-min fairness. We can conclude that if there is not much penalty
to distribute, it is not necessary to bother about a fair distribution of penalty.

5.2 The Tradeoff Between Fairness and Eff ciency

We proposed the JFI-CB-CTT problem formulation in Section 3, which allows us to inves-
tigate the tradeoff between fairness and eff ciency which arises in course timetabling. We
can observe in column 4 of Table 1 that for all of the best solutions from [13] the fairness
index (1) is greater than 0.8, i. e., the known best solutions are also fair for more than 80
percent of the curricula. In order to solve the corresponding JFI-CB-CTT instances, we use
the multi-objective optimization algorithm AMOSA proposed in [3] that is based on simu-
lated annealing like Algorithm MAXMINFAIR SA. Since we do not expect from a general
multi-objective optimization algorithm to produce solutions as good as the best CB-CTT

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 125

Table 4: Comparison of the sorted allocation vectors of the known best solutions from [13] with the allocation
vectors found by MAXMINFAIR SA with respect to max-min fairness.

Instance Known best solution MAXMINFAIR SA (∆E = ∆Ecw)
comp01 52,012 52,012

comp02 4,210,059 42,231,17,030

comp03 13,103,9,72,64,513,4,26,037 64,411,222,13,028

comp04 7,63,54,42,2,046 64,42,24,1,046

comp05 412,367,355,325,316,309,28, . . . ,2,03 192,183,173,165,152,1415,135, . . . ,48,33,2
comp06 12,72,54,23,060 12,42,230,113,024

comp07 6,076 6,223,124,029

comp08 7,63,54,42,22,049 64,42,27,15,043

comp09 105,9,710,66,510,4,2,041 69,414,217,035

comp10 22,065 219,16,042

comp11 013 013

comp12 45,3014,28,272,265,2519,224, . . . ,22,03 103,96,831,77,643,52,436,32,216,1,03

comp13 8,7,65,57,42,23,047 66,44,213,16,037

comp14 84,7,52,26,047 84,42,3,218,035

comp15 103,93,7,64,513,4,27,036 64,411,223,12,028

comp16 72,57,4,061 45,216,14,046

comp17 102,63,59,24,052 102,62,47,3,225,17,026

comp18 17,15,14,13,11,10,92,519,22,023 420,211,15,016

comp19 13,7,64,52,4,27,050 64,46,215,114,027

comp20 22,076 45,33,231,17,032

comp21 12,11,104,9,74,64,512,4,23,12,045 10,64,5,415,3,236,13,017

solvers, we will consider the following scenario to explore the tradeoffs between fairness
and eff ciency: starting from the known best solution we examine how much increase in
total penalty we have to tolerate in order to increase the fairness further. We will take as ex-
amples the six instances with the highest total amount of penalty, comp03, comp05, comp09,
comp12, comp15 and comp21.

The temperature levels for the AMOSA algorithm were set to ϑmax = 20 and ϑmin =
0.01; α was set according to (9) with a timeout determined by the off cial ITC2007 bench-
mark. The plots in Figure 1 show the (Pareto-) non-dominated solutions found by AMOSA.
The arrows point to the starting point, i.e. the best available solutions to the corresponding
instances. For instances comp05 and comp21 solutions with a lower total cost than the the
previously known best solutions were discovered by this approach. The plots show that the
price for increasing the fairness is generally not very high – up to a certain level, which
depends on the instance. In fact, for comp09 and comp21, the fairness index can be increased
by 3.5 percent and 1.4 percent, respectively, without increasing the total penalty at all.

In Figure 1, the straight lines that go through the initial solutions show a possible tradeoff
between fairness and eff ciency: the slopes were determined such that a 1 percent increase
in fairness yields a 1 percent increase in penalty. For the instances shown in Figure 1, the
solutions remain close to the tradeoff lines up to a fairness of 94 to 97 percent, while a further
increase in fairness demands a signif cant increase in total cost. For the instances comp05,
comp09 and comp15, there are several solutions below the tradeoff lines. Picking any of the
solutions below these lines would result in an increased fairness without an equally large
increase in the amount of penalty. This means picking a fairer solution might well be an
attractive option in a real-world academic timetabling context. For comp05 for example, the

126 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

fairness of the formerly best known solution with a total penalty of 291 can be increased by
5.4 percent at 302 total penalty, which is a 3.8 percent increase.

In summary, improving the fairness of an eff cient timetable as a post-processing step
seems like a viable approach for practical decision making. Using a very eff cient solution
as a starting point means that we can benef t from the existing very good approaches to
creating timetables with minimal total cost and provide improved fairness depending on the
actual, instance-dependent tradeoff.

6 Conclusion

In this paper we introduced two new problem formulations for academic course timetabling
based on the CB-CTT problem model from track three of the ITC2007, MMF-CB-CTT
and JFI-CB-CTT. Both problem formulations are aimed at creating fair course timetables
in the setting of a university but include different notions of fairness. Fairness in our setting
means that the penalty assigned to a timetable is distributed in a fair way among the different
curricula. The MMF-CB-CTT formulation aims at creating max-min fair course timetables
while JFI-CB-CTT is a bi-objective problem formulation based on Jain’s fairness index. The
motivation for the JFI-CB-CTT formulation is to explore the tradeoff between a fair penalty
distribution and a low total penalty.

Furthermore, we proposed an optimization algorithm based on simulated annealing for
solving MMF-CB-CTT problems. A critical part of the algorithm is concerned with mea-
suring the energy difference between two timetables, i.e., how much worse a timetable is
compared to another timetable with respect to max-min fairness. We evaluated the perfor-
mance of the proposed algorithm for three different energy difference measures on the 21
CB-CTT benchmark instances. Our results show clearly that the algorithm performs best
with ∆Ecw as energy difference measure.

Additionally, we investigated the fairness of the known best solutions of the 21 CB-CTT
instances with respect to max-min fairness and Jain’s fairness index. These solutions were
not created with fairness in mind, but our results show that all of the solutions have a fairness
index greater than 0.8. This means they can be considered quite fair. Nevertheless, our results
show that some improvements are possible with respect to both max-min fairness and Jain’s
fairness index. The timetables produced by our proposed MAXMINFAIR SA algorithms are
better than the known best ones with respect to max-min fairness for 15 out of 21 instances.
Our investigation of the tradeoff between fairness and the total amount of penalty using the
JFI-CB-CTT problem formulation shows that the fairness of the known best timetables can
be increased further with only a small increase of the total penalty.

Acknowledgements

We would like to thank the anonymous referees for their valuable remarks on this paper.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 127

60

80

100

120

140

160

180

200

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

comp03

AMOSA
known best solution

280

300

320

340

360

380
400

420

440

460

480

0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

comp05

AMOSA
known best solution

80

100

120

140

160

180

200

220

240

260

0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

comp09

AMOSA
optimal solution

300

400

500

600

700

800

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

comp12

AMOSA
known best solution

60

80

100

120

140

160

180

200

0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98

comp15

AMOSA
known best solution

50

100

150

200

250

300

350

400

450

0.88 0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98

comp21

AMOSA
known best solution

Fig. 1: Non-dominated solutions found by the AMOSA algorithm for the JFI-CB-CTT versions of instances
comp03, comp05, comp09, comp12, comp15 and comp21. All graphs show the fairness index on the horizon-
tal axis and the amount of penalty on the vertical axis.

128 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

References

1. Salwani Abdullah, Edmund K. Burke, and Barry McCollum. A hybrid evolutionary approach to the
university course timetabling problem. In IEEE Congress on Evolutionary Computation (CEC), pages
1764–1768, 2007.

2. Roberto Ası́n Acha and Robert Nieuwenhuis. Curriculum-based course timetabling with SAT and
MaxSAT. In Proc. 8th Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT), pages
42–56, 2010.

3. Sanghamitra Bandyopadhyay, Sriparna Saha, Ujjwal Maulik, and Kalyanmoy Deb. A simulated
annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary
Computation, 12:269–283, 2008.

4. Yair Bartal, Martin Farach-Colton, Shibu Yooseph, and Lisa Zhang. Fast, fair and frugal bandwidth
allocation in ATM networks. Algorithmica, 33(3):272–286, 2002.

5. Dimitri P. Bertsekas and Robert Gallager. Data Networks. Prentice Hall, 2nd edition, 1992.
6. Dimitris Bertsimas, Vivek F. Farias, and Nikolaos Trichakis. The price of fairness. Operations Research,

59(1):17–31, February 2011.
7. Edmund K. Burke, Adam J. Eckersley, Barry McCollum, Sanja Petrovic, and Rong Qu. Hybrid variable

neighbourhood approaches to university exam timetabling. European Journal of Operational Research,
206(1):46–53, 2010.

8. Edmund K. Burke, Jakub Mareček, Andrew J. Parkes, and Hana Rudová. A branch-and-cut procedure
for the udine course timetabling problem. Annals of Operations Research, 194(1):71–87, 2011.

9. Edmund K. Burke, Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong Qu. A graph-based
hyper-heuristic for educational timetabling problems. European Journal of Operational Research,
176(1):177–192, 2007.

10. Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion avoidance
in computer networks. Computer Networks and ISDN Systems, 17:1–14, 1989.

11. Luca Di Gaspero, Barry McCollum, and Andrea Schaerf. The second international timetabling
competition (ITC-2007): Curriculum-based course timetabling (Track 3). Technical Report
QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School of Electronics, Electrical Engineering and
Computer Science, Queens University, Belfast (UK), August 2007.

12. Luca Di Gaspero and Andrea Schaerf. Neighborhood portfolio approach for local search applied to
timetabling problems. Journal of Mathematical Modelling ans Algorithms, 5:65–89, 2006.

13. Luca Di Gaspero and Andrea Schaerf. Curriculum-based course timetabling site.
http://satt.diegm.uniud.it/ctt/, January 2012.

14. Jack Edmonds and D.R. Fulkerson. Bottleneck extrema. Journal of Combinatorial Theory, 8(3):299 –
306, 1970.

15. Allan M. Feldman and Roberto Serrano. Welfare economics and social choice theory. Springer, New
York, NY, 2nd edition, 2006.

16. Corrado Gini. Measurement of inequality of incomes. The Economic Journal, 31(121):124–126, January
1921.

17. Rajendra K. Jain, Dah-Ming W. Chiu, and William R. Hawe. A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems. Technical Report DEC-TR-301,
Digital Equipment Corporation, September 1984.

18. Frank Kelly, A. Maulloo, and D. Tan. Rate control in communication networks: shadow prices, propor-
tional fairness and stability. In Journal of the Operational Research Society, volume 49, 1998.

19. Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671–680, 1983.

20. Jon Kleinberg, Yuval Rabani, and Éva Tardos. Fairness in routing and load balancing. Journal of
Computer and System Sciences, 63(1):2–20, 2001.

21. Philipp Kostuch. The university course timetabling problem with a three-phase approach. In Proc. 5th
Int. Conf. on the Practice and Theory of Automated Timetabling (PATAT), pages 109–125. Springer,
2004.

22. Christos Koulamas, Solomon Antony, and R. Jaen. A survey of simulated annealing applications to
operations research problems. Omega, 22(1):41–56, 1994.

23. P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and Applications. Kluwer
Academic Publishers, 1987.

24. Gerald Lach and Marco E. Lübbecke. Curriculum based course timetabling: new solutions to Udine
benchmark instances. Annals of Operations Research, pages 1–18, 2010.

25. Tian Lan, David Kao, Mung Chiang, and Ashutosh Sabharwal. An axiomatic theory of fairness in
network resource allocation. In INFOCOM, pages 1343–1351. IEEE, 2010.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 129

26. Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for course timetabling. European Journal of Oper-
ational Research, 200(1):235–244, 2010.

27. Barry McCollum, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd Lewis, Andrew J. Parkes, Luca
Di Gaspero, Rong Qu, and Edmund K. Burke. Setting the research agenda in automated timetabling: The
second international timetabling competition. INFORMS Journal on Computing, 22:120–130, 2010.

28. Liam T. G. Merlot, Natashia Boland, Barry D. Hughes, and Peter J. Stuckey. A hybrid algorithm for
the examination timetabling problem. In Proc. 4th Int. Conf. on the Practice and Theory of Automated
Timetabling (PATAT), pages 207–231. Springer, 2002.

29. Tomáš Müller. ITC2007 solver description: a hybrid approach. Annals of Operations Research,
172(1):429–446, 2009.

30. Włodzimierz Ogryczak. Bicriteria models for fair and eff cient resource allocation. In Proceedings of
the 2nd International Conference on Social Informatics (SocInfo), pages 140–159. Springer, 2010.

31. Włodzimierz Ogryczak and Adam Wierzbicki. On multi-criteria approaches to bandwidth allocation.
Control and Cybernetics, 33:427–448, 2004.

32. Abraham P. Punnen and Ruonan Zhang. Quadratic bottleneck problems. Naval Research Logistics
(NRL), 58(2):153–164, 2011.

33. John Rawls. A Theory of Justice. Belknap Press of Harvard University Press, revised edition, 1999.
34. Thomas Repantis, Yannis Drougas, and Vana Kalogeraki. Adaptive resource management in Peer-to-

Peer middleware. In Proc. 19th IEEE Int. Parallel and Distributed Processing Symposium (IPDPS),
2005.

35. Ronaldo M. Salles and Javier A. Barria. Lexicographic maximin optimisation for fair bandwidth alloca-
tion in computer networks. European Journal of Operational Research, 185(2):778 – 794, 2008.

36. Amartya Sen and James E. Foster. On economic inequality. Clarendon Press ; Oxford University Press,
Oxford : New York :, enl. ed., with a substantial annexe ”on economic inequality after a quarter century”
/ james foster and amartya kumar sen. edition, 1997.

37. M. J. Soomer and G. M. Koole. Fairness in the aircraft landing problem. In Proceedings of the Anna
Valicek Competition 2008, 2008.

38. Jonathan Thompson and Kathryn A. Dowsland. General cooling schedules for a simulated annealing
based timetabling system. In Proc. 1st Int. Conf. on the Practice and Theory of Automated Timetabling
(PATAT), pages 345–363, 1996.

39. Jonathan M. Thompson and Kathryn A. Dowsland. A robust simulated annealing based examination
timetabling system. Computers & Operations Research, 25(7-8):637–648, 1998.

40. Mauritsius Tuga, Regina Berretta, and Alexandre Mendes. A hybrid simulated annealing with Kempe
chain neighborhood for the university timetabling problem. In Proceedings of the 6th ACIS Intinterna-
tional Conference on Computer and Information Science (ACIS-ICIS), pages 400–405, 2007.

41. Liang Zhang, Wen Luo, Shigang Chen, and Ying Jian. End-to-end maxmin fairness in multihop wireless
networks: Theory and protocol. Journal of Parallel and Distributed Computing, 72(3):462–474, 2012.

130 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The effect of neighborhood structures on
examination timetabling with artificial bee colony

Asaju La’aro Bolaji · Ahamad Tajudin
Khader · Mohammed Azmi Al-Betar ·
Mohammed A. Awadallah · J. Joshua
Thomas

the date of receipt and acceptance should be inserted later

Abstract Artificial Bee Colony (ABC) algorithm is among the most effective
nature-inspired algorithms for solving the combinatorial optimization prob-
lems. In this paper, ABC is adopted for university examination timetabling
problems (UETP) using a defacto dataset established by Carter et al. (1996).
ABC has three main operators that drive the search toward the global min-
ima: employed bee, onlooker bee, and scout. For UETP, the employed bee and
onlooker bee operators are manipulated to be workable where three neighbor-
hood structures are employed: move, swap and Kempe chain. The effect of
these neighborhood structures on the behaviour of ABC for UETP is studied
and analyzed in this paper. The experimental design is intentionally made
with various convergence cases of different neighborhood structure. The result
suggests that the ABC combined with the three neighborhood structures is an
effective method for UETP. Comparative evaluation with previous methods is
also provided. The results produced by the proposed method are competitive in

Asaju La’aro Bolaji
School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia and
Department of Computer Science, University of Ilorin, Ilorin, Nigeria.
E-mail: abl10 sa0739@student.usm.my

Ahamad Tajudin Khader
School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
E-mail: tajudin@cs.usm.my

Mohammed Azmi Al-Betar
School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia and
Department of Computer Science, Jadara University, Irbid, Jordan.
E-mail: mobetar@cs.usm.my

Mohammed A. Awadallah
School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
E-mail: mama10 com018@student.usm.my

J. Joshua Thomas
School of Computer Sciences, Universiti Sains Malaysia, 11800, Pulau Pinang, Malaysia.
E-mail: joshopever@yahoo.com

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 131

comparison with state of the art methods. Theoretically, this study contributes
to the examination timetabling community through an ABC template which
is both efficient and flexible for UETP.

Keywords artificial bee colony · nature-inspired algorithm · examination
timetabling problem

1 Introduction

Timetabling is an hard scheduling problem faced by many institutions across
the globe. Such problem involves assigning a set of events (i.e. courses and
exams) to a limited set of resources (i.e. rooms and timeslot), subject to satis-
fying a set of constraints. The production of a high quality timetabling solution
with minimum violations of constraints is one of the major concerns of almost
all institutions. Considerable efforts have been exerted by the researchers in
the scheduling field to develop an effective techniques to tackle the timetabling
problems. Generally, these problems are referred to as NP-hard (Garey and
Johnson, 1979) and have been extensively studied in the last three decades
(Abramson and Abela, 1991; Burke et al, 1996; Carter and Laporte, 1996;
Kostuch, 2005; Burke et al, 2010).

The timetabling problems comes in different forms: educational timeta-
bles, nurse scheduling, sport timetables and transportation timetables. The
most common example of the educational timetabling problems is the Univer-
sity Course Timetabling Problem (UCTP) and the University Examination
Timetabling Problem (UETP) which is the focus of this paper. Both have
minor differences in their constraints, where for example, in UCTP, only one
course can be assigned to a room at a specific timeslot while for UETP, two
or three exams can take place in the same room and timeslot as long as all
constraints are met.

The university examination timetabling problem can be defined as the as-
signment of exams to a limited number of time periods and rooms, subject
to a set of hard and soft constraints (Qu et al, 2009b). The main purpose
is to generate high-quality timetabling solution that satisfies the hard con-
straints and reduces the violations of soft constraints as much as possible. A
timetable is feasible, if the hard constraints are satisfied and the quality of the
timetabling solution is measured by the violations of soft constraints. Exami-
nation timetabling problems can be divided into capacitated or uncapacitated
with respect to room constraints (Qu et al, 2009b). The uncapacitated exam-
ination timetabling problem is the focus of this paper.

Several techniques have been proposed for tackling uncapacitated exam-
ination timetabling in the literature, since there is no one single technique
that can provide an exact solution (Millar and Kiragu, 1998). One of the
most successful methods used to tackle UETP is the meta-heuristic based
techniques. These could be divided into local-based search methods as Great
Deluge (GD) (Burke et al, 2004; Burke and Newall, 2003; McCollum et al,
2009), Simulated Annealing (Thompson and Dowsland, 1996, 1998), Tabu

132 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Search (Di Gaspero and Schaerf, 2001; White and Xie, 2001; White et al, 2004;
Kendall and Hussin, 2005), Variable Neighbourhood Search (VNS) (Ahmadi
et al, 2003; Burke et al, 2010)[8] and population-based method such as Ant
Colony (Dowsland and Thompson, 2004; Eley, 2006), Evolutionary Algorithms
(Paquete and Fonseca, 2001; Côté et al, 2005), Particle Swarm Optimization
(Fealko and Adviser-Mukherjee, 2006), Harmony Search Algorithm (Al-Betar
and Khader, 2008; Al-Betar et al, 2010a,b, 2011b) and memetic algorithms
(Burke et al, 1996; Merlot et al, 2003).

A new nature-inspired algorithm called Artificial Bee Colony (ABC) has
been recently proposed by Karaboga who was inspired by imitating the in-
telligent behaviour of honey bee (Karaboga, 2005). It has been successfully
applied to a wide variety of optimisation problems as shown in the survey
paper (Karaboga and Akay, 2009b).

The ABC as a stochastic search algorithm firstly begins with an initial
population stored in Food Source Memory (FSM). At every iteration, new
food sources (solutions) are generated from the neighbouring of the existing
population using three operators: Employed bee, Onlooker bee and Scout bee.
The new food sources are then evaluated against an objective function and re-
placed the old population, if their fitnesses are better. This process is repeated
until the termination criteria is reached.

Defining efficient neighborhood structures that appropriate to the nature of
the combinatorial optimization problem is a big challenge that influences the
performance of the algorithm (Aladag & Hocaoglu, 2007). Three neighbour-
hood structures are incorporated into the employed and onlooker operators
namely, move, swap and kempe chain. In this study, an extensive analysis of
the effect of neighbourhood structure on the behaviour of ABC for UETP
is conducted. Then, the effectiveness of ABC with each and combined neigh-
bourhood operators is evaluated on 13 standard benchmark datasets reflecting
real-world examination timetabling instances which were introduced by Carter
and Laporte (1996). The ABC with three neighbourhood structures achieved
comparably competitive results.

The rest of the paper is organized as follows: Section 2 gives descrip-
tions and formulations of the examination timetabling problem while section
3 presents the fundamentals of ABC. Section 4 describes ABC approach for
examination timetabling and the neighbourhood structures is presented in sec-
tion 5. Section 6 provides an explanation to the experimental results while the
last section is devoted for conclusion and some future works.

2 Problem descriptions and formulations

Tackling the exam timetabling problem involves scheduling a set of exams,
each taken by a set of students, to a set of time periods (timeslots) subject
to hard and soft constraints. The main objective is to obtain a timetable
that satisfies the hard constraint (H1) with the minimum penalty of the soft
constraint violation (S1). The hard and soft constraints are as follows:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 133

Table 1 The symbols used in the description of UETP

Symbols Definition
N The total number of exams.
M The total number of students.
P The total number of time periods.
E Set of exams
S Set of students
T Set of time periods
x A timetable solution is given by

(x1, x2, . . . , xM).
xi The timeslot of exam i.
ai,j Proximity coefficient matrix element : whether

the timetable x is penalized based on
the distance between time period of exam i,
and time period of exam j

ai,j =

{
25−|xi−xj | if 1 ≤ |xi − xj | ≤ 5
0 Otherwise.

ui,j Student-exam matrix element: if student si
is taking exam j

ui,j =

{
1 if student i is sitting for exam j
0 Otherwise.

ci,j Conflict matrix element: total number of
students sharing exam i and exam j.

ci,j =
∑N

k=1 uk,i × uk,j ∀i, j ∈ E

– H1: no student can sit for two exams simultaneously.
– S1: the exams taken by the same student should be spread out evenly across

a timetable.

A detailed description of the problem is summarized by Qu et al (2009b). A
timetabling solution is represented by a vector x = (x1, x2, . . . , xM) of exams,
where the value of xi is the timeslot for exam i. The proximity cost function is
used in the evaluation of the timetable by Qu et al (2009b) and refers to the
ratio of the penalty assigned to the total number of soft constraint violations
and the total number of students. The formulation for the proximity cost
function is given in equation (1), while the notation of the variable used is
shown in Table 1.

minf(x) =
1

N
×

M−1∑
i=1

M∑
j=i+1

ci,j × ai,j (1)

H1: No student can sit for two exams simultaneously

xi 6= xj ∀xi, xj ∈ X ∧ ci,j ≥ 1

It is important to note that the value of the proximity cost function f(x) is
referred to as the fitness cost of a feasible timetable (Carter and Laporte,
1996).

The Carter dataset used in this study consists of 13 datasets, which reflect
the real-world examination timetabling problems. For the purpose of our study,

134 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 2 Table 2: Characteristics of Uncapacitated Exam Dataset

Dataset Time-Periods Exams Students Density
CAR-S-91-I 35 682 16,925 0.13
CAR-F-92-I 32 543 18,419 0.14
EAR-F-83-I 24 190 1125 0.27
HEC-S-92-I 18 81 2823 0.42
KFU-S-93 20 461 5349 0.06
LSE-F-91 18 381 2726 0.06
RYE-S-93 23 481 11,483 0.07

STA-F-83-I 13 139 611 0.14
TRE-S-92 23 261 4360 0.18

UTA-S-92-I 35 622 21,266 0.13
UTE-S-92 10 184 2750 0.08

YOR-F-83-I 21 181 941 0.29

12 datasets circulated in the literature were used. The characteristics of Carter
datasets, varying in size and complexity, are shown in Table 2. The last column
illustrates the density of the conflict matrix, which is the ratio between the
number of elements of values ci,j > 0 and the total number of elements in the
conflict matrix (Qu et al, 2009b).

3 Artificial Bee Colony Algorithm

Artificial Bee Colony (ABC) is a swarm metaheuristic algorithm which was
originally introduced in 2005 by Karaboga for tackling numerical optimiza-
tion problems (Karaboga, 2005). This algorithm is considered a stochastic
optimization algorithm based on the model proposed by Teodorović and Del-
lOrco (2005) for the foraging manners of honey bee in their colonies. The ABC
consists of three vital components: employed, unemployed foraging bees, and
food sources. The first two components i.e., employed and unemployed forager
search for rich food sources, which is the third component. The two principal
modes of behaviour which are necessary for self-organization and collective in-
telligence are also described by the model. In practice, such mode includes the
recruitment of foragers to the rich food sources resulting in positive feedback
and abandonment of poor food sources by foragers causing negative feedback.

In the colony of ABC there are three groups of bees: employed, onlooker
and scout bees. Associated with particular food source is employed bee whose
behaviour is studied by the onlookers to select the desired food source while the
scout bee searches for new food sources randomly once it is exhausted. Both
onlookers and scouts are considered as unemployed foragers. The position of
a food source in ABC corresponds to the possible solution of the problem to
be optimized and the nectar amount of a food source represents the fitness
(quality) of the associated solution. The number of employed bees is equal to
the number of food sources (solutions), since each employed bee is associated
with one and only one food source (Karaboga, 2005).

The key phases of the algorithm as proposed by Karaboga and Akay
(2009a) are as follows:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 135

– Generate the initial population of the food sources randomly.
– REPEAT

– Send the employed bees onto the food sources and calculate the fitness
cost.

– Evaluate the probability values for the food sources
– Send the onlooker bees onto the food sources depending on probability

and calculate the fitness cost.
– Abandon the exploitation process, if the sources are exhausted by the

bees.
– Send the scouts into the search area for discovering new food sources,

randomly
– Memorize the best food source found so far.

– UNTIL (requirements are met).

4 Artificial Bee Colony for UETP

The implementation of ABC for the UETP includes the followings six steps:

1. Step 1: Initialization of the ABC and UETP parameters:
The parameters of UETP are normally extracted from the problem in-
stances. These parameters include the set of exams, the set of timeslots,
the set of rooms, etc. The main decision variable of UETP is the exams.
Each exam can be assigned to a feasible timeslot in the timetable solu-
tion. A set of all feasible timeslots can be considered as the available range
of such exams. In fact, the feasible timeslot of each exam changes during
the search in the neighbourhood of ABC. The proximity cost function de-
scribed in (1) is used to evaluate each solution. Here, the parameters of the
ABC used for UETP are initialized. That is, the Solution Number (SN)
which is similar to the population size in genetic algorithms; Maximum Cy-
cle Number (MCN) which is similar to the number of iterations and Limit
which the determine when a solution will be abandoned. These parameters
will be explained in more detail in the next steps.

2. Step 2: Initialize the Food Source Memory (FSM):
The Food Source Memory (FSM) is an augmented matrix of size SN com-
prising a vector in each row representing a timetable solution as in (2).
Note that the vectors in FSM are generated with a method that combines
the saturation degree (SD) and backtracking algorithms as used previously
(Al-Betar et al, 2010b; Bolaji et al, 2011). Here, SD starts with an empty
timetable, where the exam with the least number of valid timeslots in the
scheduled list is assigned first. The next selected exam to be scheduled is
based on the number of available timeslots; where some exams may not be
assigned because of non-availability of the timeslots, then the backtracking
algorithm (BA) is applied to re-assign unscheduled exams. The process, SD
and BA, is repeated several times until all exams are assigned to feasible
timeslots. Using this techniques, the feasibility of all the solutions is guar-
anteed and sorted in ascending order according to their objective function

136 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

values.

FSM =

x11 x12 · · · x1N
x21 x22 · · · x2N
...

...
. . .

...
xSN
1 xSN

2 · · · xSN
N

f(x1)
f(x2)

...
f(xSN)

 (2)

.
3. Step 3: Send the employed bees to the food sources:

Here, the employed bee operator selects a timetabling solution from the
population one by one and applies the three neighbourhood structures to
generate new solutions. The fitness of each offspring solution is calculated.
If it is better than that of parent solution, then the offspring replaces the
parent in FSM. This process is iteratively repeated until all solutions have
been explored (see algorithm: 1 for details). where x i is the solution and

Algorithm 1 Employed Bee Phase
1: for i = 1 · · ·SN do
2: rand ∈ {1, 2, 3}
3: if rand = 1 then
4: x i(new) = Move(x i)
5: else
6: if rand = 2 then
7: x i(new) = Swap(x i)
8: else
9: if rand = 3 then

10: x i(new) = Kempe(x i)
11: end if
12: end if
13: end if
14: if x i(new) is better than x i then
15: x i = x i(new)

16: end if
17: next i
18: end for

x i(new) is the new neighbouring solution.
4. Step 4: Send the onlooker bees:

The onlooker bee has the same food sources (timetabling solutions) of the
employed bees. It initially calculates the selection probability of each food
source generated by the employed bee in the previous step. The fittest
food sources are selected by the onlooker using roulette wheel selection
mechanism. The process of selection in the onlooker phase works as follows:
– Assign to each employee bee a selection probability as follows:

pj =
f(xj)∑SN
k=1 f(xk)

Note that the
∑SN

i=1 pi is unity.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 137

– The onlooker sample the fitness of the food source of each employed
bee and selects the one with highest probability. It then adjust the
selected food source to its neighbourhood using the same strategy as
the employed bee. The fitness of the new solution is calculated and if
it is better it replaces the current one.

5. Step 5: Send the Scout to search for possible new food sources:
This is known to be the colony explorer. It works once a solution is aban-
doned, i.e. if a solution in the FSM has not improved for certain number
of iterations. ABC generates a new solution randomly and substitutes the
abandoned one. Memorize the fitness of the best food source xbest found
so far in FSM.

6. Step 6: Stopping Criteria:
Steps 3 to 5 are repeated until a stop criterion is met. This is originally
determined using MCN value.

5 Neighbourhood Structure (NS)

In this section, the neighbourhood structures (Move, swap and kempe chain)
used in the employed and onlooker phases given in section 4 shall be described
in details. Neighbourhood structure (NS) is a commonly used technique in
solving timetabling problems. NS can be used to obtain a new set of neigh-
bor solutions by applying a small perturbation to a given solution and each
neighbourhood solution is reached immediately from a given solution by a
move (Glover and Laguna, 1998). The neighbourhood structure begins with
an initial solution and progressively explores the neighborhood of the solution
for improvement. Thus, the current solution is iteratively replaced by one of
its neighbors (often improving) until a specific stopping condition is met (Lü
et al, 2011). The ABC operators such as employed and onlooker bees, use three
different neighbourhood structures to explore the solution space thoroughly in
order to enhance the quality of the solution and thus reduce the redundancy
or ineffectiveness of using a particular type alone. The three neighbourhood
structures are: move, swap, and kempe chain. They have been used by other
researchers and proven to be very efficient for exam timetabling problems (Al-
Betar et al, 2010a; Thompson and Dowsland, 1998; Burke et al, 2010).

– Neighbourhood Move (NM): moves selected exam to a feasible period
and room randomly i.e. replace the time period x′i of exam i by another
feasible timeslot.

– Neighbourhood Swap (NS): swap two selected exams at random i.e.
select exam i and event j randomly, swap their time periods (x′i, x

′
j).

– Neighbourhood Kempe Chain (NK): Firstly, select the timeslot x′i of
exam i and randomly select another q′ timeslot. Secondly, all exams that
have the same timeslot x′i that are in conflict with one or more exams
timetabled in qi are entered to chain δ where δ = {j|x′j = x′i ∧ ti,q′ =
0 ∧ ∀j ∈ E}. Thirdly, all exams that have the same timeslot q′ that are
conflicting with one or more exams timetabled in x′i are entered to a chain

138 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

δ′ where δ′ = {k|x′k = q′ ∧ tk,x′
i

= 0 ∧ ∀k ∈ E} and Lastly, simply assign
the exams in δ to q′ and the exams in δ′ to x′i.

6 Experimental Results and Analysis

The method is coded in Microsoft Visual C++ 6.0 on Windows 7 platform on
Intel 2 GHz Core 2 Quad processor with 2 GB of RAM. The ABC required a
maximum of 7 hours to obtain the recorded result, although the computational
time is not provided in the literature. The parameters used for ABC is as
follows: MCN=10,000; SN=10; limit=100.

In this section, the effectiveness of neighborhood structure on the per-
formance of ABC-based UETP is experimentally studied using the Carter
dataset. Seven convergence cases are run where each representing a version of
ABC combined single, double or triple combinations of the neighborhood struc-
tures within the employee and onlooker bees operators as shown in Table 3.
For example,case 1 is ABC version with a single move combined with employee
and onlooker bees. Apparently, all possible combinations of the neighborhood
structures are studied separately.

Each convergence case is ran ten times. The best result amongst the ten
runs of each case is recorded in Table 4 for each Carter dataset. Numbers in
Table 4 refer to the penalty value of the soft constraint violations. (lowest is
best). The best solution achieved by any version of ABC is highlighted in bold.

Generally, the ABC combined with the three neighborhood structures (i.e.,
case 7) has a better performance than all other cases that combine single or
double neighborhood structures. Furthermore, case 5 that combines MOVE
and KEMPE is able to compete with case 7. This shows the efficiency of com-
bining these neighborhood structures with ABC for UETP. Apparently, the
performance of case 3 is better than case 1 and 2, in terms of the solution
quality in almost all the instances and with little difference between the 2
cases (case 1, 2, 3 combined single neighborhood structure). However, with
different combinations of these neighborhoods, the efficiency of ABC is clearly
improved with further reduction in the proximity cost function as shown from
cases 4 to 6. A plausible observation can be set as the combination of two or
more neighborhood structures within ABC-based UETP enhances the search
capability and therefore an impressive result is obtained. It is worth mention-
ing that each neighborhood structure is able to navigate the UETP search
space in a way different from the others. As such, the selection of an efficient
neighborhood structure is inevitably required to achieve superior results.

Table 5 and 6 showed the penalty value achieved by the proposed method
in comparison with those provided by some state of the art techniques and
best known results as given by (Qu et al, 2009b). This includes a total of 10
comparative methods comprising metaheuristic-based methods, Heuristic and
Hyper-Heuristic Methods. The key for the comparative methods is as follows:

M1: Graph-Based Hyper-Heuristic (Burke et al, 2007).
M2: Graph-Based Hyper-Heuristic (Qu et al, 2009a).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 139

Table 3 Cases studied the effect of neighborhood structure on ABC-based UETP

CASE MOVE SWAP KEMPE
Case 1 X X X
Case 2 X X X
Case 3 X X X
Case 4 X X X
Case 5 X X X
Case 6 X X X
Case 7 X X X

M3: Graph-Based Hyper-Heuristic (Qu and Burke, 2008).
M4: Graph-Based Hyper-Heuristic (Pillay and Banzhaf, 2009).
M5: Fuzzy Multiple Heuristic Orderings (Asmuni et al, 2009).
M6: Harmony Search Algorithm (Al-Betar et al, 2010b).
M7: Ant Algorithms (Eley, 2006).
M8: Multi-Objective Evolutionary Algorithm (Côté et al, 2005).
M9: An integrated hybrid approach by (Turabieh and Abdullah, 2011).
M10: A hybrid Variable Neighbourhood Search with Genetic Algorithm (Burke

et al, 2010).

As shown in table 5 and 6, it can be seen that ABC algorithm produce
comparable results. The best penalty values (lowest is best) are highlighted in
bold, while ’+’ indicates that the method could not find a feasible timetable.
In general, it is able to achieve very close to the best results.

Table 4 Experimental Results

Dataset Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7
CAR-S-91-I 6.79 6.50 6.86 6.48 5.70 5.99 5.38
CAR-F-92-I 5.71 5.43 5.64 5.39 4.75 4.66 4.61
EAR-F-83-I 46.37 47.60 42.79 44.79 38.83 39.18 38.58
HEC-S-92-I 13.54 14.99 11.81 14.02 11.34 15.98 11.17
KFU-S-93 18.49 16.88 17.14 17.35 15.04 15.00 14.89
LSE-F-91 14.88 14.55 15.38 13.94 12.19 12.17 11.74
RYE-S-93 12.18 11.97 13.56 12.12 10.11 9.91 9.80
STA-F-83-I 161.35 162.77 158.87 161.62 157.30 157.42 157.21
TRE-S-92 11.04 10.93 10.25 10.03 9.26 9.14 8.96
UTA-S-92-I 4.52 4.46 4.49 4.44 3.81 3.82 3.65
UTE-S-92 30.44 29.52 31.43 27.46 27.88 27.43 26.89
YOR-F-83-I 45.61 48.55 43.88 45.21 40.43 39.84 39.34

7 Conclusion

In order to tackle the university examination timetabling problems (UETP),
Artificial Bee Colony has been presented using a defacto dataset established
by Carter et al. (1996). Three main operators in ABC are able to guide the
search toward the global optima: employee bee, onlooker bee, and scout. For

140 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 5 Comparison with previous Methods

Dataset ABC M1 M2 M3 M4 M5 Best Known
Results

CAR-S-91-I 5.38 5.36 5.11 5.16 4.97 5.29 4.5
CAR-F-92-I 4.61 4.93 4.32 4.16 4.84 4.54 3.9
EAR-F-83-I 38.58 37.92 35.56 35.86 36.86 37.02 29.3
HEC-S-92-I 11.17 12.25 11.62 11.94 11.85 11.78 9.2
KFU-S-93 14.89 15.2 15.18 14.79 14.62 15.8 13.0
LSE-F-91 11.74 11.33 11.32 11.15 11.14 12.09 9.6
RYE-S-93 9.80 + + + 9.65 10.38 6.8
STA-F-83-I 157.21 158.19 158.88 159 158.33 160.42 156.9
TRE-S-92 8.96 8.92 8.52 8.6 8.48 8.67 7.88
UTA-S-92-I 3.65 3.88 3.21 3.59 3.4 3.57 3.14
UTE-S-92 26.89 28.01 28 28.3 28.88 28.07 24.4
YOR-F-83-I 39.34 41.37 40.71 41.81 40.74 39.8 34.9

Table 6 Comparison with previous Methods

Dataset ABC M6 M7 M8 M9 M10 Best Known
Results

CAR-S-91-I 5.38 4.99 5.4 5.2 4.80 4.6 4.5
CAR-F-92-I 4.61 4.29 4.2 4.3 4.10 3.9 3.9
EAR-F-83-I 38.58 34.42 34.2 36.8 34.92 32.8 29.3
HEC-S-92-I 11.17 10.40 10.4 11.1 10.73 10.0 9.2
KFU-S-93 14.89 13.5 14.3 14.5 13.0 13.0 13.0
LSE-F-91 11.74 10.48 11.3 11.3 10.01 10.0 9.6
RYE-S-93 9.80 8.79 8.8 9.8 9.65 + 6.8
STA-F-83-I 157.21 157.04 158.03 157.3 158.26 156.9 156.9
TRE-S-92 8.96 8.16 8.6 8.6 7.88 7.9 7.88
UTA-S-92-I 3.65 3.43 3.5 3.5 3.20 3.2 3.14
UTE-S-92 26.89 25.09 25.3 26.4 26.11 24.8 24.4
YOR-F-83-I 39.34 35.86 36.4 39.4 36.22 34.9 34.9

UETP, the employee bee and onlooker bee operators are redefined to hold
three neighborhood structures: move, swap and Kempe chain. The influence
of these neighborhood structures on the behaviour of ABC for UETP is studied
and analyzed in this paper.

The experimental design is intentionally made with various convergence
cases of different neighborhood structures. The result suggests that the ABC
combined with the three neighborhood structures is an effective method for
UETP. Comparative evaluation with previous methods is also provided. The
results produced by the proposed method are competitive in comparison with
the state of the art methods.

The main contribution of this study is to provide the examination timetabling
community with an ABC template which combines both efficiency and flexi-
bility for tackling UETP.

In view of the fact that, ABC-based UETP combined with various neigh-
borhood structures has bee proved to be very efficient, future work can improve
the ABC-based UETP method by:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 141

– Hybridizing ABC with other gradient descent methods to improve its ex-
ploitation.

– Studying the suitable parameters for ABC-based UETP.
– Investigating other efficient neighborhood structures.
– Combining different selection schemes in onlooker bee phase such as, linear

rank, exponential rank, tournament selection and many others (Al-Betar
et al, 2011a).

– Investigating the performance of the proposed ABC Technique using the
third track dataset of the 2nd International Timetabling Competition (ITC-
2007) presented by (McCollum et al, 2010)

Acknowledgement
This research was supported by the Universiti Sains Malaysia under IPS-
Graduate Fellowship Scheme, 2011 awarded to the first author and CS-USM
Postdoctoral Research Fellowship awarded to the third author.

References

Abramson D, Abela J (1991) A parallel genetic algorithm for solving the school timetabling
problem. In: in proceedings of the Fifth Australian Computer Science Conference (ACSC-
15), Volume 14, pp 1–14

Ahmadi S, Barone R, Cheng P, Cowling P, McCollum B (2003) Perturbation based vari-
able neighbourhood search in heuristic space for examination timetabling problem. Pro-
ceedings of Multidisciplinary International Scheduling: Theory and Applications (MISTA
2003), Nottingham, August pp 13–16

Al-Betar M, Khader A (2008) A harmony search algorithm for university course timetabling.
Annals of Operations Research DOI: 101007/s10479-010-0769-z, pp 1–29

Al-Betar M, Khader A, Nadi F (2010a) Selection mechanisms in memory consideration
for examination timetabling with harmony search. In: Proceedings of the 12th annual
conference on Genetic and evolutionary computation, ACM, pp 1203–1210

Al-Betar M, Khader A, Thomas JJ (2010b) A combination of metaheuristic components
based on harmony search for the uncapacitated examination timetabling. Practice and
Theory of Automated Timetabling (PATAT 2010) Belfast, North Ireland pp 57–80

Al-Betar M, Doush I, Khader A, Awadallah M (2011a) Novel selection schemes for harmony
search. Applied Mathematics and Computation 218((10):6095–6117

Al-Betar MA, Khader AT, Zaman M (2011b) University Course Timetabling Using a Hybrid
Harmony Search Metaheuristic Algorithm. IEEE Transactions on Systems, Man, and
Cybernetics — Part C: Applications and Reviews DOI: 101109/TSMCC20112174356

Asmuni H, Burke E, Garibaldi J, McCollum B, Parkes A (2009) An investigation of fuzzy
multiple heuristic orderings in the construction of university examination timetables.
Computers & Operations Research 36(4):981–1001

Bolaji A, Khader A, Al-Betar M, Awadallah M (2011) An improved artificial bee colony for
course timetabling. In: Bio-Inspired Computing: Theories and Applications (BIC-TA),
2011 Sixth International Conference on, IEEE, pp 9–14

Burke E, Newall J (2003) Enhancing timetable solutions with local search methods. In
Edmund Burke and Patrick De Causmaecker, editors, Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 2740 Springer-Verlag, Berlin pp 195–206

Burke E, Newall J, Weare R (1996) A memetic algorithm for university exam timetabling.
In: First International Conference on the Practice and Theory of Automated Timetabling,
Springer, pp 241–250

Burke E, Bykov Y, Newall J, Petrovic S (2004) A time-predefined local search approach to
exam timetabling problems. IIE Transactions 36(6):509–528

142 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Burke E, McCollum B, Meisels A, Petrovic S, Qu R (2007) A graph-based hyper-heuristic for
educational timetabling problems. European Journal of Operational Research 176(1):177–
192

Burke E, Eckersley A, McCollum B, Petrovic S, Qu R (2010) Hybrid variable neighbourhood
approaches to university exam timetabling. European Journal of Operational Research
206(1):46–53

Carter M, Laporte G (1996) Recent developments in practical examination timetabling. In
Edmund Burke and Patrick De Causmaecker, editors, Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 1153 Springer-Verlag, Berlin pp 3–21

Côté P, Wong T, Sabourin R (2005) A hybrid multi-objective evolutionary algorithm for the
uncapacitated exam proximity problem. Practice and Theory of Automated Timetabling
V pp 294–312

Di Gaspero L, Schaerf A (2001) Tabu search techniques for examination timetabling. In
Edmund Burke and Patrick De Causmaecker, editors, Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science 2079 Springer-Verlag, Berlin pp 104–117

Dowsland K, Thompson J (2004) Ant colony optimization for the examination scheduling
problem. Journal of the Operational Research Society 56(4):426–438

Eley M (2006) Ant algorithms for the exam timetabling problem. In: Proceedings of the 6th
international conference on Practice and theory of automated timetabling VI, Springer-
Verlag, pp 364–382

Fealko D, Adviser-Mukherjee S (2006) Evaluating particle swarm intelligence techniques
for solving university examination timetabling problems. A Dissertation for the degree
of Doctor of Philosophy, Graduate School of computer and Information Sciences, Nova
Southeastern University.

Garey M, Johnson D (1979) Computers and intractability. A guide to the theory of NP-
completeness. A Series of Books in the Mathematical Sciences. WH Freeman and Com-
pany, San Francisco, Calif

Glover F, Laguna M (1998) Tabu search, vol 1. Kluwer Academic Pub
Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Techn

Rep TR06, Erciyes Univ Press, Erciyes
Karaboga D, Akay B (2009a) A comparative study of artificial bee colony algorithm. Applied

Mathematics and Computation 214(1):108–132
Karaboga D, Akay B (2009b) A survey: algorithms simulating bee swarm intelligence. Ar-

tificial Intelligence Review 31(1):61–85
Kendall G, Hussin N (2005) An investigation of a tabu-search-based hyper-heuristic for

examination timetabling. Multidisciplinary Scheduling: Theory and Applications pp 309–
328

Kostuch P (2005) The university course timetabling problem with a three-phase approach.
In: Burke E, Trick M (eds) Practice and Theory of Automated Timetabling (PATAT) V,
vol 3616 pp 109–125

Lü Z, Hao J, Glover F (2011) Neighborhood analysis: a case study on curriculum-based
course timetabling. Journal of Heuristics 17(2):97–118

McCollum B, McMullan P, Parkes A, Burke E, Abdullah S (2009) An extended great del-
uge approach to the examination timetabling problem. Proceedings of the 4th Multi-
disciplinary International Scheduling: Theory and Applications 2009 (MISTA 2009) pp
424–434

McCollum B, Schaerf A, Paechter B, McMullan P, Lewis R, Parkes A, Gaspero L, Qu
R, Burke E (2010) Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing 22(1):120–130

Merlot L, Boland N, Hughes B, Stuckey P (2003) A hybrid algorithm for the examination
timetabling problem. In Edmund Burke and Patrick De Causmaecker, editors, The Prac-
tice and Theory of Automated Timetabling Lecture Notes in Computer Science 2740
Springer-Verlag, Berlin, pp 207–231

Millar H, Kiragu M (1998) Cyclic and non-cyclic scheduling of 12 h shift nurses by network
programming. European journal of operational research 104(3):582–592

Paquete L, Fonseca C (2001) A study of examination timetabling with multiobjective evo-
lutionary algorithms. In: 4th Metaheuristics International Conference (MIC 2001), pp
149–154

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 143

Pillay N, Banzhaf W (2009) A study of heuristic combinations for hyper-heuristic systems
for the uncapacitated examination timetabling problem. European Journal of Operational
Research 197(2):482–491

Qu R, Burke E (2008) Hybridizations within a graph-based hyper-heuristic framework for
university timetabling problems. Journal of the Operational Research Society 60(9):1273–
1285

Qu R, Burke E, McCollum B (2009a) Adaptive automated construction of hybrid heuristics
for exam timetabling and graph colouring problems. European Journal of Operational
Research 198(2):392–404

Qu R, Burke E, McCollum B, Merlot L, Lee S (2009b) A survey of search methodologies
and automated system development for examination timetabling. Journal of Scheduling
12(1):55–89

Teodorović D, DellOrco M (2005) Bee colony optimization–a cooperative learning approach
to complex transportation problems. In: Advanced OR and AI Methods in Transporta-
tion. Proceedings of the 10th Meeting of the EURO Working Group on Transportation,
Poznan, Poland, Citeseer, pp 51–60

Thompson J, Dowsland K (1996) Variants of simulated annealing for the examination
timetabling problem. Annals of Operations Research 63(1):105–128

Thompson J, Dowsland K (1998) A robust simulated annealing based examination
timetabling system. Computers & Operations Research 25(7-8):637–648

Turabieh H, Abdullah S (2011) An integrated hybrid approach to the examination
timetabling problem. Omega 39(6):589–607

White G, Xie B (2001) Examination timetables and tabu search with longer-term memory.
In: Burke E and Erbens W, (eds) The Practice and Theory of Automated Timetabling
Lecture Notes in Computer Science, Vol 2079 Springer-Verlag, Berlin, pp 85–103

White G, Xie B, Zonjic S (2004) Using tabu search with longer-term memory and relaxation
to create examination timetables. European Journal of Operational Research 153(1):80–
91

144 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A matheuristic approach to the shift minimisation
personnel task scheduling problem

Pieter Smet · Greet Vanden Berghe

Received: date / Accepted: date

Abstract In the context of personnel rostering, several levels of granularity
have been discussed. Typically, these levels range from very coarse grained (e.g.
days-off scheduling) to more finely granulated (e.g. tour scheduling). However,
in some cases a more detailed type of assignment is required. Not only shifts
need to be assigned to personnel, but also the allocation of tasks is incorporated
in the optimisation of the rosters. The present paper introduces a matheuristic
approach based on local search for the subproblem of assigning tasks to a
set of multi-skilled employees whose working times are already determined.
Experimental results show that the presented algorithm is capable of finding
new best solutions for the benchmark instances.

Keywords Integrated personnel rostering · Personnel task scheduling ·
Matheuristic · Local search · Constructive heuristic

1 Introduction

After several years of research, personnel rostering remains a relevant aca-
demic timetabling subject. As personnel costs have become the major part
of operational expenses, it is ever so important to try and organise a given
workforce as efficiently as possible in order to reduce the associated costs and
to increase employee satisfaction.

In the personnel scheduling literature, assigning shifts to personnel is often
the most fine-grained level at which the allocation is being discussed, even

Pieter Smet
CODeS, KAHO Sint-Lieven
Gebroeders De Smetstraat 1, 9000 Gent, Belgium
E-mail: pieter.smet@kahosl.be

Greet Vanden Berghe
CODeS, KAHO Sint-Lieven
Department of Computer Science, KU Leuven
E-mail: greet.vandenberghe@kahosl.be

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 145

though some authors do incorporate elements at a more detailed level (Ernst
et al 2004). For example, Beer et al (2008) discuss the problem of assigning
breaks in shifts. The shifts are already assigned, and breaks need to be planned
such that various restrictions and requirements are met.

The assignment of particular tasks to employees during a shift is often not
incorporated in the construction of rosters. In some cases, employees know
automatically which tasks to perform during working hours. This is often the
case in hospitals, where nurses know exactly what they are supposed to do in
each shift (Burke et al 2004). However, in other cases tasks are assigned to em-
ployees in an ad hoc manner, often resulting in unnecessary usage of resources.
Therefore it is recommendable to incorporate the assignment of tasks in the
construction of rosters for employees, in order to reduce operational expenses
while maintaining a high quality of service.

The practical relevance of this problem is apparent in various contexts.
In the food production industry, due to the short batches being produced,
employees have to perform tasks on more than one machine during one shift.
In order to create efficient solutions, it is necessary to integrate the assignment
of shifts and tasks resulting in an structured problem combining personnel
rostering and task allocation.

The aforementioned problem has only been addressed by a few authors.
Meisels and Schaerf (2003) discuss a general class of employee timetabling
problems in which, during each shift, tasks need to be assigned to employees.
No temporal details concerning the tasks are incorporated in the assignment,
only the required number of employees for each task in each shift is given.
Detienne et al (2009) present two cut generation based approaches for another
employee timetabling problem. Their problem contains two decision stages.
First the working times of employees are determined. Second, for each em-
ployee and for each working period, the used qualification of the employee is
decided on. Guyon et al (2010) include scheduling decisions concerning spe-
cific activities. The integrated employee timetabling and production scheduling
problem is solved using both exact and heuristic approaches including Benders
decomposition and a cut generation approach based on the work of Detienne
et al (2009). The system presented by Dowling et al (1997) is developed for
rostering employees and assigning tasks to employees at an international air-
port. First, the personnel rostering problem is solved heuristically for a long
scheduling period (35 days). Afterwards individual tasks are allocated to the
available employees on a day-to-day basis.

Burke et al (2006) discuss a related personnel rostering problem in which
the coverage requirements are not specified per shift type, but in terms of
time intervals. The time interval coverage requirements are translated to shift
type coverage constraints. A metaheuristic is then used to solve the resulting
personnel rostering problem in an efficient way.

In the present paper we discuss a solution approach to the shift minimi-
sation personnel task scheduling problem (SMPTSP), originally introduced
by Krishnamoorthy and Ernst (2001). The problem considers assigning tasks
to multi-skilled employees, while minimising the number of employees used.

146 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Figure 1 shows an example of a solution for an SMPTSP instance, in which
60 tasks are assigned to 25 employees over a one day period. Krishnamoorthy
et al (2011) present a Lagrangean relaxation based approach that combines
two problem specific heuristics. They have found feasible solutions for 135 out
of 137 instances. For a large number of these instances their algorithm is capa-
ble of finding the optimal solution. Furthermore, they discuss some interesting
properties of the problem and present algorithms that can be used to solve
particular subproblems of the SMPTSP.

Fig. 1: Optimal solution for an SMPTSP instance.

The approach presented in this paper is a very large-scale neighbour-
hood search algorithm in which neighbouring solutions are reached by solv-
ing a heuristically selected subproblem to optimality. This solution approach
is based on the principles of matheuristics (Maniezzo et al 2009), in which
(meta)heuristics and exact approaches are combined to exploit the strengths
of both solution techniques.

Della Croce and Salassa (2010) describe a matheuristic based on a variable
neighbourhood search for a real world nurse rostering problem. Different neig-
bourhoods are searched by including additional constraints. These constraints
fix particular variables which are selected heuristically. Computational results
show that this matheuristic approach significantly outperforms exact com-
mercial general purpose solvers. Matheuristic approaches have been applied
in various other contexts such as vehicle routing (Doerner and Schmid 2010),
permutation flow shop scheduling (Della Croce et al 2011) and the multidi-
mensional knapsack problem (Hanafi et al 2010).

The rest of the paper is organised as follows. The problem definition is pro-
vided in Section 2. In Section 3 the solution approach is presented. Details are
provided for both a constructive heuristic and the hybrid improvement heuris-
tic. The experimental setup and results are discussed in Section 4. Section 5
concludes the paper and presents future work.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 147

2 Problem definition

Let J = {1, ..., n} be the set of tasks to be assigned to employees and W =
{1, ...,m} the set of employees. Each task j ∈ J has a duration dj , a start time
sj and a finish time fj = sj + dj . Each employee w ∈ W has a set of tasks
Tw ⊆ J which he/she can perform. Similarly, there exists a set Pj ⊆ W for
each task j ∈ J which contains all employees that can perform task j. Both
Tw and Pj are defined based on required qualifications and time windows.

An interval graph G = (J,A) can be defined with J the set of nodes and
A the set of arcs. Two nodes i and j are connected when their respective time
intervals, [si,fi] and [sj ,fj], overlap. The set of maximal cliques in the interval
graph is defined as C. For interval graphs, this set can be found in polynomial
time by first sorting the nodes based on start time and then applying a forward
pass algorithm. The set C = {K1, ...,Kt} consists of sets Kt ⊆ J such that
any pair of tasks in Kt overlaps in time and Kt is maximal. There are no tasks
in J \ Kt which overlap with any of the tasks in Kt. In terms of the SMPTSP,
it is obvious that overlapping tasks, represented by nodes in Kt, should be
assigned to different employees. For each employee w ∈W , the set of maximal
cliques Cw = {Kw

1 , ...,Kw
t } is constructed in the same way as C, but for Cw,

only the set of tasks for which the employee is qualified is considered. An
employee w can only be assigned to one of the tasks from each set Kw

t ∈ Cw.
This ensures that there are no overlapping assignments in a solution.

To solve the SMPTSP, a feasible solution has to be found in which all tasks
in J are assigned to qualified employees from W in a non-preemptive manner,
while minimising the number of workers used.

Two sets of decision variables are defined for the mathematical model:

xjw =

{
1 if task j ∈ J is assigned to employee w ∈W
0 otherwise

yw =

{
1 if employee w ∈W is used
0 otherwise

The SMPTSP can now be defined as follows (Krishnamoorthy et al 2011):

min
∑
w∈W

yw (1)

s.t.
∑
w∈Pj

xjw = 1 ∀ j ∈ J (2)

∑
j∈Kw

t

xjw ≤ yw ∀ w ∈W, Kw
t ∈ Cw (3)

0 ≤ yw ≤ 1 ∀ w ∈W (4)

xjw ∈ {0, 1} ∀ j ∈ J, w ∈W (5)

The objective function (1) states that the number of used employees should
be minimised. Constraints (2) ensure that each task is only performed by one
employee, and that no infeasible assignments in terms of qualifications are

148 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

made. Constraints (3) make sure that tasks are only assigned to employees
who are active in the final solution. Furthermore, these constraints do not
allow for overlapping tasks to be assigned to an employee. Finally, constraints
(4) and (5) set bounds for the decision variables.

The SMPTSP can be seen as an application of list colouring on interval
graphs, which is NP-complete. Colours correspond to employees and vertices
correspond to tasks. The qualifications of the employees are represented by the
list of feasible colours on each vertex. Other applications of list colouring on
interval graphs include room allocation (Carter and Tovey 1992) and register
assignment (Zeitlhofer and Wess 2003).

A class of problems similar to the SMPTSP are the interval scheduling
problems (Kolen et al 2007). Here, a set of jobs with fixed start and end times
are given as well as a set of machines that can process the jobs. The goal is to
decide which jobs to assign and to which machines, while e.g. maximising the
value of the assigned jobs. The difference between the basic interval schedul-
ing problem and the SMPTSP lies in the fact that in the SMPTSP not all
machines (employees) are qualified for all jobs, and that machines (employees)
are not always available. Furthermore, all tasks should be assigned in a feasible
solution for the SMPTSP.

3 A hybrid heuristic approach

We present a hybrid heuristic local search algorithm for the SMPTSP, based
on the principles of matheuristics. The solution approach is hybrid in the sense
that neighbouring solutions are reached by solving a randomly selected part
of the problem to optimality using a general purpose solver. Details on the
local search procedure and the explored neighbourhood are given in Section
3.2. To ensure feasibilty of the final solution, the algorithm remains in the
feasible search space during the length of the search. A constructive heuristic,
described in Section 3.1, is designed to provide a feasible initial solution.

3.1 Constructive heuristic

Krishnamoorthy et al (2011) state that when the qualification constraints are
relaxed, i.e. when all employees are qualified to perform all tasks, the resulting
problem can be solved in polynomial time. For this purpose, they describe a
forward pass maximal clique algorithm on an interval graph (Gupta et al 1979).
This algorithm assigns all tasks in order of increasing starting time, using, if
possible, an employee who already has tasks assigned. This characteristic of the
SMPTSP is incorporated in our constructive heuristic by sorting all tasks j ∈ J
on start time sj in ascending order. Ties are broken by taking into account
the qualifications of employees. For this purpose, the tasks are additionally
sorted based on the number of qualified personnel able to perform them, also
in ascending order. This results in an ordering in which tasks with the smallest

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 149

number of feasible personnel are before others. These highly constrained tasks,
which are the most difficult to assign, will then be assigned first.

An additional mechanism is introduced to ensure that the constructive
heuristic finds feasible solutions in those cases where tasks can only be per-
formed by a limited number of employees. Whenever there is a task j which
cannot be assigned to a qualified employee due to other overlapping tasks, a
qualified employee is randomly selected and his/her assigned tasks overlapping
with j are removed. Task j is then assigned to this employee and the removed
tasks are assigned to other employees.

Algorithm 1 shows pseudo code of the constructive heuristic.

Algorithm 1 Constructive heuristic
sj := Start time of task j ∈ J
Oj := Jobs overlapping with task j
Pj := Employees qualified for task j
Re := Tasks assigned to employee e

Order all j ∈ J by (sj + |Pj |) in ascending order
while J 6= ∅ do

Remove task j from the first position in J
Assign j to the first feasible employee
if Cannot feasibly assign j then

Select random employee e ∈ Pj

Remove the conflicting tasks Oj from Re

Assign j to employee e
Add the previously removed tasks OJ to the list of tasks to be assigned J

end if
end while

Experiments performed on realistic problems from literature (Section 4.2)
and problems based on real world data provided by an industrial partner 1,
show that Algorithm 1 is capable of finding feasible solutions for problems
with realistic dimensions. Algorithm 1 will not terminate if an instance has no
feasible solution. To resolve this issue, additional mechanisms could be added
to the algorithm which e.g. do not assign all visits or include dummy employees
in the set of available employees.

3.2 Matheuristic based local search

Typically, the initial solution can still be improved. For this purpose, an im-
provement procedure based on local search is used.

To ensure feasibilty throughout the search trajectory of the algorithm only
feasible neighbouring solutions are considered. These are reached by randomly
selecting k employees and optimally solving the subproblem composed of them
and their assigned jobs, using a general purpose solver. The initial solution is

1 SAGA Consulting

150 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

feasible and therefore solutions in this neighbourhood are also always feasible,
thus forcing the local search only to explore the feasible search space.

Figure 2 illustrates the move used to reach new solutions. A gray roster
indicates employees that are not considered by the move, i.e. the assignments
of these employees remain unchanged during the move. In the example, the
subproblem is composed of the selected employees (2, 3, 4 and 5) and their
assigned jobs (4, 5, 6, 7, 8, 9 and 10). All tasks can be performed by all
employees, except for task 8 for which only employees 2, 3 and 4 are qualified.
This subproblem is then solved to optimality by a general purpose solver. In the
resulting neighbouring solution (Figure 2b), employee 4 is no longer required
to perform any tasks. The objective value of the new solution is thus one
lower than the current solution. k should be limited to ensure computational
feasibilty. Based on initial experimentation k was set to 40 employees. However,
when k > |W |, k was set to the total number of employees.

(a) Current solution

(b) New solution

Fig. 2: Illustration of a move with k = 4. Employees with grayed out rosters
are not considered in the move.

The aforementioned neighbourhood is explored with a very large-scale
neighbourhood search algorithm. In order to further guarantee computational
feasibility of the solution approach, only one neighbouring solution is sampled
at each iteration. In terms of iterations per minute, a trade-off exists between
the number of sampled solutions in each iteration and the number of employ-
ees k selected for composing the subproblem. Smaller values for k result in
faster solution times for the subproblem, making it possible to sample more
neighbouring solutions in each iteration. Initial experimentation showed that
better results were achieved by limiting the number of sampled solutions and
increasing the size of the subproblems.

The pseudo code of the local search algorithm is shown in Algorithm 2.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 151

Algorithm 2 Local search algorithm
F (C) := Evaluation function
H := Move to reach a neighbouring solution
C0 := Initial solution
C ← C0

while Termination criterion not met do
C′ ← H(C)
if F (C′) ≤ F (C) then

C ← C′

end if
end while

4 Experiments

4.1 Experimental setup

We evaluate the presented solution approach using instances from a benchmark
dataset 2. According to Krishnamoorthy et al (2011) these instances are based
on their experience with real world problems. Information with regard to the
number of employees and the number of tasks is shown in Figure 3. The
dimensions of the instances range from small (23 employees and 40 tasks) to
very large (245 employees and 2105 tasks).

Fig. 3: Number of employees and jobs in the instances. The horizontal axis
represents the different problem instances.

The experiments are carried out on an Intel Core 2 Duo at 3.16GHz with
4GB RAM operating on Windows 7. All algorithms are coded in Java and
CPLEX 12.2 is used as general purpose solver. Experiments with the lo-
cal search algorithm are each carried out five times. Results regarding the
constructive heuristic are reported by one value since initial experimentation
showed that, for the available benchmark instances, the same solution was
obtained each time the algorithm was executed. The execution time for the
local search procedure is limited to 1800 seconds per run.

2 http://people.brunel.ac.uk/~mastjjb/jeb/orlib/ptaskinfo.html

152 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

4.2 Experimental results

Tables 1, 2 and 3 show the results of the constructive heuristic (CH), the
average solution quality of the matheuristic local search (LSavg) and the best
solution of five runs (LSbest) compared with 1) a lower bound obtained by
CPLEX (LB) and 2) results from a Lagrangean-based heuristic as presented
by Krishnamoorthy et al (2011) (LH). Furthermore, the time required by
the constructive heuristic and the local search are given by tCH and tLS ,
respectively.

Figure 4 shows the relative quality gap between solutions obtained with the
constructive heuristic and the lower bound (gap to LB), and the constructive
heuristic and the Lagrangean heuristic (gap to LH). Positive values indicate
a relatively worse solution by the constructive heuristic. The average gap be-
tween the constructive heuristic and the lower bound is 4.22% whereas the
average gap between the constructive heuristic and the Lagrangean heuristic
is 0.08%. Based on Figure 4, two observations can be made. First, the perfor-
mance of the constructive heuristic remains relatively stable for all problem
sizes. This shows that the constructive heuristic is able to generate high qual-
ity solutions, even for very large instances. Second, from a certain problem size
onward, the constructive heuristic outperforms the Lagrangean heuristic. This
mostly indicates that the Lagrangean heuristic has difficulties with increasing
problem size. For 7 out of 137 instances, the constructive heuristic finds the
optimal solution, while for 100 out of 137 instances the solution is only 5%
worse than the lower bound. Note that the constructive heuristic is capable of
finding feasible solutions for all benchmark instances.

Fig. 4: Relative quality gap between the constructive heuristic and the lower
bound (gap to LB) and the constructive heuristic and Lagrangean heuristic
(gap to LH). The horizontal axis represents the different problem instances,
from small to large.

Figure 5 shows the relative difference between the quality of solutions ob-
tained by the local search and the lower bounds (gap to LB) and the local
search and Lagrangean heuristic (gap to LH). The results clearly show that

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 153

the local search performs very well, with a maximum gap to the lower bound of
7.56% and an average gap of 0.67%. Furthermore, the presented matheuristic
is capable of finding the optimal solution for 72 out of 137 instances, while
for 135 out of 137 instances the local search finds solutions within 5% of the
lower bound. Compared to the Lagrangean heuristic the hybrid local search
also performs very well with an average improvement of 3.34%. Overall, 68
new best solutions are found by the presented matheuristic approach.

Fig. 5: Relative quality gap between the local search and the lower bound
(gap to LB) and the local search and Lagrangean heuristic (gap to LH). The
horizontal axis represents the different problem instances, from small to large.

When comparing the computation times in Tables 1, 2 and 3, it can be
observed that, for all instances, the constructive heuristic requires less than
one second of computation time to construct a solution. The computation time
of the local search algorithm is plotted in Figure 6. This plot shows that if the
matheuristic finds the optimal solution it finds it rather quickly. In these cases
the average computation time is 74.58 seconds. However, once the dimensions
of problems increase, the matheuristic does not find the optimum anymore
within the time limit.

Fig. 6: Computation times of the local search algorithm (time limit set to
1800s). The horizontal axis represents the different problem instances.

154 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The relative improvement obtained by the local search procedure over the
constructive heuristic is shown in Figure 7. It can be seen that for the smaller
instances, larger relative improvements are found than for the larger instances.
These differences can possibly be explained by the value chosen for k. For the
smaller instances, k is relatively large compared to the instance size, imply-
ing that each subproblem will consider a large part of the original problem.
However, for the larger instances, the same value for k will consider a much
smaller part of the problem as subproblem, and thus making it more diffi-
cult to optimise the solution as a whole. If the number of employees in the
subproblem k would be chosen higher, larger improvements could be found
in the local search phase. However, it is possible that other phenomena play
an important role in the observations from Figure 7. Further investigation is
required to determine other influencing factors.

Fig. 7: Relative improvement obtained by the local search algorithm compared
to the constructive heuristic. The horizontal axis represents the different prob-
lem instances.

5 Conclusions and future work

The paper is focussed on a hybrid heuristic approach to the SMPTSP. The
constructive component of the heuristic is capable of generating feasible solu-
tions in a very short computation time. Furthermore, the constructed solutions
are of high quality, with an average gap to the lower bound of 4.22% on a set
of benchmark instances from the literature.

A hybrid local search algorithm, based on the principles of matheuristics, is
employed for further improving the initial solution. In this algorithm, neigbour-
ing solutions are reached by randomly selecting a number of employees and
solving the thus delineated subproblem to optimality. Due to computational
feasibility issues, the number of sampled solutions in each neighbourhood at
each iteration is limited, as well as the number of selected employees for the
subproblem.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 155

Experimental results showed that the hybrid heuristic performs very well,
reaching solutions on average less than 1% worse than the lower bound. Anal-
ysis of the computation times showed that, if the algorithm is capable of
reaching the optimum, it does so rather quickly with an average computation
time of 74.58 seconds. Furthermore, the presented matheuristic found 68 new
best solutions for the available benchmark instances.

In order to reach better solutions for larger instances, a high level strategy
for the local search, i.e. a metaheuristic, can be used. Additional improvements
to the existing algorithm can further increase the algorithmic performance. For
example, another neighbourhood can be explored by probabilistically selecting
employees in the subproblem instead of randomly selecting them.

Future work includes the incorporation of the presented solution approach
for the SMPTSP in the larger problem of assigning tasks and shifts to em-
ployees in the same process. The speed of the constructive heuristic combined
with the high quality solutions it generates present a particularly interesting
opportunity in developing algorithms for the larger integrated problem.

Acknowledgements This research was carried out within the IWT project (IWT 110257).

References

Beer A, Gaertner J, Musliu N, Schafhauser W, Slany W (2008) Scheduling breaks in shift
plans for call centers. In: Proceedings of the 7th International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2008), Montréal

Burke E, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004) The state of the
art of nurse rostering. Journal of Scheduling 7(6):441–499

Burke EK, De Causmaecker P, Petrovic S, Vanden Berghe G (2006) Metaheuristics for
handling time interval coverage constraints in nurse scheduling. Applied Artificial Intel-
ligence 20(9):743–766

Carter MW, Tovey CA (1992) When is the classroom assignment problem hard? Operations
Research 40(S1):28–39

Della Croce F, Salassa F (2010) A variable neighborhood search based matheuristic for
nurse rostering problems. In: McCollum B, Burke E, White G (eds) Proceedings of the
8th International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2010), Queen’s University Belfast, pp 167–3175

Della Croce F, Grosso A, Salassa F (2011) A matheuristic approach for the total completion
time two-machines permutation flow shop problem. In: Merz P, Hao JK (eds) Evolution-
ary Computation in Combinatorial Optimization, Lecture Notes in Computer Science,
vol 6622, Springer Berlin / Heidelberg, pp 38–47

Detienne B, Peridy L, Pinson E, Rivreau D (2009) Cut generation for an employee
timetabling problem. European Journal of Operational Research 193(3):1178–1184

Doerner K, Schmid V (2010) Survey: matheuristics for rich vehicle routing problems. In:
Blesa M, Blum C, Raidl G, Roli A, Sampels M (eds) Hybrid Metaheuristics, Lecture
Notes in Computer Science, vol 6373, Springer Berlin / Heidelberg, pp 206–221

Dowling D, Krishnamoorthy M, Mackenzie H, Sier D (1997) Staff rostering at a large inter-
national airport. Annals of Operations Research 72:125–147

Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research
153(1):3–27

Gupta U, Lee D, Leung JT (1979) An optimal solution for the channel-assignment problem.
IEEE Transactions on Computers C-28(11):807–810

156 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Guyon O, Lemaire P, Pinson E, Rivreau D (2010) Cut generation for an integrated employee
timetabling and production scheduling problem. European Journal of Operational Re-
search 201(2):557–567

Hanafi S, Lazic J, Mladenovic N, Wilbaut C, Crvits I (2010) New hybrid matheuristics for
solving the multidimensional knapsack problem. In: Blesa M, Blum C, Raidl G, Roli A,
Sampels M (eds) Hybrid Metaheuristics, Lecture Notes in Computer Science, vol 6373,
Springer Berlin / Heidelberg, pp 118–132

Kolen A, Lenstra J, Papadimitriou C, Spieksma F (2007) Interval scheduling : a survey.
Naval Research Logistics 54(5):530–543

Krishnamoorthy M, Ernst A (2001) The personnel task scheduling problem. In: Yang X,
Teo K, Caccetta L (eds) Optimisation methods and application, Kluwer, pp 434–368

Krishnamoorthy M, Ernst A, Baatar D (2011) Algorithms for large scale shift minimisation
personnel task scheduling problems. European Journal of Operational Research

Maniezzo V, Stutzle T, Voss S (eds) (2009) Matheuristics: Hybridizing Metaheuristics and
Mathematical Programming, Annals of Information Systems, vol 10. Springer

Meisels A, Schaerf A (2003) Modelling and solving employee timetabling problems. Annals
of Mathematics and Artificial Intelligence 39:41–59

Zeitlhofer T, Wess B (2003) List-coloring of interval graphs with application to register
assignment for heterogeneous register-set architectures. Signal Processing 83(7):1411 –
1425

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 157

Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 1 23 40 66 20.00 20.00 20.00 20.00 20.00 0.00 0.03
data 2 24 40 33 20.00 20.00 22.00 20.00 20.00 0.00 0.02
data 3 25 40 66 20.00 20.00 21.00 20.00 20.00 0.00 0.03
data 4 23 59 33 20.00 20.00 23.00 20.00 20.00 0.00 0.08
data 5 25 60 33 20.00 20.00 23.00 20.00 20.00 0.00 0.03
data 6 48 80 66 40.00 40.00 41.00 40.00 40.00 0.00 0.10
data 7 51 80 66 40.00 40.00 41.00 40.00 40.00 0.00 0.13
data 8 48 85 33 40.00 40.00 45.00 40.00 40.00 0.00 0.38
data 9 49 104 33 40.00 41.00 45.00 40.00 40.00 0.00 0.84
data 10 51 111 66 40.00 40.00 42.00 40.00 40.00 0.00 2.19
data 11 24 119 33 20.00 21.00 24.00 20.00 20.00 0.00 0.30
data 12 49 119 33 40.00 40.00 44.00 40.00 40.00 0.00 0.95
data 13 25 120 33 20.00 20.00 25.00 20.00 20.00 0.00 0.24
data 14 75 124 33 60.00 60.00 63.00 60.00 60.00 0.00 0.38
data 15 72 126 33 60.00 60.00 65.00 60.00 60.00 0.00 0.69
data 16 75 131 66 60.00 60.00 62.00 60.00 60.00 0.00 2.19
data 17 23 139 66 20.00 20.00 23.00 20.00 20.00 0.00 1.08
data 18 48 160 66 40.00 40.00 42.00 40.00 40.00 0.00 1.19
data 19 97 160 33 80.00 80.00 82.00 80.00 80.00 0.00 0.44
data 20 99 163 33 80.00 80.00 85.00 80.00 80.00 0.00 0.92
data 21 93 175 33 80.00 80.00 86.00 80.00 80.00 0.00 78.58
data 22 47 180 66 40.00 40.00 42.00 40.00 40.00 0.00 33.88
data 23 74 180 66 60.00 60.00 62.00 60.00 60.00 0.00 1.48
data 24 110 200 33 100.00 100.00 104.00 100.00 100.00 0.00 0.75
data 25 120 200 33 100.00 100.00 103.00 100.00 100.00 0.00 1.05
data 26 116 203 66 100.00 100.00 102.00 100.00 100.00 0.00 11.81
data 27 49 204 66 40.00 40.00 42.00 40.00 40.00 0.00 3.73
data 28 75 208 66 60.00 60.00 62.00 60.00 60.00 0.00 73.82
data 29 22 219 66 20.00 20.00 22.00 20.00 20.00 0.00 2.73
data 30 25 219 66 20.00 20.00 23.00 20.00 20.00 0.00 3.31
data 31 90 230 66 80.00 80.00 82.00 80.00 80.00 0.00 0.88
data 32 70 236 66 60.00 60.00 61.00 60.00 60.00 0.00 0.81
data 33 76 240 66 60.00 60.00 62.00 60.00 60.00 0.00 2.08
data 34 152 240 33 120.00 120.00 122.00 120.00 120.00 0.00 1.06
data 35 171 280 33 140.00 140.00 143.00 140.00 140.00 0.02 0.30
data 36 175 280 33 140.00 140.00 142.00 140.00 140.00 0.00 2.57
data 37 145 321 33 120.00 121.00 126.00 120.67 120.00 0.00 316.42
data 38 147 347 66 120.00 120.00 120.00 120.00 120.00 0.02 0.37
data 39 45 351 66 40.00 41.00 43.00 40.00 40.00 0.00 49.97
data 40 138 360 33 120.00 120.00 124.00 120.00 120.00 0.00 9.48
data 41 144 360 66 120.00 120.00 122.00 120.00 120.00 0.00 9.13
data 42 101 380 66 80.00 80.00 81.00 80.00 80.00 0.00 0.70
data 43 156 387 66 140.00 140.00 141.00 140.00 140.00 0.00 240.18
data 44 121 400 33 100.00 100.00 104.00 100.00 100.00 0.00 16.32
data 45 67 420 33 60.00 67.00 66.00 60.00 60.00 0.02 308.35
data 46 147 423 33 120.00 121.00 126.00 120.67 120.00 0.02 1800.00
data 47 150 430 33 120.00 121.00 126.00 120.00 120.00 0.02 34.63
data 48 120 434 66 100.00 100.00 101.00 101.00 101.00 0.02 1800.00
data 49 211 446 66 180.00 182.00 185.00 184.33 184.00 0.02 1800.00
data 50 187 447 66 160.00 160.00 163.00 160.00 160.00 0.02 136.13

Table 1: Detailed computational results for SMPTSP benchmark instances

158 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 51 196 480 33 160.00 160.00 165.00 160.00 160.00 0.02 23.31
data 52 205 480 66 160.00 160.00 162.00 160.00 160.00 0.02 45.65
data 53 127 487 66 100.00 101.00 100.00 100.00 100.00 0.02 1.97
data 54 175 492 66 140.00 140.00 142.00 141.00 141.00 0.02 1800.00
data 55 85 493 66 70.00 72.00 71.00 70.33 70.00 0.00 17.10
data 56 163 500 66 140.00 140.00 142.00 140.33 140.00 0.02 255.40
data 57 88 508 66 70.00 72.00 72.00 70.67 70.00 0.02 1800.00
data 58 158 517 66 140.00 140.00 142.00 140.67 140.00 0.02 1800.68
data 59 70 525 33 59.00 68.00 68.00 60.00 60.00 0.02 1800.00
data 60 181 549 66 139.00 139.00 140.00 139.33 139.00 0.02 2.87
data 61 121 557 66 100.00 100.00 101.00 101.00 101.00 0.02 1800.00
data 62 101 571 33 80.00 90.00 87.00 80.67 80.00 0.02 1800.00
data 63 97 577 66 80.00 82.00 82.00 81.00 81.00 0.02 1800.00
data 64 176 595 66 160.00 160.00 161.00 160.00 160.00 0.03 1.34
data 65 179 596 66 159.00 159.00 160.00 159.00 159.00 0.03 85.10
data 66 348 600 33 300.00 300.00 303.00 300.00 300.00 0.03 5.62
data 67 371 600 66 300.00 300.00 301.00 300.00 300.00 0.05 16.72
data 68 359 613 66 300.00 300.00 302.00 301.00 301.00 0.06 1800.00
data 69 148 614 33 120.00 125.00 126.00 120.33 120.00 0.02 1518.01
data 70 192 623 66 160.00 160.00 161.00 160.00 160.00 0.03 3.74
data 71 197 624 33 158.00 158.00 165.00 159.00 159.00 0.02 1800.00
data 72 205 624 66 160.00 160.00 160.00 160.00 160.00 0.03 0.70
data 73 155 661 66 120.00 123.00 122.00 121.67 121.00 0.03 1800.00
data 74 209 664 33 180.00 180.00 183.00 180.00 180.00 0.02 159.15
data 75 72 665 33 60.00 71.00 68.00 61.00 61.00 0.02 1800.00
data 76 162 683 66 140.00 140.00 140.00 140.00 140.00 0.03 1.83
data 77 180 688 33 160.00 162.00 167.00 163.00 163.00 0.02 1800.00
data 78 199 688 66 160.00 160.00 162.00 162.00 162.00 0.03 1800.00
data 79 94 689 33 80.00 93.00 87.00 81.00 81.00 0.00 1800.00
data 80 112 691 33 99.00 107.00 107.00 100.00 100.00 0.02 1800.00
data 81 97 692 66 80.00 83.00 82.00 81.00 81.00 0.02 1800.00
data 82 89 697 66 80.00 82.00 81.00 81.00 81.00 0.03 1800.00
data 83 222 700 66 180.00 180.00 180.00 180.00 180.00 0.05 0.87
data 84 136 718 66 120.00 120.00 121.00 120.67 120.00 0.05 761.00
data 85 217 720 66 180.00 180.00 182.00 181.00 181.00 0.05 1800.00
data 86 178 721 33 140.00 146.00 146.00 141.33 141.00 0.03 1800.00
data 87 203 735 33 170.00 174.00 179.00 173.00 173.00 0.03 1800.00
data 88 137 777 66 120.00 123.00 121.00 120.67 120.00 0.03 1800.00
data 89 88 788 33 70.00 86.00 79.00 71.33 71.00 0.02 1800.00
data 90 157 791 66 139.00 140.00 140.00 139.67 139.00 0.05 8.35
data 91 147 851 66 118.00 124.00 120.00 119.33 118.00 0.05 1800.00
data 92 126 856 66 98.00 106.00 99.00 99.00 99.00 0.03 1800.00
data 93 141 856 66 119.00 125.00 120.00 120.00 120.00 0.05 1800.00
data 94 93 881 33 80.00 91.00 87.00 81.00 81.00 0.02 1800.00
data 95 204 882 33 170.00 177.00 174.00 171.33 170.00 0.03 1800.00
data 96 98 886 66 80.00 83.00 82.00 80.33 80.00 0.05 962.12
data 97 383 895 33 300.00 300.00 304.00 300.00 300.00 0.06 146.39
data 98 91 896 33 80.00 90.00 87.00 81.33 81.00 0.03 1800.00
data 99 176 956 66 160.00 160.00 162.00 161.33 161.00 0.08 1800.00
data 100 194 956 66 160.00 160.00 161.00 160.00 160.00 0.08 1800.00

Table 2: Detailed computational results for SMPTSP benchmark instances

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 159

Instance LB LH CH LSavg LSbest tCH (s) tLS (s)
data 101 166 997 66 140.00 144.00 141.00 141.00 141.00 0.03 1800.00
data 102 179 997 66 138.00 147.00 139.00 138.33 138.00 0.03 1800.00
data 103 348 1024 33 300.00 303.00 305.00 302.67 302.00 0.05 1800.00
data 104 181 1057 33 146.00 165.00 154.00 150.67 150.00 0.02 1800.00
data 105 173 1075 66 150.00 156.00 151.00 151.00 151.00 0.05 1800.00
data 106 121 1096 33 100.00 113.00 107.00 101.67 101.00 0.02 1800.00
data 107 114 1112 33 100.00 112.00 108.00 101.33 101.00 0.02 1800.00
data 108 162 1115 33 128.00 145.00 136.00 132.00 132.00 0.02 1800.00
data 109 205 1115 33 157.00 176.00 164.00 161.33 161.00 0.03 1800.00
data 110 183 1143 66 155.00 167.00 157.00 157.00 157.00 0.05 1800.00
data 111 155 1211 33 139.00 155.00 150.00 141.67 141.00 0.03 1800.00
data 112 200 1213 33 169.00 194.00 173.00 171.00 171.00 0.03 1800.00
data 113 141 1221 66 110.00 114.00 112.00 111.33 111.00 0.05 1800.00
data 114 157 1227 33 138.00 157.00 143.00 141.33 141.00 0.03 1800.00
data 115 228 1257 33 177.00 199.00 183.00 180.33 179.00 0.03 1800.00
data 116 205 1262 66 176.00 190.00 176.00 176.00 176.00 0.08 1800.00
data 117 192 1285 33 149.00 170.00 153.00 152.00 151.00 0.03 1800.00
data 118 180 1302 33 147.00 165.00 155.00 151.67 151.00 0.03 1800.00
data 119 236 1335 33 188.00 208.00 193.00 191.67 191.00 0.05 1800.00
data 120 228 1341 33 187.00 208.00 192.00 190.67 190.00 0.05 1800.00
data 121 147 1345 33 120.00 140.00 127.00 123.33 123.00 0.03 1800.00
data 122 422 1358 66 324.48 348.00 349.00 349.00 349.00 0.33 1800.00
data 123 187 1376 33 159.00 178.00 162.00 161.00 160.00 0.08 1800.00
data 124 198 1383 33 158.00 182.00 163.00 162.33 162.00 0.08 1800.00
data 125 157 1448 33 130.00 152.00 135.00 132.33 132.00 0.08 1800.00
data 126 193 1462 33 167.00 191.00 176.00 172.33 172.00 0.09 1800.00
data 127 192 1472 66 167.83 185.00 170.00 170.00 170.00 0.19 1800.00
data 128 207 1542 66 175.29 205.00 179.00 178.67 178.00 0.22 1800.00
data 129 233 1546 33 178.00 206.00 183.00 182.00 181.00 0.11 1800.00
data 130 176 1562 66 138.35 145.00 140.00 140.00 140.00 0.17 1800.00
data 131 415 1610 33 344.07 359.00 352.00 351.00 351.00 0.34 1800.00
data 132 216 1645 33 186.00 211.00 192.00 190.67 190.00 0.13 1800.00
data 133 211 1647 33 185.00 193.00 190.33 190.00 0.14 1800.00
data 134 184 1776 66 157.56 179.00 161.00 161.00 161.00 0.27 1800.00
data 135 213 1988 33 179.00 206.00 185.00 181.67 180.00 0.19 1800.00
data 136 216 2000 66 180.00 179.67 179.00 0.36 1800.00
data 137 245 2105 33 190.00 223.00 194.00 193.33 192.00 0.22 1800.00

Table 3: Detailed computational results for SMPTSP benchmark instances

160 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A stepping horizon view on nurse rostering

Fabio Salassa · Greet Vanden Berghe

Received: date / Accepted: date

Abstract The present paper introduces a stepping horizon approach to op-
timisation problems whereby data can be considered static within a limited
time horizon. This implies that problem instances need to be solved at certain
moments in time, while imposing constraints on the subsequent period’s in-
stance. Nurse rostering can be identified as an optimisation problem for which
a stepping horizon approach is recommended, whereas a static approach is
suitable for academic algorithm development objectives.

In order to support this claim, the paper focuses on the sprint instances
from the 2010 Nurse Rostering Competition. These instances represent a suffi-
ciently realistic set of constraints while still being solvable to optimality with a
general purpose solver. Two different sets of experiments are presented. First,
it is shown that a static horizon approach runs the risk of generating un-
balanced rosters regarding some so called counter constraints. A second set of
experiments points at the benefits of a stepping horizon approach with respect
to constraints of the so called series type. These two are general constraint
types used as clarifying examples supporting the need for a stepping horizon
approach. In both experimental setups, lower bounds are computed for rosters
spanning more than one time horizon. The stepping horizon approach yields
rosters that violate fewer constraints than those obtained in a static setting.

Keywords Nurse Rostering · Series Constraints · Counters Constraints ·
Stepping Horizon

F. Salassa
DAI - Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Tel.: +39 0110907195
E-mail: fabio.salassa@polito.it

G. Vanden Berghe
CODeS - KAHO Sint-Lieven, Gebroeders De Smetstraat 1, 9000 Gent, Belgium
KU Leuven-Kulak, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
Tel.: +32 92658610
E-mail: greet.vandenberghe@kahosl.be

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 161

1 Introduction

Nurse Rostering Problems (NRPs) are encountered in almost every hospital
around the world. Despite possible differences between countries due to con-
tractual and operational regulations, the core problem is always the same:
assign a working shift or a day off to each nurse of a ward on each day of a
defined planning horizon (often one month) taking into account a set of con-
straints. The assignment problem’s objective function, assessing the quality
of generated rosters, is usually based on constraint violations. According to
[3], nurse rostering constraints can be divided into counters and series. The
counters denote all the constraints that can be evaluated by counting the ap-
pearance of certain assignments in a roster. The series constraints correspond
to restrictions on successive assignments, e.g. successive working weekends,
successive morning shifts, etc. The literature presents a large number of dif-
ferent approaches devoted to NRPs covering many aspects [8]. Some work has
focused on generic approaches providing a sufficient quality level over a class
of instances [3,6]. Very fast and accurate heuristics [1] and recently also hy-
perheuristics [2] have been developed. In addition, exact methods are available
[15], some of which exploit intrinsic peculiarities or specific knowledge about
the problem [10], while others combine a metaheuristic framework and a Mixed
Integer Linear Programming (MIP) solver [9]. The winning approach of the
Nurse Rostering Competition (NRC) 2010 [22] is an excellent example of a
hybrid mathematical approach. [14] obtained very good results for the com-
petition instances with an adaptive neighborhood search thereby borrowing
some ideas from SAT solvers.

We noticed, in the nurse rostering literature, that almost all the effort
was spent on solving problems with a single compounded time horizon rather
than on improving the perceived quality of rosters over a long period. It is
a natural approach in academia to consider a restricted time horizon within
which the information is complete. However, real hospital applications are
strongly influenced by the inertia of previous periods. The working history
has been modelled in [24], where a balance is made between the quality of
the nurses’ previous rosters and their preferences. [7,12] model constraints
induced by the previous planning period. A few roster schemes stretching out
over more than one planning horizon are visualized in both papers. In addition,
some data considering future timeslots (e.g. requests for days off) may have an
impact on the attainable roster quality within the present planning horizon.

It appears that the rostering horizon is a crucial element to be consid-
ered when designing NRP approaches. Suppose that an optimal approach can
generate a solution in limited time. It is not unlikely that this solution suf-
fers from an imbalance in workforce assignment. Workload balancing has only
rarely been identified as an objective of nurse rostering problems [19]. In case
the planning period is isolated, this workload imbalance will probably be re-
peated when addressing future planning periods. Such results obviously pre-
vent automated nurse rostering approaches from being acceptable in practice.
A similar example is represented by the impact of shifts assigned at the end

162 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

of the previous planning period w.r.t. the first days of the current planning
period. Constraints on consecutive assignments are strongly affected by the
presence of assignments in the period preceding the current one. Regardless
of the quality of the applied algorithm, approaches based on these restricted
models do not correspond to a hospital’s requirements. Nevertheless, they are
common in academic environments [5,11,23]. This consideration may, to some
extent, explain the gap between academic and applied approaches to nurse
rostering [13].

Some practical aspects should be included in an NRP model, whether
clearly stated or not, in order to generate a repeatedly applicable automatic
timetabling procedure. Considering simplified models for nurse rostering, and
in particular models with an isolated planning horizon, we demonstrate some
risks and show how they can be overcome without modifying the algorithm.

2 Stepping horizon

The present paper introduces the keyword stepping horizon, identifying the
class of problems with a static time horizon, yet subject to inertia from pre-
vious periods and characterized by data concerning future timeslots that will
be disclosed only as time proceeds. Stepping horizon approaches differ from
rolling horizon methods [20] in that they consider a fixed time horizon and
fixed data. Rolling horizon approaches are characterized by data uncertainty.
As soon as data become available (partial) rescheduling of the current solution
is performed thereby adapting the time horizon, if necessary, and the solutions
to the newly available information. The ideas of a static versus a rolling and
stepping horizon are depicted in Figures 1, 2 and 3.

Fig. 1 Static horizon approach example

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 163

Fig. 1 presents the simple situation of a problem that is completely de-
termined by the data corresponding to its planning horizon. The new data
available are the only information used to optimise the problem. It corre-
sponds to most of the nurse rostering instances that are publicly available for
research purposes.

Fig. 2 Rolling horizon approach example

Fig. 2 shows that a new static problem, denoted by a rectangle, is delin-
eated each time new information becomes available. The time horizons are
overlapping. Hence, subsets of the problem’s variables will take part in a num-
ber of consecutive instances to be solved. This situation is not likely to occur in
nurse rostering environments but it is very common for production scheduling
[20].

Fig. 3 denotes a different approach in which the information does not
change as rapidly as in rolling horizon situations. The problem presented by
a rectangle can be treated as a static problem. The approach should provide
some mechanisms for improving the computed solution if it appears no longer
valid due to data modifications. More importantly, the solution obtained for
the first planning horizon, corresponding to the leftmost rectangle, imposes
restrictions on the second one [7].

The problem addressed in this paper compares to Fig. 3 in that it will not
adapt the time horizon when new information becomes available. Rather, it
considers whichever information from the previous planning period in order
to generate a roster that violates as little constraints as possible. Obviously,
in case of any data disruption, e.g. an unexpected absence, the rostering al-
gorithm should be called for sorting out the problem, without extending the
original rostering horizon. As a matter of fact, reducing the planning horizon is

164 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 3 Stepping horizon approach example

a more common way of dealing with disruptions [4]. Moz and Pato labelled the
requirement that computed rosters sometimes need a revision due to external
circumstances as the nurse rerostering problem. They modelled it as a mul-
ticommodity flow problem [17] while their later work focuses on evolutionary
approaches [18]. The same authors continued developing new algorithms to the
nurse rerostering problem, e.g. a bi-objective approach in [21]. Also Maenhout
and Vanhoucke [16] present a genetic approach for rerostering nurse sched-
ules. All these recent nurse rerostering approaches would fit well in a stepping
horizon model.

In what follows, the importance of the stepping horizon approach is il-
lustrated with some clear examples. The first set of experiments indicates the
danger of imbalanced solutions in the long term. This is illustrated by focusing
on a counter constraint and showing the potential long term effect of a small
imbalance in a static roster. While balancing constraints may not be explicitly
part of the problem, the results show that only limited effort is required for
considering a better workload balance. In the second set of experiments, we
point at the issue that series constraints can be evaluated consistently across
time horizon boundaries. The results of static rosters are misleading because
they appear to be better than the results of the stepping horizon approach,
whereas the long term effect is again not acceptable.

3 Problem description

The problem considered here is a classical Nurse Rostering Problem where a
working shift or a free day should be assigned to each nurse on each day of
the planning horizon according to several contractual and operational require-
ments. Please note that free days are modelled as a special shift and hence
shifts are of five kinds:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 165

Late 14:30 – 22:30
Day 08:30 – 16:30
Early 06:30 – 14:30
Night 22:30 – 06:30
(Off) not explicitly requested but needed to model the problem.

The instances are based on a given number of nurses, i.e. 10 for the sprint
instances addressed in this paper. All the sprint instances have their planning
horizon set equal to 28 days, roughly referring to a period of one month.

A set of hard constraints must be satisfied, otherwise solutions would be
infeasible. The hard constraints include

– demand cover: all the shifts demanded on a day of the planning period
must be assigned to the exact number of nurses

– exactly one shift (working or free) must be assigned to each nurse on each
day.

The instances considered incorporate a large number of soft constraints
that, when violated, contribute to the objective function value by weighted
penalties. The problem’s objective function should be minimised. The soft
constraints of the problem belong to either the counter or the series category
[3]. A limited selection of the soft constraints is presented below.

Counters

– maximum and minimum number of shifts that can be assigned to nurses
– maximum and minimum number of free days
– day off or shift off requests

Series

– maximum and minimum number of consecutive working days
– unwanted patterns (such as a Night shift followed by an Early shift).

For the complete problem definition and a detailed description of the con-
straints, refer to [11]1. The computational results and instance files are avail-
able at www.kuleuven-kulak.be/nrpcompetition.

The problem considered at the competition can be modelled as an Integer
Linear Problem. Indeed, with n nurses, m days in a planning horizon and s
different shifts, it is sufficient to introduce a set of 0/1 variables xi,j,k (i = 1..n,
j = 1..m, k = 1..s) indicating if nurse i is assigned to shift k on day j of
the roster horizon. Correspondingly, sets of integer variables represent the
different penalties that can be associated with soft constraint violations. As
an example two different constraints of the problem model are discussed in
detail. First, the constraint related to the maximum number of assignments is
an example of how other counter type constraints are modelled. Second, the
constraint determining the maximum number of allowed consecutive working

1 www.kuleuven-kulak.be/~u0041139/nrpcompetition/nrpcompetition_description.

pdf

166 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

days represents all other constraints of the series type. Let MaxAssignments
be the maximum number of assignments for a nurse in the considered period
and PenaltyMAi the integer (variable) penalty caused by the total number
of exceeding assignments over the horizon for a nurse i.

Let W be the set of working shifts and D the set of days in the considered
time horizon. Let lim be the limit on the number of consecutive working
days defined by the problem instance and let PenaltyMWi,j be the binary
(variable) penalty caused by a working day on day j exceeding the limit for a
nurse i. This leads to the following inequalities:

D∑
j

W∑
k

xi,j,k ≤MaxAssignments + PenaltyMAi ∀i = 1, . . . , n

W∑
k

lim∑
t=0

xi,j+t,k ≤ lim + PenaltyMWi,j ∀i = 1, . . . , n, j = 1, . . . ,m− lim

The first constraint determines a maximum number of assigned working
shifts. When single time horizons are considered, constraints like the one de-
scribed above can be tricky because nurses can have excess assignments over
successive planning periods. The second linear inequality conditions the maxi-
mum number of consecutive working days. A penalty proportional to the excess
value is issued whenever that value is exceeded. Clearly, these constraints will
not be violated at the beginning of a time horizon if no data about previous pe-
riods is considered, while with the stepping horizon approach past assignments
do have an effect on the current time horizon.

The objective function to be minimised eventually is the weighted sum
of penalties over the entire set of nurses and constraints. All instances have
been implemented with the XPRESS MOSEL modelling language. XPRESS
(v. 21.01.06) has been used to solve problem instances on an Intel Core2 Duo
CPU @ 2.13 GHz with 4 GB of RAM memory.

The experimental setup serves the purpose of indicating the potential draw-
backs of static nurse rostering approaches, which are very common in the aca-
demic literature, compared to the stepping horizon approaches we advocate.
In order to provide a clear example of the presented issues, the ideas were
tested on a few instances from the Nurse Rostering Competition [11]. This
choice is motivated by the fact that 1) these instances have become bench-
marks for nurse rostering research and 2) some of the instances are fairly easy
in that they are solvable, in less than 120 seconds, with a MIP solver. The
optimality of these instances can thus be certified by the solver and validated
by the evaluation algorithm provided by the competition organizers.

The stepping horizon idea is simulated by solving each instance and mak-
ing sequences of the roster solutions obtained for one time horizon, here cor-
responding with 28 days, into a multi-period roster. In real hospital environ-
ments, the availability of the nurses and the personnel demand cannot be
considered constant over the entire period. Nevertheless, the results of these
simple experiments are convincing and support the stepping horizon approach.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 167

4 Numerical example

The present section provides numerical results of the stepping horizon ap-
proach, applied to nurse rostering instances. The basic idea is to test the
impact of both series and counters contraints on the solutions’ quality when
more than one time horizon is considered. This is simulated by considering pre-
ceding timeslots as key inputs to the current optimization problem. In other
terms, results of past optimisations are added trying to adhere more to real-life
applications.

4.1 Counter constraints, balanced workload

The focus of the first set of experiments is on workload balancing for which
evaluations of counter constraints provide sufficient information. Table 1 presents
results for the 10 sprint instances. The result obtained for one instance was
copied into a large roster 12 times the original time horizon’s size. The im-
balance of working shifts between nurses is denoted by a very simple quality
indicator, namely the largest difference of the total number of assigned working
shifts, measured among all the nurses. Assume for example that the optimal
solution assigns k working shifts to nurse i and l working shifts to nurse j, then
the difference between these two nurses’ assignments equals |k − l|. Although
it is not always explicitly requested, we assume that a balanced number of
working shifts among nurses is desirable and contributes to a balanced overall
workload. Table 1 shows that the optimal solution for sprint01 is a roster in
which one or more nurses have 96 assignments over a year, while at least one
other nurse has 216 assignments. The term maximum imbalance is introduced.
It refers to the maximum difference between the work assignments of nurses
over a given period. We would like to underline that we are here considering
the total number of working shifts assigned to nurses, not yet taking into ac-
count the understandable preferences between the different shifts for nurses.
The maximum imbalance of a solution to the sprint01 instance is 10 shifts for
a monthly roster, which produces an imbalance of 120 shifts when replicating
the solution over 12 consecutive months.

In the second set of experiments, an additional hard constraint was added
to the problems so that the maximum imbalance between the working shifts
of any two nurses within one month is at most 3. This means that the
nurse with the heaviest workload has to work at most 3 shifts more than
the least active nurse, considering one rostering period. As a consequence,
the instances are no longer the same as the original ones. Nevertheless, the
solutions are evaluated with the same objective function. Alternatively, the
maximum imbalance constraint could have been modelled as a soft constraint.
Without understanding how the other constraints’ weights were set, it would
be hard to set an appropriate value to the new imbalance constraint’s weight.
The authors opted to avoid search space distortion by modelling the new

168 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

INSTANCE MIN MAX Objective Maximum
(working shift) (working shift) over one year imbalance

sprint01 96 216 672 120
sprint02 96 228 696 132
sprint03 108 240 612 132
sprint04 144 204 708 60
sprint05 120 252 696 132
sprint06 144 204 648 60
sprint07 108 240 672 132
sprint08 144 240 672 96
sprint09 108 228 660 120
sprint10 132 228 624 96

Table 1 Optimal solutions for the sprint instances (12 replicated monthly rosters) with
indications of workload imbalance.

constraint as hard. In future work, the impact of a soft versus a hard balance
constraint is an interesting subject to investigate.

Table 2 shows the computational results for the same instances. As was
expected, the imbalance is reduced considerably within one roster. The re-
sult obtained for sprint01 reveals that people assigned to the least number of
working shifts perform 13 shifts per 28 days, whereas the people working most
perform 16 shifts per 28 days. When replicated 12 times, the overall imbal-
ance equals 36 which is much better than the imbalance of 120 resulting from
the experiments in Table 1. The introduction of the balance constraint has a
limited negative effect on the overall roster quality. The value of the yearly ob-
jective function increased from 672 to 744 for sprint01. From a computational
point of view, adding a hard constraint such as the one we have introduced,
makes these sprint instances more difficult to solve to optimality. However,
the computation time never exceeds 60 seconds.

INSTANCE MIN MAX Objective Maximum
(working shift) (working shift) over one year imbalance

sprint01 156 192 744 36
sprint02 156 192 780 36
sprint03 156 192 624 36
sprint04 156 192 708 36
sprint05 168 204 708 36
sprint06 168 192 648 24
sprint07 156 192 672 36
sprint08 156 192 672 36
sprint09 156 192 684 36
sprint10 168 204 636 36

Table 2 Optimal solutions for the sprint instances subject to an additional constraint
restricting the maximum difference between people’s shift assignments to 3 working shifts
per month (12 replicated monthly rosters).

The experiments reported in Table 3 go beyond the previous ones in that
the balance constraint is much stricter. The overall results of this previous
set of experiments cannot be considered completely satisfactory. It is, in fact,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 169

clear that in the worst case a nurse can work 36 shifts more than the “luckiest”
one, which roughly corresponds to a difference of almost two full time months
of work. This is definitely unwanted. It seems not to be sufficient to introduce
a simple working imbalance constraint because the imbalance can still be very
large over a period of one year. The new constraint is formulated such that the
maximum shift assignment imbalance between personal rosters is 3 within a
roster horizon as well as over the entire period of 12 repetitive roster horizons.
Again, the results are obtained by solving the problem once for one roster
period and repeating it 12 times, which is computationally a small effort.
Considering the illustrative example of sprint01, it can be noticed that the
yearly shift assignment imbalance between people is at most 3, which is an
excellent result. The drawback is that the overall roster quality over a 12 month
period is 840, which is worse than the result of the experiments conducted
with a monthly imbalance constraint only. Clearly, other constraint violations
compensate for a better balance of the number of working shifts.

INSTANCE MIN MAX Objective Maximum
(working shift) (working shift) over one year imbalance

sprint01 181 184 840 3
sprint02 181 184 875 3
sprint03 181 184 684 3
sprint04 181 184 757 3
sprint05 181 184 766 3
sprint06 181 184 683 3
sprint07 181 184 722 3
sprint08 181 184 706 3
sprint09 181 184 733 3
sprint10 181 184 716 3

Table 3 Optimal solutions subject to an additional constraint restricting the maximum
difference within a single roster horizon and over all 12 replicated roster horizons to be at
most 3 working shifts

4.2 Series constraints

Series constraint restrict the number of consecutive working days, free days,
working weekends, etc. Similar to the experiments reported in Section 4.1, so-
lutions are obtained with the static problem definition of the NRC instances
as well as with the stepping horizon approach. The latter incorporates data
from previous and future roster horizons into the problem to be solved. Little
effort was spent on developing an efficient MIP model. Some of the constraints
incorporated in the competition’s instances were hard to model and to ver-
ify. The number of variables appears huge for problems considering multiple
planning horizons at once. It is definitely worth concentrating on improving
the model in future research. Given the straightforward MIP model from Sec-
tion 3, instances of limited size can be loaded by the XPRESS solver. They

170 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

correspond to period stretches of five months, which are all solvable within 10
seconds.

Preliminary experiments with the MIP solver generated a memory excep-
tion for planning horizons exceeding five months. We therefore restricted the
horizon to five consecutive periods, without losing generality. Table 4 reports
the results covering these five consecutive periods, from now on referred to as
months. Particularly, column 2 in the table shows objective values of solving
a planning period of five months as a whole. In other words, a planning pe-
riod of five months has been considered instead of a single month with the
objective function calculated over the complete horizon. Column 3 shows the
results achieved in terms of objective function values, replicating five times
the optimal value of a single month. These solutions were generated without
taking into account constraints overlapping different months, such as the series
constraints. Therefore the overall objective value is worse than in the previous
case even for solutions that are optimal for a single month. The last column
provides the achievements when previous periods are considered fixed. These
solutions have been generated by optimally solving one month but considering
the inertia of past periods as follows. First a problem with a planning horizon
of one month is solved to optimality. Then the second month is again solved
to optimality but the time horizon considered is now two months, of which the
first one is represented by the solution achieved in the past step. In practice
a model considering two months is generated and the variables related to the
first one are fixed to the values obtained in the previous step. This procedure
is repeated up to five months each time considering all the previous months.
The depicted values reveal that the best would be to solve a large horizon in
one go. This is almost impossible because data are available only as timeslots
pass. Even if suboptimal, a more interesting procedure than solving only sin-
gle time horizons, is the stepping horizon approach. A fairly good solution can
be generated when also considering constraints overlapping months. That is
obtained by solving single time horizons while basing the current solution on
what has happened in the previous periods. In the authors’ opinion this pro-
cedure should always be conducted when optimising nurse rostering instances.

INSTANCE Obj. Fun. Month by month Stepping
one go Obj over 5 months horizon

sprint01 276 332 287
sprint02 286 306 297
sprint03 251 287 262
sprint04 284 315 292
sprint05 290 310 297
sprint06 266 314 272
sprint07 280 312 287
sprint08 276 296 280
sprint09 271 307 281
sprint10 264 304 271

Table 4 Optimal solutions subject to series constraints

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 171

5 Conclusion and future work

Academic problems tend to concentrate on static instances representing an
isolated planning period. While a static approach is very common in nurse
rostering research, the present paper focused on drawbacks over a long term
work stretch. The idea of a stepping horizon was introduced in order to model
problems in such a way that they compare better to real practice in hospitals.
A stepping horizon incorporates characteristics from a static as well as from a
rolling horizon.

A set of simple experiments was set up so as to indicate the strength of
a stepping horizon approach. Instances have been taken from the first Inter-
national Nurse Rostering Competition. The smallest sprint instances of that
competition were solvable to optimality with a straightforward MIP approach
and these optimal solutions allowed to make strong quality claims.

The experiments concentrated on two sets of roster qualities. Static hori-
zons often proved to induce significant imbalance between individual nurses’
assignments. This set of experiments concentrated on counter type constraints.
The introduction of an additional balance constraint showed not to be suffi-
cient to cope with the intrinsic imbalance of splitting a long term problem
into isolated small problems. The stepping horizon approach provides an al-
ternative in that its long term effect on balanced workload is advantageous,
at the expense of potentially reducing the quality within the present planning
horizon.

Besides counter constraints, a second set of experiments demonstrated that
series constraints can also have a strong impact on the roster quality of subse-
quent rosters, when optimising static rosters only. In practical applications of
nurse rostering it is inevitable that series constraints will overlap the monthly
planning horizons. Hence, static horizon approaches are inadequate while a
stepping horizon approach offers a manner to cope with series constraints
across planning horizon borders.

Both sets of experiments produced somewhat poorer results within a single
time horizon, whereas the long term effect was significantly better.

The tests were conducted on the smallest NRC instances only for compu-
tational reasons. Exactly the same experiments can be translated to the larger
instances or to complex real experiments, for which dedicated algorithms are
more appropriate than MIP solvers. The positive effect of the stepping hori-
zon approach is expected to be stronger in case of a large set of complex
constraints.

Future work will be dedicated to investigating the impact on other counter
constraints than the total number of assigned shifts. The implications of the
stepping horizon approach on the overall objective including all the counter
and series constraints will be investigated too. In addition, the design of ap-
propriate objective functions will be investigated so that results of a stepping
horizon approach generate the best possible long term effect. These examina-
tions will preferably be conducted using the mathematical solver, if the model

172 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

can be improved sufficiently. Otherwise, heuristics for nurse rostering are a
reasonable alternative.

Another interesting aspect to be studied is the benchmark of the stepping
horizon approach compared to other ways of dealing with long term horizons,
such as shift rotation schedules.

Sets of real rostering problems with a given working history will be collected
to support future research.

References

1. J.F. Bard and H.W. Purnomo. Real-time scheduling for nurses in response to demand
fluctuations and personnel shortages. In E.K. Burke and M. Trick, editors, Proceed-
ings of the 5th International Conference on the Practice and Theory of Automated
Timetabling, PATAT, pages 67–87, Pittsburgh, August 2004.

2. B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. Vanden Berghe. One
hyper-heuristic approach to two timetabling problems in health care. Journal of Heuris-
tics, 18(3):401–434, 2012.

3. B. Bilgin, P. De Causmaecker, B. Rossie, and G. Vanden Berghe. Local search neigh-
bourhoods to deal with a novel nurse rostering model. Annals of Operations Research,
194(1):33–57, 2012.

4. E.K. Burke, P. Cowling, P. De Causmaecker, and G. Vanden Berghe. A memetic ap-
proach to the nurse rostering problem. Applied Intelligence, Special issue on Simulated
Evolution and Learning, 15:199–214, 2001.

5. E.K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A scatter search approach to the
nurse rostering problem. Journal of the Operational Research Society, 61:1667–1679,
2010.

6. E.K. Burke, T. Curtois, R. Qu, and G. Vanden Berghe. A time pre-defined variable
depth search for nurse rostering. INFORMS Journal on Computing, to appear.

7. E.K. Burke, P. De Causmaecker, S. Petrovic, and G. Vanden Berghe. Fitness evalu-
ation for nurse scheduling problems. In Proceedings of the Congress on Evolutionary
Computation (CEC2001), pages 1139–1146, Seoul, Korea, May 27-30 2001. IEEE Press.

8. E.K. Burke, P. De Causmaecker, G. Vanden Berghe, and H. Van Landeghem. The state
of the art of nurse rostering. Journal of Scheduling, 7(6):441–499, 2004.

9. F. Della Croce and F. Salassa. A variable neighborhood search based matheuris-
tic for nurse rostering problems. Technical report, Politecnico di Torino –
http://dl.dropbox.com/u/24916303/TR-01-02-2012.pdf, 2012.

10. C.A. Glass and R.A. Knight. The nurse rostering problem: A critical appraisal of the
problem structure. European Journal of Operational Research, 202:379–389, 2009.

11. S. Haspeslagh, P. De Causmaecker, M. Stolevik, and A. Schaerf. The first international
nurse rostering competition 2010. Annals of Operations Research, 194(1):59–70, 2012.

12. A. Ikegami and A. Niwa. A subproblem-centric model and approach to the nurse
scheduling problem. Mathematical Programming, 97(3):517–541, 2003.

13. D.L. Kellogg and S. Walczak. Nurse scheduling: From academia to implementation or
not? Interfaces, 37(4):355–369, 2007.

14. Z. Lu and J.K. Hao. Adaptive neighborhood search for nurse rostering. European
Journal of Operational Research, 218(3):865 – 876, 2012.

15. B. Maenhout and M. Vanhoucke. Branching strategies in a branch-and-price approach
for a multiple objective nurse scheduling problem. Journal of Scheduling, 13:77–93,
2010.

16. B Maenhout and M Vanhoucke. An evolutionary approach for the nurse rerostering
problem. COMPUTERS & OPERATIONS RESEARCH, 38:1400–1411, 2011.

17. M. Moz and M. Pato. An integer multicommodity flow model applied to the rerostering
of nurse schedules. Annals of Operations Research, 119:285–301, 2003.

18. M. Moz and M. Pato. A genetic algorithm approach to a nurse rerostering problem.
Computers & Operations Research, 34:667–691, 2007.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 173

19. D. Ouelhadj, S. Martin, P. Smet, E. Özcan, and G. Vanden Berghe. Fairness in nurse
rostering. Technical report, University of Portsmouth, 2012.

20. D. Ouelhadj and S. Petrovic. A survey of dynamic scheduling in manufacturing systems.
Journal of Scheduling, 12:417–431, 2009.

21. M. Pato and M. Moz. Solving a bi-objective nurse rerostering problem by using a utopic
pareto genetic heuristic. Journal of Heuristics, 14:359–374.

22. C. Valouxis, C. Gogos, G. Goulas, P. Alefragis, and E. Housos. A systematic two phase
approach for the nurse rostering problem. European Journal of Operational Research,
219(2):425 – 433, 2012.

23. M. Vanhoucke and B. Maenhout. NSPLib - a nurse scheduling problem library: A tool
to evaluate (meta-)heuristic procedures. Operational research for health policy: Making
better decisions, pages 151–165, 2007.

24. M. Warner. Nurse staffing, scheduling, and reallocation in the hospital. Hospital &
Health Services Administration, pages 77–90, 1976.

174 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

__

Hoong Chuin Lau

School of Information Systems, Singapore Management University

80 Stamford Road, Singapore 178902

E-mail: hclau@smu.edu.sg

Aldy Gunawan

School of Informatics & IT, Temasek Polytechnic

21 Tampines Avenue 1

E-mail: agunawan@tp.edu.sg

The Patrol Scheduling Problem

Hoong Chuin Lau • Aldy Gunawan

Abstract This paper presents the problem of scheduling security teams to patrol a mass rapid

transit rail network of a large urban city. The main objective of patrol scheduling is to deploy

security teams to stations at varying time periods of the network subject to rostering as well as

security-related constraints. We present a mathematical programming model for this problem. We

then discuss the aspect of injecting randomness by varying the start times, the break times for each

team as well as the number of visits required for each station according to their reported

vulnerability. Finally, we present results for the case of Singapore mass rapid transit rail network

and synthetic instances.

Keywords: patrol scheduling problem, preferences, mass rapid transit rail network,

mathematical programming.

1 Introduction

Personnel scheduling and rostering is concerned with the process of constructing optimized

work timetables for staff in order to satisfy the demand for the organization. Ernst et al. (2004)

provide a recent review of staff scheduling and rostering in specific applications areas. Some are

concerned with rostering within a physical premise such as hospitals, and examples of such

problems include nurse rostering (e.g. Petrovic and Berghe, 2008) and physician scheduling (e.g.

Gunawan and Lau, 2010). A more challenging problem involves rostering of personnel that require

them to move from one geographical location to another as they discharge their duties, such as

airline crew scheduling (e.g. Maenhout and Vanhoucke, 2010) and train crew scheduling (e.g. Chu

and Chan, 1998).

In this paper, we are concerned with the planning problem of assigning security teams to

patrol a public transportation network (such as subways) of a large urban city. This is termed the

Patrol Scheduling Problem. This problem is motivated by increasing need for protecting major

public facilities (such as urban transport systems) in response to global threats. In order to enforce

security, security personnel or teams are deployed to patrol the stations throughout the day. Unlike

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 175

standard employee rostering which follows prescribed patterns, patrol activities should ideally

exhibit randomness so as to hedge against adversarial observations. It goes without saying that in

view of limited manpower resources, it is necessary to maximize the impact of patrolling duties

through solving the problem optimally.

The main objective of this paper is to develop an exact model to deploy security teams to

stations in varying time periods of the network while ensuring rostering and other security-related

constraints. We also consider aspects of randomness to hedge against adversarial observations. To

our knowledge, this study is one of very few attempts to solve the patrol scheduling problem on a

mass rapid transit rail network.

The remaining part of the paper is organized as follows. We first provide a brief literature

review. We then give a detailed description of our patrol scheduling problem in Section 3. We

provide a deterministic mathematical programming model that solves the problem, followed by a

randomized strategy which allows the planner to generate solutions based on randomized start

times, break times for each team as well as the number of visits required for each station. The next

section is dedicated to the computational analysis of the model on the Singapore MRT Rail

System, as well as on randomly generated problem instances. Finally, we provide some concluding

perspectives and directions for future research.

2 Literature Review

Crew rostering in public transport systems is an active area of research. An example of a rail

transport scheduling problem is Chu and Chan (1998), who studied the problem of crew

scheduling for the Hong Kong Light Rail Transit. The complex schedule construction is

decomposed into separate solution stages by network and heuristic algorithms. They reported that

the entire crew schedule can be constructed iteratively in less than an hour, which is better than the

manual allocation. Although optimality cannot be claimed, the feasibility of the solution was

ensured, which can still be further improved manually.

A more recent work of Elizondo et al. (2010), which considers the problem of conductors

duty generation in the Santiago Metro System. With regard to operational and labor conditions, the

goal is to use the lowest possible number of conductors and minimize total idle time between trips.

They solved the problem using a constructive hybrid approach which takes advantage of the

benefits offered by evolutionary methods. Their hybrid method produced solutions with the

minimum number of duties in six of the ten problems solved.

On patrol scheduling, the major purpose is to ensure the safety of the commuters and to

discourage those who might commit crimes (Rosenshine, 1970). The patrol scheduling method

developed there is based on the assumption of randomness. The arrival patterns of the security

patrol to a particular station could not be predicted. On the other hand, the irregularity of patrol

schedules would increase the awareness of the commuters that patrol is taking place. The arc flows

were determined by solving a linear programming problem while the random arrival patterns on

each arc were generated by choosing exponential inter-dispatch times along the generated routes.

176 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Stern and Teomi (1986) studied and proposed two algorithms for scheduling security guards

in a large organization in Israel. The problem was formulated as a multi-objective problem and

solved by a simpler heuristic intuitive algorithm. Taylor and Huxley (1989) considered the

problem of assigning police officer shifts so that under cover is minimized. The optimization-

based decision support system was developed and implemented in the Police Patrol Scheduling

System at the San Francisco Police Department. Sharma and Ghosh (2007) proposed an optimal

deployment of police patrol cars for the department of traffic police on the metropolitan city, Delhi

(Central). A goal programming model was designed to determine the number of patrol cars to have

on duty per shift and road segment.

The application of game theory to patrol scheduling took center stage in recent research. Tsai

et al. (2009) for example modeled the strategic security allocation problem as a Strackelberg game

and developed the Intelligent Randomization In Scheduling (IRIS) system – a tool for strategic

security allocation in transportation networks. The algorithmic advances in multi-agent systems

research are being used to solve the class of massive security games with complex constraints, the

Federal Air Marshals (FAMs) that provide law enforcement aboard U.S. commercial flights.

Ordóñez et al. (2012) described the recent development of game-theoretic models to assist

security forces in randomizing their patrols and their deployment by assuming intelligent adversary

responses to security measures. They proposed fast algorithms for solving large instances of

Bayesian Stackelberg games to two real-world security applications: 1) the police at the Los

Angeles International Airport and 2) the Federal Air Marshal Service. Stackelberg games are a

bilevel model that account for the ability of an adversary to gather information about the defense

strategy before planning an attack (Basar and Olsder, 1995). The generic mathematical formulation

is described as the set covering model where the set of schedules of security forces are pre-

determined.

Jiang et al. (2012) presented an approach to generate fare-inspection strategies in urban transit

systems using a Stackelberg game. The problem is to deploy security personnel randomly to

inspect passenger tickets. The real problem from the Los Angeles Metro Rail System was

formulated and solved as an LP relaxation with a maximum-revenue patrol strategy. The solutions

obtained seem to effectively deter fare evasion and ensure high levels of revenue.

3 Problem Definition

This paper focuses on a patrol scheduling the mass rapid transit rail network. Figure 1 shows

the subway systems of London, Beijing, Paris and Singapore respectively. A common feature of

these networks is that each network consists of many stations linked by hub (interchange) stations.

We define the Patrol Scheduling Problem as follows. We are given a number of security teams

responsible for the patrolling task. We assume the time horizon to be a single work day divided

into time periods. A shift is defined as a consecutive set of time periods, and in this paper, we

assume each period to be one hour, and there are two 8-hourly shifts (7am – 3pm and 3pm – 11pm

respectively). Each team is rostered to a single shift duty during which it is responsible for

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 177

patrolling/visiting a subset of stations in the network. We assume each station patrol/visit takes one

period and each shift is made up of exactly six visits plus two breaks.

Figure 1. Examples of the mass rapid transit rail network in some cities

Figure 2. Example of the mass rapid transit rail network

Time

Period
1 2 3 4 5 6 7 8

Team1 S1 S3 Break S5 S6 Break S7 S13

Team2 S10 S12 Break S14 S16 Break S4 S2

Figure 3. Example of Patrol Scheduling Problem

As shown in Figure 2 as illustration, the mass rapid transit rail network consists of two

different lines. There are 16 stations in total where Station 4 (S4) and Station 7 (S7) are

interchange stations. Assuming there are two teams in the first shift, Figure 3 represents one

possible patrol scheduling for both teams. Team1 has to visit S1, S3, S5, S6, S7 and S13

consecutively while Team2 has to visit S10, S12, S14, S16, S4 and S2 consecutively.

S1 S2 S3 S4 S5

S9

S10

0

S11

S6 S7 S8

S12

S16 S15 S14 S13

178 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Our goal is to minimize the total distance travelled. We use this objective in order to generate

solutions that minimizes unnecessary movements (where teams move in a certain path, rather than

haphazardly or in loops). The distance travelled between two stations is computed as the smallest

number of stations passed (since there may be more than one path from one station to another). For

example, the distance between S1 and S4 is 3 stations. Furthermore, we also impose an additional

penalty for distance between two stations using different lines. From S5 to S16, the distance

travelled is 2 stations + ∆, where ∆ is the penalty value. In our study, we set ∆ to an arbitrarily

number, e.g. 10. This can be set to any large number with the purpose to minimize unnecessary

movements.

The following summarizes the requirements/constraints treated in this paper:

 The number of visits for each team should meet the requirement.

 At most one team can visit a particular station at a particular time period.

 Each station has a minimum and maximum number of visits per day.

 Each team has its own start and finish times. In this paper, we treat the start and finish times

as input (i.e. assume they have been determined by the planner).

 Each team may only visit a particular station at most once during its duty.

 Each team visits at most one station at a particular time period.

 Consecutiveness constraints: describes whether a pair of stations can be visited consecutively

(i.e. one after another).

 Break constraints: each team is given two breaks, and breaks cannot occur consecutively.

As discussed in the Introduction, the element of randomness is important to patrol scheduling

to hedge against adversarial observations. To this end, game theory has been applied recently (see

Literature Review above) which utilizes reports from Intelligence sources to compute mixed

strategies. Since our focus in this paper is on the patrol scheduling problem defined above, we treat

the computation of these mixed strategies as a pre-processing step, which is computed whenever a

new roster needs to be generated (e.g. daily).

It is conceivably that Intelligence sources will provide different data on the vulnerability of

stations from time to time, which in our context can be translated to the input required by our

problem (more precisely, the randomized frequency of visits of each station, as well as start times

and break times of each patrol team). Our purpose in this paper is to demonstrate that by

appropriately randomizing the frequency of visits, we can effectively deter crimes compared to

fixed frequency.

4 Mathematical Programming Model

In this section, we first present a deterministic mathematical programming model to solve the

patrol scheduling problem. We then consider a simple strategy for randomizing inputs for feeding

into our model.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 179

4.1 Deterministic Model

The problem can be presented as a mathematical programming model, using the following

sets, input parameters and decision variables:

Parameters

I = Set of patrol teams, Ii ,,2,1

J = Set of stations, Jj ,,2,1

K = Set of time periods, Kk ,,2,1

iReq = number of visit required for patrol team i per day Ii

jMax_Visit = maximum number of visit required for station j per day Jj

jMin_Visit = minimum number of visit required for station j per day Jj

iStart = start time for team i Ii

iFinish = finish time for team i Ii 7i.e ii StartFinish,

1
iBreak = team i‘s first break (i.e., the first break is at period 1

ii BreakStart

2
iBreak = team i‘s second break 112 ii BreakBreak

21 jjDist = the distance between stations j1 and j2 Jj,j 21

21 jjCons = 1 if a patrol team can visit j2 consecutively (i.e. at the next time period) after

visiting station j1, and 0 otherwise

Decision variables

ijkX = 1 if patrol team i visits station j at time period k KkJ,jI,i , 0 otherwise

The formulation for the Patrol Scheduling problem is then given by

Minimize)1(

)(}11{

)}1({

)(2

1

21

2
2211

121

 kStartijX

Ii J,j
jj
Jj

Break,Break,Break,Breakk

StartFinish0,...,k

kStartijXjjDistZ
i

iiii

ii

i

)2(

)(
}11{

)(2

1

21

2
21

121

 kStartij
Ii J,j

jj
Jj Break,Breakk

kStartijjj i

ii

i
XXDist

(1)

subject to:

Jj Kk

iijk ReqX Ii (2)

Ii

ijkX 1 KkJ,j (3)

Ii Kk

jijk Min_VisitX Jj (4)

Ii Kk

jijk Max_VisitX Jj (5)

180 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Kk

ijkX 1 JjI,i (6)

Jj

ijkX 1 KkI,i (7)

Jj

Startk
Kk

ijk

i

X 0 Ii (8)

Jj

Finishk
Kk

ijk

i

X 0 Ii (9)

Jj
BreakStartij ii

X 0
)(1 Ii (10)

Jj
BreakStartij ii

X 0
)(2 Ii (11)

)()1(1

21

1

212 kStartij

jj
Jj

jjkStartij ii
XConsX

 }121121{

}10{2

iBreak,iBreak,iBreak,iBreakk

iStartiFinish,...,kJ,jI,i

(12)

)()2(1

21

1

212 kStartij

jj
Jj

jjkStartij ii
XConsX

}1211{2 iBreak,iBreakkJ,jI,i

(13)

 1,0ijkX KkJ,jI,i (14)

Equation (1) shows that the objective function consists of two terms. The first term of the

objective function refers to the distance travelled between two consecutive time periods. Due to

the break constraints, we introduce the second term in the objective function. Suppose a team has

the start time at Period 1 and the breaks at Periods 3 and 6. Then the first term calculates the

distance travelled between Periods 1 and 2, Periods 4 and 5 and Periods 7 and 8, while the second

term computes the distance travelled between one period before and after the break (i.e. Periods 2

and 4 and Periods 5 and 7).

Constraint (2) ensures that all teams have to visit a certain number of stations during their

duty. Constraint (3) restricts that only one team can visit a particular station at a particular time

period. Constraints (4) and (5) represent the number of visits allowed for each station per day. In

our problem, the interchange stations are visited more often than those of non-interchange stations.

Each team can only visit a particular station at most once per day and each team can only patrol at

most one station at a particular time period. These requirements are represented by Constraints (6)

and (7).

Note that the start (and therefore finish) times of each team is an input to the model.

Constraints (8) and (9) ensure that all teams can only perform their patrolling task during their

shift. The break constraints are defined in (10) and (11). The consecutiveness constraint is

represented by constraints (12) and (13). Constraint (12) defines the consecutiveness requirement

between two consecutive periods of duty. Since the breaks occur at

periods 1
ii BreakStart and 2

ii BreakStart , we introduce constraint (13) to ensure consecutiveness

between the stations visited the one period before and after a particular break.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 181

Notice that the objective function of the model is not linear and our experiment shows that

the model given above cannot be solved within reasonable time. Furthermore, standard

linearization technique (see Hammer and Rudeanu, 1968) also yields unsatisfactory performance.

In the following, we propose a linearization of the problem by introducing an additional set of

binary variables mijkijmkjij XXY
2121

 . The objective function (1) is replaced by the following

equation:

Minimize

Ii J,j
jj
Jj

,Break,Break,BreakBreakk

StartFinish,...,k

kStartjkStartijYjjDistZ

iiii

ii

ii

1

21

2
2211

2121

)(}11{

)}1(0{

)1()(

Ii J,j

jj
Jj Break,Breakk

kStartjkStartijjj

ii

ii
YDist

1

21

2
21

2121

)(
}11{

)2()(
(15)

To achieve this, the following constraints need to be added:

 kStartij

jj
Jj

kStartjkStartij iii
XY

1

12

2

21 1
}121121{

}10{1

iBreak,iBreak,iBreak,iBreakk

iStartiFinish,...,kJ,jI,i

(16)

 11 2

21

1

21

 kStartij

jj
Jj

kStartjkStartij iii
XY

}121121{

}10{2

iBreak,iBreak,iBreak,iBreakk

iStartiFinish,...,kJ,jI,i

 (17)

 kStartij

jj
Jj

kStartjkStartij iii
XY

1

12

2

21 2

}1211

}1,...,0{1

iBreak,i{Breakk

iStartiFinishkJ,jI,i

 (18)

 22 2

21

1

21

 kStartij

jj
Jj

kStartjkStartij iii
XY

}1211

}1,...,0{2

iBreak,i{Breakk

iStartiFinishkJ,jI,i
 (19)

 1,0
21

mkjijY

Km&kJ,j&jI,i 21

(20)

4.2 Randomized Strategy

The above model will work well in commercial rosters where the emphasis is on regularity.

In security patrol scheduling context however, the element of randomness is important. In this

section, we consider the problem of randomizing the start times, the break times for each team as

well as the number of visit required for each station.

For start times and break times, we generate them randomly for each team based on a

uniform distribution, which may be replaced with any other probability distributions. We would

like to observe the impact of computational performance in solving the underlying deterministic

mathematical model.

The frequency of visits is not purely random, but is dependent on the level of threats

(vulnerability) of each station. In this paper, we assume the existence of Intelligence sources that

provide information about the likelihood that crimes are going to occur at each particular station,

from which we can calculate the randomized frequency distribution of visits.

182 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

More precisely, suppose X is a discrete random variable that represents the adversary’s

probability distribution of committing a crime, given as follows:

|Jp|JPr

pPr

pPr

X

|

2

1

)|Stationatoccurscrime(a

)2Stationatoccurscrime(a

)1Stationatoccurscrime(a

 (21)

where 111 |J|P...pp . Assume that there are |I| teams where each team has to visit Reqi

stations, so the total number of visits per day is
Ii

iReq . In this paper, we use the inverse transform

method (Ross, 2009) to generate the randomized strategy (i.e. the distribution of the number of

visits for all stations) as follows. We generate
Ii

iReq random numbers drawn from the uniform

distribution U(0,1), and for each number U, we increment the number of visits by one to Station j

if

j

i i
j

i i pUp
1

1

1
The result is a randomized vector which represents the frequency of visits

for all stations.

 To simulate the occurrence of crime, we apply the same method, namely, generate a random

number U from the uniform distribution U(0,1); a crime occurs at Station j if

j

i i
j

i i pUp
1

1

1
To test the effectiveness of our proposed randomized strategy, we perform a

simulation of a number of replications. For each replication, we simulate the occurrence of crime

at a particular station as described above, and determine whether the roster generated from the

randomized visit frequency is able to counteract/deter this crime. This is benchmarked against a

fixed frequency of visits described above. In the following section, we report results on the

effectiveness of our random strategy against the fixed strategy.

5 Computational Results

In this section, we present the computation results together with our evaluation based on of

the proposed mathematical programming model. All experiments that we report on this section

were run on a 3.07 GHz Intel (R) Xeon (R) CPU with 128GB of RAM under the Microsoft

Windows XP Operating System. The mathematical programming model was solved by CPLEX

10.0 solver engine. We first describe the experimental setup, followed by experimental results.

5.1 Experimental Setup

In order to demonstrate the capabilities of our proposed model, the Singapore rail network

was chosen as a case study (Figure 4). In addition, two different random instances (Figures 5 and

6) were also generated with varying values of the following parameters – the number of teams, the

number of stations, the number of interchange stations (Table 1).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 183

Table 1. Characteristics of Problem Instances

Problem Set
Number of

Teams

Number of

stations

Number of

interchange

stations

Number of

time periods

per day

Number of

stations visited

per team

Random1 4 20 1 16 6

Random2 5 24 2 16 6

Case Study 24 90 10 16 6

Figure 4. Singapore MRT map (source: http://www.smrt.com.sg/trains/network_map.asp)

Figure 5. Random1 station map

S5 S4 S3 S2 S1

S17 S19

S18

0

S6 S7

8

S8

S16

S13
S14

S15

S9 S10

S11

S20

S12

Interchange Station

184 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.smrt.com.sg/trains/network_map.asp

Figure 6. Random2 station map

In order to ensure the feasibility of random instances, the number of teams is set as:

6/
Jj

jMin_VisitI (22)

For simplicity in our experiments, we assume that the break periods for all teams occur at

periods 2iStart and 5iStart , meaning that the break periods are at the third and sixth periods

of an eight-period shift. In the following, we report a suite of computational results and analysis

obtained from our mathematical model described above. We also conduct some additional

experiments by varying the values of some parameters that would be described in Section 5.3.

5.2 Results of the Deterministic Model

5.2.1 Results of Random1 and Random2 Instances

Both Random1 and Random2 can be optimally solved by the CPLEX 10.0 solver engine. The

following tables summarize the schedules of all teams. It is observed that all teams are not required

to change to another line for both instances. This situation provides us the minimum total distance

travelled for all teams. In Random1, three stations, S1, S5 and S10, are required to be visited twice

a day. Here, we found that this requirement is satisfied. Similar observation can be obtained for

Random 2 where S1, S3, S7 and S10 have to be visited twice as well. The total runtimes for both

random instances are 111 and 155 seconds, respectively.

Teams
Time Periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 S1 S2 Break S3 S7 Break S8 S10

2 S17 S18 Break S19 S20 Break S5 S16

3 S5 S15 Break S14 S13 Break S12 S11

4 S10 S9 Break S6 S4 Break S3 S1

Figure 7. Result of Random1 instance

S1 S2 S4 S5

S22

S21

0

S20

S6 S8

S18

S13 S14 S15

S17

S9 S10

S11

S24

S12 S16

S23 S19
Interchange Station

S3 S7

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 185

Teams
Time Periods

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 S6 S5 Break S4 S3 Break S2 S1

2 S10 S8 Break S7 S17 Break S16 S15

3 S14 S13 Break S12 S11 Break S3 S1

4 S19 S20 Break S21 S22 Break S23 S24

5 S10 S9 Break S8 S7 Break S18 S19

Figure 8. Result of Random2 instance

5.2.2 Results of Case Study

This is a large-scale problem with 90 stations, which could not be solved in CPLEX after 24

hours. We decompose the problem into four sub-problems where each sub-problem represents a

single line. In our case study, there are four different lines, namely the East-West Line, North-

South Line, North-East Line and Circle Line (Table 2). The number of teams allocated to each line

is defined by equation (22). The details of lines and station names can be found in

http://www.smrt.com.sg. In this network, some stations are interchange stations (such as Jurong

East, Dhoby Ghaut, Buona Vista stations and so on) which serve more than one lines. By solving

each line separately, there is a possibility that these interchange stations could be visited by more

than one teams at the same time. This situation is acceptable since an interchange station is

generally a large station with multiple platforms. For instance, the Buona Vista station has two

different platforms for trains serve East West and Circle Lines. On the other hand, we ensure that

other stations (non-interchange stations) may only be visited by at most one team at a particular

time period.

Figure 9 summarizes the detailed route taken by each team for the entire network. In general,

stations visited by each team are close to each other (in accordance with the minimum total

distance objective we define for our model). We divide the number of teams for each line into two

different groups, Groups I and II. The teams in Group I would start their duty at time period 1

while others in Group II would be at time period 9 (represent two different shifts). The runtimes

for each line are as follows: 780 seconds (East West Line), 200 seconds (North South Line), 33

seconds (North East Line), and 8,322 seconds (Circle Line). Solving the mathematical model for

the North East Line takes significantly less runtime than solving for the other lines since it has less

number of teams and stations.

Table 2. Characteristics of lines in Case Study

Lines
Number of

teams

Number of

stations

Number of

interchange
stations

Number of time

periods per day

Number of

stations visited
per team

East West Line 7 31 7 16 6

North South Line 6 25 7 16 6
North East Line 4 16 6 16 6

Circle Line 7 30 7 16 6

186 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.smrt.com.sg/

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

East West Line

1 Paya Lebar Kallang Break Lavender Bugis Break City Hall Raffles Place

2 Changi Airport Expo Break Tanah Merah Simei Break Tampines Pasir Ris

3 Tanah Merah Bedok Break Kembangan Eunos Break Paya Lebar Aljuneid

4 Chinese Garden Jurong East Break Clementi Dover Break Buona Vista Commonwealth

5 Jurong East Chinese Garden Break Lakeside Boon Lay Break Pioneer Joo Kon

6 Redhill Tiong Bahru Break Outram Park Tanjong Pagar Break Raffles Place City Hall

7 Buona Vista Commonwealth Break Queenstown Redill Break Tiong Bahru Outram Park

North South Line

1 Marina Bay Raffles Place Break City Hall Dhoby Ghaut Break Somerset Orchard

2 Kranji Yew Tee Break Choa Chu Kang Bukit Gombak Break Bukit Batok Jurong East

3 Bishan Ang Mo Kio Break Yio Chu Kang Khatib Break Yishun Sembawang

4 Newton Novena Break Toa Payoh Braddell Break Bishan Ang Mo Kio

5 Admiralty Woodlands Break Marsiling Choa Chu Kang Break Bukit Batok Jurong East

6 Orchard Somerset Break Dhoby Ghaut City Hall Break Raffles Place Marina Bay

North East Line

1 Harbour Front Outram Park Break Chinatown Clarke Quay Break Dhoby Ghout Little India

2 Potong Pasir Woodleigh Break Serangoon Buangkok Break Sengkang Punggol

3 Serangoon Kovan Break Hougang Buangkok Break Sengkang Punggol

4 Boon Keng Farrer Park Break Dhoby Ghaut Clarke Quay Break Outram Park Harbour Front

Circle Line

1 Holland Village Buona Vista Break One North Kent Ridge Break Labrador Park Harbour Front

2 Harbour Front Telok Blangah Break Labrador Park Pasir Panjang Break Haw Par Villa Buona Vista

3 Dhoby Ghaut Bras Basah Break Esplanade Promenade Break Bay Front Marina Bay

4 Bishan Lorong Chuan Break Serangoon Bartley Break Tai Seng Paya Lebar

5 Farrer Road Botanic Garden Break Caldecott Marymount Break Bishan Serangoon

6 Dhoby Ghaut Bras Basah Break Esplanade Promenade Break Bay Front Marina Bay

7 Nicoll Highway Stadium Break Mountbatten Dakota Break Paya Lebar Mac Pherson

Figure 9. Result of Case Study

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 187

5.3 Results of the Randomized Strategy

First, we generate different instances by randomizing the start and break times (Table 3).

Note that the number of teams allocated has to be adjusted according to equation (22) in order to

ensure feasibility. Scenario1 is the base problem that has been solved and shown in Figure 9.

Scenario 2 is generated by varying the start time for each team. The same start time for all teams is

set for Scenario 3. Finally, we increase the number of visits for some stations in Scenario 4. It

turns out that the number of teams has to be increased by one team. We present and discuss the

results of the East West line of the Singapore network.

Table 3. Randomized start and finish times

East West

Line

Number of

teams

Start and finish times for each team (team no [start –

finish])

Scenario 1 7 1[1-8]*, 2[1-8], 3[1-8], 4[1-8], 5[9-16], 6[9-16], 7[9-16]

Scenario 2 7 1[1-8], 2[1-8], 3[3-10], 4[3-10], 5[7-14], 6[9-16], 7[9-16]

Scenario 3 7 1[1-8], 2[1-8], 3[1-8], 4[1-8], 5[1-8], 6[1-8], 7[1-8]

Scenario 4 8
1[1-8], 2[1-8], 3[3-10], 4[4-11], 5[5-12], 6[6-13], 7[8-15],

8[9-16]
*1[1-8]: Team 1 would start at time period 1 and finish at time period 8

As mentioned earlier, Scenario 1 with only two values of start time periods: time periods 1

and 9, could be solved within 780 seconds. When the start time for each team is randomly set to

several time periods (Scenario 2), it turns out that the problem could be solved faster (within 629

seconds). On the other hand, if all teams have to patrol at the same time (Scenario 3), the runtime

significantly increases to 6,400 seconds. When we increase the number of visits for some stations

and change the start time for each team randomly (Scenario 4), the runtime is up to 17,078

seconds. Increasing the number of visits seems to make the problem harder. Similar observations

can be obtained for other lines.

The next set of experiments is related to randomizing the break times. Initially, we assume

that the break periods for all teams occur at periods 2iStart and 5iStart , where the values of

1
iBreak and 2

iBreak are 2 and 5, respectively. Table 4 summarizes different values of the break

times. In Scenario 5, each team might have different values of 1
iBreak and 2

iBreak with a constant

gap between both values (2
iBreak - 1

iBreak = 3), while in Scenario 6, the gap is not constant.

Table 4. Randomized 1
iBreak and 2

iBreak

East West

Line

Number

of teams

1
iBreak and 2

iBreak for each team (team no [1
iBreak –

2
iBreak])

Scenario 5 7 1[2&5]*, 2[2&5], 3[3&6], 4[3&6], 5[2&5], 6[2&5], 7[3&6]

Scenario 6 7 1[1&3], 2[2&5], 3[3&5], 4[2&5], 5[1&4], 6[2&5], 7[3&6]
*1[2&5]: Team 1 would have two breaks at (Start1+2) and (Start1+5)

188 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The runtime for both scenarios, Scenario 5 and Scenario 6, are 33,240 and 28,017 seconds

respectively. It seems that both scenarios are more difficult to solve compared with the previous

scenarios in Table 3. When the break times for each team are randomly set to different values

(Scenario 6), the runtime is less than that of Scenario 5.

Finally, we report results on randomizing the visit frequencies. As described in Section 4.2,

assuming that the probability distribution of a crime is known, our goal is to simulate a number of

realizations of crime occurrences based on this distribution, and evaluate the effectiveness of our

solutions in crime deterrence against those generated by a fixed visit frequency. For this purpose,

we choose the North East Line (with a total of 16 stations). The probability distribution P(crime

occurs at Station) is presented in Table 5 column 3. We generate 100 realizations, and for each

realization, the randomized vector for the minimum number of visits required for each station

(Min_Visit) is as shown in Table 5.

Table 5. Simulating crime and visits at different stations

Station Station Name
Pr(crime occurs at

Station)

Min_Visit

(1)

Min_Visit
(2)

…
Min_Visit

(100)

1 Harbour Front 0.08 2 3 … 0

2 Outram Park 0.07 1 2 … 0

3 China Town 0.02 1 1 … 1

4 Clarke Quay 0.09 1 1 … 3

5 Dhoby Ghaut 0.13 3 2 … 3

6 Little India 0.06 1 1 … 1

7 Farrer Park 0.06 1 1 … 1

8 Boon Keng 0.04 1 1 … 0

9 Potong Pasir 0.04 1 1 … 2

10 Woodleigh 0.07 2 1 … 4

11 Serangoon 0.10 1 4 … 1

12 Kovan 0.08 4 1 … 3

13 Hougang 0.04 0 1 … 2

14 Buangkok 0.04 1 1 … 1

15 Sengkang 0.06 1 1 … 2

16 Punggol 0.04 3 2 … 0

 Total 1 24 24 … 24

For each realization, we randomly generate the station where the crime occurs (according to

the probability distribution). The randomized strategy is said to effectively deter the crime

occurring that station if the Min_Visit value for that station exceeds that of the fixed strategy, and

vice versa; otherwise, we have a tie. For convenience, we set the Min_Visit vector for the fixed

strategy to be the Min_Visit vector of the first realization (i.e. Table 5 column 4). The entire

simulation results are summarized in Table 6. In this table, we set the value of 1 for a particular

replicate if the randomized model is more effective; otherwise 0. If a tie exists, we use the word

“tie”.

We observe that our randomized strategy can perform better than the fixed strategy which is

based on the fixed strategy. Of the 100 replicates, the randomized strategy provides 53%

successful deterrence versus 25% for the fixed strategy. Both are tied at 22% of the runs.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 189

Table 6. Simulation results for North East Line

Run
Crime at

station

Min_Visit

Result Run
Crime at

station

Min_Visit

Result Randomized

Strategy

Fixed

Strategy

Randomized

Strategy

Fixed

Strategy

1 5 3 3 tie 51 5 5 3 1

2 11 4 1 1 52 15 2 1 1
3 12 5 4 1 53 4 1 1 tie

4 5 5 3 1 54 11 3 1 1

5 11 3 1 1 55 1 2 2 tie
6 15 1 1 tie 56 5 3 3 tie

7 1 3 2 1 57 15 0 1 0

8 10 3 2 1 58 10 2 2 tie
9 15 3 1 1 59 4 3 1 1

10 9 0 1 0 60 6 1 1 tie

11 5 3 3 tie 61 4 3 1 1
12 4 3 1 1 62 3 1 1 tie

13 4 3 1 1 63 12 4 4 tie

14 1 1 2 0 64 5 6 3 1
15 4 4 1 1 65 15 0 1 0

16 1 3 2 1 66 15 4 1 1

17 13 1 0 1 67 15 1 1 tie
18 5 5 3 1 68 5 2 3 0

19 13 0 0 tie 69 11 2 1 1

20 11 5 1 1 70 14 1 1 tie
21 5 8 3 1 71 13 1 0 1

22 16 1 3 0 72 1 3 2 1
23 5 4 3 1 73 14 2 1 1

24 16 4 3 1 74 2 3 1 1

25 2 0 1 0 75 15 4 1 1
26 5 4 3 1 76 9 3 1 1

27 10 2 2 tie 77 12 3 4 0

28 7 3 1 1 78 12 3 4 0
29 5 1 3 0 79 14 4 1 1

30 12 1 4 0 80 14 2 1 1

31 12 1 4 0 81 10 3 2 1
32 4 4 1 1 82 5 2 3 0

33 10 1 2 0 83 12 3 4 0

34 11 3 1 1 84 7 1 1 tie
35 5 2 3 0 85 4 0 1 0

36 12 0 4 0 86 12 4 4 tie

37 5 5 3 1 87 14 1 1 tie
38 13 2 0 1 88 15 1 1 tie

39 11 4 1 1 89 5 2 3 0

40 2 1 1 tie 90 12 0 4 0
41 1 2 2 tie 91 4 3 1 1

42 13 1 0 1 92 5 4 3 1

43 5 5 3 1 93 4 2 1 1
44 16 2 3 0 94 4 4 1 1

45 12 2 4 0 95 5 6 3 1

46 7 1 1 tie 96 11 3 1 1
47 10 1 2 0 97 5 4 3 1

48 4 3 1 1 98 1 3 2 1

49 5 5 3 1 99 11 0 1 0
50 11 0 1 0 100 14 1 1 tie

 6 Conclusion

In this paper, we presented initial results from a research on generating patrol scheduling in

mass rapid transit systems. We proposed a mathematical programming model to formulate the

problem. Security is a major importance issue in the patrol scheduling problem. Deterministic

schedules are undesirable due to predictable vulnerabilities. Strategic randomization is one aspect

that has to be considered in this problem. In this paper, we proposed a simple randomized strategy

by randomizing the start (and therefore finish times), break times for each team and the frequency

of visits for each station. We reported the efficiency and effectiveness of our proposed approach

190 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

under different circumstances. We believe that our model does not require major customizations

for use in other mass rapid transit systems with similar constraints and requirements.

There are many possible extensions to our work. For the purpose of reducing the computing

time needed to solve the proposed model, we can consider approaches, such as strengthening its

LP relaxation by adding valid inequalities or reducing the number of variables by using pricing

procedures. The random start time for each team can also be obtained by sampling from marginal

probability of a certain distribution (Rosenshine, 1970). This paper merely considers a simple

randomization strategy for the operator, but do not take the strategic behaviour of adversaries into

account. Extending our proposed model to cover adversarial aspects is a very interesting area. One

approach is to consider Stackelberg game models which have been applied in a variety of security

domains (Ordóñez et al., 2012, Tsai et al., 2009).

References

1. Basar, T., & Olsder, G.J. (1995). Dynamic Noncooperative Game Theory. Academic Press,

San Diego, CA, 2
nd

 edition.

2. Chu, S.C.K, & Chan, E.C.H. (1998). Crew scheduling of light rail transit in Hong Kong: from

modeling to implementation. Computers and Operations Research, 25 (11), 887-894.

3. Elizondo R., Parada V., Pradenas L., & Artigues C. (2010). An evolutionary and constructive

approach to a crew scheduling problem in underground passenger transport. Journal of

Heuristics 16(4), 575 – 591.

4. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., & Sier, D. (2004). Staff scheduling

and rostering: A review of applications, methods and models. European Journal of

Operational Research, 153, 3-27.

5. Gunawan, A., & Lau, H.C. (2012). Master physician scheduling problem. Journal of the

Operational Research Society. To appear.

6. Hammer, P.L., & Rudeanu, S. (1968). Boolean Methods in Operations Research and Related

Areas. Springer, Berlin.

7. Jiang, A.X., Yin, Z., Johnson, M.P, Tambe, M., Kiekintveld, C. Leyton-Brown, K., &

Sandholm, T. (2012). Towards optimal patrol strategies for fare inspection in transit systems.

In AAAI Spring Symposium on Game Theory for Security, Sustainability and Health,

Stanford, California, 26-28 March 2012.

8. Maenhout, B., & Vanhoucke, M. (2010). A hybrid scatter search heuristic for personalized

crew rostering in the airline industry. European Journal of Operational Research, 206, 155-

167.

9. Ordóñez, F., Tambe, M., Jara, J.F., Jain, M., Kiekintveld, C., & Tsai, J. (2012). Deployed

security games for patrol planning. In Handbook of Operations Research for Homeland

Security (Book Chapter), ed. Herrmann, J.W., Springer. To appear.

10. Petrovic, S., & Berghe, G.V. (2008). Comparison of algorithms for nurse rostering problems.

In Proceedings of the 7
th

 International Conference of Practice and Theory of Automated

Timetabling 2008, Montreal, Canada, 18 – 22 August 2008.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 191

11. Rosenshine, M. (1970). Contributions to a theory of patrol scheduling. Operational Research

Quarterly (1970-1977), 21(1), 99-106.

12. Ross, S. (2009). A First Course in Probability. Prentice-Hall, Upper Saddle River, NJ, 8
th

edition.

13. Sharma, D.K., Ghosh, D., & Gaur, A. (2007). Lexicographic goal programming model for

police patrol cars deployment in metropolitan cities. Information and Management Sciences,

18(2), 173-188.

14. Stern, Z.S., & Teomi, Y. (1986). Multi-objective scheduling plans for security guards. The

Journal of the Operational Research Society, 37(1), 67-77.

15. Taylor, P.E., & Huxley, S.J. (1989). A break from tradition for the San Francisco police:

patrol officer scheduling using an optimization-based decision support system. Interfaces, 19

(1), 4-24.

16. Tsai, J., Rathi, S., Kiekintveld, C., Ordóñez, F., & Tambe, M. (2009). IRIS – A tool for

strategic security allocation in transportation networks. In Proceedings of the 8
th

 International

Conference on Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10-15 May

2009, 37-44.

192 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Patient-to-room assignment planning in a dynamic
context

Wim Vancroonenburg · Patrick
De Causmaecker · Greet Vanden Berghe

Received: date / Accepted: date

Abstract The present contribution proposes an extension to the patient as-
signment (PA) planning problem in a dynamic context. Two ILP-models have
been developed for optimizing this day- to- day planning problem. The first
considers finding the optimal assignment for newly arrived patients, whereas
the second also considers future, but planned, arrivals. The performance of
both models is compared to each other on a set of benchmark instances. The
relative performance with respect to a known lower bound is also presented.
Furthermore, the effect of uncertainty on the patients’ length of stay is stud-
ied, as well as the effect of the percentage of emergency patients. The results
show that the second model provides better results under all conditions, while
still being computationally tractable.

Keywords Patient assignment problem · Dynamic planning · Integer Linear
Programming

1 Introduction

Rooms and beds belong to the critical assets of just any hospital. They account
for a considerable part of a hospital’s infrastructure, and a large amount of
financial resources are invested in equipping them with medical apparatus to
facilitate patient care. Furthermore, they also represent the place where most
patients will spend a large part of their stay, as they recover from surgery,
wait for examinations to take place, etc. In order to improve their comfort,
patients are offered a choice between single bed rooms, luxury rooms with

Wim Vancroonenburg
CODeS research group, Computer Science, KAHO Sint-Lieven
Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
Tel.: +32 9 265 87 04
Fax: +32 9 225 62 69
E-mail: Wim.Vancroonenburg@kahosl.be

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 193

private showers, and other amenities. As a result, a large variety of hospital
rooms exists in terms of capacity, which are equipped with different medical
apparatus and amenities. Assigning patients to such a variety of hospital rooms
can therefore be challenging, necessitating an efficient plan for making such
an assignment.

Bed managers aim at finding an assignment of patients to rooms that
strikes a balance between patients’ preferences and comfort on the one hand,
and patients’ clinical conditions and the resulting required room facilities on
the other. However, both the availability of rooms and equipment, and hospital
policies and standards need to be considered, making it difficult to generate
a balanced patient-to-room assignment. A lack of overview on occupied beds
and the uncertainty on how long patients will stay in the hospital, further
complicate the matter.

Demeester et al (2010) defined and studied the patient assignment (PA)
problem in the context just described. They consider a set of patients that
arrive at a hospital over a certain period of time. The hospital comprises a
set of rooms, each with given capacity and characteristics. The problem is
to find an effective assignment of patients to rooms, satisfying room capacity
restrictions. Moreover, a perceived cost is associated with each patient to room
assignment relating to the appropriateness of that assignment. The objective
is to minimize the total cost of these assignments. The present contribution
focuses on this problem.

1.1 Related work

As pointed out by Rais and Viana (2011) in their survey on operations research
in healthcare, a great deal of the considered literature has focussed on schedul-
ing of patients and hospital resources. Notably, nurse rostering and operating
theatre (OT) planning and scheduling have received a considerable amount
of attention (see e.g. Burke et al 2004; Cardoen et al 2010), which is evident
given that personnel and the OT are among the most expensive resources for
any hospital.

The PA problem considered in this paper comprises an assignment problem
that occurs at the operational level of hospital admission offices. It assumes
that patients have already been attributed an admission date, a decision that
is made as part of either an intervention scheduling1 process (see e.g. Riise and
Burke 2010) during operational surgery scheduling, or an appointment schedul-
ing process when no surgery is required. The type of patients and the arrival
pattern of patients with different pathologies is often also largely influenced
by the Master Surgery Schedule (MSS), a timetable that allocates operating
rooms and operating time to different medical disciplines. For example, Beliën
and Demeulemeester (2007) show how a cyclic MSS can be constructed that
results in an expected levelled bed occupancy.

1 Also known as advance scheduling.

194 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Demeester et al (2010) introduced the PA problem to the academic com-
munity as a challenging combinatorial optimization problem. In a follow up
paper, Bilgin et al (2012) presented a new hyper-heuristic algorithm to the
PA problem. They provide new benchmark instances and report test results.
Vancroonenburg et al (2011) show that the PA problem is NP-hard.

The problem was also studied by Ceschia and Schaerf (2011), who devel-
oped a Simulated Annealing algorithm that improves on the best known results
for the benchmark instances. Lower bounds for these instances are provided
as well. Furthermore, they argue that the problem definition only assumes
patients that are planned in advance (elective patients), and that it does not
capture the dynamics of uncertainty on patient arrivals and departures. An
extension to the problem definition is proposed where patient admission and
discharge dates are revealed a few days before they occur (denoted as the fore-
cast level). To this end, Ceschia and Schaerf developed a dynamic version of
their algorithm that can be used for day- to- day scheduling. The performance
of this algorithm is analysed under an increasingly larger forecast level.

The PA problem where patient transfers are not allowed, is related to
the interval scheduling problem: patients can be represented by fixed length
intervals/jobs with fixed start and end time, that need to be assigned to a
machine (a room) for ‘processing’. The PA problem comprises required jobs
and non-identical machines with different capacities, the goal being to find a
minimum-cost schedule subject to side-constraints. In the dynamic context,
it constitutes an online interval scheduling problem with uncertainty on the
interval lengths. We refer to Kolen et al (2007) for a review on the subject
of (online) interval scheduling problems. Ouelhadj and Petrovic (2009) give a
survey of dynamic scheduling problems in manufacturing in general.

1.2 Present contribution

Similarly to Ceschia and Schaerf (2011), we define a new extension to the PA
problem in a dynamic context. To this end, registration dates for each patient
are added to the problem definition to denote when a patient’s (possibly fu-
ture) arrival time is revealed. Contrary to Ceschia and Schaerf (2011) however,
an estimate of the length of stay (LOS) for each patient is also assumed to be
available, which in practice often is the case. Special care is taken to accom-
modate the decision process when patients outstay their estimated length of
stay.

This dynamic version of the problem is modelled and solved using Integer
Linear Programming (ILP). We discuss the performance of this approach and
study the effect of the percentage of emergency cases and the accuracy of the
LOS estimate.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 195

2 Problem formulation

2.1 PA in a static context

The PA problem considers a set of patients P that each need to be assigned to
one of a set of hospital rooms R over a certain time horizon H = {1, . . . , T}.
Each room r ∈ R has a given capacity, denoted by c(r). Each patient p ∈ P
is attributed an arrival time a(p) and a departure time dd(p), with the time
interval [a(p), dd(p)) representing the patient’s stay in the hospital. The length
of the patient’s stay, dd(p)− a(p), is denoted as los(p).

The problem is to find an assignment σ : P 7→ R of patients to rooms that
minimizes a certain cost w(σ) related to these assignments. This cost w(σ)
consists of two parts:

– w1(σ) =
∑
p∈P los(p) · c(p, σ(p)) : each patient/room combination is at-

tributed a cost c(p, r), that relates to the appropriateness of assigning pa-
tient p to room r for one time interval (the lower c(p, r), the better). The
goal is to minimize the sum of these assignment costs.

– w2(σ) =
∑
r∈R

∑T
t=1 Conflictσ,r,t : the sum of all gender conflicts in all

rooms r over the entire planning horizon H. The goal is to avoid that male
and female patients are assigned to the same room at the same time. These
conflicts are calculated as follows:

Conflictσ,r,t = min(|p ∈ Pσ,r,t : p is male|,
|p ∈ Pσ,r,t : p is female|) (1)

with
Pσ,r,t = {p ∈ P : a(p) ≤ t < dd(p), σ(p) = r} (2)

denoting the set of patients assigned to room r at time t. Furthermore, this
assigment should respect the room capacities at all times, i.e. :

∀t = 1, . . . , T, r ∈ R : |Pσ,r,t| ≤ c(r) (3)

The definition proposed by Demeester et al (2010) allows for patients to
be transferred from one room to another during their stay. The present con-
tribution considers the slightly simpler version of the problem, which does not
allow for transfers.

2.2 PA in a dynamic context

In practice, the arrivals and departures of patients are gradually revealed over
the planning horizon. The problem definition is therefore extended to account
for these dynamics. Each patient p is attributed a registration date r(p), at
which point the patient becomes known to the system, and an expected de-
parture date ed(p), which is an estimate of the patient’s departure date. The
departure date of the patient dd(p) however, remains hidden until the patients’
departure date has passed.

At each point t′ ∈ H of the planning horizon, two sets are revealed:

196 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

– Pt′ : the set of patients with r(p) = t′, i.e. the patients that are registered
at time t′. At this point, for each patient p ∈ Pt′ only a(p) and ed(p) are
known, dd(p) remains hidden.

– DPt′ : the set of patients with dd(p) = t′, i.e. the patients that leave the
hospital at time t′.

Let At′ denote the set of patients that arrived at t′, i.e. :

At′ = {p ∈ P : a(p) = t′} (4)

The goal of the problem is to find at each time t′ an assignment

σt′ :
t′⋃
i=1

Ai 7→ R (5)

that maps each arrived patient p (i.e. all p for which t′ ≥ a(p)) to a hospital
room r. Furthermore, patients who arrived before t′ should not be moved, i.e. :

∀p ∈
t′−1⋃
i=1

Ai : σt′(p) = σt′−1(p) (6)

The assignment σT denotes the solution at the end of the planning hori-
zon. It contains all the patients’ assignments within that period. The solution
quality can be assessed by computing w(σT). It is interesting to compare this
value with the quality obtained for the static variant of the problem, which
supposes that each patient’s departure date is fixed in advance. Any lower
bound for (or the optimal solution to) the static version is a lower bound for
the dynamic problem.

3 Optimization models

Two models were developed for the dynamic PA planning problem that cor-
respond to the situation at each decision step t′. They extend the previous
assignment σt′−1 to include available information on newly arrived patients
p ∈ At′ .

The first approach is modelled after current practice, namely the assign-
ment decision is made shortly before patient arrival and only current room
availability is considered. The model tries to find the optimal assignment for
the patients who arrived at the current decision step. Moreover, it uses the
estimate of the newly arrived patients’ LOS. The second model builds on the
previous model by also considering all registered patients at each decision step,
therefore anticipating future occupancy and room demand.

Both models are implemented as ILP-models. They are described in Sec-
tions 3.1 and 3.2. To simplify the description, the following notation will be
used:

– Pt′ =
⋃t′

i=1 Pi, the set of all registered patients up till t′,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 197

– At′ =
⋃t′

i=1Ai, the set of all patients who arrived up till t′,
– PM , PF ⊆ P , restricts a set of patients to either males or females respec-

tively,
– elos(p) = max (ed(p)− a(p), t′ − a(p)), the expected length of stay of pa-

tient p as it is known at the decision time t′. If the patient’s stay has
exceeded his or her expected departure date ed(p), he or she is expected
to stay at least one day longer.

– APtt′ = {p ∈ At′ : a(p) ≤ t < a(p) + elos(p)}, the set of arrived patients
that are expected to be present at time t,

– PPtt′ = {p ∈ Pt′ : a(p) ≤ t < a(p)+elos(p)}, the set of registered patients
that are expected to be present at time t.

3.1 Model 1

The decision variables are defined as follows:

xp,r =

{
1 if patient p is assigned to room r,

0 otherwise.
(7)

vr,t = the number of gender conflicts in room r at time t (8)

yr,t =

1 if the number of male patients assigned to room r

at time t is larger than or equal to the number of female patients,

0 otherwise.

(9)

The optimization problem is then modelled as follows:

Min
∑
p∈At′

∑
r∈R

elos(p) · c(p, r) · xp,r +
∑
r∈R

T∑
t=1

wG · vr,t (10)

s.t.∑
r∈R

xp,r = 1 ∀p ∈ At′ (11)∑
p∈APtt′

xp,r ≤ c(r) ∀r ∈ R, t = 1, . . . , T (12)

∑
p∈APM

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (13)

∑
p∈APF

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (14)

∑
p∈APM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ R, t = 1, . . . , T (15)

∑
p∈APF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ R, t = 1, . . . , T (16)

198 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

xp,r = 1 ∀p ∈ At′−1, r = σt′−1(p) (17)

xp,r ∈ {0, 1} ∀p ∈ At′ , r ∈ R
vr,t ≥ 0 ∀r ∈ R, t = 1, . . . , T

yr,t ∈ {0, 1} ∀r ∈ R, t = 1, . . . , T

The model describes an assignment that minimizes the expected cost of the
newly arrived patients (Expression (10)). Constraint (11) specifies that each
arrived patient has to be assigned to a room, while constraint (12) expresses
that room capacity should be respected at all times. Constraints (13), (14),
(15), and (16) relate the variables vr,t and yr,t, forcing vr,t to take on the
expected value of the minimum number of either males or females in room r
at time t. Finally, constraint (17) ensures that the new assignment respects
the assignments of previously arrived patients.

3.2 Model 2

The second model defines the same decision variables as Model 1, however
it differs in the set of patients for which they are defined. Whereas the xp,r
variables are defined for all arrived patients At′ in the first model, in this
model they are defined for all registered patients Pt′ .

Another difference is that patients can be assigned to a dummy room,
denoted as ⊥. Only registered patients who have not arrived are allowed in
this dummy room, to ensure feasibility of the model under an expected, future,
undercapacity. These assignments are attributed a high cost c(p,⊥) in such a
way that the model gives priority to a real assignment for each future arrival.

The model is defined as follows:

Min
∑
p∈Pt′

∑
r∈R∪⊥

elos(p) · c(p, r) · xp,r +
∑
r∈R

T∑
t=1

wG · vr,t (18)

s.t.∑
r∈R

xp,r = 1 ∀p ∈ At′ (19)∑
r∈R∪⊥

xp,r = 1 ∀p ∈ Pt′\At′ (20)∑
p∈PPtt′

xp,r ≤ c(r) ∀r ∈ R, t = 1, . . . , T (21)

∑
p∈PPM

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (22)

∑
p∈PPF

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (23)

∑
p∈PPM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ R, t = 1, . . . , T (24)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 199

instance |P | |R|
∑

r∈R c(r) avg. occupancy (%) planning horizon

1 652 98 286 59.69 14
5 587 102 325 49.32 14
8 895 148 441 43.90 21
10 1575 104 308 47.76 56

Table 1: Problem characteristics of the instances.

∑
p∈PPF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ R, t = 1, . . . , T (25)

xp,r = 1 ∀p ∈ At′−1, r = σt′−1(p) (26)

xp,⊥ = 0 ∀p ∈ At′ (27)

xp,r ∈ {0, 1} ∀p ∈ Pt′ , r ∈ R∪ ⊥
vr,t ≥ 0 ∀r ∈ R, t = 1, . . . , T

yr,t ∈ {0, 1} ∀r ∈ R, t = 1, . . . , T

The objective of the model, expression (18), is again to minimize the total
assignment cost, including minimizing any possible dummy assignments. Con-
straints (19) and (20) specify that each arrived and registered patient should
be assigned to one room, allowing for dummy assignments for future arrivals.
Constraints (21) - (26) are similar to their counterparts in Model 1, this time
also considering future arrivals. Constraint (27) ensures that arrived patients
are not assigned to dummy rooms.

4 Experimental setup

We tested the sensitivity of the two models to the following problem charac-
teristics:

– Occupancy
– Accuracy of the length of stay estimate (see further)
– Emergency versus planned cases

For this purpose, we used a subset2 of the benchmark instances for the static
PA problem available from the patient admission scheduling website (De-
meester 2012). The instances were extended to the dynamic problem by adding
a random registration date rd(p) and an expected departure date ed(p) for each
patient p over the planning horizon. See Table 1 for the characteristics of these
instances. The procedure for enriching the instances is as follows:

– ed(p) is selected uniformly from the interval [dd(p) − acc, dd(p) + acc] for
each patient individually. If ed(p) <= a(p), then it is set to ed(p) = a(p) +
1. We investigate the effect of acc, i.e. the effect of the accuracy of the
expected departure date estimate.

2 The subset consists of instances 1,5, 8 and 10.

200 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

– rd(p) is either selected uniformly from the interval [a(p)− T, a(p)− 1] for
planned patients, or is set to a(p) for emergency patients. We investigate
the effect of the percentage (denoted em) emergency versus planned cases.

To test the effect of increasing occupancy, we randomly remove (uniformly
selected) beds from the instances to increase the projected average occupancy.
This procedure is similar to what Ceschia and Schaerf (2011) did. To maintain
feasibility, we limit this increase such that the peak occupancy is never above3

100%.

A lower bound for each instance was obtained by calculating the linear
relaxation of a straightforward MIP model (not included in this paper) on
the static version of the problem (i.e. where everything is known a priori).
For studying the effect of increasing occupancy, we have calculated the lower
bound for every occupancy setting since it increases as beds are removed from
the instance. In the figures discussed in the following section, this lower bound
is denoted as LB.

The ILP models have been implemented using Gurobi 4.5.2 with a free
academic license and were solved with a time limit of 300 seconds per decision
step. Thus, for example, an instance with a planning horizon of 14 days (14
decision steps) is solved in at most 14× 300 = 4200 seconds.

All experiments were performed on a computer equipped with a 3.0 GHz
Core2Quad processor, and 4 GB of ram memory, running Windows XP Profes-
sional (Service Pack 3). The solver was configured to use only one processing
thread. The supporting code was implemented in Java 1.6.

5 Discussion

5.1 Emergency versus planned cases, and the effect of the LOS estimate

Both models were tested on all combinations of the factors acc (LOS estimate)
and em (percentage emergency cases), with acc ranging from 0 time units (per-
fect estimate) to 5 time units (a poor estimate) and em ∈ {0, 0.25, 0.50, 0.75, 1.0}.
All tests were performed on 10 randomized instances for each specified combi-
nation of the mentioned factors. The subsequent figures and tables report on
the averages over these 10 runs.

Figure 1 shows the effect of an increasing percentage of emergencies, under
a perfect LOS estimate (left column) and a poor LOS estimate (right column),
for instances 1 and 5 (top and bottom row). The results show that Model 2
consistently outperforms Model 1. However, in the limit for increasing percent-
age of emergencies, the result of Model 2 converges to Model 1. Obviously, in
the case for 100% emergency cases, no future arrivals can be planned and the
model is reduced to Model 1.

3 Note however, that hospitals do face a 100% occupancy (and higher, using unlisted beds)
from time to time.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 201

For a perfect LOS estimate, Model 1 is not sensitive to the percentage
of emergency cases, as it only considers arrived patients, whether they are
emergency or planned.

Under a poor LOS estimate, both models show a more erratic behaviour.
This appears unrelated to the percentage of emergencies. The reason for this
change is that a decision (both for Model 1 and Model 2) may turn out good
or bad when patients depart earlier or later than estimated. However, Model
2 still outperforms Model 1 for both good and bad estimates.

0 20 40 60 80 100

65
00

70
00

75
00

80
00

85
00

Testdata 1 (estimate = 0)

Emergencies (%)

R
es

ul
t

●

●

●

●

●

●

Model 1
Model 2
LB

0 20 40 60 80 100

65
00

70
00

75
00

80
00

85
00

Testdata 1 (estimate = 5)

Emergencies (%)

R
es

ul
t

●

●

● ●

●

●

Model 1
Model 2
LB

0 20 40 60 80 100

62
00

63
00

64
00

65
00

66
00

67
00

68
00

Testdata 5 (estimate = 0)

Emergencies (%)

R
es

ul
t

●

●

●

●

●

●

Model 1
Model 2
LB

0 20 40 60 80 100

62
00

64
00

66
00

68
00

Testdata 5 (estimate = 5)

Emergencies (%)

R
es

ul
t

●

●

●

●

●

●

Model 1
Model 2
LB

Fig. 1: Model performance for increasing percentage of emergencies, under a
perfect LOS estimate (left) and a poor LOS estimate (right). Results shown
for instance 1 and 5.

202 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The above conclusions are again confirmed in Figure 2 that shows the
effect of the model performance under an increasingly poorer LOS estimate,
for a low to high percentage of emergencies. From the results, it follows that
the performance of both models deteriorates for an increasingly poorer LOS
estimate, while Model 2 always outperforms Model 1. This result was expected,
as an increasing inaccuracy of the LOS estimate causes an inaccurate weighing
of the patient assignments and thus suboptimal solutions. Furthermore, more
patients will (significantly) go over their planned LOS, requiring future arrivals
to be replanned. Again, in the limit for 100 % emergency cases, Model 2
converges to Model 1. For an overview of the results, please refer to Table 2.

0 1 2 3 4 5

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

52
00

0
54

00
0

Testdata 8 (emergencies = 0 %)

Estimate accuracy (units)

R
es

ul
t

●

●

●

●

●

●

●

Model 1
Model 2
LB

0 1 2 3 4 5

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

52
00

0
54

00
0

Testdata 8 (emergencies = 50 %)

Estimate accuracy (units)

R
es

ul
t

●

●

●

●

●

●

●

Model 1
Model 2
LB

0 1 2 3 4 5

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

52
00

0

Testdata 8 (emergencies = 75 %)

Estimate accuracy (units)

R
es

ul
t

●

●

●

● ●

●

●

Model 1
Model 2
LB

0 1 2 3 4 5

40
00

0
42

00
0

44
00

0
46

00
0

48
00

0
50

00
0

52
00

0
54

00
0

Testdata 8 (emergencies = 100 %)

Estimate accuracy (units)

R
es

ul
t

● ●

● ●

●

●

●

Model 1
Model 2
LB

Fig. 2: Model performance for an increasing error on the LOS estimate, under
a low percentage of emergencies towards a high percentage of emergencies.
Results shown for instance 8.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 203

In
st

a
n

ce
1
,

in
cr

ea
si

n
g
a
cc

In
st

a
n

ce
5
,

in
cr

ea
si

n
g
a
cc

em
(%

)
M

o
d

el
0

1
2

3
4

5
0

1
2

3
4

5

0
1

8
5
3
.2

8
1
5
.6

8
1
1
.1

8
1
8
.3

8
5
1
.0

8
6
3
.3

6
8
1
.6

6
7
3
.9

6
7
6
.9

6
7
8
.9

6
8
5
.6

6
8
6
.8

2
6
6
4
.3

7
0
5
.9

7
1
4
.2

7
3
5
.7

7
6
0
.1

8
0
5
.4

6
2
9
.4

6
4
9
.8

6
6
0
.4

6
6
3
.9

6
6
9
.2

6
7
5
.8

2
5

1
8
5
3
.2

8
1
4
.2

8
0
2
.6

8
1
6
.5

8
3
8
.4

8
3
8
.8

6
8
1
.6

6
7
6
.2

6
7
3
.5

6
8
5
.8

6
8
5
.5

6
9
5
.6

2
6
8
6
.8

7
0
8
.3

7
2
1
.4

7
2
9
.6

7
5
5
.6

7
8
8
.6

6
4
0
.1

6
5
9
.8

6
6
2
.6

6
6
8
.3

6
7
6
.2

6
7
2
.0

5
0

1
8
5
3
.2

8
2
2
.4

8
2
0
.0

8
2
1
.4

8
4
0
.9

8
6
3
.1

6
8
1
.6

6
7
7
.0

6
7
6
.1

6
7
6
.4

6
8
4
.1

6
8
2
.2

2
7
2
1
.5

7
4
0
.3

7
4
4
.8

7
5
8
.9

7
7
7
.5

8
0
7
.6

6
4
9
.1

6
5
7
.4

6
6
7
.5

6
6
4
.5

6
8
1
.0

6
7
5
.8

7
5

1
8
5
3
.2

8
1
7
.7

8
2
8
.8

8
3
1
.7

8
4
7
.8

8
4
7
.5

6
8
1
.6

6
7
9
.8

6
7
7
.6

6
8
1
.8

6
9
0
.2

6
8
3
.9

2
7
6
3
.8

7
6
6
.8

8
1
0
.0

7
9
9
.1

8
2
1
.7

8
0
8
.5

6
6
0
.4

6
6
6
.0

6
7
7
.0

6
7
6
.8

6
7
7
.4

6
8
4
.4

1
0
0

1
8
5
3
.2

8
2
1
.0

8
1
8
.1

8
1
0
.0

8
4
5
.9

8
6
0
.2

6
8
1
.6

6
7
5
.6

6
7
5
.9

6
7
7
.2

6
9
4
.2

6
7
8
.6

2
8
5
3
.2

8
2
1
.0

8
1
8
.1

8
1
0
.0

8
4
5
.9

8
6
0
.2

6
8
1
.6

6
7
5
.6

6
7
5
.9

6
7
7
.2

6
9
4
.2

6
7
8
.6

In
st

a
n

ce
8
,

in
cr

ea
si

n
g
a
cc

In
st

a
n

ce
1
0
,

in
cr

ea
si

n
g
a
cc

em
(%

)
M

o
d

el
0

1
2

3
4

5
0

1
2

3
4

5

0
1

5
1
1
2
.6

5
1
0
5
.4

5
2
0
7
.1

5
2
4
0
.5

5
2
5
4
.5

5
3
9
0
.5

1
0
3
4
7
.0

1
0
3
2
9
.9

1
0
4
0
8
.1

1
0
5
0
8
.8

1
0
6
8
8
.5

1
0
7
8
6
.4

2
4
1
5
1
.5

4
4
0
7
.0

4
5
3
3
.3

4
6
3
4
.9

4
7
1
9
.1

4
7
9
5
.5

8
1
3
5
.1

8
7
0
5
.6

9
0
4
7
.1

9
4
0
3
.4

9
6
8
8
.7

9
8
0
5
.4

2
5

1
5
1
1
2
.6

5
0
9
0
.4

5
2
0
7
.3

5
2
0
0
.0

5
2
4
9
.7

5
3
9
0
.7

1
0
3
4
7
.0

1
0
3
3
3
.0

1
0
4
4
3
.7

1
0
5
6
1
.9

1
0
6
8
9
.0

1
0
7
8
2
.9

2
4
3
6
1
.4

4
5
2
6
.9

4
6
1
0
.4

4
7
0
4
.8

4
7
9
0
.6

4
8
9
8
.0

8
5
9
2
.7

8
9
9
9
.7

9
2
9
9
.0

9
4
6
8
.7

9
6
7
4
.5

9
8
9
3
.0

5
0

1
5
1
1
2
.6

5
1
0
8
.5

5
1
4
6
.0

5
2
2
7
.6

5
2
8
1
.2

5
3
5
2
.2

1
0
3
4
7
.0

1
0
3
8
9
.4

1
0
3
8
3
.9

1
0
5
4
8
.5

1
0
6
9
3
.6

1
0
8
5
3
.0

2
4
5
7
1
.0

4
6
8
0
.4

4
7
5
4
.0

4
8
4
6
.5

4
9
4
0
.3

5
0
0
1
.8

9
3
8
6
.8

9
5
7
8
.4

9
7
1
7
.7

1
0
0
0
3
.6

1
0
1
2
5
.7

1
0
2
3
5
.2

7
5

1
5
1
1
2
.6

5
1
3
3
.7

5
1
9
5
.1

5
2
6
1
.0

5
2
7
0
.0

5
3
4
3
.9

1
0
3
4
7
.0

1
0
3
4
7
.7

1
0
4
4
8
.4

1
0
5
5
2
.5

1
0
6
2
6
.8

1
0
8
0
6
.0

2
4
8
8
6
.9

4
9
2
7
.6

4
9
8
3
.8

5
0
8
6
.2

5
0
9
7
.9

5
1
8
8
.0

9
9
5
9
.4

1
0
0
9
3
.1

1
0
1
9
9
.9

1
0
2
9
5
.8

1
0
4
4
2
.9

1
0
6
0
4
.2

1
0
0

1
5
1
1
2
.6

5
0
9
8
.7

5
2
0
2
.2

5
2
0
6
.1

5
2
5
5
.6

5
3
8
1
.5

1
0
3
4
7
.0

1
0
3
4
5
.0

1
0
4
2
7
.4

1
0
5
2
5
.3

1
0
6
4
4
.7

1
0
7
4
3
.7

2
5
1
1
2
.6

5
0
9
8
.7

5
2
0
2
.2

5
2
0
6
.1

5
2
5
5
.6

5
3
8
1
.5

1
0
3
4
7
.0

1
0
3
4
5
.0

1
0
4
2
7
.4

1
0
5
2
5
.3

1
0
6
4
4
.7

1
0
7
4
3
.7

T
ab

le
2:

P
er

fo
rm

an
ce

co
m

p
ar

is
on

of
M

o
d
el

1
an

d
M

o
d

el
2

u
n

d
er

d
iff

er
en

t
p

er
ce

n
ta

ge
s

of
em

er
ge

n
ci

es
an

d
a

w
or

se
n
in

g
L

O
S

es
ti

m
at

e.
R

es
u

lt
s

sh
ow

n
fo

r
in

st
an

ce
s

1,
5,

8
an

d
10

.

204 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5.2 Effect of increasing occupancy

The effect of an increasing occupancy was tested by artificially forcing a higher,
average, occupancy in instances 1 and 5, ranging from 59% to 77% for instance
1 and from 49% to 67% for instance 5. Both instances reach a peak occupancy
of 100%. Again, all combinations of factors were tested 10 times to reduce
random effects. The following results report on the averages of those 10 runs.

Figure 3 shows the effect of an increasing occupancy on the performance of
both models, under an increasing percentage of emergencies (from left-to-right,
top-to-bottom) for instance 1. It is clear that both models perform worse under
an increasing occupancy. However, the lower bounds of the instances also in-
crease as beds are removed from the instances. Thus, the relative performance
of the models compared to the lower bound does not change, indicating that
occupancy does not have an effect on what the models can achieve. Figure 4
shows the same effect for instance 5.

6 Conclusion

In the present contribution, a dynamic version of the patient assignment prob-
lem that models a day- to- day planning process at hospital admission offices
was proposed. The problem definition extended the previous, static, definition
to account for the dynamics of online patient arrivals, including emergency
patients, and explicitly models the LOS of patient as an estimate.

Two ILP models were developed: one that is modelled after current prac-
tice, namely assigning patients to rooms as they arrive, and one that also ac-
counts for future planned arrivals. The first model improves on current practice
by also considering the expected LOS of patients, therefore enabling a proper
weighing of patient assignments. The second model also accounts for future,
planned, arrivals in order to weigh patient assignments even better.

Experimental results showed that the second model can still be solved effi-
ciently using a commercial MIP solver (under 5 minutes per scheduling step),
outperforming the first model as it considers more available information on fu-
ture arrivals. Furthermore, experimentation with the percentage of emergency
patients, poorer LOS estimates and an increasing hospital occupancy indicate
that this behaviour does not change under these conditions, advocating the
use of model two over model one.

Acknowledgements Research funded by a Ph.D. grant of the Agency for Innovation by
Science and Technology (IWT).

References

Beliën J, Demeulemeester E (2007) Building cyclic master surgery schedules with leveled
resulting bed occupancy. European Journal of Operational Research 176(2):1185–1204,
DOI 10.1016/j.ejor.2005.06.063

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 205

Bilgin B, Demeester P, Misir M, Vancroonenburg W, Vanden Berghe G (2012) One hyper-
heuristic approach to two timetabling problems in health care. Journal of Heuristics pp
1–34, DOI 10.1007/s10732-011-9192-0

Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004) The state
of the art of nurse rostering. Journal of Scheduling 7:441–499, DOI 10.1023/B:JOSH.
0000046076.75950.0b

Cardoen B, Demeulemeester E, Beliën J (2010) Operating room planning and scheduling:
A literature review. European Journal of Operational Research 201(3):921–932, DOI
10.1016/j.ejor.2009.04.011

Ceschia S, Schaerf A (2011) Local search and lower bounds for the patient admis-
sion scheduling problem. Computers & Operations Research 38(10):1452–1463, DOI
10.1016/j.cor.2011.01.007

Demeester P (2012) Patient admission scheduling problem website. Online, URL http:

//allserv.kahosl.be/~peter/pas/

Demeester P, Souffriau W, De Causmaecker P, Vanden Berghe G (2010) A hybrid tabu
search algorithm for automatically assigning patients to beds. Artificial Intelligence in
Medicine 48(1):61–70, DOI 10.1016/j.artmed.2009.09.001

Kolen AWJ, Lenstra JK, Papadimitriou CH, Spieksma FCR (2007) Interval scheduling: A
survey. Naval Research Logistics (NRL) 54(5):530–543, DOI 10.1002/nav.20231

Ouelhadj D, Petrovic S (2009) A survey of dynamic scheduling in manufacturing systems.
Journal of Scheduling 12:417–431, DOI 10.1007/s10951-008-0090-8

Rais A, Viana A (2011) Operations research in healthcare: a survey. International Transac-
tions in Operational Research 18(1):1–31, DOI 10.1111/j.1475-3995.2010.00767.x

Riise A, Burke EK (2010) Local search for the surgery admission planning problem. Journal
of Heuristics 17(4):389–414, DOI 10.1007/s10732-010-9139-x

Vancroonenburg W, Goossens D, Spieksma FCR (2011) On the complexity of the patient
assignment problem. Tech. rep., KAHO Sint-Lieven, Gebroeders De Smetstraat 1, Gent,
Belgium, URL http://allserv.kahosl.be/~wimvc/pas-complexity-techreport.pdf

206 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

60 65 70 75

80
00

10
00

0
12

00
0

14
00

0

Testdata 1 (emergencies = 0 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

60 65 70 75
80

00
10

00
0

12
00

0
14

00
0

Testdata 1 (emergencies = 50 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

60 65 70 75

80
00

10
00

0
12

00
0

14
00

0

Testdata 1 (emergencies = 75 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●
●

Model 1
Model 2
LB

60 65 70 75

80
00

10
00

0
12

00
0

14
00

0

Testdata 1 (emergencies = 100 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●
●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

Fig. 3: Model performance for an increasingly higher occupancy rate, under
different levels of emergency vs planned patients. Results shown for instance
1 with a perfect estimate.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 207

50 55 60 65

65
00

70
00

75
00

80
00

85
00

90
00

95
00

Testdata 5 (emergencies = 0 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

50 55 60 65
65

00
70

00
75

00
80

00
85

00
90

00
95

00

Testdata 5 (emergencies = 50 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

50 55 60 65

70
00

80
00

90
00

10
00

0

Testdata 5 (emergencies = 75 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●
●

Model 1
Model 2
LB

50 55 60 65

70
00

80
00

90
00

Testdata 5 (emergencies = 100 %, estimate = 0)

Occupancy (%)

R
es

ul
t

●

●

●

●

●

●

●

●

●

●

●

Model 1
Model 2
LB

Fig. 4: Model performance for an increasingly higher occupancy rate, under
different levels of emergency vs planned patients. Results shown for instance
5 with a perfect estimate.

208 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Decomposing the High School Timetable

Problem

Christos Valouxis
1,4

, Christos Gogos
2,4

, Panayiotis Alefragis
3,4

 and Efthymios

Housos
4

1
Secondary Education Office, Patras Branch, Greece

2
Department of Finance and Auditing, Technological Educational Institute of

Epirus, Psathaki, Preveza, Greece

3
Department of Telecommunication Systems and Networks, Technological

Educational Institute of Mesolonghi, Varia, Nafpaktos, Greece

4
Department of Electrical and Computer Engineering, University Of Patras, Rio

Patras, Greece

Abstract: The process of timetable construction is a common and repetitive task for High Schools

worldwide. In this paper a generic approach is presented for Greek High Schools organized around

the idea of solving a significant number of tractable Integer Programming problems. Variables of

the underlying mathematical model correspond to daily teacher schedules while a number of hard

and soft constraints are included so as for the model to handle practical aspects that manifest

themselves in Greek High Schools. By selecting better teacher schedules that exist in sub-

problems the quality of the overall solution gradually improves. The collected results which are

obtained within reasonable time are most promising. The strength of the approach is supported by

the fact that it managed to find the best known results for two public instance problems included in

the Benchmarking Project for High School Timetabling (XHSTT-2012
1
).

Keywords: high school timetabling, integer programming

1. Introduction

Timetabling problems manifest themselves across various domains of practice and research and

can be described as the task of allocating resources to available time slots so as a set of constraints

are satisfied. Additionally, a set of quality features renders alternative timetables superior or

inferior with respect to each other. Timetabling problems in their general form belong to the class

of NP-complete problems giving little hope of finding an algorithm that produces an optimal

solution in polynomial bounded time. Nevertheless, specific timetabling problems with great

practical interest can be solved satisfactorily. Therefore, a wealth of solution approaches has been

studied originating mainly from Mathematical Programming, Computational Intelligence and

Metaheuristics.

1
 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 209

Educational Timetabling problems are a specialization of timetabling problems. They have

been studied in detail and even before the new millennium a plethora of approaches have been

proposed as can be consulted in (Schaerf, 1999). The volume of papers published since then about

the subject has been increased steadily. Educational Timetabling problems can be broadly

classified in three main types:

• High School Timetabling problems: Sets of students forming classes have to be scheduled

in teaching hours involving specific availability and specialization of teachers so as to

generate a feasible and balanced timetable. The underlying model of High School

Timetabling has been formulated as an edge coloring problem on a bipartite graph. Under

this formulation the abstract problem can be polynomially solvable. Nevertheless, the

addition of real life constraints makes it NP-complete. The edge colouring formulation of

the problem can be traced in (Csima, 1971) and (Bondy and Murty, 1976) with the latter

having references to (de Werra, 1970) and (Dempster, 1971).

• University Course Timetabling problems: This problem can be seen as a specialization of

the previous type with the difference of students that can belong to more than one classes.

The main objective is to minimize lecture overlaps involving the same students.

• Examination Timetabling problems: This problem involves exams undertaken by sets of

students and the goal is to reduce instances of students having to take part in more than

one examinations simultaneously and evenly spread the exams over the whole exam

period.

A significant number of papers about the High School problem in general and the Greek

variant of it in particular have been published. Some representative papers are (Valouxis and

Housos, 2003), (Burke et al, 2007), (Beligiannis et al, 2008), (Birbas et al, 2009) and (Liu et al,

2009). In this contribution we address the Greek High School Problem through a two phase

process that incrementally solves parts of the problem. A feasible solution is progressively formed

using solutions obtained through mathematical programming. Then, better solutions are located by

keeping parts of the schedule fixed and changing the remaining schedule. The process gradually

converges to better schedules. A similar methodology has been applied by our team for the nurse

rostering problem with exceptionally good results. The interested reader is forwarded to the related

paper (Valouxis et al, 2012).

The paper is structured as follows. Section 2 presents the problem as it occurs in Greek High

schools. Constraints are categorized in hard and soft ones and a case study of a specific High

school is documented. Section 3 gives the details of our approach by presenting the mathematical

model used in the two phases. Then both phases are analyzed. Section 4 discusses implementation

issues of our approach. Section 5 analyzes the experimental results obtained. Finally, section 6

provides conclusions drawn from our approach.

210 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

2. Problem Description

In Greek High schools, students have to attend a three year curriculum and in each year students

are grouped in class sections alphabetically. Lectures are given from Monday to Friday and the

teaching daily hours must be six or seven without idle hours in between for all students. The

lectures that must be given to every class are predefined and common across Greece. Most of the

lectures are given to students belonging to the original class sections by a single teacher for each

subject. However, class sections can be split so as each group to attend a different course or to be

merged with groups from other class sections in order to form temporary class sections attending

certain courses. This usually occurs in courses like foreign languages where class sections are

partitioned subject to the knowledge level of the students or subject to each student preference

amongst the foreign language options provided by their school (usually English and French but

also other languages in some schools). Class splitting also occurs for lessons that have to be

attended in rooms with smaller capacity than that of the full number of a class section. Such

courses are chemistry, technology and informatics which take place in laboratories. In order to

have a full day schedule for all students of a class section that is split in two groups for a lesson

like chemistry the first group might attend chemistry while the second group might attend different

lesson like gymnastics or career guidance. Then at another time slot courses taught to each group

appear to be swapped. Every teacher is qualified to teach a subset of the courses while the teaching

load is different across teachers depending on seniority, motherhood and other conditions. It is

possible for a teacher not to teach exclusively in a specific school and to have to complement his

weekly work duty by teaching to more than one school. If that is the case then he is available for

teaching to each school for certain days only.

In the model of the problem examined every class has its own predefined room but certain

rooms or other resources like video projectors might be shared by more than one classes. Teachers

are assigned for certain hours to each class section before the creation of the timetable. As, usually

is the case in combinatorial optimization problems two categories of constraints can be identified:

hard constraints and soft constraints. Hard constraints must hold for a solution to be considered

valid while soft constraints violations degrade the quality of the proposed solution. Hard

constraints of the problem are the following:

• HC1: Each teacher should teach a specified number of hours to each class.

• HC2: Each teacher should teach only at days that he is present at school.

• HC3: Each teacher should teach only to one class per time period.

• HC4: Each teacher should teach at least one hour for the days that he is present at school.

• HC5: Each class should have no more than one lesson per time period.

• HC6: Lectures of the same lessons should not be positioned in the same day.

• HC7: Empty time periods for each class section should only be positioned at the last

period of each day.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 211

• HC8: A resource should not be consumed more times than its availability in each time

period.

On the other hand soft constraints are:

• SC1: Each teacher should have the smallest possible number of idle periods in his

schedule. An idle period for a teacher is defined as a not busy period with a busy period

earlier in the day and another busy period later in the day.

• SC2: Each teacher should have a balanced daily work schedule.

• SC3: Teacher preferences for teaching in early or in late hours should be respected to the

highest possible degree. This constraint can also serve as an indirect way of giving

preference to certain courses to be positioned in early or late time periods (e.g.

Mathematics in the early hours).

Throughout the paper a specific problem instance depicted in Tables 1 and 2 will be presented

and analyzed so as to better grasp the underlying concepts of the problem. This problem comes

from the “3nd Gymnasium” High School in the city of Patras, Greece for the period from

September 2010 to June 2011. It is about a medium size by Greek standards school with 9 classes,

29 teachers giving 340 lessons either to entire classes or to classes formed from student groups

coming from different classes. Each class has to attend 7 teaching hours per day. For those

teachers that have preferences for teaching early or late hours in some days this is marked in Table

1 with the letter E or L respectively. The letter X implies that the teacher is not available in this

day. When a teacher prefers early teaching in a day this means that the solution will be penalized if

he has to teach in hours 5 to 7 of this day. Likewise when a preference is late teaching assignments

in hours 1 to 3 gets penalized. Furthermore, each teacher should have a balanced scheduled across

the days that he is present at school. So lower and upper bounds, shown under column “Low” and

column “High” in Table 1, are imposed. Columns A1A2, A3A4, B1B2, C1C2 and C2C3 denote

class formations generated by joining groups of students between classes. For example, teachers

T15 and T16 teach to mutually exclusive groups of students from classes A1 and A2 subject

“English Language” for 3 hours each week.

 Week Hours per day Classes

Teacher M T W T F Low High A1 A2 A3 A4 A1A2 A3A4 B1 B2 B1B2 C1 C2 C3 C1C2 C2C3 Total

T0 E E X E 1 1 2 2 4

T1 L L L E 1 2 2 2 2 6

T2 E L E E X 2 4 2 2 2 2 2 2 12

T3 L E L E 2 4 3 10 2 15

T4 E L L L 2 4 3 12 15

T5 E E E L 2 4 2 5 9 16

T6 L L L E 2 4 2 4 9 15

T7 E L 2 4 5 3 9 17

T8 E E E E 2 4 8 5 3 16

T9 X L 1 1 4 4

T10 L L L L 2 4 4 4 4 4 16

T11 L L L L 2 4 4 4 4 4 16

T12 E L L E 2 4 2 2 3 3 1 1 1 13

T13 E E E L 1 3 2 2 2 2 2 10

T14 L E X L 3 5 2 2 2 2 2 2 2 14

212 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

T15 L L L E 1 3 3 3 2 2 2 12

T16 E E L E 2 4 3 3 2 2 2 2 2 16

T17 E E E 2 4 4 4 2 2 2 2 16

T18 E L X E 1 3 2 2 2 2 8

T19 L L E E 1 2 2 2 2 6

T20 X X L X L 1 3 2 2 4

T21 X X E 2 4 1 1 1 1 1 1 1 1 1 9

T22 L X L L 3 5 1 1 1 1 2 2 2 2 2 14

T23 L L E L 3 5 3 3 3 3 3 2 2 19

T24 E E E L 1 1 3 2 5

T25 E L E 1 3 1 1 1 1 1 1 1 1 1 9

T26 L E E L 2 4 2 2 2 2 2 2 1 1 1 15

T27 L L E L 1 3 2 2 2 2 1 1 1 11

T28 E E E E 1 2 2 2 1 1 1 7

Table 1. Teacher availabilities, preferences and teaching hours per class

Table 2 presents a compact form of all “lessons” that have to be taught to all classes or

combinations of classes. Based on the observation that a timetable consists of meetings between

teachers and classes for specific durations each table value represents a number of such meetings.

For example, value “T2;TH;2” in the second row under column A1 means that the entire class A1

will have 2 lessons of 1 hour duration with teacher T2 teaching subject TH and these meetings

should not be scheduled in the same day.

A different situation occurs in column A1 and row 15 having value “T26,T27;TE,PL;1”. This

means that class A1 will be split into two groups and teacher T26 will teach subject TE to one

group while teacher T27 will simultaneously teach possibly a different subject (in this case subject

PL) to the other group. This will happen 2 times: one corresponding to row 15 and a second one

corresponding to row 16. These lessons can coexist in the same day but certainly in different

hours. Note that if those two cells were replaced by a single one with “T26,T27;TE,PE;2” this

would have implied that the lesson taught by T26 and the lesson taught by T27 could not have

coexisted in the same day. This is the case with row 17, column A2 having value

“T20,T17;GL,FL;2”. So, teacher T26 teaches “Technology” while teacher T27 teaches

“Informatics” in subclasses formed from class A1. On the other hand teacher T20 teaches

“German Language” and teacher T17 teaches “French Language” to subclasses originated from

class A2. The conclusion is that while “Informatics” and “Technology” lessons can be positioned

in the same day for the same group of students, this could not happen for lessons “Germany

Language” and “French Language” of class A2. This occurs because in the first case all students

will be taught “Informatics” and “Technology” while in the latter case students will be taught

either “Germany language” or the “French Language” based on their preference.

Another situation manifests itself with value “T15,T16;AG,AG;3” of merged columns A1 and

A2 in row 17. This value means that class A1 and class A2 are joined and then split into 2 groups

of students. Teacher T15 takes over one group while teacher T16 takes over the other group.

During the week the 3 lessons of teacher T15 should be scheduled to different days and start at the

same time with the corresponding lessons of teacher T16.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 213

 A1 A2 A3 A4 B1 B2 C1 C2 C3

1 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T1;TH;2 T1;TH;2 T1;TH;2

2 T5;NE;2 T6;NE;2 T3;NE;2 T8;NE;2 T7;NE;2 T6;NE;2 T5;NE;2 T4;NE;2 T6;NE;2

3 T8;AM;2 T7;AM;2 T3;AM;2 T3;AM;2 T7;AM;2 T5;AM;2 T5;AM;2 T4;AM;2 T6;AM;2

4 T8;AR;3 T7;AR;3 T3;AR;3 T7;AR;3 T7;AR;3 T5;AR;3 T5;AR;3 T4;AR;3 T6;AR;3

5 T8;GD;3 T3;GD;3 T3;GD;3 T8;GD;3 T7;GD;2 T6;GD;2 T5;GD;2 T4;GD;2 T6;GD;2

6 T11;MA;4 T11;MA;4 T11;MA;4 T11;MA;4 T10;MA;4 T9;MA;4 T10;MA;4 T10;MA;4 T10;MA;4

7 T12;GE;2 T0;GE;2 T12;GE;2 T0;GE;2 T12;GE;2 T12;GE;2 T26;SE;1 T26;SE;1 T26;SE;1

8 T14;BI;2 T14;BI;2 T14;BI;2 T14;BI;2 T12;XH;1 T12;XH;1 T12;XH;1 T12;XH;1 T12;XH;1

9 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1

10 T22;OO;1 T22;OO;1 T22;OO;1 T22;OO;1 T22;OO;2 T22;OO;2 T22;OO;2 T22;OO;2 T22;OO;2

11 T23;GY;3 T23;GY;3 T23;GY;3 T23;GY;3 T23;GY;3 T24;GY;3 T23;GY;2 T23;GY;2 T24;GY;2

12 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1

13 T17;IS;2 T17;IS;2 T17;IS;2 T17;IS;2 T16;IS;2 T16;IS;2 T4;IS;3 T4;IS;3 T8;IS;3

14 T17;FL;2 T26,T27;TE,PL;1 T19;2 T26,T27;TE,PL;1 T13;PH;2 T13;PH;2 T13;PH;2 T13;PH;2 T13;PH;2

15 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T17;FL;2 T26,T28;TE,PL;1 T14;BI;2 T14;BI;2 T14;BI;2

16 T26,T27;TE,PL;1 T20,T17;GL,FL;2 T26,T27;TE,PL;1 T18,T19;HI,IL;2 T26,T28;TE,PL;1 T26,T28; TE,PL;1 T28,T27;TE,PL;1 T28,T27;TE,PL;1 T15,T16;AG,AG;2

17 T15,T16;AG,AG;3 T15,T16;AG,AG;3 T26,T28;TE,PL;1 T18,T19;HI,IL;2 T20,T18;GL,HI;2 T27,T28;TE,PL;1

18 T15,T16;AG,AG;2 T15,T16;AG,AG;2

19 T17;T18;FL,GL;2

 Total 35 35 35 35 35 35 35 35 35

Table 2. Lessons that have to be taught. Value between semicolons refers to the subject been

taught

3. The Algorithm

The algorithm can be considered as a two phase approach. During the first phase IP problems are

iteratively solved in order to create a schedule for one day at a time. The first phase ends when all

days are solved and after a number of improvements considering each day in isolation have been

tried. The second phase systematically selects pairs of days and attempts to move teaching events

between days. Again a series of IP problems are generated and gradually better solutions are

reached. Firstly, a formal description of the mathematical model employed in solving each

problem is presented and subsequently the two phases are analyzed. The second phase can be seen

as a very large-scale neighbourhood (VLSN) search. More techniques about VLSN in timetabling

problems can be consulted in (Meyers and Orlin, 2007).

3.1 The Mathematical Model

The basic sets used in the problem’s model definition are the following:

• T is the set of teachers.

• C is the set of classes.

• D is the set of days in the timetable, usually 5 working days of a single week.

• H is the set of teaching hours in a day.

• E is the set of events.

• R is the set of resources that might be shared by more than one lesson. A resource can be

a room of a certain type, a room with special equipment, a video projector etc.

From those sets the following subsets are derived:

• Dt is the set of days that teacher t is available.

• Et is the set of events that involve teacher t.

• Wt is the set of legal daily schedules for teacher t for all days that he or she is available for

work at the school.

214 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Each legal daily schedule of a teacher is a combination of events and idle hours having length

|H|. The set of legal daily schedules for a teacher is formed by creating all the combinations of

events selected from set Et and idle hours. Events that should not be scheduled in the same day

(e.g. events of the same course) cannot exist in the same combination. The selected daily schedules

for all teachers should cover the teaching workload of all days so the problem can be categorized

as a Set Covering Problem.

Let xtdw be a binary variable that assumes value 1 if teacher t at day d is assigned the daily

schedule w and 0 otherwise. Let ctdw be the cost of the daily schedule w for teacher t at day d. This

cost comprises from:

• Penalty for idle hours between work in teacher schedules.

• Penalty for deviation from the lower or upper limit of the desired total teaching hours per

day.

• Penalty for teaching in an hour that is not in the preferences of the teacher.

The mathematical model of the problem is presented below:

∑∑∑
= = =

||

1

||

1

||

1

T

t

D

d

Wt

w

tdwtdwxcMinimize [1]

Subject to:

t

T

t

D

d

tdw WwDdTtx ∈∈∈=∑∑
= =

,,1
||

1

||

1

 [2]

Eexa
T

t

D

d

Wt

w

tdwtdwe ∈=∑∑∑
= = =

1
||

1

||

1

||

1

 [3]

CcHhDdxa
T

t

Wt

w

tdwtdwhc ∈∈∈=∑∑
= =

,,1
||

1

||

1

 [4]

1,,
||

1

||

1

>∈∈∈=∑∑
= =

EwithTeHhDdykxa e

T

t

Wt

w

tdwtdwhe
[5]

RrHhDdMaxQxa r

T

t

Wt

w

tdwtdwhr ∈∈∈=∑∑
= =

,,
||

1

||

1

 [6]

Eq. 1 is the objective function and represents the total cost of a solution that should be

minimized. It is the sum of the cost over all selected daily schedules for all teachers and for all

days of the teaching week.

Constraint shown in Eq. 2 states that one daily schedule should be selected for each teacher.

Eq. 3 states that all events must be assigned meaning that each event must exist at exactly one

selected daily schedule of a teacher. In this equation parameter atdwe assumes value 1 if daily

schedule w of teacher t in day d includes event e or 0 otherwise.

Eq. 4 guarantees that the schedule of each class will have no idle times. So, for each day and

hour 1 event must exist that involves each class. It should be noted that atdwhc is a parameter that

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 215

assumes value 1 if the daily schedule w of teacher t in day d and hour h includes an event that

involves class c and 0 otherwise.

Eq. 5 handles events with more than 1 teacher and instructs them to be included in the same

day and hour in the daily schedules of the affected teachers. Binary variable y assumes value 1

when ke teachers should teach concurrently and value 0 when no concurrent teaching occurs.

Parameter atdwhe assumes value 1 if the daily schedule of teacher t in day d and hour h includes

event e and 0 otherwise.

Eq. 6 appears in case room or other potentially shared resources exist. MaxQr is the available

quantity for resource R while parameter atdwe is the number of the required quantities for resource r

if daily schedule w of teacher t in day d and hour h includes an event that requires resource r and 0

otherwise.

The size of the problem is too big to be solved including all possible legal daily work

schedules for all teachers and all days. So, an approximation method is employed where a

preliminary solution is initially created and subsequently gets improved. Problem sizes in each

step of the method are relatively small and can be solved in reasonable time.

3.2 First Phase: Solve by Day

An initial solution is generated by solving the mathematical model of the problem considering a

single day at a time. Eq. 3 of the mathematical model is no longer needed because each single day

can have a subset only of the events from E scheduled in it. Each column of the mathematical

model represents a work schedule of a teacher for the day under consideration.

The order of days that will be considered is determined by estimating how difficult each day

timetable construction might be. A day is considered more difficult than another when less

teachers with a lot of teaching hours are available.

After the day is selected a list of yet unscheduled lessons that are legitimate to be taught is

constructed for each teacher. Then, all possible combinations of each list’s lessons that could have

been scheduled in the available hours are generated. So, for each teacher a set of legitimate work

patterns is assembled with the presupposition that the size of the set is manageable. Otherwise,

subsets of combinations unlikely to be included in the final solution are prematurely rejected. For

each teacher’s set of patterns only one will be included in the schedule of the day under question.

In order to solve the first day, daily work schedules of each teacher for this day are generated. For

each teacher t all events Et are considered. After each day gets solved daily schedules for all

teachers are re-computed considering events that still remain unscheduled. In solving each day

every legitimate daily work schedule for a teacher t should contain all events characterized as

mandatory. If not then infeasible problems will result in solving next days.

Nevertheless, for teachers with many events the number of possible daily work schedules

might be overwhelming. So, an artificial upper bound to the number of generated daily work

schedules that contain a specific event at a specific hour is imposed. When this bound is reached,

by counting work patterns, this event is removed from the list of possible events for this hour. So,

gradually the number of combinations diminishes while daily work schedules of each teacher

having each event in every possible hour do exist.

216 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

When the daily work schedules of all teachers are finished generated the linear relaxation of

the mathematical model can be solved. The rather small problem size results in fast solve times for

each relaxed problem. When the solution of the relaxed problem shows that a margin for better

solutions does exist, the integrality constraints are enforced and the problem gets solved again this

time as an IP problem. A time limit of 1 minute is allowed which might be less than the time

needed for solving the problem to optimality. When results are obtained from solving the IP

problem, even if they are suboptimal, they are used to define the daily work schedule for each

teacher.

The process continues by generating a new problem for the same day that is examined to give

better cost values. The solution derived from the relaxed problem of the previous step is exploited

in two ways. Firstly, a column is selected that corresponds to the daily work schedule of a single

teacher with the smallest cost contribution that has also the greatest value in the solution of the

relaxed LP. The set of events that are included in the selected daily schedule are decided to

“freeze” meaning that these events should be scheduled thereafter in the day and hour dictated by

the relaxed LP. Such decisions ease subsequent daily work schedule generations by lowering the

total number of combinations that have to be considered. Secondly, dual values derived from

solving the LP problem are exploited in calculating the reduced cost value of each column if

included in the solution. Reduced cost of a variable is the amount by which its coefficient in the

objective function has to be decreased so as to be included in the solution.

Legitimate teacher day schedules that have negative reduced cost are stored so as to be

included in the next problem that will be solved. This result in gradual decrease of the cost value

found by the LP solver or in the worst case achieving the same cost value as before. By selecting

columns from the LP problem that lowers the value of its objective function we hope to discover

better values for the IP problem too. This process repeatedly occurs during our approach. A

column, that represents a teacher day schedule, is stored if its cost is better than the cost of the best

solution found so far for this day. Naturally, a column with cost equal or greater cannot be

included in a solution better than the solution that we already have.

The cost of the best LP solution found so far is inserted as upper bound for the objective

function in the IP problem. The new problem contains columns forming the basis of the LP model,

columns of the best integer solution and the new columns that have been generated. The procedure

repeats until no more columns can be found that can be frozen or when no more teacher daily

schedule programs can be generated.

3.3 Second Phase: Solve by day pairs

The previous phase results in an initial solution where all days have complete schedules for all

teachers and classes. The second phase tries to find a better solution by selecting two days and

trying to move teacher events between them. So, for every pair of days under investigation new

daily teacher schedules are examined that improve the cost of the two day solution and therefore

the cost of the full planning period solution. Teacher schedules in the days not belonging to the

selected pair remain unaffected.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 217

The same mathematical model described previously is used but in this case it includes two

instead of one day. The set of events Et that involve teacher t is formed from the original set Et by

removing events that are scheduled in the unaffected days of the planning period. The solution

procedure is the same as that of the previous phase and it continues until no improvement can be

found by any two days combination.

4. Implementation

The implementation of our approach was undertaken in Java using the open source mathematical

solver GLPK (http://www.gnu.org/software/glpk/). Three key modules of the software can be

identified that facilitated the process undertaken in the phases described in the previous

paragraphs. These are: CostEvaluator, MandatoryFinder and CombinationsGenerator. A brief

description of each module’s role follows.

CostEvaluator is the component that calculates the cost of each solution which might be

partial or complete. Furthermore, it computes the cost of every teacher daily schedule that is

subsequently used as a coefficient in the mathematical problem.

On the other hand, given a partial solution MandatoryFinder calculates the events that have to

be scheduled in the day under consideration so as to avoid infeasibilities that would occur latter in

case that these events were left to be scheduled later. For example, suppose that a lesson have to be

taught 4 times in a week and after solving the first day all events of this lesson are still

unscheduled. Then, for all subsequent days an event of this lesson has to be taught.

MandatoryFinder also handles more complex situations like when an event involves more than one

teacher.

CombinationsGenerator is a heavily used module that is responsible for computing the

combinations of events that should be scheduled in the hours available in each day. In order to

reduce the number of combinations generated that occurs when the number of possible events of a

teacher is large, heuristics are used so as to select a representative subset of all available

combinations.

5. Experimental Results

The datasets used in our experiments originate from High schools in Greece. We tested our

approach in several problem instances with different characteristics and in all cases a feasible

solution of High quality was able to be achieved. Execution times even for bigger schools (~50

teachers, ~15 classes) were less than 20 minutes in our test computer which was an Intel i3 380M

(2.53GHz) with 3GBytes RAM running Windows 7 64 bit.

Among datasets used two of them, presented in Table 3, belong to the benchmarking project

for High School Timetabling. These datasets alongside with solutions achieved by our and other

approaches are publicly available in (http://www.utwente.nl/ctit/hstt/). The benchmarking project

for High School Timetabling is a joint effort from researchers across several countries so as to

create a common XML standard for exchanging datasets. Description of the XML format can be

consulted in (Post et al, 2012) and (Post et al, 2011). In both datasets our approach found the

218 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

optimal solution in less than 10 minutes. Dataset GreeceThirdHighSchoolPatras2010 and

GreeceThirdHighSchoolPreveza2008 don’t have room constraints. Nevertheless, other custom

datasets including such type of constraints were solved.

Dataset Periods Teachers Classes Events Duration

GreeceThirdHighSchoolPatras2010 35 29 9 178 340

GreeceThirdHighSchoolPreveza2008 35 29 9 164 340

Table 3. Datasets included in the benchmarking project for High School Timetabling

The solution schedule that has been produced and satisfied all constraints for dataset

GreeceThirdHighSchoolPatras2010 is presented in Table 4. Each asterisk represents a scheduled

teaching for the associated teacher and period. It can be easily observed that the generated daily

schedule of each teacher consists of consecutive busy periods.

Table 4. Optimal schedule for GreeceThirdHighSchoolPatras2010

6. Conclusions

Quality schedules for High Schools are vital for the success of the education effort. Obtaining

manually such a schedule is unlikely to occur so computer generated solutions seem to be the only

logical option. Nevertheless, practical issues often prohibit schools of operating based on an

optimal schedule for students and teachers. In this contribution we presented an approach for the

Greek case of the High School problem and we showed its ability to generate very good and in

some cases optimal results. The approach is based on a two phase process that incrementally

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 219

solves parts of the problem, using mathematical programming. Better schedules are unmasked

while portions of the schedule remain fixed. The process gradually converges to better schedules.

We acknowledge the fact that adaptation of new automated timetabling solutions by High

Schools is a target hard to achieve but we believe that the quality of the schedules that we produce

should entice schools in Greece to test the proposed approach. It is in our plans to offer a web

service that schools in Greece will be able to use so as to enter the schedule problem as it occurs in

their specific case and our application will propose a High quality schedule based on this data. We

also plan to offer a re-schedule service that a High School could use so as to make changes

throughout the year to an existing schedule while keeping most of it unchanged.

References

Beligiannis, Grigorios N., Moschopoulos N. Charalampos, Kaperonis P. Georgios, and

Likothanassis D. Spiridon. “Applying Evolutionary Computation to the School Timetabling

Problem: The Greek Case.” Computers & Operations Research 35, no. 4 (2008): 1265–1280.

Birbas, T., S. Daskalaki, and E. Housos. “School Timetabling for Quality Student and Teacher

Schedules.” Journal of Scheduling 12, no. 2 (October 28, 2008): 177–197.

Bondy J.A. and Murty U.S.R., Graph theory with applications, North-Holland (1976).

Burke, Edmund K., Barry McCollum, Amnon Meisels, Sanja Petrovic, and Rong Qu. “A Graph-

based Hyper-heuristic for Educational Timetabling Problems.” European Journal of Operational

Research 176, no. 1 (2007): 177–192.

Csima J. Investigations on a Time-Table Problem, PhD Thesis, Institute of Computer Science,

University of Toronto (1965).

de Werra, D. On some combinatorial problems arising in scheduling. INFOR, 8, 165-175.

Dempster, M. A. H. (1971). Two algorithms for the time-table problem, in Combinatorial

Mathematics and its Applications (ed. D. J. A. Welsh), Academic Press, New York, pp. 63-85.

Liu, Yongkai, Defu Zhang, and Stephen C.H. Leung. “A Simulated Annealing Algorithm with a

New Neighborhood Structure for the Timetabling Problem.” In Proceedings of the First

ACM/SIGEVO Summit on Genetic and Evolutionary Computation, 381–386. GEC ’09. New

York, NY, USA: ACM, 2009. http://doi.acm.org/10.1145/1543834.1543885.

Meyers, Carol, and James Orlin. “Very Large-Scale Neighborhood Search Techniques in

Timetabling Problems.” In Practice and Theory of Automated Timetabling VI, edited by Edmund

Burke and Hana Rudová, 3867:24–39. Lecture Notes in Computer Science. Springer Berlin /

Heidelberg, 2007.

Post, Gerhard, Jeffrey H. Kingston, Samad Ahmadi, Sophia Daskalaki, Christos Gogos, Jari

Kyngas, Cimmo Nurmi, et al. “XHSTT: An XML Archive for High School Timetabling Problems

in Different Countries.” Annals of Operations Research (November 10, 2011).

Post, Gerhard, Samad Ahmadi, Sophia Daskalaki, Jeffrey Kingston, Jari Kyngas, Cimmo Nurmi,

and David Ranson. “An XML Format for Benchmarks in High School Timetabling.” Annals of

Operations Research 194, no. 1 (2012): 385–397.

220 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Schaerf, A. “A Survey of Automated Timetabling.” Artif. Intell. Rev. 13, no. 2 (April 1999): 87–

127.

Valouxis, Christos, and Efthymios Housos. “Constraint Programming Approach for School

Timetabling.” Computers & Operations Research 30, no. 10 (2003): 1555–1572.

Valouxis, Christos, Christos Gogos, George Goulas, Panayiotis Alefragis, and Efthymios Housos.

“A Systematic Two Phase Approach for the Nurse Rostering Problem.” European Journal of

Operational Research 219, no. 2 (2012): 425–433.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 221

Near-Optimal MIP Solutions for Preference Based
Self-Scheduling

Eyjólfur Ingi Ásgeirsson · Guðríður Lilla
Sigurðardóttir

Received: date / Accepted: date

Abstract Making a high quality staff schedule is both difficult and time con-
suming for any company that has employees working on irregular schedules.
We formulate a mixed integer program (MIP) to find a feasible schedule that
satisfies all hard constraints while minimizing the soft constraint violations as
well as satisfying as many of the employees’ requests as possible. We present
the MIP model and show the result from four real world companies and insti-
tutions. We also compare the results with those of a local search based algo-
rithm that is designed to emulate the solution strategies when the schedules
are created manually.

The results show that the using near-optimal solutions from the MIP
model, with a relative MIP gap of around 0.01-0.1 allows us to find very
good solutions in a reasonable amount of time that compare favorably with
both the manual solutions and the solutions found by the local search based
algorithm.

Keywords Staff Scheduling · Rostering · Mixed Integer Programming ·
Local Search

Work done in collaboration with Vaktaskipan ehf.

E. I. Ásgeirsson
Reykjavík University
Tel.: +354-599-6385
Fax: +354-599-6201
E-mail: eyjo@ru.is

G. L. Sigurðardóttir
Reykjavík University

222 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

1 Introduction

Staff scheduling is a problem that is well known to all companies that have
employees working on irregular schedules. Usually, the problem is to determine
which employees should cover which shifts so that the demand for manpower
is met at every time period and without breaking any regulations or con-
tracts. Additionally, the schedule should be good, i.e. it should meet with the
employees’ approval and satisfy as many of their requests as possible.

The nurse rostering problem has been studied by personnel managers, op-
erations researchers and computer scientists for over 50 years. Variations of
the problem are NP-hard [21,10,29,25]. Because the nurse rostering problem
is well known and since it can include many types of constraints and cover
a large set of staff scheduling problems, a large part of the research on staff
scheduling is focused on nurse rostering and the terms nurse rostering and
nurse scheduling have been used over the years to cover several types of per-
sonnel scheduling problems [14].

In nurse rostering there are three key approaches: cyclical scheduling, pref-
erence scheduling and self scheduling [9]. A cyclical scheduling problem is a
scheduling problem in which several sets of schedules are generated that cover
a certain period of time i.e. a month or three months. Then the staff is assigned
to a schedule that best fits their preferences so that all demands for manpower
are met. The schedules are then repeated for each period. Cyclical scheduling
is somewhat inflexible and therefore not able to adjust rapidly to changes in
the environment [27]. The main advantage of the cyclical scheduling is that
the employees know their schedule a long time in advance.

In preference scheduling, the employees list their preferences for the staff
manager who then creates schedules, trying to fulfill as many preferences as
possible but also makes sure that all demands for manpower and all work
restrictions are met. Thus the personnel manager has a great deal of respon-
sibility for the quality of the schedules. The preference scheduling has many
advantages, the major ones being its flexibility and its individual tailoring.
Preferences of the staff have become a vital feature of any successful schedul-
ing system. Kellogg and Walczak [24] state that any academic nurse rostering
model that does not include some opportunity for preference scheduling will
probably not be implemented. The major downside to preference scheduling
is the time it takes for the personnel manager to create a good schedule.

In self scheduling the employees themselves become responsible for creating
the schedule, instead of the staff manager. These schedules are created by
each employee signing up for their preferred shifts knowing the minimum and
maximum number of staff needed for each shift with the requirement that
the resulting schedule must be a feasible one. The biggest advantages of the
self scheduling, beside possible time savings, are the potentially greater staff
satisfaction, more commitment and reduced staff turnover, since the employees
are empowered by making the schedules themselves. However until recently
self scheduling has not been a good approach since it was too difficult to
execute this method fairly [22,8], the order in which the personnel sign up

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 223

did matter, there was a possibility that the system might get manipulated by
some personnel, new employers were unfamiliar with the system and might
therefore be disadvantaged and some employees might not sign up for any
shifts at all. With the advent of the Internet it has become easier to implement
self scheduling fairly, putting self scheduling back on the map as a viable
approach. However, having the employees involved in the decision process will
always bring some risk of game playing, where employees try to manipulate
the system for their own gain [4].

A good way to implement self scheduling is by mixing preference scheduling
and pure self scheduling. Here the staff signs up for shifts, making a draft that
the personnel manager then turns into feasible schedule. The personnel man-
ager makes sure that the demand for manpower is met at every time and that
no work regulations are broken. In this approach the personnel is responsible
for creating a good preliminary schedule but the final responsibility of creating
the schedule lies with the personnel manager, making this approach better and
more fair than either pure preference scheduling or pure self scheduling. This
is the approach used in this paper.

Due to the multiple and often changing objectives and goals of staff schedul-
ing, the research on staff scheduling has included many different methods [19].
Mathematical programming techniques, such as column generation [5,23] and
branch and price methods [30], have shown good results. The research on staff
scheduling has also focused on more flexible metaheuristic approaches such
as genetic algorithms [1,2,18,28] and variable neighborhood search [13], with
Tabu-Search [12,17] and Simulated Annealing [11] being particularly success-
ful [20]. Good overviews of staff scheduling are [3,20,26].

The paper is structured as follows: Section 2 the problem is defined, in
Section 3 the model is introduced while Section 4 contains the result of the
model using real data, as well as a comparison to a local search based heuristic
from [6]. Finally, Section 5 contains conclusions and suggestions for further
work.

2 Problem Definition

Staff scheduling problems have a large number of constraints that need to be
satisfied. Those constraints can be divided into two groups, hard constraints
and soft constraints. Hard constraints must always be satisfied in order to have
a feasible schedule. Hard constraints are often a result of physical resource re-
strictions and legislations. Soft constraints are requirements that are desirable
but not obligatory and therefore allowed to be violated if necessary but it will
result in a penalty in the model. Soft constraints violations are often used to
evaluate the quality of feasible schedules.

224 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

2.1 Hard constraints

The hard constraints are mainly based on contracts with the employees and
union contracts and must therefore be satisfied at all times. Not all the con-
straints are the same for all employees although usually the main constraints
are the same. The constraints that are usually not the same for all employees
are the work limit constraints. The labels in parenthesis after each constraint
in the following lists refer to the classification introduced in [7]. In the model
the following hard constraints are considered:

– Restrictions on working hours and rest periods from union reg-
ulations and employee contracts. The union regulations about rest
periods, maximum lengths of continuous work within a day, maximum
number of continuous days worked, minimum length of continuous rest
between shifts and other limits have to be met. Employee contracts can
include restrictions on when employee can work, for example an employee
that will never work nights or weekends. (R1,R4,R5,R7,R8)

– Vacation request. Vacations are considered to be a hard constraint to
ensure that no employee will be assigned to a shift while on a vacation.
(R2)

– Requests for time off. Each employee has a right to some time off,
how many hours depending on the company and the employee contract. In
our settings this needs to be a hard constraint so these requests won’t be
violated. (R1)

– Working weekends. There can be limits on how many weekends employ-
ees are allowed to work in each scheduling period. Each employee has to
receive at least A out of every B weekends off, where A ≤ B. These are
limits like 2 or 3 weekends off out of every 4 consecutive weekends. (R3)

– Special shifts, training sessions or meetings. Employees often have
work related duties that are not flexible and are often not included in the
number of employees on duty. Since training sessions and meetings are not
flexible these constraints must be satisfied. (R6,O6)

– Other limits on shifts or working hours, for example split shifts.
Split shifts are defined as two separate shifts within the same day, where the
time between the shifts is less than the minimum resting period between
shifts. It can differ between companies whether splits shifts are allowed or
not. Splits shifts are only hard constraints when split shifts are not allowed.
(R9)

Each company is different when it comes to number of employees, contracts,
habits and regulations, therefore the constraints differs from one company to
another. Each company wants to be able to quickly generate a high quality
schedule that satisfies all hard constraints and as many of the soft constraints
as possible.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 225

2.2 Soft constraints

Each time a soft constraint is violated the schedule receives a penalty that
appears in the objective function. How high the total penalty is depends on
which constraints are violated and how often they are violated. The penalties
have different weight factors, depending on how serious a violation of the
relevant constraint would be. In the model the following soft constraints are
considered:

– Minimum and maximum staff level. An estimate of the demand for
manpower at every time slot over the whole period the schedule is supposed
to cover is necessary. This estimate can vary greatly between companies
depending on how good their forecast for the demand of manpower is. Some
companies use minimum and maximum staff level for every time slot while
others give exact number of employees needed for every time slot. We want
the on-duty employees in the schedule to be between the minimum and
maximum staff level or as close as possible to the exact number of required
on-duty employees, otherwise the schedule will be penalized. (C2,C3)

– Minimum and maximum number of on-duty hours for each em-
ployee. In every employee contract a number of required on-duty hours are
given. However since the employees are often working irregular hours, there
must be some flexibility in required on-duty hours for each scheduling pe-
riod. Therefore the required on-duty hours are interpreted as minimum and
maximum number of on-duty hours for each employee. Minimum and max-
imum numbers of on-duty hours for each employee are calculated based on
monthly working hours given in the contracts and accumulated deviations
from the required on-duty hours from the previous period. (R1)

– Employee requests for shifts. The first step in making a schedule is to
make each employee signs up for their preferred shifts knowing the mini-
mum and maximum number of staff needed for each shift. This encourages
employees to create their own work schedule and makes the schedule more
acceptable for the employees. It is therefore important to meet as many
requests as possible. (P3,P4)

– Employees assigned to shifts on weekends before or after their
vacations. If an employee is finishing his vacation on Friday or begin-
ning his vacation on Monday it is unlikely he wants to work the adjacent
weekend. So unless otherwise requested we will try to have the adjacent
weekend free. (E8)

3 The MIP Model

The model contains five sets of binary variables to keep track of the staff
allocation. The binary variable yitk determines if employee i ∈ I is working
in timeslot t ∈ T on day k ∈ K, where I is the set of employees, T is the
set of timeslots within a single day and K is the set of days in the scheduling
period. Each day is partitioned into timeslots, which, in our examples are

226 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

usually 30 minutes, although some companies use 15 minutes or whole hours.
The employees are assigned to shifts, where a shift is subset of the timeslots.
The timeslots within a single shift are usually contiguous, although this is
not necessary. The binary variable xijk determines whether employee i ∈ I is
assigned to shift j ∈ J on day k ∈ K, where J is the set of allowed shifts. A
shift can include timeslots from two consecutive days, so we say that shift j
belongs to day k if the first timeslot in shift j is within day k.

Additionally, we have binary variables dik that determine if employee i ∈ I
is working on day k ∈ K. Since some regulations concern weekends, we use
binary variables ωiw that denote if employee i is working on the w-th weekend,
where 1 ≤ w ≤ |W | andW = [W1,W2, ...] ⊂ (K×K) is the set of all weekends,
i.e. Saturdays and Sundays, inK, andWw is a set containing the corresponding
days for the w-th weekend.

Every employee contract we’ve seen so far contains the requirement that
the employee must have a specific number of contiguous hours of rest in every
24 hour period. We generate so called rest-shifts to ensure that the employees
get their contiguous rest. For each day, we generate all possible rest-shifts
starting within that day of length equal to the required rest. Each employee
is then assigned to one such rest shift every day. The binary variables zilk
determine if employee i ∈ I is assigned to rest-shift l ∈ L on day k ∈ K, where
L is the set of all possible contiguous timeslots of the required length, i.e. the
rest-shifts.

The model also contains a number of variables to determine the soft con-
straint violations. These variables are called pαγ where α corresponds to the
equation number where the penalty applies and γ denotes the indices over
which the penalty variable is defined. The penalties are weighted, the con-
stant cα is the weight of penalty pαγ . One such penalty is a binary variable,
while the other penalties are continuous.

The objective of the mixed integer model is to minimize the total weighted
sum of the penalties that correspond to the soft constraint violations.

min c2 ×
∑
t∈T

∑
k∈K

p2tk + c3 ×
∑
t∈T

∑
k∈K

p3tk + c9 ×
∑
i∈I

p9i

+c10 ×
∑
i∈I

p10i + c11 ×
∑
i∈I

p11i + c12 ×
∑
i∈I

∑
k∈K

p12ik

+c13 ×
∑
i∈I

∑
t∈T

∑
k∈K

p13itk + c14 ×
∑
i∈I

∑
k∈K

p14ik

+c18 ×
∑
i∈I

p18i (1)

s.t.
∑
i∈I

yitk ≥ demandmintk − p2tk ∀t ∈ T, k ∈ K (2)∑
i∈I

yitk ≤ demandmaxtk + p3tk ∀t ∈ T, k ∈ K (3)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 227

yitk =
∑

j∈shifts

xijk ∀i ∈ I, t ∈ T, k ∈ K (4)

yitk ≤ 1− zilk ∀i ∈ I, t ∈ T, l ∈ L, k ∈ K where t ∈ L (5)∑
l∈L

zilk = 1 ∀i ∈ I, k ∈ K (6)

yitk = 0 ∀(i, t, k) ∈ NotAvailable (7)
xijk = 0 ∀(i, j, k) ∈ NotAvailableShift (8)∑
t∈T

∑
k∈K

yitk ≥ timemini − p9i ∀i ∈ I (9)∑
t∈T

∑
k∈K

yitk ≥ timemini ∗ (1− p10i) ∀i ∈ I (10)∑
t∈T

∑
k∈K

yitk ≤ timemaxi + p11i ∀i ∈ I (11)∑
t∈T

yitk ≤ timeperdaymaxik + p12ik ∀i ∈ I, k ∈ K (12)

yitk = 1− p13itk ∀(i, t, k) ∈ Requests (13)∑
j∈J

xijk = dik + p14ik ∀i ∈ I, k ∈ K (14)

xijk ≤ dik ∀i ∈ I, j ∈ J, k ∈ K (15)
dmax∑
δ=0

di(k+δ) ≤ dmax ∀i ∈ I, k ∈ {K : k ≤ |K| − dmax} (16)

dik ≤ ωiw ∀i ∈ I, 1 ≤ w ≤ |W |, k ∈Ww (17)
Wmax∑
δ=0

ωi(w+δ) ≤Wmax + p18i ∀i ∈ I, 1 ≤ w ≤ |W | −Wmax (18)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (19)
yitk ∈ {0, 1} ∀i ∈ I, t ∈ T, k ∈ K (20)
zilk ∈ {0, 1} ∀i ∈ I, l ∈ L, k ∈ K (21)
dik ∈ {0, 1} ∀i ∈ I, k ∈ K (22)
wiω ∈ {0, 1} ∀i ∈ I, ω ∈W (23)
p10i ∈ {0, 1} ∀i ∈ I (24)
p2tk, p

3
tk ≥ 0 ∀t ∈ T, k ∈ K (25)

p9i , p
11
i , p

18
i ≥ 0 ∀i ∈ I (26)

p12ik , p
14
ik ≥ 0 i ∈ I, k ∈ K (27)

p13itk ≥ 0 ∀i ∈ I, t ∈ T, k ∈ K (28)

Constraints 2 and 3 handle the number of on-duty employees at all times,
demandmintk and demandmaxtk denote the minimum and maximum estimated
demand for manpower during timeslot t in day k. The penalty variable p2tk
counts how many employees are needed to achieve the minimum number of

228 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

employees in each timeslot, while p3tk count how many employees are above
the maximum number of required on-duty employees. By summing p2tk over all
t ∈ T and k ∈ K, we get the total number of man-hours that are understaffed,
and similarly for the total number of overstaffed man-hours using p3tk. We
use constraint 4 to connect timeslots to shifts. Constraint 5 ensures that the
employees are not working during their mandatory daily rest while constraint
6 ensures that each employees gets a rest period exactly once every day.

The availability of an employee is determined by various factors, such as
contracts (e.g. no night shifts), vacations or requests for time off. We use
constraints 7 and 8 and the sets NotAvailable and NotAvailableShift to limit
the availability of employees. Constraints 9 and 11 make sure that the total
working hours for each employee is within given limits, while constraint 10 is
used to count how many employees are below the minimum required working
hours over the planning period. Constraint 12 ensures that the number of
working hours within a single day.

Employees sign up for shifts, but we translate those into timeslots, and use
constraint 13 to figure out which requested timeslots are fulfilled. This method
of fulfilling requests is the same as the one used in [6]. Constraints 14 and 15 are
used to determine if an employee is working on a specific day, while the penalty
associated with constraint 14 is used to determine if split shifts are allowed
or not. Most employee contracts state the maximum number of consecutive
days that the employee is allowed to work. Constraint 16 ensures that this is
not violated. The constant dmax is the maximum allowed consecutive working
days. Finally, constraint 17 is used to determine if an employee is working on
a weekend while constraint 18 handles the maximum number of consecutive
working weekends that are allowed, the constantWmax denotes the maximum
number of consecutive working weekends.

Since the scheduling period is not isolated from the day to day running
of the company or institution, we need to be careful with the boundary con-
ditions, e.g. if an employee is working on the last shift before the start of
the scheduling period, we cannot assign him/her to a shift at the start of the
scheduling period. These boundary conditions can be encoded into the sets
that we use to determine availability and preprocessed as a fixed assignment
in the instances where an employee is working on a shift that straddles the
boundary of the scheduling period.

3.1 Model limitations

One of the major limitations of the MIP model is the issue of fairness. The
model does not include any notion of fairness to employees, so we might get
a solution where no requests are granted for one employee while other em-
ployees have all their wishes fulfilled. We could improve the fairness, e.g. by
adding a bound on the fraction of fulfilled requests, but that would also require
additional penalties and weights.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 229

Other limitation is that, if the workforce doesn’t match the requirements
so that the company or institution is forced to have understaffing or over-
staffing, our partners would prefer if this is spread somewhat equally, instead
of having a massive under- or overstaffing on a single shift and no problems at
other times. Our model does not include any mechanism for leveling out any
potential deviations. However, by adjusting the required manpower based on
the workforce, this leveling could be achieved.

For some of the cases that we tried, the running time it took the solver
to find an optimal solution was not within reasonable limits for the optimal
solution. Instead of finding the optimal solution, we settle for a near optimal
solution, i.e. a solution that is provably within some fraction of the optimal
solution. Using our test cases, we found a solution that was within 1% of the
optimal solution in a reasonable timeframe. By increasing the relative MIP gap,
i.e. the difference between our solution and the bound on the optimal solution,
we can speed up the solution time, but at the cost of a higher objective value.
However, since a large part of the input, such as the manpower estimates, is
often only based on a best guess it is debatable whether finding the optimal
solution is actually worthwhile, especially if the time required is orders of
magnitude larger than the time it takes to find a solution within 1%-5% of the
optimum.

4 Experimental Results

To evaluate the performance of our algorithm, we use actual data from four
companies and institutions. These companies and institutions include a nursing
home, call centers and an airport service company. We will present the details
of each problem instance and show examples of the preliminary schedule and
the near-optimal solution. To get a better feeling for the complexity of the
problem and the quality of the solutions, we also compare the near-optimal
MIP solution to the solution of the local search algorithm introduced in [6].
The local search algorithm is designed to emulate the behavior of a typical
staff manager. The local search algorithm iterates through multiple stages,
with different objectives and different neighborhoods for all the stages, each of
which is designed to emulate a specific action taken by the staff manager. For
our examples, the scheduling period is usually 6 weeks, but we will plot the
preliminary schedule and the improved schedule for only a single week for each
problem instance. We tried to select a typical week for each instance. The data
for the problem instances is available online [31]. Most of the instances include
employees that have predefined or fixed schedules. For the purpose of the the
MIP problem, we preprocess these employees, so they are not included in the
MIP problem, and adjust all parameters such as staffing levels accordingly.

Figure 1 shows a log-scale of the relative MIP gap as a function of running
time for two of the examples that we have. The problems were all solved using
Gurobi 4.6.1 on a laptop with a 2.5 GHz Intel Core 2 Duo processor and 4
GB of memory, running Mac OS X 10.6. As can be seen from Figure 1, the

230 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1 Default penalty weights for soft constraint violations.

c2 c3 c9 c10 c11 c12 c13 c14 c18

15 2 10 100 10 10000 1 10000 10000

Fig. 1 The logarithm of the relative MIP gap for two instances as a function of the running
time. These instances are of the two call centers from our datasets.

solver manages to find a solution within 1% of optimum after 21 minutes in the
first instance. After running the solver for over 8.5 hours for the first instance,
the solver still had not found an optimal solution. The second instance is
significantly harder, there we were only below 10% after around 3 hours and
around 3% after more than 4.5 hours. The easiest problem in our problem
sets was however solved to optimality within 2 minutes. Since these schedules
are usually created for periods of 4-6 weeks, a few hours of computation are
usually acceptable. However, the difference between the two graphs in Figure 1
emphasizes the unreliability of the MIP approach with regards to the running
time. When presented with a new instance, it can be difficult to guess if the
solution will be ready in minutes or if we will have to wait a few hours until
we have a good solution.

The default penalty weights that we used are shown in Table 1. The weights
for maximum hours per day for an employee, more than one shift per day
and consecutive working weekends is set very high, so these constraints are
effectively hard constraints. Our partners prefer overstaffing to understaffing,
so overstaffing has a penalty of 2 while understaffing carries a penalty of 15 for
each timeslot. To minimize the number of people below their minimum duty
hours, the corresponding penalty weight of 100 is relatively high, while the
penalty for each timeslot over or under the duty hour limits carries a penalty
of 10. Finally, the penalty for each unfulfilled requested timeslot carries a
penalty of 1. By adjusting these penalties, we can tailor our model to different
company cultures, e.g. put more emphasis on satisfying employee requests by
increasing the corresponding penalty.

Using the notation introduced by De Causmaecker [15,16], we can describe
the following problem instances as (AS|TVNO|PLGO).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 231

Table 2 Results for the nursing home instance.

Preliminary Local Search MIP

Scheduled hours 4669 5198 4774
Man-hours overstaffed 478 220 0
Man-hours understaffed 777 21 109
Employees below minimum duty hours 3 0 0

Requested hours granted 0.97 0.98

4.1 Problem instance: Nursing home

The first problem instance comes from a nursing home with 55 employees. The
scheduling period is 6 weeks with 30 minute intervals. Each day contains of
18 shifts. The length of each shift ranges from 4 hours up to 12 hours. After
preprocessing 5 employees with fixed schedules, we’re left with 50 employees.
If we sum up the total maximum working hours over the scheduling period,
we get that the maximum number of hours that we can assign, without any
overstaffing, is 5217 hours. However, the total duty hours of the employees
is 5333 hours, so unless we violate the overstaffing constraint, we can never
satisfy all duty hour requirements for the employees. Table 2 shows the soft
constraint violations for the preliminary schedule, the local search algorithm
from [6] and the near-optimal MIP solution.

The nursing home has the following hard constraints. An employee cannot
work on more than 6 consecutive days, the maximum length of a shift is 9 hours
while the minimum length of a shift is 4 hours. In any 24 hour period, each
employee must get at least 8 consecutive hours of rest, while the maximum
number of working hours in any 24 hour period is 9 hours. Initially, the problem
had 1.204.482 rows, 351.032 columns and 3.378.221 nonzeros. After presolve
the problem had 50.116 rows, 57.409 columns and 591.422 nonzeros. Gurobi
managed to solve the problem to optimality within 2 minutes.

Figure 2 shows the preliminary schedule, the local search solution and the
MIP solution for a typical week in the scheduling period. We see that the MIP
solution has almost the same fraction of satisfied requests as the local search
solution and the plan fits better into the manpower limits, although we’re still
left with a slight understaffing problem. All employees are within their duty-
hours limits. We can see the slight understaffing in the MIP solution in Figure
2 over the last two days, i.e. the solution is a couple of employees short during
the morning shift on the weekend.

4.2 Problem instance: Call center A

The second problem instance is the first of the two call centers in our datasets.
Call center A has 92 employees and the scheduling period is 6 weeks in 30
minute intervals. After preprocessing, i.e. removing employees that have fixed

232 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 2 Staffing levels for the nursing home problem instance. The gray area denotes the
number of employees on duty while the two lines denote the minimum and maximum required
staff on duty at each time.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 233

Table 3 Results for the call center A problem instance.

Preliminary Local Search MIP

Scheduled hours 9424 11920 10578
Man-hours overstaffed 390 791 38
Man-hours understaffed 1560 14 77
Employees below minimum duty hours 19 5 8

Requested hours granted 0.96 0.79

schedules, the number of employees drops down to 74. Each day consists of 97
shifts, whose lengths vary from 4 hours up to 11 hours. The total maximum
required on-duty employees is 11582, while the total duty hours for all employ-
ees is 12054, so it will be impossible to satisfy both the duty hour constraints
and the overstaffing constraints. The maximum number of consecutive work-
ing days is 6, the maximum number of working hours in each 24 hour period
is 9 hours. In any 24 hour period, each employee must get at least 11 consec-
utive hours of rest. Table 3 shows the data from the preliminary schedule, the
results of the local search and the results of the near-optimal MIP solution.

The MIP problem for call center A had 2.419.592 rows, 763.124 columns
and 9.794.776 nonzeros. After presolve we were left with 118.445 rows, 267.630
columns and 3.277.415 nonzeros. Gurobi managed to solve the problem to
within 1% of optimality within 22 minutes. The solution we show here is
within 0.2% of optimum, after 8.5 hours of computations.

We see from Table 3 that the near-optimal MIP solution manages to sat-
isfy the manpower requirements extremely well, with just a few hours of
over/understaffing. However, this comes at the cost of satisfying employee
requests, which is down do 79%. We could improve the request ratio by mod-
ifying the manpower requirements or decreasing the penalty of overstaffing.
However, for these instances, we would recommend that the unfulfilled re-
quests would be better handled manually, i.e. by allowing the staff manager
to decide whether to accept a request or to have the number of on-duty staff
within limits. The solution to the MIP problem along with a list of unsatisfied
requests would make such a task relatively easy.

Figure 3 shows a typical week for call center A. We see that the preliminary
schedule has problem with both under- and overstaffing. The local search puts
emphasis on satisfying employee requests at the expense of overstaffing, while
the near-optimal MIP solution focuses on the staffing levels while sacrificing a
larger share of the employee requests.

4.3 Problem instance: Call center B

Call center B does the planning for only 4 weeks in advance, specifying exactly
how many should be on duty in every 15 minute interval. The total number of
employees at call center B is 62, which, after preprocessing drops down to 46.

234 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 3 Staffing levels for call center A. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 235

Table 4 Results for the call center B problem instance.

Preliminary Local Search MIP

Scheduled hours 6623 7554 6071
Man-hours overstaffed 795 609 234
Man-hours understaffed 1306 189 37
Employees below minimum duty hours 15 7 17

Requested hours granted 0.86 0.65

The call center is overstaffed, the total available man-hours for the scheduling
period is 8134 hours while the total required man-hours over the same period
is 7134 hours. There are 115 possible shifts for each day. The hard constraints
that must be satisfied for call center B are that employees cannot be working
on more than 6 consecutive days, in every 24 hour period there must be at
least 11 consecutive hours of rest and at most 11 hours of work. The maximum
length of a shift is 11 hours while the length of a shift must be at least 4 hours.

The MIP problem consists of 5.110.509 rows, 585.322 columns and 10.399.996
nonzeros. After presolve, the problem has 126.839 rows, 218.628 columns and
4.598.686 nonzeros. Call center B was by far the most challenging instance
that we tried. The Gurobi solver didn’t find a feasible solution until after 50
minutes and we had to wait for more than 3 hours before the value of solution
was within 10% of optimum.

Table 4 shows the results for the local search procedure, the near optimal
MIP solution as well as the preliminary schedule.

Figure 4 shows the staffing levels for a typical week. The three figures
contain the preliminary schedule, the local search solution and the solution
of the MIP problem. The required staffing level for the MIP solution has a
different shape than the other two due to the fixed assignments that were
preprocessed in the MIP solution, but kept as a part of the input in the
preliminary schedule and the local search solution.

Since there is no flexibility in the staffing level limits, both algorithms have
some problems with both under- and overstaffing. As seen in Figure 4 and
Table 4, the near-optimal MIP solution manages to stay close to the required
staffing levels, but at the expense of employee requests. Since the call center is
overstaffed, it is not surprising that both solutions have some employees that
are below the minimum required duty hours as well as overstaffing problems.

4.4 Problem instance: Airport ground service.

The fourth problem instance is an airport ground service company. The schedul-
ing period is six weeks in 30 minute intervals. The demand for on-duty employ-
ees depends on the flight schedules at the airport. In this particular instance,
there are many flights that leave during the early morning, and then there is
another concentration of flights in the afternoon. Since there are almost no

236 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 4 Staffing levels for call center B. The gray area denotes the number of employees on
duty while the solid line denotes the exact number of employees that are required to be on
duty at each time.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 237

Table 5 Results for the airport ground services problem instance.

Preliminary Local Search MIP

Scheduled hours 3997 6670 6608
Man-hours overstaffed 192 641 50
Man-hours understaffed 2464 517 11
Employees below minimum duty hours 23 0 0

Requested hours granted 0.94 0.89

flights scheduled at any time apart from the morning and afternoon busy pe-
riods, the requirements for employees peaks during the two busy periods but
drops sharply during other times. Each day contains 53 different shifts and
the airport ground service has 53 employees, one of which has a fixed sched-
ule. Due to the structure of the manpower requirements, the employees often
work a short morning shift and then another short afternoon shift with a few
hour break in-between. This means that split shifts are allowed so we change
the weight c14 to zero. This problem instance is understaffed compared to the
previous examples, here the total maximum required man-hours is 8152 hours
over the scheduling period while the available man-hours is only 6350. Table
5 shows the preliminary schedule, the results of the local search method and
the near-optimal MIP solution.

The hard constraints for the airport ground service are that there must be
a minimum continuous rest of 11 hours in any 24 hour period, each employee
can not work more than 5 consecutive days, employees cannot work more than
12 consecutive hours while the number of working hours in any 24 hour period
is also 12 hours.

The MIP problem consists of 1.716.477 rows, 441.352 columns and 5.342.624
nonzeros. After presolve, the problem has 113.047 rows, 170.851 columns and
2.132.307 nonzeros. It took Gurobi around 25 minutes until the value of solu-
tion was within 1% of optimum.

As we can see in Figure 5, the near-optimal MIP solution manages to fit
the staffing levels almost perfectly, while still satisfying the majority of the
employees requests. For comparison, the local search method has a slightly
higher ratio of fulfilled requests, but both the over- and understaffing is at
least an order of magnitude larger than for the MIP solution.

5 Conclusions

In this paper we have introduced a mixed-integer programming (MIP) for-
mulation to create a high quality feasible staff schedule from a partial staff
schedule based on requests from employees. The results from the four different
companies and institutions show that it is possible to find high quality sched-
ules in a reasonable amount of time by using mixed integer programming. The
data for these problem instances is available online [31]. Our MIP model al-

238 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 5 Staffing levels for the airport ground services. The gray area denotes the number of
employees on duty while the two lines denote the minimum and maximum required staff on
duty at each time.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 239

lows flexibility in terms of shifts lengths and shifts starting times, as well as
handling all the constraints and requirements of our real-life instances. Due to
time constraints, we only solved one of the four instances to optimality. The
other three were solved until we had a solution that was within 1% of optimum
for the easier problems and within 10% for the most difficult problem. The
longest time it took for such a solution was around 3-4 hours, which, is ac-
ceptable in these cases, since these scheduling problems are only solved every
4-6 weeks.

We also compared the near-optimal solution to a solution from a local
search based method [6]. The results show that the MIP solution does an
extremely good job of keeping the number of on-duty personnel within the re-
quired limits, at the expense of employees requests, while the local search had
more emphasis on satisfying requests. For the easier problems, the local search
method does quite well, so that there is not much of a difference between the
solutions. However, when the problems became more difficult, with compli-
cated shift structures, and in one case, split shifts, the MIP solver produced
solutions that were vastly superior to the local search solutions.

References

1. Ahmad, J., Yamamoto, M., Ohuchi, A., Evolutionary Algorithms for Nurse Scheduling
Problem. Proceedings of CEC00, San Diego, 196–203 (2000).

2. Aickelin, U., Dowsland, K., Exploiting problem structure in a genetic algorithm approach
to a nurse rostering problem. Journal of Scheduling 3(3), 139–153 (2000).

3. Alfares, H.K., Survey, categorization and comparison of recent tour scheduling literature.
Annals of Operations Research 127, 145–175 (2004).

4. Alsheddy, A., Edward, T., Empowerment scheduling for a field workforce. Journal of
Scheduling, 1–16 (2011).

5. Al-Yakoob, S. M., Sherali, H. D., A column generation approach for an employee schedul-
ing problem with multiple shifts and work locations. Journal of the Operational Research
Society, 59(1), 34–43 (2008).

6. Ásgeirsson, E. I., Bridging the gap between self schedules and feasible schedules in staff
scheduling, Annals of Operations Research (2012)

7. Ásgeirsson, E.I., Kyngäs, J., Nurmi, K. and Stølevik, M., A Framework for
Implementation-Oriented Staff Scheduling, In Proc of the 5th Multidisciplinary Int.
Scheduling Conf.: Theory and Applications (MISTA), Phoenix, USA, (2011).

8. Bailyn, L., Collins, R., Song, Y., Self-scheduling for hospital nurses: an attempt and its
difficulties, Journal of Nursing Management, 15(1),72–77 (2007).

9. Bard, J. F., Purnomo, H. W., Preference Scheduling for Nurses Using Column Generation.
European Journal of Operational Research, 164, 510–534 (2005).

10. Bartholdi, J.J., A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and
Set Covering. Operations Research 29, 501–510 (1981).

11. Brusco, M. J., Jacobs, L. W., Cost analysis of alternative formulations for personnel
scheduling in continuously operating organisations. European Journal of Operational Re-
search, 86, 249–261 (1995).

12. Burke, E. K., De Causmaecker, P., Vanden Berghe, G. (1999). A Hybrid Tabu Search
Algorithm for the Nurse Rostering Problem. SEAL’98, LNCS 1585, 187–194.

13. Burke, E. K., De Causmaecker, P., Petrovic, S., Vanden Berghe, G., Variable neigh-
borhood search for nurse rostering problems. Metaheuristics: computer decision-making,
153–172 (2004).

14. Burke, E. K., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H., The State
of the Art of Nurse Rostering. Journal of Scheduling, 7, 441–499 (2004).

240 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

15. De Causmaecker, P., Vanden Berghe, G. (2011). Towards a reference model for
timetabling and rostering. Annals of Operations Research.

16. De Causmaecker, P., Vanden Berghe, G., A categorisation of nurse rostering problems.
Journal of Scheduling, 14, 3–16 (2011).

17. Dowsland, K., Nurse scheduling with Tabu Search and Strategic Oscillation. European
Journal of Operations Research, 106, 393–407 (1998).

18. Easton, F., Mansour, N., A Distributed Genetic Algorithm for Employee Staffing and
Scheduling Problems. Conference on Genetic Algorithms, San Mateo, 360–367 (1993).

19. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D., An Annotated Bibliog-
raphy of Personnel Scheduling and Rostering. Annals of Operations Research, 127, 21–144
(2004).

20. Ernst, A. T., Jiang, H., Krishnamoorthy, M., Sier, D., Timetabling and Rostering.
European Journal of Operational Research, 153(1), 3–27 (2004).

21. Garey, M.R., Johnson, D.S. ,Computers and Intractability. A Guide to the Theory of
NP-Completeness, Freeman (1979).

22. Hung, R., Improving Productivity and Quality through Workforce Scheduling. Indus-
trial Management, 34(6) (1992).

23. Jeroen, B., Demeulemeester, E., On the trade-off between staff-decomposed and activity-
decomposed column generation for a staff scheduling problem. Annals of Operations Re-
search, 155(1), 143–166 (2007).

24. Kellogg D.L., Walczak S., Nurse Scheduling: From Academia to Implementation or Not.
Interfaces 37(4), 355–369 (2007).

25. Lau, H. C., On the Complexity of Manpower Shift Scheduling. Computers and Opera-
tions Research 23(1), 93-102 (1996).

26. Meisels, A., Schaerf, A., Modelling and solving employee timetabling problems. Annals
of Mathematics and Artificial Intelligence 39, 41–59 (2003).

27. Rowland, H. S., Rowland, B. L., Nursing administration handbook 4th ed., Gaithers-
burg, Maryland, (1997).

28. Tanomaru, J., Staff Scheduling by a Genetic Algorithm with Heuristic Operators. Pro-
ceedings of CEC95, 456–461 (1995)..

29. Tien J, Kamiyama A., On Manpower Scheduling Algorithms. SIAM Rev. 24 (3), 275–
287 (1982).

30. van der Veen E., Veltman B., Rostering from staffing levels: a branch-and-price ap-
proach. Proceedings of the 35th International Conference on Operational Research Applied
to Health Services (ORAHS), 1–10 (2009).

31. Datasets for experimental results: http://www.ru.is/kennarar/eyjo/staffscheduling.html

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 241

Application of Particle Swarm Optimization to the British
Telecom Workforce Scheduling Problem

Maik Günther · Volker Nissen

Received: date / Accepted: date

Abstract When technicians are deployed in field service, they must be allocated to the cor-
rect assignment and their routes should also be optimised as a part of that process. Data from
a practical case of British Telecom has been used widely in the literature to test many differ-
ent solution methods. This work discusses the modification of particle swarm optimization
(PSO) for this problem and compares the performance of this hybrid approach to compet-
ing solution methods. PSO produces better results than the currently best-known solution
that was achieved using fast guided local search. Combined with our previous results on
sub-daily staff scheduling in logistics this result underlines the potential of PSO to solve
complex workforce scheduling problems.

Keywords Combinatorial Optimization · Workforce Scheduling · Particle Swarm
Optimization · Hybrid Metaheuristics

1 Introduction

The combination of route and personnel scheduling arises in many different applications, for
example for the assignment of technicians in field service, for the allocation of care workers,
transportation companies or security services. Each industry has its own unique character-
istics. Patients should be cared for by the same care worker as much as possible and in
transportation companies basic routes are usually dictated. Complex planning demands es-
pecially arise when technicians are being assigned. Many different qualifications, timeslots
for tasks, limited employee availability, individual performance figures and a complex street

M. Günther
Burghart 14a, 86920 Denklingen, Germany
Tel.: +49-08243-9930844
E-mail: maik.guenther@gmx.de

V. Nissen
Ilmenau University of Technology, Faculty of Economic Sciences
Department of Information Systems in Services
P.O. Box 100565, D-98684 Ilmenau, Germany
Tel.: +49-3677-694047
Fax: +49-3677-694219
E-mail: volker.nissen@tu-ilmenau.de

242 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

network are only some of the constraints which must be taken into account. For these rea-
sons, this work looks into technician assignment at British Telecom (BT). In contrast, for
instance, to the France Telecom problem used in the more recent ROADEF-challenge [9],
the BT-problem assumes individual workers instead of temporary teams to work on a partic-
ular job. This makes the results more easily transferable to other branches of industry with
similar characteristics.

For almost two decades, various methods have been tested using BT’s data, including
simulated annealing (SA), genetic algorithms (GA), constraint logic programming (CLP),
local search (LS) fast local search (FLS) and fast guided local search (fast GLS). Because
very good results have already been achieved using hybrid versions of particle swarm op-
timization (PSO) on similar scheduling problems [27,17], this solution approach will be
investigated for use on the British Telecom problem.

The research goals we pursue are twofold. First, we aim for good solutions to a mean-
ingful and complex practical application that is of significant economic value in such diverse
industries as logistics, maintenance work, mobile health care and security services. Second,
we want to contribute to the comparison of modern metaheuristics on practical problems of
realistic size and complexity.

First, section 2 gives a description of the problem space, especially regarding the ap-
propriate representation of the problem for PSO as well as the complexity. Then we discuss
related work from the literature in section 3. The PSO approach is outlined in section 4. An
experimental assessment of PSO and a comparison with prior solution methods is done in
section 5. The paper concludes with a short summary of main results and some avenues for
further research.

2 Description of the Problem Space

The problem discussed here comes from British Telecom and consists of a planning scenario
in which 118 technicians are to handle 250 spatially separated jobs in one day (actual data
can be found in [4]). The working time models – i.e., starting and ending times – of the
technicians are given for the day to be planned and may not be changed during planning.

A total of 250 jobs exist J = {1, . . . ,J}. Each job j consists of a five-element tuple:
job number, map coordinate x, map coordinate y, duration and job type. The x- and y-
coordinates can be used to calculate the travel costs ct (interpreted as error points of the
respective solution) for the paths traveled as follows:

ct((x1,y1),(x2,y2)) =

1
2 ∗∆x+∆y

8 , if ∆x > ∆y
1
2 ∗∆y+∆x

8 , else
(1)

The duration d j of job j can be between 10 and 513 minutes. This value does not rep-
resent the actual job time but rather the time required by the average qualified technician
E = {1, . . . ,E}. The actual job duration time rd j is highly dependent on the experience level
re of the technician. Formula 2 shows the calculation of that factor. A task can only be car-
ried out by one technician alone, eliminating the possibility of accelerating job time through
cooperation. Neither is it allowed to change technicians during the fullfilment of a job.

Job type refers to the time of day when it is to be carried out. These requirements are
hard constraints, meaning they must be fulfilled. Three different job types are distinguished:

– Morning: The job must begin before 12:00.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 243

– Afternoon: The job must begin after 12:00.
– No preference: No requirement has been given regarding starting time.

Each of the 118 technicians is deployed by contract for 8 hours. Starting time is either
8:00 or 8:30 with corresponding ending times of 16:00 or 16:30. A technician does not
necessarily have to be either traveling or completing a job during the 8-hour shift. It is
possible for a technician not to be assigned any jobs during the alotted time. A tuple for a
technician consists of five elements: working time start, working time end, experience level
re and the x- and y-coordinates of his or her service center.

With the help of a technician’s experience level re and the average duration d j of a job
the actual job time rd j of job j can be calculated. For example, assuming a technician with
experience level 8 (values below ten signify above average experience) and an average job
duration of 20 minutes, the actual completion time rd j is 16 minutes.

rd j = d j ∗
re

10
(2)

Technicians begin their routes at their respective service centers at the start of their
working day and must reach the centers again after completing the last job while within
their total working time. A total of 11 service centers exist. Figure 1 shows the positions of
the jobs and the service centers. The numbers next to the service centers indicate the number
of technicians assigned to each of them.

Fig. 1 Job and service center position [22, 14] (numbers: service center ID/number of assigned technicians)

Table 1 gives the number of technicians Ei for each service center and the total available
capacity of technicians, which is determined using daily working time in minutes.

Qualifications represent hard constraints. Jobs may not be assigned to unqualified tech-
nicians. There exists for each job a set of employees who are eligible for that job. The
number can vary between a single qualified technician up to 107 technicians.

244 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1 Service Center Capacity [22, 18]

Service center ID 1, 3, 6, 7, 9, 10, 11 2 4 5 8

Number of technicians
Ei

1 10 34 15 52

Capacity in min. 480 4.800 16.320 7.200 24.960

Due to the aforementioned constraints and restrictions (job duration, travel times, job
type, working times etc.) it is possible for some jobs to remain unfulfilled. As part of the
objective function, the volume of incomplete work is to be minimized. For this, an error
value f is added to the average job duration d j of job j, with the value of f set to 60
for this problem, according to the literature. A binary variable s j indicates whether the job
will be completed (s j = 0) or not (s j = 1). The error value f simply increases the weight
of the unassigned jobs in the objective function. Also, travel time should be kept as small
as possible, since it is not a value-producing activity and utilizes resources. The objective
function that minimizes the total number of error points can then be calculated as follows:

c =
E

∑
e=1

cte +
J

∑
j=1

(d j + f)∗ s j (3)

2.1 Classification of the Problem Space

Ernst et al. [13] provide a comprehensive overview of problems and solution methods for
personnel scheduling and rostering from more than 700 analysed sources. Moreover, they
classify the different problems they encountered in the literature. According to this classi-
fication, the British Telecom problem can be viewed as a problem of “task-based demand”
because demand arises from the jobs to be completed. These tasks have an earliest start time,
a duration and a latest end time. Also, the employees are assigned to shifts before job allo-
cation is done so that absent employees are known. Therefore, the British Telecom problem
also belongs to the group “task assignment”.

In addition to the classification of scheduling problems according to Ernst et al., the
present problem can also be classified within the context of the traveling salesman prob-
lem. Azarmi and Abdul-Hameed [1] place it in the class of multi-time-constraint traveling
salesman problems (multi-TCTSP). Technicians must travel to a series of locations in the
shortest order and return to their respective starting positions while adhering to their work-
ing time allotment. The problem then becomes a multi-TCTSP because multiple technicians
are available and each technician route is a TCTSP. Also, there are restrictions with respect
to job time constraints. For this reason, the problem becomes a multi-TCTSPTW (TW =
time windows). Furthermore, the addition of qualifications turns the problem into a mutli-
SDTCTSPTW (SD = Site Dependent). Finally, the existence of multiple service centers
brings about the full classification as a multi-MDSDTCTSPTW (MD = Multi-Depot).

2.2 Problem Representation

In order to use the various solution methods, the problem must be represented in an appro-
priate way. For this, Tsang et al. [33] use a permutation of all jobs. The permutation is trans-
formed into an assignment plan using the objective function. However, with this method,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 245

some regions of the solution space are excluded from the start. This means that some shorter
paths may not necessarily be found. Therefore, this method is not used in the present work
even though it would reduce the number of plausibility checks and correction mechanisms
in the utilized solution method.

In the present work, each technician is assigned his or her own permutation of jobs to
be completed. The permutation can possibly contain all 250 jobs, which however will not
occur in practice. This forms a two-dimensional matrix, in which the rows represent the
technicians and the columns stand for series of jobs. Each matrix element contains a job
number and the job order in each permutation determines when the job is to be completed,
while travel and completion times as well as restrictions on start times (where applicable)
are accounted for. Matrix elements without a job receive a uniform dummy value. Each job
must be assigned to exactly one technician. If a technician is allocated more jobs than he or
she can complete, the objective function marks the excess jobs as incomplete.

2.3 Complexity

With respect to assignment planning, Garey and Johnson showed in 1979 [14] that even the
simplest forms of staff scheduling are NP complete. Bartholdi [3] proved the NP complete-
ness of personnel scheduling with shift cycles, in which the employees are available with
interruptions. In 1982, Tien and Kamiyama [29] showed that practical personnel scheduling
problems are more complex than the traveling salesman problem (TSP), which is already
NP complete by itself. From an experimental point of view, the works of Easton and Rossin
[12] as well as Brusco and Jacobs [5] suggest that general personnel assignment planning
problems are difficult to optimize while Cooper and Kingston [8] demonstrated that they
are even NP complete. Finally, Kragelund and Kabel [23, 12–15] proved that the general
employee timetabling problem is NP hard.

The NP-hard British Telecom problem encompasses 118 employees and 250 jobs, which
results in a two-dimensional matrix with 29,500 elements, of which 250 (the actual jobs) do
not contain the dummy value. The complexity of the problem space is JS, where J is the
total number of jobs and S the number of jobs for which the average technician is qualified.
This yields 25027 combinations (approx. 1056) [34].

3 Related Work

Many solution methods have been tested in the past for solving the British Telecom problem.
However, the problem space was sometimes modified, such that not all approaches can be
compared. This is true, for instance, for the work by Kokkoras et al. [22], [28]. They generate
an agent for each service center and solve the sub-problems using CLP from Yang [34]. All
solution methods which have been tested on the original version of the British Telecom
problem are listed in table 2. The results are also shown in section 5.

The first publication on the British Telecom problem was done by Baker in 1993 [2].
He uses SA, which was used at that time in the British Telecom’s Software Work Manager.
He represents the problem space as a set of routes, in which each technician is assigned one
route, which can also be empty. Jobs which cannot be completed are allocated to a dummy
technician. Four different actions are available for the generation of a move.

In the same year, Muller et al. presented their work [25] using distributed working GAs.
Each of the GAs can have its own method to transform a chromosome into an assignment

246 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

plan. Additionally, they can differ with respect to their behavior. Shared memory exists
in which the respective best chromosome is saved. This provides access to chromosomes
generated from different approaches.

Two CLP prototypes were presented by Azarmi and Abdul-Hameed in 1995 [1]. The
first is tour generation (CLP TG), in which modeling of the problem space is done by as-
signing each job to a technician and excess jobs are assigned to a dummy employee. The
second method involves implemented compact generation (CLP CG), which allows parallel
processing. The main difference between this method and CLP TG is that a technician’s
route is immediately resequenced into an optimum order as soon as a new job is assigned.

A year later, Yang published his CLP approach with and without forward checking [34].
He also tested three variantions for ordering during allocation of jobs to technicians.

Tsang and Voudouris utilized LS for the British Telecom problem in 1997 [33]. In order
to represent the problem space, they use a permutation of the jobs to be completed (see
section 2.2). LS proceeds by exchanging two jobs within the permutation if this improves
solution quality. Starting with LS, Tsang and Voudouris integrate FLS and fast GLS together.
FLS has the goal of accelerating the optimization method. But this has the consequence that
good results could remain out of consideration. There exists for the position of each job
in the permutation an activation bit, through which it is determined whether a job remains
in consideration or not. For GLS, the objective function is expanded to take into account
additional error points due to other rules, so that the search can escape from local optima
and can extend into other regions. In summary, fast GLS has yielded the best results up to
now.

Table 2 Solution Methods and Authors for the (original) British Telecom Problem

Method Author(s) Year Source

SA Baker 1993 [2]

GA Muller, Magill, Prosser and Smith 1993 [25]

CLP Azarmi and Abdul-Hameed 1995 [1]

CLP Yang 1996 [34]

LS Tsang and Voudouris 1997 [33]

FLS Tsang and Voudouris 1997 [33]

Fast GLS Tsang and Voudouris 1997 [33]

Several modifications of the BT problem occur in the literature. Kliem and Anderson
[21], for instance, expanded the original problem by investigating correct team formation.
Relationships between success of a project and the personalities of the team members were
analysed to be able to choose the person with the right personality for a certain project.

Naveh et al. [26] focus on matching the right employee with the appropriate job by
considering different individual characteristics. They use constraint programming, which is
especially suited to this problem.

During the ROADEF 2007 competition [9] various solution methods were analysed us-
ing data sets from France Telecom. These vary between 5 and 150 employees and from
5 and 800 jobs. Qualifications as well as job completion order and priority are taken into
account. Additionally, the number of vehicles is limited. In contrast to the British Telecom
problem, in which employees always work alone, here teams are created which exist for
multiple days. In the ROADEF competion computing time was a limiting factor. Therefore,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 247

constructive methods were used quite often which were highly varied with respect to their
functionality, also explaining the standings. At times, the problem space was significantly
fragmented in order to reduce complexity.

In 2005 and 2008, Tsang et al. presented an agent-based application based on the RE-
CONET protocol for solving the British Telecom problem using dynamic changes [30], [31].
Experiments were only done on randomly generated problem spaces. Whereas Kokkoras et
al. [22], [28] only generated one agent for each service center, agents will additionally be
generated for regions with jobs. Also, there is a superior agent (manager), who controls the
other agent types.

In 2008, Tsang et al. [32] extended the multi-agent system by adding aspects to support
employee self-determination. However, their work only describes an idea – no experiments
were carried out.

In the following section a new solution approach based on an adaptation of particle
swarm optimization (PSO) is described. The choice of PSO as a metaheuristic approach to
solve the original BT problem was motivated by the very good performance of PSO on a
roughly similar staff scheduling problem from logistics [27],[17].

4 Particle Swarm Optimization for the British Telecom Problem

4.1 Particle Swarm Optimization

PSO is a population-based metaheuristic based on the concept of swarm intelligence. It was
originally developed by Kennedy and Eberhart [18] for the solution space of the form Rd .
In PSO there exists a swarm of particles and each particle knows its current position in the
solution space (one solution to the problem), its personal best position (pBest) and the best
position of its global (gBest) or local (lBest) neighbourhood. The basic PSO procedure is
given in algorithm 1.

Algorithm 1 Basic PSO Procedure
1: initialize the swarm
2: calculate the fitness of initial particles
3: determine pBest for each particle and gBest (or lBest)
4: repeat
5: for i = 1 to number of particles do
6: calculate new position
7: calculate fitness
8: new pBest and new gBest (or lBest)?
9: end for

10: until termination criterion reached

The British Telecom problem is a combinatorial problem space in which integers are
used, which means PSO must be modified in an appropriate way. In 2006 Chu et al. [7]
adapted PSO for exam scheduling. They changed PSO in such a way that velocity is no
longer calculated in order to determine the new position of a particle. Instead, the new posi-
tion of a particle in each iteration results from the exchange of two allocations in one particle
as well as from copying an allocation from pBest or gBest into the new particle position.
Brodersen and Schumann [6] build upon this approach and use it for university schedule
generation. We have previously expanded this approach by adding probabilities of different

248 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

actions and this expanded method has been successfully applied to personnel assignment in
logistics [27], [16], [17]. The PSO algorithm modified for the British Telecom problem is
based on that previous work and will be explained in detail below. First, however, we discuss
methods to avoid premature convergence on a local suboptimum.

In connection with premature convergence, choosing an appropriate neighbourhood
topology is important. The topologies used most often in the original form of PSO are the
gBest and lBest topologies. In gBest the swarm members are connected in such a way that
each particle is a neighbour of every other particle. This means that each particle immedi-
ately knows the best global value found up to that point. All particles are included in the
position calculation of gBest. If the global optimum is not located near enough to the best
particle, it can be difficult for the swarm to search other parts of the solution space, possibly
converging instead to a local optimum [24].

Avoiding such convergence to a sub-optimum is one of the goals of the lBest topology, in
which a particle is only connected to its immediate neighbours. The parameter k represents
the number of neighbours of a particle. With k=2 the topology is a circle (or ring). Increasing
k to particle count minus 1 yields a gBest topology. In an lBest topology, each particle only
possesses information about itself and its neighbours. The swarm converges slower than
with gBest but also has a higher chance of finding the global optimum [19].

Another neighbourhood form is the wheel. There exists a central particle which is con-
nected to all other particles. These particles only have that central particle as its neighbour
and are isolated from all others. This arrangement prevents a new best solution from being
immediately distributed throughout the swarm.

Fig. 2 Neighbourhood topologies gBest, wheel, circle (k=2) and lBest (k=4) [24].

Results on neighbourhood topologies and premature convergence are ambiguous in the
literature, as is further discussed in [16]. Therefore, in the experimental section, all topolo-
gies outlined here are tested and compared.

Another option for preventing premature convergence for the British Telecom problem
is to outfit each particle with the capability of looking ahead to its new position (forward
checking) and to decide whether that position is potentially worthwhile. This is sensible
because the particles in the British Telecom problem could possible penetrate into regions
that would lead to increasing deteriation of the solution. After several iterations the particles
will have been changed so much that they can no longer escape from such a local optimum.
The particles no longer communicate just with each other. They can also “see”. There is still
a small probability for the particles to accept worsening solutions. This prevents the particle
from becoming trapped in a local optimum, unable to move in the solution space.

Our version of PSO that was adapted for the British Telecom problem is shown in algo-
rithm 2. In particular, the calculation of the new particle position has been modified com-
pared to standard PSO. Velocity is no longer required. This means that the constriction factor
and the inertia weight can be omitted. The same applies to dimension overrun. One may ar-

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 249

gue that the resulting method should no longer be called PSO. However, inertia weight and
constriction factor were also not present in the original version of standard PSO, but later
added since this helped to improve results. Moreover, in our view, the basic properties of
PSO are swarm intelligence and a combination of individual and social behavior. These
remain intact in our combinatorial variant of PSO.

The new particle position is calculated in line 7 of algorithm 2. The calculation occurs
within a loop with the index w. This is necessary because the two-dimensional matrix of a
particle cannot be systematically processed in our approach to determine the new particle
position, yet several changes are to be carried out in each iteration. Prior tests were used to
heuristically determine a value for w of 300. In practice, however, 300 changes are never
applied to a particle in one iteration. Some changes, for instance, cannot be carried out
because of missing qualifications. Moreover, it might occur during copying from pBest or
gBest that no actual change is made to the particle position because the copied element is
already located at the specified position. Some changes may be rejected by the particle due
to an unacceptable deterioraton of the solution.

Algorithm 2 Modified PSO
1: initialize the swarm using constructive heuristic of algorithm 1
2: calculate the fitness of the particle
3: determine pBest and gBest (or lBest)
4: repeat
5: for i = 1 to number of particles do
6: for w = 1 to 300 do
7: calculate the new particle position with the help of 6 actions
8: end for
9: repair the particle using repair heuristic

10: calculate fitness
11: new pBest and new gBest (or lBest)?
12: end for
13: until termination criterion reached

There are now 6 actions used to determine the new position. The probability of occur-
rence was heuristically determined using prior tests. The actions are:

1. 0.05%: Exchange two job assignments (without rejection): Two jobs are randomly cho-
sen and the currently assigned technicians are identified. Then, the technicians exchange
job assignments, with the new job placed at the same spot in the respective technician’s
permutation as the old job. Qualifications are taken into account during this action by
possibly repeating the choice. This step may not be rejected by the particle even if it
leads to worse fitness of the solution.

2. 24.95%: Exchange two job assignments (with possible rejection): The procedure is anal-
ogous to the above action, the difference being that the particle does not carry it out if
fitness would worsen.

3. 0.25%: Move (without rejection): One technician is randomly chosen and the last job in
his permutation is moved to the end of the permutation of another qualified technician,
if available. If no other qualified technician can be found, nothing occurs. The particle
may not reject the action even if fitness suffers.

4. 14.75%: Move (with possible rejection): The process is analogous to action 3, the dif-
ference being that the particle may reject the action if it would worsen fitness.

250 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5. 20%: Insert a value from pBest: Choose a random technician from pBest and a random
job within that technician’s permutation. Insert that job into the new particle position at
the same location as in pBest. If another job is already located at that position, postpone
the rest of the jobs by one slot in order to make room. If the job is isolated within the
permutation, it is shifted until it borders an occupied slot. This action may be rejected
by the particle if it deteriorates fitness.

6. 40%: Insert a value from gBest: This action is analogous to action 5 but gBest (or lBest
in other topologies) is used instead of pBest.

Qualifications are especially critical in the British Telecom problem and compliance
represents a hard constraint. Therefore, a solution is only valid without qualification errors.
In order to remove qualification errors that do occasionally arise, they are repaired using a
heuristic approach. This repair heuristic searches for violations and assigns an incorrectly
allocated job to a randomly determined qualified employee, where the job is inserted in an
appropriate time slot. If a gap has arisen in the job sequence for the unqualified technician
it is closed by shifting jobs so that the solution becomes valid.

4.2 Initialization of PSO

An initial solution for PSO is created by applying a constructive method. More specifically,
a solution is constructed that respects the BT problem’s hard constraints, such as availabil-
ity of technicians and required qualifications. In addition, the allocation of assignments to
technicians is based on capacity still available and the distance of a job from the service
center. The exact distances from one job to the next job cannot be applied to the calcula-
tion of the remaining capacity because the optimum job order is not yet known. Capacity is
therefore determined approximately using the regional allocation of jobs to service centers.
The initialization procedure is shown in algorithm 3.

Algorithm 3 Initialization
1: set the capacity Cape of technician e to 0
2: repeat
3: choose a random job j
4: write all technicians qualified for job j in list Quali
5: calculate the travel time cte for each technician from his or her service

center i to job j
6: while Quali is not empty do
7: choose the technician e with the shortest distance cte to job j
8: remove technician e from Quali
9: calculate the completion time rd j by technician e

10: if Cape + rd j < 8 hours then
11: add job j to the end of the permutation for technician e
12: remove all technicians from Quali
13: update Cape
14: end if
15: end while
16: if job cannot be assigned then
17: choose a technician e who is qualified for job j
18: add job j to the end of the permutation for technician e
19: update Cape
20: end if
21: until all jobs have been assigned

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 251

5 Results and Discussion

The choice of an appropriate termination criterion for a solution method strongly influences
result quality and required CPU time. The experiments discussed here uniformly used the
number of objective function evaluations (set to 20 million according to pre-tests) as the ter-
mination criterion. This offers excellent comparability of the solution methods. Moreover, it
will allow for fair comparisons with results of others in the future, as CPU-time is less mean-
ingful in the light of ever increasing computing power. All results using PSO are based on 30
independent runs. They were performed on a PC with an Intel Core Quad 4x1.66 GHz with
4 GB of RAM. When comparing our results to the literature, we will focus on solution qual-
ity not speed. CPU-time would be hard to compare, as hardware is always very different. In
some cases, CPU-requirements were not even published. More importantly, computing time
is not a significant limiting factor in the present problem. It can be assumed that authors who
previously worked on the BT-problem terminated their runs when no further improvement
appeared possible in reasonable time.

Interpretation of competing solution methods from the literature as introduced in sec-
tion 3 will only be done briefly here. The respective publications can be referred to for more
comprehensive information. Only the mimimum value (best solution found) is known for
these methods, which reduces comparability. An indication of mean values and the number
of replications could not be found. For GA, GA + R (R=repair heuristic) and SA, CPU time
is not available. In general, it can be noted that agents and CLP are significantly faster than
metaheuristic methods, such as GA, SA and PSO. Table 3 shows the results of PSO with
different neighbourhood topologies as well as the methods listed in section 3.

The first set of results was published for SA. Here, a value of 21,050 error points was
achieved. In comparison, the results of distributed GA with repair (22,570) and without
repair (23,790) are significantly worse. The repair heuristic, however, does improve results
for the GA. Azarmi and Abdul-Hameed tested the two CLP variants CLP-CG + R (21,292)
and CLP-TG + R (22,241), both using a repair heuristic. Using these solution approaches,
more jobs were able to be assigned than in GA and GA + R because the repair in the former
method focuses on reducing the number of incomplete jobs. For GA and GA + R on the
other hand, the focus of the repair is on the reduction of total error points.

Yang tested various CLP approaches, the best variant of which is shown in table 3 – the
variant with foward-checking (FC) and the selection heuristic same direction first (SD) for
technician order (CLP SD + FC). There, 20,981 error points were achieved, which was the
best value up to that point. Using significantly more CPU time, Tsang and Voudouris were
able to produce even better results. They implemented LS, FLS and fast GLS, which all
produced better results than previous solution methods. Fast GLS yielded the best error point
value of 20,433 which essentially marked the final achievement on this practical problem so
far.

Using PSO, a new best solution with an objective function value of 20,193 was found.
Comparing different swarm sizes, it became evident that a gBest topology with a swarm
of 10 particles performs significantly better than a larger swarm with 200 particles. This
result is consistent with our previous results with a similar modified PSO algorithm for a
logistics problem [27], [16] [17]. The swarm requires a high number of iterations to get
from the initial solution to a very good solution. Using the number of fitness calculations as
termination criterion means that significantly more iterations can be performed on a small
swarm size than on a large one. The advantage of a large swarm that more knowledge is
available on the solution space in each iteration is apparently less important.

252 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 3 Results for the original BT problem (BT Mod-250-118). Results that improve the previous best
known solution (generated by FLS) are bold. New best solution is set bold and underlined. If solutions are re-
paired w.r.t hard constraints this is indicated with +R. If a solution method uses forward checking of potential
new solutions this is indicated with FC. Results for PSO are based on 30 independent runs each.

Error Travel Error Number CPU

Method costs open open time

� minimum std. dev.
jobs jobs in sec.

SA [2] - 21,050 - 4,390.0 16,660.0 56.0 -

GA [25] - 23,790 - - - 67.0 -

GA + R [25] - 22,570 - - - 54.0 -

CLP TG + R [1] - 22,241 - 5,269.0 16,972.0 48.0 600

CLP CG + R [1] - 21,292 - 4,902.0 16,390.0 53.0 600

CLP SD + FC [34] - 20,981 - 4,716.0 16,220.0 54.0 97

LS [33] - 20,788 - 4,604.0 16,184.0 50.0 20,056

FLS [33] - 20,732 - 4,608.0 16,124.0 49.0 1,242

Fast GLS [33] - 20,433 - 4,707.0 15,726.0 48.0 9,183

PSO (10) gBest + R 20,585.5 20,371 164.8 4,221.5 16,363.9 55.9 10,306

PSO (200) gBest + R 21,184.1 20,958 112.2 4,374.4 16,809.7 60.2 10,607

PSO (10) Wheel + R 20,637.7 20,340 162.2 4,169.5 16,468.2 56.6 10,668

PSO (10) Circle + R 20,505.4 20,273 112.8 4,185.0 16,320.4 55.0 10,572

PSO (10) lBest + R 20,435.9 20,193 130.9 4,168.0 16,267.8 54.5 10,615

Based on this insight, all further experiments for the wheel, lBest (k=4) and circle topolo-
gies were performed with 10 particles. With respect to the minimum objective function
value, the lBest neighbourhood performs best, followed by circle, wheel and gBest. Consid-
ering the mean values, lBest again significantly outperforms the other topologies, followed
by circle, gBest and wheel. Results of respective t-tests can be found in table 4. It can there-
fore be worthwhile not to immediately distribute information to all particles. Using smaller
neighbourhoods helps to avoid premature convergence to a local optimum on this problem.
This result concurs with many statements found in the literature and also with the basic idea
behind neighbourhood topologies [20], [10]. However, it contradicts experience gained us-
ing a similarly modified PSO [16] on a different combinatorial problem. There, gBest almost
always yielded the best results because good solutions were very rare in the solution space.
If these good solutions were not almost immediately passed on to all particles, there was a
danger of them being lost. The British Telecom problem does not seem to suffer from that
effect in any great amount.

With respect to CPU time, PSO requires roughly 3 hours for one run. Since CPU time
is not a limiting factor in this type of application, the CPU requirements of PSO can be
regarded sufficient, considering the final solution quality produced.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 253

Table 4 t-test results (one-tailed) for pairwise comparison of neighbourhood topologies in PSO

signi- 95% confidence interval
H1 T d f ficance of differences

H0 lower upper

PSO (10) lBest + R < PSO (10) Circle + R -2,205 58 0.016 -122,254 -16,812

PSO (10) lBest + R < PSO (10) gBest + R -3,893 58 < 0.001 -213,832 -85,368

PSO (10) lBest + R < PSO (10) Wheel + R -5,303 58 < 0.001 -265,415 -138,185

6 Conclusions and Outlook

The British Telecom problem is derived from a practical situation and has been intensively
analysed in the literature for almost two decades. In addition to the previously tested meth-
ods, this work assessed an adapted hybrid form of particle swarm optimization that inte-
grates an initialization and a repair heuristic. Moreover, various neighbourhood topologies
and swarm sizes of PSO were tested.

PSO with a small population size of 10 particles produced better results than the pre-
vious best known solution, independent of the neighbourhood topology. Among the neigh-
bourhoods, lBest performed best, which is in line with the finding of others in the literature.
Taken together with the results presented for a logistics problem elsewhere [17], there is a
strong indication that hybridising a metaheuristic with a problem-specific repair heuristic
is a useful approach of resolving the conflict between domain-specific characteristics of a
real-world problem and the desire to employ a generic optimisation technique, at least in the
domain of workforce management. Moreover, it seems to pay off to use available knowledge
in the initialization phase of PSO in order to respect the hard problem constraints right from
the start instead of having more diversity using random initialization.

Even the best schedules contain technicians who are not assigned to any jobs. This
is due to the focus on the reduction of travel costs and unfinished jobs in this particular
optimization problem. However, it is worth mentioning that a great economic potential also
lies in the reduction of employee idleness.

The BT-problem only considers coordinates of the service centers and job location posi-
tions. Related real-world applications might require to use actual distances instead. Another
interesting extension would be to view the BT-problem as a multiobjective optimization
problem where total travel distance and the number of unassigned jobs are simultaneously
optimized. This would require different solution approaches that can effectively search for
the Pareto front.

In the current planning process technicians are allocated a shift model in a previous step.
Only then does the planning problem discussed here begin. The merging of both planning
phases would obviously render a lot of further potential for improvement.

References

1. Azarmi N., AbdulHameed W., Workforce scheduling with constraint logic programming, In: BT Technol-
ogy Journal, 13(1):81–94, 1995

2. Baker S., Applying simulated annealing to the workforce management problem, In: ISR, British Telecom
Laboratories, Martlesham Heath, Ipswich, 1993

3. Bartholdi J. J., A Guaranteed-Accuracy Round-off Algorithm for Cyclic Scheduling and Set Covering, In:
Operations Research, 29(3):501–510, 1981

4. British Telecom Laboratories, 250-118 data set of WMS problem, http://dces.essex.ac.uk/CSP/WFS, last
visited: 08.01.2010

254 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5. Brusco M. J., Jacobs L. W., A Simulated Annealing Approach to the Solution of Flexible Labour Schedul-
ing Problems, In: Journal of the Operational Research Society, 44:1191–1200, 1993

6. Brodersen O. B., Eignung schwarmintelligenter Verfahren fr die betriebliche Entscheidungsuntersttzung,
Cuvillier, 2008

7. Chu S.-C., Chen Y.-T., Ho J.-H., Timetable Scheduling Using Particle Swarm Optimization, Proceedings
of the First International Conference on Innovative Computing, Information and Control (ICICIC 2006),
3:324–327, Beijing, 2006

8. Cooper T. B., Kingston J. H., The Complexity of Timetable Construction Problems, In: Burke E. K., Ross
P. (eds.), Practice and Theory of Automated Timetabling, First International Conference (PATAT 1995),
Vol. 1153, LNCS, 283–295, Edinburgh, U.K., Selected Papers, Berlin et al.: Springer, 1996

9. Cung V.-D., Briant O,Challenge ROADEF 2007. Technicians and Interventions Scheduling for Telecom-
munications; http://www.g-scop.inpg.fr/ ChallengeROADEF2007

10. Czogalla J., Fink A., Particle Swarm Topologies for Resource Constrained Project Scheduling, In: Nature
Inspired Cooperative Strategies for Optimization (NICSO 2008), 236:61–73, Berlin: Springer, 2009

11. Dutot P.-F., Laugier A., Bustos A.-M., Technicians and Interterventions scheduling for Telecommunica-
tions, 2006

12. Easton F. F., Rossin D. F., Equivalent Alternate Solutions for the Tour Scheduling Problem, In: Decision
Sciences, 22:985–1007, 1991

13. Ernst A. T. et al., An Annotated Bibliography of Personnel Scheduling and Rostering, In: Annals of
Operations Research, 127:21–144, 2004

14. Garey M. R., Johnson D. S., Computers and Intractability. A Guide to the Theory of NP-Completeness,
In: Series of Books in the Mathematical Sciences. Freeman, 1979

15. Günther, M. (2011). Hochflexibles Workforce Management: Herausforderungen und Lösungsverfahren,
Dissertation (in German), TU Ilmenau 2011

16. Günther M., Nissen V., A Comparison of Neighbourhood Topologies for Staff Scheduling With Parti-
cle Swarm Optimisation, In: Mertsching B., Hund M., Zaheer A. (eds.): KI 2009: Advances in Artificial
Intelligence, LNCS 5803:185–192, Berlin: Springer, 2009

17. Günther M., Nissen V., A Comparison of Three Heuristics on a Practical Case of Sub-Daily Staff
Scheduling. In: McCollum B., Burke E., White G. (eds.): Proceedings PATAT 2010 - 8th Int. Conf. on
the Theory and Practice of Automated Timetabling, 2010, 224–240

18. Kennedy J., Eberhart R. C., Particle Swarm Optimization, Proceedings of the IEEE International Con-
ference on Neural Networks, 1942–1948, Perth, Australia, IEEE Service Center, 1995

19. Kennedy J., Eberhart R. C., Shi Y., Swarm Intelligence, San Francisco: Kaufmann, 2001
20. Kennedy J., Mendes R., Population structure and particle swarm performance, In: Proceedings of the

IEEE Congress on Evolutionary Computation (CEC 2002), 2:1671–1676, Honolulu, USA, 2002
21. Kliem R. L., Anderson H. B., Styles and Their Impact on Project Management Results, In: Project

Management Journal, 27(1):41–50, 1996
22. Kokkoras F., D-WMS: A Distributed Version of a CLP-based Workforce Management System, Computer

Science Department, University of Bristol, UK, 1996
23. Kragelund L., Kabel T., Employee Timetabling. An Empirical Study of Solving Real Life Multi-

Objective Combinatorial Optimisation Problems by means of Constraint-Based Heuristic Search Methods,
Master’s Thesis in Computer Science, Department of Computer Science, University of Aarhus, 1998

24. Mendes R., Population Topologies and Their Influence in Particle Swarm Performance, PhD Thesis,
Departamento de Informtica, Escola de Engenharia, Universidade do Minho, 2004

25. Muller C., Magill E. H., Prosser P., Smith D. G., Distributed genetic algorithms for resource allocation,
In: Dorn J., Fröschl, K. (eds.), Scheduling of production processes, 70–78, Ellis Horwood, 1993

26. Naveh Y. et al. Workforce optimization: identification and assignment of professional workers using
constraint programming, In: IBM Journal of Research and Development archive, 51(3):263–279, 2007

27. Nissen, V., Günther, M. (2009). Staff Scheduling with Particle Swarm Optimization and Evolution Strate-
gies. In Cotta, C., Cowling, P. (Eds.). Proceedings of EvoCOP 2009 (pp. 228–239). LNCS 5482, Berlin:
Springer.

28. Sakellariou I., Kokkoras F., Vlahavas I., Applying a Distributed CLP Platform to a Workforce Man-
agement Problem, In: Proceedings of the 12th Conference on Intelligent Systems Application to Power
Systems (ISAP 2003), Lemnos, Griechenland, 2003

29. Tien J. M., Kamiyama A., Manpower Scheduling Algorithms, In: SIAM Review, 24(3):275–287, 1982
30. Tsang E. P. K. et al., Retractable Contract Network for Distributed Scheduling, In: Proceedings of the

2nd Multidisciplinary International Conference on Scheduling: Theory & Applications (MISTA 2005),
485–500, New York, USA, 2005

31. Tsang E. P. K. et al., Retractable contract network for empowerment in workforce scheduling, In: Special
Issue on Negotiation Mechanisms, Multiagent and Grid Systems, 4(1):25–44, 2008

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 255

32. Tsang E. P. K. et al., Multi-Agent Systems for Staff Empowerment, In: Voudouris C., Owusu G., Dorne
R., Lesaint D. (eds.), Service Chain Management. Technology Innovation for the Service Business, 236–
274, Springer, 2008

33. Tsang, E. P. K., Voudouris C., Fast Local Search and Guided Local Search and Their Application to
British Telecom’s Workforce Scheduling Problem, In: Operations Research Letters, 29(3):119–127, 1997

34. Yang R., Solving a Workforce Management Problem with Constraint Programming, In: Proceedings
of the 2nd International Conference on the Practical Application of Constraint Technology (PACT 1996),
373–387, London, UK, 1996

256 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Integer Programming Techniques for the Nurse
Rostering Problem

Santos, H.G., Toffolo, T.A.M., Ribas, S.,
Gomes, R.A.M.

Received: date / Accepted: date

Abstract This work presents Integer Programming (IP) techniques to tackle
the problem of the International Nurse Rostering Competition. Starting from a
compact and monolithic formulation on which the current generation of solvers
performs poorly, improved cut generation strategies and primal heuristics are
proposed and evaluated. A large number of computational experiments with
these techniques produced the following results: the optimality of the vast
majority of instances was proved, the best known solutions were improved up
to 15% and strong dual bounds were obtained. In the spirit of reproducible
science, all code was implemented using the COmputational Infrastructure for
Operations Research (COIN-OR).

Keywords Nurse Rostering · Integer Programming · Cutting Planes ·
Heuristics

1 Introduction

A significant amount of research has been devoted to the computational so-
lution of the Nurse Rostering Problem [15]. Much of previous work, however,
concentrates on specific case studies, focusing in particularities of certain in-
stitutions. For these works, comparison between different search strategies is
a very difficult task. Recently, the International Nurse Rostering Competition
(INRC) [28] was organized to stimulate the research in this area. An instance
set was proposed and a significant number of different algorithms has been
empirically evaluated using it. As a result, best known solutions have been
updated since then.

In this work we present a monolithic compact Integer Programming for-
mulation, i.e. a formulation with a polynomial number of constraints and vari-

Computing Department
Federal University of Ouro Preto
Ouro Preto, Minas Gerais, Brazil 35400-000

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 257

ables, for the problem described in INRC. We propose and evaluate techniques
for improving the performance of state-of-art integer programming solvers us-
ing this formulation.

The proposed techniques can be divided in two groups: the first group
is devoted to the improvement of dual bounds. In this case we are not only
interested in the quick production of high quality solutions but also interested
in having a precise estimate for a lower bound on the optimal solution cost.
This obviously incurs additional processing time but it is a critical step for
methods aiming at proving the optimality. In the second group we present
techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be applied alone for those interested in solving real world
situations.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only very competitive heuristics but
we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for the remaining instances up to 15%.

In the spirit of the reproducible science, the implementation of the cut gen-
eration procedures was made using the open source branch-and-cut software[24]
of the COIN-OR Foundation, CBC[33]. We proposed alternative cut separation
routines for two of the cut generators included on CBC and showed that these
routines significantly outperform the included ones considering the required
time to produce better lower bounds for INRC instances. These routines are
being made available also as an open source project.

The paper is organized as follows: in section 2 an informal description of
the problem is presented along with a brief description of previous algorithms
proposed in the literature. In section 3 the NRP problem is formally stated us-
ing our proposed formulation. Sections 4 and 5 present our proposals for dual
and primal bound improvements, respectively. Section 6 includes computa-
tional experiments to evaluate our proposals. Finally, in section 7, conclusions
and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [16]. In the nurse-day view, allocations
are indexed for each nurse and each day. This way, a solution can be directly
represented by a matrix where each cell mi,j contains a set of shifts to be
performed by the nurse i in the day j. Broadly speaking this set may have
any number of shifts, but it the INRC problem and most practical cases a
nurse performs only one shift per day – which may include morning shift (M),
evening shift (E), night shift (N), day-off (-), among others. Table 1 presents
part of a weekly roster which indicates the shifts allocated to the nurses, in a
nurse-day view.

258 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

In the nurse-task view, the decision variable is indexed for each nurse and
each task that the nurse performs in the scheduling period. This decision
variable may assume a value of 1 if the nurse is assigned to the task, or 0
otherwise. In the nurse-shift pattern view, the decision variable is indexed for
each nurse and each pattern of shifts available. Cheang et al. [16] presents a
bibliographic survey of the many models and methodologies available to solve
the NRP.

In this work, we address the problem defined in the first International Nurse
Rostering Competition, sponsored by the leading conference in the Automated
Timetabling domain, PATAT. Competitors were allowed to submit a specific
technique for each instance type. Here follow brief descriptions of approaches
that succeeded in the competition.

Valouxis et al. [44], winners of the challenge, developed a two phase strat-
egy where in the first phase the workload for each nurse and for each day of
the week was decided while in the second phase the specific daily shifts were
assigned. Since the competition imposed quality and time constraint require-
ments, they partitionated the problem instances into sub-problems of man-
ageable computational size which were then solved sequentially using Integer
Mathematical Programming. Also, they applied local optimization techniques
for searching across combinations of nurses’ partial schedules. This sequence
was repeated several times depending on the available computational time.

Burke and Curtois [12] applied an ejection chain based method for sprint
instances and a branch and price algorithm for medium and long instances.
Problem instances have been converted to the general staff rostering model
proposed and documented by the same team. Then, their software Roster
Booster which included the above mentioned algorithmic approaches was used.

Bilgin et al. [6] applied a hyper-heuristic approach combined with a greedy
shuffle heuristic. The hyper-heuristic consisted of a heuristic selection method
and a move acceptance criterion. The best solution found was further improved
by exploring swaps of partial rosters between nurses.

Nonobe [37] modified the general purpose constraint optimization problem
tabu search based solver presented in [38]. Their main idea is to spend less time
in developing algorithms since after reformulating the problem as a constraint
optimization problem only user defined constraints have to be implemented.

More details about these approaches can be consulted on the site of the
competition1.

Another recent work developed by Burke et al. [13] is a hybrid multi-
objective model that combines integer programming (IP) and variable neigh-

1 https://www.kuleuven-kulak.be/nrpcompetition/competitor-ranking

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 259

bourhood search (VNS) to deal with NRP. An IP formulation is first used to
solve the subproblem which includes the full set of hard constraints and a sub-
set of soft constrains. Next, a basic VNS follows as a postprocessing procedure
to further improve the IP’s resulting solutions. The major focus of the VNS is
the satisfaction of the excluded constraints from the preceding IP model.

2.1 Constraints

Combinatorial optimization problems generally carry hard and soft constraints.
Roughly, the difference is that hard constraint must be met and soft constraint
violations should be avoided. A single violation of a hard constraint renders the
solution infeasible. In this work, we considered the following hard constraints,
as defined in INRC:

– a nurse can not work more than one shift per day;
– all shift type demands during the planning period must be met.

and the following soft constraints:

– minimum/maximum number of shifts assigned to a nurse;
– minimum/maximum number of consecutive free days;
– minimum number of consecutive working days;
– maximum number of consecutive working weekends;
– number of days off after a series of night shifts;
– maximum number of working weekends in four weeks;
– complete weekends: if a nurse has to work only on some days of the weekend

then penalty occurs;
– identical shift types during the weekend: assignments of different shift types

to the same nurse during a weekend are penalized;
– day on/off request: requests by nurses to work or not to work on specific

days of the week should be respected, otherwise solution quality is com-
promised;

– shift on/off request: similar to the previous but now for specific shifts on
certain days;

– unwanted patterns: an unwanted pattern is a sequence of assignments that
is not in the preferences of a nurse based on her contract;

– alternative skill: if an assignment of a nurse to a shift type requiring a skill
that she does not have occurs, then the solution is penalized accordingly;
– unwanted patterns not involving specific shift types;
– unwanted patterns involving specific shift types.

In the next section our compact Integer Programming formulation for the
INRC problem will be presented.

260 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3 An Integer Programming Formulation for the INCR Problem

In this section we present an Integer Programming formulation which success-
fully models all constraints considered in instances of the International Nurse
Rostering Competition.

3.1 Input Data

N set of nurses
C set of contracts
c̃n contract of nurse n
S set of shifts
S̃ set of night shifts
D set of days with elements sequentially numbered from 1
Π set of all ordered pairs (d1, d2) ∈ D ×D : d1 ≤ d2 representing windows in

the planning horizon
W̃c set of weekends in the planning horizon according to the weekend definition

of contract c, with elements numbered from 1 to w̃c
D̃ic set of days in the i-th weekend of contract c
r̃ds number of required nurses at day d and shift s
Ṕc set of unwanted working shift patterns for contract c
P̂c set of unwanted working days patterns for contract c

The configuration of soft constraints depends on each contract c. Thus, each
contract has an associated weight (which may be null) for penalizing the vi-
olation of each soft constraint. Limits informing how tight is a given soft
constraint are also contract related.

We divide soft constraints in two groups. In the first group, denoted here
by Ranged Soft Constraints, we include constraints which state a range of valid
integer values for a variable in the format v ≤ v ≤ v. Values outside this range
need to penalized in slack variables according to its distance to the closest
valid value.

In the second group, the Logical Soft Constraints, are those constraints
which are satisfied or not, i.e. the maximum distance to feasibility is one.

In Table 2 each soft constraint is associated with an index. This index will
be used to express constants which state the minimum and maximum limit for
a given ranged soft constraint i and a contract c, which will be denoted here
by γi

c
and γic, respectively. The weight for violating the i-th minimum and

maximum limit of these constraints is denoted by ωic and ωic, respectively. For
logical soft constraints the weight of penalizing them is defined by ωic. Finally,
we denote by αin,αin α

i
n the slack variables associated with the the violation of

lower/upper limit of ranged and logical soft constraints i for nurse n, respec-
tively. Additional indexes in the αin variables may be used, for example, when
this violation must be computed for a specific location, so that α7

nk is the slack
variable related to the violation of the complete weekends soft constraint for
nurse n at the k-th weekend.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 261

Ranged Soft Constraints
1 total number of allocations
2 contiguous working days
3 contiguous resting days
4 total number of working weekends in four weeks
5 consecutive working weekends
6 number of resting days after a night shift

Logical Soft Constraints
7 complete weekends
8 no night shift before free weekend
9 same shift on weekends
10 alternative shifts
11 undesired working shifts pattern
12 undesired working days pattern
13 undesired shifts and days

Table 2 Indexes for ranged and logical soft constraints

Some specific sequences of working shifts (soft constraint 11) may be un-
wanted, e.g.: Late, Evening, Late. The set of these patterns for contract c
is specified in Ṕc and each pattern ṕ ∈ Ṕc has a size s̃(ṕ) and contents
ṕ[1], . . . , ṕ[s̃(ṕ)] ∈ S. Day related patterns are also considered in soft constraint
12: sequences of working/resting days should be avoided, e.g.: not working on
Friday and working on the succeeding weekend. The set of these patterns is
defined by P̂c with elements p̂ ∈ P̂c with size s̃(p̂). To specify which days
from the pattern represent the “not working” option we define a set of virtual
days Ḋ with negative numbered days representing this option, so that pattern
elements p̂[1], . . . , p̂[s̃(p̂)] are restricted to be in D ∪ Ḋ.

3.2 Decision variables

The main decision variables are the three indexed xnsd binary variables:

xnsd =

{
1 if nurse n is allocated to shift s and day d

0 otherwise

additionally, there are the following auxiliary variables:

yni =

{
1 if nurse n works at weekend i

0 otherwise

wnd1d2 =

{
1 if nurse n works from day d1 until day d2

0 otherwise

262 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

rnd1d2 =

{
1 if nurse n rests from day d1 until day d2

0 otherwise

zni1i2 =

{
1 if nurse n works from weekend i1 until weekend i2

0 otherwise

To simplify the statement of constraints we consider additional variables
yn0, which are always fixed to zero.

3.3 Objective Function

Before presenting the objective function we remark that some slack variables
(and their respective constraints) do not need to be explicitly included. This
is the case of constraints which are directly linked to the selection of a specific
working/resting window from the set Π by activating variables wnd1d2 and
rnd1d2 , respectively. This is obviously the case for soft constraints 2 and 3
(Table 2) and also the case for soft constraint 7, since every activation of
wnd1d2 finishing/starting in the middle of a weekend must be penalized. We
denote by σcd1d2 and τcd2 the weighted penalty of all violations incurred from
working (resting) continuously in a block starting at day d1 and finishing at
day d2 for nurses of contract c, respectively. Soft constraints 10 and 13 are
also directly penalized in xnsd variables with coefficients νnsd. Analogously,
soft constraint 5 is penalized in variables zni1i2 with coefficients ψni1i2.

Minimize:

∑
n∈N

∑
(d1d2)∈Π

(σc̃nd1d2wnd1d2 + τc̃nd1d2rnd1d2) +

∑
s∈S

∑
d∈D

νnsdxnsd + ω1
c̃nα

1
n + ω1

c̃n
α1
n +

∑
i∈{1...w̃c}

(ω4
c̃n
α4
ni + ω8

c̃n
α8
ni + ω9

c̃n
α9
ni) +

∑
i1,i2∈W̃c̃n :i2≥i1

ψni1i2zni1i2 +

∑
d∈D

ω6
c̃nα

6
n +

∑
ṕ∈Ṕc̃n

α11
nṕ +

∑
p̂∈P̂c̃n

α12
np̂

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 263

3.4 Constraints

Constraints are presented in the following. Constraints 1 and 2 model the two
hard constraints of the INRC problem : to provide sufficient coverage of nurses
for every day and shift and to limit working shifts for nurses to a maximum
of one per day. Constraints 3 and 4 link the activation of variables x with
the activation of y variables which indicate working weekends. Constraints
from 5 to 9 ensure that every working window activation (w variables) is
immediately followed by the activation of a r variable with the corresponding
resting window and vice versa. This implies the selection of contiguous working
and resting periods of different sizes for the whole planning horizon.

The following constraints are all soft-constraints, which means that they
can be violated since they include a slack variable (variables α) which will
be penalized in the objective function when activated. Ranged constraints
10 model the minimum and maximum working days in the planning horizon.
Constraints 11 limit the maximum number of working weekends in four weeks.
Constraints 12 consider the maximum number of consecutive weekends. Con-
straints 13 impose a minimum number of resting days after a sequence of night
shifts. Constraints 14 ensure that a nurse is not allocated to a night shift in a
day preceding a free weekend. For a weekend, allocated shifts should be equal
for every working day, as stated in constraints 15 and 16. Undesired patterns
for days and shifts are modeled in constraints 17 and 18.

∑
n∈N

xnsd = r̃ds ∀d ∈ D, s ∈ S (1)

∑
s∈S

xnsd ≤ 1 ∀n ∈ N, d ∈ D (2)

yni ≥
∑
s∈S

xnsd ∀n ∈ N, i ∈ W̃c̃n , d ∈ D̃ic̃n (3)

yni ≤
∑

s∈S,d∈D̃ic̃n

xnsd ∀n ∈ N, i ∈ W̃c̃n (4)

∑
s∈S

xnsd =
∑

(d1,d2)∈Π : d∈{d1,...,d2}
wnd1d2 ∀n ∈ N, d ∈ D (5)

∑
s∈S

xnsd = 1− (
∑

(d1,d2)∈Π : d∈{d1,...,d2}
rnd1d2) ∀n ∈ N, d ∈ D (6)

∑
(d1,d2)∈Π : d∈{d1...d2}

(wnd1d2 + rnd1d2) = 1 ∀n ∈ N, d ∈ D (7)

∑
d
′∈{1,...,d}

w
nd

′
d

+
∑

d
′′∈D:d

′′ ≥ d+1

w
n,d+1,d

′′ ≤ 1 ∀n ∈ N, d ∈ D (8)

∑
d
′∈{1,...,d}

r
nd

′
d

+
∑

d
′′∈D:d

′′≥d+1

r
n,d+1,d

′′ ≤ 1 ∀n ∈ N, d ∈ D (9)

γ1
c̃n
− α1

n ≤
∑

s∈S,d∈D
xnsd ≤ γ1

c̃n
+ α1

n ∀n ∈ N (10)

∑
i
′∈{i,...,i+3}

y
ni

′ ≤ γ4
c̃n

+ α4
ni ∀n ∈ N, i ∈ {1, . . . , w̃c̃n − 3} (11)

264 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

∑
i
′∈{i,...,i+γ5

c̃(n)
}

y
ni

′ ≤ γ5
c̃n

+ α5
ni ∀n ∈ N, i ∈ {1, . . . , w̃c̃n − γ

5
c̃n
} (12)

∑
s
′∈S̃

γ6
c̃n
x
ns

′
d

+
∑

s∈S\S̃,d′∈{d+1,...,d+γ6
c̃(n)
}

x
nsd

′

≤ γ6
c̃n

+ α6
nd ∀n ∈ N, d ∈ D : d ≤ |D| − γ6

c̃(n)
(13)∑

s∈S̃

∑
d∈W̃ic̃n :d≥2∧d≤d′∀d′∈W̃ic̃n

xn,s,d−1 + yni ≤ 1 + α8
ni ∀n ∈ N, i ∈ W̃ic̃n (14)

α9
n ≥ xnsd1−xnsd2 ∀n ∈ N, s ∈ S, i ∈ W̃c̃n , d1, d2 ∈ D̃ic̃(n) : d1 < d2 (15)

α9
n ≥ xnsd2−xnsd1 ∀n ∈ N, s ∈ S, i ∈ W̃c̃n , d1, d2 ∈ D̃ic̃(n) : d1 < d2 (16)∑

j∈{1,...,s̃(ṕ)}
xn,ṕ[1],d+j−1

≤ s̃(ṕ) + α11
nṕ ∀n ∈ N, ṕ ∈ Ṕc̃n , d ∈ {1, . . . , |D| − s̃(ṕ) + 1} (17)∑

s∈S

∑
j∈{1,...,s̃(p̂):p̂[j]≥1}

xn,s,p̂[j] +

∑
j∈{1,...,s̃(p̂):p̂[j]≤−1}

(1−
∑
s∈S

xn,s,−p̂[j]) ≤ s̃(p̂) + α12
n ∀n ∈ N, p̂ ∈ P̂c̃n (18)

4 Dual Bound Improvement : Cutting Planes

The problem considered contains mostly binary variables linked by several
GUB (generalized upper bound) constraints. Constraints of this type define
an implicit conflict graph [3] indicating the set of pairs of variables whose si-
multaneous activation is forbidden. Linear programming relaxations for these
problems can be significantly strengthened by the inclusion of inequalities de-
rived from the set packing polytope (SPP) [39]. The most common classes of
cuts for SPP are the clique cuts and the odd-hole cuts. A clique inequality for
a set C of conflicting variables has the form

∑
j∈C xj ≤ 1 and an odd-hole

inequality with conflicting variables C can be define as:
∑
j∈C xj ≤ b

|C|
2 c. It is

well known that in practice clique cuts are by far the most important ones [7].
The impact of these cuts has been explored for some hard timetabling prob-
lems [4,14]. Considering generic clique separation routines, the most common
ones are the star clique and the row clique method [21,29,7]. These are fast
separation routines which are used in the current version of the COIN-OR Cut
Generation Library. Our algorithm proposal considers aggressive clique sepa-
ration: instead of searching for the most violated clique inequality we search for
all violated clique inequalities. Some previous results indicate that this is the
best strategy. In [14], for example, although authors used a branch-and-bound
code to search for the most violated clique, computational results motivated
the inclusion of non-optimally violated cuts found during the search. This re-
sult is consistent with reports of application of other cuts applied to different
models, such as Chvàtal-Gomory cuts [23]. The option for inserting a large

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 265

number of violated inequalities at once is also responsible for reviving the go-
mory cuts importance [17]. The proposed clique separation routine has two
main components:

1. a module to separate all violated cliques in the conflict subgraph induced
by the fractional variables;

2. a lifting module which extends generated cliques considering the original
conflict graph.

The clique separation module was implemented using an improved version of
the Bron-Kerbosch algorithm [11]. This version implements an optimized piv-
oting rule [10] to speed up the discovery of maximal cliques with large weight.
This rule assigns the highest priority for visiting first nodes with large modified
degree (summation of node degree and of its neighbors) and weight. Although
this algorithm has an exponential worst case performance, the heuristic pivot
rules make the algorithm suitable not only for running in the enumeration con-
text but also for executing with restricted times, since larger violated cliques
tend to be discovered first. Nevertheless, our experiments showed that all vio-
lated inequalities for all instances can be enumerated in a fraction of a second
using our implementation. It is important to remark also that even if a subset
of cliques were inserted, the optimal solution would not be missed, branching
would take care of the rest. This situation does not occur in column generation:
an interruption of the pricing algorithm before the optimal column to be dis-
covered in the last iteration would make it impossible to prove the optimality
of the discovered solution. In other words, for exact algorithms the cut sepa-
ration problem can be hard, but column generation cannot, as pointed in [40].
The importance of lifting clique inequalities can be explained with the conflict
graph in Figure 1. Nodes inside the gray area indicate variables with non-zero
values in the fractional solution. In this solution, only nodes x2, . . . , x4 could
contribute to define a maximally violated clique inequality. Nevertheless, sub-
sequent linear programming relaxations could include three different violated
k3

2 cliques by alternating the inactive variable. If the k4 clique inequality were
inserted at the first fractional solution additional re-optimizations of the linear
program could be saved, furthermore, a less dense constraint matrix will be
obtained with the insertion of these dominant constraints first.

It is well known that the separation of odd-holes contributes only marginally
for lower bound improvement [7,35]. Nevertheless, its inclusion in the branch-
and-cut procedure is cheap, since these inequalities can be separated in poly-
nomial time using shortest path algorithms [25]. Odd hole inequalities can be
strengthened by the inclusion of a wheel center, such as variable x6 in the
conflict graph presented in Figure 2. In fact, for an odd hole with variables C
and W being the set of candidates to be included as wheel centers of C, the
following inequality is valid:∑

j∈W
b |C|

2
cxj +

∑
j∈C

xj ≤ b
|C|
2
c (19)

2 a clique with three nodes

266 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

x2

x3 x4

x1

Fig. 1 Example of a k3 which could be lifted to a k4

x5 x2

x1

x4 x3

x6

Fig. 2 Example of an odd hole and its possible extension to a wheel

The conflict graph is built by the analysis of the constraint matrix. Al-
though the presented formulation is complete for modeling the INRC problem,
we observed that solvers can detect a larger conflict graph if the following valid
inequalities are inserted:

∑
d′∈{1..d1}

rnd′d1 +
∑

d′′∈{d2..|D|}

wnd2d′′ ≤ 1 ∀n ∈ N, (d1, d2) ∈ Π : d2 − d1 = 2}

(20)

∑
d′∈{1,...,d1}

wnd′d1+
∑

d′′∈{d2,...,|D|}

rnd2d′′ ≤ 1 ∀n ∈ N, (d1, d2) ∈ Π : d2−d1 = 2}

(21)
We also observed that one subset of variables is directly linked to most of

the costs in the objective function: variables wnd1d2 and rnd1d2 . In the optimal
solution of the linear programming relaxation these variables often appear with
fractional values, weakening the quality of the dual bound. Since the number
of these active variables per nurse is quite limited, we opted for a specific cut
separation for these variables. Our routine, which separates the the fractional
value for a restricted group of these variables per nurse was implemented using
the Fenchel cutting planes [8,9]. These cuts will be called hereafter Window
cuts.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 267

5 Primal Bound Improvement : MIP heuristics

The use of MIP (Mixed Integer Programming) solvers in a heuristic context,
i.e. for producing good quality solutions in very restricted times is a grow-
ing trend in optimization [34,43]. A pervasive term in this area is subproblem
optimization. To speedup the improvement of feasible solutions, solvers work
on smaller problems performing local search. Subproblems can be defined ei-
ther with soft-fixation of variables, as in Local Branching and similar methods
[22,27], or with hard fixation of variables as in Relaxation Induced Neighbor-
hood Search (RINS)[19]. This latter work presented better results in tests with
MIPLIB[31] instances.

The proposed MIP heuristic employs a hybrid heuristic subproblem opti-
mization scheme. Heuristic rules are used to create subproblems P ′(H), defined
by hard fixation of a given set of variables H of the original problem P. The
algorithm consists basically of two subsequent phases: construction phase and
local search phase. The construction phase builds a feasible initial solution us-
ing simple heuristic rules, outside the MIP framework. MIP search is used in
all the remaining time for exploring large neighborhoods until a local minimum
is found. The procedure returns either the local optimum solution of all the
neighborhood structures or the best solution found within maxtime seconds.

Before presenting the MIP heuristic developed, we present a simple proce-
dure to build feasible solutions which will be used in our experiments.

5.1 A Greedy Constructive Algorithm

This method builds an allocation matrix M|N |×|D|, initializing all mij cells
with days off. Sequentially, for each day d and shift s, the demand r̃ds is
satisfied by selecting, one by one, a nurse n for which this new allocation incurs
the smallest increase in the objective function considering augmented partial
solution defined in M|N |×|D|. This process is repeated until all the demand
units are allocated. The algorithm has time complexity of O(|N |2 × |D|).

5.2 Neighborhood structures

The local search phase explores the search space through several neighbor-
hoods, using a VND (Variable Neighborhood Descent) [26] scheme. Consider-
ing the results obtained with recent uses of RINS heuristics [18], we proposed
two different neighborhood structures that are based on the resolution of small
partitions of the original problem to optimality. The differences between the
neighborhoods lie on the rules considered to generate such subproblems.

Given a feasible solution S0, a neighbor is obtained basically by (i) defining
a set of nurse allocations that will be fixed, according to the solution S0 and
(ii) solving to optimality the NRP subproblem obtained with the fixations. In
preliminary experiments, two of the evaluated neighborhoods presented much
better results. The following paragraphs describe these two neighborhoods.

268 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5.2.1 Fix Days neighborhood structure

In the Fix Days neighborhood structure, the NRP subproblems are generated
by fixing all the nurse allocations of |D| − ndays days of the month, where
ndays is a parameter of the neighborhood.

In the first iteration (iter = 0), a subproblem is created from a solution
S by fixing every nurse allocation but the ones on the days from 1 to ndays.
The subproblem is then solved to optimality. If the solution is improved, S is
updated. In the next iteration, another subproblem is generated by fixing all
nurse allocations but those on the days between dayA and dayB (equations
(22) and (23)):

dayA = 1 + (iter × step) (22)

dayB = ndays+ (iter × step) (23)

The equations (22) and (23) calculate, respectively, the beginning and the
end of a time window in which the nurse allocations remain unfixed. In these
equations, iter is the number of the current iteration and step is a parameter
that defines the number of days between two consecutive subproblems. If the
value of dayA or dayB is greater than the number of days, |D|, we consider the
day to be the remainder of its value divided by |D|. The algorithm proceeds
until |D|/step consecutive iterations without improvement are reached, which
indicates that a local optimum for the neighborhood was found. Figure 3
shows how the search on the solution space is performed by the Fix Days
neighborhood structure.

Unfixed days

2 Santos, H.G., To↵olo, T.A.M., Ribas, S., Gomes, R.A.M. and Vareto, R.H.

techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be used alone for those interested in the use of this
formulation in real world applications.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only a very competitive heuristics
but we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for remaining instances up to 15%.

In the spirit of the reproducible science the implementation which required
an in-depth integration with the solver, the cut generation, was made using
the branch-and-cut software[11] of the COIN-OR Foundation [15]. We pro-
posed alternative cut separation routines for two of cut generations included
on CBC and showed that these routines significantly outperform the included
ones considering the required time to produce better lower bounds for INRC
instances. These routines are being made available as an open source project.

The paper is organized as follows: in section 2 an informal description
of the problem is presented along a brief description of previous algorithms
proposed in literature. In section 3 the NRP problem is formally stated using
our proposed formulation.

is formally stated using the compact Integer Programming formulation
used in this work. Afterwards, MIP neighborhoods are presented. Following,
we present our heuristic which was used to provide initial feasible solutions.
Computational experiments with these modules are included and finally, con-
clusions and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [?]. In the nurse-day view, the decision
variable is indexed for each nurse and each day. This way, a solution can be
direct represented by a matrix where each cell mi,j contains a set of shifts to
be performed by the nurse i in the day j. Despite formally this set may have
any number of shifts, it is common in pratical cases a nurse performs only one
shift per day – which may include morning shift (M), evening shift (E), night
shift (N), day-o↵ (-), among others. Table 1 presents part of a weekly roster
which indicates the shifts allocated to the nurses, in a nurse-day view.

Tabela 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

2 Santos, H.G., To↵olo, T.A.M., Ribas, S., Gomes, R.A.M. and Vareto, R.H.

techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be used alone for those interested in the use of this
formulation in real world applications.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only a very competitive heuristics
but we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for remaining instances up to 15%.

In the spirit of the reproducible science the implementation which required
an in-depth integration with the solver, the cut generation, was made using
the branch-and-cut software[11] of the COIN-OR Foundation [15]. We pro-
posed alternative cut separation routines for two of cut generations included
on CBC and showed that these routines significantly outperform the included
ones considering the required time to produce better lower bounds for INRC
instances. These routines are being made available as an open source project.

The paper is organized as follows: in section 2 an informal description
of the problem is presented along a brief description of previous algorithms
proposed in literature. In section 3 the NRP problem is formally stated using
our proposed formulation.

is formally stated using the compact Integer Programming formulation
used in this work. Afterwards, MIP neighborhoods are presented. Following,
we present our heuristic which was used to provide initial feasible solutions.
Computational experiments with these modules are included and finally, con-
clusions and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [?]. In the nurse-day view, the decision
variable is indexed for each nurse and each day. This way, a solution can be
direct represented by a matrix where each cell mi,j contains a set of shifts to
be performed by the nurse i in the day j. Despite formally this set may have
any number of shifts, it is common in pratical cases a nurse performs only one
shift per day – which may include morning shift (M), evening shift (E), night
shift (N), day-o↵ (-), among others. Table 1 presents part of a weekly roster
which indicates the shifts allocated to the nurses, in a nurse-day view.

Tabela 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

iter=0 iter=1 iter=2

Fig. 3 Fix Days neighborhood subproblems with ndays = 3 and step = 2.

The neighborhood has two parameters, step and ndays. As said before, the
first one indicates the number of days between two consecutive subproblems.
The smaller the value, the greater is the number of different subproblems
in the neighborhood. The other parameter, ndays, defines the size of each
subproblem and so is a critical one. Small values may create subproblems that
do not contain any better solution and large values may create unmanageable
subproblems.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 269

5.2.2 Fix Shifts neighborhood structure

In the Fix Shifts neighborhood structure, the subproblems are created by fixing
all the allocations of |S| − 1 shifts. On the first iteration, only the allocations
of the first shift remain unfixed. On the second iteration, only the alloca-
tions of the second shift aren’t fixed, and so on. Since the number of different
subproblems generated in this neighborhood is equal to |S|, the algorithm pro-
ceeds until |S| consecutive iterations without improvement are reached. The
neighborhood doesn’t have any parameter.

Given that an average instance has from 3 to 5 shifts, it may seem that the
subproblems of this neighborhood are hard to solve. But such subproblems
can actually be solved in very small time, as seen on section 6.

5.3 Mathematical programming heuristic

In the latter section, we presented the neighborhood structures used by our
mathematical programming heuristic (MPH). The heuristic works in a VND
fashion, searching each one of the neighborhoods until their local minima are
found. We decided to use the following neighborhoods in our algorithm:

Nm
1 : Fix Days neighborhood structure with ndays = 2m and step = m
N2 : Fix Shifts neighborhood structure

First, the algorithm performs a complete search on the neighborhoods Nm
1

and N2. After that, the algorithm increases the value of m by 1, searching for
the best solution on the neighborhood Nm+1

1 . If any improvement is produced
by the latter search, the algorithm searches the neighborhood N2 before in-
crementing the value of m. Otherwise, the algorithm just increases the value
of m by 1, moving to the neighborhood Nm+1

1 . This procedure repeats until
m > |D|/2 or until the time limit is reached.

Figure 4 shows the pseudocode of the proposed heuristic. In this figure, the
procedures Nm

1 (S0) and N2(S0) return, respectively, the best neighbors of S0

in the neighborhoods Nm
1 and N2. If no better solution than S0 is found, then

S0 is returned.
It is important to note that on a standard VND, it is typical to choose

a specific order of neighborhoods to be searched. If one neighborhood is able
to improve the solution, VND moves back to the first neighborhood, restart-
ing the search. Our algorithm always increments the value of m. We decided
to do so because we observed that searching again the neighborhood Nm

1 al-
most never improves the solution, but takes considerable processor time. Since
neighborhood Nm

1 is smaller than Nm+1
1 , and most neighbors of Nm

1 are also
in the neighborhood Nm+1

1 , looking again for a better solution on Nm
1 can be

a waste of time.
Another interesting thing to note is that if a time limit is not set, the

original problem will be solved in the last iteration of the heuristic. This occurs

because finding the local minimum of any solution S in the neighborhood N |D|1

is the same as solving the original problem itself.

270 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Require: S0, m
1: S∗ ← Nm1 (S0)
2: S∗ ← N2(S∗)
3: m = m+ 1
4: while m ≤ |D|/2 and time limit not reached do
5: S ← Nm1 (S∗)
6: if S is a better solution than S∗ then
7: S∗ ← N2(S)
8: end if
9: m = m+ 1

10: end while
11: return S∗;

Fig. 4 Pseudocode of MPH Algorithm

6 Computational Experiments

Our code was written in C++ using the open source COIN-OR libraries. This
approach allowed us to deeply integrate our routines with the COIN-OR MIP
solvers [24,42,32] and also communicate with commercial solvers through the
Open Solver Interface (OSI)[41]. Closed source solvers can also have additional
code integrated by using callbacks, but this approach is ultimately limited by
which callbacks are available and how many decisions they delegate. Thus, all
cut generation routines were implemented and tested using the COIN Branch-
and-Cut solver (CBC) [24], which is the fastest open source mixed integer
programming solver available [36].

The code was compiled on GCC/g++ version 4.6. We ran all the exper-
iments on several Core i7 3.4GHz computers with 16Gb of RAM memory
running Linux Ubuntu 10.10 64-bits. We used CPLEX version 12.2.0 and
COIN-OR CBC 2.7.6.

The instance set used within the experiments was the same used during
the INRC, including the harder hidden instances. Further information about
these instances can be found in [28] or at the competition website3.

Before proceeding to the evaluation of our proposals, we present some
experiments with a state-of-art integer programming solver. The objective is
to determine how powerful these solvers are handling the INRC instances with
the proposed formulation and the application of only small additional settings,
if any.

6.1 Standalone solvers

We included experiments with the commercial CPLEX [30] standalone solver.
In Table 3 the results of CPLEX running with different optimization em-

phasis with execution times time restricted to 10 minutes and one hour are
included. The final lower and upper (lb/ub) bounds are presented with the
computed gap ub−lb

lb × 100.

3 http://www.kuleuven-kulak.be/nrpcompetition

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 271

http://www.kuleuven-kulak.be/nrpcompetition

Results are summarized per instance group, including the maximum value,
average and standard deviation (m/a/s.d.) gap values.

Since the production of a feasible solution for INRC instances can be done
very quickly using a greedy heuristic (see section 5.1) and CPLEX standalone
solver can read initial solutions, we also included experiments where CPLEX
starts from an already produced feasible solution (columns with s = gr(.)). For
sprint instances CPLEX always found the optimal solution in a few minutes,
so we did not report results for these instances.

Results in Table 3 indicate that although there are large instances which
are easy for the standalone solver, so that optimality was proven in less than
10 minutes, there are several instances where the solver alone (columns s = ∅)
could not reach any feasible solution in one hour of processing time, even
with the activation of the heuristic emphasis. Even though entering one initial
solution (columns s = gr(.)) solves the feasibility problem, the final solution
quality after one hour of processing time is still far from acceptable, with gaps
ofabout 70% appearing in some cases. These results show that in spite of the
progresses in generic MIP solvers, in many cases of real world applications the
hybridization of these solvers with methods which consider problem specific
information is still very important and in many cases absolutely necessary.

6.2 Cutting planes

The objective of the separation procedure is to speed up the improvement
of the lower bound and consequently to prove the optimality faster. In the
first experiment we ran several rounds of cut separation using our proposed
clique separation procedure, named here as eclq and the clique separation
routine included in the COIN-OR Cut Generation Library, denoted here as
cgl, restricted by the following time limit: 100 seconds for sprint instances and
600 seconds for larger instances. To measure the improvements we computed
for each instance and time instant the relative distance (gap) to best upper
bound: the optimal solution or best known solution. Let a given lower bound
lb and an upper bound ub the gap is ub−lb

ub × 100. In Figure 5 the evolution of
the average gap for groups of instances in time is presented. It can be observed
that the inclusion of our lifted inequalities allows a faster reduction in the gap.
Furthermore, eclq cuts still make progress when cgl cuts cannot perform any
significant change in the dual limit. The separation of odd holes showed no
surprises for us: as previous works say, they have no significant impact for
dual bound improvement. One reason for this is that most violated odd-holes
found are k3, so that the clique separation routines already finds it. Violated
odd holes of size 5 or more are scarce in the root node relaxation. Nevertheless,
these are safe cuts (i.e. they do not depend on rounding numbers computed
with limited floating point accuracy) which can be instantly separated, so they
are worth keeping in branch-and-cut procedure even if they have a marginal
contribution observed in the root node relaxation.

272 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

C
P

L
E
X

1
2
.1

d
e
fa

u
lt

s
e
t
t
in

g
s

C
P

L
E
X

1
2
.1

h
e
u
r
is

t
ic

e
m

p
h
a
s
is

1
0
m

in
/

s
=

∅
1
0
m

in
/

s
=

g
r
(
.)

1
h
o
u
r

/
s

=
∅

1
h
o
u
r

/
s

=
g
r
(
.)

1
0
m

in
/

s
=

∅
1
0
m

in
/

s
=

g
r
(
.)

1
h
o
u
r

/
s

=
∅

1
h
o
u
r

/
s

=
g
r
(
.)

In
s
t
a
n
c
e

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

long

early

0
1

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

0
2

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

0
3

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
4

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

0
5

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

hidden
0
1

3
1
9

∞
∞

3
1
9

4
8
7

3
4
.5

3
3
7

6
1
5

4
5
.2

3
3
4

3
7
4

1
0
.7

3
1
9

∞
∞

3
1
9

4
8
7

3
4
.5

3
3
7

6
0
2

4
4
.0

3
3
4

3
8
0

1
2
.1

0
2

8
1

∞
∞

8
1

1
1
1

2
7
.0

8
1

1
5
3

4
7
.1

8
6

9
2

6
.5

8
1

∞
∞

8
1

1
1
1

2
7
.0

8
1

1
4
3

4
3
.4

8
6

9
3

7
.5

0
3

1
7

∞
∞

1
8

6
1

7
1
.0

1
7

∞
∞

2
5

5
5

5
5
.2

1
7

∞
∞

1
8

6
1

7
1
.0

2
6

∞
∞

2
6

5
1

4
9
.9

0
4

1
4

∞
∞

1
4

4
4

6
8
.8

1
4

∞
∞

1
9

4
4

5
6
.1

1
4

∞
∞

1
4

4
4

6
8
.8

1
9

∞
∞

1
4

4
2

6
7
.2

0
5

3
6

∞
∞

3
6

1
3
0

7
2
.7

4
0

∞
∞

4
1

4
1

0
.0

3
6

∞
∞

3
6

1
3
0

7
2
.7

4
0

∞
∞

4
0

4
6

1
4
.1

late

0
1

2
1
2

∞
∞

2
0
4

3
8
5

4
6
.9

2
3
1

∞
∞

2
3
2

2
3
7

2
.1

2
1
2

∞
∞

2
0
4

3
8
5

4
6
.9

2
3
1

∞
∞

2
3
3

2
6
7

1
2
.7

0
2

2
1
4

∞
∞

2
0
8

4
0
9

4
9
.2

2
2
9

2
8
2

1
8
.8

2
2
9

2
2
9

0
.0

2
1
4

∞
∞

2
0
8

4
0
9

4
9
.2

2
2
9

5
1
7

5
5
.7

2
2
9

2
2
9

0
.0

0
3

2
1
3

∞
∞

2
1
2

3
9
1

4
5
.8

2
1
8

2
5
0

1
2
.8

2
1
8

2
2
1

1
.4

2
1
3

∞
∞

2
1
2

3
9
1

4
5
.8

2
1
6

2
9
5

2
6
.8

2
1
8

2
2
5

3
.1

0
4

1
9
6

∞
∞

1
9
7

3
1
0

3
6
.5

2
1
3

∞
∞

2
1
3

2
3
0

7
.4

1
9
6

∞
∞

1
9
7

3
1
0

3
6
.5

2
1
3

∞
∞

2
1
2

2
3
4

9
.3

0
5

7
9

6
3
5

8
7
.5

7
9

2
7
0

7
0
.9

7
9

5
4
2

8
5
.4

8
0

2
2
9

6
5
.3

7
9

6
3
5

8
7
.5

7
9

2
7
0

7
0
.9

7
9

5
4
5

8
5
.5

8
0

2
6
9

7
0
.4

(
m

/
a

/
s
.d

.)
(
∞

/
6
5
.8

/
4
8
.3

)
(
7
2
.7

/
3
4
.9

/
2
9
.0

)
(
∞

/
4
7
.3

/
4
5
.1

)
(
6
5
.3

/
1
3
.6

/
2
3
.7

)
(
∞

/
6
5
.8

.
4
8
.3

)
(
7
2
.7

/
3
4
.9

/
2
9
.0

)
(
∞

/
5
0
.4

/
4
3
.8

)
(
7
0
.4

/
1
6
.4

/
2
4
.8

)

medium

early

0
1

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
2

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
3

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

0
4

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

0
5

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

hidden

0
1

6
0

1
0
9
3

9
4
.5

5
9

3
1
4

8
1
.3

6
2

2
8
7

7
8
.3

6
1

2
2
7

7
3
.0

6
0

1
0
9
3

9
4
.5

5
9

3
1
4

8
1
.3

3
6
6

1
0
6
0

9
3
.8

6
4

2
2
0

7
1
.1

0
2

1
8
3

∞
∞

1
8
0

3
5
2

4
8
.9

1
8
8

3
1
2

3
9
.6

1
8
8

2
5
8

2
7
.0

1
8
3

∞
∞

1
8
0

3
5
2

4
8
.9

1
8
9

2
9
1

3
5
.2

1
8
8

2
9
1

3
5
.3

0
3

2
2

4
4
9

9
5
.0

2
2

9
3

7
6
.0

2
3

9
3

7
4
.9

2
4

9
3

7
4
.7

2
2

4
4
9

9
5
.0

2
2

9
3

7
5
.9

9
2
4

6
0

6
0
.3

2
4

4
9

5
1
.9

0
4

5
8

∞
∞

5
9

1
3
6

5
7
.0

6
0

9
7

3
8
.6

6
3

9
6

3
4
.8

5
8

∞
∞

5
9

1
3
6

5
6
.9

9
6
2

9
6

3
5
.8

6
2

1
0
9

4
2
.8

0
5

5
6

∞
∞

5
6

2
3
3

7
5
.9

8
4

4
8
8

8
2
.9

7
8

2
3
3

6
6
.7

5
6

∞
∞

5
6

2
3
3

7
5
.8

9
8
4

4
2
7

8
0
.4

8
2

2
0
5

6
0
.0

late

0
1

1
4
8

1
7
1

1
3
.5

1
4
5

2
1
5

3
2
.5

1
5
2

1
5
7

3
.1

1
5
2

1
5
7

2
.9

1
4
9

1
6
6

1
0
.5

1
4
7

2
1
2

3
0
.7

7
1
5
1

1
5
8

4
.4

1
5
1

1
5
7

3
.5

0
2

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
1
8

1
8

0
.0

1
8

1
8

0
.0

0
3

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
2
9

2
9

0
.0

2
9

2
9

0
.0

0
4

3
3

3
5

4
.4

3
4

3
7

9
.4

3
4

3
5

2
.9

3
5

3
5

0
.0

3
5

3
5

0
.0

3
3

3
7

9
.8

3
5

3
5

0
.0

3
5

3
5

0
.0

0
5

1
0
4

1
1
4

9
.2

1
0
3

1
2
0

1
3
.9

1
0
6

1
0
7

1
.0

1
0
7

1
0
7

0
.0

1
0
4

1
2
3

1
5
.8

1
0
3

2
1
6

5
2
.5

5
1
0
7

1
0
7

0
.0

1
0
7

1
0
7

0
.0

(
m

/
a

/
s
.d

.)
(
∞

/
3
4
.4

/
4
6
.6

)
(
8
1
.3

/
2
6
.3

/
3
2
.4

)
(
8
2
.9

/
2
1
.4

/
3
2
.5

)
(
7
4
.7

/
1
8
.6

/
2
9
.4

)
(
∞

/
3
4
.4

/
4
6
.7

)
(
8
1
.3

/
2
8
.8

/
3
2
.9

)
(
9
3
.8

/
2
0
.7

/
3
2
.8

)
(
7
1
.1

/
1
7
.6

/
2
6
.4

)

Table 3 Results of the standalone commercial solver CPLEX

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 273

 6

 8

 10

 12

 14

 16

 18

 20

 1 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - sprint instances

eclq
cgl

 35

 40

 45

 50

 55

 60

 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - medium instances

eclq
cgl

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - long instances

eclq
cgl

Fig. 5 Dual bound improvement for COIN-OR built in cut generator (cgl) and the pro-
posed cut cut separation procedure (eclq)

After a series of experiments with all cuts available in the COIN-OR Cut
Generation Library (CGL), we found out that the following generic cutting
planes were also useful in improving the dual bound: Mixed Integer Gomory[5],
Two-Step Mixed Integer Rounding[20], RedSplit[1] and the Zero-Half (0/ 1

2)[2]
cuts. Zero-Half cuts are not available yet in the latest formal CGL release,

274 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Window Zero-Half Gomory RedSplit TwoMIR

sp
ri

n
t max. 50.1 51.5 93.7 52.9 52.8

min. 1.9 3.7 3.7 3.7 3.7
av. 19.7 21.6 26.2 22.3 22.6

std.dev 15.2 15.3 23.1 15.8 15.9

m
ed

iu
m max. 100.0 100.0 100.0 100.0 100.0

min. 0.0 0.0 0.0 0.0 0.0
av. 50.1 51.2 51.9 50.7 41.1

std.dev 46.6 46.3 47.7 46.7 47.9

lo
n

g

max. 100.0 100.0 58.9 100.0 36.5
min. 0.0 0.0 0.0 0.0 0.0
av. 37.5 38.7 14.5 38.0 5.9

std.dev 39.1 39.3 17.8 40.3 9.3

Table 4 Contribution of different cuts to improve root node relaxation lower bound

but authors gently offered the code for our experiments. The contribution of
all these additional cuts applied jointly with our clique cuts for improving
the lower bound for each group of instances is shown in Table 4. Considering
the linear programming relaxation limit (lp) and the lower bound obtained at
the end of the root node cut application in CBC (lb) we computed for each
instance the improvement: min{ lb−lplp+ε × 100, 100}, where ε is a small constant
to avoid division by zero. A summary of these results is presented in Table 4.
As it can be seen, although gomory cuts are of crucial importance for small
instances, its relevance diminishes in larger instances. The reason is that these
cuts tend to produce very dense constraints for large linear programs and are
probably discarded by the branch and cut code of CBC in large instances. The
proposed Window cuts, on the other hand, appear to be more important in
larger instances.

6.3 Mathematical Programming Heuristic

The MPH uses CPLEX within the algorithm to solve the subproblems. Parallel
mode was disabled, so both the heuristic and CPLEX ran sequentially. All 60
instances from the INRC [28] were tested with the parameter m assuming
values from 1 to 9. The results are reported in Table 5.

In this table, the column BKS shows the best known solutions, including
the ones found in this work (marked with a ~). The following columns show
the best results found in the literature (PUB), the best results by CPLEX,
the best results obtained by the MPH with m in the range of 1 to 9 and the
best results obtained in each one of these. For each result, the table reports
the best upper bound (ub) obtained and the gap between this upper bound
(ub) and the best known solution (BKS): ub−BKS

ub × 100.
The results for “sprint” instances weren’t reported in Table 5 because, for

all of them, the heuristic was able to find the optimal solution within 3 minutes
with m starting with values in the range [1,9].

Some comments about the results shown in Tables 5:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 275

C
P
L
E
X

b
e
s
t

M
P
H

M
P
H

r
e
s
u
lt
s

w
it
h

d
if
fe

r
e
n
t

v
a
lu

e
s

fo
r

m

P
U
B

(
m

=
1
4
)

(
m

∈
[1

,
9
])

m
=

1
m

=
2

m
=

3
m

=
4

m
=

5
m

=
6

m
=

7
m

=
8

m
=

9

In
s
t
a
n
c
e

B
K

S
U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

long

early

0
1

1
9
7

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

0
2

2
1
9

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
2
0

0
.5

2
2
0

0
.5

2
2
0

0
.5

2
2
0

0
.5

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

0
3

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
4

3
0
3

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

0
5

2
8
4

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

hidden

0
1

~
3
4
6

3
6
3

4
.7

4
8
7

2
9
.0

3
4
6

0
.0

3
4
7

0
.3

3
4
8

0
.6

3
4
6

0
.0

3
4
6

0
.0

3
5
9

3
.6

3
4
6

0
.0

3
5
5

2
.5

5
3
4

3
5
.2

5
0
6

3
1
.6

0
2

~
8
9

9
0

1
.1

1
1
1

1
9
.8

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

9
6

7
.3

0
3

3
8

3
8

0
.0

6
1

3
7
.7

3
9

2
.6

3
9

2
.6

4
0

5
.0

4
0

5
.0

4
1

7
.3

4
1

7
.3

4
2

9
.5

1
3
0

7
0
.8

1
1
9

6
8
.1

1
1
8

6
7
.8

0
4

2
2

2
2

0
.0

4
4

5
0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

3
7

4
0
.5

4
1

4
6
.3

1
1
2

8
0
.4

0
5

4
1

4
1

0
.0

1
3
0

6
8
.5

4
1

0
.0

4
3

4
.7

4
5

8
.9

4
2

2
.4

4
3

4
.7

4
3

4
.7

4
3

4
.7

4
1

0
.0

4
9

1
6
.3

1
7
4

7
6
.4

late

0
1

2
3
5

2
3
5

0
.0

3
8
5

3
9
.0

2
3
9

1
.7

2
3
9

1
.7

2
4
1

2
.5

2
3
9

1
.7

2
4
1

2
.5

2
4
2

2
.9

2
4
4

3
.7

2
4
4

3
.7

2
4
4

3
.7

2
5
7

8
.6

0
2

2
2
9

2
2
9

0
.0

4
0
9

4
4
.0

2
3
5

2
.6

2
3
5

2
.6

2
3
5

2
.6

2
3
7

3
.4

2
3
5

2
.6

2
3
9

4
.2

2
4
2

5
.4

2
3
5

2
.6

2
4
2

5
.4

2
4
3

5
.8

0
3

2
2
0

2
2
0

0
.0

3
9
1

4
3
.7

2
2
0

0
.0

2
2
1

0
.5

2
2
5

2
.2

2
2
1

0
.5

2
2
0

0
.0

2
3
3

5
.6

2
3
9

7
.9

2
3
3

5
.6

2
2
0

0
.0

3
8
0

4
2
.1

0
4

2
2
1

2
2
1

0
.0

3
1
0

2
8
.7

2
2
2

0
.5

2
2
5

1
.8

2
3
1

4
.3

2
2
8

3
.1

2
2
4

1
.3

2
2
9

3
.5

2
2
7

2
.6

2
2
2

0
.5

2
2
8

3
.1

2
3
3

5
.2

0
5

8
3

8
3

0
.0

2
7
0

6
9
.3

8
3

0
.0

8
6

3
.5

8
3

0
.0

8
3

0
.0

8
3

0
.0

8
3

0
.0

8
3

0
.0

9
2

9
.8

1
5
9

4
7
.8

2
4
0

6
5
.4

g
a
p

(
a
v
g
./

s
t
d
.
d
e
v
ia

t
io

n
)

(
0
.4

/
1
.2

)
(
2
8
.6

/
2
4
.7

)
(
0
.5

/
0
.9

)
(
1
.2

/
1
.5

)
(
1
.8

/
2
.6

)
(
1
.1

/
1
.6

)
(
1
.3

/
2
.2

)
(
2
.1

/
2
.5

)
(
2
.3

/
3
.3

)
(
9
.1

/
2
0
.0

)
(
1
5
.1

/
2
2
.7

)
(
2
6
.0

/
3
1
.6

)

medium

early

0
1

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
2

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
3

2
3
6

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

0
4

2
3
7

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

0
5

3
0
3

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

hidden

0
1

~
1
1
1

1
3
0

1
4
.6

3
1
4

6
4
.6

1
1
1

0
.0

1
1
6

4
.3

1
1
1

0
.0

1
1
8

5
.9

1
1
8

5
.9

1
1
6

4
.3

1
1
7

5
.1

1
1
8

5
.9

1
2
0

7
.5

3
0
7

6
3
.8

0
2

2
2
1

2
2
1

0
.0

3
5
2

3
7
.2

2
2
1

0
.0

2
2
1

0
.0

2
2
3

0
.9

2
2
4

1
.3

2
2
7

2
.6

2
2
3

0
.9

2
3
5

6
.0

2
2
1

0
.0

2
2
6

2
.2

2
5
6

1
3
.7

0
3

~
3
4

3
6

5
.6

9
3

6
3
.4

3
4

0
.0

3
4

0
.0

4
0

1
5
.0

4
1

1
7
.1

3
8

1
0
.5

3
6

5
.6

3
8

1
0
.5

3
6

5
.6

3
6

5
.6

4
1

1
7
.1

0
4

~
7
8

8
0

2
.5

1
3
6

4
2
.6

8
0

2
.5

8
0

2
.5

8
0

2
.5

8
4

7
.1

8
1

3
.7

8
2

4
.8

8
1

3
.7

8
1

3
.7

8
0

2
.5

1
4
7

4
6
.9

0
5

~
1
1
9

1
2
2

2
.5

2
3
3

4
8
.9

1
1
9

0
.0

1
2
1

1
.7

1
2
0

0
.8

1
2
3

3
.3

1
2
1

1
.7

1
2
0

0
.8

1
1
9

0
.0

1
2
7

6
.3

1
2
1

1
.7

2
3
2

4
8
.7

late

0
1

~
1
5
7

1
5
8

0
.6

2
1
5

2
7
.0

1
5
7

0
.0

1
6
1

2
.5

1
6
0

1
.9

1
6
0

1
.9

1
6
1

2
.5

1
6
1

2
.5

1
5
7

0
.0

1
5
9

1
.3

1
6
1

2
.5

1
6
4

4
.3

0
2

1
8

1
8

0
.0

1
8

0
.0

1
9

5
.3

1
9

5
.3

1
9

5
.3

2
2

1
8
.2

2
3

2
1
.7

2
4

2
5
.0

2
0

1
0
.0

2
0

1
0
.0

2
0

1
0
.0

2
4

2
5
.0

0
3

2
9

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

0
4

3
5

3
5

0
.0

3
7

5
.4

3
5

0
.0

3
5

0
.0

3
6

2
.8

3
5

0
.0

3
6

2
.8

3
6

2
.8

3
7

5
.4

3
7

5
.4

3
5

0
.0

3
6

2
.8

0
5

1
0
7

1
0
7

0
.0

1
2
0

1
0
.8

1
0
8

0
.9

1
0
8

0
.9

1
1
4

6
.1

1
1
3

5
.3

1
1
8

9
.3

1
1
4

6
.1

1
1
4

6
.1

1
1
9

1
0
.1

1
0
9

1
.8

1
1
2

4
.5

g
a
p

(
a
v
g
./

s
t
d
.
d
e
v
ia

t
io

n
)

(
1
.7

/
3
.9

)
(
2
0
.0

/
2
4
.9

)
(
0
.6

/
1
.5

)
(
1
.1

/
1
.7

)
(
2
.4

/
4
.0

)
(
4
.0

/
6
.0

)
(
4
.1

/
6
.0

)
(
3
.5

/
6
.4

)
(
3
.1

/
3
.8

)
(
3
.2

/
3
.7

)
(
2
.2

/
3
.1

)
(
1
5
.1

/
2
1
.3

)

Table 5 Results of the Mathematical Programming Heuristic

276 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

– The impact of the parameter m is very perceptible and the best average
result were obtained when m = 1.

– The upper bounds provided by the MPH are certainly very good, especially
when m = 1 in the first iteration. Considering all the runs (m starting
from 1 to 9), the heuristic was able to outperform the best solution on the
literature for 6 instances. Considering the “sprint” instances, the gap was
greater than 0 only for 7 out of 60 instances. The average gap from the
best known solution was also very low: 0.5% for “long” instances and 0.6%
for “medium” instances, with a maximum gap of 5.3% considering all the
instances, which is specifically related to one unit on the objective function
value of instance medium late02.

– Since the MPH was able to robustly find good solutions in up to 10 minutes
of sequential processor time, we decided not to report results of longer runs.
Such decision is easy to be explained, since running the heuristic for longer
times may result in solving the original problem (see section 5.3), which
can take a very long time for some instances.

– The comparison with the upper bounds of the method and the best results
from literature should take into account the difference of order of magni-
tude in the running times for “long” instances. While MPH running times
are limited to 600 seconds, Valouxis et al. [44] report times of up to 36,000
seconds on these instances. The comparison is more fair when considering
the “medium” instances, since running times are similar.

Figure 6 shows the improvement in time with regard to the upper bound by
MPH using different values for the initial m. From this figure we can conclude
that for values lower than 7 for the initial m, the MPH is capable to produce
good solutions in the early stages of the search. The figure also shows that,
as the value of the initial m becomes larger, the heuristic takes more time to
generate better solutions. Such additional time is not worthwhile, since the
final solution is still worse than the ones produced by MPH with smaller m
in the first iteration.

6.4 Best Results

The best results obtained from all experiments are presented in Table 6. Table
cells marked with ~ indicate some improvement over the best known solution
as reported in the INRC site at time of the writing of this work. It is important
to remember that this site has received updates in the years following the
competition, so the previous best known solutions (column PUB) were already
very hard to find. Most instances were solved to optimality and the harder
among the unsolved instances is medium hidden05 where the lower bound
distance is now at 23.7%.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 277

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - long instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - medium instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - sprint instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

Fig. 6 Improvement in time graphic for MPH with different values for the initial m.

278 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Instance LB PUB UB GAP Instance LB PUB UB GAP

lo
n
g

e
a
r
ly

01 197.0 197 197 0.0

s
p
r
in

t

e
a
r
ly

01 56.0 56 56 0.0
02 219.0 219 219 0.0 02 58.0 58 58 0.0
03 240.0 240 240 0.0 03 51.0 51 51 0.0
04 303.0 303 303 0.0 04 59.0 59 59 0.0
05 284.0 284 284 0.0 05 58.0 58 58 0.0

h
id

d
e
n

01 341.0 363 ~ 346 1.4 06 54.0 54 54 0.0
02 86.0 90 ~ 89 3.4 07 56.0 56 56 0.0
03 35.3 38 38 7.1 08 56.0 56 56 0.0
04 19.0 22 22 13.8 09 55.0 55 55 0.0
05 41.0 41 41 0.0 10 52.0 52 52 0.0

la
t
e

01 232.0 235 235 1.3

la
t
e

01 32.0 33 ~ 32 0.0
02 229.0 229 229 0.0 02 32.0 32 32 0.0
03 219.0 220 220 0.5 03 62.0 62 62 0.0
04 214.6 221 222 3.3 04 66.0 67 ~ 66 0.0
05 83.0 83 83 0.0 05 59.0 59 59 0.0

m
e
d
iu

m

e
a
r
ly

01 240.0 240 240 0.0 06 130.0 134 ~ 130 0.0
02 240.0 240 240 0.0 07 153.0 153 153 0.0
03 236.0 236 236 0.0 08 204.0 209 ~ 204 0.0
04 237.0 237 237 0.0 09 338.0 338 338 0.0
05 303.0 303 303 0.0 10 306.0 306 306 0.0

h
id

d
e
n

01 87.2 130 ~ 111 21.5

h
id

d
e
n

01 37.0 37 37 0.0
02 196.6 221 221 11.1 02 42.0 42 42 0.0
03 27.7 36 ~ 34 18.5 03 48.0 48 48 0.0
04 72.8 80 ~ 78 6.7 04 73.0 75 ~ 73 0.0
05 90.8 122 ~ 119 23.7 05 44.0 44 44 0.0

la
t
e

01 155.7 158 ~ 157 0.8 06 42.0 42 42 0.0
02 18.0 18 18 0.0 07 42.0 42 42 0.0
03 29.0 29 29 0.0 08 17.0 17 17 0.0
04 35.0 35 35 0.0 09 17.0 17 17 0.0
05 107.0 107 107 0.0 10 43.0 43 43 0.0

Table 6 previous upper bound (PUB), updated lower (LB) and upper (UB) bounds

7 Conclusions and Future Works

This work presented Integer Programming techniques for the Nurse Rostering
Problem. Although there are several detailed results published in the literature
for heuristics evaluated using the INRC instance set, we believe that this is the
first work which also devotes a considerable attention to the computational
production of strong dual bounds obtained from the linear programming re-
laxation. These bounds allowed us to prove the optimality for many instances,
and its importance is not restricted to exact methods: improved dual bounds
allows a more effective pruning of nodes in the search tree, which is useful to
speedup MIP heuristic search in large neighborhoods, as the one presented in
this work. The large number of experiments made using the open source CBC
solver allowed us to spot existing previously unknown CBC bugs. These bugs
were subsequently fixed by CBC developers. We proposed and implemented a
much better clique cut generator for CBC, showing that it can produce better
dual bounds in the early stages of the search. This code will also be released
as open source. This work was not enough to make CBC competitive with
the best commercial solvers when solving INRC instances, since to develop a
competitive MIP heuristic we still needed to rely on CPLEX. Nevertheless,
we believe that this is a step towards validating and improving this important
open source integer programming solver.

The proposed MIP heuristic, built upon the presented formulation and
evaluated with the state-of-art CPLEX solver, improved several best known
solutions, requiring very short computing times and still being competitive
with the best heuristics for this problem. We believe that the new improved

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 279

primal and dual bounds will allow a more precise evaluation of the quality of
available heuristics for this problem.

8 Acknowledgements

The authors would like to thank FAPEMIG (grant APQ-01779-10) and CNPq
(grant 480388/2010-5) for supporting the development of this research and
the anonymous reviewers of this paper for the detailed suggestions and cor-
rections.

References

1. Andersen, K., Cornuejols, G., Y., L.: Reduce-and-split cuts: Improving the performance
of mixed integer gomory cuts. Management Science 51, 1720–1732 (2005)

2. Andreello, G., Caprara, A., Fischetti, M.: Embedding cuts in a branch and cut frame-
work: a computational study with 0,1/2-cuts. INFORMS Journal on Computing 1
19(2), 229–238 (2007)

3. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer
programming problems. European Journal of Operational Research 121, 40–55 (2000)

4. Avella, P., Vasil’ev, I.: A computational study of a cutting plane algorithm for university
course timetabling. Journal of Scheduling 8, 497–514 (2005)

5. Balas, E., Ceria, S., Cornueljols, G., Natra, N.: Gomory cuts revisited. Operations
Research Letters 19, 1–10 (1996)

6. Bilgin, B., Demeester, P., Mısır, M., Vancroonenburg, W., Berghe, G., Wauters, T.: A
hyper-heuristic combined with a greedy shuffle approach to the nurse rostering compe-
tition. In: the 8th International Conference on the Practice and Theory of Automated
Timetabling (PATAT10)-the Nurse Rostering Competition (2010)

7. Borndorfer, R.: Aspects of set packing, partitioning, and covering. Ph.D. thesis, Faculty
of Mathematics at Technical University of Berlin (1998)

8. Boyd, E.: Fenchel cutting planes for integer programming. Operations Research 42,
53–64 (1992)

9. Boyd, E.: Solving 0/1 integer programs with enumeration cutting planes. Annals of
Operations Research 50, 61–72 (1994)

10. Brito, S., Santos, H.G.: Pivoting in the bron-kerbosch algorithm for maximum-weight
clique detection (in portuguese). In: Anais do XLIII Simpsio Brasileiro de Pesquisa
Operacional (2011)

11. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Com-
mun. ACM 16, 575–577 (1973). DOI http://doi.acm.org/10.1145/362342.362367. URL
http://doi.acm.org/10.1145/362342.362367

12. Burke, E., Curtois, T.: An ejection chain method and a branch and price algorithm
applied to the instances of the first international nurse rostering competition, 2010.
In: Proceedings of the 8th International Conference on the Practice and Theory of
Automated Timetabling PATAT 2010 (2010)

13. Burke, E., Li, J., Qu, R.: A hybrid model of integer programming and variable neigh-
bourhood search for highly-constrained nurse rostering problems. European Journal of
Operational Research 203(2), 484–493 (2010)

14. Burke, E., Mareček, K., Parkes, A.J., Rudová, H.: A branch-and-cut procedure for the
udine course timetabling problem. Ann. Oper. Res. pp. 1–17 (2011). DOI http://dx.
doi.org/10.1007/s10479-010-0828-5. URL http://cs.nott.ac.uk/~jxm/timetabling/

patat2008-paper.pdf

15. Burke, E.K., De Causmaecker, P., Berghe, G.V., Landeghem, H.V.: The state of the art
of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

280 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://doi.acm.org/10.1145/362342.362367
http://cs.nott.ac.uk/~jxm/timetabling/patat2008-paper.pdf
http://cs.nott.ac.uk/~jxm/timetabling/patat2008-paper.pdf

16. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems–a bibliographic
survey. European Journal of Operational Research 151(3), 447–460 (2003)

17. Cornuéjols, G.: Revival of the gomory cuts in the 1990´s. Annals of Operations Research
149(1), 63–66 (2007)

18. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to
improve mip solutions. Tech. rep., ILOG (2003)

19. Danna, E., Rothberg, E., Le Pape, C.: Integrating mixed integer programming and local
search: A case study on job-shop scheduling problems. In: Proceedings CPAIOR’03
(2003)

20. Dash, S., Goycoolea, M., Gunluk, O.: Two step MIR inequalities for mixed-integer
programs. INFORMS Journal on Computing (2009)

21. Eso, M.: Parallel branch-and-cut for set partitioning. Ph.D. thesis, Cornell University
Ithaca, NY, USA (1999)

22. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2003)
23. Fischetti, M., Lodi, A.: Optimizing over the first Chvàtal closure. Mathematical Pro-

gramming B 110(1), 3–20 (2007)
24. Forrest, J., Lougee-Heimer, R.: CBC user guide. INFORMS Tutorials in Operations

Research. pp. 257–277 (2005). DOI 10.1287
25. Grotschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Op-

timization. Springer (1993)
26. Hansen, P., Mladenović, N.: Variable neighborhood search. Computers and Operations

Research 24(11), 1097–1100 (1997)
27. Hansen, P., Mladenović, N., Urosević, D.: Variable neighborhood search and local

branching. Comput. Oper. Res. 33(10), 3034–3045 (2006)
28. Haspeslagh, S., De Causmaecker, P., Stolevik, M., A., S.: First international nurse roster-

ing competition 2010. Tech. rep., CODeS, Department of Computer Science, KULeuven
Campus Kortrijk. Belgium (2010)

29. Hoffman, K., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut.
Management Science 39(6), 657–682 (1993)

30. IBM: CPLEX 12.2 User’s Manual (2011)
31. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R., Danna,

E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Sal-
vagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. Mathematical Programming Com-
putation 3, 103–163 (2011). URL http://dx.doi.org/10.1007/s12532-011-0025-9.
10.1007/s12532-011-0025-9

32. Linderoth, J.T., Ralphs, T.K.: Noncommercial software for mixed-integer linear pro-
gramming. In: J. Karlof (ed.) Integer Programming: Theory and Practice, Operations
Research Series, vol. 3 (2005)

33. Lougee-Heimer, R.: The Common Optimization INterface for Operations Research: Pro-
moting open-source software in the operations research community. IBM Journal of
Research and Development 47(1), 57–66 (2003)

34. Martins, A.X., Souza, M.C., Souza, M.J., Toffolo, T.A.M.: GRASP with hybrid
heuristic-subproblem optimization for the multi-level capacitated minimum span-
ning tree problem. Journal of Heuristics 15, 133–151 (2009). DOI 10.1007/
s10732-008-9079-x. URL http://dl.acm.org/citation.cfm?id=1527562.1527566

35. Méndez-Dı́az, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete
Applied Mathematics 156, 159–179 (2008)

36. Mittelmann, H.: Benchmarks for optimization software (2012). URL http://plato.

asu.edu/bench.html
37. Nonobe, K.: Inrc2010: An approach using a general constraint optimization solver. The

First International Nurse Rostering Competition (INRC 2010) (2010)
38. Nonobe, K., Ibaraki, T.: A tabu search approach to the constraint satisfaction problem

as a general problem solver. European Journal of Operational Research 106(2-3), 599–
623 (1998)

39. Padberg, M.: On the facial structure of set packing polyhedra. Mathematical Program-
ming 5(1), 199–215 (1973)

40. Poggi de Aragão, M., Uchoa, E.: Integer program reformulation for robust branch-and-
cut-and-price. In: Annals of Mathematical Programming in Rio, pp. 56–61. Buzios,
Brazil (2003)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 281

http://dx.doi.org/10.1007/s12532-011-0025-9
http://dl.acm.org/citation.cfm?id=1527562.1527566
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

41. Ralphs, T., Saltzman, M., Ladnyi, L.: The COIN-OR Open Solver Interface: Technology
Overview (2004). URL http://www.coin-or.org/Presentations/CORS2004-OSI.pdf

42. Ralphs, T.K., Gzelsoy, M.: The symphony callable library for mixed integer program-
ming. In: B. Golden, S. Raghavan, E. Wasil, R. Sharda, S. Vo (eds.) The Next Wave in
Computing, Optimization, and Decision Technologies, Operations Research/Computer
Science Interfaces Series, vol. 29, pp. 61–76. Springer US (2005)

43. Uchoa, E., Toffolo, T.A.M., de Souza, M.C., Martins, A.X., Fukasawa, R.: Branch-
and-cut and hybrid local search for the multi-level capacitated minimum spanning tree
problem. Networks 59(1), 148–160 (2012). DOI 10.1002/net.20485. URL http://dx.

doi.org/10.1002/net.20485

44. Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., Housos, E.: A systematic two phase
approach for the nurse rostering problem. European Journal of Operational Research
(2012)

282 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.coin-or.org/Presentations/CORS2004-OSI.pdf
http://dx.doi.org/10.1002/net.20485
http://dx.doi.org/10.1002/net.20485

A Survey on Workforce Scheduling and Routing
Problems

J. Arturo Castillo-Salazar 1

Dario Landa-Silva
Rong Qu

Received: date / Accepted: date

Abstract In the context of workforce scheduling, there are many scenarios
in which personnel must carry out tasks at different locations hence requir-
ing some form of transportation. Examples of these type of scenarios include
nurses visiting patients at home, technicians carrying out repairs at customers’
locations, security guards performing rounds at different premises, etc. We re-
fer to these scenarios as Workforce Scheduling and Routing Problems (WSRP)
as they usually involve the scheduling of personnel combined with some form
of routing in order to ensure that employees arrive on time to the locations
where tasks need to be performed. This kind of problems have been tackled
in the literature for a number of years. This paper presents a survey which
attempts to identify the common attributes of WSRP scenarios and the so-
lution methods applied when tackling these problems. Our longer term aim
is to achieve an in-depth understanding of how to model and solve workforce
scheduling and routing problems and this survey represents the first step in
this quest.

Keywords workforce scheduling, employee rostering, routing problems,
mobile workforce

1 Introduction

In recent times, employees often need to be more flexible regarding the type
of job performed and similarly, employers need to make compromises in order
to retain their best employees (Eaton, 2003; Mart́ınez-Sánchez et al, 2007).
Moreover, in some cases workforce should perform tasks at different locations,

1 The author acknowledges CONACyT for its financial support

J. Arturo Castillo-Salazar · Dario Landa-Silva · Rong Qu
E-mail: jac@cs.nott.ac.uk · dariolandasilva@nottingham.ac.uk · rong.qu@nottingham.ac.uk
ASAP Research Group, School of Computer Science
University of Nottingham Jubilee Campus
Wollanton Road, Nottingham, United Kingdom, NG8 1BB

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 283

e.g. nurses visiting patients at their home, technicians carrying out repairs at
different companies, etc. Therefore, the scheduling of workforce with ‘flexible’
arrangements and ‘mobility’ is of great importance in many scenarios. Many
types of personnel scheduling problems have been tackled in the literature
(Baker, 1976; Miller, 1976; Golembiewski and Proehl Jr, 1978; Cheang et al,
2003; Ernst et al, 2004; Alfares, 2004). We are interested in those workforce
scheduling problems in which personnel is considered flexible (in terms of tasks
and working times) and mobile (travelling is required in order to do the job).
By mobility we refer specifically to those cases in which moving from one
location to another takes significant time and therefore reducing the travel time
could potentially increase productivity. To some extent, this problem combines
features from the general employee scheduling problem and also vehicle routing
problems. The survey and discussion presented here represent the first step in
our aim of formulating and tackling the problem of scheduling flexible and
mobile workforce. In the rest of this paper, we refer to this as the workforce
scheduling and routing problem (WSRP).

In section 2 we describe the WSRP and identify some of the main character-
istics of this type of workforce scheduling problems. Section 3 outlines some
workforce scheduling scenarios that have been investigated in the literature and
that in our view present a case of WSRP. Examples include home care, schedul-
ing of technicians, manpower allocation, etc. Subsection 3.6.3 is dedicated to
the vehicle routing problem with time windows (VRPTW) (Desrochers et al,
1992; Kallehauge et al, 2005) since it is the base for the routing component
of many of the problems discussed in this survey. Section 4 outlines different
methods (optimisation, heuristics and hybrid approaches) used when tackling
WSRP scenarios. Section 5 summarises our findings and outlines the next
steps in our research into workforce scheduling and routing.

2 Workforce Scheduling and Routing Problems

2.1 Description of the problem

In this paper, we refer as Workforce Scheduling and Routing Problem (WSRP)
to those scenarios involving the mobilisation of personnel in order to perform
work related activities at different locations. In such scenarios, employees use
diverse means of transportation, e.g. walking, car, public transport, bicycle,
etc. Also, in these scenarios there are more than one activity to be performed
in a day, e.g. nurses visiting patients at their homes to administer medication
or provide treatment (Cheng and Rich, 1998), care workers aiding members of
the community to perform difficult tasks (Eveborn et al, 2006), technicians car-
rying out repairs and installations (Cordeau et al, 2010), and security guards
performing night rounds on several premises (Misir et al, 2011). The number of
activities across the different locations is usually larger than the number of em-
ployees available, hence employees should travel between locations to perform
the work. This results in a combination of employee scheduling and vehicle
routing problems. The number of activities varies depending on the duration

284 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

of the working shift, but assuming that each activity needs to be performed
at a different location, a routing problem also arises. A route is a sequence
of locations that need to be visited (Raff, 1983) but we exclude problems in
which workers need to move across work stations within the same factory for
example. Work activities which need to be performed in a specified time (time
window) require scheduling in addition to routing. Tackling WSRP scenarios
could potentially involve many objectives like: reducing employees travel time,
guaranteeing tasks to be performed by qualified people only, reducing the cost
of hiring casual staff, ensuring contracted employees are used efficiently, etc.

We assume employees should rather spend more time doing work than trav-
elling, particularly in settings in which travelling time is counted as working
time, hence reducing travel time is valuable (Fosgerau and Engelson, 2011;
Jara-Dı́az, 2000). In WSRP scenarios is often beneficial that employees per-
form activities at customer premises more efficiently. Like in many workforce
scheduling problems, the set of skills that an employee has for performing a
task is of great importance (Cordeau et al, 2010). Many papers in the litera-
ture assume that the workforce is homogeneous regarding skills but in many
scenarios, a diverse set of skills is the predominant environment. We should
note that scenarios like the pick-up and delivery of goods (parcels) is not con-
sidered here as a WSRP because no significant ‘work’ (in terms of time) is
carried out at customers’ premises. Although, one could argue that the action
of delivering a parcel is a task, it does not take a significant amount of time
once the worker gets to the destination. This type of pick-up and delivery
problems are definitely routing problems but are not covered in our study of
workforce scheduling and routing problems.

2.2 Main characteristics

In this subsection, we outline the main characteristics of any WSRP. Some of
these characteristics are ‘obvious’ since they are in the nature of the problem
while others were identified during our survey. We include the characteristics
that appear the most in the literature and describe them in the subsections
below. For a list of all the attributes considered and the papers included in
this survey please refer to Table 1.

Time windows for performing a task/duty/job at a customer premises. It is
assumed that employees can start the work as soon as they arrive to the
location. Time windows can be very flexible or very tight and in accordance
to contractual arrangements. In some cases, no time window is defined as
employees work based on annualised hours. Also, in some cases employees
can benefit from over-time payment, making compliance with the time
window more of a soft constraint.

Transportation modality refers to employees using different means like:
car, bicycle, walking or public transport. We assume that time and cost of
transportation is not the same for each employee.

Start and end locations One location, when all employees start at the main
office (Eveborn et al, 2006), up to many locations (perhaps as many as the

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 285

number of employees) assuming each employee may start from their home.
In some cases the company’s policy might be that employees should start
their working time at the main office but then returning home directly after
the last job performed.

Skills and qualifications act as restrictive filters on who can perform a task
and there are two main cases. 1) In general, all workforce have the same
ability (skills and qualifications) so anyone can perform the task, but this
tends to be expensive for the organisation. 2) Workforce with diverse levels
of abilities, this is common in industries such as consulting and healthcare.
Matching employees’ skills to the tasks assigned has been tackled for com-
plex organisations (Cordeau et al, 2010).

Service time corresponds to the duration of the task and it varies depending
on the employee who performs it and the type of task. Most models in the
literature assume a fixed duration. If service times are long enough so
that they restrict each worker to perform only one job, then the problem
reduces to task allocation since every route would consider only one job
per employee.

Connected activities refers to dependencies among the activities to be per-
formed. Sequential, when one activity must be performed before/after an-
other. Activities are said to be simultaneous when they happen at the same
time and require two or more employees to be present. Temporal dependen-
cies: synchronisation, overlap, minimum difference, maximum difference,
min+max difference, as defined by Rasmussen et al (2012).

Teaming may be necessary due to the nature of the work to be carried out
(Li et al, 2005). If members of the team remain unchanged then the team
can be treated as a single person and synchronising the arrival of team
members is necessary. If members of the team change frequently then skill
matching according to the job is required (Cordeau et al, 2010).

Clusterisation may be necessary for several reasons. One is employee prefer-
ences when expecting not to travel more than a number of miles. Another
reason is when companies assign employees to perform work only in certain
geographical areas. Clusters may also be created just to reduce the size of
the problem and solve many smaller instances.

3 Workforce Scheduling and Routing Problems in the Literature

In this section we describe some of the problems tackled in the literature
that can be considered as a type of workforce scheduling and routing problem
(WSRP). The intention is to illustrate the variety and importance of WSRP
scenarios in the real-world.

3.1 Home health care

Bertels and Fahle (2006) describe home health care (HHC) as visiting and
nursing patients at their home. Patients preferences regarding the time of
visit are respected as much as possible, as they cannot wait for the entire day.

286 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Additionally, nurses have also time window limitations regarding the number
of hours they work in a day or their starting and ending time. In HHC, trans-
portation modality is present when nurses travel by car, public transport or
even walking to visit more than one patient. The start and end location of
nurses routes vary. They can depart from their homes or from a central health
care office, and end their day once they return home or in some cases at the
last patient visited. A diverse set of skills and qualifications is present in the
set of nurses due to the large range of procedures required. Healthcare organ-
isations often cannot afford to have nurses trained in all procedures. Then,
the use of a highly qualified nurses should be restricted to tasks that demand
those skills. Nursing activities vary in duration (service time) e.g. from a 10
min injection to a 45 min physical therapy. Connected nursing activities can be
found when applying medicine e.g. the first dose is applied during the morning
and 3 hours later another dose. Some activities require more than one nurse at
the same time e.g. handling a person with epilepsy. In such cases, nurses can
be syncronised to arrive at the location at the same time, or assign a team of
two nurses who always performed these type of tasks. Clusterisation is used,
by the organisation providing health care to avoid nurses having to travel too
much.

Other characteristics of HHC which are not part of the main WSRP main ones
include nurses preferences, shift types and other legal requirements. Also, it is
desirable not to change much which nurses visit which patients. This is because
patients and nurses develop a bond that is usually good to maintain. Cheng
and Rich (1998) explore the use of casual nurses, i.e. those not in a contract
with the organisation. Cheng’s work does not consider different nurses’ skills
and qualifications but instead, proposes a matching method in which a pairing
patient-nurse is either feasible or not for some reason. The objective in Cheng’s
work is to reduce the amount of overtime and part-time work employed.

3.2 Home care

Home care (also called domiciliary care) refers to the provision of community
care service by local authorities to their constituents (Akjiratikarl et al, 2007).
The aim is to schedule care workers across a region in order to provide care
tasks within a time window while reducing travel time. This problem is related
to the home health care problem described by Bertels and Fahle (2006) and
Cheng and Rich (1998). The difference is that home health care involves help-
ing people for a relatively short period of time to recover after hospitalisation.
Home care however usually refers to helping elderly and/or disabled people to
perform their daily activities such as shopping, bathing, cleaning, cooking, etc.
(Eveborn et al, 2009). Once a person starts receiving home care support it is
likely to remain receiving such care for a long time. Home carers usually start
travelling from their homes to deliver support at their predefined destinations
using their own transport arrangements (mixed transportation modality) and
return home at the end of the day. In some cases reported in the literature,
care workers do not start from their home but from a home care office as last

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 287

minute changes to their schedules are possible and need to be agreed before
starting the working day (Eveborn et al, 2009). In some cases, travel time is
considered as work hours and hence the objective is to reduce the time used
not providing care. Some assumptions are made such as given travel speed for
a carer and travel distances to be euclidean. In other cases like the work by
Dohn et al (2008), the objective is to maximise the quality level of care service
provided. Reducing cost, although important, is not the main objective. Dohn
et al (2008) study the problem as a variant of the VRP with time windows.
Although not as much as in HHC, there are some skills and qualification re-
quired in home care when caring for others e.g. health and safety, handling
people with dislexia, etc. Service time is standarised and it only varies due
to the experience of the carer or difficulties with the person receiving care.
Connected activities also exist in home care e.g. taking a shower before do-
ing groceries. Teaming is not present since carers tend to be syncronised to
perform difficult tasks e.g. assisting a heavy person. Clusterisation is based
on municipalities borders to clearly defined which authority is responsible for
part of the community e.g. council, borough, district etc.

Additional features of home care are: prioritising visits. Usually, there is not
enough personnel to perform all the visits in a single day. Therefore, visits are
rescheduled or even canceled in the worst case. Deciding who does not receive a
visit is part of the problem. For example, it is more important to assist someone
with his diabetes medication than to help another person doing groceries. The
shift patterns are either given by contracts or expressed as preference by carers.
Many organisations emphasise respecting carers’ preferences to increase staff
retention. Also, tolerance on time windows to perform care vary, e.g. critical
medical activities having 5 minutes tolerance while support activities having
15 minutes to 2 hours tolerance.

3.3 Scheduling technicians

Some telecommunications companies require scheduling employees to perform
a series of installation and maintenance jobs, e.g. Cordeau et al (2010). In
the literature, this problem is referred to as technician and task scheduling
problem (TTSP). In this sector, commitments on time to perform the jobs are
enforced, resulting in strict time windows. Due to the equipment technicians
carry, it is common to use company vehicles to travel from one customer lo-
cation to the next one. Technicians start and end locations are the company
premises, although in some cases technicians are allowed to take companys’
cars home if the first job of the following day is at a location closer than the
company’s location. Technicians, depending on the sector, often are highly
skilled. Nevertheless, their skills are related to their experience and training,
as a result companies have levels of seniority among their workforce e.g. junior,
senior, etc. Those seniority levels to some extend help estimating the service
time required to complete the job e.g. although both junior and senior fibre
optics technicians could recalibrate a connection, the later one does the job
faster. Activities tend to be independent from each other with in the same

288 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

day, but in a wider time frame there are some connection between them. In
this scenario, teams are often formed with the aim of having a balance set
of personnel with as many skills as possible. Teaming also helps technicians
to learn from each other, hence improving their performance. Companies with
many branches across different regions use clusterisation to assign jobs to each
branch when the scheduling is done centrally for all branches.

3.4 Security personnel routing and rostering

In this problem, round of visits are performed by security personnel to several
customer premises distributed at different locations over a 24 hours period
(Misir et al, 2011). Many organisations outsource security guards duties only
for when premises are closed while in other cases, security is outsourced at all
times. Round visits must be performed at the contracted time often given as
a time window. Security personnel often uses a combination of private vehicles
to go from one location to the next and walking once they get to the facility
but require to check several buildings. Security guards start and return to their
own homes. In this scenario, the author mentions 16 types of skills that the
company records among its workforce and some visits require enforcing those
skills. The duration (service time) of each visit can vary but it should be be-
tween a time framework in which the visit must finish. Visits are independent
from each other. Customers are divided into regions (clusterisation), so that
security guards living nearby are assigned to each region reducing travelling
time. In this industry, contract terms vary considerably and this originates
many different constraints being added to the problem. Although not men-
tioned in the scenario, it is not unreasonable to think that teams of two or
more guards can are used.

3.5 Manpower allocation

Manpower allocation (Lim et al, 2004) refers to assigning servicemen to a set of
customer locations to perform service activities. The objectives in this problem
are to minimise the number of servicemen used, minimise the total travel
distance, minimise the waiting time at service points, maximise the number
of tasks assigned, etc. The manpower allocation cases when employees have
to perform tasks at different locations and hence requiring transportation can
qualify as a WSRP. Manpower allocation with time windows is particularly
relevant since customers explicitly defined when the workforce is required.
There is no mention of transportation modality so we assume all workforce
uses the same type of transport. Every serviceman starts and finishes his
working day at the control centre. Skills among the workforce are assumed to
be the same, making no difference on who performs the service. Nevertheless
there are restrictions on the number of hours each employee can work. Waiting
time, the time that servicemen have to wait at a customer location before the
start of the time window, is included within the service time making it vary
accordingly. Li et al (2005) add job teaming constraints, a team is assembled

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 289

at every location and work cannot start unless all members of the team have
arrived. More recently, a variation of the manpower allocation problem was
used in the context of scheduling teams to do ground handling tasks in major
airports (Dohn et al, 2009). In the work by Li et al (2005) teams are set at the
beginning and do not change over the working day. Additional characteristics
include teams having mandatory breaks within certain time windows, hence
breaks are treated as just another visit.

3.6 Vehicle routing problem with time windows

The routing part in many of the problems considered here as examples of
WSRP are based on the vehicle routing problem with time windows (VRPTW).
In this problem the main objective is to minimise the total travel distance by a
set of vehicles when performing visits to several customers spread across many
locations. Every customer must be visited once by one vehicle. Each customer
specifies a time window when the visit should take place. The delivery vehicle
must arrive to the location within that specified time window. If the vehicle ar-
rives before the time window starts, it must wait until the time window opens
to perform the delivery (Desrochers et al, 1992; Kallehauge et al, 2005). Ex-
tensions of the VRPTW include other features such as multiple trips, multiple
depots, capacity constraints, etc.

3.6.1 VRPTW with multiple depots and waiting costs

Here, the fleet of vehicles is distributed across multiple depots allowing vehicles
to return to the closest depot once all the deliveries by that vehicle have
been completed. This VRPTW variant (Desaulniers et al, 1998) is relevant to
our study because its formulation is applicable to workforce scheduling and
routing. Many papers in the literature dealing with WSRP scenarios use this
VRPTW variant and associate every employee’s starting and ending point to
a depot. It is also possible for every employee to start at the same location
(depot) but then each employee to end their working day at a different location
(home).

3.6.2 Vehicle routing problems with multi-trips

This variant extends the classical vehicle routing problem to include multiple
trips (Brandão and Mercer, 1998). It is important because it addresses the fact
that an employee could perform more than one trip on a day to visit the same
location. A trip in this context is a series of jobs before going back to the depot.
In WSRP scenarios, an employee is assumed to have a mean of transportation
either from the company or personal. Sometimes the employee might need to
go back to the main office (depot) to replenish resources. The type of vehicles
that can access a particular customer’s location might be restricted as pointed
by Brandão and Mercer (1997). Vehicles have different capacities which can
be associated to model an heterogeneous workforce. Vehicles can also be hired
for some time which is associated to hiring casual staff.

290 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3.6.3 Synchronisation constraints in routing

Synchronisation, a type of connected activity, among workers when execut-
ing their tasks can be modelled in the same way as when vehicles need to
arrive at the same customer location and at the same time (Bredström and
Rönnqvist, 2007). Precedence constraints are another characteristic related to
synchronisation (Bredström and Rönnqvist, 2008). Assuming a client can be
visited more than once per day, it could be that the order of the visits matter.
For example, before technicians install a satellite TV, it is important that the
antenna is calibrated and then a demodulator set. These activities could be
performed by different people at different times but the order matters and
must be respected.

4 Solution Methods

In this section we summarise the range of solution approaches that have been
used to tackle WSRP in the literature. We present them in three categories:
optimisation techniques, heuristic algorithms and hybrid approaches. The pur-
pose of this section is to identify the methods that have been applied to tackle
different variants and components of WSRP scenarios. In Table 1 row 44 as-
sociates each surveyed source with a domain problem mentioned in Section 3
and row 45 presents the main technique used for its solution.

4.1 Optimisation techniques

Begur et al (1997) applied a mixed integer programming model combined with
the nearest neighbor heuristic (Rosenkrantz et al, 1977) to solve a weekly
nurse scheduling problem.

De Angelis (1998) used linear programming with clustering techniques. The
scenario is split in two parts, a local one which addresses resource allocation
within each district, and a global one focusing on all districts.

Desaulniers et al (1998) used an integer non-linear multi-commodity network
flow model with time variables and solved it using column generation
(Desrosiers and Lübbecke, 2005), embedded in a branch and bound al-
gorithm. Minimum and exact waiting costs were taken into account.

Borsani et al (2006) used a mixed integer linear programming model based
on assignment and scheduling models. The assignment model is used when
new patients enter the system. The scheduling model is used to create
weekly visits’ plan taking as input the result of the assignment model.

Bredström and Rönnqvist (2007) used a set partitioning formulation. The model
involves two types of variables, routing and scheduling variables. The for-
mulation was tackled with a branch and price method (Barnhart et al,
1998).

Dohn et al (2008) also used a set partitioning problem with side constraints
solved with branch and price. A series of shortest path problems are solved
for the column generation and the master problem is solved with the set
partitioning approach.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 291

Dohn et al (2009) applied an integer programming formulation solved with
branch and price. Dantzig-Wolfe decomposition was applied through feasi-
ble paths. The problem is divided into a generalised set covering problem
and elementary shortest path.

Kergosien et al (2009) solved an integer programming model. After obtaining
a first solution to the model, the second stage improves performance by
adding cuts on the time windows. Activities requiring multiple people are
split into several services.

Rasmussen et al (2012) also used a set partitioning problem with side con-
straints solved through a branch and price approach.

Salani and Vaca (2011) used a flow-based mixed integer program solved with
branch and price.

From the above summary it can be noticed that a methodology that has been
very useful to tackle WSRP is branch and price. Branch and price refers to
using a branch and bound approach with column generation (Barnhart et al,
1998; Feillet, 2010). Column generation is not a recent technique it has been
used successfully in other fields (Desaulniers et al, 2005). The advantage of
using column generation is that the problem can be relaxed and solved with
a reduced set of columns, which might not be an exhaustive enumeration of
all possible routes for every employee, but at any time provides a solution
if it exits. In the literature, the personnel scheduling constraints side of the
problem is commonly solved by heuristics to generate columns. On the other
hand, the routing component can be tackled via branching. Kallehauge et al
(2005) showed that the problem formulation can be decomposed into a master
problem and a pricing problem. The master problem is a set partitioning
problem and the subproblem a series of shortest path problems with resources
constraints (Irnich and Desaulniers, 2005; Feillet et al, 2004).

Models applied to VRPTW have also been aplied to WSRP, in particular
multi-commodity network flow models with time windows and capacity con-
straints. When using branch and price, many authors have modelled the mas-
ter problem as either a set partitioning problem or as a set covering problem.
There is not much difference between these two. In the first one, each customer
is in one route only, whereas in the second one, more than one route could
visit the same customer location.

4.2 Heuristics algorithms

Blais et al (2003) employed a tabu search heuristic for the political district
problem by Bozkaya et al (2003) which only uses two types of moves for
the neighborhood single movements and swaps .

Akjiratikarl et al (2006, 2007) used an evolutionary approach, particle swarm
optimisation (Kennedy and Eberhart, 1995), for a home care problem. An
initial solution is generated using the earliest start time priority with min-
imum distance assignment formulation. Authors also used two local im-
provement procedures, a swap move to interchange activities among work-

292 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

ers and an insertion procedure to move activities from one route to another
one.

Lim et al (2004) applied two different approaches, tabu-embedded simulated
annealing and squeaky wheel optimisation (Joslin and Clements, 1999).
Three operators are used to generate local neighbourhoods shift, exchange
and rearrange operators. The shift and exchange operators are similar to
the insertion and swap procedures used by Akjiratikarl et al (2006).

Itabashi et al (2006) created a multi-agent system based on negotiation via
text messages among agents representing employees. Both carers and pa-
tients have a personal device assistant. Patients submit requests to a cen-
tralised scheduling system which assigns them to a carer. The carer con-
firms the schedule which then is reflected in the overall schedule.

Cordeau et al (2010) utilised a constructive heuristic followed by an adap-
tive large neighbourhood search with five destroy and two repair heuristics
(Ropke and Pisinger, 2006). The heuristic approach plans one day at a
time in two stages. The first stage deals with team construction allocating
single activities. In the second stage, the remaining activities are assigned
to already defined teams.

Misir et al (2010) used three hyper-heuristics (Ross, 2005) with a simple learn-
ing mechanism that excludes the use of some heuristics for given phases of
the search. Phases consists of a number of iterations and the best heuristics
for each phase are stored in memory. Six low-level heuristics are used, two
of them based on swap movements and four on removal and insertion in
different routes. Three move acceptance mechanism are employed: improv-
ing or equal, improving and equal plus worsening subject to a threshold
value and iteration limit, and an adaptive version by threshold changing.

Misir et al (2011) employed hyper-heuristics based on two different heuris-
tics selection methods: simple random and adaptive dynamic heuristic set.
First, visits are ordered and the assignment of these visits to available
personnel is carried out. This is then followed by improvement heuristics
that change visiting times. During the first stage, ten low-level heuristics
are used. The moves to produce neighbouring solutions are swap, insertion
and a move based on the idea of ‘scramble’ visit in the same route.

When employing heuristics including meta-heuristics and hyper-heuristics to
solve the WSRP, there seems to be a tendency in the literature to use ap-
proaches based on swap (exchanges) and insertion operators. Depending on
the method employ either memory is used to keep the best solutions so far or
to remember which low-level heuristics are best applied in the stages of the
search. Many solutions employ a constructive heuristic to generate a fast initial
solution. There seems to be no solution method applied to different WSRP sce-
narios so far. Nevertheless, the operators used to generate neighbour solutions
appear to be very similar in the different approaches.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 293

4.3 Hybrid methods

Li et al (2005) combined the relaxation of an integer programming formula-
tion of a network flow problem, to obtain lower bounds, with construc-
tive heuristics embedded in a simulated annealing framework (Laarhoven
and Aarts, 1987) for upper bounds. Two constructive heuristics were used,
simple-append and block-insertion. Initial solutions are obtained with the
first one. Neighbors are generated using block-transposition and block-
reverse operators.

Bertels and Fahle (2006) created a hybrid model of a rostering and routing
problem. It was solved using constraint programming and integer program-
ming for sequencing visits. For improvements, simulated annealing, tabu
search and combination of both, were used. The solution approach was to
find a partition of jobs to nurses and to find an optimal sequencing of each
partition.

Eveborn et al (2006, 2009) used a set partitioning model. Aditionally, repeated
matching to find suitable pairs of routes and workers and splitting tech-
niques for when improvements are seek.

Bredström and Rönnqvist (2008) mixed, integer linear programming model
and heuristics. During the first stage CPLEX is applied and in the sec-
ond stage, heuristics similar to the ones by Fischetti et al (2004) are used
to iteratively improve the best known solution.

Landa-Silva et al (2011) used a hybrid-approach combining a clustering al-
gorithm, constructive and local search heuristics, and exact assignments
based on integer programming to cluster shipments, create subgroups, build
initial loads, carrier assignments and improve loads.

Most hybrid approaches try to combine the most appropriate algorithms de-
pending on which part of the WSRP is being tackled (clustering, routing,
matching skills, etc). For the routing part, it seems that the most used ap-
proaches are mathematical programming and constraint programming. This
might be due to the significant advances in optimisation methods achieved
recently for vehicle routing problems. Nevertheless, good heuristics methods,
particularly those which provide fast initial solutions have also been employed.
When matching employees to activities, the use of heuristics approaches ap-
pears to dominate.

5 Conclusion

A workforce scheduling and routing problem (WSRP) refers to any environ-
ment in which a skilled diverse workforce should be scheduled to perform a
series of activities distributed over geographically different locations. Activ-
ities should be performed at specific times or within a given time window.
The time window for each activity is usually determined by the customer or
recipient of the job. This survey aimed to identify problems tackled in the lit-
erature that can be seen as a WSRP scenario. The problems identified in this
survey include but are not limited to: home health care, home care, scheduling

294 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

of technicians, security personnel routing and rostering, manpower allocation.
This survey also sought to identify the similarities between these problems in
order to define the core characteristics that any WSRP would have. Those
characteristics include: time windows, transportation modalities, star and end
locations, a diverse skilled workforce, activities’ service time and relationship
between them, and optionally, presence of teaming and clusterisation of loca-
tions among perhaps others.

The second part of this survey sought to identify the solution methods that
have been employed in the literature when tackling WSRP scenarios. Since the
WSRP combines employee scheduling and vehicle routing with time windows,
there seems to be a clear tendency for using exact approaches for the routing
component of the problem, and using heuristics for the matching of employees
to activities. Among other approaches for solving WSRP, we found: mixed
integer linear programming (MILP), integer linear programming (ILP) and
constraint programming (CP); using models such as set partitioning problem
(SPP) and multi-commodity network flow problem; variety of meta-heuristics,
tabu search (TS), particle swarm optimisation (PSO) and simulated annealing
(SA).

The state of the art in WSRP, particularly in home health care and home care
seems to be the use of a set partitioning problem with side constraints solved
via branch and price. When clusterisation is used, it tends to be used in the
initial stage of the solving procedure. The motivation for using clusterisation
seems to be either to reduce the size of the problem (by creating many small
problems) or to satisfy employee preferences regarding the geographic area for
the location of their work. Although not present in all sources clusterisation is
a current area of research, particularly in those problem which optimality could
not be achieved (Rasmussen et al, 2012). In order to use the same approach
for other WSRP domains, specific algorithms to generate columns based on
the business rules and constraints of each domain seems to be a promising
area. Our next steps are to develop such algorithms and aim to use them in a
similar framework as Rasmussen et al.

As a result of this survey on workforce scheduling and routing problems, two
issues seem to arise. The first one, it appears that authors who have used
heuristics have not reused much previous work. We note this given the very
diverse set of meta-heuristic and hyper-heuristics approaches applied. It seems
not possible to identify heuristic solution methods that are popular and/or
better in tackling WSRP scenarios. The second one, with the exception of the
work by Akjiratikarl et al it appears that no different papers have used the
same data set. This is because most papers tackle different specialised variants
of the problem. Nevertheless, this opens the opportunity to develop a data set
that represents well various WSRP scenarios and that serves to investigate
different solutions approaches.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 295

T
a
b
le

1
:

C
h
a
ra

c
te

ri
st

ic
s

o
v
e
rv

ie
w

in
W

S
R

P

N
o

CharacteristicsinWSRP

Beguretal(1997)

BrandãoandMercer(1997)

BrandãoandMercer(1998)

ChengandRich(1998)

DeAngelis(1998)

Desaulniersetal(1998)

Blaisetal(2003)

Limetal(2004)

Lietal(2005)

Akjiratikarletal(2006)

BertelsandFahle(2006)

Borsanietal(2006)

Evebornetal(2006)

Itabashietal(2006)

Akjiratikarletal(2007)

BredströmandRönnqvist(2007)

Dohnetal(2009)

BredströmandRönnqvist(2008)

Dohnetal(2008)

Evebornetal(2009)

Kergosienetal(2009)

Cordeauetal(2010)

Misiretal(2010)

Rasmussenetal(2012)

Misiretal(2011)

Landa-Silvaetal(2011)

SalaniandVaca(2011)

1
F

le
x
ib

le
ti

m
e

w
in

d
o
w

s
?

?
?

?
?

?
?

?
?

?
?

?
?

2
S
p

e
c
ifi

c
ti

m
e

w
in

d
o
w

s
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

3
M

u
lt

i-
tr

ip
p
la

n
n
in

g
?

?
?

?
?

?
?

4
L

o
a
d
in

g
a
n
d

u
n
lo

a
d
in

g
ti

m
e

?
?

?
5

D
iv

e
rs

e
fl
e
e
t

?
?

?
?

?
?

?
?

?
6

H
o
m

o
g
e
n
e
o
u
s

fl
e
e
t

?
?

?
?

7
M

a
x
im

u
m

d
ri

v
in

g
ti

m
e

?
?

8
M

u
lt

ip
le

d
e
p

o
t

?
?

?
?

?
?

9
S
ta

rt
a
n
d

re
tu

rn
to

th
e

so
u
rc

e
?

?
?

?
?

?
?

?
?

?
?

1
0

S
ta

rt
a
n
d

e
n
d

a
t

d
iff

e
re

n
t

p
o
in

ts
?

?
?

?
?

?
?

1
1

S
ta

ck
sp

e
c
ifi

c
a
ti

o
n

?
1
2

B
a
ck

w
a
rd

m
il
a
g
e

?
1
3

S
u
b

c
o
n
tr

a
c
ti

n
g

?
?

?
?

?
?

1
4

D
iv

e
rs

e
c
a
p
a
c
it

y
?

?
?

?
?

?
?

?
?

?
?

1
5

C
lu

st
e
ri

n
g

re
q
u
ir

e
d

?
?

?
?

?
?

?
1
6

In
it

ia
l

fe
a
si

b
le

so
lu

ti
o
n

?
?

?
1
7

V
e
h
ic

le
fi
ll

in
fa

c
to

r
1
8

S
it

e
s

v
e
h
ic

le
s

re
st

ri
c
ti

o
n
s

?
?

?
?

?
?

1
9

R
e
a
l

d
is

ta
n
c
e
s

u
se

d
?

?
?

?
?

2
0

P
re

fe
re

n
c
e

o
n

v
is

it
o
rs

?
?

?
?

?
?

?
?

?
2
1

D
iv

e
rs

e
sk

il
l

se
ts

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
2
2

F
le

x
ib

le
sh

if
ts

?
?

?
?

?
2
3

S
p

e
c
ifi

c
sh

if
ts

?
?

?
?

?
?

?
?

?
2
4

A
b
se

n
c
e

a
v
a
il
a
b
il

it
y

in
c
lu

d
e
d

?
?

?
?

?
?

?
?

2
5

D
iv

e
rs

e
c
o
n
tr

a
c
ts

?
?

?
?

?
?

?

296 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

T
a
b
le

1
–

c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

N
o

CharacteristicsinWSRP

Beguretal(1997)

BrandãoandMercer(1997)

BrandãoandMercer(1998)

ChengandRich(1998)

DeAngelis(1998)

Desaulniersetal(1998)

Blaisetal(2003)

Limetal(2004)

Lietal(2005)

Akjiratikarletal(2006)

BertelsandFahle(2006)

Borsanietal(2006)

Evebornetal(2006)

Itabashietal(2006)

Akjiratikarletal(2007)

BredströmandRönnqvist(2007)

Dohnetal(2009)

BredströmandRönnqvist(2008)

Dohnetal(2008)

Evebornetal(2009)

Kergosienetal(2009)

Cordeauetal(2010)

Misiretal(2010)

Rasmussenetal(2012)

Misiretal(2011)

Landa-Silvaetal(2011)

SalaniandVaca(2011)

2
6

L
o
c
a
ti

o
n

w
it

h
in

li
m

it
s

?
?

?
?

?
?

2
7

H
e
te

ro
g
e
n
e
o
u
s

w
o
rk

fo
rc

e
?

?
?

?
?

?
?

?
?

?
?

?
?

2
8

D
iv

e
rs

e
ta

sk
ty

p
e
s

?
?

?
?

?
?

?
?

?
?

?
?

?
2
9

S
y
n
ch

ro
n
is

a
ti

o
n

o
f

ta
sk

s
?

?
?

?
?

?
?

?
?

?
3
0

P
re

c
e
d
e
n
c
e

c
o
n
st

ra
in

ts
?

?
?

?
?

?
3
1

S
y
n
ch

ro
n
is

a
ti

o
n

o
f

v
e
h
ic

le
s

?
?

?
?

?
3
2

V
e
h
ic

le
s

a
v
a
il
a
b
il
it

y
?

?
?

?
?

?
3
3

M
u
lt

ip
le

st
a
ff

p
e
r

v
e
h
ic

le
3
4

B
re

a
k

S
ch

e
d
u
li
n
g

?
?

3
5

E
x
h
a
u
st

re
la

ti
o
n
sh

ip
c
a
re

r-
p
a
ti

e
n
t

?
3
6

S
p

e
c
ifi

c
n
u
m

b
e
r

o
f

w
o
rk

e
rs

?
?

3
7

D
e
m

a
n
d

o
n

p
a
ti

e
n
ts

n
e
e
d
s

?
?

?
?

?
3
8

E
n
su

re
n
o
n
-s

y
n
ch

ro
n
is

e
d

a
c
ti

v
it

ie
s

?
3
9

O
v
e
rt

im
e

c
o
n
si

d
e
re

d
?

4
0

L
e
v
e
ls

o
f

p
la

n
n
in

g
?

4
1

T
e
a
m

in
g

in
v
o
lv

e
d

?
?

4
2

J
o
b
s

p
e
rf

o
rm

e
d

a
t

d
iff

e
re

n
t

lo
c
a
ti

o
n
s

?
?

?
?

?
?

?
?

?
4
3

D
e
m

a
n
d

c
a
n

b
e

sp
li
tt

e
d

?

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 297

T
a
b
le

1
–

c
o
n
ti

n
u
e
d

fr
o
m

p
re

v
io

u
s

p
a
g
e

N
o

CharacteristicsinWSRP

Beguretal(1997)

BrandãoandMercer(1997)

BrandãoandMercer(1998)

ChengandRich(1998)

DeAngelis(1998)

Desaulniersetal(1998)

Blaisetal(2003)

Limetal(2004)

Lietal(2005)

Akjiratikarletal(2006)

BertelsandFahle(2006)

Borsanietal(2006)

Evebornetal(2006)

Itabashietal(2006)

Akjiratikarletal(2007)

BredströmandRönnqvist(2007)

Dohnetal(2009)

BredströmandRönnqvist(2008)

Dohnetal(2008)

Evebornetal(2009)

Kergosienetal(2009)

Cordeauetal(2010)

Misiretal(2010)

Rasmussenetal(2012)

Misiretal(2011)

Landa-Silvaetal(2011)

SalaniandVaca(2011)

4
4

D
o
m

a
in

s:

H
C

H
o
m

e
c
a
re

H
H

C
H

o
m

e
h
e
a
lt

h
c
a
re

S
T

S
ch

e
d
u
li
n
g

te
ch

n
ic

ia
n
s

S
P

S
e
c
u
ri

ty
p

e
rs

o
n
n
e
l

M
A

M
a
n
p

o
w

e
r

a
ll
o
c
a
ti

o
n

V
R

P
V

e
h
ic

le
ro

u
ti

n
g

HHC

VRP

VRP

HHC

HC

VRP

HC

MA

MA

HC

HHC

HC

HC

HC

HC

VRP

MA

VRP

HHC

HC

HHC

ST

HC

HHC

SP

VRP

VRP

4
5

S
o
lu

ti
o
n

m
e
th

o
d

e
m

p
lo

y
e
d
:

O
.

O
p
ti

m
is

a
ti

o
n

1
.

M
IL

P
2
.

IL
P

3
.

IN
L

P
4
.

S
P

P
5
.

M
C

N
F

P
H

.
H

e
u
ri

st
ic

s
6
.

T
S

7
.

P
S
O

8
.

S
A

9
.

S
W

O
1
0
.

A
g
e
n
ts

b
a
se

d
1
1
.

L
N

S
,

V
L

N
S
,

A
L

N
S

1
2
.

H
y
p

e
r-

h
e
u
ri

st
ic

s
C

.
H

y
b
ri

d

O.MILP

H.TS

H.TS

C.MILP,Constructive

O.MILP

O.INLP

H.TS

H.TS,SA,SWO

C.ILP,Constructive,SA

H.PSO

C.MILP,SA,TS

O.MILP

C.ILP,SPP,Matching

H.Agents

H.PSO

O.ILP,SPP

O.ILP,SPP

C.MILP,heuristics

O.ILP,SPP

C.SPP,Repeatmatching

O.ILP

H.LNS,VLNS,ALNS

H.Hyper-heuristics

O.ILP,SPP

H.Hyper-heuristics

H.LNS,Clustering

O.MCNFP

M
IL

P
M

ix
e
d

in
te

g
e
r

li
n
e
a
r

p
ro

g
ra

m
m

in
g
,

IL
P

In
te

g
e
r

li
n
e
a
r

p
ro

g
ra

m
m

in
g
,

IN
L

P
In

te
g
e
r

n
o
n
-l

in
e
a
r

p
ro

g
ra

m
m

in
g
,

S
P

P
S
e
t

p
a
rt

it
io

n
in

g
p
ro

b
le

m
,

M
C

N
F

P
M

u
lt

i-
c
o
m

m
o
d
it

y
n
e
tw

o
rk

fl
o
w

p
ro

b
le

m
,

T
S

T
a
b
u

se
a
rc

h
,

P
S
O

P
a
rt

ic
le

sw
a
rm

o
p
ti

m
is

a
ti

o
n
,

S
A

S
im

u
la

te
d

a
n
n
e
a
li
n
g
,

S
W

O
S
q
u
e
a
k
y

w
h
e
e
l

o
p
ti

m
is

a
ti

o
n
,

(V
/
A

)L
N

S
(V

e
ry

/
A

d
a
p
ti

v
e
)

L
a
rg

e
n
e
ig

h
b

o
u
rh

o
o
d

se
a
rc

h

298 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

References

Akjiratikarl C, Yenradee P, Drake PR (2006) An improved particle swarm
optimization algorithm for care worker scheduling. In: Proceedings of the 7th
Asia Pacific Industrial Engineering and Management Systems Conference
2006, pp 457–466

Akjiratikarl C, Yenradee P, Drake PR (2007) Pso-based algorithm for home
care worker scheduling in the uk. Computers & Industrial Engineering
53(4):559–583, DOI 10.1016/j.cie.2007.06.002

Alfares HK (2004) Survey, categorization and comparison of recent tour
scheduling literature. Annals of Operations Research 127(1–4):145–175,
DOI 10.1023/B:ANOR.0000019088.98647.e2

Baker KR (1976) Workforce allocation in cyclical scheduling problems: A
survey. Journal of the Operational Research Society 27(1):155–167, DOI
10.1057/jors.1976.30

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MW, Vance
PH (1998) Branch-and-price: Column generation for solving
huge integer programs. Operations Research 46(3):316–329, URL
http://www.jstor.org/stable/222825

Begur SV, Miller DM, Weaver JR (1997) An integrated spatial dss for
scheduling and routing home-health-care nurses. Interfaces 27(4):35–48,
DOI 10.1287/inte.27.4.35

Bertels S, Fahle T (2006) A hybrid setup for a hybrid scenario: combining
heuristics for the home health care problem. Computers & Operations Re-
search 33(10):2866–2890, DOI 10.1016/j.cor.2005.01.015

Blais M, Lapierre SD, Laporte G (2003) Solving a home-care districting
problem in a urban setting. Journal of the Operational Research Society
54(11):1141–1147, DOI 10.1057/palgrave.jors.2601625

Borsani V, Matta A, Sommaruga F, Beschi G (2006) A home care
scheduling model for human resources. In: Service Systems and Service
Management, 2006 International Conference on, vol 1, pp 449–454, DOI
10.1109/ICSSSM.2006.320504

Bozkaya B, Erkut E, Laporte G (2003) A tabu search heuristic and adaptive
memory procedure for political districting. European Journal of Operational
Research 144(1):12–26, DOI 10.1016/S0377-2217(01)00380-0

Brandão J, Mercer A (1997) A tabu search algorithm for the multi-trip vehicle
routing and scheduling problem. European Journal of Operational Research
100(1):180–191, DOI 10.1016/S0377-2217(97)00010-6

Brandão J, Mercer A (1998) The multi-trip vehicule routing prob-
lem. Journal of the Operational Research Society 49(8):799–805, URL
http://www.jstor.org/stable/3009960

Bredström D, Rönnqvist M (2007) A branch and price algorithm for the com-
bined vehicle routing and scheduling problem with synchronization con-
straints. DOI 10.2139/ssrn.971726

Bredström D, Rönnqvist M (2008) Combined vehicle routing and scheduling
with temporal precedence and synchronization constraints. European Jour-
nal of Operational Research 191(1):19–31, DOI 10.1016/j.ejor.2007.07.033

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 299

Cheang B, Li H, Lim A, Rodrigues B (2003) Nurse rostering problems–a bibli-
ographic survey. European Journal of Operational Research 151(3):447–460,
DOI 10.1016/S0377-2217(03)00021-3

Cheng E, Rich JL (1998) A home health care routing and scheduling problem.
URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1268

Cordeau JF, Laporte G, Pasin F, Ropke S (2010) Scheduling technicians and
tasks in a telecommunications company. Journal of Scheduling 13(4):393–
409, DOI 10.1007/s10951-010-0188-7

De Angelis V (1998) Planning home assistance for aids pa-
tients in the city of rome, italy. Interfaces 28(3):75–83, URL
http://www.jstor.org/stable/25062377

Desaulniers G, Lavigne J, Soumis F (1998) Multi-depot vehicle scheduling
problems with time windows and waiting costs. European Journal of Oper-
ational Research 111(3):479–494, DOI 10.1016/S0377-2217(97)00363-9

Desaulniers G, Desrosiers J, Solomon MM (eds) (2005) Column Generation.
Springer

Desrochers M, Desrosiers J, Solomon M (1992) A new optimization algorithm
for the vehicle routing problem with time windows. Operations research
40(2):342–354, DOI 10.1287/opre.40.2.342

Desrosiers J, Lübbecke ME (2005) A primer in column generation. In: De-
saulniers G, Desrosiers J, Solomon MM (eds) Column Generation, Springer,
chap 1, pp 1–32, DOI 10.1007/0-387-25486-2 1

Dohn A, Rasmussen MS, Justesen T, Larsen J (2008) The home care crew
scheduling problem. In: Sheibani K (ed) Proceedings of the 1st Interna-
tional Conference on Applied Operational Research, Institute for Oper-
ational Research, System Design and Financial Services, Tadbir, Lecture
Notes in Management Science, vol 1, pp 1–8

Dohn A, Kolind E, Clausen J (2009) The manpower allocation prob-
lem with time windows and job-teaming constraints: A branch-and-price
approach. Computers & Operations Research 36(4):1145–1157, DOI
10.1016/j.cor.2007.12.011

Eaton SC (2003) if you can use them: Flexibility policies, organizational com-
mitment, and perceived performance. Industrial Relations: A Journal of
Economy and Society 42(2):145–167, DOI 10.1111/1468-232X.00285

Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and
rostering: A review of applications, methods and models. European journal
of operational research 153(1):3–27

Eveborn P, Flisberg P, Rönnqvist M (2006) Laps care – an operational system
for staff planning of home care. European Journal of Operational Research
171(3):962–976, DOI 10.1016/j.ejor.2005.01.011

Eveborn P, Rönnqvist M, Einarsdóttir H, Eklund M, Lidén K, Almroth M
(2009) Operations research improves quality and efficiency in home care.
Interfaces 39(1):18–34, DOI 10.1287/inte.1080.0411

Feillet D (2010) A tutorial on column generation and branch-and-price for
vehicle routing problems. 4OR: A Quarterly Journal of Operations Research
8(4):407–424, DOI 10.1007/s10288-010-0130-z

Feillet D, Dejax P, Gendreau M, Gueguen C (2004) An exact algorithm for
the elementary shortest path problem with resource constraints: Appli-

300 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

cations to some vehicle routing problems. Networks 44(3):216–229, DOI
10.1002/net.20033

Fischetti M, Polo C, Scantamburlo M (2004) A local branching heuristic for
mixed-integer programs with 2-level variables, with an application to a
telecommunication network design problem. Networks 44(2):61–72, DOI
10.1002/net.20017

Fosgerau M, Engelson L (2011) The value of travel time variance.
Transportation Research Part B: Methodological 45(1):1–8, DOI
10.1016/j.trb.2010.06.001

Golembiewski R, Proehl Jr C (1978) A survey of the empirical lit-
erature on flexible workhours: Character and consequences of a ma-
jor innovation. Academy of Management Review 3(4):837–853, DOI
http://www.jstor.org/stable/257938

Irnich S, Desaulniers G (2005) Shortest path problems with resource con-
straints. In: Desaulniers G, Desrosiers J, Solomon MM (eds) Column Gen-
eration, Springer, chap 2, pp 33–65, DOI 10.1007/0-387-25486-2 2

Itabashi G, Chiba M, Takahashi K, Kato Y (2006) A support system for home
care service based on multi-agent system. In: Information, Communications
and Signal Processing 2005 Fifth International Conference on, pp 1052–1056,
DOI 10.1109/ICICS.2005.1689213

Jara-Dı́az S (2000) Allocation and valuation of travel time savings. In: Hensher
DA, Button KJ (eds) Handbook of transport modelling, vol 1, Emerald
Group Publishing, chap 18, pp 303–318

Joslin DE, Clements DP (1999) Squeaky wheel optimization. Journal of Arti-
ficial Intelligence Research 10:353–373

Kallehauge B, Larsen J, Madsen OBG, Solomon MM (2005) Vehicle routing
problem with time windows. In: Desaulniers G, Desrosiers J, Solomon MM
(eds) Column Generation, Springer, chap 3, pp 67–98, DOI 10.1007/0-387-
25486-2 3

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Neural Net-
works, 1995. Proceedings., IEEE International Conference on, IEEE, vol 4,
pp 1942–1948, DOI 10.1109/ICNN.1995.488968

Kergosien Y, Lente C, Billaut JC (2009) Home health care problem, an ex-
tended multiple travelling salesman problem. In: Blazewicz J, Drozdowski
M, Kendall G, McCollum B (eds) Proceedings of the 4th Multidisciplinary
International Scheduling Conference: Theory and Applications (MISTA
2009), pp 85–92, URL http://www.mistaconference.org/2009/papers/085-
092-110-P.pdf

Laarhoven PJM, Aarts EH (1987) Simulated Annealing: Theory and applica-
tions. Springer

Landa-Silva D, Wang Y, Donovan P, Kendall G (2011) Hybrid heuristic for
multi-carrier transportation plans. In: Proceedins of the 9th Metaheuristics
International Conference (MIC2011), pp 221–229

Li Y, Lim A, Rodrigues B (2005) Manpower allocation with time windows
and job-teaming constraints. Naval Research Logistics 52(4):302–311, DOI
10.1002/nav.20075

Lim A, Rodrigues B, Song L (2004) Manpower allocation with time win-
dows. Journal of the Operational Research Society 55:1178–1186, DOI

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 301

10.1057/palgrave.jors.2601782
Mart́ınez-Sánchez A, Pérez-Pérez M, De-Luis-Carnicer P, Vela-Jiménez MJ

(2007) Telework, human resource flexibility and firm performance. New
Technology, Work and Employment 22(3):208–223, DOI 10.1111/j.1468-
005X.2007.00195.x

Miller H (1976) Personnel scheduling in public systems: a survey. Socio-
economic planning sciences 10(6):241–249

Misir M, Verbeeck K, De Causmaecker P, Vanden Bergue G (2010) Hyper-
heuristics with a dynamic heuristic set for the home care scheduling problem.
In: Evolutionary Computation (CEC), 2010 IEEE Congress on, pp 18–23,
DOI 10.1109/CEC.2010.5586348

Misir M, Smet P, Verbeeck K, Vanden Bergue G (2011) Security personnel
routing and rostering: a comparisonof hyper-heuristic approaches. In: The
3rd International Conference on Applied Operational Research, ICAOR11,
Istanbul, Turkey, 2011, pp 193–206

Raff S (1983) Routing and scheduling of vehicles and crews: The state of the
art. Computers & Operations Research 10(2):63–211, DOI 10.1016/0305-
0548(83)90030-8

Rasmussen MS, Justesen T, Dohn A, Larsen J (2012) The home care crew
scheduling problem: Preference-based visit clustering and temporal depen-
dencies. European Journal of Operational Research 219(3):598–610, DOI
10.1016/j.ejor.2011.10.048

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic
for the pickup and delivery problem with time windows. Transportation
Science 40(4):455–472, DOI 10.1287/trsc.1050.0135

Rosenkrantz DJ, Stearns RE, Lewis II PM (1977) An analysis of several
heuristics for the traveling salesman problem. SIAM Journal on Computing
6(3):563–581, DOI 10.1137/0206041

Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search
Methodologies, Springer US, pp 529–556

Salani M, Vaca I (2011) Branch and price for the vehicle routing problem with
discrete split deliverables and time windows. European Journal of Opera-
tional Research 213(3):470–477, DOI 10.1016/j.ejor.2011.03.023

302 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A Constraint Programming Approach to the

Traveling Tournament Problem with Predefined

Venues

Gilles Pesant

the date of receipt and acceptance should be inserted later

Abstract The Traveling Tournament Problem with Predefined Venues (TTPPV)
has been introduced as an abstraction of sports scheduling. Exact integer pro-
gramming and heuristic approaches have been proposed so far. We investigate
an exact constraint programming approach for this problem, discussing dif-
ferent models and search strategies. We report their respective performance
on the standard set of benchmark instances and compare them to the current
state of the art.

Keywords traveling tournament problem with predefined venues · constraint
programming · sports scheduling

1 Introduction

The Traveling Tournament Problem with Predefined Venues (TTPPV) was
introduced in [13] and consists of finding an optimal compact single round
robin schedule for a sport tournament. Given a set of n teams, each team
has to play once against every other team. In each game, a team is supposed
to play either at home or away, however no team can play more than three
consecutive times at home or away (in the rest of the paper, we will refer
to this restriction as the stretch constraint). We seek to minimize the total
distance traveled by all the teams. The main distinctive feature of this variant
of the Traveling Tournament Problem (TTP) [4] is that the venue of each game
is predefined, i.e. for the game in which team a plays against b it is already
known whether it is going to be held at a’s home or at b’s home. A TTPPV
instance is said to be balanced if the number of home games and the number
of away games differ by at most one for each team; otherwise it is referred to

G. Pesant
École Polytechnique de Montréal, Canada
CIRRELT, Montreal, Canada
E-mail: Gilles.Pesant@cirrelt.ca

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 303

as non-balanced or random. TTPPV benchmark instances were created in [13]
from existing TTP instances (the Circle instances, see [4]) by adding a venue
for each game. The number of teams goes from 4 to 20 and there are twenty
instances (ten balanced; ten random) of each size. Instances on n teams will
be denoted CIRCn.

The integer programming models described in [13] solve to optimality in-
stances with up to 8 teams but have great difficulty finding feasible solutions
beyond 16-team instances. By removing the travel distance from the objective
and replacing it with penalties associated with the (now relaxed) predefined
venue and stretch constraints, they manage to generate feasible solutions for
larger instances. More recently an iterated local search approach achieves much
better solutions [2].

This paper’s contribution is to show how to model and solve the TTPPV
using constraint programming. This approach provides a concise formal model
that can be used both in an exact or heuristic setting. It also offers the possi-
bility to integrate side constraints easily. The rest of the paper is organized as
follows: Section 2 gives a short introduction to constraint programming, Sec-
tion 3 gradually describes CP models and search heuristics for the TTPPV,
Section 4 presents search space exploration strategies and empirical results on
instances of realistic size.

2 Constraint Programming

Constraint Programming (CP) is a powerful technique to solve combinatorial
problems. It applies sophisticated inference to reduce the search space and a
combination of variable- and value-selection heuristics to guide the exploration
of that search space. The problem to solve is described through a formal model
expressed using constraints from a rich set of modeling primitives. Each type
of constraint encapsulates its own specialized inference algorithm.

2.1 CP Inference

To every variable of a CP model is associated a finite set called its domain:
each value in that domain represents a possible value for the variable. Con-
straints on the variables forbid certain combinations of values. Picturing the
model as a network whose vertices are the variables and whose (hyper)edges
are the constraints provides insight into the basic algorithm used in CP. A
vertex is labeled with the set of values in the domain of the corresponding
variable and an edge is incident to those vertices representing the variables
appearing in the associated constraint. Looking locally at a particular edge
(constraint), the algorithm attempts to modify the label (reduce the domain)
of the incident vertices (variables) by removing values which cannot be part of
any solution because they would violate that individual constraint; this local

consistency step can be performed efficiently. If every violating variable-value

304 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

pair is identified and removed, we achieve domain consistency which is the best
we can do locally; sometimes achieving that level of consistency is computa-
tionally too costly and we will only remove values at both ends of a domain,
achieving bounds consistency (typically for domains from a totally ordered set
such as the integers).

The modification of a vertex’s label triggers the inspection of all incident
edges, which in turn may modify other labels. This recursive process stops
when either all label modifications have been dealt with or the empty label
is obtained, in which case no solution exists. The overall behavior is called
constraint propagation.

2.2 CP Search

Since constraint propagation may stop with indeterminate variables (i.e. whose
domain still contains several values) the solution process requires search, which
can potentially take exponential time. It usually takes the form of a tree search
in which branching corresponds to fixing a variable to a value in its domain,
thus triggering more constraint propagation. We call variable-selection heuris-

tic and value-selection heuristic the way one decides which variable to branch
on and which value to try first, respectively. For combinatorial optimization
problems, the tree search evolves into a branch-and-bound search in which
branching is the same as before and lower bounds at tree nodes are obtained
by various means.

2.3 CP for Sports Scheduling

The area of sports scheduling has already been quite successful for CP. For
example it plays an important role in scheduling Major League Baseball in
North America [5], it has been used to schedule the National Football League
in the US [12], and has been shown to perform well for College Basketball [9].
In particular a CP model for the TTP is proposed in [10].

3 Modeling the TTPPV

In this section we present and evaluate empirically several models and search
heuristics for the TTPPV. All tests were performed on a AMD Opteron
2.2GHz with 1GB of RAM and used the Ilog Solver 6.6 constraint program-
ming language.

3.1 Initial Model

A CP model for the TTP was presented in [10] and can be partly transposed
to the TTPPV. We describe an adaptation of it as our first model. For a

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 305

tournament with n teams, we will have n − 1 rounds since it is built as a
single round robin, as opposed to the TTP. We define opponent variables oij ,
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 to represent the opponent of team i in round j. We
also define home variables hij , 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 which are equal to 1
if team i plays at home in round j and zero otherwise.1 The model is partly
expressed as

alldifferent((oij)1≤j≤n−1) 1 ≤ i ≤ n (1)

ooij ,j = i 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (2)

oij ∈ {1, . . . , i− 1, i+ 1, . . . , n} 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (3)

hij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (4)

The alldifferent constraint, defined on a set of variables, enforces that
these variables take on distinct values and a few different consistency levels
(with corresponding filtering algorithms) can be achieved for it [11]. We will
use domain consistency, the strongest possible for filtering variable domains.
Constraints (1) state that each team plays exactly once against every other
team (single round robin): all opponents must be different and there are as
many opponents as there are rounds.2 By definition, Constraints (3) guarantee
that each team plays exactly one game in every round (compact tournament).
However one must ensure that the schedule is consistent: Constraints (2) state
that in any given round, the opponent of team i has its opponent variable set
to i. This is an instance of the element constraint, which allows array index-
ing by finite-domain variables and maintains domain consistency [7]. Finally
Constraints (4) express the choice of the venue for the game team i plays in
round j.

To take into account the predefined venue of each game, we again use
element with the n× n matrix V giving the venue of each game (V [i, k] = 1
if the game is hosted by i and 0 if it is hosted by k):

hij = V [i, oij] 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (5)

Reference [10] is not very clear on how it handles the stretch constraint
and there is only mention of “some inequalities”. Since its publication there
has been significant progress in modeling restrictive patterns on sequences
of variables, notably the regular language membership (regular) constraint
that takes as input an automaton describing the allowed patterns and achieves
domain consistency [14]. We use it here:

regular((hij)1≤j≤n−1,A) 1 ≤ i ≤ n (6)

The small automaton A for this constraint is depicted at Figure 1.

1 away variables are also introduced in [10], but these are unnecessary since they are
simply the opposite of the home variables.

2 [10] uses the more general cardinality constraint since each opposing team is met twice
in the TTP.

306 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3H2H1H

3A2A1A

start

1 1

0

1 0

0

1
0

1

0

0

1

Fig. 1 Automaton for the “maximum 3 consecutive home or away games” restriction

Expressing the cost of a schedule is a bit tedious with this model because
individual travel distances depend on pairs of consecutive variables. Let D

represent the n× n travel distance matrix and variable dij the travel distance
for team i to go play its game in round j. We follow [10] by considering four
cases: two consecutive games for a team are either both played home, home
then away, away then home, or both played away:

(hij = 1 ∧ hi,j+1 = 1) ⇒ di,j+1 = 0 1 ≤ i ≤ n, 1 ≤ j < n−1 (7)

(hij = 1 ∧ hi,j+1 = 0) ⇒ di,j+1 = D[i, oi,j+1] 1 ≤ i ≤ n, 1 ≤ j < n−1 (8)

(hij = 0 ∧ hi,j+1 = 1) ⇒ di,j+1 = D[oij , i] 1 ≤ i ≤ n, 1 ≤ j < n−1 (9)

(hij = 0 ∧ hi,j+1 = 0) ⇒ di,j+1 = D[oij , oi,j+1] 1 ≤ i ≤ n, 1 ≤ j < n−1(10)

(hi1 = 1) ⇒ di1 = 0 1 ≤ i ≤ n (11)

(hi1 = 0) ⇒ di1 = D[i, oi1] 1 ≤ i ≤ n (12)

(hi,n−1 = 1) ⇒ din = 0 1 ≤ i ≤ n (13)

(hi,n−1 = 0) ⇒ din = D[oi,n−1, i] 1 ≤ i ≤ n (14)

dij ∈ {0} ∪ {min{D}, . . . ,max{D}} 1 ≤ i ≤ n, 1 ≤ j ≤ n (15)

z =

n
∑

i=1

n
∑

j=1

dij (16)

Constraints (7)-(10) state the four cases in terms of the home variables and
correspondingly define the travel distance variables through indexing the travel
distance matrix by the opponent variables. Constraints (11)-(14) handle the
special cases of the first and last rounds. Note that these “p⇒ q” constraints
propagate in both directions: when p is satisfied then q is enforced; when q

is violated then ¬p is enforced. Constraint (16) sums the individual travel
distances into z, the cost objective to be minimized.

Finally we must specify a search heuristic. [10] guides search by selecting
uniformly at random the next variable to branch on (value selection is not
mentioned). To be more precise, a team is first selected at random, then all
rounds for that team are fixed in random order, where the home variable is
fixed before the opponent variable. We initially do something similar, select-
ing uniformly at random the next opponent variable among those of smallest
current domain size (a proven simple generic heuristic criterion) and selecting
values randomly as well. We also report on the even simpler static heuristic
selecting both variables and values lexicographically.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 307

Table 1 Average computation time for Model (1)-(16) on the CIRC6 and CIRC8 instances

instance time (sec)
size type randomMinDom lexico

6 random 0.07 0.10
balanced 0.15 0.16

8 random 395.50 298.60
balanced – –

Table 2 Average computation time for Model (1)-(17)

instance time (sec)
size type randomMinDom lexico

8 random – 567.8
balanced – 2926.4

On the TTP, [10] reported that he could solve the n = 4 and n = 6
instances but the latter required more than 10 minutes and 100 000 backtracks.
Table 1 shows our results on the TTPPV n = 6 and n = 8 instances. The 6-
team instances are easily solved whereas only the random 8-team instances are
within reach with this model: neither search heuristic could solve a majority of
the CIRC8 balanced instances. Note that one CIRC8 random instance could
not be solved within the one-hour time limit and was therefore excluded from
the average. The lexicographic search heuristic appears to do a little better
than randomized smallest domain.

3.2 Adding Redundant Constraints

Even though our model accurately describes an optimal solution to the TTPPV,
adding some constraints can help us to solve it faster. They will be redundant
from a declarative point of view but the inference algorithms they encapsulate
may filter out more values from the domains of variables and thus reduce the
search space further, at the expense of extra computation.

As already pointed out in [10], the opponent variables in a given round
must take distinct values:

alldifferent((oij)1≤i≤n) 1 ≤ j ≤ n− 1 (17)

Note that these do not replace Constraints (2), which are still needed.
Table 2 presents new results once redundant Constraints (17) are added.

This time every 8-team instance is solved to optimality by the lexicographic
heuristic, but not by the randomized-smallest-domain one. Henceforth we will
use the former. There is still a sharp difference in performance between the
random and balanced instances, probably due to the fact that the former are
more constrained and therefore have a smaller search space.

308 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

H

H H H HA A A A A A A A A

+ 2 H

(i)

(ii) H A H HA A A A A A A A A

Fig. 2 14-team individual schedule with 3 predefined home games and starting with a home
game. Both (i) and (ii) completed schedules are invalid.

Table 3 Average computation time for Model (1)-(5), (7)-(18) with the lexico search heuris-
tic on the CIRC8 instances

instance time (sec)
size type

8 random 413.2
balanced 2666.4

3.3 Catching Infeasible Instances

In addition to proving optimality, another advantage of exact methods is iden-
tifying infeasibility. Arguably a successful tree search algorithm needs to be
good at pruning infeasible subtrees. Among the CIRC instances, 14 are known
to be infeasible. Using the previous model and search heuristic, five of these
are proven without any search (the 6- and 8-team infeasible instances), one
requires 367 backtracks, and another 2595142 backtracks in about 12 minutes.
The other seven could not be proven within one hour.

One source of infeasibility is a team not having enough home (resp. away)
games to separate long stretches of away (resp. home) games. A necessary
condition is given in [13] and states that at least ⌊n−1

4
⌋ of each are needed.

The inability of our model to detect this stems from Constraints (6) and (1)
being handled separately: the former would need to know that games cannot
be repeated. Alternatively we could make sure that we have the correct number
of home games in each team’s schedule. The cost regular constraint [3], a
variant of regular that additionally assigns an individual cost to each value
taken by a variable and constrains their sum, can do just that:

cost regular((hij)1≤j≤n−1, A,
∑

1≤k≤nV [i, k], [0, 1]) 1 ≤ i ≤ n (18)

The last argument attributes a cost to each value possibly taken by the
hij variables: here an away game for i costs nothing whereas a home game
costs 1, effectively counting the latter. The third argument counts the number
of home games for team i according to matrix V and constrains the sum of
individual costs to that value. This way the constraint simultaneously enforces
the correct number of home/away games and the stretch requirement — it is
also strictly stronger than the ⌊n−1

4
⌋ condition. Consider Figure 2: thirteen

games are to be planned, three of them home games, and the first one being

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 309

Table 4 Average computation time for Model (1)-(5), (7)-(19) with simple static symmetry
breaking and the lexico search heuristic on the CIRC8 instances

instance time (sec)
size type

8 random 249.1
balanced 1372.5

played home. Despite the ⌊n−1

4
⌋ condition being satisfied, there is no valid

way to complete that schedule. For example, schedule (i) respects the stretch
constraint but not the number of predefined home games, whereas schedule
(ii) respects the latter but not the former. With this more powerful constraint
replacing (6), the 14 instances are shown to be infeasible without any search (0
backtrack). This confirms that the source of infeasibility here is an insufficient
number of home (or away) games for a team to respect the stretch restriction,
now captured by a single constraint. Table 3 also shows that the additional
inference improves the overall performance on feasible instances as well by
pruning more infeasible subtrees.

3.4 Symmetry Breaking

The presence of symmetry in models can considerably slow down tree search
approaches because the same infeasible subtree will be met repeatedly. This
is especially true when we are solving an optimization problem and the whole
tree must be traversed (even if only implicitly by pruning infeasible or provably
suboptimal subtrees). Identifying and removing all symmetries is generally a
very difficult task. Here there is one symmetry that is easy to see and remove:
the mirror image of a schedule, going from the last round to the first. Such
a transformation preserves the compact single round robin structure of the
schedule and the stretch restriction. Games are still played at the same venues.
And because travel distances are symmetric, its cost will be identical. We break
that symmetry by selecting the first team, arbitrarily, and requiring that its
first opponent be smaller than its last (according to team identifiers):

o11 < o1,n−1 (19)

Table 4 shows breaking that symmetry improves the overall performance
further, cutting the computation time almost by half. However solving the
10-team instances to optimality remains out of reach within one hour of com-
putation time.

4 Exploring the Search Space

Given a CP model and search heuristics to dictate how we branch at a search
tree node, there are still many ways we can explore the search space, even if
it is all based on tree search. This section explores two possible avenues.

310 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 5 Average solution value for the CIRC 10-team random instances with and without
limited discrepancy search

LDS 1 sec. 1 min. 1 hour

no 168.9 163.4 158.9
yes 171.1 164.0 158.6

Table 6 Best solution value for the feasible CIRC 18-team random instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1040 1028 998 1054 986 962 1124 940 806
D 1052 1014 1006 – 1020 972 1060 914 800
E 1018 994 994 1038 1018 972 1092 922 804
F 986 970 962 1006 974 936 1098 956 802
G 1002 988 976 – 990 962 1098 924 782
H 996 972 972 – 1004 956 1110 944 804
I 1000 990 968 – 958 936 1104 932 818
J 944 928 918 – 970 896 1102 898 782

4.1 Adding Robustness to the Search Heuristic

It is well known for tree search that regardless of a search heuristic’s qual-
ity, a depth-first traversal may take a very long time to undo a bad branching
decision made early on. Our simple static search heuristic certainly is no excep-
tion. There are a few devices commonly used to add robustness to such search
heuristics, e.g. randomized restarts and limited discrepancy search (LDS) [6].
The latter modifies the order in which the leaves of a search tree are vis-
ited according to how often the corresponding path deviates from the search
heuristic’s recommendation: first the leaf with 0 deviation, then those with
1k deviations, followed by those with 2k deviations, and so forth, for a given
parameter k. This has the effect of more quickly changing decisions close to
the root. We add LDS to the lexicographic search heuristic as its tree traversal
strategy.

Table 5 compares the average value of solutions found for the 10-team
random instances after 1 second, 1 minute, and one hour, with and without
LDS (the behavior on the balanced instances is similar). Note that the quality
starts out worse with LDS but it eventually catches up to and exceeds the
performance of the heuristic without LDS. The improvement observed here is
small but we next confirm it on instances of realistic size, comparing it at the
same time to the state of the art.

The two previous papers on the TTPPV both use the CIRC 18- and 20-
team instances. Table 6 and 7 report our results for n = 18 (Column 2 to
7) as well as the best ones for [13] (Column 8) and [2] (Column 9 and 10).
Our solutions are considerably better than the ones obtained with IP or their
polishing/enumerative heuristics, even after only 1 second of computation.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 311

Table 7 Best solution value for the feasible CIRC 18-team balanced instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 998 972 960 1036 980 932 1106 912 776
B 1012 1006 990 1036 972 924 1100 896 796
C 1068 1040 1022 1050 980 978 1038 892 794
D 1020 1002 986 – 1022 988 1096 882 788
E 1018 1012 1006 – 954 948 1074 892 784
F 1044 1030 1016 1034 1014 976 1060 910 792
G 972 948 942 1018 972 918 1100 894 784
H 986 964 956 – 984 918 1094 880 780
I 1004 994 978 1074 982 968 1102 894 778
J 1022 994 966 994 968 930 1078 878 780

Table 8 Best solution value for the feasible CIRC 20-team random instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1422 1410 1380 – 1418 1340 1502 1270 1106
B 1456 1454 1446 – 1436 1358 1522 1258 1082
C – – 1440 – 1424 1324 1488 1318 1096
D 1386 1376 1360 – 1368 1334 1510 1294 1136
E 1432 1410 1404 – 1432 1346 1574 1250 1100
G 1400 1380 1370 – 1386 1362 1540 1278 1078
I 1388 1366 1348 – 1360 1304 1516 1236 1082
J 1376 1360 1356 – 1344 1272 1516 1220 1070

For every instance but one, using LDS yields noticeably improved solutions
after one hour. Our best solutions after one hour are comparable to those
obtained by ILS after one second on the random instances but are inferior on
the balanced instances. This may be explained by the larger search space of
the latter for our exact approach. On none of the instances are we competitive
with ILS given a reasonable amount of time (two hours).

Table 8 and 9 report our results for n = 20 (Column 2 to 7) as well as the
best ones for [13] (Column 8) and [2] (Column 9 and 10). Again our solutions
are much better than the ones from [13] and LDS systematically improves our
exact algorithm. Unfortunately the gap between our performance and that of
ILS widens.

4.2 Applying Large Neighborhood Search to the CP Model

Local search is often the method of choice to solve large combinatorial op-
timization problems and as we saw it is currently the best method for this
problem. Several ways to combine CP and local search have been proposed in
the literature, e.g. [15], [16], [8]. Large Neighborhood Search (LNS) iteratively

312 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 9 Best solution value for the feasible CIRC 20-team balanced instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1380 1368 1360 1362 1356 1302 1520 1236 1094
B 1412 1386 1382 1432 1394 1346 1530 1252 1082
C 1408 1388 1370 1366 1362 1338 1470 1234 1072
D 1404 1400 1398 – 1430 1354 1464 1238 1100
E 1426 1416 1402 – 1414 1356 1526 1214 1076
F 1390 1372 1356 1440 1404 1340 1546 1236 1072
G 1348 1334 1316 – 1368 1296 1536 1210 1068
H 1446 1430 1410 1444 1358 1336 1516 1268 1094
I 1378 1356 1352 1422 1362 1310 1544 1238 1078
J 1410 1400 1368 – 1340 1308 1484 1222 1086

Table 10 Compared best solution value for the feasible CIRC 18-team random (left) and
balanced (right) instances using LNS

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 962 894 940 806
D 972 902 914 800
E 972 882 922 804
F 936 902 956 802
G 962 896 924 782
H 956 868 944 804
I 936 888 932 818
J 896 870 898 782

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 932 890 912 776
B 924 896 896 796
C 978 910 892 794
D 988 900 882 788
E 948 866 892 784
F 976 918 910 792
G 918 882 894 784
H 918 856 880 780
I 968 914 894 778
J 930 874 878 780

freezes part of the current solution and explores the remaining search space
(its potentially large neighborhood) by applying a (typically incomplete) CP
tree search, benefiting from the usual inference and search heuristics. It is thus
easy to transform an exact CP approach to one using LNS.

We tried a simple implementation of this idea. We run our exact CP algo-
rithm for a few seconds in order to get a fair initial solution. We then freeze
the schedule of a randomly selected small subset of the teams (here, 6 teams).
We explore the neighborhood with the same exact CP algorithm, stopping at
the first improving solution or until a time limit of 30 seconds is reached. We
stop after 100 consecutive unsuccessful iterations or one hour. Admittedly this
is a bare-bones representative of local search methods.

Table 10 reports empirical results on the n = 18 instances. It reiterates
some of the results from previous tables and adds a column for LNS. On every
instance LNS significantly improves our LDS results. On random instances
LNS solution values now lie somewhere between the one-second and two-hours
results of ILS. On balanced instances they are now comparable to the one-
second results. Table 11 reports empirical results on the n = 20 instances.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 313

Table 11 Compared best solution value for the feasible CIRC 20-team random (left) and
balanced (right) instances using LNS

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 1340 1206 1270 1106
B 1358 1294 1258 1082
C 1324 1286 1318 1096
D 1334 1250 1294 1136
E 1346 1278 1250 1100
G 1362 1280 1278 1078
I 1304 1258 1236 1082
J 1272 1234 1220 1070

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 1302 1270 1236 1094
B 1346 1270 1252 1082
C 1338 1264 1234 1072
D 1354 1268 1238 1100
E 1356 1244 1214 1076
F 1340 1218 1236 1072
G 1296 1248 1210 1068
H 1336 1266 1268 1094
I 1310 1268 1238 1078
J 1308 1242 1222 1086

Again LNS dominates LDS. On both random and balanced instances it is
often comparable to the one-second results of ILS.

5 Conclusion

We presented a constraint programming approach to the traveling tourna-
ment problem with predefined venues. A model was gradually refined and a
few search heuristics and strategies were considered. On standard benchmark
instances of realistic size, this approach outperforms a previous integer pro-
gramming exact approach and its related heuristic variants but falls short of
competing with the current best local search approach to this problem.

Much has yet to be tried with this CP approach and we believe there is
real potential for improvement. This is especially true of our search heuristic
which is currently static: it has performed well but a dynamic search heuristic
tailored to the problem should perform better. There is definitely a lot of room
for improvement in the local search approach with LNS which is currently
very simple. As an exact algorithm it could be brought to solve the 10-team
instances in reasonable time. Finally the easy integration of side constraints is
also an asset for a CP approach in the real world of sports scheduling.

References

1. Burke, E.K., Trick, M.A. (eds.): Practice and Theory of Automated Timetabling V,
5th International Conference, PATAT 2004, Pittsburgh, PA, USA, August 18-20, 2004,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 3616. Springer (2005)

2. Costa, F., Urrutia, S., Ribeiro, C.: An ILS heuristic for the traveling tournament problem
with predefined venues. Annals of Operations Research 194(1), 137–150 (2012)

3. Demassey, S., Pesant, G., Rousseau, L.M.: A Cost-Regular Based Hybrid Column Gen-
eration Approach. Constraints 11(4), 315–333 (2006)

4. Easton, K., Nemhauser, G.L., Trick, M.A.: The Traveling Tournament Problem De-
scription and Benchmarks. In: T. Walsh (ed.) CP, Lecture Notes in Computer Science,
vol. 2239, pp. 580–584. Springer (2001)

314 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5. Easton, K., Nemhauser, G.L., Trick, M.A.: Solving the Travelling Tournament Problem:
A Combined Integer Programming and Constraint Programming Approach. In: E.K.
Burke, P.D. Causmaecker (eds.) PATAT, Lecture Notes in Computer Science, vol. 2740,
pp. 100–112. Springer (2002)

6. Harvey, W.D., Ginsberg, M.L.: Limited Discrepancy Search. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, IJCAI- 95, pp. 607–
615. Morgan Kaufmann (1995)

7. Hentenryck, P.V., Carillon, J.P.: Generality versus Specificity: An Experience with AI
and OR Techniques. In: H.E. Shrobe, T.M. Mitchell, R.G. Smith (eds.) AAAI, pp.
660–664. AAAI Press / The MIT Press (1988)

8. Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press (2005)
9. Henz, M.: Scheduling a Major College Basketball Conference—Revisited. Operations

Research 49(1), 163–168 (2001)
10. Henz, M.: Playing with Constraint Programming and Large Neighborhood Search for

Traveling Tournaments. In: Burke and Trick [1]
11. van Hoeve, W.J.: The alldifferent Constraint: A Survey. CoRR cs.PL/0105015 (2001)
12. Lustig, I.: Scheduling the NFL with Constraint Programming. In: Burke and Trick [1]
13. Melo, R., Urrutia, S., Ribeiro, C.: The traveling tournament problem with predefined

venues. Journal of Scheduling 12(6), 607–622 (2009)
14. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Vari-

ables. In: M. Wallace (ed.) CP, Lecture Notes in Computer Science, vol. 3258, pp.
482–495. Springer (2004)

15. Pesant, G., Gendreau, M.: A constraint programming framework for local search meth-
ods. J. Heuristics 5(3), 255–279 (1999)

16. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: M.J. Maher, J.F. Puget (eds.) CP, Lecture Notes in Computer

Science, vol. 1520, pp. 417–431. Springer (1998)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 315

Hyper-Heuristics for Educational Timetabling

Nelishia Pillay

School of Mathematics, Statistics and Computer Science

+27 33 2605644

+27 33 2605648

pillayn32@ukzn.ac.za

Abstract: Hyper-heuristics aim at providing generalized solutions to combinatorial optimization

problems. Educational timetabling encompasses university examination timetabling, university

course timetabling and school timetabling. This paper provides an overview of the use of hyper-

heuristics to solve educational timetabling problems. The paper then proposes future research

directions focusing on using hyper-heuristics to provide a generalized solution over the domain of

educational timetabling instead of for a specific timetabling problem.

Keywords: hyper-heuristics, educational timetabling, university examination

timetabling, university course timetabling, school timetabling

1. Introduction

Whereas research into solving combinatorial optimization problems have

generally focused on producing the best results for one or more problems, hyper-

heuristics aim at generalizing well over a set of problems (Burke et al. 2003).

Based on the classification presented by Burke et al. (2010a) hyper-heuristics can

be selective or generative. Selection hyper-heuristics choose low-level heuristics

to construct or improve a potential solution timetable while generation hyper-

heuristics induce new low-level heuristics for a particular domain. Hyper-

heuristics can also be categorized as being constructive or perturbative.

Constructive hyper-heuristics either select or generate construction low-level

heuristics to create a solution. Perturbative hyper-heuristics either choose or

generate low-level heuristics to improve an initial candidate solution. A

perturbation hyper-heuristic consists of two components one for heuristic

selection and another for move acceptance. Thus, the four main categories of

hyper-heuristics can be described as selection constructive, selection perturbative,

generation constructive and generation perturbative.

There are three main areas of educational timetabling, namely, university

examination timetabling, university course timetabling and school timetabling. All

316 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

three types of timetabling involve the allocation of events to timetable periods

while at the same time satisfying a set of hard constraints and minimizing a set of

soft constraints (Qu et al. 2009c; McCollum et al. 2008; Pillay 2010a). These

events are exams for exam timetabling, meetings between groups of students and

lecturers in a specific venue for university course timetabling and meetings

between classes and teachers for school timetabling. Hard constraints of the

problem must be met in order to obtain an operable timetable. A timetable

meeting the hard constraints is described as feasible. Examples of hard constraints

include students not being scheduled to sit for two or more examinations during

the same period; classes, teachers and venues not being scheduled more than once

in the same period. Soft constraints define characteristics that we would like a

timetable to possess, e.g. certain events to be scheduled at a particular time of the

day, examinations with large numbers to be scheduled early in the timetable to

facilitate marking. The number of soft constraints violated is minimized as these

constraints are often contradictory and thus a soft constraint cost of zero is not

attainable. There are two types of university course timetabling problems namely,

curriculum-based and post enrolment. In the curriculum-based version student

enrolment is not known at the time of timetabling construction while in the post

enrolment version this is known (McCollum et al.2008).

The paper firstly provides an overview of hyper-heuristics to solve educational

timetabling problems. Section 2 focuses on university examination timetabling,

section 3 on university course timetabling and section 4 on school timetabling.

Section 5 presents an analysis of the use of hyper-heuristics to solve educational

timetabling problems and section 6 proposes future research directions.

2. Hyper-heuristics for University Examination

Timetabling

A majority of the research into the use of hyper-heuristics for educational

timetabling has been for the domain of examination timetabling. The hyper-

heuristics employed to solve this problem have been either selection constructive

or selection perturbative hyper-heuristics.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 317

2.1 Selection Constructive Hyper-Heuristics

Burke et al. (2002) present a case-based hyper-heuristic to solve examination

timetabling problems. The hyper-heuristic maintains a case base of previously

solved problems and the low-level construction heuristic that was most

appropriate to use at each stage of the timetable construction process. A timetable

for a new problem is constructed by using the same low-level construction

heuristic as that used in a previous case most similar to the current point of

construction. A similarity measure was used for this purpose. Each problem in

the case base is defined in terms of the problem characteristics and partial

solutions, including the heuristic used at each stage of the timetable construction

process. The low-level construction heuristics used include largest degree, largest

degree using tournament selection, colour degree and saturation degree. The

system was evaluated on generated timetabling problems. Tabu search was

employed to determine the best list of problem characteristics for case

comparisons. In later work (Burke et al. 2006) an additional low-level heuristic,

namely, hill-climber which improves an initial solution created randomly using

hill-climbing, was added to the heuristic set.

Yang and Petrovic (2004) present a hybrid approach combining a case-based

hyper-heuristic and the great deluge algorithm to solve the examination

timetabling problem. The great deluge algorithm improves a candidate solution

timetable created using a low-level construction heuristic such as largest degree,

largest enrollment, largest colour degree, largest weighted degree and saturation

degree. Yang et al. implement a case-based hyper-heuristic to choose which

construction heuristic to use to create the initial solution. The case base stores

previously solved examination timetabling problems and the construction

heuristic used. When solving a new examination timetabling problem the hyper-

heuristic uses a fuzzy similarity measure to match the problem to problems in the

case base and so identify which construction heuristic to apply to create an initial

solution which is then improved by the great deluge algorithm. The case base was

created using generated examination timetabling problems. The approach

produced feasible good quality timetables for problems from the Carter

benchmark set.

Burke et al. (2005) compare the performance of a tabu search and a hybrid

hyper-heuristic in solving the examination timetabling problem. The former

318 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

employs a tabu search to explore a space of combinations of the two low-level

construction heuristics, namely, largest degree and saturation degree. The hybrid

approach combines case-based reasoning and tabu search. Case-based reasoning is

used to determine the percentage of largest degree and saturation degree in each

combination. The characteristics of the problem being solved are compared to

previous cases. The same hybridization of largest degree and saturation degree is

used as that in the case that is the closest match. Tabu search was used to

determine the most appropriate list of characteristics to use for comparison to

previous cases. Both the hyper-heuristics were used to solve six generated

examination timetabling problems and four problems from the Carter benchmark

set. The tabu search hyper-heuristic outperformed the hybrid hyper-heuristic.

Burke et al. (2007) investigate the performance of the tabu search hyper-

heuristic further by extending the set of low-level heuristics used to include

largest colour degree, largest enrollment, largest weighted degree and random

ordering. The revised tabu search hyper-heuristic was used to solve eleven of the

Carter benchmark problems. In Qu et al. (2009b) the heuristic combinations

performing well are studied to identify any patterns with the respect to the

positions of the low-level heuristics in the combinations. This revealed that the

best performing combination contained the saturation degree and largest weighted

degree heuristics however the best percentage of each low-heuristic and the best

position of these occurrences in the heuristic combination is problem dependent.

Based on this an adaptive mechanism was built into the hyper-heuristic to

hybridize the amount of saturation degree and largest weighted degree in a

heuristic combination. The hyper-heuristic was used to solve eleven problems

from the Carter benchmark set.

Qu and Burke (2005) investigate the use of a selection constructive hyper-

heuristic to solve the examination timetabling problem. The hyper-heuristic

employs variable neighbourhood search to explore a space of heuristic

combinations consisting of two or more graph colouring heuristics, namely, color

degree, largest degree, largest enrollment, largest weighted degree, saturation

degree or random ordering. Each heuristic is applied in order to allocate an exam

to a minimum penalty period. The hyper-heuristic was used to solve the Carter

benchmark set of problems.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 319

Pillay (2008, 2010b, 2012) implement an evolutionary algorithm hyper-

heuristic to search a space of heuristic combinations of low-level construction

heuristics chosen from a set containing the largest degree, largest weighted

degree, largest enrollment, saturation degree and highest cost heuristics. The

hyper-heuristic was able to produce good quality timetables for both the Carter set

of benchmark problems and the benchmark set for the second international

timetabling competition (McCollum et al. 2008). This research also examined the

effect of the representation used for heuristic combinations on the performance of

the evolutionary algorithm hyper-heuristic. Three representations, namely, fixed

length, variable length and n-times and a combination of all three representations

were tested. The latter option produced the best results.

The hyper-heuristic implemented by Burke et al. (2009b) employed the greedy

random adaptive search procedure (GRASP) to hybridize the use of two low-level

construction heuristics, namely, saturation degree and largest weighted degree, in

choosing the next examination to schedule during the timetable construction

process. An improvement phase is also conducted to improve the candidate

solution constructed. Steepest descent is used for this purpose. The hyper-

heuristic was used to solve problems in the Carter benchmark set.

Qu and Burke (2009a) compare the performance of various hyper-heuristics,

each employing a different search to explore the heuristic space, to solve the

examination timetabling problem. These hyper-heuristics search a space of

heuristics combinations comprised of low-level construction heuristics. The

combinations are constructed by selecting heuristics from a set containing the

largest degree, largest weighted degree, largest colour degree, largest enrollment,

saturation degree and random ordering heuristics. The hyper-heuristics were

tested on eleven problems from the Carter benchmark set. The iterated local

search hyper-heuristic was found to produce the best results. The performance of

the hyper-heuristic was improved by searching the solution space, using iterative

local search, at different intervals during timetable construction.

Saber et al. (2011) have used a selection constructive hyper-heuristic to solve

this problem. In this study four low-level heuristics are combined to decide which

examination to schedule next. The latter three heuristics in the combination are

used to deal with ties. Roulette wheel selection is used to decide which period to

320 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

allocate the examination to. The hyper-heuristic was tested on the benchmark set

for the second international timetabling competition.

2.2 Selection perturbative hyper-heuristics

Kendall and Hussin (2004) use a tabu search hyper-heuristic to solve the

examination timetabling problem for MARA University. The tabu search hyper-

heuristic is used to improve an initial solution created using either the largest

degree or saturation degree construction low-level heuristic. Two variations of

the standard tabu search hyper-heuristic, namely, tabu search hyper-heuristics

with hill-climbing and tabu seach hyper-heuristics with great deluge were also

tested. Low-level heuristics include five move heuristics that reschedule

examinations, two swap heuristics that swap the periods of two exams, a heuristic

that unschedules an examination, and five construction heuristics (largest

enrolment, largest degree, largest weighted degree, largest colour degree, and

saturation degree) to reschedule unscheduled exams. The timetable produced by

the hyper-heuristic was an improvement on the manually created timetable used

by the university. In later work Kendall and Hussin (2005) applied the tabu

search hyper-heuristic to eight problems from the Carter benchmark set.

Biligin et al. (2006) test seven approaches for heuristic selection and five for

move acceptance. The heuristic selection methods include simple random, random

descent, random permutation, random permutation descent, choice function, tabu

search, and a greedy method. The three move acceptance approaches evaluated

are accept all moves, accept improving moves only, great deluge and Monte

Carlo. Low-level heuristics used in the study include three hill-climbing operators

(next ascent hill-climbing, Davis’ bit hill climber, random mutation hill climber)

and three mutation operators (swap dimension, dimensional mutation and

hypermutation). All six operators are applied to binary operands. The hyper-

heuristic was used to solve the Carter benchmark set of problems and the

examination timetabling for the Faculty of Architecture and Engineering at

Yeditepe University. The hyper-heuristic combining the use of a choice function

and Monte Carlo for move acceptance produced the best results.

In Ersoy et al. (2007) a hyper-heuristic is embedded in a memetic algorithm

used to solve the examination timetabling problem. The hyper-heuristic is used to

select one of three hill-climbers to be used by the memetic algorithm. The

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 321

memetic algorithm using various hyper-heuristics was tested on six of the Carter

benchmark problems. Self-adaptive hyper-heuristics using either a choice

function for heuristic selection and great deluge for move acceptance or simple

random combined with improving and equal move acceptance, were found to

perform well.

Burke et al. (2008) study the use of simulated annealing selection perturbative

hyper-heuristics. Simulated annealing is used for move acceptance. Three

methods, namely, simple random, a greedy method and a choice function are

evaluated for heuristic selection. Four low-level heuristics which reschedule

examinations are used. Three of the heuristics attempt to reschedule exams so as

to remove constraint violations. The last heuristic attempts to reschedule all the

allocated exams. The hyper-heuristic using a choice function for heuristic

selection with simulated annealing for move acceptance was found to outperform

the other hyper-heuristic combinations.

Ozcan et al. (2009) also implement a perturbation hyper-heuristic to solve the

examination timetabling problem. The move acceptance component employs a

late acceptance strategy. Instead of comparing the current candidate solution to

that obtained on the previous iteration, the move acceptance component compares

it to a solution from n previous iterations. Heuristic selection methods tested

include simple random, greedy, reinforcement learning, reinforcement learning

with tabu search, and a choice function. Four low-level heuristics are

implemented. The first is a mutation operator which attempts to reschedule all

exams. The remaining three heuristics reschedule exams so as to reduce constraint

violations. Tournament selection is used to select an exam and to select a slot to

reschedule the examination in. The hyper-heuristic using simple random for

heuristic selection and late acceptance strategy for move acceptance produced the

best results.

Burke et al. (2010b) have implemented a Monte Carlo selection perturbative

hyper-heuristic to solve the capacitated version of the Carter benchmark set (Qu et

al. 2009) of examination timetabling problems. This set consists of data collected

from thirteen different institutions. Methods tested for heuristic selection include

simple random, a greedy method, a choice function and reinforcement learning.

Similarly, different methods were made available for move acceptance, namely,

simulated annealing, simulated annealing with reheating and an exponential

322 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Monte Carlo method. Three low-level perturbative heuristics are used. The first

reschedules an exam based on the number of conflicts the examination is involved

in. The second reschedules exams so as to meet the capacity constraint while the

third reschedules an examination randomly. The hyper-heuristic producing the

best results for the benchmark set used the choice function for heuristic selection

and simulated annealing for move acceptance.

Burke et al. (2010c) employ a hyper-heuristic to improve the quality of an

initial feasible solution created using the largest degree construction heuristic.

The hyper-heuristic uses four low-level perturbative heuristics, namely, move

exam, swap exam, Kempe chain move and swap timeslot. All four heuristics aim

at producing the least penalty timetable. Preliminary studies indicated that Kempe

chain in combination with swap timeslot performed the best over problems of

differing characteristics. The best hybridization (i.e. percentage occurrence and

position) of these two heuristics in an optimal heuristic combination is problem

dependent. An adaptive component is built into the hyper-heuristic to perform the

hybridization of these two heuristics. The saturation degree is used to choose an

examination, causing a soft constraint violation, which the move operator is

applied to. The hyper-heuristic was used to find solutions to problems from the

Carter benchmark set and the benchmark set for the second international

timetabling competition.

Ozcan et al. (2012) have implemented a selection perturbative hyper-heuristic

employing reinforcement learning for heuristic selection and great deluge for

move acceptance. The hyper-heuristic was used to improve an initial solution.

Three types of low-level heuristics were used. The first type aims at rescheduling

the examination causing the most constraint violations in a set of n examinations.

The second reschedules the examination that has the highest impact on the

capacity violation for a particular period from a set of n periods with capacity

violations. The last type of low-level heuristic attempts to reschedule all allocated

examinations probabilistically. The hyper-heuristic was used to induce timetables

for Yeditepe University and the Carter benchmark set.

In the study conducted by Sin and Kham (2012) reinforcement learning is

used for heuristic selection and great deluge for move acceptance. Three variants

of great deluge were tested, namely, flex deluge, non-linear great deluge, and

extended great deluge. Low-level heuristics focused on changing timeslots of

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 323

examinations or swapping subsets of examinations between two timeslots. The

hyper-heuristic was used to improve an initial solution created using the largest

enrollment construction heuristic. Evaluation on the Carter benchmark set

revealed that the hyper-heuristic using the extended great deluge for move

acceptance was the most effective.

2.3 Selection generative hyper-heuristics

Asmuni et al. (2005; 2007; 2009) combine low-level graph heuristics, namely,

largest degree, saturation degree and largest enrollment, using a fuzzy logic

function. The fuzzy function combines two to three heuristics and the single value

produced is used to sort examinations to be scheduled according to difficulty. The

hyper-heuristic was used to solve the Carter benchmark set of problems.

Pillay and Banzhaf (2009b) proposed that low-level heuristics be combined

hierarchically allowing them to be applied simultaneously instead of combining

them linearly and applying them sequentially. The use of conditional and

logically operators have facilitated the hierarchical combination and simultaneous

application of low-level construction heuristics chosen from largest degree, largest

weighted degree, largest enrollment, saturation degree and highest cost heuristics.

Four such combinations were created and tested on the Carter benchmark set of

problems. These combinations produced results competitive to other hyper-

heuristics tested on the same benchmark set of problems. Pillay (2009a) automates

the process of creating the hierarchical heuristic combinations. In this study

genetic programming is used to evolve these combinations comprised of

conditional and logical operators and the low-level heuristics.

Pais and Burke (2010) use a Choquet integral to combine five low-level

construction heuristics, namely, largest degree, colour degree, largest weighted

degree, largest enrollment and saturation degree. The single value produced by

the Choquet integral estimates the difficulty of scheduling an examination. The

examinations are sorted in decreasing order according to this value and allocated

accordingly. The performance of the Choquet integral is compared to that of each

of the low-level heuristics applied individually to sort the examinations. The low-

level heuristics and the Choquet integral were evaluated on the Carter benchmark

problems and the benchmark set for the second international timetabling

competition. The Choquet integral produced the best results for eleven of the

324 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

thirteen Carter problems and for five of the eight timetabling competition

problems. Burke and Pais (2011) extend this work and evaluate differential

evolution to induce fuzzy measures to estimate examination difficulty. This

improved the performance of the hyper-heuristic.

2.4 Summary of Hyper-Heuristic Performance

This section summarizes the performance of the different types of hyper-

heuristics in solving the examination timetabling problem. There are essentially

two benchmark problem sets that these hyper-heuristics have been applied to,

namely, the Carter (also known as the Toronto) benchmark set (Qu et al. 2009c)

and the benchmark set used for the second international timetabling competition

ITC’ 2007 (McCollum et al. 2008). A majority of the hyper-heuristics have been

evaluated on the Carter benchmark set. The characteristics of the problems

included in this benchmark set are listed in Table 1 in Appendix A. This

benchmark set has been constructed by collecting data from real-world

educational institutions. The density of the clash matrix is a ratio of the number

students involved in clashes to the total number of students and is a measure of

the difficulty of the problem. The hard constraint for this set of problems is that

there must be no clashes, i.e. a student must not be scheduled to write more than

one examination at a time. The soft constraint is that the examinations must well-

distributed over the examination period for any one student. A distance formula is

used to calculate the soft constraint cost (Qu et al. 2009c). Performance of

selection constructive, selection perturbative and generation constructive hyper-

heuristics applied to the Carter benchmarks are tabulated in Appendix B,

Appendix C and Appendix D respectively. Note that only those studies that have

reported these results are included.

From the results presented in Appendix B the hybrid approach combining

cased-based reasoning with the great deluge algorithm appears to have performed

the best. The evolutionary algorithm hyper-heuristic, using a combination of

three different representations for individuals, has also produced fairly good

results. Selection perturbative hyper-heuristics have only been applied to subsets

of Carter benchmark problems and need to be evaluated further. The best

performing selection perturbative hyper-heuristic is the adaptive selection

perturbative hyper-heuristic implemented by Burke et al. (2012c). However, the

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 325

results produced by this hyper-heuristics is not as good as that of the selection

constructive hyper-heuristics listed in Appendix B. Similarly, the generation

constructive hyper-heuristics presented in Appendix D do not perform as well as

the selection constructive hyper-heuristics on the Carter benchmark set.

The comparison in this section has been restricted to examination timetabling

as there has not been sufficient research into university course timetabling and

school timetabling to do the same.

3. Hyper-Heuristics for University Course

Timetabling

The use of hyper-heuristics to solve the university course timetabling problem is

not as well researched as for the university examination timetabling problem.

Most of the research in this area has focused on the use of selection constructive

hyper-heuristics to find solutions to this problem.

3.1 Selection constructive hyper-heuristics

Rossi-Doria and Paechter (2003) implement an evolutionary algorithm selection

constructive hyper-heuristic. Each chromosome is a comprised of two rows of

integers representing heuristics. The first row represents heuristics to choose

which event to schedule next and are chosen from largest degree, largest colour

degree, least saturation degree, maximum weighted number of event correlations,

maximum number of students, maximum number of features by events, minimum

number of possible rooms, event with room suitable for most events, least

saturation degree with room consideration. The second row represents heuristics

used to select room and timeslots, e.g. smallest possible room, least room suitable,

least used room, latest or earliest timeslot in the day. The evolutionary algorithm

is steady-state and uses binary tournament selection. One point crossover and

mutation is used to produce offspring. The hyper-heuristic was tested on five

generated problems of medium difficulty and produced competitive results for

two of these problems.

A case-based hyper-heuristic is proposed in Burke et al. (2006) to solve the

university course timetabling problem. The case base stores previously solved

problems in terms of problem features and steps of the construction process and

the low-level construction heuristic used to schedule each event. Each new

326 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

problem is solved by finding a match to stored cases at each stage of the timetable

construction process. The hyper-heuristic was used to solve generated university

course timetabling problems.

Burke et al. (2007) implement a tabu search to explore a space of heuristic

combinations of low-level construction heuristics. These heuristics include,

random ordering, largest degree, saturation degree, largest colour degree, largest

enrollment and largest weighted degree. The hyper-heuristic was used to solve

eleven benchmark course timetabling problems (Socha et al. 2002).

Qu et al. (2009a) evaluate various search methods for use by a selection

constructive hyper-heuristic. The hyper-heuristic, using different search

techniques, was tested on eleven benchmarks problem made available by Socha et

al. (2002). The hyper-heuristic employing variable neighbour search to explore

the space of heuristic combinations comprised of low-level construction heuristics

produced the best results for the benchmark set. The low-level construction

heuristics used include largest degree, largest weighted degree, largest colour

degree, largest enrollment, saturation and random ordering heuristics. A variation

of the hyper-heuristic employing iterative local search to explore the solution

space at various stages during the timetable construction process was found to

improve the performance of the hyper-heuristic.

3.2 Selection perturbative hyper-heuristics

The selection perturbative hyper-heuristic implemented by Bai et al. (2007a,

2007b) uses simulated annealing for move acceptance. Heuristic selection is

initially random until a heuristic performance history has been developed and is

then based on the performance of the low-level heuristics in the previous

iterations. Three low-level perturbative heuristics are available for use by the

hyper-heuristic. The first reschedules a randomly selected event. The second

swaps the periods of two randomly chosen events. The third swaps the events of

two randomly selected periods. The hyper-heuristic is used to improve an initial

feasible solution. The hyper-heuristic was tested on two benchmark problem sets.

The first set contained five small, five medium and one large problem and the

second twenty problems. The hyper-heuristic performed better than two other

hyper-heuristics and meta-heuristics applied to the problems in the first

benchmark set and to one of the problems in the second benchmark set.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 327

3.3 Generation Perturbative Hyper-Heuristic

In the study conducted by Rattadilok (2010) an initial solution is created using a

random or greedy approach and is improved using a generation perturbative

hyper-heuristic. A choice function is used for heuristic selection. This function

selects low-level heuristics based on their previous performance. Swap operators

are used as low-level heuristics. Each operator is created by making configuration

decisions, namely, a number of candidates involved in the swap, swap candidate

sets and acceptance criteria for termination. Sub-controllers are used to formulate

configuration decisions. Ten low-level swap heuristics are used. The hyper-

heuristic was applied to data sets from the first international university course

timetabling competition.

4. School Timetabling

There has not been much research conducted into the use of hyper-heuristics for

solving the school timetabling problem. There have basically been two studies,

one investigating the use of a selection constructive hyper-heuristic and the

second evaluating a generation constructive hyper-heuristic in solving the school

timetabling problem.

4.1 Selection constructive hyper-heuristics

Pillay (2010c) implements an evolutionary algorithm hyper-heuristic to solve the

school timetabling problem. The evolutionary algorithm explores a space of

heuristic combinations of low-level construction heuristics. Construction

heuristics used include random ordering, largest degree, saturation degree, class

degree, teacher degree and class-teacher degree. The hyper-heuristic was tested

with different subsets of low-level heuristics from which the elements of each

heuristic combination are chosen. The subset consisting of largest degree and

saturation degree produced the best results. The incorporation of hill-climbing in

the genetic operators was found to improve the performance of the EA hyper-

heuristic. The EA hyper-heuristic produced competitive results in solving a

difficult generated problem and outperformed a neural work and greedy search

applied to the same problem. Pillay (2011a) applied this EA hyper-heuristic to

solving the school timetabling problem for a South African primary school. In

this study the low-level construction heuristic set included largest degree,

328 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

saturation degree, double degree and period preference degree. A Pareto function

of the hard and soft constraint costs was found to be the most effective option to

evaluate the fitness of each heuristic combination. The EA hyper-heuristic

produced a solution of better quality than that currently being used by the school.

4.2. Generation constructive hyper-heuristics

Pillay (2011b) employed genetic programming to evolve heuristics for the school

timetabling problem. The function set was composed of arithmetic operators,

arithmetic logical operators and conditional operators. The terminal set contains

variables to represent the characteristics of the problem, namely, the number of

class-teacher meetings a class is involved in and the number of class-teacher

meetings a teacher is involved in as well as the heuristics that are traditionally

used in solving the school timetabling problem, namely, largest degree and

saturation degree. The hyper-heuristic was tested on a difficult generated problem

and performed better than the saturation degree and largest degree applied to the

same problem. The generation hyper-heuristic also performed better than a tabu

search, the evolutionary algorithm hyper-heuristic described in section 4.1, a

Hopfield neural network and greedy search in solving the same problem.

5. Discussion and Future Research Directions

As is evident from the above discussion most of the research into using hyper-

heuristics for solving educational timetabling problems has been on examination

timetabling and on selection constructive hyper-heuristics for this domain.

Furthermore selection constructive hyper-heuristics appear to perform the best for

examination timetabling. However, this may not be a fair comparison at this stage

as the other types of hyper-heuristics have not been as well researched. Hyper-

heuristic research for the three different types of educational timetabling have

been conducted in isolation of each other. Future research should aim at

investigating the effectiveness of the different types of hyper-heuristics for

educational timetabling as a whole. The hyper-heuristics also need to be more

widely tested. The two benchmark sets available for examination timetabling are

the Carter benchmark set (Qu et al. 2009c) and the benchmark set of problems

used for the examination timetabling track of the second international timetabling

competition (McCollum et al. 2008). There are three benchmark sets available for

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 329

the university course timetabling problem, namely, that provided by Socha et al.

(2002), the problem set used for the first international timetabling competition

(Paechter et al. 2003) and the data sets for curriculum-based and post enrolment

university course timetabling tracks of the second international timetabling

competition. The third international timetabling competition (Post 2011) is

focused on school timetabling and various real-world school timetabling data sets

have been made available for the competition.

A fair amount of research has been conducted into using selection constructive

hyper-heuristics to solve the different educational timetabling problems. In a

majority of these studies a metaheuristic has been employed to explore the space

of heuristic combinations. These heuristic combinations are comprised of low-

level construction heuristics. The low-level heuristics that have been used for this

purpose have generally been the graph colouring heuristics, namely, largest

degree, largest weighted degree, largest colour degree, largest enrollment and

saturation degree. Some studies have introduced other low-level heuristics,

namely, highest cost which estimates the soft constraint cost (Pillay and Banzhaf

2009b) and period and room heuristics introduced by Rossi-Doria and Paechter

(2003). Metaheuristics used to search such a heuristic space include tabu search,

iterated local search, variable neighbourhood search and evolutionary algorithms.

Cased-based reasoning has also been used for low-level heuristic selection. The

best performing hyper-heuristic was a hybrid combining case-based reasoning and

greatest deluge. Processes that automate the hybridization of low-level heuristics

that perform well have also been studied for selection constructive hyper-

heuristics. The effectiveness of searching both the solution space and heuristic

space during the construction of a timetable has also been illustrated. This needs

to be investigated further for educational timetabling in general.

The use of selection perturbative hyper-heuristics for solving educational

timetabling problems, have also been researched. Low-level heuristics

commonly used by these hyper-heuristics include hill-climbing operators,

mutation operators, rescheduling events with high constraint violation costs,

swapping events or subsets of events, swapping timetable periods, unscheduling

and rescheduling events. Techniques commonly used for heuristic selection

include simple random, greedy, a choice function, reinforcement learning and tabu

search. Methods evaluated for move acceptance are the late acceptance strategy,

330 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

simulated annealing, Monte Carlo and the great deluge algorithm. Selection

perturbative hyper-heuristic heuristic selection and move acceptance pairs that

have performed well for different timetabling problems include a choice function

with either simulated annealing, Monte Carlo or the great deluge algorithm and

simple random with the late acceptance strategy. Further research into the

effectiveness of different methods for driving this category of hyper-heuristics as

well as a more expansive evaluation of these hyper-heuristics needs to be

conducted.

There has not been much research into the use of generation hyper-heuristics

in solving educational timetabling problems. Fuzzy logic and genetic

programming are the most popular methods used to induce constructive low-level

heuristics. There has only been one study into generation perturbative hyper-

heuristics for solving timetabling problems, namely, that conducted by Rattadilok

(Rattadilok 2010) to configure swap operators. The generation of low-level

construction heuristics for timetabling needs to researched further. Generally,

graph colouring heuristic have been used as low-level heuristics for timetable

construction. The induction of heuristics based on problem characteristics need to

be studied. Given its success in other domains (Burke et al. 2009a), genetic

programming can be investigated for this purpose.

Most selection constructive hyper-heuristics have focused on constructive

heuristics for selecting which event to schedule next. There is a need for

investigations into developing selection and generation hyper-heuristics that cater

for construction heuristics for choosing timetable periods and rooms in addition to

heuristics for event selection.

An area that has not been investigated is that of hybrid hyper-heuristics that

combine different types of hyper-heuristics, e.g. combining selection constructive

and perturbative hyper-heuristics. Furthermore, should such combinations be

sequential, i.e. apply one type of hyper-heuristic followed by another, or should

there be an alternating application of the different hyper-heuristics.

7. References

Asmuni, H., Burke, E.K. & Garibaldi, J.M. (2005) Fuzzy Multiple Ordering Criteria for

Examination Timetabling. In: Burke, E.K. and Trick, M. (Eds.), selected papers from the 5th

International Conference on the Theory and Practice of Automated Timetabling (PATAT

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 331

2004) - The Theory and Practice of Automated Timetabling V, Lecture Notes in Computer

Science, 3616, 147–160.

Asmuni, H, Burke, E.K., Garibaldi, J.M. & McCollum, B. (2007) Determining Rules in Fuzzy

Multiple Heuristic Orderings for Constructing Examination Timetables. In: Bapiste, P.,

Munier, A. Kendall, G. & Sourd, F. (Eds.), proceedings of the 3rd Multidisciplinary

International Scheduling: Theory and Applications Conference, MISTA 2007 (pp. 59-66).

Asmuni, H., Burke, E.K., Garibaldi, J.M., McCollum, B. & Parkes, A.J. (2009). An Investigation

of Fuzzy Multiple Heuristic Orderings in the Construction of University Examination

Timetables. Computers and Operations Research, 36(4), 981-1001.

Bai, R., Blazewicz, J., Burke, E.K., Kendall, G. & McCollum, B. (2007a) A Simulated Annealing

Hyper-Heuristic Methodology for Flexible Decision Support (Technical Report No.

NOTTCS-TR-2007-8). School of Computer Science and Information Technology, University

of Nottingham, Nottingham.

Bai, R., Burke, E.K., Gendreau, M., Kendall, G. & McCollum, B. (2007b) Memory Length Hyper-

Heuristics: An Empirical Study. In proceedings of the 2007 IEEE Symposium on

Computational Intelligence in Scheduling, CI-Sched 2007 (pp. 173-178).

Bilgin, B., Ozcan, E. & Korkmaz, E.E. (2006) An Experimental Study on Hyper-Heuristics and

Exam Timetabling. In Burke, E.K. & Rudova, H. proceedings of the international

conference on the Practice and Theory of Automated Timetabling, PATAT 2006 (pp. 123-

140).

Burke, E.K. , Dror, M. , Petrovic, S. & Qu, R. (2005) Hybrid Graph Heuristics with a Hyper-

Heuristic Approach to Exam Timetabling Problems. In: Golden, B., Raghavan, S. & Wasil,

E.A. (Eds.), the Next Wave in Computing, Optimization, and Decision Technologies –

Conference Volume of the 9th Informs Computing Society Conference (pp. 79 -91).

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P. & Schulenburg, S. (2003) Hyper-Heuristics:

An Emerging Direction in Modern Research. In the Handbook of Metaheuristics, Chapter 16,

457– 474.

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. &Woodard, J. (2009a) Exploring

Hyper-Heuristic Methodologies with Genetic Programming. Computational Intelligence, 6,

177-201.

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. &Woodard, J. (2010a) A Classification

of Hyper-Heuristic Approaches. In the Handbook of Metaheuristics, International Series in

Operations Research and Management Science, Volume 146, 449-468.

Burke, E.K., Kendall, G., Misir, M. & Ozcan, E. (2008) A Study of Simulated Annealing Hyper-

Heuristics. In the proceedings of the international conference on the Practice and Theory of

Automated Timetabling (PATAT 2008), http://www.asap.cs.nott.ac.uk/patat/patat08/

Papers/Ozcan-HD3a.pdf . Accessed 12 February 2012.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. & Qu, R. (2007) A Graph-Based Hyper-

Heuristic for Educational Timetabling Problems. European Journal of Operational Research,

176, 177-192.

332 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Burke, E. K., Kendall, G., Misir, M. & Ozcan, E. (2010b) Monte Carlo Hyper-Heuristics for

Examination Timetabling. Annals of Operations Research, doi 10.1007/s10479-010-0782-2.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S. & Qu, R. (2007). A Graph-Based Hyper-

Heuristic for Educational Timetabling Problems. European Journal of Operational Research,

176, 177 – 192.

Burke, E. K. & Pais, T. C. (2011) Using Differential Evolution to Identify Fuzzy Measures for the

Exam Timetabling Problem. In proceedings of the Multidisciplinary International Conference

on Scheduling: Theory and Applications, MISTA 2011 (pp. 335-351).

Burke, E.K., Petrovic, S. & Qu, R. (2002) Case Based Heuristic Selection for Examination

Timetabling. In proceedings of SEAL ’02 (pp. 277-281).

Burke, E.K., Petrovic, S. & Qu, R. (2006) Cased-Based Heuristic Selection for Timetabling

Problems. Journal of Scheduling, 9(2), 115-132.

Burke, E.K., Qu, R. & Soghier, A. (2009b) Adaptive Selection of Heuristics within a GRASP for

Exam Timetabling. In proceedings of the Multidisciplinary Conference on Scheduling:

Theory and Application, MISTA 2009 (pp. 409-423).

Burke, E.K., Qu, R. & Soghier, A. (2010c) Adaptive Selection of Heuristics for Improving

Constructed Exam Timetables. In proceedings of the 8
th

 International Conference on the

Practice and Theory of Automated Timetabling, PATAT 2010 (pp. 136 -151).

Ersoy, E., Ozcan, E. & Uyar, S. (2007). Memetic algorithms and hillclimbers.In: Baptiste, P.,

Kendall, G., Kordon, A.M. & Sourd, F. (Eds.), proceedings of the 3rd Multidisciplinary

International Conference on Scheduling: Theory and Applications Conference. MISTA 2007

(pp. 159–166).

Kendall, G. & Hussin, M.H. (2004) Tabu Search Hyper-Heuristic Approach to the Examination

Timetabling Problem at University Technology MARA. In the proceedings of the

international conference on the Practice and Theory of Automated Timetabling, PATAT 2004

(pp. 270-295).

Kendall, G. & Hussin, N.M. (2005). An investigation of a tabu search based on hyper-heuristics

for examination timetabling. In: Kendall G., Burke E.K. & Petrovic S. (Eds.) proceedings of

the 2nd Multidisciplinary Scheduling: Theory and Applications Conference, MISTA 2005 (pp.

309–328).

McCollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., DiGapsero, L., Parkes, A.J.,

Qu, R . & Burke, E.K. (2008). Setting the research agenda in automated timetabling: The

second international timetabling competition. INFORMS Journal of Computing, 22(1), 120–

130.

Ozcan, E., Bykov, Y., Birben, M. & Burke, E.K. (2009) Examination Timetabling Using Late

Acceptance Hyper-Heuristics. In proceedings of the IEEE Congress on Evolutionary

Computing, CEC ’09 (pp. 997-1004).

Ozcan, E., Misir, M., Ochoa, G. & Burke, E.K. (2012) A Reinforcement Learning – Great-Deluge

Hyper-Heuristic for Examination Timetabling. Modeling, Analysis, and Applications in

Metaheuristic Computing, 34-55.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 333

Pais, T.C. & Burke, E. K. (2010) Choquet Integral for Combining Heuristic Values for Exam

Timetabling Problem. In proceedings of the 8
th

 International Conference on the Practice and

Theory of Automated Timetabling, PATAT 2010 (pp. 305 -320).

Paechter, B., Gambardella, L. M., Rossi-Doria, O. (2003) International Timetabling Competition,

http://www.idsia.ch/Files/ttcomp2002/oldindex.html. Accessed 1 July 2012.

Pillay, N. (2008) An Analysis of Representations for Hyper-Heuristics for the Uncapacitated

Examination Timetabling Problem in a Genetic Programming System. In Cilliers, C., Barnard,

L. & Botha R. (Eds.), proceedings of SAICSIT 2008 (pp. 188-192).

Pillay, N. (2010a) An Overview of School Timetabling Research. In proceedings of the 8th

International Conference on the Practice and Theory of Automated Timetabling, PATAT ’10

(pp. 321-335).

Pillay, N. (2010b) Evolving Hyper-Heuristics for a Highly Constrained Examination Timetabling

Problem. In proceedings of the 8th international conference on the Practice and Theory of

Automated Timetabling, PATAT 2010 (pp. 336-346).

Pillay, N. (2010c) A Study into the Use of Hyper-Heuristics to Solve the School Timetabling

Problem. In proceedings of SAICSIT 2010 (pp. 258-264).

Pillay, N. (2011a) A Hyper-Heuristic Approach to Solving School Timetabling Problems. In

proceedings of the Multidisciplinary International Conference on Scheduling: Theory and

Applications, MISTA 2011 (pp.628-632).

Pillay, N. (2011b) Evolving Heuristics for the School Timetabling Problem. In proceedings of the

2011 IEEE Conference on Intelligent Computing and Intelligent Systems (ICIS011), Vol. 3

(pp. 281-286).

Pillay, N. (2012) Evolving Hyper-Heuristics for the Uncapacitated Examination Timetabling

Problem. Journal of the Operational Research Society, 63, 47-58.

Pillay, N. (2009a) Evolving Hyper-Heuristics for the Uncapacitated Examination Timetabling

Problem. In proceedings of the Multidisciplinary International Conference on Scheduling:

Theory and Applications, MISTA 2009 (pp. 409-422).

Pillay, N. & Banzhaf, W. (2009b) A Study of Heuristic Combinations for Hyper-Heuristic

Systems for the Uncapacitated Examination Timetabling Problem. European Journal of

Operational Research, 197, 482-491.

Post, G. (2011) Third International Timetabling Competition (ITC 2011),

http://www.utwente.nl/ctit/itc2011/. Accessed 1 July 2012.

Qu, R. & Burke, E.K. (2005). Hybrid Variable Neighbourhood HyperHeuristics for Exam

Timetabling Problems. In: Proceedings of the MIC2005: The Sixth Metaheuristics

International Conference, Vienna, Austria. http://www.cs.nott.ac.uk/~rxq/files/MIC05.pdf,

accessed 28 June 2008.

Qu, R. and Burke, E.K. (2009a). Hybridisations within a graph based hyper-heuristic framework

for university timetabling problems. Journal of the Operational Research Society, 60, 1273–

1285.

334 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Qu, R., Burke, E.K. & McCollum, B. (2009b). Adaptive automated construction of hybrid

heuristics for exam timetabling and graph colouring problems. European Journal Operational

Research, 198(2), 392–404.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G. & Lee, S.Y. (2009c) A survey of search

methodologies and automated system development for examination timetabling. Journal of

Scheduling, 12(1), 55–89.

Rattadilok, P. (2010) An Investigation and Extension of a Hyper-Heuristic Framework.

Informatica, 34, 523-534.

Rossi-Doria, O. & Paechter, B. (2003) A Hyperheuristic Approach to Course Timetabling

Problems Using an Evolutionary Algorithm, http://www.metaheuristics.net/media/documents/

hyperEA.pdf. Accessed 12 February 2012.

Saber, N.R., Ayob, M., Qu, R. & Kendall, G. (2011) A Graph Colouring Constructive Hyper-

Heuristic for Examination Timetabling Problems. Applied Intelligence, doi: 10.1007/s10489-

011-0309-9.

Sin, E.S. & Kham, N.S.M. (2012) Hyper Heuristic Based on Great Deluge and its Variants for

Exam Timetabling Problem. Cornell University Library, http://arxiv.org/abs/1202.1891.

Accessed 12 February 2012.

Socha, K., Knowles, J. & Sampels, M. (2002) A Max-Min Ant System for the University Course

Timetabling Problem. In proceedings of the 3
rd

 International Workshop on Ant Algorithms.

Lecture Notes in Computer Science, 2463, 1-13.

Yang, Y. & Petrovic, S. (2004) A Novel Similarity Measure for Heuristic Selection in

Examination Timetabling. In the proceedings of the international conference on the Practice

and Theory of Automated Timetabling,PATAT 2004 (pp. 247-269).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 335

Appendix A – Carter Benchmark Data Set

Table 1. Characteristics of problems in the Carter benchmark set

Data Institution Periods No. of

Exams

No. of

Students

No.

Enrolments

Density

of

Conflict

Matrix

car-f-92 I Carleton University, Ottawa 32 543 18419 55522 0.14

car-s-91 I Carleton University, Ottawa 35 682 16925 56877 0.13

ear-f-83 I Earl Haig Collegiate Institute, Toronto 24 190 1125 8109 0.27

hec-s-92 I Ecole des Hautes Etudes Commerciales,

Montreal

18 81 2823 10632 0.42

kfu-s-93 King Fahd University of Petroleum and

Minerals, Dharan

20 461 5349 25113 0.06

lse-f-91 London School of Economics 18 381 2726 10918 0.06

pur-s-93 I Purdue University, Indiana 43 2419 30029 120681 0.03

rye-s-93 Ryerson University, Toronto 23 486 11483 45051 0.08

sta-f-83 I St Andrew’s Junior High School, Toronto 13 139 611 5751 0.14

336 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

tre-s-92 Trent University, Peterborough, Ontario 23 261 4360 14901 0.18

uta-s-92 I Faculty of Arts and Sciences, University of

Toronto

35 622 21266 58979 0.13

ute-s-92 Faculty of Engineering, University of

Toronto

10 184 2749 11793 0.08

yor-f-83 I York Mills Collegiate Institute, Toronto 21 181 941 6034 0.29

Appendix B – Performance of Selection Constructive Hyper-Heuristics

Table 2. Comparison of selection constructive hyper-heuristic performance

Data Yang &

Petrovic

(2004)

Burke et

al.

(2007)

Burke et

al. (2009)

Qu &

Burke

(2005)

Pillay

(2012)

Qu &

Burke

(2009a)

Qu &

Burke

(2009b)

Sabar et

al. (2011)

car-f-92 I 3.93 4.84 4.74 4.7 4.22 4.77 4.32 4.70

car-s-91 I 4.50 5.41 5.48 5.4 4.95 5.3 5.11 5.14

ear-f-83 I 33.71 38.19 37.71 37.29 35.95 38.39 35.56 37.86

hec-s-92 I 10.83 12.72 12.41 12.23 11.27 12.72 11.62 11.90

kfu-s-93 13.82 15.76 16.84 15.11 14.12 15.09 15.18 15.30

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 337

lse-f-91 10.35 13.15 12.29 12.27 10.76 12.72 11.32 12.33

pur-s-93 I - - - - - - - 5.37

rye-s-93 8.53 - - - 9.23 - - 10.71

sta-f-83 I 151.52 141.08 163.63 159.1 157.69 159.2 158.88 160.12

tre-s-92 7.92 8.85 9 8.67 8.43 8.74 8.52 8.32

uta-s-92 I 3.14 3.54 3.62 3.56 3.33 3.32 3.21 3.88

ute-s-92 25.39 32.01 30.01 30.23 26.95 30.32 28 32.67

yor-f-83 I 36.53 40.13 42.54 43 39.63 40.24 40.71 40.53

Appendix C – Performance of Selection Perturbative Hyper-Heuristics

Table 3. Comparison of selection perturbative hyper-heuristic performance

Data Kendall & Hussin (2005) Ersoy et al. (2007) Burke et al. (2010c)

car-f-92 I 4.67 - 4.31

car-s-91 I 5.37 - 5.19

ear-f-83 I 40.18 - 35.79

hec-s-92 I 11.86 11.6 11.19

kfu-s-93 15.84 15.8 14.51

338 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

lse-f-91 - 13.2 10.92

pur-s-93 I - - -

rye-s-93 - - -

sta-f-83 I 157.38 157.7 157.18

tre-s-92 8.39 - 8.49

uta-s-92 I - - 3.44

ute-s-92 27.6 26.3 26.7

yor-f-83 I - 40.7 39.47

Appendix D – Performance of Generation Constructive Hyper-Heuristics

Table 4. Comparison of generation constructive hyper-heuristic performance

Data Asumni et al. (2005) Asumni et al. (2007) Asumni et al. (2009) Pillay & Banzhaf (2009b)

car-f-92 I 4.56 4.51 4.54 4.28

car-s-91 I 5.29 5.19 5.29 4.97

ear-f-83 I 37.02 36.16 37.02 36.86

hec-s-92 I 11.78 11.61 11.78 11.85

kfu-s-93 15.81 15.34 15.81 14.62

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 339

lse-f-91 12.09 11.35 12.09 11.14

pur-s-93 I - - - 4.73

rye-s-93 10.35 10.02 10.38 9.65

sta-f-83 I 160.75 159.09 160.75 158.33

tre-s-92 8.67 8.62 8.67 8.48

uta-s-92 I 3.57 3.52 3.57 3.4

ute-s-92 27.78 27.64 28.07 28.88

yor-f-83 I 40.66 39.25 39.80 40.74

340 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Abstracts

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 341

Scheduling the Brazilian Football Tournament in

Practice

Celso C. Ribeiro · Sebastian Urrutia

Received: January 26, 2012 / Accepted: May 16, 2012

Professional sports leagues face challenging optimization problems. Devis-
ing good tournament schedules is of utmost importance for players, teams,
fans, sponsors, hosting cities, and the media. Fair and balanced schedules are
a major issue for ensuring attractiveness and confidence in the tournament
outcome. The annual Brazilian football tournament is a compact, mirrored,
double round-robin tournament played by 20 teams. We describe the inte-
ger programming approach that has been proposed for solving the scheduling
problem associated with this tournament and report on the successful practical
experience after running this system for three years.

1 Introduction

Professional football teams do not want to waste their investments in players
and structure due to poor game playing schedules. National and international
competitions played in parallel require strong coordination of travel and game
schedules. Professional leagues face challenging optimization problems and ef-
ficient schedules are of major interest for players, teams, fans, sponsors, and
the media; see recent literature surveys in [1,4,6].

The annual football tournament organized by the Brazilian Football Con-
federation (CBF) is Brazil’s most important sporting event. Its major sponsor
is TV Globo, the largest media group and television network in Brazil.

Nurmi et al [3] have noticed that few professional leagues have adopted
optimization models to date. This seems to be due both to the hardness of

Celso C. Ribeiro
Universidade Federal Fluminense, Department of Computer Science, Niterói, RJ 24210-240,
Brazil. E-mail: celso@ic.uff.br

Sebastian Urrutia
Universidade Federal de Minas Gerais, Department of Computer Science, Belo Horizonte,
MG 31270-010, Brazil. E-mail: surrutia@dcc.ufmg.br

342 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

the problem and to some fuzzy preference restrictions and criteria that can be
hard to describe, and also to the resistance of teams and leagues to using new
tools that introduce modern techniques in sports management.

This work summarizes the formulation and the implementation of the op-
timization software developed by the authors in partnership with CBF to
determine good schedules for the two divisions of the Brazilian football tour-
nament, extending the developments reported in [5]. We also report on the
practical experience resulting from using this interactive software to schedule
the 2009, 2010, and 2011 editions of the tournament.

2 Schedule Requirements

The annual Brazilian soccer tournament lasts for seven months, from May to
December. Each division (Series A and Series B) is structured as a compact,
mirrored, double round-robin tournament played by n = 20 teams over 2(n−

1) = 38 rounds. Weekend rounds are played on Saturdays and Sundays, while
midweek rounds are played on Wednesdays and Thursdays. The dates available
for game playing change from year to year and must be coordinated with other
competitions, such as Brazil’s Cup, South America’s Cup, and Libertadores
Cup. Some games are required to be played on weekends.

Twelve teams form the so-called Group of Twelve (G12), which are the
strongest founding teams of the league and have greater broadcast rights. The
teams are organized by pairs with complementary home-away patterns of game
playing. Teams in the same pair are usually based in the same home city.

Regional games involve two opposing teams whose home cities are located
in the same state. Classic games (or derbies) are those that involve two oppo-
nents based in the same home city and with a long tradition of rivalry. They
are usually the most important games and attract the largest attendances.

The tournament schedule should satisfy a number of constraints, ranging
from fairness to security issues, and from technical to broadcasting criteria.
Most of them reflect strategies for maximizing revenues and tournament at-
tractiveness, while others attempt to avoid unfair game sequences that could
benefit some team. These requirements fall in five classes: round-robin con-
straints, home-away patterns of game playing, classic and regional games, ge-
ographical and G12 constraints, and perfect matching of paired teams.

The maximization of gate attendance and TV audience is the major is-
sue at stake. Major revenues earned by the teams come from broadcast and
merchandising rights paid by the sponsors, who request good schedules that
draw large audiences. Fair and balanced schedules are also a major issue for
the attractiveness of the tournament and for the confidence in its outcome.

3 Solution Approach

The problem summarized in the previous section has been formulated as an
integer programming model, see Ribeiro and Urrutia [7] for details.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 343

We developed a three-phase solution approach based on a “first-break,
then-schedule” decomposition scheme similar to that proposed in [2] to sched-
ule a basketball league. In the first phase, we create feasible home-away pat-
terns. In the second phase, we assign a different feasible home-away pattern
to each team. Finally, in the third phase, we seek an optimal schedule by solv-
ing a simpler version of the integer programming model, obtained by variable
fixations.

4 Practical Experience

The optimization model and the software system have been developed, tuned,
and validated over the last four years. CBF and TV Globo staff participated
actively in this effort. The system was validated with data of the 2005 and
2006 A editions of the tournament.

The system was used for the first time in 2009 as the official scheduler of
the Brazilian football tournament. A number of schedules have been provided
to the users, who selected their preferred choice. New criteria have been added
in the model along the decision process based on successive refinements of the
solution, as the decision makers evaluated and filtered the different schedules.
The organizers checked each proposed schedule and imposed additional con-
straints (or removed existing constraints) to handle specific situations that
might be desired to fine-tune the schedule. This tournament was the most at-
tractive until that year, with four teams still in contention for the title when
all games in the last round simultaneously started. The title changed hands
several times, as the scores of the ten games underway changed. The goal
that decided the tournament for Flamengo was scored only 20 minutes be-
fore the end of the tournament. The champion was not known until the last
game ended, contrary to what had happened in previous years when the win-
ners were known many rounds before the end of the tournament, making the
games of the last rounds very uninteresting.

The optimization system was used for the second time in 2010. Once again,
the decision makers were happy with the schedules the system computed.
This was a particularly difficult tournament to schedule. Since it had to be
interrupted in June and July during the 2010 World Cup, there were few dates
available for game playing. As a consequence, there were many midweek rounds
and few weekend rounds, making it impossible to schedule all classic games
in double weekend rounds. The system sought a schedule with a maximum
number of classic games played at double weekend rounds. Once again, the
title was decided in the last round, with three teams still in contention for the
title when their matches started. The goal that decided the tournament for
Fluminense was scored 25 minutes before the end of the tournament.

In order to increase the interest for the games played in the last rounds,
it was decided to schedule all derbies in the last rounds of the 2011 edition of
the tournament. Due to old local rivalries, teams give their best when play-
ing against rivals from the same city. Adding these new constraints lead to a

344 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

harder optimization problem, for which not even feasible solutions could have
been obtained without an automated system. The schedule produced by the
optimizer lead to the tightest tournament of all time. Five teams were still
in contention a few rounds before the last. Two draws in the most impor-
tant games played in the last round decided the title for Corinthians. Any
additional goal in any of these two matches could have changed the outcome
of the tournament. The press was unanimous in crediting the success of the
tournament to the new constraints.

References

1. G. Kendall, S. Knust, C. C. Ribeiro, and S. Urrutia. Scheduling in sports: An annotated
bibliography. Computers & Operations Research, 37:1–19, 2010.

2. G. L. Nemhauser and M. A. Trick. Scheduling a major college basketball conference.
Operations Research, 46:1–8, 1998.

3. K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Duran, J. Kyngäs,
J. Marenco, C. C. Ribeiro, F. Spieksma, S. Urrutia, and R. Wolf. A framework for
a highly constrained sports scheduling problem. In Proceedings of the International

MultiConference of Engineers and Computer Scientists, volume III, pages 1991–1997,
Hong-Kong, 2010.

4. R. V. Rasmussen and M. A. Trick. Round robin scheduling – A survey. European Journal

of Operational Research, 188:617–636, 2008.
5. C. C. Ribeiro and S. Urrutia. Scheduling the Brazilian soccer tournament with fairness

and broadcast objectives. In Practice and Theory of Automated Timetabling VI, volume
3867 of Lecture Notes in Computer Science, pages 147–157. Springer, Berlin, 2007.

6. C.C. Ribeiro. Sports scheduling: Problems and applications. International Transactions
in Operational Research, 19:201–226, 2012.

7. C.C. Ribeiro and S. Urrutia. Scheduling the Brazilian soccer tournament: Solution ap-
proach and practice. Interfaces, to appear.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 345

Scheduling Cricket Umpires Using Neighbourhood Search The Dramatic
Impact of a Simple Change in Neighbourhood Definition

Mark Wright

One widespread application of employee timetabling is scheduling officials for
sports leagues. This can be complex, as there are frequently many objectives,
preferences and constraints (hard and soft) to accommodate. While one can
sometimes use optimising software for such problems, frequently heuristics are
necessary. This often involves neighbourhood search.

In a cricket league, two umpires must be appointed to each match during the
cricket season, which typically lasts between 16 and 20 weeks. There may be
several divisions at different levels.

A computer system was developed to schedule umpires for the Devon League in
south-west England, with four hierarchically organised divisions of ten teams
each.

The hard constraints are:

 every match requires two umpires
 no umpire may be used on a date for which he has declared himself

unavailable
 no umpire may be used for two matches on the same date
 some specific rules: for example, some umpire-team combinations are

considered infeasible

Soft constraints concern the target number of matches for each umpire in each
division over the season – it is usually possible to satisfy all targets exactly if they
add up correctly for each division, but the system accepts, during the search,
solutions which break soft constraints, using penalty costs.

Objectives concern travel distances and spread of umpires between teams, home
grounds and each other. Further adaptations weight travel more heavily at certain
times of year and encourage situations where two umpires can travel together,
thus reducing costs.

The original neighbourhood definition was simple: replace one umpire by another
for a specific match (a replacement perturbation), or exchange two umpires
between two matches (a swap perturbation). The search technique was the variant
of Simulated Annealing described in Wright (2001), using subcost information,
and considering perturbations in a predefined order rather than at random. For
precise details, see Wright (2007).

Recently, the system was adapted for the Home Counties League in South-East
England. The structure is slightly different, with one top division and two others
of equal status, organised geographically. The computer system was amended so
that two divisions could be considered at an equal level; thus soft constraints
concerned the targets for each umpire at each level. This was then implemented
in practice.

346 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

While the client was happy with the results and implemented them, they contained
disappointing features. In particular, on several occasions an umpire/team
combination occurred twice within three weekends, which rarely happened for the
Devon League, and there were other unexpectedly high costs.

Further analysis uncovered a possible reason, concerning the umpires' targets.
The Devon League deliberately allows some slack for most umpires, enabling
flexibility when schedules must be changed, e.g. because of illness. Thus, for
example, an umpire available for 17 of the 18 weekends might be given an overall
target of 15 matches. Thus there was plenty of scope for swapping umpires
between dates without breaking any hard constraints.

However, mainly because of a shortage of suitable umpires, the Home Counties
League uses most umpires as often as possible. Thus, once the umpires' targets
have been met, swaps involving such umpires are feasible only between two
matches taking place on the same date. This greatly restricts the search;
moreover, if an umpire currently meets his targets there are few perturbations
available which do not break these, i.e. only those between matches at the same
divisional level and on the same date.

Variable Neighbourhood Search (Hansen & Mladenovic, 2001) was considered,
but not implemented since it can increase neighbourhood size enormously.
Instead, a new type of perturbation was defined, involving two umpires, two dates
and four matches, such that the umpires swap matches on both dates (a double
perturbation). This allows umpires to change division levels on each date without
breaking any soft constraint.

Tests on Home Counties data showed that including such perturbations reduced
the total cost by about 22%, averaged over 100 runs. Surprisingly, given that it
had not been apparent that there was a problem, almost as large an effect was
demonstrated for the Devon League, where the total cost was reduced by about
20%.

Other interesting features were apparent. About 73% of perturbations were
doubles, compared with 11% for replacements and 16% for swaps. Replacement
perturbations were accepted 0.27% of the time; swaps 1.06% of the time; and
doubles only 0.02% of the time, which is interesting given the great improvements
seen from including such perturbations. Overall, only 0.21% of perturbations
were accepted, compared with 0.64% for the original system without double
perturbations.

Moreover, 18.3% of accepted replacements were accepted in the first 0.05% of the
run, compared with 0.61% of swaps and 0.65% of doubles; and no replacements
were ever accepted in the last 1% of the run, compared with 0.053% for swaps
and 0.016% for doubles. (These figures are for the Home Counties League –
similar patterns were evident for the Devon League.)

This suggests that the new system's success may owe much to the presence of
three distinct "meta-types" of perturbation:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 347

1. "Get rich quick", making strong early gains, eliminating most unnecessary
major costs such as soft constraint violation penalties, but of little value
when fine-tuning later in the search;

2. "Steady as she goes", valuable throughout the process, especially when
fine-tuning at the end;

3. "Occasional gem", only rarely useful, but capable of producing dramatic
improvements.

It is hypothesised that any neighbourhood search process is more likely to produce
high-quality solutions to complex problems if it contains perturbations of all three
meta-types.

References

Hansen, P. and Mladenovic, N. (2001) "Variable Neighborhood Search:
principles and applications". European Journal of Operational Research
130(3): 449-467.

Wright, M.B. (2001) "Subcost-guided simulated annealing", in: "Essays and
surveys in metaheuristics", eds. C.C. Ribeiro and P. Hansen, chapter 28,
631-639 (Kluwer Academic Publishers, Boston).

Wright, M.B. (2007) "Case study: problem formulation and solution for a
real-world sports scheduling problem", Journal of the Operational Research

Society 58 (6), 439–445.

348 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A Column Generation Approach for Solving the Patient

Admission Scheduling Problem

Troels Martin Range · Richard Martin

Lusby · Jesper Larsen

the date of receipt and acceptance should be inserted later

Abstract The Patient Admission Scheduling Problem (PAS) is the problem of
assigning patients to rooms during their stays in the hospital over a predefined
planning period. Each room has a number of beds, which is the capacity of the
room. A set of hard constraints determine whether or not a patient can stay in a
room. For each patient-room combination a penalty is given for having the patient
in the room. The penalty measures the inconvenience of being in the room for the
given patient. Transferring patients between rooms during their stays is allowed,
but this is penalized, as it is both inconvenient for the patient and takes time for
the staff to organize. Finally the rooms are gender segregated, i.e. only patients
of the same gender can stay in any room in the same time period. This constraint
is considered a hard constraint. The problem is then to assign patients to rooms
in their admission periods such that the total penalty is minimized and the hard
constraints are satisfied.

PAS was proposed by Demeester et al. (2010) who solved it by a hybrid tabu
search heuristic. Ceschia and Schaerf (2011) use simulated annealing to identify
feasible upper bound solutions and they provide several lower bounds based on
the assignment problem as well as linear programming relaxations of an integer
programming model. Finally, a hyper-heuristic approach is described by Bilgin
et al. (2011)

We present a Dantzig-Wolfe decomposition of PAS into a set-partitioning prob-
lem as the master problem and a set of room scheduling problems as the pric-
ing problems. The set-partitioning problem has columns corresponding to feasible
schedules for the rooms and it has two types of rows: a row for each patient-time
combination stating that the patient has to be in a room in the time period and a

Troels Martin Range

Department of Business and Economics, COHERE, University of Southern Denmark,

Campusvej 55, 5230 Odense, Denmark,

E-mail: tra@sam.sdu.dk

Richard Martin Lusby · Jesper Larsen

Department of Management Engineering, Technical Universtity of Denmark,

Produktionstorvet, Building 426, 2800 Kgs. Lyngby, Denmark,

E-mail: {rmlu,jesla}@dtu.dk

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 349

row for each room type stating that we cannot use more than the available number
of rooms of that type. The room scheduling problem for a specific room has to
select a number of patients in each time period such that the number of patients is
not greater than the capacity of the room and the genders of the patients chosen
in each time period are identical. The room schedules have to be constructed such
that the reduced cost coefficients of the schedules are minimized.

We solve the pricing problems by a series of greedy heuristics as well as a
new exact dynamic programming based algorithm identifying the most negative
reduced cost column for a specific room type. The latter has a stage for each time
period and states composed of the cost of entering the state as well as the patients
present in the room. Each stage has at most (nt+Q

Q) states, where nt is the number
of patients in period t and Q is the capacity of the room. This is exponential in
Q but in our case Q never becomes more than 4. To reduce the number of states
we apply several sufficient dominance criteria eliminating states which will never
yield an optimal negative reduced cost column. We especially introduce pairwise
patient dominance, which is used to prove state dominance. To further reduce the
computation time we introduce preprocessing for the pricing problem based on
shortest path calculations in two different acyclic graphs.

The master problem is severely degenerate, which makes it hard to solve the
linear-programming relaxation directly by column generation. As a consequence,
we apply dynamic constraint aggregation as proposed by Elhallaoui et al. (2005).
This improves the performance of the column generation significantly.

We introduce several branching strategies to integerize the lower bound solu-
tion. The first is to branch on room types where a fractional number of rooms of
the type is used. Next, if a room in a period has a fractional number of patients
with one gender, then we branch on the gender, i.e. requiring the room to be either
of this gender or not. Finally, if a patient is used fractionally in a time period for
a room type, then we branch by either forcing the patient to be in the room at
that time or prohibiting the patient from being in the room at that time.

The method is tested on benchmark instances described by Demeester et al.
(2008) where we derive tighter lower bounds for several of the instances than
previously reported. The computation times for identifying these lower bounds
are in most cases significantly less than those presented by Ceschia and Schaerf
(2011).

Keywords Patient Admission Scheduling · Decomposition · Dynamic Constraint
Aggregation

References

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., and Vanden Berghe,
G. (2011). One hyper-heuristic approach to two timetabling problems in health
care. Journal of Heuristics. Published on-line.

Ceschia, S. and Schaerf, A. (2011). Local search and lower bounds for the patient
admission scheduling problem. Computers & Operations Research, 38:1452–1463.

Demeester, P., Bilgin, B., and Vanden Berghe, G. (2008). Patient admission
scheduling benchmark instances. http://allserv.kahosl.be/~peter/pas/.

350 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Demeester, P., Souffriau, W., De Causmaecker, P., and Vanden Berghe, G. (2010).
A hybrid tabu search algorithm for automatically assigning patients to beds.
Artificial Intelligence in Medicine, 48:61–70.

Elhallaoui, I., Villeneuve, D., Soumis, F., and Desaulniers, G. (2005). Dynamic
aggregation of set-partitioning constraints in column generation. Operations

Research, 53(4):632–645.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 351

Timetabling and field assignment for training youth

football teams in amateur leagues

Renatha O. Capua · Simone L. Martins ·

Celso C. Ribeiro

Received: date / Accepted: May 16, 2012

1 Introduction

Professional sport leagues involve millions of fans and significant investments
in players, broadcast rights, and advertising. Although amateur leagues usu-
ally do not have access to the same amounts of resources, the number of
tournaments and competitors can be very large, also requiring coordination
and logistical efforts [2,4,6,8]. Amateur leagues of sports such as baseball and
football have hundreds of games every weekend in different divisions. In a sin-
gle league in California there might be up to 500 soccer games in a weekend.
In the MOSA (Monmouth & Ocean Counties Soccer Association) league, New
Jersey, boys and girls of ages 8 to 18 make up six divisions per age and gender
group with six teams per division, totalizing 396 games every Sunday.

Amateur leagues face the problem of assigning fields and practice time to
youth football teams. Players in these teams are young and are not free for
training at any time of the day. They can only practice at off-school time. Low
age children cannot train in the evening. Some coaches are hired by several
teams, which must have compatible times and places for training. We present
next the problem definition, including its constraints and objective function.
This is followed by the description of a three-phase heuristic developed to find
high-quality feasible solutions. Preliminary computational results are reported.

2 Problem definition

The problem of timetabling and field assignment for training youth football
teams involves different constraints and several objectives. In this section, we
describe the specific scheduling requirements addressed in this work.

R.O. Capua E-mail: rcapua@ic.uff.br · S.L. Martins E-mail: simone@ic.uff.br · C.C. Ribeiro
E-mail: celso@ic.uff.br
Universidade Federal Fluminense, Institute of Computing, Niterói, RJ 24210-240, Brazil.

352 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

We first describe the input data and the main assumptions. We consider
a set T of teams that are coached by a set C of trainers and require training
time at any of the fields in a set F of sports facilities available in a given
region. Each facility has a specific number of fields available for training every
weekday. The daily period of time available for training at each facility is
partitioned in timeslots with the same duration (say, one hour or 90 minutes
each). At the beginning of the season, each team requires some specific weekly
training time. Each team may be assigned to one or more timeslots per week
according to its training requirements, but at no more than one timeslot a day.

Each coach may train one or more teams in different divisions (or even in
different leagues). In case two teams share the same coach, then they must
be assigned to different timeslots. Due to mobility constraints, teams with
the same coach cannot be scheduled for training at consecutive timeslots in
different facilities. Teams and coaches may express their preferences about
timeslots and facilities, and may be unavailable for training in some specific
timeslots. Therefore, the main scheduling requirements are:

1. Every team must be assigned to a number of timeslots that fulfills its
weekly training time.

2. No team can be assigned to a timeslot for which it is not available.
3. Teams sharing the same coach cannot be assigned to the same timeslot.
4. Teams sharing the same coach cannot be assigned to consecutive timeslots

in different facilities.
5. The number of teams assigned to the same timeslot at any facility must

not exceed its number of fields.
6. Each team can be assigned to at most one timeslot per day.
7. Each team must train always at the same facility and time of the day.

There are a number of objectives to be optimized. In this work, we seek to
maximize coach and team preferences, assigning them as much as possible to
their preferred timeslots and facilities. A second relevant objective consisting
of minimizing coaches’ idle time will be handled by a biobjective extension of
this problem.

3 Solution approach

This combined timetabling [1,7] and facility assignment problem was formu-
lated as an integer programming problem that could not be solved by standard
codes in reasonable times.

Due to the hardness of the problem, we developed a three-phase heuristic to
find high-quality feasible solutions. In its first phase, a constructive randomized
heuristic builds an initial solution. If this solution is not feasible, then a repair
procedure is applied to make it feasible. If no feasible solution is obtained,
then a new attempt is made and another initial solution is built. Otherwise,
an improvement heuristic is applied to the current solution. Both the repair
and improvement heuristics are based on the principles of the Iterated Local
Search metaheuristic [5] and follow a similar approach to that described in [2].

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 353

Each iteration of the construction phase starts by randomly selecting a
coach among those with more teams. The heuristic attempts to assign times-
lots and training facilities to all teams of this coach. Teams are ranked by
predefined weight preferences. The next team to be handled is randomly se-
lected from a candidate list formed by those with higher rankings. The heuris-
tic makes an initial attempt to assign this team to its preferred timeslots. If
this cannot be done, then other timeslots are considered. If this team can-
not be assigned to any timeslot after some attempts, then it is discarded and
the algorithm moves to another team trained by the same coach. Finally, all
unassigned teams are randomly assigned to some facility and timeslot.

If this solution is not feasible, then an ILS repair procedure is applied to
minimize the number of constraint violations in the incumbent.

If no feasible solution is found, then the algorithm stops. Otherwise, an ILS
improvement heuristic is applied to this feasible solution. Each iteration of this
phase starts by a VND [3] local search, based on three different neighborhoods:
reassignment of teams to new timeslots, swap of the timeslots of teams with
the same weekly requirements, and exchange of the timeslots assigned to teams
with the same starting time at the same facility. Next, a perturbation consist-
ing of reassigning half of the teams to empty timeslots is applied to the current
local optimum. A new iteration resumes and the heuristic stops after a given
number of iterations is performed without updating the best solution.

This approach was applied to ten test instances with up to 150 teams,
eight facilities, 24 training fields, and 25 coaches. We performed ten runs for
each instance. The constructive heuristic found feasible solutions for 64 out of
the 100 runs. The repair heuristic obtained feasible solutions in 24 additional
runs. On average, the improvement procedure increased the solution values by
9,6%. Detailed numerical results will be reported in the final version of this
paper, together with additional results regarding its bicriteria version.

References

1. Colorni, A., Dorigo, M., Maniezzo, V.: Metaheuristics for high school timetabling. Com-
putational Optimization and Applications 9, 275–298 (1998)

2. Duarte, A.R., Ribeiro, C.C., Urrutia, S., Haeusler, E.H.: Referee assignment in sports
leagues. In: E.K. Burke, H. Rudová (eds.) Practice and Theory of Automated Timetabling
VI, Lecture Notes in Computer Science, vol. 3867, pp. 158–173. Springer, Berlin (2007)

3. Hansen, P., Mladenović, N.: Variable neighbourhood search. In: F. Glover, G. Kochen-
berger (eds.) Handbook of Metaheuristics, pp. 145–184. Kluwer (2001)

4. Kendall, G., Knust, S., Ribeiro, C.C., Urrutia, S.: Scheduling in sports: An annotated
bibliography. Computers & Operations Research 37, 1–19 (2010)

5. Lourenço, H.R., Martin, O.C., Stutzle, T.: Iterated local search. In: F. Glover, G. Kochen-
berger (eds.) Handbook of Metaheuristics, pp. 320–353. Kluwer (2001)

6. Melo, R.A., Urrutia, S., Ribeiro, C.C.: The traveling tournament problem with predefined
venues. Journal of Scheduling 12, 607–622 (2009)

7. Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A survey of search method-
ologies and automated system development for examination timetabling. Journal of
Scheduling 12, 55–89 (2009)

8. Ribeiro, C.: Sports scheduling: Problems and applications. International Transactions in
Operational Research 19, 201–226 (2012)

354 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Rostering RAF Air Traffic Control Personnel

R.Conniss · T.Curtois · S.Petrovic ·
E.Burke

Received: date / Accepted: date

Keywords Personnel Scheduling, Rostering, Heuristics

1 Introduction

Research in personnel scheduling has largely focussed on specific industries
or professions. The available literature includes many examples of work done
on nurse rostering [1] and aircrew scheduling [2], with a great variety of both
mathematical optimisation and heuristic approaches explored [3] [4]. An in-
teresting addition to this area is the rostering of military Air Traffic Control
(ATC) personnel, mainly due to the complicated nature of the set of con-
straints and goals to be met. Rostering ATC personnel has some similarities
with both nurse and aircrew scheduling, all are subject to shift patterns, ap-
propriate qualifications, crew duty/working hours restrictions and rest break
planning. The differences however, make this a unique problem, with some
novel, challenging and interesting issues that require further exploration. De-
spite the military roots of operations research, very little work on military
rostering appears in the literature [5], although this could be due to security
restrictions. Currently, the rostering of ATC personnel is produced manually,
usually by an air traffic controller as a secondary or additional duty. It is

R.Conniss
A.S.A.P. Research Group, School of Computer Science, University of Nottingham, UK
E-mail: psxrc@nottingham.ac.uk

T.Curtois
A.S.A.P. Research Group, School of Computer Science, University of Nottingham, UK
E-mail: tim.curtois@nottingham.ac.uk

S.Petrovic
A.S.A.P. Research Group, School of Computer Science, University of Nottingham, UK
E-mail: sxp@cs.nott.ac.uk

E.Burke
University of Stirling E-mail: e.k.burke@stir.ac.uk

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 355

obviously undesirable to use a highly qualified specialist to do what is an
administrative task, and the removal of a controller from ATC duties adds ad-
ditional pressure to already over committed ATC operations. As such a system
which can automatically generate solutions of comparable or superior quality
is highly desirable.

2 Problem Definition

Each ATC unit is made up of a set of control positions and controllers. Each
controller holds a set of qualifications that allow them to work in one or more
positions to achieve a specific ATC task. As an example, a controller can work
in the Aerodrome control position, controlling all aircraft landing and depart-
ing from the runway, or operating close to the airfield and coordinating their
movement with RADAR controllers in another part of the building. Each po-
sition requires at least one controller to operate it, and they must be relieved
by another controller that holds a qualification for that position. This means
each shift requires enough qualified controllers to operate all positions, and
spare controllers that can offer breaks to their colleagues. In practice this of-
ten means that a controller will take a break from one position and return to
another position to give another colleague their break. Any roster produced
must offer this flexibility to give rest breaks, as controller fatigue is a flight
safety issue. To obtain a qualification, a controller is designated as under train-
ing (UT) in a position, and then must be supervised by another controller who
holds the qualification for the position and an additional unit instructor (UI)
rating in that position. UI ratings are specific to a particular position, and not
all controllers will hold UI ratings in all of their qualified positions. Also, the
UT may well hold qualifications in other positions and whilst under training
cannot be used by the unit to staff other positions. This burden of training is
further compounded by the nature of military service, as personnel are only
likely to be at a particular unit for 3-5 years. When new controllers arrive,
they are not qualified in any position so must join the training queue. When
experienced controllers leave, all their qualifications for that unit are cancelled,
and they arrive at their next unit as unqualified controllers. The main mili-
tary ATC training school produces new controllers every 6-8 weeks, and these
personnel are distributed to ATC units to undertake on the job training for
their first qualification controlling real aircraft. The rostering problem then
becomes one of not only having to schedule suitable controllers to positions,
and allowing those controllers to take reasonable rest breaks, but to do it
in such a way that new controllers can be trained to maintain the effective-
ness of the unit. Controllers also require leave and can fall ill, just like in
nurse/aircrew scheduling, but because they are military personnel they also
have additional requirements to deploy overseas, undertake duties outside of
ATC and undertake regular training courses for core military skills.

356 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3 Solution Approach

Some potential approaches from the literature that could be used for parts
of the solution include those demonstrated in [6] and [7]. Due to the size
and complexity of the overall problem, the authors elected to decompose the
problem into the following four parts. Each part is then solved using a heuristic
based method.

1. Shift allocation: Using heuristic techniques from Nurse Rostering, a feasible
allocation of controllers to shifts is produced. An additional requirement is
that a minimum number of qualifications for each position must exist.

2. Task allocation: From the shift allocation, the controllers are allocated
particular tasks or positions for the shift. If this allocation is infeasible, a
new shift is generated.

3. Break assignment/feasibility: Once the tasks can all be covered, the system
then needs to check if breaks for all controllers on shift can be given. Some
softer constraints are used here for example certain positions may not be
staffed at all times and this will allow flexibility to give rest breaks. Any
failure here causes a reallocation of tasks.

4. Training: Finally, training controllers are scheduled. The first simple check
is the existence of a UI in a required position. Although training is a critical
task for any unit, it is also the first requirement to be relaxed as the
ATC task always takes priority. Similarly, during periods of low traffic
levels, training is unlikely to be productive and during periods of low staff
availability training is invariably cancelled. A choice can be made at this
stage if training is desired to return to the task allocation stage and attempt
to swap controllers to place UIs in the appropriate positions.

4 Planned Research

Although of significant theoretical interest, the aim of the research is to provide
a robust system of rostering to RAF ATC units. Close cooperation between
the authors and RAF units is required to benchmark the system and evaluate
it’s usefulness in an operational environment 1. The next stage of the research
is to take data provided by partner units, and produce experimental problem
instances. These can then be used to evaluate the developed heuristic-based
algorithms and to fine tune the system to a point where it is deemed ready
for use in a live environment. The system will then be used to generate ros-
ters, and these can then be evaluated against the current manual approach by
experienced RAF ATC personnel. With the permission of the Squadron Com-
mander at an ATC unit, the rosters produced will then be used operationally
for a fixed period of time, and their effectiveness rated by the unit command
staff.

1 The motivation for this research stems from one of the authors previous career as a RAF
ATC Officer

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 357

References

1. Burke, Edmund K., De Causmaecker, Patrick., Vanden Berghe, Greet., Van Landeghem,
Hendrik., The State of the Art of Nurse Rostering, Journal of Scheduling, 7, 441-499
(2004)

2. Butchers, E., Day, P.R., Goldie, A.P., Miller, S., Meyer, J.A., Ryan, D.M., Scott, A.C.,
Wallace, C.A., Optimized crew scheduling at air new zealand, Interfaces, 31, 30-56 (2001)

3. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D., An Annotated Bibliog-
raphy of Personnel Scheduling and Rostering, 127, 21-144 (2004)

4. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier,D., Staff scheduling and rostering: A
review of applications, methods and models, European Journal of Operational Research,
153, 3-27 (2004)

5. Wang, Jun., A Review of Operations Research Applications in Workforce Planning and
Potential Modelling of Military Training, Defence Science and Technology Organisation,
1-25 (2005)

6. Rekik, Monia., Cordeau, Jean-François., Soumis, François., Implicit shift scheduling with
multiple breaks and work stretch duration restrictions, Journal of Scheduling, 13, 49-75
(2010)

7. Li, Jingpeng., Burke, Edmund K., Curtois, Tim., Petrovic, Sanja., Qu, Rong., The falling
tide algorithm: A new multi-objective approach for complex workforce scheduling, Omega,
40, 283-293 (2012)

358 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

High School Timetabling: Modeling and solving a

large number of cases in Denmark

Matias Sørensen · Thomas R. Stidsen

Keywords High School Timetabling · Modeling · Adaptive Large Neighbor-
hood Search

1 Introduction

A general model for the timetabling problem of high schools in Denmark is
introduced, as seen from the perspective of the commercial system Lectio1, and
an Adaptive Large Neighborhood Search (ALNS) algorithm is proposed for
producing solutions. Lectio is a general-purpose cloud-based system for high
school administration (available only for Danish high schools), which includes
an embedded application for creating a weekly timetable. Currently, 230 high
schools are customers of Lectio, and 191 have bought access to the timetabling
software. This constitutes the majority of high schools in Denmark.

This large customer base entails a need for a model of the problem which is
general enough to suit many di�erent requirements, while still remain tractable
by computer aided solution methods. This supports the recent trend of devel-
oping general models for timetabling problems (see Burke et al (1998); As-
ratian and de Werra (2002); Özcan (2005); Causmaecker and Berghe (2010);
Bonutti et al (2010); Post et al (2011, 2012)). Furthermore, the timetabling
problem of Danish high schools has not been formally described in the litera-
ture before. Some recent formulations of related problems from other countries
include Wright (1996); Wood and Whitaker (1998); Bufé et al (2001); Melí-
cio et al (2005); Avella et al (2007); Nurmi and Kyngas (2007); Boland et al
(2008); Santos et al (2010); Minh et al (2010).

Matias Sørensen
MaCom A/S, DK
Tel.: +45 3379 7900
E-mail: ms@macom.dk

Thomas R. Stidsen
Department of Management Engineering
Technical University Of Denmark

1 http://www.lectio.dk [lectio@macom.dk], developed by MaCom A/S, Vesterbrogade 48
1., DK-1620 Copenhagen V.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 359

2 Model formulation

The following sets are given:

• Timeslots, usually made up of 5 days and 4-8 daily timeslots.
• Entities, the combined set of students and teachers.
• Classes, a subset of entities which is taught/teaching a speci�c topic.
• Rooms
• Events (corresponding to lectures), the basic timetabling-unit which must
be assigned exactly one timeslot in the timetable.

For each class, a number of events is given (usually between 2 and 5). The
basic timetabling problem concerns the assigning of each event to a timeslot,
and a room to each event, such that no clashes among entities or rooms occur.

Furthermore we introduce the concept of EventChains, which separates this
problem from related problems described in the literature. An EventChain
consists of a subset of events, and each of these events are assigned an o�-

set. At least one event must have o�set 0, corresponding to the start of the
EventChain. All events of an EventChain with the same o�set must be placed
in the same timeslot. All events of o�set 1 must be assigned the timeslot fol-
lowing the timeslot assigned to events of o�set 0, and so forth. See also Fig.
1. No restrictions are posed on which events can be included in the same
EventChain, and the o�sets of events in an EventChain are completely for
the user to decide, providing a lot of �exibility. E.g. a double lecture can be
set up by creating an EventChain consisting of two events for the same class,
with o�sets 0 and 1, respectively. EventChains also allows for parallel double
lectures for several classes, triple lectures, grouping of elective classes in the
same timeslot, etc. Many of such features have been requested by the users of
Lectio, and EventChains are a pretty generic way of solving them.

Monday Tuesday

TS1

TS2

TS3

Fig. 1 Six EventChains placed in a partial timetable.

Fig. 2 illustrates the data-model by an example with two classes, each assigned
three events, and two EventChains.

Besides the no-clashes constraints, the following hard constraints are in-
cluded in the model:

• An event cannot be assigned to any of its forbidden timeslots
• Each event must be assigned an admissible room

360 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

E3E2E1 E4 E5 E6

C1 C2

EC1

EC2

Fig. 2 Two classes and their respective events, and two EventChains.

• Only one event of each class per day (unless otherwise speci�ed in the given
EventChain)

• For each teacher, a required number of days-o� is given

The following weighted objectives (soft constraints) are used:

• Maximize the number of events assigned to a timeslot (very high priority)
• Maximize the number of events which are assigned a room (high priority)
• Maximize the number of days-o� for teachers (low priority)
• Minimize idle slots for entities (medium priority)
• Minimize the amount of di�erent rooms which are assigned to events of
the same class (room stability constraint, low priority)

• Minimize the number of occurrences of two events of the same class being
assigned two consecutive days (neighbor-day constraint, low priority)

3 Adaptive Large Neighborhood Search

ALNS is a recent extension of the Large Neighborhood Search (LNS) paradigm,
often credited to Ropke and Pisinger (2006). As in the LNS framework, �rst a
destruct (ruin/remove) operator is applied to the solution at hand, and then a
construct (recreate/insert) operator is used to repair the solution. In an ALNS
framework, multiple destruct and construct operators are used, and the adap-
tive layer keeps track of their individual performance, and increases the prob-
ability of selecting operators which have previously performed 'good'. ALNS
has mainly been applied to variants of the Vehicle Routing Problem (VRP)
(Azi et al (2010); Hemmelmayr et al (2011); Salazar-Aguilar et al (2011);
Ribeiro and Laporte (2012)), but lately also other problem-domains (Muller
and Spoorendonk (2011); Muller (2010); Kristiansen et al (2011); Kristiansen
and Stidsen (2012); Sørensen et al (2012))

We propose here an ALNS heuristic for solving the described timetabling
problem. The following remove- and insertion-operators are used:

• InsertGreedy: Insert EventChains in greedy way based on contribution
to objective. At each insertion, also attempt to assign rooms to inserted
events.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 361

• InsertRegretN: This is similar to the Regret-N neighborhood applied to
variants of the VRP (Tillman and Cain (1972); Martello and Toth (1981);
Potvin and Rousseau (1993)). The regret-measure is speci�ed in terms of
best and second-best insert-move for a given EventChain.

• RemoveRandom: Select N random EventChains and unassign them.
• RemoveRelated: Related to Shaw operator (Shaw (1997, 1998)). Select
EventChains to remove based on their similarity between classes, feasible
rooms and entities.

• RemoveTime: Select a random timeslot, and remove EventChains assigned
to it. Repeat until N EventChains has been removed.

• RemoveClass: Select a random class, and remove EventChains which con-
tains it. Repeat until N EventChains has been removed.

Furthermore we apply a special set of operators, RoomRemove/Insert, which
are coupled. In a coupled set of operators, the choice of remove operator implies
the choice of repair operator. In RoomRemove, N random room-assignment
are removed from the solution. In RoomInsert, rooms are assigned to events
in a greedy way.

4 Preliminary results

The Lectio database contains about 4000 datasets from 94 di�erent high
schools. Grouping these by school and year entails about 200 'unique' datasets.
The authors plan to make at least some of these datasets public, most likely
using the XHSTT format (Post et al (2012)).

Table 1 shows statistics and preliminary computational results for six
datasets. These results show that the heuristic �nds solutions where many
events are unassigned, but if they are assigned a timeslot, a suitable room
is also assigned. In the full paper, comprehensive computational studies will
be made. This will include comparison of the found solutions with a bound
provided by an integer programming model.

Name #E. #E.C. #R. #C. #Ent. #T. #E./w pos. #E./w room

Sorø2011 424 424 70 132 230 50 360.6 (13.6) 360.6 (13.6)
Skive2010 2955 1749 58 331 304 90 2358.2 (13.9) 2358.2 (13.9)
Fjerritslev2009 530 387 51 152 122 40 487.9 (2.9) 487.9 (2.9)
ViborgT2010 536 447 21 116 85 50 515.2 (1.8) 515.2 (1.8)
Herning2010 1671 1616 86 355 213 60 1545.2 (2.5) 1545.2 (2.5)
Hasseris2011 1343 1080 79 404 578 50 1331.8 (3.2) 1331.8 (3.2)

Table 1 Preliminary results for 10 runs of ALNS heuristic on 6 datasets. Columns 2-9
shows the number of Events, EventChains, Rooms, Classes, Entities, Timeslots, Avg. events
assigned to a timeslot, Avg. events assigned to a room, respectively. For columns 8 and 9,
also the standard deviation is shown.

362 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

References

Asratian A, de Werra D (2002) A generalized class-teacher model for some timetabling prob-
lems. European Journal of Operational Research 143(3):531 � 542, DOI 10.1016/S0377-
2217(01)00342-3

Avella P, DAuria B, Salerno S, Vasilâev I (2007) A computational study of local
search algorithms for italian high-school timetabling. Journal of Heuristics 13:543�556,
10.1007/s10732-007-9025-3

Azi N, Gendreau M, Potvin JY (2010) An Adaptive Large Neighborhood Search for a Vehicle
Routing Problem with Multiple Trips. CIRRELT

Boland N, Hughes B, Merlot L, Stuckey P (2008) New integer linear programming ap-
proaches for course timetabling. Computers & Operations Research 35(7):2209 � 2233,
DOI DOI: 10.1016/j.cor.2006.10.016, part Special Issue: Includes selected papers pre-
sented at the ECCO'04 European Conference on combinatorial Optimization

Bonutti A, De Cesco F, Di Gaspero L, Schaerf A (2010) Benchmarking curriculum-based
course timetabling: formulations, data formats, instances, validation, visualization, and
results. Annals of Operations Research pp 1�12, 10.1007/s10479-010-0707-0

Bufé M, Fischer T, Gubbels H, Häcker C, Hasprich O, Scheibel C, Weicker K, Weicker
N, Wenig M, Wolfangel C (2001) Automated solution of a highly constrained school
timetabling problem - preliminary results. In: Boers E (ed) Applications of Evolutionary
Computing, Lecture Notes in Computer Science, vol 2037, Springer Berlin / Heidelberg,
pp 431�440

Burke E, Kingston J, Pepper P (1998) A standard data format for timetabling instances.
In: Burke E, Carter M (eds) Practice and Theory of Automated Timetabling II, Lec-
ture Notes in Computer Science, vol 1408, Springer Berlin / Heidelberg, pp 213�222,
10.1007/BFb0055891

Causmaecker PD, Berghe G (2010) Towards a reference model for timetabling and rostering.
Annals of Operations Research pp 1�10, 10.1007/s10479-010-0721-2

Hemmelmayr VC, Cordeau JF, Crainic TG (2011) An adaptive large neighborhood search
heuristic for two-echelon vehicle routing problems arising in city logistics. Tech. Rep.
CIRRELT-2011-42, Interuniversity Research Centre on Enterprise Networks, Logistics
and Transportation

Kristiansen S, Stidsen TR (2012) Adaptive large neighborhood search for student sectioning
at danish high schools. In: Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012)

Kristiansen S, Sørensen M, Stidsen T, Herold M (2011) Adaptive large neighborhood search
for the consultation timetabling problem, to appear

Martello S, Toth P (1981) An algorithm for the generalized assignment problem. Operational
research 81:589�603

Melício F, Caldeira P, Rosa A (2005) Solving real school timetabling problems with meta-
heuristics. In: Proceedings of the 4th WSEAS International Conference on Applied
Mathematics and Computer Science, World Scienti�c and Engineering Academy and
Society (WSEAS), Stevens Point, Wisconsin, USA, pp 4:1�4:8

Minh K, Thanh N, Trang K, Hue N (2010) Using tabu search for solving a high school
timetabling problem. In: Nguyen N, Katarzyniak R, Chen SM (eds) Advances in In-
telligent Information and Database Systems, Studies in Computational Intelligence, vol
283, Springer Berlin / Heidelberg, pp 305�313

Muller L (2010) An adaptive large neighborhood search algorithm for the multi-mode
resource-constrained project scheduling problem. Tech. rep., Department of Manage-
ment Engineering, Technical University of Denmark Produktionstorvet, Building 426,
DK-2800 Kgs. Lyngby, Denmark

Muller L, Spoorendonk S (2011) A hybrid adaptive large neighborhood search algorithm ap-
plied to a lot-sizing problem. European Journal of Operational Research Volume 218(Is-
sue 3):614�623

Nurmi K, Kyngas J (2007) A framework for school timetabling problem. In: Proceedings of
the 3rd multidisciplinary international scheduling conference: theory and applications,
pp 386�393

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 363

Post G, Kingston JH, di Gaspero L, McCollum B, Schaerf A (2011) The third international
timetabling competition (itc2011), http://www.utwente.nl/ctit/hstt/itc2011/.

Post G, Ahmadi S, Daskalaki S, Kingston J, Kyngas J, Nurmi C, Ranson D (2012) An
xml format for benchmarks in high school timetabling. Annals of Operations Research
194:385�397

Potvin JY, Rousseau JM (1993) A parallel route building algorithm for the vehicle routing
and scheduling problem with time windows. European Journal of Operational Research
66(3):331 � 340

Ribeiro GM, Laporte G (2012) An adaptive large neighborhood search heuristic for the
cumulative capacitated vehicle routing problem. Computers & Operations Research
39(3):728 � 735, DOI 10.1016/j.cor.2011.05.005

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science 40:455�472

Salazar-Aguilar M, Langevin A, Laporte G (2011) An adaptive large neighborhood search
heuristic for a snow plowing problem with synchronized routes. In: Pahl J, Reiners
T, Voss S (eds) Network Optimization, Lecture Notes in Computer Science, vol 6701,
Springer Berlin / Heidelberg, pp 406�411

Santos H, Uchoa E, Ochi L, Maculan N (2010) Strong bounds with cut and column
generation for class-teacher timetabling. Annals of Operations Research pp 1�14,
10.1007/s10479-010-0709-y

Shaw P (1997) A new local search algorithm providing high quality solutions to vehicle
routing problems

Shaw P (1998) Using constraint programming and local search methods to solve vehicle
routing problems. In: Maher M, Puget JF (eds) Principles and Practice of Constraint
Programming � CP98, Lecture Notes in Computer Science, vol 1520, Springer Berlin
/ Heidelberg, pp 417�431

Sørensen M, Kristiansen S, Stidsen TR (2012) International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In: Proceedings of the Ninth Inter-
national Conference on the Practice and Theory of Automated Timetabling (PATAT
2012)

Tillman FA, Cain TM (1972) An upperbound algorithm for the single and multiple terminal
delivery problem. Management Science 18(11):664 � 682

Wood J, Whitaker D (1998) Student centred school timetabling. The Journal of the Oper-
ational Research Society 49(11):1146�1152

Wright M (1996) School timetabling using heuristic search. The Journal of the Operational
Research Society 47(3):347�357

Özcan E (2005) Towards an xml-based standard for timetabling problems: Ttml. In: Kendall
G, Burke EK, Petrovic S, Gendreau M (eds) Multidisciplinary Scheduling: Theory and
Applications, Springer US, pp 163�185

364 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Adaptive Large Neighborhood Search for Student Sectioning at

Danish high schools

Simon Kristiansen · Thomas R. Stidsen

Keywords Student Sectioning · Elective Course Planning · Adaptive Large Neighborhood
Search · Educational Timetabling · High School Planning · Metaheuristics

Mathematics Subject Classi�cation (2000) 90-08 · 90B35 · 90C10 · 90C59

1 Introduction

Student Sectioning is one of the less studied subjects within Educational Timetabling (Pillay
(2010)). Student Sectioning is normally used at universities (e.g. Müller and Murray (2010) and
Cheng et al (2003)), whereas this paper is concerned high schools in Denmark. I.e. a more gen-
eralized model is needed since this problem should be applicable for approximately 200 di�erent
high schools. The concerned problem is also known as Elective Course Planning Problem (ECPP),
described in Kristiansen et al (2011b). However in this paper we will also try to pack the students
more convenient in the classes. I.e. minimize the number of common classes in each class and to
have a more even distribution between classes of same course. The ECPP is a preceding planning
problem of the actual High School Timetabling in Denmark. The Internation Timetabling Compe-
tition 2011 was devoted to High School Timetabling (see e.g. Post et al (2012) and Sørensen et al
(2012)).

The students request some elective courses, and the problem is then to assign course classes
to time slots and then assign students to the classes given their requests. We want to maximize
the number of ful�lled requests and to minimize the number of classes. The problem is to both
please the students and to insure good economic. It cost approximately e 27.000 p.a. to create a
class, and as the high schools are self-governing, ECPP is a crucial problem. If the requests are
not granted, the students might change school and as the high school are payed upon the number
of students, they will lose revenue.

Monday Tuesday Wednesday Thursday Friday

8:15
9:45

10:00
11:30

12:00
13:30

13:45
15:15

Lunch break

Block1

Block2

Block3

Block4 Block5

Fig. 1: An example of a weekly schedule with four modules each day and a total of �ve time slots
for elective courses. The white time slots are used for mandatory courses.

Simon Kristiansen [sikr@dtu.dk] · Thomas R. Stidsen
Operation Research, DTU Management, Technical University of Denmark
Produktionstorvet, 426 B, DK-2800, Kgs Lyngby, Denmark

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 365

As mentioned it is also desired to have an even distribution on the number of students in classes
of same course. E.g. 40 students requests the same given course, and with 28 as upper bound on
the class size, we aim at having a distribution of 20-20.

2 Integer programming model

The ECPP is formulated as an IP model. A high school has a set of students s ∈ S, a set of o�ered
courses e ∈ E , a set of classes c ∈ C and a set of time slots b ∈ B. Each students is assigned to a
common class, q ∈ Q, this is denoted by Iq,s ∈ {0, 1}. Each course belongs to one of the course
subjects given by the set f ∈ F . The maximum number of classes of each subject in a time slot is
given by Mf ∈ R+. Kc,f ∈ {0, 1} denotes whether course c is teaching subject f or not. For each
course class there exist an upper bound on the class sizes, Uc ∈ R+. Ac,s ∈ R+ indicates whether
student s is locked to course class c. I.e. the student must be assigned to the given course class.
Re,s ∈ {0, 1} indicates whether student s has requested course e or not. Dc,e ∈ {0, 1} denotes
whether class c is teaching course e, or not. The total maximum number of classes which can be
created is given by P ∈ R+. The parameters Jc,c′ ∈ {0, 1} and Hc,c′ ∈ {0, 1} indicates whether two
classes cannot be placed in the same time slot or should be placed in the same time slot, respectively.
The decision whether student s is assigned to class c in block b is de�ned by xc,b,s ∈ {0, 1}, while
the decision whether course class c is assigned to time slot b is given by yc,b ∈ {0, 1}. The binary
variable zc,q ∈ {0, 1} takes value 1 if common class q is present in class c. The variables w+

c,c′ ∈ N0

and w−c,c′ ∈ N0 counts the di�erence of the number of students between classes of same course. The
objectives are weighted in respect to each other, given by αc,s, βc, γ and δ

max
∑
c,b,s

αc,s · xc,b,s −
∑
c,b

βc · yc,b − γ ·
∑
c,q

zc,q − δ ·
∑
c,c′

(w+
c,c′ + w−c,c′)/2 (1)

s.t.
∑
c

xc,b,s ≤ 1 ∀ b, s (2)∑
b

yc,b ≤ 1 ∀ c (3)∑
c

∑
b

xc,b,s ·Dc,e ≤ Re,s ∀ e, s (4)∑
s

xc,b,s ≤ Uc ∀ c, b (5)∑
b

∑
s

Iq,s · xc,b,s ≤ zc,q ∀ c, q,
∑
s

Ac,s = 0 (6)∑
s

xc,b,s −
∑
s

xc′,b,s = w+
c,c′ − w

−
c,c′ ∀ c, c

′, b, e,Dc,e = Dc′,e = 1,
∑
s

Ac,s =
∑
s

Ac′,s = 0(7)

xc,b,s ≤ yc,b ∀ c, b, s, Ac,s = 0 (8)
xc,b,s = yc,b ∀ c, b, s, Ac,s = 1 (9)∑
c,b

yc,b ≤ P (10)

yc,b + yc′,b ≤ 1 ∀ c, c′, b, s, Jc,c′ = 1 (11)
yc,b = yc′,b ∀ c, c′, b, s,Hc,c′ = 1 (12)∑
c

Kc,f · yc,b ≤ Mf ∀ b, f,Mf > 0 (13)

xc,b,s ∈ {0, 1} (14)
yc,b ∈ {0, 1} (15)
zc,q ∈ {0, 1} (16)
w+

c,c′ ∈ N0 (17)

w−c,c′ ∈ N0

The constraints (2) ensure that no students is assigned more than one course class in each time
slot, while constraints (3) ensure that a class cannot be assigned to more than one time slot.
Constraints (4) ensure that students can only be assigned course classes which they requested,
and that each requests is only granted once. Constraints (5) sets the upper bound on the number

366 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

of students in a course class. Constraints (6) are counting the number of common classes used
while constraints (7) are used for equal distribution of the students in classes of same course.
Constraints (8) is the connection between the two variables xc,b,s and yc,b and make sure that a
student cannot be assigned a class which is not yet assigned to a time slot. Constraints (6) and
(7) are soft constraints. Constraints (9) shall ensure that if students are locked to a course class
and the class is assigned a timeslot, the students should be assigned to the class. Constraints (10)
ensures that the total number of created classes does not exceed maximum. Constraints (11) ensure
that classes which cannot be placed in same time slot are not done so and constraints (12) ensure
that classes which should be placed in same time slot are satis�ed. Finally, constraints (13) make
sure that the resource limit on subjects f are respected.

3 Solution method

It has been chosen to attempt Adaptive Large Neighborhood Search (ALNS) to establish solutions
to the ECPP. ALNS was �rst applied and is still mainly used on Vehicle Routing Problems (Azi
et al (2010); Laporte et al (2010); Salazar-Aguilar et al (2011); Ribeiro and Laporte (2012)). It has
however also been applied on a few other problems such as Lot-sizing (Muller and Spoorendonk
(2011)) and Scheduling problems (Muller (2010); Kristiansen et al (2011a); Sørensen and Stidsen
(2012)). Pisinger and Ropke (2010) is recommended for additional reading on ALNS. The pseudo
code is given in Algorithm 1.

Algorithm 1: Adaptive Large Neighborhood Search

Input: a feasible solution xsg,b, q ∈ N
solution xbest = x; π = (1, . . . , 1)1

repeat2

x′ = x3

select destroy and repair methods d ∈ Ω− and r ∈ Ω+ using π4

remove q requests from x′ using d5

reinsert removed requests into x′ using r6

if c(x′) > c(xbest) then7

xbest = x′8

if accept(x′, x) then9

x = x′10

update π11

until stop-criterion met12

return xbest13

The neighborhoods are implicitly de�ned by several destroy and repair methods. In each itera-
tion, a destroy and a repair method is chosen upon some performance indicators which is updated
after each iteration.

For this implementation of ALNS two di�erent types of moves are used: Assign/unassign a class
with students to/from a time slot and assign/unassign a student to/from an assigned class. Based
on these moves a total of 8 di�erent destroy methods and 4 repair methods are implemented. The
destroy methods are simple random removal heuristics and Shaw heuristics (Shaw (1997)), where
less or more related classes are removed from the solution. The repair methods are basic greedy
algorithms and regret heuristics (Potvin and Rousseau (1993)), which aims at inserting the request
which we will regret most if not inserted immediately.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 367

4 Results

The algorithm is implemented in Lectio 1, and is hence available for use for approximately 200
di�erent high schools in Denmark. This gives the possibilities for a huge amount of data for further
testing and research. Table 1 shows the size and the computational results from 7 di�erent datasets

No.of No.of No.of No.of Assigned Assigned
student requests courses blocks classes requests

Vejen 382 586 29 3 36 586
Silkeborg 927 1789 65 5 77 1786
Falkoner 421 1080 49 4 66 1080
Vordingborg 415 1462 61 5 68 1462
Alssund 385 650 31 5 34 645
Holstebro 345 567 18 5 29 567
Frederikssund 159 273 18 4 18 273

Table 1: Results for a given set of real-life problems at Danish high schools.

References

Azi N, Gendreau M, Potvin JY (2010) An Adaptive Large Neighborhood Search for a Vehicle Routing Problem
with Multiple Trips. CIRRELT

Cheng E, Kruk S, Lipman M (2003) Flow formulations for the student scheduling problem. In: Burke E, De Caus-
maecker P (eds) Practice and Theory of Automated Timetabling IV, Lecture Notes in Computer Science, vol
2740, Springer Berlin / Heidelberg, pp 299�309

Kristiansen S, Sørensen M, Stidsen T, Herold M (2011a) Adaptive large neighborhood search for the consultation
timetabling problem, to appear

Kristiansen S, Sørensen M, Stidsen TR (2011b) Elective course planning. European Journal of Operational Research
215(3):713 � 720, DOI 10.1016/j.ejor.2011.06.039

Laporte G, Musmanno R, Vocaturo F (2010) An adaptive large neighbourhood search heuristic for the capacitated
arc-routing problem with stochastic demands. Transportation Science 44(1):125�135

Müller T, Murray K (2010) Comprehensive approach to student sectioning. Annals of Operations Research 181:249�
269

Muller L (2010) An adaptive large neighborhood search algorithm for the multi-mode resource-constrained project
scheduling problem. Tech. rep., Department of Management Engineering, Technical University of Denmark
Produktionstorvet, Building 426, DK-2800 Kgs. Lyngby, Denmark

Muller L, Spoorendonk S (2011) A hybrid adaptive large neighborhood search algorithm applied to a lot-sizing
problem. European Journal of Operational Research Volume 218(Issue 3):614�623

Pillay N (2010) An overview of school timetabling research. In: Proceedings of the International Conference on the
Theory and Practice of Automated Timetabling, Belfast, United Kingdom, pp 321�335

Pisinger D, Ropke S (2010) Large neighborhood search. In: Gendreau M, Potvin JY (eds) Handbook of Metaheuris-
tics, International Series in Operations Research & Management Science, vol 146, Springer US, pp 399�419

Post G, Gaspero LD, Kingston JH, McCollum B, Schaerf A (2012) The third international timetabling competition.
In: Proceedings of the Ninth International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), Son, Norway

Potvin JY, Rousseau JM (1993) A parallel route building algorithm for the vehicle routing and scheduling problem
with time windows. European Journal of Operational Research 66(3):331 � 340

Ribeiro GM, Laporte G (2012) An adaptive large neighborhood search heuristic for the cumulative capacitated
vehicle routing problem. Computers & Operations Research 39(3):728 � 735, DOI 10.1016/j.cor.2011.05.005

Salazar-Aguilar M, Langevin A, Laporte G (2011) An adaptive large neighborhood search heuristic for a snow
plowing problem with synchronized routes. In: Pahl J, Reiners T, Voss S (eds) Network Optimization, Lecture
Notes in Computer Science, vol 6701, Springer Berlin / Heidelberg, pp 406�411

Shaw P (1997) A new local search algorithm providing high quality solutions to vehicle routing problems
Sørensen M, Stidsen TR (2012) High school timetabling: Modeling and solving a large number of cases in denmark.

In: Proceedings of the Ninth International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012)

Sørensen M, Kristiansen S, Stidsen TR (2012) International timetabling competition 2011: An adaptive large neigh-
borhood search algorithm. In: Proceedings of the Ninth International Conference on the Practice and Theory
of Automated Timetabling (PATAT 2012)

1 Lectio is developed by MaCom A/S and is a cloud-based high school administration, which handles all sorts of
administrative tasks for the high schools, including a GUI and a heuristic-based solver for the ECPP.

368 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Investigation of fairness measures for nurse rostering

Pieter Smet · Simon Martin · Djamila
Ouelhadj · Ender Özcan · Greet Vanden
Berghe

Received: date / Accepted: date

Abstract The nurse rostering problem presents a combinatorial optimisation
problem in which shifts must be assigned to nurses who are subject to a large
number of workforce related constraints. In the literature on nurse rostering,
the fairness of the constructed rosters has often been neglected. Solutions are
typically evaluated by means of a weighted sum objective function which does
not explicitly account for the fair distribution of individual high quality rosters.
The present contribution aims at incorporating fairness measures in existing
solution methods for the nurse rostering problem. Preliminary experimental
results show that fairer solutions are obtained when applying the new fairness
measures.

Keywords Nurse rostering · Fairness · Evaluation

1 Introduction

Several studies have shown that high quality work rosters contribute to the job
satisfaction of nurses. This is an important result, because by increasing the
job satisfaction of nurses, their retention rate is also likely to increase. Factors
that influence the quality of a roster include the working hours and whether

P. Smet and G. Vanden Berghe
CODeS, KAHO St.-Lieven,
Gebr. De Smetstraat 1, 9000 Gent, Belgium
E-mail: {Pieter.Smet, Greet.VandenBerghe}@kahosl.be

S. Martin and D. Ouelhadj
Logistics and Mathematics Management Group,
University of Portsmouth, Department of Mathematics, UK
E-mail: {Simon.Martin, Djamila.Ouelhadj}@port.ac.uk

E. Özcan
Automated Scheduling, Optimisation and Planning Research Group,
University of Nottingham, Department of Computer Science, UK
E-mail: Ender.Ozcan@nottingham.ac.uk

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 369

or not nurses can work a minimum number of consecutive days. Furthermore,
we assume that a fair distribution of work also attributes to a higher rate
of satisfaction with regard to the roster. We present a novel approach that
tries to guarantee a fair distribution of individual rosters among nurses in
automatically generated solutions.

In the literature, several automated approaches have been proposed as
decision support systems for nurse rostering. [2] describe an auction based self
rostering system in which nurses have a number of points they can use to bid
for shifts or days off. After the bidding phase, an algorithm determines the
winner of each auction and tries to find a feasible schedule which includes the
winning bids. However, fairness is not guaranteed since experienced nurses can
easily misuse the auction system such that they always make the winning bids.
[5] present an automated preference scheduling approach in which nurses can
request particular shifts or days off. Linked to each request is a grade indicating
its importance. All requests are passed on to an algorithm that produces a
feasible schedule, while respecting the preferences as much as possible. The
system explicitly attends to fairness by means of an extra variable in the
objective function. This variable is used to maximise the number of requests
of the least favoured nurse, thus taking into account the worst individual roster.
Other automated approaches often model fairness as balance constraints on
working time [1].

Nurse rostering problems can be represented as constraint optimisation
problems using 5-tuples 〈N,D, S,K,C〉 with N the set of nurses, D the set
of days in the planning period and all relevant days in the previous and next
planning periods, S the set of shift types, K the set of skill types and C the set
of constraints. Solutions are typically evaluated using a weighted sum of soft
constraint violations (Equation 1). This objective function has the advantage
that it is both easy to understand and to implement. However, algorithms
optimising WO can generate unfair solutions in which bad individual rosters
are compensated by other high quality rosters. These solutions will have a
high overall quality but also an unfair distribution of individual rosters. We
propose an alternative for WO which better guarantees fair solutions and can
be easily added to models for nurse rostering.

WO =
∑

∀n∈N

∑
∀c∈C

#violationsn,c × weightc (1)

2 Fairness objective

Inspired by the approach of [5], we propose the objective function FO (Equa-
tion 2), whereby the quality of the worst individual roster determines the
overall solution quality. In doing so, nurses’ rosters will not be improved at
the expense of the worst individual roster.

FO = max∀n∈N

∑
∀c∈C

#violationsn,c × weightc (2)

370 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

When optimising FO, the nurse rostering problem becomes a min-max
problem. For algorithms that performed well when optimising WO, it will be
more difficult to find good solutions. Algorithms must deal with a trade-off
between a fair distribution of individual rosters and the overall solution quality.
In the next section we present preliminary experimental results showing the
effect of FO on the fairness and overall quality of solutions.

3 Experimental results

We define the individual roster quality of each nurse n qn, the average indi-
vidual roster quality µ and the standard deviation σ. The relative standard
deviation RSD is defined as the ratio of σ on µ, and allows for comparison
of fairness for different scenarios. Low values for RSD indicate fair solutions,
in which little variance exists between individual roster quality. The relative
quality gap between the best and the worst individual roster is defined as diff .
A relatively small difference between the best and worst individual roster is
indicated by low values for diff . The overall solution quality calculated with
WO is defined as qWO

solution. This metric allows us to compare the overall quality
of solutions obtained with different objective functions.

Experiments are performed on real world data collected from four different
wards in two Belgian hospitals. For each ward, two scenarios are considered:
one in which each nurse has the same contract and one in which each nurse
has a personalised contract. The hyper-heuristic approach presented in [6] is
used to find solutions. Each run is repeated ten times, with computation time
limited to ten minutes.

Table 1 shows that fairer solutions are obtained when optimising FO. For
all instances, solutions obtained with FO have lower values forRSD than those
obtained with WO. This means that the quality of individual rosters varies
less when using FO, thus producing fairer solutions. The reported values of
diff support this result. The difference between the worst and best individual
roster is smaller when optimising FO. From the results in Table 1 it can also be
concluded that, for both objectives, it is easier to find fairer solutions when all
nurses have identical contracts. Looking at the overall solution quality qWO

solution,
there exists no clearly identifiable trend. In some cases it is clear that the
new objective makes it harder for the hyper-heuristics to find good solutions.
However, the opposite is also true for some instances. These inconsistent results
require further investigation into the structure of each problem instance (e.g.
which constraints are present).

4 Discussion

Preliminary experimental results show that fairer solutions are obtained when
optimising FO than when optimising WO. Looking at the overall solution
quality, a trade-off exists between the fairness of a solution and its overall

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 371

Instance RSD diff qWO
solution

WO FO WO FO WO FO gap
Emergency-i 19,24% 7,40% 54,00% 24,11% 192569 169096 -12,19%
Emergency-d 19,10% 8,35% 62,02% 30,91% 215297 167200 -22,34%
Geriatrics-i 32,23% 16,07% 65,08% 45,93% 35930 46986 30,77%
Geriatrics-d 52,53% 27,67% 79,37% 66,69% 53718 69733 29,81%
Psychiatry-i 15,97% 10,75% 47,18% 42,56% 147960 145491 -1,67%
Psychiatry-d 35,44% 29,15% 66,91% 65,20% 129340 125936 -2,63%
Reception-i 55,20% 35,94% 79,18% 59,42% 80909 103832 28,33%
Reception-d 60,40% 38,70% 95,41% 89,24% 57749 61478 6,46%

Table 1 Results for the centralised approach. Instance-i refers to cases with identical con-
tracts, instance-d refers to cases with different contracts.

solution quality. However, this result is not consistent for all instances under
study and deserves further investigation. One obvious future step incorporates
optimising FO while at the same time attempting to improve WO, without de-
creasing the quality of the worst individual roster. Furthermore, decentralised
approaches, e.g. agent-based frameworks [3], present other interesting possibil-
ities for defining new fairness measures in which individual nurses’ objectives
can be optimised at the same time [4].

Acknowledgements This research was jointly carried out within the IWT project (IWT
110257) and the research sabbatical sponsored by the University of Portsmouth, Department
of Mathematics.

References

1. E. K. Burke, P. De Causmaecker, G. Vanden Berghe and H. Van Landeghem, The state
of the art of nurse rostering, Journal of Scheduling, 7(6):441-499 (2004)

2. M. L. De Grano, J. D. Medeiros, and D. Eitel, Accommodating individual preferences
in nurse scheduling via auctions and optimization, Health Care Management Science,
12(3):228-242 (2009)

3. S. Martin, D. Ouelhadj, P. Beullens and E. Özcan, A generic agent-based framework for
cooperative search using pattern matching and reinforcement learning, Technical report
5861, University of Portsmouth (2012)

4. D. Ouelhadj, S. Martin, P. Smet, E. Özcan and G. Vanden Berghe, Fairness in nurse
rostering, Technical report, KAHO Sint-Lieven (2012)

5. E. Rönnberg and T. Larsson, Automating the self-scheduling process of nurses in Swedish
healthcare: a pilot study, Health Care Management Science, 13:35-53 (2010)

6. P. Smet, B. Bilgin, P. De Causmaecker and G. Vanden Berghe, Modelling and evaluation
issues in nurse rostering. Annals of Operations Research, 1-24 (2012)

372 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Patient Admission Scheduling with Operating Room

Constraints

Sara Ceschia · Andrea Schaerf

Abstract We propose an extension of the PAS problem described in our
previous work [6], which considers also constraints about the utilisation of
operating rooms for patients that have to undergo a surgery. We design a
solution approach based on local search, which explores the search space using
complex neighbourhood operators.

Keywords Patient Admission · Operating Room · Local Search

1 Introduction

The Patient Admission Scheduling (PAS) consists in scheduling patients into
hospital rooms in such a way to maximise medical treatment effectiveness,
management efficiency, and patients’ comfort.

The problem has been formalised by Demeester et al [8] and further stud-
ied by the same research group [2]. We have solved the PAS by local search
[5] and we have obtained the best known solutions on all the available PAS
benchmarks [7]. We have subsequently refined and extended the problem for-
mulation to take into account several additional real-world features, such as
the presence of emergency patients, uncertainty in stay lengths, and the pos-
sibility to delay admissions [6].

In this work, we present an extension of the PAS problem described in [6],
that constitutes a first step towards the integration of the patient admission
scheduling with the surgery scheduling process.

As pointed out in [3, 4], the operating room is a very critical resource,
so that the scheduling of surgeries has a deep impact on the other activities
of the hospital. Indeed, a patient that undergoes a surgery is expected to

S. Ceschia and A. Schaerf
DIEGM, University of Udine
Via delle Scienze 206
E-mail: {sara.ceschia, schaerf}@uniud.it

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 373

recover in the hospital for a period, thus she/he needs a bed in a ward of
the corresponding specialty. As a consequence, the surgical process scheduling
requires to be integrated with the other hospital operations in order to avoid
resource conflicts.

The operating room scheduling is usually decomposed in three hierarchical
stages (see e.g., [1, 10, 12]). The first level corresponds to a long-term strate-
gic planning whose aim is to assign the operating room resources to surgical
specialisms according to historical data or forecasts. The second step is a tacti-
cal medium-term planning; it involves the development of the master surgical
schedule (MSS) which is a cyclic timetable that defines, for each day of the
cycle, which operating room is assigned to a team of surgeons and for how
long. The last stage (see, e.g., [11]) is the daily scheduling of the specific inter-
vention of each patient: Emergencies and all kinds of uncertainty are tackled
at this level, which is mainly operational.

This work can be positioned between the tactical and the operational level,
so that inputs of the problem are all data about departments, rooms and pa-
tients, and the MSS resulting from the tactical planning. Using the classifi-
cation in [9], the problem belongs to the class of “Block scheduling”, because
the operating room scheduling is organised in blocks assigned to specialisms.

A solution of the problem is an assignment of patients to beds in rooms
for each day of their stay in hospital, satisfying all the constraints of the
PAS problem (capacity, gender, specialty, age, room feature, preferences) and
taking also into account the constraints related to the MSS.

2 PAS with operating room constraints

In order to integrate all the information about the MSS in the PAS problem,
we introduce the notions of operating room slot and medical treatment :

Operating Room Slot: An operating room (OR) slot is the smallest time
unit for which a operating room can be reserved for a specialty in a day.
Each day of the planning cycle, the MSS assigns to a specialty an integer
number of OR slots. Different operation rooms can be simultaneously used
by the same specialty, since a specialty normally does not identify a specific
surgeon but a surgical group.

Medical Treatment: Each patient has to undergo a medical treatment that
is performed by a specialist. Some treatments include a surgery of the type
of the corresponding specialty. In this case, the day of the surgery (typically
either the day after the admission day or the admission day itself) and the
expected length of the surgery must be specified.

Our problem consists in assigning a room to each patient for a number of
days equal to her/his stay period, starting in a day not before his/her planned
admission. The assignment is subject to all the PAS constraints defined in [6]
and the following additional one:

374 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Operating Room Utilisation: For each day and each specialty the total
length of the operations for treatments belonging to the specialty must not
exceed the time granted to it by the MSS.

This is a hard constraint, and it has a critical impact on the search space.
Consequently it requires to reconsider the search method, and, in particular,
the definition of the neighbourhood structures.

We remark that we only define the admission day of a patient taking into
account the daily utilisation of the operating rooms; the problem of sequencing
OR slots in a day and the surgeries within each OR slot is outside the scopes of
this work, and is usually performed online (at most the day before), considering
also emergency patients.

3 Solution technique

We refine the solution technique applied in [6], which is based on a complex
neighbourhood structure and on simulated annealing (SA).

A state in the search space is composed by two integer-valued vectors: the
first one represents the room assigned to each patient, and the second one is
the possible delay of the admission of the patient.

In order to effectively explore the search space in which the admission
of patients has to satisfy also the operating room utilisation constraint, we
need to define new neighbourhoods. For example, we should consider that a
specialty might appear in the MSS only in some specific days, therefore the
neighbourhood relation defined in [6], that moves the admission of a patient
only to the previous or following day, is not suitable. We thus have to define
a neighbourhood that enables longer time leaps in one single move.

Based on these considerations, the neighbourhood is the composition of
four basic moves. The first two work on the room assignment, and they are
the change of the room assigned to a patient and the swap of the assigned
room between two patients. The third and fourth are used to modify the
admissions day of patients. One move shifts the admission of a patient forward
or backward by a given number of days. The last one swaps the admission days
of two patients. Both keep the room unchanged.

The cost function includes the same cost components than those of the
PAS problem, but the component distance to feasibility takes into account not
only the room capacity constraint but also the operating room utilisation.

4 Experimental analysis

Unfortunately, there are no real-world instances available at present for this
problem, therefore we modified the instance generator designed in [6], which
is available at http://satt.diegm.uniud.it/index.php?page=pasu. We in-
cluded all the input data about the MSS, that is the number of OR slots

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 375

reserved to each specialty for each day and the features of each medical treat-
ment.

The project is ongoing and the computational results on the generated
instances are very preliminary; they will be presented in the forthcoming com-
plete version of the paper.

References

1. J Beliën and E Demeulemeester. Building cyclic master surgery schedules
with leveled resulting bed occupancy. European Journal of Operational

Research, 176(2):1185–1204, 2007.
2. Burak Bilgin, Peter Demeester, Mustafa Misir, Wim Vancroonenburg, and

Greet Vanden Berghe. One hyper-heuristic approach to two timetabling
problems in health care. Journal of Heuristics, 2011. Online first http:
//dx.doi.org/10.1007/s10732-011-9192-0.

3. J T Blake and M W Carter. Surgical process scheduling: a structured
review. Journal of the Society for Health Systems, 5(3):17–30, 1997.

4. Brecht Cardoen, Erik Demeulemeester, and Jeroen Beliën. Operating
room planning and scheduling: A literature review. European Journal

of Operational Research, 201(3):921–932, March 2010.
5. Sara Ceschia and Andrea Schaerf. Local search and lower bounds for the

patient admission scheduling problem. Computers & Operations Research,
30:1452–1463, 2011.

6. Sara Ceschia and Andrea Schaerf. Modeling and solving the dynamic pa-
tient admission scheduling problem under uncertainty. Submitted for pub-
lication. Available at http://satt.diegm.uniud.it/index.php?page=

pasu. An abstract appeared in Proceedings of the 9th Metaheuristics In-
ternational Conference (MIC 2011), February 2012.

7. P. Demeester. Patient admission scheduling website. http://allserv.

kahosl.be/~peter/pas/, 2009. Viewed: February 17, 2012.
8. Peter Demeester, Wouter Souffriau, Patrick De Causmaecker, and Greet

Vanden Berghe. A hybrid tabu search algorithm for automatically as-
signing patients to beds. Artificial Intelligence in Medicine, 48(1):61–70,
January 2010.

9. A. Jebali, A. Hadjalouane, and P. Ladet. Operating rooms scheduling.
International Journal of Production Economics, 99(1-2):52–62, January
2006.

10. Jeroen M. Oostrum, Eelco Bredenhoff, and Erwin W. Hans. Suitability
and managerial implications of a master surgical scheduling approach.
Annals of Operations Research, 178(1):91–104, 2009.

11. Atle Riise and E. K. Burke. Local search for the surgery admission plan-
ning. Journal of Heuristics, 17:389–414, 2011.

12. J.M.H. Vissers, J.W.M. Bertrand, and G. De Vries. A framework for
production control in health care organizations. Production Planning &

Control, 12(6):591–604, January 2001.

376 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Timetabling of sorting slots in a logistic warehouse

Antoine Jouglet · Dritan Nace ·

Christophe Outteryck

Received: date / Accepted: date

Abstract We study a problem appearing at the end of a logistic stream in
a warehouse and which concerns the timetabling of sorting slots necessary
to accomodate the prepared orders before being dispatched. We consider a
set of orders to be prepared on some preparation shops over a given time
horizon. Each order is associated with the truck handling its transportation
to its customer. A sorting slot is an accumulation area where processed orders
await to be loaded on a truck. To a given truck, a known number of sorting slots
is needed from the time the first order associated with the truck begins to be
prepared, and this, until the known departure time of the truck. Since several
orders associated with different trucks are processed simultaneously and since
the number of sorting slots is limited, the timetabling of these resources is
necessary to ensure that all orders can be processed over the considered time
horizon without violating the resource constraint on sorting slots. In this talk,
we describe the general industrial context of the problem and we formalize it.
We state that some particular cases of the problem are polynomially solvable
while the general problem is NP-complete. Then, we propose optimization
methods to solve it.

Keywords warehouse management · sorting slots · scheduling · timetabling

Antoine Jouglet, Dritan Nace
Université de Technologie de Compiègne, UMR CNRS 7253 Heudiasyc
60200 Compiégne, France
E-mail: {antoine.jouglet,dritan.nace}@utc.fr

Christophe Outteryck
a-sis, 8, rue de la Richelandière, 42000 Saint-Etienne, France
E-mail: christophe.outteryck@a-sis.com

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 377

1 Introduction

Logistic warehouses are more and more complex installations: the flows regu-
larly increase, the automation of systems become widespread, logistic processes
are globalizing. To be competitive, warehouse management softwares (Ware-
house Management Systems (WMS) and Warehouse Control Systems (WCS))
have to become a real help to make the best operational decisions.

Since the introduction of automation systems in production and distribu-
tion environments, many research studies on operational decision systems can
be found in the literature. This subject has led to a large amount of research
papers (see for example [1–4] for surveys on this area). In this paper, we study
a sub-problem which appears at the end of a logistic stream in a warehouse
and concerns the timetabling of sorting slots. To our knowledge, this problem
has not been studied in the literature.

We consider a warehouse composed of several order preparation shops and a
set of orders to be prepared on a given time horizon. Each order is composed of
several order lines. Each order line corresponds to an amount of work to process
on one of the preparation shops. Each order is associated with a transportation
truck which is in charge to transport it to its final customer. It forces the subset
of all orders associated with a given truck to be totally processed before the
known departure of the truck.

Once an order has been prepared, it is dispatched to a sorting slot which
is an accumulation area where the order waits to be loaded on the truck. The
difficulty of the problem comes from a special resource constraint: to a given
truck, a known number of sorting slots is needed from the time the first order
associated with the truck begins to be prepared, and this, until the known
departure of the truck. Since several orders associated with different trucks
are prepared simultaneously and since the number of sorting slots is limited,
the timetabling of the sorting slots becomes necessary. In other words, we have
to establish the timetable of sorting slots, in aim to ensure that all orders can
be processed over the considered time horizon without violating the resource
constraint on the number of available sorting slots.

2 Problem definition

The problem in hand can be formalized in the following way. Let n be the num-
ber of trucks and let m be the number of preparation shops in the warehouse.
A preparation shop is assimilated as a machine. To each truck i is associated
a task Ji composed of m operations {oi1, oi2, . . . , oim}. The processing time
pij of operation oij corresponds to the duration of the whole set of order lines
which have to be processed by machine (preparation shop) j associated with
truck i, i.e. to the total amount of work which has to be done by shop j for
truck i. Each of the m machines has then to process n operations (one per
task). Let di be the known date of the departure of truck i. In a feasible solu-
tion of the problem, each task Ji is considered being finished by time di, while

378 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

the start-time si of Ji is to be determined such that all operations of Ji can
be performed. The set of sorting slots is assimilated as a cumulative resource
of capacity E, E being the number of sorting slots available in the warehouse.
Thus, task Ji needs a given number ni of sorting slots among E from si until
di. Note that the period on which the resource constraint applies depends only
on the start-time of the job, contrary to classical scheduling problems in which
it depends on periods on which the job is really processed. The problem is to
determine start times {s1, . . . , sn} in such a way that no more than E sorting
slots can be used at a time, while the scheduling of operations is feasible.

Let sij and cij be respectively the variables representing the start time
and the completion time of operation oij in a solution. In a feasible solution,
each operation oij can start after the start of task Ji and has to be completed
before the departure time of the associated truck: sij ≥ si and cij ≤ di. Each
machine is disjonctive and can process only one operation at a time. Note that,
contrary to a scheduling shop problem (see e.g. [5]), the operations of a same
task can be processed simultaneously (and, in fact, will be very often).
Two cases are considered:

– The non-preemptive case in which, once an operation oij begins to be
processed, it has to be continued until its completion (sij +pij = cij). This
implies that all order lines associated with a truck will be dealt sequentially.

– The preemptive case, in which interruptions in the processing of tasks are
possible (sij + pij ≤ cij). Such interruptions are useful to execute a part
of another operation more urgent associated with another truck.

If variables {s1, s2, . . . , sn} can be fixed in such a way that all the previous
constraints hold, it follows that ni sorting slots among E will be used from si
to di for truck i.

In the remainder, we use also the following notation. LetH = maxi∈{1,...,n} di
be the time horizon of an instance of the problem. Let also T = {di/i ∈
N} + {0} = {t0 = 0, . . . , tw = H} be the set of departure dates, values ti
being indexed in non-decreasing order, i.e. t0 = 0 < t1 < . . . < tw = H .

3 Complexity study of the problem

The special preemptive case in which we have
∑n

i=1
ni ≤ E is polynomially

solvable. Indeed, the ressource constraint according to the number of sorting
slots disapears in this case. Therefore, it leads to the resolution of m single-
machine scheduling problems with deadlines (1|d̄i|) which are polynomially
solvable [6].

The other special case in which any pij = 1 is also polynomially solvable.
Indeed, the operations can be scheduled in the same way on each machine.
Thus the problem is reduced to another one with m = 1. It then remains to
know if we can schedule operations without violating the resource constraint
on sorting slots. For that, we iteratively schedule operations from H to 0 in
decreasing order of departure times. When several operations have the same

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 379

departure time, they are scheduled in decreasing order of the number of sorting
slots. The process stops when all operations are scheduled or when the resource
constraint on sorting slots does not hold (the instance is not feasible).

We state that the 3-PARTITION problem [6] can be reduced to the general
preemptive case with m = 1. It follows that both the general preemptive and
non-preemptive problems are strongly NP-complete.

4 Some methods to solve the problem

We propose optimization methods to solve both the preemptive and the non-
preemptive versions of the problem. The proposed methods relies on the fol-
lowing proposition:

Proposition 1 Let S be a feasible solution of an instance of the problem

in which a job i is executed from si to di. Then S can be transformed in a

feasible solution S′ in which job i uses ni sorting slots from s′i = max{tk, tk ∈
R ∧ tk <= si} and where the scheduling of operations is not modified.

Thus, we can deduce the following dominance rule.

Theorem 1 There exists at least one solution in which the start time of use

of sorting slots take values in set T .

This last proposition can be used in several ways. From a practical point
of view, it offers a method to simplify the timetabling of the use of the sorting
slots since they can be established by periods determined by the departure
times of the different trucks. Of course, the additional use (a priori useless) of
sorting slots by a job can be seen as additional flexibility in the preparation
process. From a resolution point of view, this dominance rule is used to estab-
lish integer linear programmig formulations and constraint based scheduling
methods [7] to solve in pratice the problems. Thus, we propose an ILP model
and a constraint programming model to solve the non-preemptive case. Then,
we propose a flow-based ILP model and a multiperiod ILP model to solve the
preemptive case. These methods are experimentally compared from a compu-
tational point of view.

References

1. G. Cormier, E. Gunn, European Journal of Operational Research 58, 3 (1992)
2. J. Van den Berg, IIE Transactions 31(751762) (1999)
3. B. Rouwenhorst, V. Reuter, V. Stockrahm, G. Van Houtum, R. Mantel, W. Zijm, Euro-

pean Journal of Operational Research 122, 515533 (2000)
4. R. De Koster, T. Le-Duc, K. Roodbergen, European Journal of Operational Research

182, 481501 (2007)
5. P. Brucker, Scheduling Algorithms (Springer Lehrbuch, 1995)
6. M. Garey, D. Johnson, Computers and intractability: a guide to the theory of NP-

completeness (W.H. Freeman, 1979)
7. P. Baptiste, C. Le Pape, W. Nuijten, Constraint-based scheduling, applying constraint

programming to scheduling problems, International Series in Operations Research and

Management Science, vol. 39 (Kluwer, 2001)

380 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Days off scheduling
A 2-phase approach to personnel rostering

Sophie van Veldhoven · Gerhard Post · Egbert
van der Veen

Received: date / Accepted: date

1 Introduction

The personnel rostering problem (or nurse rostering problem) is a well-known com-
binatorial optimization problem, with a rich literature, see [Ernst et al(2004)] and
[Burke et al(2004)]. In many practical situations the large number of working time
regulations and preferences make it difficult and time consuming to construct a good
schedule.

One way to reduce the complexity of the personnel rostering problem is to decom-
pose the problem into subproblems that are easier to solve. Though the subproblems
can possibly be solved to optimality in a reasonable time, the combination of the sub-
problems does not necessarily lead to an optimal solution to the original problem. In
this work we present a 2-phase decomposition model. In the first phase we construct
a days off schedule, that is a schedule that specifies for each employee the working
days and the days off. We also consider a refinement in which we consider day off,
day shift or night shift. In the second phase we specify which shifts are actually as-
signed to the employees on their working days, which means that we solve a shift
rostering problem respecting the days off schedule found in the first phase.

In practice, the construction of a schedule with working days and days off can be
a separate step in the process of assigning staff. For individual employees, it may be
pleasant to know the working days a long time ahead, so that they can plan their free

Sophie van Veldhoven
Aviv, Langestraat 11, 7511 HA Enschede, The Netherlands,
E-mail: sophievveldhoven@gmail.com

Gerhard Post (corresponding author)
Department of Applied Mathematics, University of Twente, P.O. Box 217, Enschede, The Netherlands,
and ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands,
E-mail: g.f.post@utwente.nl

Egbert van der Veen
Department of Applied Mathematics, University of Twente, P.O. Box 217, Enschede, The Netherlands,
and ORTEC, Groningenweg 6k, 2803 PV Gouda, The Netherlands,
E-mail: Egbert.vanderVeen@ortec.com

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 381

time. The exact hours they have to work, are not essential to know in the long term.
In addition, requests for vacation can be taken into account long before the actual
planning, which can alert the planner for possible capacity problems. The assignment
of the various shifts to the employees can be done in a later stage, for example, a
month before the start of the new planning period.

The aim of this paper is two-fold: investigate the computation times for a class
of personnel rostering problems with and without decomposition, and, secondly, in-
vestigate the quality of the schedules in the 2-phase approach compared to solutions
obtained in one run. We will use integer linear programming (ILP) in our research.
Hence we will present a mathematical program for the construction of days off sched-
ules, based on the constraints of the original problem.

2 Approach

As data sets we use the Employee Scheduling Benchmark Data Sets [Curtois(2007)].
We formulate formulate an ILP for these data sets, which are solved using CPLEX
12.2, with the time limit set to 1 hour. These results serve as the benchmark for our
tests. Next we formulate the days off scheduling problems, which we derive from the
instances. We consider two variants:

(On, Off): Distinguish working days and days off.
(Day, Night, Off): Distinguish day shifts, night shifts, and days off.

We include the refinement (Day, Night, Off) in our study, because in many cases the
requirements before and after night shifts are very different from (all) other shifts.
In fact we reduce the original shift scheduling problem to a shift scheduling problem
with 2 shift types (on, off), respectively 3 shift types (day, night, off). Hence in the
first and second phase we can use similar ILP models, with the addition that in the
second phase the assignment of shifts to employees should obey the decisions of
the first phase. Though the ILP models are similar, the reduction in the first phase
is not straightforward, and the next subsections describe how this is done. For this,
we consider the different types of constraints present in the benchmark, and explain
shortly how we handle them.

Requests and fixed assignments
Employees can have shifts preassigned, can have requests for shifts on or can have
requests for a day off. Those can be transferred to the days off scheduling problem
directly: work requests or shift on requests result in days on. Shift off requests are
ignored, since the employee might work on the same day in another shift.

Cover requirements
Per day the instance describes a minimum, maximum, or preferred cover per shift
type or per time period. These have to be aggregated to be useful in the days off
schedule. In case the cover requirements are in (overlapping) shift types we formulate
an ILP model to determine the minimum number of employees needed, and use this
amount for the days off schedule. In case that time periods are used, we proceed in
the same way.

382 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Pattern requirements
The pattern requirements can express a wide variety of constraints for individual
schedules. It can contain constraints like the maximum number of shifts per planning
interval or week, shift sequences, shifts in weekends, etc. If a pattern concerns all
shift types, we can use it in the days off schedule. In the case of (day, night, off), we
can incorporate more pattern requirements, potentially leading to better results.

Workload requirements
Workload requirements describe the number of hours an employee should work in
the planning period. Clearly, these are difficult to use in the days off schedule if
different shift types have different lengths. Since we use only necessary conditions,
the best we can do is to calculate upper and lower bounds on the working days, and
add those conditions as constraints to the ILP. In the shift scheduling phase we have
full information, so that we can use the correct workload requirements.

3 Results

We tested the 2-phase decomposition on 16 instances present at [Curtois(2007)] with
3 to 12 shift types. For almost all of these instances optimal solutions are known.
Running CPLEX 12.2 for 1 hour on a standard dual core PC yields an optimal solu-
tion in 9 cases. For these cases we find that the (on, off) decomposition gives only
good results for 4 of these instances, where using the (day, night, off) decomposition
leads to good results for 6 instances. For the other 7 cases we compare the decompo-
sition results with the results without decomposition. Then we find good results in 3
out of 7 cases if we use the (on, off) decomposition, and in 5 cases if we use the (day,
night, off) decomposition. In most cases the calculation times reduce by more than
98%. Here ‘good results’ is meant in the sense that the cost is of the same order of
magnitude; sometimes the results are better, but usually slightly worse.

Several improvements can be made to the model and the solution method. For
the model we can improve the way that the pattern constraints are dealt with; now
in several instances we use only a minor portion of these in the days off schedule,
which in some instances leads to high costs in phase 2. For the solution part, we can
apply the decomposition several times, say 10 times, with a constraint added that
makes sure we do not generate the same solution. On some instances, this approach
significantly improves the results.

References

[Burke et al(2004)] Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004) The state
of the art of nurse rostering. Journal of Scheduling 7(6): pp. 441–499.

[Curtois(2007)] Curtois T (2007) http://www.cs.nott.ac.uk/∼tec/NRP, Employee Scheduling
Benchmark Data Sets.

[Ernst et al(2004)] Ernst AT, Jiang H, Krishnamoorthy M, Owens B, Sier D (2004) An annotated bibliog-
raphy of personnel scheduling and rostering. Annals of Operations Research 127: pp. 21–144.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 383

Self-Rostering applied to case studies

An ILP method to construct a feasible schedule

Suzanne Uijland · Egbert van der Veen ·
Johann Hurink · Marco Schutten ·

Received: date / Accepted: date

Abstract We discuss the self-rostering problem, a concept receiving more and
more attention from both theory and practice. We outline our methodology
and discuss its application to a number of practical case studies.

Keywords Personnel Rostering · Shift Rostering · Self Rostering · Linear
Programming

1 Introduction

In service industries, like healthcare and security services, people work around
the clock. Considering the many employee preferences and labor legislation
that are implied on rosters, it is, both in theory, [L. De Grano et al (2009);
Rnnberg and Larsson (2010)] and practice, often hard to come up with good
or fair shift rosters. A way to better cope with employee preferences, and to

Suzanne Uijland
Department of Management and Governance, University of Twente, P.O. Box 217, Enschede,
The Netherlands, ORTEC, Groningenweg 6k, 2803 PV, Gouda, The Netherlands

Egbert van der Veen
Presenting author
ORTEC, Groningenweg 6k, 2803 PV, Gouda, The Netherlands
Tel.: +31182540500
Fax.: +31182540540
Center for Healthcare Operations, Improvement, and Research (CHOIR), University of
Twente, PO Box 217, 7500 AE Enschede, The Netherlands
E-mail: Egbert.vanderVeen@ortec.com

Johann L. Hurink
Department of Applied Mathematics, University of Twente, P.O. Box 217, Enschede, The
Netherlands,

Marco Schutten
Department of Management and Governance, University of Twente, P.O. Box 217, Enschede,
The Netherlands,

384 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

increase job satisfaction, is self-rostering. The main idea in self-rostering is
that employees can propose their own shift rosters, and if they do this in a
‘good’ way, they get to work most of their shifts as in their preferred schedule.

Bailyn et al (2007) argue that self-rostering increases job satisfaction by
an improved work-life balance, increased predictability and flexibility in sched-
ules, and enhancing the communication and interaction to stimulate cooper-
ative community building. Especially the latter is typical for self-rostering,
since self-rostering stimulates employees to propose schedules that are ‘good’
for the organization, see Section 3.

However, the shift rosters employees propose in general do not match up
with a shift staffing demand, and, therefore, staffing shortages for shifts for
specific days occur. The goal of this paper is to design a method that unassigns
some of the proposed shifts in order to solve the shortages.

In the next sections, we will subsequently describe the self-rostering pro-
cess, our solution technique, and discuss some results.

2 Self-rostering process

For a given rostering period (of e.g., a month)the self-rostering problem can
be decomposed in 5 phases:

1. The organization defines the staffing demand, i.e., specifies, per day, the
number of employees that need to perform a certain shift.

2. The employees propose their preferred schedule. These schedule have to
obey labor legislation, and other scheduling constraints specified by the
organization, like forward rotations or planning homogeneous work blocks.

3. The employees’ preferred schedules are combined, after which the staffing
demand is subtracted from these, indicating surpluses and shortages on
each shift.

4. The information of Phase 3 is returned to the employees, offering them the
opportunity to adjust their schedules.

5. The planner solves the remaining shortages after Step 4.

In this paper we focus on the fifth phase and propose a method to solve
the remaining shortages. Note that the presented method is independent of
the self-rostering process itself and the way employees create and adjust their
proposed schedules. In fact our method can be applied to any given schedule
where for each employee a preferred schedule is given and where a mismatch
between the shift staffing and shift demand is given.

3 Method

The objective of our method is to solve as many shortages as possible, whereby
making sure that a specified fraction of an employee’s proposed schedule re-
mains.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 385

To resolve the remaining shortages, we use an iterative method. In every
iteration an integer linear program (ILP) is solved, that mainly considers two
things: the score of every employee’s schedule, and swaps.

The score of an employee’s schedule is calculated as follows. First, we assign
‘points’ to shifts using a specified point system. For example, understaffed
shifts are assigned 3 points, overstaffed shifts get 1 point, and matching shifts
(shifts where the staffing demand is exactly matched) get 2 points. Second, we
calculate the score of every employee, by calculating his total points, possibly
multiplied by some factor to, e.g., take part time percentages into account. As
a consequence, employees with a large score work many relatively unpopular
shifts, whereas for employees with a small score the opposite holds.

In a swap we unassign an employee from one of his overstaffed shifts, and
assign this employee to a shift that is currently understaffed. A swap can be
performed on two shifts on the same day, but also on two shifts on different
days. A swap may only be performed if it obeys labor legislation and other
practical scheduling constraints specified by the organization. This can be
precalculated before running the ILP.

Given the scores and swaps in every iteration, the ILP is used to select a
subset of swaps is selected, with at most one swap per employee. We select at
most one swap per employee to make sure we do not violate labor legislation
or other constraints the organization implies on the schedules. The objective
makes a trade-off between two factors. First, we want to maximize the number
of swaps selected, in order to maximize the number of shortages solved in an
iteration. By maximizing the number of shortages solved in an iteration we
expect to solve more shortages in total. Secondly, we preferably perform swaps
at employees that have a low score, in order to reward employees that choose
relatively many unpopular shifts.

4 Results

We applied our method to 168 schedules based on data from real life. The range
of the number of employees is 15-80, and the range of the number shortages
is 16-212. Labor legislation is dealt with by including only swaps in the model
that do not violate labor legislation.

From the experimental results we observe that the mean computation time
of our method is 2.8 seconds, the mean number of shortages left is 0.90, and on
average 92.2% of the schedules is retained. The number of remaining shortages
is calculated as the positive difference between the number of remaining short-
ages and the number of remaining excesses. Depending on, among others, the
point system used, parameter values of the ILP, and swaps, there is a trade-off
in the model between either the number of shortages solved and fraction of
the proposed schedules that is preserved.

386 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

References

Bailyn L, Collins R, Song Y (2007) Self-scheduling for hospital nurses: an at-
tempt and its difficulties. Journal of Nursing Management 15(1):72–77, DOI
10.1111/j.1365-2934.2006.00633.x, URL http://dx.doi.org/10.1111/j.1365-
2934.2006.00633.x

L De Grano M, Medeiros D, Eitel D (2009) Accommodating individual prefer-
ences in nurse scheduling via auctions and optimization. Health Care Man-
agement Science 12:228–242, URL http://dx.doi.org/10.1007/s10729-008-
9087-2, 10.1007/s10729-008-9087-2

Rnnberg E, Larsson T (2010) Automating the self-scheduling process
of nurses in swedish healthcare: a pilot study. Health Care Manage-
ment Science 13:35–53, URL http://dx.doi.org/10.1007/s10729-009-9107-x,
10.1007/s10729-009-9107-x

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 387

Towards Fair and Efficient
Assignments of Students to Projects

Marco Chiarandini · Rolf Fagerberg ·
Stefano Gualandi

We consider the following problem in project assignment. We are given a
set P of project topics and a set S of students. For each topic i ∈ P a limited
number ti of teams can be created. If a team for topic i is created, the number
of students assigned to it must be between a minimum and maximum bound,
li and ui, respectively. Students express preferences for the topics by ranking
a subset of project topics. For each student s ∈ S this ranking is given by an
ordered set r(s) = (p(1), . . . , p(qs)), p(i) ∈ P , 1 ≤ i ≤ qs ≤ n. Moreover students
can register in groups of at most ` persons, if they want to be assigned to the
same team. That is, students are partitioned in groups, G = {g1, . . . , gm′},⋃
i gi = S, gi ∩ gj = ∅,∀i 6= j and |gi| ∈ {1, 2, . . . , `}. Students in the same

group gi have the same preference set, that is, r(s1) = r(s2) for all s1, s2 ∈ gi.
We wish to find an assignment of students to project teams, σ : S →

{1, 2, . . . ,
∑
i∈P ti} such that students are assigned to exactly one project from

their preference set and team bounds and group requirements are satisfied. If
no assignment satisfying these constraints exists, we will modify the input data
and iterate. If more than one assignment can be found, we wish to choose one
among them according to the criteria of fairness and collective welfare.

Preference sets can be transformed into a score matrix V ∈ N|S|×|P|0 , where
each element vsi represents how student s ranks project i. The score 1 is set
for the topics that are ranked first and qs for the topics that are ranked in the
qs-th position. If a project topic i is not in the preference list of the student s,
the corresponding value vsi will never be used and it can be set to any number,
for example, zero.

M. Chiarandini · Rolf Fagerberg
Department of Mathematics and Computer Science, University of Southern Denmark, Cam-
pusvej 55, DK-5230 Odense M, Denmark, E-mail: {marco|rolf}@imada.sdu.dk

S. Gualandi
Department of Mathematics, Università di Pavia, via Ferrata, 1 I-27100, Pavia, Italy, E-mail:
stefano.gualandi@unipv.it

388 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The quality of an assignment σ that satisfies all constraints is determined
by a vector v = (v1,σ(1), . . . , vm,σ(m)), vs,σ(s) > 0,∀s ∈ S, and by the distribu-
tion of students over ranks δ = (δ1, . . . , δ∆), where ∆ = max{qs | s ∈ S} and
δi=1..∆ = |{s ∈ S | vs,σ(s) = i}|. Students will prefer assignments over others
on the basis of their individual utility, that is, their score in the vector v. In the
decision-making process of an ad hoc committee that has to solve the alloca-
tion problem under limited resources, the focus will be on the collective welfare.
From this viewpoint, the interest is on assignments that are Pareto optimal or
efficient with respect to their profile vectors v. The two most prominent ways
to aggregate a profile of preference relations into a collective preference rela-
tion are the classical utilitarian ordering and the egalitarian ordering [4]. For
two feasible assignments σ1 and σ2, the former assigns a weight to each value,
w : {1, 2, . . . ,∆} → Z+ and compares

∑
s w(vs,σ1(s)) with

∑
s w(vs,σ2(s)), and

the latter uses the leximin order, which consists in reordering the two vectors
v1 and v2 by increasing coordinates and comparing them lexicographically.
Both relations define a strict weak order.

Taking only efficiency into account it is possible to create examples where
the overall satisfaction is high to the disadvantage of a few students. The
individual welfare or fairness criterion aims at ensuring that no student is
disadvantaged to the benefit of others. A way to achieve this is by searching for
the assignment that minimizes the worst rank, that is, min max{vs,σ(s)|s ∈ S}.
This is also known as the minimax criterion [5].

On the other hand, the minimax criterion alone makes no use of additional
information to decide among assignments with the same guarantees on the
maximum scores in the vector v. For example, the two vectors (1, 3, 3, 3) and
(1, 2, 2, 3) are not distinguishable. An approach that takes both fairness and
collective welfare into account consists in first optimizing according to the
minimax criterion and then, restricted to only minimax optimal solutions,
optimizing collective welfare using the weighted value order. An alternative
approach that overcomes the drawback of the minimax criterion and conciliates
egalitarianism and Pareto-efficiency is the leximin order, which subsumes the
minimax criterion.

Without common registrations and no minimum number of students per
project team, the problem under a classical utilitarian approach can be for-
mulated as a particular case of minimum cost flow. With all constraints the
problem is instead strongly NP-hard as it is a special case of the multiple
knapsack problem or the generalized assignment problem that are optimiza-
tion versions of the strongly NP-complete 3-partition problem [1].

In [3] the authors used a genetic algorithm approach to solve a similar
problem but without project topics, lower bounds on team sizes, and group
registrations. The issue of fairness is addressed by means of the multiple so-
lutions returned by the genetic algorithm when it solves a formulation with
weighted sum. Our work is an adaptation of the study by Garg et al. [2] in the
context of conference management for assigning papers to referees. The prob-
lem there treated is similar to ours, but with the further issue that referees,

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 389

contrary to students, can receive more than one paper and a load balancing
criterion has to be included. Garg et al. show that the leximin approach under
lexicographic and weighted score orders are both NP-hard for ∆ ≥ 3. Then
they give an approximation algorithm for the general case.

We have designed a randomized greedy algorithm that implements a lottery
approach. The procedure is appealing from the point of view of fairness. Then
we studied different formulations of the problem in integer linear programming
(ILP) and constraint programming (CP). We compared these methods on real
life instances with up to 300 students and 102 project teams in 80 different
topics. Results showed that ILP models based on a distribution approach to
handle the lexicographic order solve the problem in a matter of seconds and
the assignments found outperform those of the lottery approach in terms of
both feasibility and quality. The CP models studied so far are instead not yet
competitive.

We use our solutions in practice at the Faculty of Science of the University
of Southern Denmark, where in the first year of their education students must
undertake a group project of the duration of one quarter. Students are left
free to rank project topics independently from the specific branch of science
in which they will later specialize. In the past we used the lottery algorithm
and had to interact with the students because initially no feasible solution was
found. Since 2011, we use the ILP model based on lexicographic optimization
and assignments that satisfy students and the administrating committee are
found immediately even when the lottery algorithm would not find any.

References

1. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco, CA, USA (1979)

2. Garg, N., Kavitha, T., Kumar, A., Mehlhorn, K., Mestre, J.: Assigning papers to referees.
Algorithmica 58(1), 119–136 (2010). DOI 10.1007/s00453-009-9386-0

3. Harper, P.R., de Senna, V., Vieira, I.T., Shahani, A.K.: A genetic algorithm for the
project assignment problem. Computers & Operations Research 32(5), 1255 – 1265
(2005). DOI 10.1016/j.cor.2003.11.003

4. Moulin, H.: Fair Division and Collective Welfare. The MIT Press (2003)
5. Yager, R.R.: Constrained OWA aggregation. Fuzzy Sets and Systems 81(1), 89 – 101

(1996). DOI 10.1016/0165-0114(95)00242-1

390 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Regulation-based University Course

Timetabling

Michael Zeising, Stefan Jablonski

Chair for Applied Computer Science IV

University of Bayreuth

Bayreuth, Germany

{michael.zeising, stefan.jablonski}@uni-bayreuth.de

1 Introduction

Conventional models of course timetabling either rely on enrolment or on fixed

curricula [1]. At the University of Bayreuth, enrolment is not desired for political

reasons. The university’s management insists on a maximum of freedom for

students so the post-enrolment timetabling techniques cannot be applied here.

However, fixed curricula in the sense of “a group of courses such that any pair of

courses in the group have students in common” [2] are not present either. The

only systems of rules on which the students’ course selection is based on are the

examination regulations of their program of study. These regulations are legally

necessary information in Germany (§ 16 Abs. 1 HRG) and are already represented

in most university management solutions for various purposes. Not even the

specialised variations of the curriculum model with support for optional courses

[3] suffice for timetabling on the basis of regulations. The objective is to

implement conventional timetabling approaches in an environment where neither

enrolment information nor fixed curricula are present.

In this contribution, we show how to derive timetabling conflicts from

examination regulations as they would actually arise from curricula. Moreover,

these conflicts are weighted according to the number of students that are affected

by the conflict. With the help of these derivations, the information can then be

converted to the standard model and utilised by standard timetabling techniques.

2 Domain Model

The main principle does not make high demands on the domain model. A

regulation is basically a tree whose leaves are courses while each course consists

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 391

of one or more sessions which are the planned entities in the end. The inner nodes

of the tree can be modules in the sense of the European Credit Transfer System

(ECTS) [4] or any other type of unit used for structuring a program of study like

e.g. phases, areas, sections and so on. Every inner node can be equipped with two

types of constraints concerning its children: n-out-of and prerequisites. For a node

constraint by n-out-of only n out of the child nodes have to be selected by the

student. The targets of prerequisites are the units that have to be attended in a

semester before the source unit.

Regulation

Course

workload : integer

Module

credits : integer

Unit

nOutOf : integer children

parentsprerequisites

Session

Figure 1. Domain model of examination regulations and sessions

The above domain model for representing examination regulations is compatible

with major commercial university management solutions like CAMPUSonline [5]

and CampusNet [6] which eases an integration with these systems.

3 From Regulations to Weighted Conflicts

Initially, no knowledge is applied which means that all the sessions of a regulation

are considered conflicting. The idea is now to remove as much conflicts as

possible and to weight the remaining ones. This will be demonstrated by examples

in the following.

The most frequent pattern in regulations is a specialisation choice which means

that there is a node constraint by 1-out-of and several child nodes below. This

means that a student has to select either one or the other direction (sub-tree) and

no student is expected to attend both sets of sessions. As a result, we may safely

remove the conflicts between the two branches.

Furthermore, course c2 references c1 as a prerequisite which means that c2 is based

on knowledge acquired in c1. Assuming that sessions last for a full semester, we

may infer that no student will attend both, c1 and c2, in the same semester. As a

result, the conflicts between their sessions can be removed. The remaining

392 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

conflict affects half the students in the program so that we weight it with a value

of 0.5. The interpretation lead from six conflicts to a single weighted one.

: Unit

nOutOf = 1

s1 : Session s2 : Session s3 : Session s4 : Session

: Module : Module

c1 : Course c2 : Course c3 : Course c4 : Course

s1 s2 s3 s4

s1 - - -

s2 - -

s3 0.5

s4

Figure 2. Example model for the 1-out-of pattern with resulting conflict matrix

A more complex example is a 2-out-of choice. In this case, two out of several

“packages” have to be selected by the student. As this choice is not of an

exclusive kind, we must not remove any conflicts here.

: Unit

nOutOf = 2

: Module : Module

c1 : Course c2 : Course c3 : Course c4 : Course

: Module

c5 : Course c6 : Course

s1 : Session s2 : Session s3 : Session s4 : Session s5 : Session s6 : Session

Figure 3. Example model for the 2-out-of pattern

Nevertheless, we gain knowledge by weighting. The conflicts within the three

pairs affect two thirds of the students in the program while the others affect only

one third of them.

s1 s2 s3 s4 s5 s6

s1 0.66 0.33 0.33 0.33 0.33

s2 0.33 0.33 0.33 0.33

s3 0.66 0.33 0.33

s4 0.33 0.33

s5 0.66

s6

Figure 4. Conflict matrix resulting from the 2-out-of example

This information can be used for checking soft constraints in subsequent

optimisation approaches.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 393

4 Future Work

This contribution only sketches the basic idea of our approach. There are a lot

more patterns in regulations that can be interpreted like, e.g., a minimum sum of

credit points to be achieved in certain branches of the program of study. These

patterns are to be formalised and efficient implementations for their discovery are

to be developed.

Another future task is to investigate the relationship between the number of

available regulations and the density of the resulting conflict graph of sessions.

On the one hand, this will provide a basis for assessing the benefit and usefulness

of our approach. On the other hand, many real-world regulations contain such a

high degree of freedom so that huge amounts of conflicts result that cannot be

accounted for with regard to limited time and space. The process of creating a

regulation could therefore be supported by estimating its effect in advance.

5 Acknowledgements

This work is kindly funded by the Oberfrankenstiftung grant for project number

02803.

References

[1] B. McCollum, "A perspective on bridging the gap between theory and practice in

university timetabling," in 6th International Conference on Practice and Theory of

Automated Timetabling (PATAT '06), 2006, pp. 3-24.

[2] F. De Cesco, et al., "Benchmarking Curriculum-Based Course Timetabling: Formulations,

Data Formats, Instances, Validation, and Results," in 7th International Conference on the

Practice and Theory of Automated Timetabling (PATAT 2008), 2008.

[3] H. Schmitz and C. Heimfarth, "Cross-Curriculum Scheduling with THEMIS - A Course-

Timetabling System for Lectures and Sub-Events," in 8th International Conference on the

Practice and Theory of Automated Timetabling (PATAT 2010), Belfast, UK, 2010.

[4] E. Commission, "ECTS Users' Guide," ed: Luxembourg: Office for Official Publications

of the European Communities, 2009.

[5] T. U. Graz. (2012, 27.02.2012). CAMPUSonline. Available: http://campusonline.tugraz.at

[6] D. I. GmbH. (2012, 27.02.2012). CampusNet. Available:

http://www.datenlotsen.de/de/produkte/campusnet/Seiten/CampusNet.aspx

394 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://campusonline.tugraz.at/
http://www.datenlotsen.de/de/produkte/campusnet/Seiten/CampusNet.aspx

Co-evolving add and delete heuristics

Jerry Swan · Ender Özcan · Graham
Kendall

Received: date / Accepted: date

Abstract Hyper-heuristics are (meta-)heuristics that operate at a high level
to choose or generate a set of low-level (meta-)heuristics to solve difficult search
and optimisation problems. Evolutionary algorithms are well-known nature-
inspired meta-heuristics that simulate Darwinian evolution. In this article, we
introduce an evolutionary-based hyper-heuristic in which a set of low-level
heuristics compete to solve timetabling problems.

Keywords Hyper-heuristics · Coevolution · Ruin-and-recreate

1 Introduction

Hyper-heuristics are (meta-)heuristics that operate at a high level to choose
or generate a set of low level (meta-)heuristics to solve difficult search and
optimisation problems [1],[6]. Heuristics can be used to search the solution
space directly or construct a solution based on a sequence of moves. In most
of the previous studies, the type of the low-level heuristics used is uniform, i.e.
they are either constructive or perturbative (improvement) heuristics. Hyper-
heuristics aim to replace bespoke approaches by general methodologies for
solving different problems. They provide a “good enough - soon enough - cheap
enough” framework for problem solving.

Timetabling problems are NP hard [2], real-world constraint optimisation
problems. A timetabling problem requires scheduling of given events using
limited resources, subject to a set of constraints. Evolutionary algorithms are
well-known nature-inspired meta-heuristics that simulate Darwinian evolution.
In this paper, we introduce an evolutionary based hyper-heuristic in which a
set of low level heuristics compete to solve timetabling problems.

Automated Scheduling, Optimisation and Planning (ASAP) Research Group,
School of Computer Science, University of Nottingham,
Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK.
{jps,exo,gxk}@cs.nott.ac.uk

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 395

(∗ Generate f e a s i b l e b inary s t r i n g s . ‘+ ’ denotes concatenat ion .
I n i t i a l i z e with : genera teAddDe le teLi s t s (n , “01”) ; ∗)

function generateAddDeleteL i s t s (var n : Int , var b i t s :
B inaryStr ing) : L i s tOfBinarySt r ing

begin
var r e s u l t : L i s tOfBinaryStr ing ;
i f (n = 1)
begin

r e s u l t := r e s u l t + b i t s ;
end ;
else
begin

r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1, b i t s+ “01”) ;
r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1,“0”+ b i t s+“1”) ;
i f (b i t s doesn ′ t have p r e f i x “01”)
begin

r e s u l t := r e s u l t + generateAddDele teL i s t s (n−1,“01”+ b i t s) ;
end ;

end ;
r e turn r e s u l t ;

end .

Listing 1 Generate feasible binary strings

1.1 Low-level heuristics

A solution to a timetabling problem can be reconstructed from a previous
solution by successively deleting and adding (re-scheduling) events. In our
hyper-heuristic framework, we propose a sequence of delete-add (0-1) opera-
tions with a fixed length. Add and delete operations can be handled in many
different ways. The simplest approach for the delete operation is choosing an
event randomly and putting it into an unscheduled events list. On the other
hand, the add operation requires two consecutive actions to be taken. Firstly,
an event should be selected from the list of unscheduled events and then a
suitable period should be selected for scheduling.

A fixed-length binary string can be used to represent a series of add (1)
and delete (0) operations for reconstructing a new solution from an existing
one. A feasible string of length 2n can be formed by respecting the following
rules:

1. The number of ones must be equal to the number of zeros, that is n. Hence,
the string length is an even number.

2. The first entry in the string is always the delete operation, since there is
no unscheduled event at the start.

3. For any prefix of the string, the number of ones must be less than or equal
to the number of zeroes.

For example, given a solution S and a feasible string “0011”, two randomly
selected events are deleted from S, and S′ is formed by rescheduling them,
successively. On the other had, “0110” is not a feasible string, since after

396 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

(∗ Co−evo l v e b inary s t r i n g s to be used f o r r e cons t ruc t i n g
a new so l u t i on to a t ime t a b l i n g problem from an o ld one . ∗)

procedure coevo lve (var pop : Populat ion)
begin

(∗ l e t i n d i v i d u a l s compete f o r genera t ing a b e t t e r i n d i v i d u a l ∗)
for (each i n d i v i d u a l in pop)
begin

var prev iousTimetable = getTimetable (i n d i v i d u a l) ;
var newTimetable := applyADL(i n d i v i d u a l . getTimetable () ,

i n d i v i d u a l . getADL ()) ;
i f (newTimeTable i s b e t t e r than prev iousTimetable)
begin

i n d i v i d u a l . setTimetable (newTimetable) ;
end ;

end ;
s o r tByFi tnes s (pop) ;
b e s t I n d i v i d u a l = pop (0) ; (∗ Keep the b e s t i n d i v i d u a l ∗)

(∗ d i v i d e the popu la t ion in to 4 par t s ∗)
(∗ copy i n d i v i d u a l s in 1 s t quar ter in to 2nd quar ter ∗)
copy (pop , 0 , popSize /4 , popSize /4 , 2∗ popSize /4) ;
(∗ copy i n d i v i d u a l s in 1 s t quar ter in to 3rd quar ter ∗)
copy (pop , 0 , popSize /4 , 2∗ popSize /4 , 3∗ popSize /4) ;

(∗ mutate t ime t a b l e s t a t e and randomize a s soc i a t ed add−d e l e t e
l i s t in 1 s t quar ter ∗)

mutateTimetableAndRandomizeADL (pop , 2 , popSize /4) ;
(∗ mutate t ime t a b l e s t a t e in 2nd quar ter ∗)
mutateTimetable (popSize /4 , 2∗ popSize /4) ;
(∗ randomize add−de l e t e− l i s t in the 3rd quar ter ∗)
mutateADL(2∗ popSize /4 , 3∗ popSize /4 , addDe l e t eL i s t s) ;
(∗ randomize s t a t e and add−d e l e t e l i s t in 4 th quar ter ∗)
randomizeTimetableAndADL (pop , 3∗ popSize /4 , popSize) ;

end

Listing 2 Co-evolve timetables and add-delete lists

deleting and rescheduling an event, the unscheduled event list becomes empty
and the add operation at the third location is not possible. Listing 1 shows
a divide-and-conquer approach that generates such strings for a given n. For
n = 1, the only such string is “01”, for n = 2, we have “0101”, “0011” and for
n = 3, “010101”, “001011”, “001101”, “000111”, “010011”. The running time
of the algorithm is O(3n). Hence, we will use practical values for n and after
generating the feasible strings, they compete for survival while constructing
timetables within an evolutionary framework, as described in listings 2 and 3.

2 Results

The results presented here are for the 8 publicly-available datasets of the exam-
timetabling track from the ITC2007 competition [4], with Müller’s celebrated

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 397

(∗ Co−e vo l u t i on framework . ∗)
procedure framework (var posS i ze : Int)
begin

var a l lAddDe l e t eL i s t s , coevo lvedAddDeleteLi s t s :
L i s tOfBinarySt r ing ;

var populat ion : ListOfTimetable ;

(∗ Generate f e a s i b l e add−d e l e t e s t r i n g s ∗)
a l lAddDe l e t eL i s t s := gene ra t eS t r i ng (n , “01”) ;

populat ion := generateRandomPopulation (popSize ,
a l lAddDe l e t eL i s t s) ;

while (te rminat ion cond i t i on (e . g . num−i t e r a t i o n s) not met)
begin

(∗ co−evo l v e a popu la t ion o f t ime t a b l e s and add−d e l e t e
opera tors ∗)

coevo lve (pop) ;
end ;

end .

Listing 3 Top-level co-evolutionary framework

hybrid solver [5] ranking first on each dataset1. Gogos et al. [3] are second and
have rankings [3, 4, 3, 2, 3, 3, 2, 3] over these 8 datasets2 with average rank
of 2.85. Table 1 gives the scores obtained by our program on a Pentium 4 dual-
core 3GHz PC with 2GB of RAM. The maximum runtime of our program was
set to 377 seconds (as determined by the competition benchmark program3.
The respective rankings for our program were [2, 3, 2, 4, 5, 2, 3, 2], yielding
an average rank of 2.875, which would place us in joint second with Gogos over
these 8 datasets. Table 2 shows (x̄, σ) of the results of each dataset for Ml̈ler,
Gogos and our program for the cases where all 10 sample runs are feasible (i.e.
are of the form 0, x for some x).

3 Conclusion

We have presented a co-evolutionary variant on the ‘ruin-and-repair’ strategy
that ranks joint second with the pre-existing finalists on the publicly-available
datasets of the ITC2007 competition exam-timetabling track.

Future work involves investigating alternative entity relationships between
solution and add-delete string (e.g. N:1 and 1:N as opposed to the 1:1 ap-
proach adopted here) and associating some probability (possibly adaptively
determined) with this relationship.

In addition, it is interesting to note from Table that while our approach
generally exhibits a higher standard deviation, it also yields a greater number

1 http://www.cs.qub.ac.uk/itc2007/winner/tomasmuller.htm
2 http://www.cs.qub.ac.uk/itc2007/winner/christosgogos.htm
3 Available at http://www.cs.qub.ac.uk/itc2007/index_files/benchmarking.htm

398 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

dataset 1 dataset2 dataset3 dataset4 dataset5 dataset6 dataset7 dataset8

0,6133 0,942 0,13383 0,27333 0,5922 0,28800 0,5960 0,9590
0,6094 0,893 0,13364 0,30322 0,5333 0,30590 0,6179 0,9825
0,6027 0,933 0,13352 0,38651 0,5407 0,27830 0,6988 0,9738
0,6133 0,935 0,13367 0,29030 0,4734 0,31410 0,6914 0,9709
0,6487 0,927 0,14001 0,37850 0,5205 0,28055 0,6872 0,9772
0,6206 0,913 0,14298 0,29449 0,5831 0,27510 0,5950 0,9507
0,6131 0,972 0,13738 0,33802 0,4877 0,27890 0,5891 0,9814
0,5875 0,1009 0,14163 0,24174 0,5847 0,30560 0,5731 0,9587
0,6336 0,929 0,14334 0,27654 0,5023 0,29250 0,6842 0,9802
0,5992 0,948 0,14348 0,28195 0,5106 0,31600 0,7032 0,10164

Table 1 Results of co-evolutionary framework for public datasets of ITC2007 exam-
timetabling track

Name dataset 1 dataset2 dataset3 dataset4

Müller (4574.9, 159.7731) (414,11.49879) - -
Gogos (6064,108.8087) (1048.6,32.57879) (14133.5,227.9553) -
Swan (6141.4, 173.3187) (940.1,31.89375) (13834.8,440.9013) -

Name dataset5 dataset6 dataset7 dataset8

Müller (3320.7,209.9524) (27808.5,1115.487) (4399.143,123.4942) (7922.429,126.9696)
Gogos (4229.1,75.01178) - (6759.5,100.5134) (10809,180.8265)
Swan (5328.5,420.9968) (29349.5,1567.905) (6435.9,533.9795) (9750.8,181.7635)

Table 2 (x̄, σ) of feasible solutions for public ITC2007 datasets

of feasible solutions, failing only on dataset 4 in this respect. This is perhaps a
counter-intuitive result, since one might expect the ‘repair’ aspect of our ‘ruin-
and-repair’ strategy to encounter many infeasible solutions. Hence, there is
further work to be done in explaining the underlying reasons for this behaviour.

References

1. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Handbook
of Meta-Heuristics, chap. Hyper-Heuristics: An Emerging Direction in Modern Search
Technology, pp. 457–474. Kluwer (2003). URL http://www.asap.cs.nott.ac.uk/

publications/pdf/hhchapv002.pdf

2. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow
problems. SIAM J. Comput. 5(4), 691–703 (1976)

3. Gogos, C., Alefragis, P., Housos, E.: A multi-staged algorithmic process for the solution
of the examination timetabling problem. In: The 7th International Conference on the
Practice and Theory of Automated Timetabling (2008)

4. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A.J., Gaspero,
L.D., Qu, R., Burke, E.K.: Setting the research agenda in automated timetabling: The
second international timetabling competition. INFORMS JOURNAL ON COMPUTING
22(1), 120–130 (2010). DOI 10.1287/ijoc.1090.0320

5. Müller, T.: Itc2007 solver description: a hybrid approach. Annals OR 172(1), 429–446
(2009)

6. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics. Intell.
Data Anal. 12(1), 3–23 (2008)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 399

Semidefinite Programming in Timetabling II: Algorithms

Jakub Mareček · Andrew J. Parkes

Introduction Semidefinite programming (SDP) is a subfield of convex optimisation (Wolkowicz,
Saigal, & Vandenberghe, 2000). It has recently gained considerable attention, as it makes
it possible to derive strong lower bounds for minimisation problems in combinatorial op-
timisation (Goemans & Rendl, 2000), as well as to obtain very good solutions using ran-
domised rounding. In some of the present-best approximation algorithms, both lower and
upper bounds are obtained in this fashion. There seem to be, however, only few applications
to practical scheduling, timetabling, or rostering problems.

At PATAT 2010, (Burke, Mareček, & Parkes, 2011) presented an SDP relaxation of
bounded graph colouring, which can be used to detection the infeasibility in many timetabling
problems. Subsequently, they have introduced relaxation for a number of timetabling prob-
lems in an extended version of their paper. In this abstract, we present augmented La-
grangian methods, also known as boundary point methods or proximal methods, for solving
such relaxations.
Semidefinite Programming Semidefinite programming (SDP, Bellman & Fan, 1963; Al-
izadeh, 1995; Wolkowicz et al., 2000) is a popular generalisation of linear programming,
replacing the vector variable with a square symmetric matrix variable and the polyhedral
symmetric convex cone of the positive orthant with the non-polyhedral symmetric convex
cone of positive semidefinite matrices. The primal-dual pair in the standard form is:

zp = min
X∈S n

〈C,X〉 s. t. AA(X) = b and X � 0 (P SDP)

zd = max
y∈Rm,S∈S n

bT y s. t. A ∗
A (y)+S =C and S� 0 (D SDP)

where X is a primal variable in the set of n× n symmetric matrices S n, y and S are the
corresponding dual variables, b is an m-vector, C, Ai are compatible matrices, and lin-
ear operator AA(X) maps symmetric n× n matrices to vectors in Rm. The ith element
AA(X)i = 〈Ai,X〉, and the adjoint is A ∗

A (y) = ∑i yiAi. M � N or M−N � denotes M−N
is positive semidefinite. Note that an n×n matrix, M, is positive semidefinite if and only if
yT My≥ 0 for all y ∈Rn.

Contact author: J. Mareček, E-mail: jakub@marecek.cz
School of Mathematics, The University of Edinburgh, JCMB among the King’s Buildings, Edinburgh EH9 3JZ.

A. Parkes, E-mail: ajp@cs.nott.ac.uk
School of Computer Science, The University of Nottingham, Nottingham NG8 1BB, UK.

400 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

All relaxations of (Burke et al., 2011), use linear equalities given by the adjacency
matrix of the conflict graph, further linear equalities and further linear inequalities. These
are best treated explictly in the primal-dual pair:

zp = min
X∈S n

〈C,X〉 s. t. AA1(X) = b1 and AA2(X) = b2 and AB(X)≥ d and X � 0

zd = max
y1∈Rm,y2∈Rp,v∈Rq,S∈S n

bT
1 y1 +bT

2 y2 +dT v (1)

s. t. A ∗
A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S =C and S� 0 and v≥ 0.

where AA1(X),b1,AA2(X),b2 are given by the conflict graph and further linear equalities,
specific to a particular timetabling problem, respectively, d is a q-vector, and linear operator
AB(X) maps n×n matrices to q-vectors similarly to AA above. As all linear combinations
with non-negative coefficients of positive semidefinite matrices are positive semidefinite,
X � 0 should again be seen as a restriction to a convex cone. This extends the approach of
Wen, Goldfarb, and Yin (2010), who treat linear inequalities explicitly.
Semidefinite Programming Solvers Traditionally, SDP is solved using primal-dual interior
point methods (Wright, 1997): From the KKT conditions, comprising of the primal (P
SDP) and dual (D SDP) problems and the complementarity condition ZX = 0, one derives
the “Newton system” by relaxing the complementarity condition to ZX = µI or similar.
These methods are also referred to as second-order, as they employ the second-order par-
tial derivatives, unlike first-order methods, which use only first derivatives. Povh, Rendl,
and Wiegele (2006) observe that implementations of second-order methods for computing
theta-like SDP relaxations are currently limited to graphs of about 10,000 edges, which
amounts to little more than 100 vertices in the dense graphs found in timetabling applica-
tions.

First-order Lagrangian methods have long been used as an alternative. In iteration k of
solving a semidefinite program in standard form, one updates Xk to Xk+1 as follows:

(yk+1,Sk+1) =argminy,S−bT y+ 〈Xk,A ∗
A (y)+S−C〉 (2)

Xk+1 =Xk +µ
−1(A ∗

A (y
k+1)+Sk+1−C) (3)

This approach suffers from two major drawbacks: the convergence may be frail and the
minimisation of the Lagrangian (2) may turn out to be expensive. The first drawback may
be alleviated by augmenting the Lagrangian (Powell, 1969; Hestenes, 1969) with a Frobe-
nius norm term:

Lµ(X ,y,S) =−bT y+ 〈X ,A ∗
A (y)+S−C〉+ 1

2µ
||A ∗

A (y)+S−C||2F (4)

The second drawback can be alleviated by minimising the Lagrangian first for y and only
subsequently for S. Using fixed point arguments, one can still show the convergence of
such two-step minimisation.
Our Solver The augmented Lagrangian of the dual (1) is:

Lµ(X ,y1,y2,v,S) =−bT
1 y1−bT

2 y2−dT v (5)
+ 〈X ,A ∗

A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S−C〉

+
1

2µ
||A ∗

A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S−C||2F

The multiple splitting is elaborated in Algorithm Schema 1.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 401

Algorithm Schema 1 AugmentedLagrangianMethod(A1,A2,B,C,b1,b2,d)
1: Input: Instance I = (A1,A2,B,C,b1,b2,d) of SDP (1)
2: Output: Primal solution Y , computed up to a certain precision

3: Set iteration counter k = 0
4: Initialise Xk � 0 with a heuristically obtained colouring
5: Compute matching values of dual variables yk

1,y
k
2,v

k ≥ 0, and Sk � 0
6: while the precision is insufficient do
7: Increase iteration counter k

8:
Update yk+1

1 = argminy1∈Rm Lµ (Xk,y1,yk
2,v

k,Sk)

= −(A1AT
1)
−1(µ(A1(Xk)−b1)+A1(AT

2 (y
k
2)+BT (vk)+Sk−C))

9:
Update yk+1

2 = argminy2∈Rm Lµ (Xk,yk+1
1 ,y2,vk,Sk)

= −(A2AT
2)
−1(µ(A2(Xk)−b2)+A2(AT

1 (y
k+1
1)+BT (vk)+Sk−C))

10:

11:

Update vk+1 = argminv∈Rq ,v≥0 Lµ (Xk,yk+1
1 ,yk+1

2 ,v,Sk)

= argminv∈Rq ,v≥0

((
B
(

Xk + 1
µ

(
AT

1 (y
k+1
1)+AT

2 (y
k+1
2)+Sk−C

))
−d
)T

v+ 1
2µ

vT (BBT)v
)

which is a single-cone second-order cone program (Alizadeh & Goldfarb, 2003)

12:

Update Sk+1 = argminS�0 Lµ (Xk,yk+1
1 ,yk+1

2 ,vk+1,S)

= argminS∈S n ,S�0

∥∥∥S−
(

C−AT
1 (y

k+1
1)−AT

2 (y
k+1
2)−BT (vk+1)−µXk

)∥∥∥2

F
which can be solved by spectral decomposition of the term subtracted from S (Stewart, 1993)

13: Choose any step-length µ ≥ 0

14: Update Xk+1 = Xk +
AT

1 (y
k+1
1)+AT

2 (y
k+1
2)+BT (vk+1)+Sk+1−C)

µ

15: end while
16: Return X

An important aspect of implementing the augmented Lagrangian method is problem-
specific simplification of linear algebra involved. In relaxations of bounded graph colouring
of a graph on n vertices, one can exploit properties of the relaxation to:

– not compute (A1AT
1)
−1

– compute AT
1 y1 in time O(m)

– compute (A2AT
2)
−1 in time O(n2)

– compute AT
2 y2 in time O(n)

– compute (ABT)−1 in time O(n)
– compute BT v in time O(n)
– evaluate the augmented Lagrangian and its gradient at a given v in time n2

This allows for an efficient implementation using a variant of limited memory BGFS seach
with projection to non-negative v to minimise the quadratic program on Line 11. The bulk
of the run-time is hence spent an eigenvalue decomposition in Line 12. Our particular
implementation relies on Intel Math Kernels.

Recovering an Assignment Finally, since the seminal paper of Karger, Motwani, and Su-
dan (Karger, Motwani, & Sudan, 1998), there has been a continuing interest in algorithms
recovering a colouring from semidefinite relaxations. Typically, such algorithms are based
on simple randomised iterative rounding of the semidefinite programming relaxation. One
such algorithm, specialised to simple timetabling is displayed in Algorithm Schema 2.

Conclusions SDP solvers are less well-developed than LP solvers, in general. Compared
to interior point methods, augmented Lagrangian drastically reduce the dependence of per-
iteration run-time on the number of constraints. Preliminary computational results suggest
this method is practical for instances with up to millions of edges in the conflict graph.

402 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Algorithm Schema 2 IterativeRounding(X) based on Karger, Motwani, and Sudan
1: Input: Matrix variable X of the solution to the SDP (??) of dimensions n× n, bound m, number amax of

randomisations to test, plus the input to Simple Timetabling, if required
2: Output: Partition P of the set V = 1,2, . . . ,n

3: Compute vector v,X = vT v using Cholesky decomposition
4: for Each attempted randomisation a = 1, . . . ,amax do
5: Initialise Pa = /0, i = 1,X =V
6: while There are uncoloured vertices in X do
7: Pick a suitable c =

√
2(k−2)
k loge ∆

for ∆ being the maximum degree of the vertices in X
8: Generate a random vector r of dimension |X |
9: Pick Ri ⊆ X of at most m elements in the descending order of viri, where (1) positive and (2) indepen-

dent of previously chosen and, in Simple Timetabling, (3) the respective events fit within the rooms
and (4) require only features available

10: Update Pa = Pa ∪{{Ri}},X = X \Ri, i = i+1
11: end while
12: end for
13: Return Pa of minimum cardinality

References

Alizadeh, F. (1995). Interior point methods in semidefinite programming with applications
to combinatorial optimization. SIAM J. Optim., 5(1), 13–51.

Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. Math. Program.,
95(1, Ser. B), 3–51. (ISMP 2000, Part 3 (Atlanta, GA))

Bellman, R., & Fan, K. (1963). On systems of linear inequalities in Hermitian matrix
variables. In Proc. Sympos. Pure Math., Vol. VII (pp. 1–11). Providence, R.I.: Amer.
Math. Soc.

Burke, E. K., Mareček, J., & Parkes, A. J. (2011). Semidefinite programming relaxations
in timetabling. Available from http://cs.nott.ac.uk/~jxm/timetabling/

bounding-bounded.pdf

Goemans, M. X., & Rendl, F. (2000). Combinatorial optimization. In Handbook of
semidefinite programming (Vol. 27, pp. 343–360). Boston, MA: Kluwer Acad. Publ.

Hestenes, M. R. (1969). Multiplier and gradient methods. J. Optimization Theory Appl.,
4, 303–320.

Karger, D., Motwani, R., & Sudan, M. (1998). Approximate graph coloring by semidefinite
programming. J. ACM, 45(2), 246–265.

Povh, J., Rendl, F., & Wiegele, A. (2006). A boundary point method to solve semidefinite
programs. Computing, 78(3), 277–286.

Powell, M. J. D. (1969). A method for nonlinear constraints in minimization problems. In
Optimization (Sympos., Univ. Keele, Keele, 1968) (pp. 283–298). London: Academic
Press.

Stewart, G. W. (1993). On the early history of the singular value decomposition. SIAM
Rev., 35(4), 551–566.

Wen, Z., Goldfarb, D., & Yin, W. (2010). Alternating direction augmented lagrangian
methods for semidefinite programming. Math Program Comput.

Wolkowicz, H., Saigal, R., & Vandenberghe, L. (Eds.). (2000). Handbook of semidefinite
programming. Boston, MA: Kluwer Academic Publishers. (Theory, algorithms, and
applications)

Wright, S. J. (1997). Primal-dual interior-point methods. Philadelphia, PA: Society for
Industrial and Applied Mathematics (SIAM).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 403

http://cs.nott.ac.uk/~jxm/timetabling/bounding-bounded.pdf
http://cs.nott.ac.uk/~jxm/timetabling/bounding-bounded.pdf

A GRASP Algorithm for the University Timetabling
Problem

Walace de Souza Rocha · Maria Claudia
Silva Boeres · Maria Cristina Rangel

Received: date / Accepted: date

Abstract The university timetabling problem is one of great interest in the
field of combinatorial optimization. Given a set of classes, students, teachers
and rooms, the problem consists of assigning lectures or exams to a limited
number of available timeslots and rooms, subject to a set of constraints mostly
dependent on the particularities of the school. These constraints are classified
as hard or soft. The hard constraints must be always satisfied. For example, a
student cannot attend more than one class at the same timeslot. A solution for
the timetabling problem is said to be feasible when it does not violate any hard
constraint. The soft constraints are those which do not generate infeasibility,
but reflect some preferences of teachers, students or even schools. For exam-
ple, we can penalize a timetabling solution with large gaps between classes.
The more soft constraints that are satisfied, the better the timetable. There are
many timetabling formulations in the literature, but all of them can be grouped
in three categories: school, university and exam scheduling. In this work, we
develop an algorithm to solve the University Timetabling Problem in the con-
text of the formulation adopted in the ITC-2007 competition [1]. The main
advantage of adopting this formulation is that many authors have worked with
it, making comparison of results from different researchers easier. We decided
not use the ITC-2011 formulation [2], because our main focus is on university
timetables. Many metaheuristics have been used to solve this problem, but
none of them was considered as the best for this problem. Good results have
been found with Simulated Annealing [3–5], Genetic Algorithm [6–8] and Tabu
Search [9], among others. There are also some hybrid techniques combining
several metaheuristics and exact methods, generally, each heuristic is consid-

Walace de Souza Rocha
E-mail: walacesrocha@yahoo.com.br

Maria Claudia Silva Boeres
E-mail: boeres@inf.ufes.br

Maria Cristina Rangel
E-mail: crangel@inf.ufes.br

404 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

ered in various phases of these algorithms. The metaheuristic GRASP (Greedy
Randomized Adaptive Search Procedure) is a technique that stands out in the
combinatorial optimization field [10]. It has been applied to set covering prob-
lems, spanning tree, among others. Some researches of this algorithm have
been found for timetabling problems, but all of them for school timetabling
formulation [11,12]. This work implements a GRASP algorithm for generat-
ing timetables using the formulation of the ITC-2007. The algorithm has an
initial phase where a greedy randomized solution is produced. The classes are
ranked in order of difficulty (most difficult to easiest) and are selected one by
one to enter the timetable. To choose a timeslot and room for a given class,
a restricted list is constructed by counting how many violations of the soft
constraints there are with each choice. When trying to insert a class into the
timetable and a position does not exist, another class (or classes) previously
scheduled is removed from the timetable to open a slot for the problem class.
A feasible timeslot is selected randomly and all conflicting lectures allocated
in that timeslot are removed from the timetable. If a conflicting lecture does
not exist in timeslot, a non-conflicting lecture is selected. With this strategy,
called explosion, we can generate feasible timetabling solutions for all competi-
tion instances. The random selection of lectures in explosion algorithm avoids
lectures cycling. For the GRASP improvement phase, a local search is applied
to the initial timetabling solution. The GRASP iteration (initial phase and
improvement phase) is repeated several times generating different timetables.
The final solution is the best of all generated timetables. Three different local
search strategies are presented. The simplest uses a depth-first strategy. The
neighbours are generated with two movements: MOVE and SWAP. The first
reschedules a lecture in a empty timeslot. The second exchanges the timeslots
of two lectures. The algorithm stops if n consecutive neighbours are generated
and the objective function is not decreased. The second local search method
is an adaptation of the breadth-first algorithm, where the neighborhood is
not explored extensively: only k neighbours are generated and the best one is
choosen to the next iteration. The neighbourhood generation and exploration
are identical to the first method. The third local search is a depth-first strat-
egy with a heuristic to reduce the violation of soft constraints. Also, a parallel
version of the algorithm is presented. The implementation was tested with
all the ITC-2007 instances. The results obtained are compared with the best
solutions found in the Curriculum-Based Course Timetabling site [13]. Most
instances are diffcult to find the optimal solution, but we could do this for two
instances.

Keywords Timetabling · Metaheuristic · GRASP

References

1. PATAT. International timetabling competition. http://www.cs.qub.ac.uk/itc2007/
(2008)

2. PATAT. International timetabling competition. http://www.utwente.nl/ctit/itc2011/
(2011)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 405

3. P. Kostuch. The university course timetabling problem with a 3-phase approach (2006)
4. R. Bai, J. Blazewicz, E. Burke, G. Kendall, B. McCollum, 4OR: A Quarterly Journal of

Operations Research 10, 43 (2012). URL http://dx.doi.org/10.1007/s10288-011-0182-8.
10.1007/s10288-011-0182-8

5. M.A.S. Elmohamed, P. Coddington, G. Fox, in Lecture Notes in Computer Science
(1998)

6. W. Erben, J. Keppler. A genetic algorithm solving a weekly course-timetabling problem
(1995)

7. Suyanto, in Artifical Intelligence and Soft Computing, Lecture Notes in Computer Sci-
ence, vol. 6114, ed. by L. Rutkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, J. Zurada
(Springer Berlin / Heidelberg, 2010), pp. 229–236

8. H. Kanoh, Y. Sakamoto, Int. J. Know.-Based Intell. Eng. Syst. 12(4), 283 (2008). URL
http://dl.acm.org/citation.cfm?id=1460198.1460201

9. A. Elloumi, H. Kamoun, J. Ferland, A. Dammak, in Proceedings of the 7th PATAT
Conference, 2008 (2008)

10. M. Resende, C. Ribeiro, GRASP: Greedy Randomized Adaptive Search Procedures, 2nd
edn. (Springer, 2012)

11. M.J.F. Souza, N. Maculan, L.S. Ochi, (Kluwer Academic Publishers, Norwell, MA, USA,
2004), chap. A GRASP-tabu search algorithm for solving school timetabling problems,
pp. 659–672. URL http://dl.acm.org/citation.cfm?id=982409.982441

12. A. Vieira, M. Rafael, A. Scaraficci. A grasp strategy for a more constrained school
timetabling problem (2010)

13. L.D. Gaspero, A. Schaerf. Curriculum-based course timetabling.
http://tabu.diegm.uniud.it/ctt/ (2012)

406 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Using integer linear programming methods for
optimizing the real-time pump scheduling

Louise Brac de la Perriere (*) · Antoine
Jouglet (*) · Alexandre Nace (**) ·
Dritan Nace (*)

Received: date / Accepted: date

Abstract The work presented in this talk deals with the management of a
drinking water distribution network in terms of planning the use of differ-
ent installations (treatment works, pumping stations, and valves) in order to
convey water from sources (rivers, borings, springs,...) to supply areas.

More precisely we study the real-time pump scheduling problem. Being
given a water distribution network and some previsions on the consumption
at different nodes of the network during a considered time horizon, the main
problem is to schedule water pump jobs under the constraint to satisfy water
demands with the quality standards settled by French and European legisla-
tion, while minimizing the operating costs (treatment and electricity).

These operations should satisfy technical constraints as the respect of the
minimum and maximum level of tanks, some contractual constraints as the
respect of power levels defined by electricity supplier contracts, and last take
some specific water distribution network constraints related to the impact of
pressure in modeling or the need of the raw water flow to be as smooth as
possible. The task is difficult because of the number and variety of operational
constraints that exist in a water distribution system. Recently, this problem
becomes more relevant because of the future liberalisation of the electric mar-
ket that will make difficult the knowledge of the less expensive time slots.

(*) Authors
Laboratoire Heudiasyc UMR CNRS 7253 Universite de Technologie de Compiegne Centre
de Recherches de Royallieu BP 20529 60205 COMPIEGNE cedex FRANCE
Tel.: +33 344 23 46 45
Fax: +33 344 23 44 77

(**) Author
Lyonnaise des Eaux, Ondeo Systems, 38 rue du president Wilson 78230 Le Pecq FRANCE
Tel : +33 134 80 23 45
Fax : +33 134 80 53 80

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 407

In this talk we will provide a study on the different constraints needed to
be modelized and mathematical models for each of them. One of the main
problems encountered in modelling is how to deal with hydraulic constraints
in our network. This issue is of primary importance as it will lead the choice
of the resolution tool to be used.

Keywords real-time · pump-scheduling · water distribution system · integer
linear programming

1 Context

Different approaches exist in the literature to solve this problem: linear pro-
gramming [1], non-linear programming [5], ant colony optimization [2] , genetic
algorithm [4], etc.

Each method has advantages and drawbacks and a strategy could be more
or less efficient depending on the characteristics of the studied network. In our
case, we have to consider the following network characteristics:

– The considered networks are very large (about 100 pumps and 50 storages
in our example);

– The allowed computation time to propose optimized solutions is relatively
short (30 minutes maximum in the application in hand) due to the real-
time scheduling constraint;

– The discrete behaviour of pump has to be expressed through the model.
Indeed, the pumping stations work in some defined level of pumping de-
pending on the type and the power of the station. Furthermore, the changes
on pumping regime can be operated only periodically and not anytime.

Therefore, we chose to study linear programming, for its velocity in execu-
tion even with a lot of variables. With such an approach, the main difficulties
are:

– Modelling through linear programming new constraints not expressed be-
fore;

– Express in a linear form the hydraulic constraints of the system;
– Ensuring limited CPU time while dealing with integer linear programming

models of large size.

2 An integer linear programming model

Some previous search work [3] have already described some constraints with
linear programming such as the respect of water demand, the respect of min-
imal and maximal level authorized for each storage, pumps that cannot work
at the same time and pumps that have to work at the same time. In this talk,
we show how to modelize new constraints:

– Respect the maximal number of switching on for some pumps;

408 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

– Ensure the required water quality level through mixing the water in some
storage (for instance by guaranteeing a percentage of different water sources);

– Avoid stagnation in the storage to provide water quality;
– Include transfer delay when using very long pipe;
– Represent the hydraulic behaviour of the network.

If for the first four constraints one can employ some conventional tools to
express them through linear equations, the last one is more difficult. Moreover,
handling this is of particular importance as the hardness of linearising the
hydraulic constraints is the first reason cited in literature to disqualify the
use of linear programming for the pump-scheduling problem. It was therefore
especially important for us to achieve considering it and showing that, at least
for our case, these constraints can be written down through linear equations.

Let us first give an example where such constraints are encountered : when
there are different gravitational pipes bringing water from different storages
to the same consumption area, the quantity of water coming from each stor-
age depends on the pressure in each pipe and storage. Then, the equations
representing this phenomena are highly non linear.

Another problem with pressure was the existence of water exchanges be-
tween storages serving the same consumption area, because of the difference
of pressure between them: they tend to balance their level of water. We solved
the problem studying experimentally the behaviour between two storages, with
and without consumption. We found that this behaviour can be linearised with
coefficient that can be obtained experimentally.

There is therefore a preliminary work to do when implementing this method
on a new network, to calculate the coefficients for each hydraulic problematic
configuration. We will provide some experimental results and schemes illus-
trating this behaviour and justify our findings.

The model has been tested on a real network composed of more than
130 pumps and 30 storages, and several scenarios and hypothesis are already
considered. We will report some numerical results in the conference and discuss
issues on the efficiency and accuracy of using linear models for such problems.

References

1. F. Guhl. Gestion optimale des réseaux d’eau potable. PhD thesis, Université Louis
Pasteur, 1999.

2. M. López-Ibáñez, T. D. Prasad, and B. Paechter. Ant colony optimization for optimal
control of pumps in water distribution networks. Journal of Water Resources Planning
and Management, 2008.

3. D. Nace, S. Demotier, J. Carlier, T. Daguinos, and R. Kora. Using linear programming
methods for optimizing the real-time pump scheduling. In World Water & Environmental
Resource Congress, 2001.

4. J. Nicklow. State of the art for genetic algorithms and beyond in water resources planning
and management. Journal of Water Resources Planning and Management, 2010.

5. B. Ulanicki, J. Kahler, and H. See. Dynamic optimization approach for solving an optimal
scheduling problem in water distribution systems. Journal of Water Resources Planning
and Management, 2007.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 409

A study of hyper-heuristics for examination timetabling

Ender Özcan · Anas Elhag · Viral Shah

Received: date / Accepted: date

1 Introduction

Examination timetabling is both a difficult and time consuming task, faced by
many educational institutions worldwide [5]. The main objective is to assign
periods within a specified examination timeframe and rooms to exams, whilst
satisfying a range of constraints. There are two common constraint categories:
hard and soft. It is imperative that all hard constraints are satisfied in a given
solution, which is then referred to as a feasible solution. For example, students
must not sit two or more exams simultaneously in the same period. Soft con-
straints, on the other hand, represent preferences that are not essential but
should be satisfied as much as possible. For example, a student should not
sit two exams in two consecutive periods on the same day. Once a feasible
solution is obtained, the degree to which the soft constraints are violated is
used to evaluate the quality of a timetable.

Most of the solutions to examination timetabling problems have been de-
veloped due to a need at an educational institution. Hence, different types
of examination timetabling problems can be found in the literature which are
solved using different types of methodologies. This could be considered as rich-
ness, but there is a downside that is comparison of the approaches becomes
extremely difficult. The state-of-the-art for any problem is of interest to both
practitioners and researcher. A recent competition on examination timetabling
was arranged as a part of ITC20071. The instances used in this competition
reflects the real world examination timetabling complexities. The winner of the

E. Özcan, A. Elhag and V. Shah
University of Nottingham, School of Computer Science
Jubilee Campus, Nottingham NG8 1BB UK
Tel.: +44 (115) 95 15544
Fax: +44 (115) 846 7877
E-mail: {exo, axe}@cs.nott.ac.uk and viralshahkach@hotmail.com

1 http://www.cs.qub.ac.uk/itc2007/

410 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

examination timetabling competition is a hybrid multistage approach which
is described in [4].

Hyper-heuristics are methodologies that perform search via generation or
selection of heuristics in problem solving [3]. A goal in hyper-heuristic research
is designing methodologies which are capable of solving problem instances hav-
ing diverse properties automatically without requiring any parameter tuning.
There are a few benchmarks for examination timetabling. The most com-
monly used one is Toronto benchmark. The performance of hyper-heuristics
have been investigated on Toronto and Yeditepe problem instances [1,2] as well
as ITC2007 instances, which includes instances for Examination Timetabling
and Course Timetabling. In this study, we present performance analysis of
some selection hyper-heuristics on the Examination Timetabling instances of
ITC2007.

2 Experimental Results

A subset of ITC2007 instances are used during the experiments. The char-
acteristics of each benchmark instance are summarised in Table 1. An initial
timetable is constructed, firstly assigning examinations with room hard con-
straints to rooms and periods with just enough capacities and lengths, followed
by assigning examinations with period hard constraints in a similar fashion.
Finally, a weighted graph is used to determine the order in which to timetable
the remaining exams. If the resulting timetable is infeasible, it is reset and the
entire process of timetabling starts again, first considering exams with room
hard constraints and so on. Then the solution in hand is iteratively improved
using a selection hyper-heuristic which perturbs this solution generating a new
one using a chosen low level heuristic and then decides whether to accept or
reject the new solution. Different combinations of heuristic selection {Simple
Random (SR), Greedy (GR), Reinforcement Learning (RL)} and acceptance
{Improving Only (IO), Improving and Equal (IE), Great Deluge (GD)} meth-
ods are used as hyper-heuristics during the experiments. Six different pertur-
bative low level heuristics were implemented. The main objective of these low
level heuristics is to make slight modifications on the current timetable, in an
attempt to lower the soft constraint violations, such as rescheduling of rooms,
or swapping exams.

Each experiment is repeated 50 times and a run is terminated after 500
seconds complying with the ITC2007 competition rules. The experiments are
carried out on a 2.83GHz Intel Core 2 Duo E8300 XP machine with a mem-
ory of 3.23GB. The results are provided in Figure 2. Feasible solutions are
obtained for almost all problem instances, except for Exam4. In the overall,
Reinforcement Learning performs better than the rest of the heuristic selec-
tion methods, while as an acceptance method, Great Deluge is better than the
others. Table 3 shows a comparison between our approach and the approaches
of the winners of the competition.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 411

Table 1 The characteristics of the ITC2007 examination timetabling problem instances.

No. of No. of No. of No. of Conflict
Problem exams students rooms time-slots density

Exam1 607 7891 7 54 5.05
Exam2 870 12743 49 40 1.17
Exam3 934 16439 48 36 2.62
Exam4 273 5045 1 21 15.00
Exam5 1018 9253 3 42 0.87
Exam6 242 7909 8 16 6.16
Exam7 1096 14676 15 80 1.93
Exam8 598 7718 8 80 4.55

The details of the hyper-heuristic approach and more results using addi-
tional hyper-heuristics will be provided at the conference.

References

1. Bilgin, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and
exam timetabling. In: Practice and Theory of Automated Timetabling VI, Lecture Notes
in Computer Science, vol. 3867, pp. 394–412. Springer (2007)

2. Burke, E., Kendall, G., Misir, M., Özcan, E.: Monte carlo hyper-heuristics for examination
timetabling. Annals of Operations Research pp. 1–18 (2010)

3. Chakhlevitch, K., Cowling, P.: Hyperheuristics: Recent developments. In: C. Cotta,
M. Sevaux, K. Sirensen (eds.) Adaptive and Multilevel Metaheuristics, Studies in Com-
putational Intelligence, vol. 136, pp. 3–29. Springer Berlin Heidelberg (2008)

4. Muller, T.: Itc2007 solver description: A hybrid approach. Annals of Operations Research
172(1), 429–446 (2009)

5. Qu, R., Burke, E.K., McCollum, B., Merlot, L., Lee, S.: A survey of search methodologies
and automated system development for examination timetabling. Journal of Scheduling
12(1), 55–89 (2009)

412 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 2 Soft constraints score for the datasets.

Hyper- Exam 1 Exam 2

heuristics min µ σ min µ σ

RL-EAI 8685 8879.14 774.74 778 800.3 32.9547
RL-I 9608 9858.5 685.562 790 811.44 30.7639
RL-GD 9460 9636.12 770.975 778 800.3 32.9547
SRP-EAI 8584 8825.16 851.734 814 845.82 42.0096
SRP-I 9017 9279.02 902.688 807 845.98 26.6906
SRP-GD 9142 9477.22 842.323 789 826.56 46.194
G-EAI 9178 9387.08 1088.85 799 827.96 44.3133
G-I 9179 9428.28 1150.74 783 812.54 42.8858
G-GD 9178 9387.08 1088.85 787 813.4 50.3648

Exam 3 Exam 4

min µ σ min µ σ

RL-EAI 32662 35409.5 3574.89 infeasible n/a n/a
RL-I 33240 35431.6 2780.72 infeasible n/a n/a
RL-GD 31260 34259.4 3064.11 infeasible n/a n/a
SRP-EAI 35210 37026.9 2941.63 infeasible n/a n/a
SRP-I 34386 39293.4 3101.42 infeasible n/a n/a
SRP-GD 31493 34052.3 3657.36 infeasible n/a n/a
G-EAI 34071 36090.1 1269.97 infeasible n/a n/a
G-I 33574 35340.7 1094.84 infeasible n/a n/a
G-GD 31227 32974.6 1901.22 infeasible n/a n/a

Exam 5 Exam 6

min µ σ min µ σ

RL-EAI 7541 7588.2 101.002 30415 31634.1 2464.28
RL-I 7541 7588.2 101.002 30625 30640.1 57.1829
RL-GD 7541 7588.2 101.002 29695 30126.9 1255.71
SRP-EAI 7677 7726.98 100.82 33775 34086.7 723.078
SRP-I 7677 7726.98 100.82 37485 37503.1 69.5532
SRP-GD 7772 7815.56 108.451 38175 38283.9 88.3193
G-EAI 7658 7662.6 24.6792 37900 38855.9 152.445
G-I 7658 7662.6 24.6792 37900 38855.9 152.445
G-GD 7658 7662.6 24.6792 37900 38855.9 152.445

Exam 7 Exam 8

min µ σ min µ σ

RL-EAI 15116 15539 701.098 21678 27446.3 4199.8
RL-I 16722 16912 579.296 20978 21178.4 253.238
RL-GD 15178 15549.1 631.938 23389 23583.4 405.198
SRP-EAI 15291 15492.3 372.928 21812 22207.3 660.057
SRP-I 16941 17185.1 363.882 21522 22056.6 809.114
SRP-GD 15660 16010.3 476.773 22657 23273.3 810.811
G-EAI 16622 16739.8 322.287 20168 20562.6 710.712
G-I 16796 16863 216.641 20236 20990.9 806.43
G-GD 16622 16739.8 322.287 20168 20562.6 710.712

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 413

Table 3 Comparison between our results and the results of the top winners of the compe-
tition.

Exam1 Exam2 Exam3

Ranking Winner Score Winner Score Winner Score

1st Muller 4370 Muller 400 Muller 10049
2nd Gogos 5905 De Smet 623 Gogos 13771

3rd De Smet 6670 Özcan 778 Pillay 15917
4th Atsuta 8006 Gogos 1008 Atsuta 17669

5th Özcan 8584 Pillay 2886 Özcan 31227
6th Pillay 12035 Atsuta 3470 De Smet Infeasible

Exam4 Exam5 Exam6

Winner Score Winner Score Winner Score

1st Muller 18141 Muller 2988 Muller 26585
2nd Gogos 18674 De Smet 3847 Gogos 27640
3rd Atsuta 22559 Gogos 4139 De Smet 27815
4th pillay 23582 Atsuta 4638 Atsuta 29155

5th Özcan Infeasible Pillay 6860 Özcan 29695

6th De Smet Infeasible Özcan 7541 Pillay 32250

Exam7 Exam8

Winner Score Winner Score

1st Muller 4213 Muller 7742
2nd De Smet 5420 Gogos 10521
3rd Gogos 6572 Atsuta 14317
4th Atsuta 10473 Pillay 15592

5th Özcan 15116 Özcan 20168
6th Pillay 17666 De Smet Infeasible

414 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Nurse Timetabling: Linking Research and
Practice

Julie Lane1, Barry McCollum2,

1Facilities Directorate

Sheffield Hallam University

Howard Street

Sheffield

South Yorkshire

S1 1WB

j.lane@shu.ac.uk

2School of Electronics, Electrical Engineering and Computer Science

Queen’s University,

Belfast,

University Road,

N. Ireland,

BT7 1NN

b.mccollum@qub.ac.uk

Timetabling of courses within the UK University Sector is extremely challenging due to the

number of variables and the complex nature of the constraints associated with the management and
planning of teaching sessions and those around institutional resource usage issues. (McCollum

2007 a, b). With students paying up to £9K a year for tuition fees and the Higher Education

Funding Council for England (HEFCE) dictating greater transparency and value for money in

ensuring funds are used for the intended purposes (http://www.hefce.ac.uk/finance/), Higher

Education Institutions (HEIs) have been encouraged to focus their strategic objectives in

attempting to improve the overall student experience (Lord Brown Report 2009). As part of this

focus, the delivery of the Institutional Timetable plays a significant role. The Institutional

Timetable can be thought of as the window to which the student views the University and whether

this view is positive or negative is reflected in question 13 of the National Student Survey. As

results can be seen within the public arena (http://unistats.direct.gov.uk/), Universities are realising

the importance of delivering quality within the timetable while attempting to continue to make best
use of the available resource.

Sheffield Hallam University in the UK is divided into four faculties which is further divided by

a number of departments. The Department of Nursing and Midwifery along with the Departments

of Social Work, Social Care and Community Studies, Department of Allied Health Professions,

Department of Biosciences and Department of Sport all are situated within the Faculty of Health

and Wellbeing. The Department of Nursing and Midwifery has approximately 100 academic staff,

of which 20% are part-time. In 2009/10 Sheffield Hallam University was the fourth largest

University in the UK based on the number of student enrolments. All full-time, undergraduate

students receive an individual, on-line timetable. Timetables are maintained in a live environment;

meaning that changes to teaching delivery during the academic year, are reflected on the

personalised on-line timetables. Of all the subject areas within the University, Nursing is one of

the most complex and difficult to schedule. At the January Academic Registers' Council (ARC)
Timetabling Practitioners Conference in the UK, Julie Lane held a workshop where a number of

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 415

http://unistats.direct.gov.uk/

HEIs shared the challenges and constraint commonly faced. The Academic Registers' Council

(ARC) Timetabling Practitioners Group is a UK sector group, which has been established to share

good practice, and keep abreast of up-to-the-minute changes in legislation which impacts on

timetabling, and also provides a network to discuss a broad range of challenges which Timetabling

Managers face. The work outlined in this abstract is an extension of this initial investigation into

the identified practical issues. Specifically in relation to nurse scheduling, there are external

contributing factors laid out by the Department of Health and National Health Service which

contribute to constraining the way courses are delivered. Module delivery patterns are complex.

Irregular week patterns combined with changing durations for each individual teaching session has

a significant impact on the ability to manage resources of staff and space to meet the peaks and

troughs of demand throughout the year, and success often hinges on the flexibility and costs of
provision. Each module is likely to have a unique set of pedagogic requirements whether this is

taking into account the specialisms of academic staff, managing specialist rooms and equipment or

the ability to manage peaks and troughs of demand throughout the academic year.

In addressing the issues associated with Nursing timetabling, it is also important to understand

the external influences which are a significant driver. Until recently the funding of nursing

education has been provided through the Department of Health (DOH), with the commissioning of

Higher Education programmes devolved to regional Strategic Health Authorities (SHAs).

Numbers of commissions and contracts are agreed between SHAs and HEIs. Nurses' tuition fees

are paid for by Strategic Health Authorities and in some cases they are paid a monthly bursary too.

However there are a number of key changes which will affect Nurse Education and therefore the

associated delivery issues. SHAs will be broken up over the next year
(http://www.dh.gov.uk/en/Publicationsandstatistics/Publications/PublicationsPolicyAndGuidance/

DH_117353) and replaced by Local Education and Training Boards (LETBs). These have already

been established in regions and are chaired by chief executives of large NHS Trusts. They will

commission health courses and greatly influence the NHS workforce. Also nursing is moving to

an all graduate profession (currently there is a diploma or degree option). How this will affect

commissioning nurse education and ultimately the NHS nursing workforce has not yet been

quantified. It may be that fewer nurses are trained; they being the managers of care, and associate

practitioners deliver the majority of nursing-type care. Who will train these associate practitioners

is not yet clear. These issues along with their influence on the timetable production will be

discussed at the conference.

Traditional timetabling follows the academic calendar as defined by each institution. This

normally commences late September and finishes May/June and generally consists of two
semesters. In contrast, Nursing courses are often delivered all year round and frequently have

multiple in-takes of when students commence their studies. Each module of the course will consist

of a mixture of classroom based activities, as well as lectures and practical sessions; each with

different durations and irregular week patterns. Added to the mix are placements which are

controlled by the NHS and IPE (Inter-Professional Education is credit rated and an aspiration of

HEIs to successfully deliver. It is recommended internationally, has European quality indicators

and is driven by government policy - UK being the most advanced in this respect). All of these

factors contribute to peaks and troughs of demand on resources throughout the year. Having

initially explored the complexities of what is required; the success to scheduling is the ability of

being equipped to manage the resources i.e. staffing and rooms and more importantly specialist

rooms. The largest cost to any HEI is wages which therefore dictates that HEIs must maximise the
staffing resource. To enhance the student experience in providing added value, there is a key

driver to mix and match the specialisms of academic staff and associate them with not just a

module but a specific topic within the module which further adds to the levels of complexity to

scheduling. Likewise the staff resource itself is likely to fluctuate over the year, whether this is

due to managing staff holidays (7 weeks per year), guest speakers, multiple staff required to

deliver a single teaching session and perhaps most frustrating for the timetabling practitioner, the

lack of information in not knowing the names of staff to associate with teaching activities. The

second largest cost to any HEI is associated with running costs of the estate. The balance to

maintain a cost efficient estate yet supporting the pedagogic delivery of nursing activities means

that there is a driver to maximise efficient use of the estate which is reported through utilisation

surveys. For nursing practical sessions, there is a strong need to provide flexible teaching spaces.

The impact of this means technical managers have to find solutions to managing equipment. As
technology is quickly developed and improved, it is essential that HEIs keep abreast of these

developments and invest in the most up to date advances. The cost associated with this often

means that purchases are limited and therefore equipment cannot be fixed to a single location. The

mix of providing flexible teaching spaces coupled with the need to move equipment from one

416 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

https://owa.qub.ac.uk/owa/redir.aspx?C=9580ec3d0d594904a554a3098167d370&URL=http%3a%2f%2fwww.dh.gov.uk%2fen%2fPublicationsandstatistics%2fPublications%2fPublicationsPolicyAndGuidance%2fDH_117353
https://owa.qub.ac.uk/owa/redir.aspx?C=9580ec3d0d594904a554a3098167d370&URL=http%3a%2f%2fwww.dh.gov.uk%2fen%2fPublicationsandstatistics%2fPublications%2fPublicationsPolicyAndGuidance%2fDH_117353

location to another based on demand needs, is likely to provide a 'headache' to the technical

support manage; who in turn will look to the timetabling practitioner to find a solution.

In summary, external influences significantly restrict the way in which nursing timetables are

delivered. External influences coupled with internal pedagogic requirements create peaks and

troughs of demand throughout the academic year. Too successfully schedule relies heavily on

managing the resources, which in themselves are restricted by financial means. A large number of

nursing students are often mature students who have family commitments. To ensure that the

student experience is enhanced, the students themselves are looking for a timetable which balances

their learning/life balance. This research is aimed at addressing the acknowledged gap which

currently exists between research and practice in timetabling research. Specifically the research

will allow the description and modeling the real world complexities around academic nurse
timetabling in the UK. This work will be compared with the issues raised within the related areas

of course timetabling and nurse rostering described in details within the PATAT sponsored 2010

Nurse Rostering Competition Hapeslagh (2010). Once a problem representation drawn from this

work is described and made available, work will commence on the development of algorithms that

are able to provide workable timetables while maintaining the balance described above.

McCollum (2008), B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. Parkes, L.

Di Gaspero, R.Qu, E.K. Burke, Setting The Research Agenda in Automated Timetabling: The

Second International Timetabling Competition,
http://www.cs.qub.ac.uk/ itc2007/ITC2007_Background_Techreportv1.pdf.

McCollum (2007a), B. McCollum, A Perspective on Bridging the Gap between Theory and

Practice in University Timetabling, Practice and Theory of Automated Timetabling VI,

Springer LNCS Vol 3867, 2007, pp 3-23.

McCollum (2007b), B. McCollum, T. Roche, P. McMullan, Optimising Space Through Macro and

Micro Planning and Scheduling, Presentation at SCUP–42 , Society of College and University

Planners International Conference, July 7–11, 2007, Chicago.

Hapeslagh (2010), S. Haspeslagh, Patrick De Causmaecker, M. Stolevik and A. Schaerf, First

International Nurse Rostering Competition 2010, Proceeding of the 8th International Confeence

on the Pracrice and Theory of International Timetabling, Belfast, 10-3th August, p498 – 501,

ISBN 08-538-9973-3

Lord Brown Report (2009). An independent review of higher education & student finance in

England. “Securing a sustainable future for higher education in England”,

http://webarchive.nationalarchives.gov.uk/+/hereview.independent.gov.uk/hereview/report/

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 417

http://www.cs.qub.ac.uk/

Next Steps for the Examination Timetabling Format and
Competition

Barry McCollum · Paul McMullan ·
Tomáš Müller · Andrew J. Parkes∗

June 2012

1 Background and Motivations

The second International Timetabling Competition, ITC20071, [4] included a track on

examination timetabling with results presented during PATAT-2008. It provided a well-

defined representation [3] with many features not appearing in previous benchmarks.

For example, the ‘Toronto benchmarks’2 were highly influential and well-studied (e.g.

see [5]) but provided only basic enrolment data and had only a limited mechanism to

spread out the exams in time; however, these mechanisms were greatly extended in

ITC-2007. A follow-up competition is being arranged, and here we briefly list the most

important intended changes (at the time of writing, the exact list and syntax is not

yet fixed, and so relatively minor changes are still likely). A challenge in the design

of benchmark problems and competitions is to select a compromise between ease of

implementation, and the ability to represent all problems that might be encountered

in real problems. Accordingly, extensions and changes were selected with the aim they

are relatively straightforward and direct to implement, but will make an important

contribution to the usability of the format and solvers. Note that changes are inspired by

the practical experiences both at Purdue3 (e.g. see [6]), and also of EventMAP Limited

Ltd4 based at Queen’s University and producing software for many institutions.

2 Direct Extensions

By direct extensions we mean those that are closely related to constraints and objectives

already used in the previous ITC2007 format; note that the weights assigned to various

penalties were collected together into an “Institutional Model (IM)” and many of the

proposed changes will simply correspond to new declarations within the IM.

Barry McCollum & Paul McMullan
Queen’s University, Belfast, U.K. E-mail: {B.McCollum,P.P.McMullan}@qub.ac.uk
Tomáš Müller
Purdue University, West Lafayette, IN 47907, USA E-mail: muller@unitime.org
Contact author: Andrew J. Parkes
University of Nottingham, NG8 1BB, U.K. E-mail: ajp@cs.nott.ac.uk

1 http://www.cs.qub.ac.uk/itc2007/
2 ftp://ftp.mie.utoronto.ca/pub/carter/testprob/
3 http://unitime.org/
4 http://www.eventmap-uk.com/

418 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Relaxed Conflicts: Occasionally, some students take a very unusual mix of modules,

and the resulting induced conflicts between exams can have a large negative effect on

the overall problem, possibly rendering it infeasible or leading to many other students

having worse timetables. In such circumstances, it can be better to allow the student to

have two of their modules placed into the same time-slot, though with a (high) penalty,

and so we will allow a declaration in the IM of the form:

TwoExamsAtSameTime <W>

giving a penalty of W for each student affected and that will hence need special ar-

rangements. Absence of such a declaration will correspond to an infinite penalty as

(implicitly) in the ITC2007 format.

Extended Exam Pattern Penalties: Multiple copies of the “FrontLoad” and “Pe-

riodSpread” declarations will be permitted. This is an easy extension to implement but

will allow a much finer-grained control; permitting dividing exams into multiple size

classes rather than just the ‘large’ and ‘small’ of ITC2007. As explained in [3], mul-

tiple copies of the period spread will also capture the system used with the Toronto

set of benchmark problems. The IM will also allow “NInARow” and/or “NInADay”

penalties to extend the current “TwoInARow” and “TwoInADay” penalties in a natu-

ral way to N=3, etc. In combination with TwoExamsAtSameTime, this will also allow

modelling of cases when a student can demand a special session when they are assigned

to multiple exams in the same day.

Individual Penalties by Pairs of Exam, Room or Period: Extra sections in the

data will specify for each (exam,room) or (exam,period) pair a corresponding specific

individual penalty of assigning the exam to that room or period. This is useful for

exams having special requirements; they might need facilities only present in given

rooms, or alternatively might need a special set of times during which a facility or

staff member is available. It will also be possible to penalise pairs of (room,period) to

account for rooms being unavailable. Penalties be infinite for cases when a particular

combinations is prohibited. Separate penalties for individual “(exam,period,room)”

triples, were considered but not thought to be useful enough to warrant the extra

complexity.

Generalised Room Usage Penalties: In ITC2007, for each room it is only possible

to add a penalty for each specific period that it is used. However, for some rooms, their

standard configuration might not be suitable for exam usage at all. Preparation of the

room for usage at any time during the exam session would have a setup penalty, though

the setup would need to be done only once. Hence, it is proposed that the information

for each room be extended to:

<capacity> <per-usage-penalty> <setup-penalty>

With this, many potential rooms could be given and the solver allowed to select which

rooms would best match the problem instance and hence should be prepared for us-

age. In the extreme case, then the setup penalty might be very high and be taken to

correspond to building (or at least remodelling) the room itself. This would allow some

(limited) usage for space planning [1] in that it could be used to give insight into what

combination of room sizes and types are best suited for the examination timetabling

problems.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 419

3 Structural Extensions

These are not specific to examination timetabling but are changes to the way that the

instances are presented to a solver, and the resources that the solver can use (and will

also be retrofitted to previous benchmarks).

Multiple Time Limits and Cores: Firstly, the runtime on instances will not be

fixed, but allowed to vary. This also has the practical advantage that the same data

instance could be used, but with two (radically) different time limits, e.g. with both

a 2 minute and a 120 minute limit. This is practically useful as finding suitable data

instances can be difficult, and so it is better to make maximal use of them. Also, even

desktop machines are rapidly moving to having many cores, and so it is important

that future solvers can exploit this. To encourage this, the next competition will have

a sub-track using 8 (or more) cores. This can be done trivially using multiple threads

each running the same (randomized) solver, but we hope that solvers will make more

interesting cooperative usage of the cores.

Multiple Institutional Models (IMs): Real-world examination timetabling prob-

lems have an objective that contains many terms, and (basically) with the IM providing

the weights. A natural way extension to treat them as a multi-objective optimisation

(MOO) problem, e.g. see [2]. It was indeed considered to try to make a competition with

the evaluation being truly multi-objective. For example, solvers could be expected to

produce their best approximation of the Pareto Front, and comparisons could be based

on standard MOO evaluation methods such as volume dominance; however, we believed

that this would lead to too drastic a change. Instead, a simpler version, “MOO-lite”,

is proposed here: that each data instances is simply associated with multiple different

IMs. The solver will then be expected to produce a separate solution for each IM, and

they will be used for ranking as if solved independently. However, the solver will be

free to share the computational resources and intermediate solutions between IMs in

any way that it feels appropriate. The hope is that participants will develop methods

that are more efficient (and interesting) than simply solving each IM in turn.

4 Summary

We have listed the main changes intended for the examinations timetabling format and

competition.

References

1. C. Beyrouthy, E. K. Burke, B. McCollum, P. McMullan, and A. J. Parkes. University space
planning and space-type profiles. Journal of Scheduling, 13:363–374, August 2010.

2. E. K. Burke, B. McCollum, P. McMullan, and A. J. Parkes. Multi-objective aspects of the
examination timetabling competition track. In Proceedings of PATAT 2008, pages 3119
–3126, 2008.

3. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and R. Qu. A new model for
automated examination timetabling. Annals of Operations Research, 194:291–315, 2012.

4. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. Di Gaspero,
R. Qu, and E. K. Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing, 22(1):120–130,
Winter 2010.

5. R. Qu, E. K. Burke, B. Mccollum, L. T. Merlot, and S. Y. Lee. A survey of search method-
ologies and automated system development for examination timetabling. J. of Scheduling,
12:55–89, February 2009.

6. H. Rudová, T. Müller, and K. Murray. Complex university course timetabling. Journal of
Scheduling, 14:187–207, 2011. 10.1007/s10951-010-0171-3.

420 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Directing selection within an extended great deluge

optimisation algorithm

Ryan Hamilton-Bryce, Paul McMullan, Barry McCollum

School of Electronics, Electrical Engineering and Computer Science
Queen's University,
Belfast,
University Road,
N. Ireland,
BT7 1NN

rhamiltonbryce01@qub.ac.uk, p.p.mcmullan@qub.ac.uk, b.mccollum@qub.ac.uk

The challenge of producing scheduling solutions for problems such as Course and Examination
timetabling involves a combination of practical and research based approaches [1]. Due to the
complexity of the issues involved research has focused on the use of search based heuristic
techniques. Within the area of examination scheduling, progress in research has been facilitated
by the availability of benchmark data sets [2, 3]. Results using a wide range of techniques have
been reported as a result, with varied levels of success based on generality and time taken [4]. A
successful technique can be viewed as one which can produce good solutions to a range of
differing problems within a problem domain, in a practical timescale.

The 2nd International Timetabling Competition (ITC2007) [2] introduced an examination
scheduling track, and new result sets continue to be validated using the competition's online
validation service despite the competition closing almost five years ago. The next timetabling
Competition (ITC2013) to be announced will further develop the problem definition to take into
account additional real world issues. A technique which had previously been very successfully
introduced to Course scheduling [5] was adapted and used for the ITC 2007 Examination data
sets [6]. This technique is based upon the Great Deluge algorithm and was able to produce
feasible and competitive solutions for all of the data sets presented in the ITC2007. It was noted
that a link may exist between the initial adaptive construction phase and the stochastic extended
great deluge optimisation phase [7].

The technique uses two phases of optimisation for scheduling; construction, to create an initial
feasible solution and; improvement, to explore the solution space of the constructed solution for
further better solutions. During adaptive based examination timetable construction, an ordered
list of “difficult” (hard to schedule) examinations, is maintained [8]. When the improvement
phase is reached, this information is discarded in favour of the fully stochastic selection routine,
to ensure as much time as possible is spent trying to find an optimal solution. Indeed, when an
adaptive based constructor was combined with a stochastic extended great deluge optimiser, it
was able to produce results that beat those of the ITC2007 winner in six of the twelve datasets
when run on identical hardware [5].

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 421

The purpose of this abstract is to investigate the link between an adaptive construction phase
and a great deluge based optimisation phase. To this end, we will be investigating two different
selection criteria for directing examination selection within the improvement phase. The first
selection criteria will use the list of hard to schedule examinations, as it exists in its final state at
the end of the construction phase. The second criteria will also initially use the list in this form,
however with each iteration of the optimiser this list will be updated with new penalties,
therefore the list of difficult to schedule examinations will continue to evolve. In each criteria, we
will be investigating the effect of both replacing and supplementing the existing stochastic
selection routine. We will also attempt to identify any trends within the adaptive examination
list, such as what portions of the list provide the greatest benefit to the optimiser.

For the purposes of this abstract, we will be using the datasets introduced during the ITC2007,
which have previously been discussed in great detail [9] to allow us to compare the results
generated using this new selection routine against both those presented by B. McCollum, et al [5]
and those of the competition winner. The results of this will be presented at PATAT 2012.

References

1. B.McCollum, A Perspective on Bridging the Gap between Research and Practice in
University Timetabling (2007), Practice and Theory of Automated Timetabling VI (eds. E.K.Burke
and H.Rudova), Lecture Notes in Computer Science Volume 3867, Springer 2007, pp 3-23

2. B. McCollum, A.Schaerf, B.Paechter, P. McMullan, R.Lewis, A. Parkes, L. Di Gaspero,
R.Qu, E. Burke, Setting The Research Agenda in Automated Timetabling: The Second International
Timetabling Competition, INFORMS Journal on Computing. Vol 22, No 1, 2010, pp 120-130

3. Examination Timetabling: Algorithmic Strategies and Applications Michael W. Carter,
Gilbert Laporte and Sau Yan Lee The Journal of the Operational Research Society
Vol. 47, No. 3 (Mar., 1996), pp. 373-383

4. R.Qu, E.K.Burke, B.McCollum, L.G.T.Merlot, S.Y.Lee, A Survey of Search Methodologies
and Automated System Development for Examination Timetabling, Journal of Scheduling (2009),
Volume 12(1), 55-89

5. P. McMullan, An Extended Implementation of the Great Deluge Algorithm for Course
Timetabling, Lecture Notes in Computer Science, Springer, Vol 4487, pp538-545, 2007.

6. B. McCollum, P.J. McMullan, A.J. Parkes, E.K. Burke, S. Abdullah, "An Extended Great
Deluge Approach to the Examination Timetabling Problem", MISTA 2009, Dublin, 10-12 August
2009.

7. E.K. Burke, G. Kendal, B. McCollum, P. McMullan, Constructive versus Improvement
Heuristics: An Investigation of Examination Timetabling, 3rd Multidisciplinary International
Scheduling Conference: Theory and Applications, 2007

8. Burke, E. K., Newall, J. P., (2004), “Solving Examination Timetabling Problems through
Adaptation of Heuristic Orderings”, Annals of operations Research

9. B. McCollum, P.J. McMullan, E.K. Burke, A.J. Parkes, Q. Rong (or R. Qu), "A New Model
for Automated Examination Timetabling", April 29 2008

422 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Academic Timetabling: Space Sharing
Strategies

Hannah White-Overton1, Barry McCollum2,4, Paul McMullan2,4, Edmund Burke3,4

1 Imperial College London,

South Kensington

London SW7 2AZ

h.white-overton@imperial.ac.uk

2School of Electronics, Electrical Engineering and Computer Science

Queen’s University,

Belfast,

University Road,

N. Ireland,

BT7 1NN

b.mccollum@qub.ac.uk

2School of Computer Science

University of Sterling

Scotland,

United Kingdom,

NG8 1BB

4EventMAP Ltd

SARC Building,

Queen’s University,

Belfast,

N. Ireland

BT95AH

Implemented correctly, Automated Timetabling can provide many benefits to Academic

Institutions [McCollum 2008, 2007a]. The ability to make better use of Institutional resource is a

key area due to the need to deliver the best educational environment possible [McCollum2007b].

Imperial College is based in London, UK and specialises in Science, Technology, Engineering

and Medicine. There are four faculties, Business, Engineering, Medicine and Natural Sciences,

with the faculties of Engineering, and Natural Sciences having nine and four departments
respectively. The total number of FTEs is approximately 15,000, of which approximately 8,500

are Under Graduates, 2,500 taught Post Graduates and 3,000 research-based Post Graduates.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 423

Of the above, approximately 8,500 are home students, 2,000 are EU with the remainder being

overseas students.

Within Imperial College London a recent decision to move towards automated timetabling was

driven by the need to reduce capital spend and the ability to effectively utilise the College’s estate.

In order to minimize the need to build new or refurbish existing teaching space, and to maximize

potential for revenue generation the ability to identify empty space and capitalize on opportunities

for rental to external bodies was also considered advantageous. To meet these objectives, it was

considered necessary to assess the possibility of centrally controlled and owned shared space. The

aims of the project are:

(i) To ensure that timetabling and strategic modelling software is ‘fit for purpose’ for the next

decade and beyond.

(ii) It was also considered that in order to effectively measure the ability to increase recruitment

to existing courses and bring on-line new offers, the development and deployment of a

strategic modelling environment needed to be assessed.

(iii) To improve student experience and reflect current ‘real-time’ timetables via web

technologies, allowing students instant access to course and examination schedules and be

informed of changes to timetable.

(iv) To reduce department overhead by locally engaging in support functions that could be more

effectively resourced centrally.

Currently within Imperial College all space is ‘owned’ and scheduled by individual departments.

This is detrimental to the College as it allows for little opportunity for collaborative courses, as

departmental timescales are out of sync with each other. Additionally, the College has very poor

utilisation rates, with a ‘block booking’ culture being prevalent. Departments have developed a

very ad-hoc arrangement for sharing space, which is primarily done by directly contacting other

departments and requesting usage.

Within the current project a methodology of centralising the collection of data has been developed,

and a College-wide timescale adopted. The methodology employed was firstly to compile a

complete set of building blocks that provide the foundation of the timetable i.e. Modules offered

(compulsory, options), Delivery mechanism (lectures, seminars, tutorials), Staff members, Student

groups, Room data, Cohort sizes and Constraints. Once the building blocks are in place, an attempt

to auto-schedule events would be executed, excluding rooming.

(i) Staff and student clashes would be explored, and resolved.

(ii) Events would then be de-scheduled, with all constraints attached to individual events.

(iii) Large lecture space would be scheduled, and departmental zoning applied.

(iv) Specific space requests would then be processed, and any clashes resolved.

(v) Finally small teaching space and laboratories would then be allocated.

As an interim measure for the first year of the project, a decision at board level to allow

departments to specify days and times of teaching events was taken. Post the September

implementation, these time constraints are to be removed and events rescheduled. At this stage

pre and post utilisation figures will be analysed, and used as a benchmark for distance travelled

within the timetabling project. With the goal of sharing space, The College are looking to centrally

allocate all teaching space, to model and reconfigure timetables in order to achieve maximum

utilisation, and to produced an informed capital investment programme dependent on the results of

potential models.

This talk will discuss the space strategies and show simulations on how their implementation has

the ability to make better use of resource. An update will be given on the implementation and

examples provided of best practice when implementing space sharing strategies as part of a

decentralised timetabling system.

424 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

McCollum (2008), B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. Parkes, L. Di Gaspero,

R.Qu, E.K. Burke, Setting The Research Agenda in Automated Timetabling: The Second International
Timetabling Competition,

McCollum (2007a), B. McCollum, A Perspective on Bridging the Gap between Theory and Practice in
University Timetabling, Practice and Theory of Automated Timetabling VI, Springer LNCS Vol 3867,
2007, pp 3-23.

McCollum (2007b), B. McCollum, T. Roche, P. McMullan, Optimising Space Through Macro and Micro
Planning and Scheduling, Presentation at SCUP–42 , Society of College and University Planners

International Conference, July 7–11, 2007, Chicago.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 425

A Hybrid Evolutionary Algorithm for the Generalized
Surgery Scheduling Problem

Atle Riise • Edmund Burke • Carlo Mannino

1 Introduction

The term surgery scheduling is used about a variety of strategic, tactical and operational
scheduling problems [1], many of which are critical to an efficient use of hospital resources. Our
focus is on operational surgery scheduling, which may be informally described as the task of
assigning times to surgery-related activities for each patient, while reserving capacity for these
activities on a set of constrained renewable resources. Such resources may be, for example,
operating rooms, operation teams, surgeons, equipment, or post-operative bed capacity. Objectives
are typically overtime, hospitalization costs, intervention costs, operating room utilization,
patient's waiting time, and patient or personnel preferences, among others. These scheduling
problems are often NP-hard [2]. The exact problem formulation varies substantially between
hospitals, or even hospital departments. In addition, the degree of detail vary between different
planning situations; patient admission planning may consider only one or two kinds of resources,
is mainly concerned with allocating a date of admission for each patient, and typically has a long
time horizon. Closer to the day of surgery, such as when scheduling surgeries for the next day or
week, the number of activities, resources and choices to make increase. This diversity presents a
challenge for those who wish to create scheduling methods that are applicable to surgery
scheduling problems in general.

2 The Generalized Surgery Scheduling Problem
In [3], we approached this challenge by generalisation, introducing the "Generalized Surgery

Scheduling Problem" (GSSP). The GSSP can be seen as a rich extension to the Resource
Constrained Project Scheduling problem (RCPSP) [4]. It has multiple projects (one per patient),
multiple resources per project activity, multiple modes, and setup times. The GSSP also has time
dependent resource capacity, block constraints, and maximum delay constraints. Furthermore, it
contains some new constraints: The "mode compatibility constraint" limits the simultaneous
choice of modes for sets of related activities. For example, if a surgery activity uses a certain
operating room, other related activities must also use that same room. Another constraint is the
"mode dependent precedence constraint", which means that depending on the chosen modes for
two activities, there may or may not be a precedence constraint between them. Finally, the "project
disjunction constraint" dictates that for some resources, all activities related to a given project must
be performed before the resource can be used for any activity of any other project, even if the
resource has available capacity. This comes from the fact that one wish to complete all tasks
relating to one patient in the operating room before starting any tasks relating to another patient.

The problem is naturally modelled as a directed activity-on-node graph. This problem graph
can be seen as a union of project graphs and resource graphs. Project graphs represent precedence-,
time window-, and maximum delay constraints. Resource graphs contain a sequence of resource
periods [3], each represented by a pair of artificial start and end nodes. A range of constraints and
objectives can be calculated directly from the propagated earliest start time of the end nodes of
these periods. Resource period capacities and activity demands are modelled by constraints on a
flow of resource units in the resource graphs.

A solution can be constructed by inserting each activity into the resource graphs of the
activity's selected mode. Such a solution is feasible with respect to time-related constraints if the
resulting solution graph is positively acyclic.

426 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3 Algorithmic approach
Perhaps reflecting the variety of real world surgery scheduling problems, the literature

includes the use of a wide range of resolution methods, both exact and heuristic [5]. Many variants
of the problem are NP-hard, and several authors conclude that a meta-heuristic approach is needed
for problems of realistic size. This is also our conclusion for the GSPS [3]. In this paper, we
present two meta-heuristic methods for the GSSP. As for many studies of the RCPSP, we use a
random key list solution representation. A schedule generation scheme (SGS) is used to produce a
schedule by inserting activities into the solution graph in the order given in such a list. Our SGS is
a heavily modified version of the classical sequential SGS [6]. It handles maximum delay
constraints, project disjunctions and resource periods. Furthermore, this SGS can perform a search
in the possible modes for each activity that is inserted, taking mode consistency and mode-
dependent precedence constraints into account. As a baseline meta-heuristic we create a random
restart algorithm which uses the SGS to construct schedules based on randomly selected random
key lists. We then go on to present an evolutionary algorithm whose combination operators work
on the level of mode choices and random key representations. Child schedules are constructed by
applying the SGS. Using realistic test data from three different planning situations (“admission
planning”, “weekly surgery scheduling”, and “daily surgery scheduling”) [3], we demonstrate that
this algorithm performs better than the base-line algorithm. We also show that it produces good
approximations to the optimal solutions, using computation times that are acceptable in real life
planning situations.

Acknowledgements This work is supported by the Research Council of Norway, through the
HOSPITAL project.

References
1. Blake, J.T. and M.W. Carter, A goal programming approach to strategic resource

allocation in acute care hospitals. European Journal of Operational Research,
2002. 140(3): p. 541-561.

2. Hans, E., et al., Robust surgery loading. European Journal of Operational
Research, 2008. 185(3): p. 1038-1050.

3. Riise, A. and C. Mannino, The Surgery Scheduling Problem - A General Model, in
SINTEF rapport, SINTEF, Editor. 2012, SINTEF: Oslo.

4. Cardoen, B., E. Demeulemeester, and J. Beliën, Operating room planning and
scheduling: A literature review. European Journal of Operational Research, 2010.
201(3): p. 921-932.

5. Riise, A. and E. Burke, Local search for the surgery admission planning problem.
Journal of Heuristics, 2010: p. 1-26.

6. Artigues, C., S. Demassey, and E. Néron, eds. Resource-constrained Project
Scheduling: Models, Algorithms, Extensions and Applications Control Systems,
Robotics and Manufacturing. 2008, ISTE: London, UK.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 427

An exact decomposition approach for the optimal

real-time train rescheduling problem

Carlo Mannino ∗ Leonardo Lamorgese †

Trains are running through a rail network trying to meet a prede�ned schedule, the
O�cial Timetable, which speci�es when each train enters and exists the stations on its
route. When one or more trains deviate from the o�cial timetable, new schedules and
possibly new routes must be identi�ed and implemented very quickly. Also, the new
plan should minimize some measure of the delays.

In a �rst and very simpli�ed picture, a rail network may be viewed as a set of stations
connected by tracks. Each train follows a speci�c route in this network, namely an
alternating sequence of stations and tracks. The trains run their routes trying to agree
with the production plan, which speci�es the movements (routing) and the times when
a train should enter and leave the various segments of its route (schedule), including
stations arrival and departure times.

In principle, the production plan ensures that no two trains will occupy simulta-
neously the same railway resource, or incompatible resources such as a platform in a
station and the track to access it. In other words, a production plan is a con�ict free

schedule. The problem to design optimal production plans is of crucial relevance for
railway operators. As pointed out in [11] optimum resource allocation can make a di�er-

ence between pro�t and loss for a railway transport company. However, due to di�erent
causes the actual train timetables can deviate from the o�cial ones, and potential con-
�icts in the use of resources may arise. As a consequence, re-routing and re-scheduling
decisions must be taken in real-time. These decisions are still, in most cases, taken
by human operators (dispatchers), and implemented by re-orienting switches and by
controlling the signals status (i.e. setting signalling lights to green or to red), or even
by telephone connections with the drivers. The dispatchers take their decisions try-
ing to minimize delays, typically having in mind some ranking of the trains or simply
following operating rules. So, what the dispatchers are actually doing, is solving an
optimization problem (and of a very tough nature). We call this problem the Real-time
Tra�c Control in Rail Systems problem (RTC).

In short, the RTC problem amounts to establish in real-time for each controlled
train a route and a schedule so that no con�icts occur with other trains and some

∗SINTEF ICT, Oslo, e-mail: carlo.mannino@sintef.no
†SINTEF ICT, Oslo, e-mail: leonardo.lamorgese@gmail.com

428 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

function of the deviation from the o�cial timetable is minimized. As such, the RTC
problem falls into the class of job-shop scheduling problems where trains correspond
to jobs and the occupation of a railway resource by a train is an operation. Two
alternative classes of formulations have been extensively studied in the literature for job-
shop scheduling problems and consequently also applied to train scheduling and routing
problems, namely the time indexed formulations [10] and the disjunctive formulations

[2].
In time indexed formulations (TI) the time horizon is discretized, and a binary vari-

able is associated with every operation and every period in the time horizon. Con�icts
between operations are prevented by simple packing constraints. Examples of applica-
tions of (TI) to train optimization can be found in [3], [4], [5], [6], [18]: actually the
literature is much wider, and we refer to [8], [11] and [16] for extensive surveys. To
our knowledge, basically all these works deal with the track allocation problem, which
is solved o�-line and where the feasible time periods associated with train routes are
strongly limited by the tentative timetable. In contrast, in the RTC problem the actual
arrival and departure times may di�er substantially from the wanted ones. Conse-
quently, the number of feasible time periods grows too large to be handled e�ectively
by time-indexed formulation within the stringent times imposed by application, as ex-
tensively discussed in [13].

In disjunctive formulations, continuous variables are associated with the starting
times of the operations, whereas a con�ict is represented by a disjunctive precedence
constraints, namely, a pair of standard precedence constraints at least one of which must
be satis�ed by any feasible schedule. The disjunctive graph ([1]), where disjunctions are
represented by pairs of directed arcs, can be associated to any disjunctive formulation
and exploited in solution algorithms. The disjunctive formulation associated can be
easily transformed into a Mixed Integer Linear Program (MILP) by associating a bi-
nary variable with every pair of (potentially) con�icting operations and, for any such
variables, a pair of big-M precedence constraints representing the original disjunction.
These constraints contain a very large coe�cient and they tend to weaken the overall
formulation and this is mainly the reason why (TI) formulations were introduced.

The connection between railway tra�c control problems, job-shop scheduling and
corresponding disjunctive formulations was observed quite early in the literature. How-
ever, a systematic and comprehensive model able to capture all the relevant aspects of
the RTC was described and studied only much later in the Ph.D. thesis by Alessandro
Mascis [14] and further developed in [15]. In these works, the authors also introduce
a generalization of the disjunctive graph that they call alternative graph but referred
here simply as disjunctive graph. After these early works there has been a �ourishing
of papers representing the RTC by means of disjunctive formulations and exploiting
the associated disjunctive graph. Recent examples can be found in [7], [8], [9], [17].
A comprehensive list of bibliographic references is out of our scope and again we refer
to the above mentioned surveys. The great majority of these papers, however, only
use the disjunctive formulation as a descriptive tool and resort to purely combinatorial

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 429

heuristics to solve the corresponding RTC problems. The explicit use of the disjunctive
formulation to compute bounds is quite rare, and typically limited to small or simpli-
�ed instances. Examples are [13], which handles small-scale metro instances, and [17],
which introduces several major simpli�cations, drastically reducing the instances size.

So, methods based on mathematical programming are rarely applied to solve real-
life instances of the RTC problem: time-indexed formulations tend to be too large and
often cannot even generate a solution within the time limit; big-M formulations tend
to be too weak and they can fail to produce feasible solutions within the time limit.

In this presentation we introduce a new modelling approach to RTC and a solution
methodology which allow to overcome some of the limitations of the standard big-M
formulations and solve to optimality the corresponding big-MMILP within the stringent
running times imposed by the application for a number of real-life instances in single-
track railways. The methodology is based on a structured decomposition of the RTC
into two sub-problems: the Line Tra�c Control Problem (LTC) and the Station Tra�c

Control Problem (STC). The LTC amounts to establishing where potentially con�icting
trains should meet along the network. When dealing with single-track lines, this may
only happen in stations (or similar infrastructures). The STC problem is the problem
of routing and scheduling trains in a station (in real-time). The LTC problem and the
STC problem give raise to distinct sets of variables and constraints, which are then
solved in a joint model by row and column generation.

The decomposition has two major advantages. First, the number of variables and
big-M constraints is drastically reduced with respect to the standard big-M formula-
tions. The second advantage is that we have some degrees of freedom in modelling
the STC problem. Indeed, we will show that the (general) STC problem is NP-hard.
However, in some cases of practical impact, simpler models can be considered, leading
to polynomial cases: we will describe one such case, very common in practice. Actually,
since the lines may contain quite di�erent stations' layouts, di�erent models can/must
be applied simultaneously.

Interestingly, this decomposition resembles the normal practice of railway engineers
to distinguish between station tracks and line tracks (see, e.g. Conte 2007) and of
actually tackle the two problems separately.

This decomposition approach has been successfully applied in a rescheduling system
operating a number of single and double track lines in Italy [12].

References

[1] Balas, E., Machine sequencing via disjunctive graphs, Operations Research 17
(1969) pp. 941�957.

[2] Balas, E., Disjunctive programming, Annals of Discrete Mathematics, 5, pp. 3�51,
1979.

430 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

[3] Borndörfer R., T. Schlechte, Models for Railway Track Allocation, ATMOS 2007
- 7th Workshop on Algorithmic Approaches for Transportation Modeling, Opti-
mization, and Systems, Eds. Christian Liebchen and Ravindra K. Ahuja and Juan
A. Mesa.

[4] Brännlund, U., P.O. Lindberg, A. Nou, J.-E Nilsson, Railway Timetabling using

Lagrangian Relaxation, Transportation Science, Vol 32 (4), pp. 358-369, 1998.

[5] Caprara, A., M. Fischetti, P. Toth, Modeling and solving the train timetabling

problem, Operations Research,50 (5) 292, pp. 851-861, 2002.

[6] A. Caprara, L. Galli, P. Toth. Solution of the Train Platforming Problem, Trans-
portation Science, 45 (2), pp 246-257, 2011.

[7] Conte C, Identifying dependencies among dealys, Ph. D. Thesis, University of Göt-
tingen, 2007.

[8] Corman F., Rail-time railway tra�c management: dispatching in complex, large

and busy railway networks, Ph.D. Thesis, TRAIL Thesis Seriess T2010/14, the
Netherlands TRAIL Research School.

[9] F. Corman, A. D`Ariano, D. Pacciarelli, M. Pranzo A tabu search algorithm for

rerouting trains during rail operations, Transportation Research Part B 44 (2010)
175�192

[10] Dyer., M., L. Wolsey, Formulating the single machine sequencing problem with

release dates as a mixed integer program, Discrete Applied Mathematics, no. 26
(2-3), pp. 255-270, 1990.

[11] Luthi M., Improving the E�ciency of Heavily Used Railway Networks through In-

tegrated Real-Time Rescheduling, Ph. D. Thesis, ETH Zurich, 2009.

[12] C. Mannino, Real-time tra�c control in railway systems, Proceedings of Atmos'11,
A. Caprara and S. Kontogiannis (Eds.), OASICS Vol. 20, 2011

[13] C. Mannino, A. Mascis, Real-time Tra�c Control in Metro Stations, Operations

Research, 57 (4), pp 1026-1039, 2009

[14] Mascis A., Optimization and simulation models applied to railway tra�c. Ph.D.
thesis, University of Rome �La Sapienza", Italy, 1997. (In Italian).

[15] Mascis A., D. Pacciarelli, Job shop scheduling with blocking and no-wait constraints,
European Journal of Operational Research, 143 (3), pp. 498�517, 2002.

[16] J. Törnquist, Railway Tra�c Disturbance Management, Ph.D. Thesis, Blekinge
Institute of Technology, 2006

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 431

[17] J. Törnquist, J. A. Persson, N-tracked railway tra�c re-scheduling during distur-

bances, Transportation Research Part B 41, 342�362, 2007.

[18] Zwaneveld, P.J., L.G.S. Kroon, H.E. Romeijn, M. Salomon, S. Dauzere-Peres,
S.P.M. Van Hoesel, H.W. Ambergen, Routing trains through railway stations:

model formulation and algorithms, Transportation Science, 30 (3), pp. 181-194,
1996.

5

432 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A real world personnel rostering problem with complex objectives

Oddvar Kloster, SINTEF Applied Mathematics, Oslo, Norway

We consider a practical personnel rostering problem faced by a public transportation

company. The problem has some interesting objectives that we are not aware of

having been treated before.

The problem consists of assigning shifts to a group of drivers over a time period. Each

driver is to be assigned one shift on each day in the period. Except for shifts that

represent a day off, the available shifts are unique; each can be assigned only on one

specific day, and not to more than one driver. A number of day-off shifts are pre-

assigned in the plan, yielding a fixed free day pattern for each driver. Shifts for the

initial part of the period are also pre-assigned, providing a historical plan that must be

sensibly continued.

Each shift has a start time, an end time and two durations: the work time and the

driving time. Driver can express preferences as to which shifts they like or not,

yielding a positive or negative preference value for each shift /driver pair.

The chief hard constraints are:

 Driver/ shift compatibility

 The accumulated work time for a driver may at no time deviate more than 40h

from the nominal value

The objectives considered are:

 Maximize the preference values of the shift /driver assignments, fairly among

the drivers

 Penalize large deviations of the accumulated work times from the nominal

values at the end of the period

 Minimize the number of days off assigned in excess of the free day patterns

 Avoid many similar (by start and end time) consecutive shifts

 Avoid violations of the EU work and driving time regulations, plus rules set

by local agreements

We solve the problem using local search. The following operators are used to modify

the solution:

 Replace the shift assigned to a cell (driver/day pair) with an unassigned shift

 Swap the shift assigned on one day between two drivers

 Swap the shifts assigned on two distinct days between two drivers

 Swap the shifts assigned on a range of three or more consecutive days between

two drivers

To establish an initial solution, we start with an empty solution, where all assignments

not initially fixed are set to a day off. We make a few passes of applying the Replace

operator in each cell, only accepting improving changes. We then move to the main

search phase.

The main search is a focused tabu search. Each objective is responsible for identifying

focal points, i.e. areas where the incumbent solution could be improved, and estimate

the possible associated gain in objective value. In each iteration, the focal point with

the highest estimated gain is selected. A neighborhood is generated by restricting the

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 433

full set of solutions defined by the above operators, in two ways. Firstly, the solution

must be modified in a region given by the selected focal point (e.g. a particular driver

or day range). Secondly, the objective that generated the focal point must be improved

locally in that region. This eliminates many solutions that need not be evaluated by all

constraints and objectives. The best solution in the neighborhood is chosen as the new

incumbent solution. A tabu criterion based on the recently modified cells is used to

further reduce the neighborhood and to avoid cycling.

The major motivation for solving this problem is to increase driver satisfaction by

allowing them to express their duty preferences and satisfying those preferences. Thus

modeling the preference satisfaction objective correctly is vital to the

implementation's success, and we present it in more detail.

There are several requirements for this objective:

 The basic effect is to maximize each driver's total preference for his assigned

shifts

 If not all drivers can get their preferred shifts, the good assignments shall be

distributed fairly among the drivers

 A driver should benefit from being flexible, that is, giving preferences that are

easy to satisfy, as this also helps satisfying other drivers' preferences

 A driver should not be able to play the system, that is, benefit from expressing

preferences that are not real

We propose the following objective formulation:

For each driver and day, define the driver's luck with the day's shift assignment as

 . is the actual assignment's preference value, and

∑

 is

the expected preference value, assuming that each compatible shift for that day is

equally probable.

Let be the sum of daily luck values over the period for driver . Then we wish to

maximize each value in { }, while also minimizing inequality among the values.

Let be a non-decreasing sequence of positive numbers with , and

let be the values in { } sorted from high to low. The total preference to be

maximized is defined as ∑

 .

We argue that this objective definition satisfies the requirements above.

Another objective of interest penalizes violations of the EU work and driving time

regulations. This objective is expensive to evaluate due to the rules' complexity. In

each week, a driver's plan must contain a weekly rest period (from one shift's end time

to the start time of the next) of sufficient length. Several aspects of the rules make the

choices of rest period in different weeks interdependent:

 There is a limit on the maximum time between rest periods in consecutive

weeks

 A rest that spans the border between two weeks can be assigned to either

week, but not both

 A rest can be shorter than the normal length, but only if the next rest has at

least normal length, and providing that the reduction is compensated over the

next three weeks

Testing whether a solution has a legal weekly rest assignment requires us to perform a

costly tree search. This leads us to putting this objective among the ones to be

evaluated last.

434 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

We present results on real life problem instances covering up to 46 drivers over an 8

week period. User reports on the quality of the solutions produced during pilot tests

are favorable.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 435

Demonstrations

436 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

An Intelligent, Interactive & Efficient Exam Scheduling

System (IIEESS v1.0)

Zhu Chunbao and Tha Nu

School of Engineering, Nanyang Polytechnic, Singapore

Tel: (65) 65501808, Fax: (65) 6454 9871

Email: ZHU_Chun_Bao@nyp.gov.sg

Abstract The purpose of this paper is to introduce and demonstrate an exam

scheduling software system that performs efficient, accurate and robust solution

searching to solve large and complex exam scheduling problems. The paper

describes the main features of the system and in particular the test paper

conflictive analysis method that can provide a highly efficient data model to

significantly improve search efficiency and interactivity.

Keywords Exam timetable scheduling, test paper conflictive analysis, swarm

intelligence, indirect clash-checking

1 Introduction

The IIEESS v1.0 is an intelligent, interactive & efficient exam scheduling system

designed and developed to solve large and complex exam scheduling problems

using the patent pending technologies (Zhu Chunbao, 2008, 2010). The software

solution can be applied to schools, institutions, universities and training centers

which need to schedule examination activities and allocate venue resources to

facilitate these activities.

Traditional exam scheduling systems directly examine the vast amount of

student registration data for checking student conflicts and constraint violations

repeatedly during solution searching cycles. This is not efficient and not robust

particularly when iteration based search algorithms are used, such as GA and

ACO based systems (Shu-Chuan Chu, Yi-Tin Chen, Jiun-Huei Ho, 2006). As

results, computer runtime is lengthy (Nelishia Pillay and Wolfgang Banzhaf,

2007), such as for example, it takes 4 ~ 5 hours for the program to search for a

solution.

Unlike direct clash checking, the IIEESS v.10 system firstly carries out the

test paper conflictive analysis, which yields a conflictive coefficient matrix n×n

and then further creates the mutually exclusive paper lists MELk (k=0 to n, n is the

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 437

mailto:ZHU_Chun_Bao@nyp.gov.sg

number of exam papers). Note that the number of elements in MELk, denoted

NMELk is much less n. The system then indirectly examines the conflictive

coefficients in MELk for student conflicts in solution searching cycles, rather than

directly examining the huge amount student registration records and original

constraints imposed. The system also utilizes the conflictive coefficients to

minimize constraint violations to further increase the system’s efficiency and

accuracy.

Because the number of exam papers n (say hundreds) and NMELk (say tens)

is much less than the number of student registration records (tens thousands to

millions), the new system enjoys high efficiency, accuracy and robustness. Our

computational experiments show that the IIEESS v1.0 system is much faster than

direct-clash-checking systems. The high efficiency enables the new system not

only to provide fast auto-searching, but also to facilitate the system with user-

friendly and truly effective drag-&-drop features which are critically important for

planners to perform manual amendments to the auto-generated schedule.

The system provides a powerful automatic venue resource allocation

engine and user-friendly drag-&-drop features as well for facilitating the

scheduled examinations.

2 The Method of Test Paper Conflictive Analysis

To simplify the explanation of the paper conflictive analysis, Fig. 1 utilizes two

test papers, Paperi and Paperj for illustration purpose. The set of students, who

take Paperi and Paperj denoted SPi and SPj respectively. The intersection of the set

SPi and the set SPj, is denoted as SPi,Pj.

Paperi CPi, Pj

SPi SPj

Paperj

SPi,Pj

Fig. 1 Test paper conflictive coefficient

It is important to note that the candidates, if any, in the intersection of the Set SPi

and Set SPj are common students who take both Paperi and Paperj. If SPi,Pj is not

empty, i.e., the number of students in the intersection set SPi,Pj is large than zero,

we conclude that Paperi conflicts with Paperj. By conflicts, we mean that the

Paperi and Paperj cannot be scheduled at same period of time because they have at

438 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

least one common student. In other words, Paperi and Paperj are mutually

exclusive each other.

Indirect Constraint Evaluation Method

In scheduling, it is convenient for the search engine (program) to examine the

original constraints imposed to avoid constraint violation, which is “direct-

constraint-checking”. Indirect constraint evaluation method performs the task in

two separate steps. First step is to study the event conflictive features among all

events according to the original constraints imposed. Output of the first step is a

short checking list. The second step is to check the short checking list rather

checking the original constraints imposed to avoid constraint violation in solution

searching cycles.

Note that the first step is one time operation before solution searching; the

second step is to be repeated in solution searching cycles. Because generally for

large and complex ETPs, the short checking list is much shorter than the original

constraints imposed, therefore the indirect checking method enjoys much higher

efficiency, accuracy and robustness. In this paper, the short list used to check

student conflicts is constructed using the test paper conflictive coefficients which

will be described as follows.

The test paper conflictive coefficient

It is convenient to use a single numerical number (integer) to describe the

conflictive relation among test papers. We utilize the paper conflictive coefficient,

CPi,Pj to measure how two test papers are conflictive each other, where the indexes

Pi and Pj refer to any two test papers in the schedule. For example, CPi,Pj is the

paper conflictive coefficient for Paperi and Paperi as shown in Fig. 1. In general,

for every two papers, Paperi and Paperj, the paper conflictive coefficient, CPi,Pj can

be obtained as follows: CPi,Pj = |SPiPj|. Where SPiPj is the intersection of the

student set for Paperi and Paperj; and |SPiPj| denotes the cardinality of the

intersection set SPiPj.

Fig. 2 shows that the exam events can be more efficiently scheduled using

test paper conflictive coefficients.

Time

Pj

Pi

Pj

Pi
t

Time Window

Pj

Pi

(CPi,Pj >0)
(CPi,Pj=0)(b)(a)

Fig. 2 Exam event scheduling using test paper conflictive coefficients

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 439

For example, if CPi,Pj is equal to zero, Paperi and Paperj are independent each

other; which means that they can be scheduled at same time slots or at a different

time slot but with overlapped period, as can be seen in Fig. 2 (b); otherwise Paperi

and Paperj are mutually exclusive, which means that they cannot be scheduled at

same time, there must be a time gap (t>0) between the two exams, shown in Fig.

2 (a).

The quantitative value of the paper conflictive coefficient, CPi,Pj, is

important for the system to evaluate soft constraint violations. For example, if two

mutually exclusive exam papers, such as Paperi and Paperj, are scheduled with a

narrow time gap (t), which will result in B2B constraint violation, or “Multiple

Exams A Day Conflicts” - the multiple papers are scheduled on the same day, the

system has to examine CPi,Pj which is the number of students involved. It is

necessary to minimize the total number of students who are scheduled to do

multiple papers within one day.

Fig. 1 and Fig. 2 show two test papers for illustration on how to use a

paper conflictive coefficient to measure the conflictive grade. In practice, the

number of test papers, denoted n, can be quite large. Therefore, it is necessary to

express the conflictive relations among n papers, that is, P1, P2, … Pn-1, Pn; the

matrix of the conflictive coefficients among n papers is introduced, its denotation

is . Where is an n×n matrix expressed as = [Ci, j] n × n. Where, the element

Ci,j is the conflictive coefficient for Paperi and Paperj. Let Ci,j = 0 if i=j; because a

paper can never be conflictive or mutually exclusive with the paper itself. It is

noted that Matrix is symmetrical, that is, element Ci,j = Cj,i because conflictive

nature between Paperi and Paperj is same as the one between Paperj and Paperi.

The paper’s mutually exclusive paper lists

Furthermore, we remove the elements whose value is zero from in Matrix , we

can get a shorter conflictive coefficient list and then obtain a mutually exclusive

paper list for every paper as shown in Fig. 3.

Paper 1

Paper 2

Paper n

. . .

Paper 3

. . .

. . .

. . .

. . .

. . .

. . .

1,1 1,2 1,3 1,p1Np

 2,1 2,p2Np

 n,1 n,2 n,3 n,pnNp

. . .

. . .

. . .

. . .

Paper i

. . .

 1,j

 2,j

. . .

. . .

. . . 3,1 3,p3Np

. . . i,1 i,2 i,3 i,piNp
 i,j

. . .

Fig. 3 The mutually exclusive paper lists

440 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

For example, for Paperi, its mutually exclusive paper list is represented using a list

of value pairs, each being denoted Pi,Pj as Pi,Pj = <Pj : CPi,Pj> .

The element Pi,Pj is called <paper index - conflictive coefficient> value

pair. Fig. 3 shows the mutually exclusive paper lists in form of the value pairs,

Pi,Pj. Note the subscript, i = 1 to n, where n is the number of total test papers; j =

1 to piNp, where piNp is the total number of conflictive papers which are

conflictive with Paper Pi. As can be seen from Fig. 3, the value of piNp varies. In

general it is much less than n in most of the cases. An exemplary value of the

value pair P10, P20 is <P20:400>, which means that paper P10 is conflictive with the

paper P20, and the number of students who take both paper P10 and paper P20 is

400.

As can be seen from Fig. 3, the value pair Pi,Pj is used to construct the

mutually exclusive paper lists. For paper Pi, its mutually exclusive paper list MELi

is expressed as follows.

 MELi = { i,1, i,2, i,3, . . . i,j . . . i,PiNp-1, i,Pi Np } (1)

It is the mutually exclusive paper list MELi that is used in the IIEES 1.0 system

for clash-checking. That is, if T(Paperi) denotes the time slot scheduled for Paperi,

T(Paperj) denotes the time slot scheduled for Paperj, for any Paperj which is in

Paperi’s mutually exclusive paper list MELi, following student conflict free

constraint must be satisfied.

 T(Paperi) T(Paperj) (2)

If the number of students taking paper Pi, is PiNp, say 500 students, that is, who

were enrolled with Paperi as shown in Fig. 1, and the number of students taking

Paperj is 400, traditional direct clash checking method has to make massive

comparisons 500×400 = 200,000 in order to find if there is any student conflict.

However, using the new indirect clash checking method, the system only needs to

check whether the Paperj is in Paperi’s mutually exclusive paper list MELi, if

answer is yes, Paperj and Paperi cannot be scheduled at same time due to student

conflicts.

It should be highlighted that to check student conflicts using the indirect

clash checking method, the number of comparisons is PiNp, which is the length of

Paperi’s mutually exclusive paper list MELi. Typical value of PiNp for a medium

sized exam scheduling problem, is tens, say 0 to 20, which is much less than PiNp

× PjNp, say 200,000 as described previously. As the result, the new indirect

constraint checking method is many times (i.e., 10,000) faster than traditional

direct constraint checking for the example illustrated in Fig. 1.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 441

3 The System Architecture and Software Modules

The IIEESS 1.0 system consists of three functional modules: 1.) input module, 2.)

exam scheduler, and 3.) reporting module, as shown in Fig. 4. The input module

consists of a data loader that down-loads student registration data from external

sources such as databases or other forms of data storage. The input module also

stores into the internal storage the exam scheduling information such as exam

papers, venue facilities, and time slots as well as constraint information.

Once registration data are loaded into the system, the test paper conflictive

analyzer will performs data pre-processing, test paper conflictive analysis in

particular, and store the paper conflictive information for the exam scheduler to

use. The scheduler contains an internal storage, a timetable scheduler and venue

resource allocation module. The reporting module provides functions to upload

the exam schedule solution to legacy database such as exam management system,

and it can also generate various exam timetable reports for trail release or formal

publication.

Data loader

Data convertor

Input Module Exam Scheduler

Student

Registration

db

AI/Scheduling

Parameters

Venue Resource

Allocation

Internal Data Storage

Reporting Module

Student

registration data

 exam timetables

 invigilation

duties

 . . .

Exam
Management db

Exam

schedule

reporter

Exam papers

Venue facilities

Time slots

Constraints

Data

Up-loader

Existing

reporting tools

Other data

sources • External data

sources

• Legacy apps

External Data Sources

Paper Conflictive

Analyzer

Timetable Scheduler

AI Exam Scheduler

Fig. 4 IIEESS 1.0 System Architecture

4 Input Data

The input data to the IIEESS v1.0 system are categorized as follows: 1.) student

registration data, and 2.) exam scheduling information. The student registration

data describe “who studies what and in which group?”, i.e., the candidates-papers

relationships, which is critically important because the exam scheduler has to

generate a conflict-free timetable solution. The exam scheduling information

includes the following:

442 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

1.) Exam paper information and related constraints

2.) Venue facilities and capacity/availability constraints

3.) Time slot specification

4.) Soft constraints

Student registration data

The student registration data can be presented and stored in many different forms.

The format adopted by the IIEESS 1.0 is as follows.

<Student Admin No> <Module Code> <Module Group>

The school name and campus code in Fig. 5 are specific in our school and for

venue resource allocation use. Note that the student admin number, module code

and module group must be unique in the schedule.

Fig. 5 Student Registration Data

Time Slot Specification

The planning period must be specified before the scheduling. Typical time slot

specification is shown in Fig. 6. Note that in the exam scheduling, time is

represented in form of integer numbers (namely slots). The numerical numbers are

mapped back into real time for reporting purpose after schedule is complete.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 443

Fig. 6 Time Slot Specification

Test Paper Information

The format of the test paper information in the IIEESS 1.0 system is shown in Fig.

7, which includes school code, paper ID; paper title; duration; and list of modules

covered in the exam paper. The No. of students will be auto-counted by the

system according to the student registration data set. Note that paper IDs must be

unique within the whole schedule.

Fig. 7 Test Paper Information

5 Test Paper Conflictive Analyzer

After the student registration data and test paper information are loaded into the

IIEESS 1.0 system, the system will perform test paper conflictive analysis which

yields the mutually exclusive paper lists for every test paper as shown in Fig. 8.

 For example, the paper titled “Materials Technology” with paper ID

“EGC105”, has a mutually exclusive paper lists as follows.

444 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

MELEGC105 = EGB205:1, EGF212:1

This states that the paper EGC105 is mutually exclusive with EGB205 and

EGF212. There is one common student who takes both EGC105 and EGB205;

another student taking both EGC105 and EGF212. The system will not schedule

the papers EGC105, EGB205 and EGF212 at same time to avoid the student

conflicts. The mutually exclusive paper lists are also used when the system

optimizes the searched solutions by minimizing the total number of common

students involved in back-to-back (B2B) and multiple-papers-a-day (MPD)

conflicts.

Fig. 8 List of mutually exclusive paper lists and conflictive coefficients

6 Exam Timetable Scheduler

The main GUI of the IIEESS v1.0 scheduler is shown in Fig. 9. The main features

of the exam scheduler module are listed as follows.

 Load exam scheduling data and constraint information

 Auto-generate exam timetable solution

 Clash-checking and optimization support for manual operations

 Save searching results

Fig. 10 shows the drag-&-drop features provided for manual operations. Note that

as the clash checking and constraint evaluation speed of the IIEESS 1.0, the

system is generally many thousand times faster than the existing direct-

clash0checking systems, it can provide efficient and effective support for manual

operations. Typically the system can confirm a manual alteration made to the

schedule in few micro-seconds, whereas old systems can take several minutes (as

long as 30 minutes) to confirm a change made to the schedule.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 445

Fig. 9 IIEESS v1.0 Main –Scheduler

Fig. 10 Drag-and-drop features for manual operations on a schedule

7 Venue Resource Allocation Module

The un-facilitated exam activities which are scheduled using AI scheduler are then

facilitated with venue resources by the venue allocation module (see Fig. 11). The

module provides an auto searching mode and a manual drag-&-drop feature for

manual venue allocation.

446 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The fully facilitated exam schedule is saved a file as a final solution that is ready

for reporting or exporting to the legacy database system.

Fig. 11 Drag-and-drop features for resource allocation

8 Exam Timetable Reporting

There are two ways to generate the exam schedule reports. Firstly, the IIEESS 1.0

system can upload the schedule solution to a legacy database if any, so that the

existing reporting tools can be used for the students and staff to access the exam

schedule, as can be seen from Fig. 8. Secondly, the system can generate the

required exam timetables directly using solutions created by the system, as can be

seen from Fig. 12 and 13.

9 Main Features

1.) Most suitable for Large exam scheduling problems, with complex cross

school/department registrations (no of candidates can be as high as many

thousands), solutions are accurate and robust.

2.) User-friendly registration data entry and system parameter setting; ease

constraint and scheduling requirement specification.

3.) Fast solution searching (runtime is within few minutes for a sizable exam

scheduling problem).

4.) User-friendly drag-&-drop features, conflict checking is done in few

micro-seconds.

5.) Advanced reporting and integration tools for schedule output and statistics.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 447

Fig. 12 Export the exam schedule to database

Fig. 13 Exam Timetable Schedule Report

10 Hardware/Software Requirements

Hardware: IBM PCs, laptops or equivalents; monitor resolution 1680x1060.

Software: MS Windows XP or above, MS .NET framework 2.0, or above,

 MS Office 2005 or above.

448 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

11 Conclusions

The IIEESS v1.0 system is highly efficient; it is much faster than traditional

direct-clash-checking systems in terms of solution searching and constraint

validation. The system particularly performs well in scheduling large number of

exam activities with large number of candidates who registered with multiple

modules (papers) cross schools or departments. The runtime for a sizable exam

scheduling problem is extremely fast, e.g., in few minutes.

The system is truly interactive. It provides user-friendly drag-&-drop

features for the planners to book a time slot for an exam before scheduling or to

amend the schedule after scheduling. When booking a slot for an exam or amend

the schedule auto-generated using the system, full supports will be provided by

the IIEESS v1.0 system, such as clash-checking and optimizing solution searching

and satisfying constraints imposed. The changes made can be confirmed in few

micro-seconds. The new system is transparent and robust. The IIEESS 1.0 system

is always able to generate a solution. If no complete solution exists, the system

generates an in-complete solution and indicates the un-scheduled papers and

displays reasons why they cannot be scheduled, such as like conflict constraints

being imposed.

Although the IIEESS 1.0 system is designed for exam scheduling, the new

method and patent technology can be applied into a wide range of other

applications, such as transportation planning, sports activity scheduling, vehicle

routing and man power scheduling in various production and service industries

where event conflictive features and relations must be analyzed before solution

searching.

References

Nelishia Pillay and Wolfgang Banzhaf, (2007). “A Genetic Programming Approach to the

Generation of Hyper-Heuristics for the Incapacitated Examination Timetabling

problem”, in Progress in Artificial Intelligence, 13
th
 Portuguese Conference on

Artificial Intelligence, EPIA 2007, Springer, ISBN: 978-3-540-77000-8, pp.223-

234,

Asmuni, H., Burke. E.K., Garibaldi, J.M. (2005). “Fuzzy Multiple Ordering Criteria for

Examination Timetabling”, vol.3616, pp.147-160. Springer, Heidelberg.

M. Dorigo, and V. Maniezzo, and A. Coloni. Ant System, (1996). “Optimization by a

Colony of Cooperating Agents”. IEEE Trans. Sys., Man, Cybernetics 26(1996) 1,

p29-4.

Goldberg, David E. (1989), “Genetic Algorithms in Search Optimization and Machine

Learning”. Addison Wesley. pp. 41. ISBN 0201157675.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 449

Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of IEEE

International Conference on Neural Networks. IV. pp. 1942–1948,

ICNN.1995.488968.

Kennedy, J.; Eberhart, R.C. (2001). Swarm Intelligence. Morgan Kaufmann. ISBN 1-

55860-595-9.

Shi, Y.; Eberhart, R.C. (1998). "Parameter selection in particle swarm optimization".

Proceedings of Evolutionary Programming VII (EP98). pp. 591–600.

Eberhart, R.C.; Shi, Y. (2000). "Comparing inertia weights and constriction factors in

particle swarm optimization". Proceedings of the Congress on Evolutionary

Computation. 1, pp. 84–88.

Shu-Chuan Chu, Yi-Tin Chen, Jiun-Huei Ho, (2006). Timetable Scheduling Using

Particle Swarm Optimization, Proceedings of the First International Conference on

Innovative Computing, Information and Control (ICICIC'06), 0-7695-2616-0/06, ©

2006 IEEE.

UniTime LLC, Examination Timetabling Problem Description, © 2008 - 2011 UniTime

LLC, http:// www.unitime.org/exam_description.php.

Examination Timetabling Problem Description,

http://www.unitime.org/exam_description.php

Zhu Chunbao, (2008). US patent No. 7,447,669, “Method and System for Timetabling

Using Pheromone and Hybrid Heuristics Based Cooperating Agents”, November

4, 2008.

Zhu Chunbao, (2010). PCT Patent Application Number PCT/SG2010/000388, “Method

and System for Examination Timetable Scheduling Using Test Paper Conflictive

Analysis and Swarm Intelligence”, November 1, 2010.

450 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.unitime.org/exam_description.php
http://www.unitime.org/

Aspen Scheduler: a Web-based Automated

Master Schedule Builder for Secondary

Schools

Baiyun Tao, Rick Dwyer

Follett Software Company/X2 Development Corporation, Hingham, MA, USA

btao@FollettSoftware.com

rdwyer@FollettSoftware.com

1 Introduction

Building a master schedule involves assigning courses, teachers and rooms to time

slots, maximizing usage of resources and fulfilling student course requests. It is

one of most complex tasks performed by administrators at a school each year.

This is particularly true for secondary schools in the United States where the

number and variety of constraints (such as multi-day rotation, combined courses,

room capacities, teacher teaming, and student grouping, etc.) increases the

complexity of the scheduling process.

Designed to accommodate both large and small schools with the most complex

schedule needs, the system described here, Aspen master schedule builder,

implemented by X2 Development Corporation, successfully deals with producing

a satisfactory and efficient solution from the large solution space in a reasonable

amount of time, while at the same time handling the usability, flexibility and

completeness of the scheduling process (see Fig 1 for real life scheduling

examples).

2 System Overviews

Aspen master schedule builder is part of a Student Information System that is

completely web-based (see Appendix A for terms we use in this paper). It is a

Java 2 Enterprise Edition (J2EE) application that runs on Apache Tomcat web

server, uses Apache Struts framework, OJB and supports three database backend:

MySQL, SQL Server and Oracle.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 451

mailto:btao@FollettSoftware.com
mailto:rdwyer@FollettSoftware.com

Example School Scheduling Profile

School - 1
Schedule terms: Full year academic courses, semester elective courses
Number of days per cycle: 5
Number of periods per day: 7

Total number of courses: 172
Total number of staff: 53
Total number of rooms: 50
Total number of Students: 700
Number of requests per student: 7-10
Total number of student requests: 5,600
Total number of user specified rules: 29
Total number of sections in master schedule: 370

 Time for building master schedule: 2 minutes
 Time for loading students: < 1 minute

School - 2
Schedule terms: All courses are semester length
Number of days per cycle: 2
Number of periods per day: 8

Total number of courses: 314
Total number of staff: 102
Total number of rooms: 90
Total number of Students: 1,200
Number of requests per student: 8
Total number of student requests: 9,600
Total number of user specified rules: 109
Total number of sections in master schedule: 800

 Time for building master schedule: 10 minutes
 Time for loading students: 5 minutes

 School - 3
Schedule terms: All courses are semester length
Number of days per cycle: 10
Number of periods per day: 15

Total number of courses: 752
Total number of staff: 216
Total number of rooms: 253
Total number of Students: 4,200
Number of requests per student: 16
Total number of student requests: 67,200
Total number of user specified rules: 525
Total number of sections in master schedule: 3,500

 Time for building master schedule: 90 minutes
 Time for loading students: 45 minutes

*A special constraint: 4 lunch waves splitting over 3 periods

Fig.1. Real life scheduling examples

452 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

There are four main objectives used by Aspen master schedule builder to build a

schedule:

 1. Assign each section with an available teacher, an appropriate time slot and a

suitable room.

 2. Satisfy all hard constraints.

 3. Maximize the satisfaction of student requests.

 4. Balance student distribution cross different sections of the same course.

The system breaks the overall problem of building a master schedule into sub-

problems, find solutions for each of the sub-problem and combine them to reach

an overall solution. An example of a sub-problem is to schedule a section group, a

group of sections that are related to each other because of blocking rules (see

Fig.4.2) or tightly shared resources such as teacher and room.

The system first orders all sections by their difficulty to schedule. A section's

difficulty to schedule is determined by analyzing the related course's attributes,

teacher availability, room availability and other constraints of the section.

Sections are scheduled in rank order with the most difficult ones being scheduled

first. Section group is formed when a section is chosen to be scheduled based on

previous analysis. A section group contains one or more sections.

To schedule each section group, an iterative metaheuristic is used that combines

hill-climbing, simple random and greedy algorithms. Three key functions are

defined: search, validation and evaluation. The search function first finds potential

solutions to validate and evaluate. It starts with an initial solution and iteratively

works to find better ones. A good solution must be a valid solution – one that

meets all the hard constraints. A fitness function is used to check a solution

against all hard constraints to objectively determine its validity. Once a solution is

determined to be valid, its quality can be measured and scored. The quality of a

solution is determined by three primary measures: the number of student requests

satisfied, the enrollment balance cross sections of the same course, and the

flexibility of the solution, i.e. the ability for students to change sections. An

objective function evaluates the solution and assigns a value to the solution.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 453

Solutions then can be compared and the solution with smallest value is considered

as the best solution and will therefore be chosen for the section group.

While choosing a solution for the current section group, if the solution affects the

ranking of sections still to be scheduled, unscheduled sections are either re-

ranked or required resources will be reserved for the future.

When a solution cannot be found for the current section group without violating a

hard constraint, the system attempts to repair the schedule by moving resources

already scheduled to make the resources needed by the current section group

available. If such repair attempt is not possible, the system stops with appropriate

feedbacks to the user.

3 Key Features

3.1 Time Structure

Schools have their own unique ways to structure time based on the needs to

schedule. Successfully building a master schedule depends on an efficient and

flexible way to represent these unique time structures. The structure of a schedule

is defined by three core parameters: the number of terms per year (TPY), the

number of days per cycle (DPC) and the number of periods per day (PPD).

In addition, scheduling patterns are introduced to represent the valid ways to

schedule a course of a particular shape. It helps users visualize their schedule (See

Fig. 2). Patterns with similar shapes are grouped together as pattern sets, then

assigned to courses to define the list of possible time slots a course can be

scheduled into.

3.2 Input and Constraints

There are five fundamental input components to build and load a schedule:

Course, Student, Staff, Room and Request with each imposing a set of constraints

on the schedule. See Fig.3. for the most common constraints associated with each

type of input.

454 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig.2. Different types of schedule patterns

Input Constraint

Course Number of sections

 Valid schedule patterns

 Balance type cross section and subject

 Load priority used for conflict resolution for individual student

Student Student grouping code: house, team and / or platoon

 Unavailable time

 Load priority

 Enrollment weight

Staff Teacher assignments

 Preferred room and location

 Maximum number of rooms and locations allowed

 Maximum number of consecutive teaching periods allowed

Room Max capacity

 Department and location usage

Request Preferred section and / or teacher

 Partial content

 Inclusion

 Section type

Fig.3. Common constraints for each type of input

3.3 Rules

Rules are introduced to allow additional and more complex constraints on the

schedule. Rules can be defined as either hard or soft. Hard rules must be satisfied

in order for the schedule to be valid. Soft rules are satisfied whenever possible - it

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 455

is at the discretion of the system. The system will decide which soft constraint to

drop in the event of a conflict between soft constraints. The system can also drop

a soft constraint if the impact on the overall schedule is too costly such as a valid

solution cannot be achieved.

The system currently provides 27 different types of rules for the scheduling

process including both build rules and load rules (See Fig.4.1 and Fig. 4.2).

Although the system separates the build and load process. All load rules are

included and evaluated during the build process to ensure potential solution don't

violate the load rules.

3.4 Sandbox Approach

The system takes a sandbox approach to allow users to create and save multiple

scheduling scenarios within each school. Scenarios can be copied at any point to

serve as a back-up. Each scenario can include different set of students, courses,

teachers, and/or rules. Scenarios have their own master schedule that is built and

loaded independently of all other scenarios. Users can use different scenarios to

experiment with different constraints and even different types of schedules (See

Fig.5.).

Fig.5. Different scenarios

456 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Rule Name Rule Description

Bell - Course Restrictions Restrict courses for a particular bell schedule

Bell - Room Restrictions Restrict rooms for a particular bell schedule

Course - Alternates Schedule alternate courses for students upon conflicts

Course - Blocking Schedule a set of courses together following particular relationships

Course - Group Exceptions Specify the courses that can be excluded from any grouping

Course - Pattern Sets Restriction Restrict usage of patterns for a course

Course - Pull-out Allow student to be pulled out from one course to go to another

Course - Sequence Concurrent Schedule two courses in the same term for a student

Course - Sequencing Schedule a courses in a student's schedule for completion before the

start of another course

Course - Term Link Specify the list of courses that a student must be scheduled in

specified terms

Course - Terms Restriction Restrict usage of terms for a course

Room - Course Restriction Reserve rooms for a course

Room - Exceptions Exclude rooms from being used by a course

Room - Proximity Define room proximity

Room - Reservations Reserve rooms for courses

Room - Unavailable Room is unavailable for scheduling during these time slots

Room- Teacher Restriction Reserve rooms for a teacher

Student - Avoid Teacher Student should not be scheduled with specified teacher

Student - Student Relationship Student should be/not be scheduled with specified student

Teacher - Avoid Student Teacher should not be scheduled with specified student

Teacher - Common Planning Schedule teachers on a team into a common planning time

Teacher - Concurrent Allow a teacher to teach multiple courses concurrently

Teacher - Dovetail Use the minimum periods when schedule a teacher for partial course

Teacher - Max-in-a-row Reset Reset teacher's max-in-a-row count after a specified period

Teacher - Part-time Schedule part-time teacher with a minimum span of periods

Teacher - Reserve Time Block Reserve a time block in a teachers schedule from a list of possible

periods

Teacher - Unavailable Teacher is unavailable for scheduling during these time slots

Fig.4.1 Different types of rules

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 457

Fig.4.2 Detail of a course blocking rule

4 Conclusions

The system demonstrated here provides a complete solution to the scheduling

needs of secondary schools. It contains a flexible and friendly user interface with

simple patterns and easy-to-understand rules that captures the uniqueness of all

type of schedules. The fully automated solver accommodates complex scheduling

needs and produces high quality schedules in a reasonable period of time. It also

provides powerful tools to provide feedback and assist manual adjustments. In

addition, multiple scheduling scenarios can be built separately for a school and

then combined into an unified schedule.

458 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Appendix A. Glossary

Section: Section is an instance of a course. A section needs to be scheduled with

an available teacher, an appropriate time slot and a suitable room. A course has

one or more sections.

Time slot: A time slot specifies when a section is scheduled. It contains two

components: the schedule term and the day-period combinations within the

duration of the schedule term. For example, a section can be scheduled on day 1

period 1 and day 2 period 2 for the first semester of the year.

Build: Build is the process which assigns teachers, time slots and rooms to each

section in the master schedule. The build also ensures all hard constraints are

satisfied.

Load: Load is the process which schedules students into sections based on their

requests.

Bell schedule: A bell schedule specifies the starting time and duration of each

period during a day. A school can have more than one mutually exclusive bell

schedules used to schedule students in different grades or different campuses.

Partial course: A course that is not scheduled very day in the cycle and every

term in the year. For example, a semester course or a full year course that meets

only 3 days out of the 5 day cycle is considered as partial course.

Partial content: Students are allowed to take only a portion of a particular course.

For example, a student who fails the second semester of a full year course can

take just the second semester of the same course in subsequent year.

Inclusion: Inclusion students are special education students who are scheduled

into the same section with regular education students.

Section type: It is an attribute on both a section and a student request that allows

only some students to be scheduled into a particular section.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 459

A Open source timetable production system
for courses and examse

Ruben Gonzalez-Rubio · Balkrishna Sharma

Gukhool

Received: date / Accepted: date

Abstract Diamant is a software system used to manually or automatically produce

course and exam timetables at the Université de Sherbrooke, where it has been in use

since 2001. We have decided to publish Diamant in Summer 2012 as an open source

distribution. To be useful to other institutions, the source code must be modified as

little as possible to facilitate the integration of new algorithms and new input/output

formats. We present here how the program is organized and where modifications will

take place.

Keywords University Timetabling · Design Patterns · Diamant

1 Extended Abstract

Producing course and exam timetables with Diamant at the Université de Sherbrooke

has been done now, for more than 10 years, in different faculties. The course timetable

can use post-enrolment mode or curriculum-based mode. We have decided to publish

Diamant as an open source project to provide access to other universities that could be

interested in using it. We think that, in some cases Diamant can be used as it is. The

report [Gon07] is a detailed account of how timetables are produced at the Université de

Sherbrooke, and some of its external characteristics were also presented in [Gon10].The

timetables can be produced manually or automatically.

Diamant was designed by our research group εXit and the work was done by various

developers. It was developed in an iterative way, and functionalities were added ac-

cording to the users demands. The system is divided into two parts: one that takes the

Ruben Gonzalez-Rubio
Directeur du εXit Lab
Département de génie électrique et de génie informatique
Université de Sherbrooke
Tel.: +819 821 80 00 x 6 29 31
Fax: + 819 821 79 37
E-mail: Ruben.Gonzalez-Rubio@Usherbrooke.ca

Balkrishna Sharma Gukhool
Dpartement de génie électrique et de génie informatique
Universit de Sherbrooke

460 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

data from a database at the University, and formats the data in a way that Diamant

can read. The second part is using Diamant to produce the timetables. Here, we present

only Diamant, which is written in Java. In some cases, the software could be adapted

to particular needs by taking the source code and modifying it. However, the problem

with that approach is that there will be n different versions of the code. A second ap-

proach would be to apply, as much as possible, the open-closed principle, which means

that the code can be open to modifications by adding new classes but closed to other

modifications. This could be achieved by using the design patterns. The advantage is

that the code can be customized without having different versions, the objective being

to add only new classes. The classes needed for an implementation will be instantiated

at run time.

At the core of Diamant is the MVC pattern (Model, View, Controller); the Model

is a class containing a set of events, a set of instructors, a set of rooms and a set

of students. Furthermore, the Model contains also a timetable which consists of slots

(Periods), where Events will be assigned. The Model keeps the state of the timetable.

The Views give the user a visual representation of parts of the sets or the timetable. The

Controllers are there to take user interactions to change the Model, and when the Model

is updated, the View is also updated and the user can see the change on the screen.

The raw data used in the sets are only integers and strings, which helps to display

them in the Views. Manual operation is carried out by opening a dialog, from a menu,

the dialog is in fact a View, changing some data in the Model, and sending a feedback

to the users in a View. Automatic operation is triggered by selecting an optimisation

algorithm from a menu. The algorithm makes data assignments avoiding conflicts and

optimising when possible, and when no more optimisation is possible, the algorithm

quits and the Model is updated. The Model data is read from a file and written to a file,

that preserves the state of the Model, which can be the final state when the timetable

is finished.

Before publishing Diamant as it is, we are conscious of some of its disadvantages :

– First, that the code was implemented to satisfy the Université de Sherbrooke needs.

– The code is not homogenous, as it was written by various programmers.

– Finally, the system is in French only.

The last disadvantage is easy to change. To offer the application in other languages,

we think that we must provide resources to facilitate internationalization; we need to

have external messages in English and in French, as well as examples of how to work in

another language. The messages of each language will be stored in a language resource

bundle. So, normally no modification to the code is needed.

The first two disadvantages may need a large refactoring of the program. This

refactoring will be done in an iterative way.

Our two goals before doing the refactoring are:

– We must offer an program that can be used by other developers, in principle they

will add only new classes.

– The refactoring must reduce the class coupling, which is high in the current version.

These two goals are compatible. Diamant will be published as it is and new versions

containing the refactoring work will be published.

In the next section, we present some details of the system to illustrate how it is

organized.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 461

Details of the work

Basically, a timetable is prepared from data concerning the timetable: the timetable

itself, the events, the students, the instructors and the rooms. At the end, each event

is assigned to a Period in the timetable, for each event a room, an instructor and a

set of students are assigned. When the work is done manually, the assignments are

done by indicating each assignment via the GUI. For example, in a dialog box, it can

be indicated that an event will take place Monday at 13h00, and another Wednesday

at 14h00, and so on. In all dialog boxes, there are list of values where the user can

select one. By design there are no text boxes where any value can be typed. When the

work is done by the optimisation algorithm, it will allocate automatically all possible

assignments.

When trying to produce a timetable, conflicts can arise; so the system must indicate

this. In the case of automatically producing the timetable, the program tries to reduce

to a minimum the number of conflicts.

To explain the program, we distinguish the following parts:

– The input and output of data.

– The GUI and the manual data manipulation

– The optimisation algorithms

1.1 Using the design patterns

A design pattern is a general reusable solution to a commonly occurring problem within

a given context in software [GHJV95]. We are going to refer to some of these design

patterns.

We already mentioned that Diamant is organized using the MVC pattern (Model,

View, Controller). The Model is a big class it contains the data representing the state of

the timetable, those data are divided in classes SetOfX1 and a Timetable. The sets of

instructors, of rooms and of students are used as information that help decisions when

a timetable is produced. For example the characteristics of a room (size among others)

can help to assign the room to an event. The sets of events and the time table are used

to keep the state of the Model when a decision is taken.

There are various Views and various Controllers. The Views give the user a visual

representation of parts of the sets or the timetable. The Controllers are there to take

user interactions (a external change in the View) and send them to the Model, and when

the Model is updated the Views are also updated, and the user can see the change on

the screen.

For example in a View, that can be a dialog, it is possible to assign a instructor to

an event. That can be done by selecting the instructor name for this event in the View,

when the button ”ok” is pressed the action takes place, that means that the Controller

sends the name of the instructor to be assigned to the corresponding event in the Model

where the change takes place.

The Model gets its data from a file and at the beginning sends its current state of

the model to a file when some work is done. This work can represent the final state or

an intermediate state.

1 Where the SetOfX could be a set of events, a set of instructors, a set of rooms and a set
of students.

462 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The DTTStructure represents the timetable with its Model organized hierarchically

Figure 1. It can contains c cycles, each cycle contains d days (normally 5 days), that can

be seen as a week, in a day there can be s sequences, and each sequence can contain p

periods. There is no overlap in periods contained in a sequence, and there is no overlap

in sequences for a day. With this organization, it is possible to offer a very flexible way

to define a timetable. The periods can be seen as slots where events are assigned.

Fig. 1 The timetable hierarchy

Where the sets are lists of Objects that are defined for the type of its constituents.

1.2 The input and output of data.

The raw data (input and output) used in the sets are only integers and strings. This

helps to display them in the Views and a developer can read the files if needed.

We can have the following scenarios with the data:

– The data used in an other university are the same as that of Diamant, then there

is no work to do.

– The new data can be mapped onto the Diamant data; maybe some attributes have

another name. That can be done by reading the new data and put the data in a

file that can be read by Diamant.

– The new data are a subset of Diamant’s data, that means that some of the Diamant

data must be initialized to safe values; these values are safe when there are no

exceptions and the optimisation algorithm does not use these values.

– The new data contains new attributes, in which case these new attributes must be

part of the data.

The first three scenarios are easy to deal with. The last one, however will need

the usage of the Strategy pattern, Figure 2. In that pattern a Diamant file (one for

each type of data) can be read by one class, namely DiamantFormat and a different

format can be read by another class NewDataFormat. The readFile is a variable of type

ReadFileBehavior and each class in the Model has one. That means that the readFile

method can be fixed at runtime. The interface ReadFileBehaviour contains one method

readFile. The classes DiamantFormat and NewDataFormat implement this method, so the

variable readFile is used to call readFile without knowing which class is instantiated.

For each new format only new classes will be added.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 463

Fig. 2 Strategy pattern for reading files

1.3 The GUI and the manual data manipulation

The Model contains two types of data: immutable and mutable. The mutable data are

used to make assignments (see next subsection). All the other data in the Model are

immutable, that means that they do not change during program runtime. For example,

it is not necessary to change an instructor name by Diamant to produce a timetable. If

any change is needed on immutable data, it must be done outside Diamant. For example,

if an instructor name has an error, it must be changed somewhere else, possibly in the

database, then the files can be reloaded into Diamant. To add attributes to the Model,

there are new PropertyLists containing couples with each couple having the name of

the attribute and the value. So for example, in a University they add an attribute sex

for students. This can be done by adding a list of attributes to the students in that

list the new attribute will be a couple with the String sex and the value M or F. This

information can be used to set groups with an appropriated mix of students. The new

attributes must be also immutable. All the dialog boxes will implement interfaces and

this allows the addition of a new dialog box which can display the new attribute. Again,

modifications to offer new functionalities will be done by adding new classes.

1.4 The optimisation algorithms

The timetable is built by assigning events to Periods and assigning data to Events. In

fact, to make an assignment, Periods and Events contain instance variables, which are

lists. For example to assign an Event to a Period, the Event is added to the list; when

the Event is removed from the list, then the assignment is no longer valid. Manual

operation allows the assignment process by using dialogs, where choices are made by

selecting a value from a list and this changes the model. Automatic operation is started

by a menu where an optimisation algorithm is defined; when started it works on the

464 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Model. It makes assignments and removes assignments to minimize conflicts. When the

algorithm finishes, the View is updated, showing the current status of the timetable.

Also different optimisation algorithms can be implemented by a strategy as illus-

trated by Figure 3.

Fig. 3 The strategy pattern for optimisation algorithms

Each strategy can be instantiated when a menu item is activated; if the menus are

implemented by the command pattern, then when a new command is needed a new

class is written and the menu can be added to the configuration.

In some cases the algorithm could need the data in a different data structure, for

example instead of using the timetable of Diamant a simple matrix can represent the

days and the periods. That means that the data in the Model must be mapped onto

new structures, so the algorithm will be divided in three steps : mapping the Diamant

Model onto the new structure, the optimisation algorithm and mapping the result onto

the Diamant Model.

Conclusion

We think that the system Diamant could be used and extended for other universities.

Customisation can be done in a simple way without having to rewrite large parts of

the system. We will be glad to help other institutions to adapt Diamant to their special

needs. Finally the diamant URL is:

http://tictacserver.gel.usherbrooke.ca/exitopenprojets/

References

GHJV95. E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995.

Gon10. R. Gonzalez Rubio. Diamant: A timetable production system for courses and exams.
In PATAT’10, Belfast, Northern Ireland, August 2010.

Gon07. R. Gonzalez-Rubio. La production et la consultation d’horaires dans une université.
Technical report, Université de Sherbrooke, 2007.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 465

http://tictacserver.gel.usherbrooke.ca/exitopenprojets/projects?locale=en

School Time Tabling ITT software

Ilana Cohen-Zamir Doron Bar1

Abstract

We have developed software for automatic school timetable scheduling.

The system is flex and can handle different types of schools and requirements.

In addition, we developed complexity indicators for a given school. This may help

to predict if there is any solution, as well as serve as a comparable tool.

School timetable scheduling characteristics, complexity indicators, cloud

1. Introduction:

School scheduling in our country (Israel) is usually performed manually by a

school specialist. The process is assisted by a computer aided tool that performs

validation tests at every step, as well as supplies variety of information to help the

specialist with the tedious work. However, the actual scheduling steps are

manually planned by the specialists themselves.

The specialist cannot predict, if there is any solution for a given school dataset.

Usually, when they reach a dead-end, they simply replace the requirements.

We performed a full scheduling on several schools, supporting all their data flow:

we got the data on papers, and delivered the final web timetables and reports. We

found that we also could not predict the success of our software, when we got

school dataset. Therefore, we suggest complexity indicator for a given dataset.

These indicators may serve as a comparable tool, but they can also help school

principal to prepare their data set, at the early stage.

1Ilana Cohen-Zamir

Tel. 972-0775302938 972-523368710

ilanacohenz@walla.co.il

Doron Bar , Technion

Tel. 972-504039288

doron.e.bar@gmail.com

466 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

mailto:doron.e.bar@gmail.com
mailto:ilanacohenz@walla.co.il

2. Problem characteristic description:

At this section, we describe the special characteristic that we had to contend

with. For simplicity, we will refer to the case of 30 teachers, 6 days a week.

2.1. Teachers calendar system: a day-off for every teacher

In Israel schools run 6 days a week, but in our educational system all teachers

have at least one day off. It is called a "free day." This has a major effect.

Therefore, the scheduling task becomes dramatically harder.

2.2. General teachers weekly balancing:

In addition to the "free-day" system, in elementary schools teachers usually

can't take their day- off on some of the days: global-meeting days (e.g.

Sunday) as well as Friday. Therefore - instead of having in every day the same

amount of available teachers - some of the days may be overloaded with "too

many" teachers, and on other days there are "not enough" teachers to be

scheduled for the required lessons time slots. To make scheduling possible,

there must be minimum number of teachers that can work in every day. In

addition to this, Friday is a short day. So, there are too many teachers, that are

at school, but they "don’t have work" on this day.

2.3. Specific teachers weekly balancing:

In elementary schools teachers "days-off" scheduling and teachers

substitutions have a major effect on each other. This happens because when

the main teacher takes a day off, other teachers have to "fill" this day.

Therefore, all other class teachers have to be at school on this day, and they

cannot take this day off. Therefore, there is a long chain of effects between the

teachers that teach in the same class. This problem is critical in middle size

schools, while most of the class hours are taught by one teacher. The principle

is that the teachers have to "help" each other to fill each others day-off. For

example, we had a case that 2 sport teachers took the same day off. The result

was that most of the home class teachers could not take this day off at all. This

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 467

caused a chain of other effects, and we had to perform a special algorithm to

find a combination of possible teachers' days off (potential space of 306

options).

Note, this would not happen, when class work load is divided among several

teachers – as it is held in high schools and middle schools.

2.4. Part time teachers effect:

Part time professional teachers are frequently a bottle-neck: Arabic, Music and

Sport and English (as a second language) teachers often come only for two-

three days in a week. Also, these subjects usually must be taught in different

days. Therefore, in many schools all school scheduling is determined majorly

according to these teachers.

2.5. "Ofek Hadash" requirements:

Another new huge constraint was added recently: now in elementary schools

teachers cannot start work at the second hour or later or leave school earlier,

and their empty time slots must be minimized.

2.6. Classes calendars

In most of the classes at elementary schools the class calendar is fixed.

Students must leave after 5 hours, and although the teacher is available,

students are not there. Special education classes calendar is also fixed.

2.7. Split lessons and concurrent lessons

Recently, in some of the lessons, classes have to split into two groups with

two teachers for different subjects. This constraint means that an hour that

both teachers are available should be found. Another requirement is that

sometimes lessons in different classes have to be concurrent: i.e. few classes

have to be scheduled to the same time slot.

468 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

2.8. Grouping, clusters of courses and splits lessons:

In high schools in Israel, in contrast to other countries, schools classes

continue to be held as "home classes". But, most of the lessons are not

delivered to the class: N classes are grouped together, and then they are split

to M different group classes. M can be > N, < N or == N. This is a complex

system, and the description of this system is behind the scope of this article.

Fig 1. Example: 'second language' cluster displayed in home classes view.

Combining home-classes scheduling system with course classes scheduling is

needed, and we developed a hybrid model that combines two scheduling

systems.

3. Complexity measuring

While looking at different schools, we wanted indicators to be able to compare

between schools complexity, as well as to be able to compare between two

algorithms, or even between two specialists.

We look at problem complexity measurement not as one calculated number,

but as a vector of complexity separate indicators: 1, 2, 3, . . .I I I In

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 469

A school may be complex in some of the indicators, while it is simple in other

indicators. Therefore, we don’t want to "smash" them all to one "average"

number.

3.1. 1I - cluster lessons participants counter

This Factor takes into account the complexity of the cluster lessons.

qLRe Group of all required lessons.

Cij Number of classes that participate in lesson li

Tik Number of teachers that participate in lesson li

() () qLliTikCij
li liTikliCij

Re| TLMcMt ∈

×=∑ ∑∑

∈∈

totalL = ∑ ∈
li

qLli Re|

1I =
total

TLMcMt

L

• For schools, that has no clusters the value of this indicator is 0

• Complex clusters with, say 10 classed grouped into 12 teachers has

major effect on this complexity indicator.

• A lesson that is split to two teachers or two classes has a small effect

on this indicator.

3.2. 2I - requirements to availability to ratio

470 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

This factor computes a weighted average of the ratio between each

classteacher ∩ availability to the classteacher ∩ total required

hours.

Ltotal Total number of all required lessons at school

()()THRij Re ,
k

i j
hour

q
h

t c= ∑

 Total required hours of teacher it to class jc

()() ()()()THAij , ,
k

i k j k
hour

Available Available
h

t h c h= ∧∑

 Total available hours intersection

THRij

THAijijT =

cj

TR THRij totali = ∑

 Total teacher it required hours in all classes

j

THRij
TTi Tij

TR totali

= ×

∑ , THR 0only if ij ≠

 The average of specific teacher

2
i total

TR
 TTi

L
totali

I

= ×
∑

 Average of all teachers

First, for every couple, ,
i j

teacher classt c the ratio is computed.

Then an average is computed.

Here, for simplicity, the graph we show the ratio for the school as total

number:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 471

3.3. 3I - rooms requirements to availability to ratio

Similar factor, that computes a weighted average on all the rooms of

the ratio between each roomclass ∩ availability to the roomclass ∩

total required hours.

3.4. 4I -

This factor takes into account only the max of the ratio between each

classteacher ∩ availability to the classteacher ∩ total required

hours.

()()THRij Re ,
k

i j
hour

q
h

t c= ∑

 Total required hours of teacher it to class jc

()() ()()()THAij , ,
k

i k j k
hour

Available Available
h

t h c h= ∧∑

 Total available hours intersection

THRij
Tij

THAij
=

{ } = Max | Re (,)
cj i j

ij q t cM Max ratio for specific class

4
(0.8)

cj cj

if McjI
∀

= ≥∑

 Total number of all classes, with "bad" cjM

472 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

First, for every couple, ,
i j

teacher classt c the ratio is computed.

Then, only the max for each class is taken. Then the total number of the

classes, that their ratio is >= 0.80 , is counted. This is computed only

for teachers that don’t work every day.

3.5. 5I - class-lesson-day- constraints counter

Number of lessons that cannot be scheduled at the same day / Ltotal

(E.g. sport). Here, we only count lessons of different teacher.

3.6. 6I - percentage of constraints second indicator:

Number of lessons that must be scheduled in sequence / Ltotal

(e.g. science lab). Here, we only count lessons of different teacher.

3.7. 7I - Spreading of class Load:

Total number of classes that home class teacher has a day off, and that

the ratio between home teacher total hours to the total class hours is

0.8≥

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 473

3.8. 8I - days effect

This factor is relevant for the teachers "free-day" system.

Count for all classes that home class teacher has a day off: How many

different teachers must be at school, in the day-off of the home class

teacher. To calculate it, we use a simple method.

Example: if the home class teacher teaches 23/29 class lessons; and all

other lessons cannot be taught at the same day, then all other 5 teachers

must be at school at her day of. So, this class increases 8I by 5. Note,

8I is not normalized.

3.9. 9I - Data flexibility –

there are cases that data case be changed easily (like switching between

teachers or replays working days) , while in other cases the data

requirements are fixed. This indicator may be input to a table manually by

the user. We can't calculate in for a specific input data.

This indicators vector should be further investigated and improved.

4. Results , the software and conclusions

4.1. The existing process

Today, in our country, the scheduling tasks lasts a long time and it is

performed either by a dedicated internal school specialist - at high schools - or

it is outsourced to a specialist for a fee. Usually, the constraints are so

difficult, that the problem is not solved. Therefore, when the specialist reaches

a dead-end, (consulting with the school principal), he changes some of the

input data. In other words, in order to solve the problem, the problem is

changed. This trial by error process continues. Accordingly, during this

procedure, the input data is changed: some courses are re-substituted, some

474 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

teachers are switched, and some teachers' working days are changed. When

the scheduling reaches a dead-end, the specialist knows how to choose which

data re is a wide range of options to choose from, to replace the input data.

Specialists have developed heuristics not only to choose the next scheduling

steps: they also developed heuristics to choose which and how input data

should be replaced to make the scheduling "work".

This is one of the reasons why they don’t believe that this process can be

automatic.

In addition to this, there are also external sources for input data changes:

During the scheduling process, teachers' total hours budgets are often

increased or decreased by external cause.

Another common problem is that data is often updated after scheduling is

done: re-scheduling, is usually out of question, and therefore the "old" tables

are used ,and the new teachers cannot be utilized to the system efficiently.

4.2. Our Test cases

IttTimeTable has performed a full scheduling on several schools, including all

their data flow, and generated the tables, posters and reports. We got the data

on papers, and delivered the final timetables

Using this system enabled the schools to change the input data many times .

This would never be possible with the existing manual procedure. That is,

because of the clear fact that the specialist would not "throw away" all the

work he/she has already done, and re start it all over.

4.3. Results, and success ratio

External vendor scheduling specialists claim to promise to satisfy at least 80%

of the school requirements and constraints. We don't know the actual success

ratio.

IttTimeTable has scheduled 97%-99% of all the cells (a cell per hour) in the

tables. The remaining 1-2% were scheduled manually, using IttTimeTable

commands language.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 475

One of the surprises was that the size of the school had no effect on the

success ratio: larger schools did not result in lower success ratio. It seems that

the size of the problem was not a factor for the software success ratio.

4.4. The Software

Fig 2: example of a peace from the results

• The software can, also, get any given partial tables as input, and start the

algorithm from there.

• The software infrastructure is algorithm independent : We can replace the

algorithm. We have used it with several algorithms.

• The software is wrapped with another software, that helps the user to enter

the input in a simple way. It prepares templates for the specific type of

data, keeping the "engine" software as a general tool.

• The system functions as a cloud application (Software as Service).

The web site is does not fully function yet.

476 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

4.5. Conclusion

• Today, in our country, school scheduling specialists do not believe that

a computer program can perform the scheduling, and replace their wisdom.

• IttTimeTable success ratio is 97%-99%.

• IttTimeTable is currently being converted to a cloud application.

• IttTimeTable software is at beta phase, and we hope to be of valuable

service in this area.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 477

The Third International
Timetabling Competition

478 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The Third International Timetabling Competition

Gerhard Post, Luca Di Gaspero,
Jeffrey H. Kingston, Barry McCollum, and
Andrea Schaerf

Received: date / Accepted: date

Abstract This paper is the organizers’ report on the Third International Timetabling
Competition (ITC2011), run during the first half of 2012. Its participants tackled 35
instances of the high school timetabling problem, taken from schools in 10 countries.

Keywords High school timetabling· International timetabling competition

1 Introduction

High school timetabling is a long-established area of timetabling, but it has received
less scientific attention than some other areas, such as university timetabling. Its re-
search community has been fragmented, and very little data has been shared.

Over the last few years, a group of researchers has worked on this problem. There
is now an XML data format in which unsimplified instances and solutions of the
problem can be specified precisely (Post et al. 2012, 2010b), and a web site for eval-
uating solutions (Kingston 2010). Instances have been widely sought. At the time of
writing, 35 instances from 10 countries are available for download (Post 2011).

Building on this work and on two previous competitions (Paechter et al. 2002;
McCollum et al. 2007), and supported financially by the PATAT conference series,
EventMAP, and the Centre for Telematics and Information Technology at the Univer-
sity of Twente in the Netherlands, the Third International Timetabling Competition
(ITC2011) was run by the authors in the first half of 2012.

This paper is the organizers’ report on that competition.

Jeffrey H. Kingston
School of Information Technologies
The University of Sydney
E-mail: jeff@it.usyd.edu.au

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 479

2 Modelling high school timetabling

The competition used a data format called XHSTT in which high school timetabling
problems and solutions can be expressed. This format has been described previously
(Post et al. 2012, 2010b), and a full specification is available online (Kingston 2010).
An overview, omitting syntactic details, is given here for completeness.

An XHSTT file is an XML file containing onearchive, which consists of a set
of instances of the high school timetabling problem, plus any number ofsolution
groups. A solution group is a set of solutions to some or all of the archive’s instances,
typically produced by one solver. There may be several solutions to one instance in
one solution group, for example solutions produced by the same stochastic solver, but
using different random seeds.

Each instance has four parts. The first part defines the instance’stimes, that is, the
individual intervalsof time, of unknown duration, during which events run. Taken in
chronological order these times form a sequence called the instance’scycle, which
is usually one week. Arbitrary sets of times, calledtime groups, may be defined,
such as the Monday times or the afternoon times. Aday is a time group holding the
times of one day, and aweek is a time group holding the times of one week. For the
convenience of display software, some time groups may be labelled as days or weeks.

The second part defines the instance’sresources: the entities that attend events.
Resources are partitioned intoresource types. The usual resource types are a Teach-
ers type whose resources represent teachers, a Rooms type of rooms, a Classes type
of classes (sets of students who attend the same events), and a Students type of in-
dividual students. However, an instance may define any number of resource types.
Arbitrary sets of resources of the same type, calledresource groups, may be defined,
such as the set of Science laboratories, or the set of senior classes.

The third part defines the instance’sevents: meetings between resources. An event
has aduration (a positive integer), atime, and any number ofresources (sometimes
called event resources). The meaning is that the resources are occupied attending
the meeting forduration consecutive times starting attime. The duration is a fixed
constant. The time maybe preassigned or left open to the solver to assign. Each
resource may also be preassigned or left open to the solver to assign, although the
type of resource to assign is fixed. Arbitrary sets of events, calledevent groups, may
be defined. Acourse is an event group representing the events in which a particular
class studies a particular subject. Some event groups may be labelled as courses.

For example, suppose class7A meets teacherSmith in a Science laboratory for
two consecutive times. This is represented by one event with duration 2 containing
three resources: one preassigned Classes resource7A, one preassigned Teachers re-
sourceSmith, and one open Rooms resource. Later, a constraint will specify that this
room should be selectedfrom theScienceLaboratories resource group, and define the
penalty imposed on solutions that do not satisfy that constraint.

If class7A meets for Science several times each week, several events would be
created and placed in an event group labelled as a course. However, it is common in
high school timetabling for the total duration of the events of a course to be fixed, but
for the way in which that duration is broken into events to be flexible. For example,
class7A might need to meet for Science for a total duration of 6 times per week,

480 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1 The 15 types of constraints, with informal explanations of their meaning.

Name Meaning
Assign Resource constraint Event resource should be assigned a resource
Assign Time constraint Event should be assigned a time
Split Events constraint Event should split into a constrained number of sub-events
Distribute Split Events constraint Event should split into sub-events of constrained durations
Prefer Resources constraint Event resource assignment should come from resource group
Prefer Times constraint Event time assignment should come from time group
Avoid Split Assignments constraint Set of event resources should be assigned the same resource
Spread Events constraint Set of events should be spread evenly through the cycle
Link Events constraint Set of events should be assigned the same time
Avoid Clashes constraint Resource’s timetable should not have clashes
Avoid Unavailable Times constraint Resource should not be busy at unavailable times
Limit Idle Times constraint Resource’s timetable should not have idle times
Cluster Busy Times constraint Resource should be busy on a limited number of days
Limit Busy Times constraint Resource should be busy a limited number of times each day
Limit Workload constraint Resource’s total workload should be limited

in events of duration 1 or 2, with at least one event of duration 2 during which the
students carry out experiments. One acceptable outcome would be fivesub-events, as
these fragments are called, of durations 2, 1, 1, 1, and 1; another would be three sub-
events, of durations 2, 2, and 2. This is modelled by giving a single event of duration
6. Later, constraints specify how this event may be split into sub-events, and define
the penalty imposed on solutions that do not satisfy those constraints.

The fourth and last part of an instance contains an arbitrary number ofconstraints,
representing conditions that an ideal solution would satisfy. There are 15 types of con-
straints, stating that events should be assigned times, prohibiting clashes, and so on.
The full list appears in Table 1. More types may be added in the future, if necessary.

Each type of constraint has its own specific attributes. For example, a Prefer Times
constraint lists the events whose time it constrains, and the preferred times for those
events. Each constraint also has attributes common to all constraints, including a
Boolean value saying whether the constraint is hard or soft, and an integer weight.

The infeasibility value of a solution is the sum over the hard constraints of the
number of violations of the constraint multiplied by its weight. Theobjective value
of a solution is similar, only summed over the soft constraints. One solution is consid-
ered better than another if it has a smaller infeasibility value, or an equal infeasibility
value and a smaller objective value.

As mentioned earlier, solutions are stored separately from instances, in solution
groups within the archive file. A solution is a list of sub-events, each containing a
duration, a time assignment, and some resource assignments. The HSEval web site
(Kingston 2010) calculates the infeasibility and objective values of the solutions of
an archive, and displays comparative tables, lists of violations, and so on.

3 The competition

The competition attracted 17 registrations, although only 5 teams submitted solutions
in the end. This is many fewer than the over 100 registrations and about 40 active

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 481

Table 2 The source country, instance name, number of times, teachers, rooms, classes (groups of students),
individual students, and events, of each of the 21 instances of Round 1 (archive XHSTT-2012.xml).

Country Instance Times Teachers Rooms Classes Students Events
Australia BGHS98 40 56 45 30 387
Australia SAHS96 60 43 36 20 296
Australia TES99 30 37 26 13 308
Brazil Instance1 25 8 3 21
Brazil Instance4 25 23 12 127
Brazil Instance5 25 31 13 119
Brazil Instance6 25 30 14 140
Brazil Instance7 25 33 20 205
UK StPaul 27 68 67 67 1227
Finland Artificial 20 22 12 13 169
Finland College 40 46 34 31 387
Finland HighSchool 35 18 13 10 172
Finland Secondary 35 25 25 14 280
Greece HighSchool1 35 29 66 372
Greece Patras2010 35 29 84 178
Greece Preveza2008 35 29 68 164
Italy Instance1 36 13 3 42
Netherlands GEPRO 44 132 80 44 846 2675
Netherlands Kottenpark2003 38 75 41 18 453 1156
Netherlands Kottenpark2005 37 78 42 26 498 1235
South Africa Lewitt2009 148 19 2 16 185

teams of ITC2007. Why fewer teams registered is not known, but it could be because
of high school timetabling’s lower profile, or because the 15 types of constraints make
the instances awkward to handle in practice.

The competition had three independent parts, called Rounds 1, 2, and 3. In Round
1, participants were invited to submit solutions to 21 published instances. No restric-
tions were placed on how the solutions could be obtained. For each instance, a small
prize was awarded to the participant who submitted the best solution to that instance,
if it improved on the best solution previously known to the organizers. Such improved
solutions were found to 15 of the 21 published instances during Round 1.

The 21 published instances are listed in Table 2. The table shows that they differ
greatly in size. For example, the number of times varies between 25 and 148, and the
number of classes (groups of students) varies between 3 and 84. They also differ in
structure: some require most events to be split into sub-events, others do not; some
require teachers to be assigned as well as rooms, although most do not; and so on.

Round 2 compared solvers under uniform conditions. Solvers were allowed to use
only freely available software libraries, and a time limit was imposed: 1000 seconds
of single-threaded execution per instance on the organizers’ computer. Participants
used a benchmark program to estimate how much time on their own computer was
equivalent to the time limit on the organizers’ computer.

For initial testing, the Round 1 instances were used, except that the Australian
instances from Table 2 were omitted. This was because these are the only instances
so far to use Avoid Split Assignments and Limit Workload constraints, and omitting
them reduced the implementation burden for the participants.

482 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

The original plan was to select up to 5 finalists based on this initial tesing, but
since there were only 5 active teams, all were invited to become finalists. One team
declined owing to problems with their solver. This left 4 finalists, who submitted
their solvers, which the organizers ran on their own computer. For each of 18 hidden
instances, and for each of 10 random seeds, each solver was run on that instance
and seed for at most 1000 seconds, and the solutions for that instance and seed were
ranked. Each solver’s ranks were averaged. The solver with the lowest average rank
was declared the winner.

The hidden instances were instances not previously published, although not very
different from the published instances, and consisted of 14 completely new instances
plus 4 small corrections or variants of the published instances. Although none of the
organizers were participants, one finalist contributed some of these hidden instances.
Their results on their own instances were excluded from the rankings.

The Round 2 finalists have described their solvers in invited short papers for
the PATAT 2012 conference, written before results were announced (Domrös and
Homberger 2012; Fonseca et al. 2012; Kheiri et al. 2012; Sørensen et al. 2012).

After Round 2, the hidden instances were published and Round 3 was conducted
on them. As for Round 1, no restrictions were placed on how the solutions could be
obtained. The participant with the lowest average rank over the hidden instances was
declared the winner, again excluding participants’ results on their own instances.

After the competition ended, the solutions were published on the competition
web site, as XHSTT archive files. The results of Rounds 2 and 3 were calculated by
passing these files to the appropriate HSEval operation, so can be publicly verified.

4 Conclusion

The aim of the competition, in brief, was to raise the profile of high school timetabling.
This it has undoubtedly done.

Judging by previous competitions, the instances used in ITC2011 are likely to
continue to attract researchers for years to come. These are unsimplified instances
from real high schools around the world—a great foundation to build on.

References

Jonathan Domr̈os and J̈org Homberger, An evolutionary algorithm for high school
timetabling, Proceedings of the Ninth International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2012), Son, Norway, August 2012

G.H.G. Fonseca, H.G. Santos, T.A.M. Toffolo, S.S. Brito, and M.J.F. Souza, A SA-
ILS approach for the high school timetabling problem, Proceedings of the Ninth
International Conference on the Practice and Theory of Automated Timetabling
(PATAT 2012), Son, Norway, August 2012

Ahmed Kheiri, EnderÖzcan, and Andrew J. Parkes, HySST: hyper-heuristic search
strategies and timetabling, Proceedings of the Ninth International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway,
August 2012

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 483

Jeffrey H. Kingston, The HSEval High School Timetable Evaluator,
http://www.it.usyd.edu.au/˜jeff/hseval.cgi (2010)

B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. Parkes, L.
Di Gaspero, R. Qu, and E. Burke, Setting the research agenda in automated
timetabling: the Second International Timetabling Competition, INFORMS Jour-
nal on Computing 22, 120–130 (2010)

Ben Paechter, Luca Maria Gambardella, and Olivia Rossi-Doria, The First Interna-
tional Timetabling Competition, http://www.idsia.ch/Files/ttcomp2002/ (2002)

Gerhard Post, Jeffrey H. Kingston, Samad Ahmadi, Sophia Daskalaki, Christos Go-
gos, Jari Kyng̈as, Cimmo Nurmi, Haroldo Santos, Ben Rorije and Andrea Schaerf,
An XML format for benchmarks in high school timetabling II, Annals of Opera-
tions Research (online), http://10.1007/s10479-011-1012-2, 2011

Gerhard Post, Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs,
Cimmo Nurmi, and David Ranson, An XML format for benchmarks in high school
timetabling, Annals of Operations Research 194, 385–397, 2012

Gerhard Post, Benchmarking project for High School Timetabling,
http://www.utwente.nl/ctit/hstt/ (2011)

Matias Sørensen, Simon Kristiansen, and Thomas R. Stidsen, International
timetabling competition 2011: an adaptive large neighborhood search algorithm,
Proceedings of the Ninth International Conference on the Practice and Theory of
Automated Timetabling (PATAT 2012), Son, Norway, August 2012

484 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

An Evolutionary Algorithm for High School

Timetabling

Jonathan Domrös · Jörg Homberger
1

Abstract An Evolutionary Algorithm for high school timetabling problems,

which is used for the Third International Timetabling Competition (ITC2011), is

presented. The solver is based on two ideas: Firstly, an indirect representation of

timetables is used. Each coded solution consists of a permutation of sub-events.

Secondly, the evolutionary search is controlled by the population concept of the

(1+1)-Evolution Strategy.

Keywords High school timetabling · International timetabling competition ·

Evolutionary algorithm

1 Introduction

Evolutionary Algorithms are metaheuristics which are often based on a coding of

decision variables or solutions (e.g., Miettinen et al., 1999). They have been used

successfully for (high) school timetabling so far (e.g., Burke and Newall, 1999;

Bufe et al., 2001; Beligiannis et al., 2009; Raghavjee and Pillay, 2010). However,

most approaches have been developed and evaluated for high school timetabling

problems with a smaller number of constraints than the problems used for the

ITC2011.

The high school timetabling problems of the ITC2011 are described in Post et

al. (2012). In order to describe our algorithm, especially our coding, it is

important to know, that the problems take up to three different kinds of problem

decisions into account: (1) split-decisions (for a given event the number of sub-

events and the duration of each sub-event have to be calculated); (2) time-

decisions (for a sub-event a starting time has to be assigned); and (3) resource-

decisions (for a sub-event one or more event resources have to be assigned).

2 Overview of the Evolutionary Algorithm

An overview of the developed Evolutionary Algorithm is shown in Fig. 1.

J. Homberger

University of Applied Sciences Stuttgart, Schellingstr. 24, 70174 Stuttgart, Germany

Tel.: +49 711 8926 2511

Fax.: +49 711 8926 2553

E-mail: joerg.homberger@hft-stuttgart.de

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 485

http://dl.acm.org/author_page.cfm?id=81384621973&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://dl.acm.org/author_page.cfm?id=81100281142&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280

(1) preprocessing: calculate all feasible sub-events;

(2) initialization: calculate one coded timetable C randomly on the basis of (1);

(3) decoding: construct a timetable T by decoding C;

(4) evaluation: calculate the infeasibility value and the objective value for T;

 WHILE (NOT a given computational time limit has been reached)

(5) mutation: calculate a new coded timetable C* by mutation of C;

(6) decoding: construct a new timetable T* by decoding C*;

(7) evaluation: calculate the infeasibility value and the objective value for T*;

(8) replacement: IF(T* is better than T) THEN (C := C*; T := T*);

(9) output: the timetable T;

Fig. 1 The Evolutionary Algorithm for High School Timetabling

As shown in Fig. 1, the population concept of the (1+1)-Evolution Strategy, which

is simply a randomized hill-climbing method, is used in order to control the search

(e.g., Beyer and Schwefel, 2002; Mester and Bräysy, 2004). That means, in each

iteration one solution or timetable T* is calculated by mutation of the current best

solution T. The latter is replaced by T*, if T* is better than the current best

solution T (for the evaluation of timetables see Post et al., 2012). The mutation

does not directly work on timetables. Instead, the mutation varies a coded version

C of the current best timetable T. The coding of solutions and the steps of the

algorithm are explained in the next sections.

3 Coding of solutions and preprocessing

Solutions are coded by a permutation of eligible sub-events or, more precisely, a

permutation of the indices of eligible sub-events. The aim of preprocessing is to

calculate the set of eligible sub-events, taking split events constraints, distribute

split events constraints, and link events constraints into account. Therefore, for

each given event i and its given duration Di all feasible splits are calculated. A

split of an event i is a division into one or more sub-events with individual

durations. A split is feasible, if the split events constraints and the distribute split

events constraints are fulfilled for i. The number of feasible splits of event i is

denoted by ni. Each sub-event sj = (ij, kj, dj) can be described by a triple, which

consists of the corresponding event ij, the corresponding split kj (kj = 1, ..., ni), and

a sub-event duration dj. The total duration of all sub-events, which corresponds to

the same split of an event i is equal to Di. Fig. 2 describes the prepossessing

procedure by an example. The example takes the split events constraints into

account, i.e., a minimum and a maximum duration for sub-events, and a minimum

and a maximum amount of sub-events have to be considered, when eligible sub-

events are calculated.

Link events constraints could reduce the set of feasible splits. In case that two

events i and l must be executed in parallel, the corresponding splits must be

“compatible”, i.e., for each sub-event sm of event i exists one sub-event sn of event

l, such that dm = dn. Thus, each feasible split of i (l) with no compatible split of l

(i) is deleted from the set of feasible splits.

As mentioned, each coded solution is just a permutation of the indices of the

calculated eligible sub-events. In our example of Fig. 2 each coded solution is a

permutation of the indices 0, ..., 7.

486 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

event i = 0

duration D0 = 2

minimum duration = 1

maximum duration = 2

minimum amount = 1

maximum amount = 2

event i = 1

duration D1 = 3

minimum duration = 1

maximum duration = 2

minimum amount = 2

maximum amount = 3

0 1 2

2 1 1

1 2 2

j

duration dj

split kj

3 4 5 6 7

2 1 1 1 1

1 1 2 2 2

sub-events sj

event ij 0 0 0

1 1 1 1 1

j

duration dj

split kj

event ij

Fig. 2 Preprocessing procedure

4 Initialization and mutation

At the beginning of the search (step 2) one coded solution C* is constructed

randomly, i.e., a random permutation of the indices of the eligible sub-events is

calculated. During mutation (step 5) this permutation is varied randomly, i.e., two

indices are randomly chosen and then swapped. The swap-mutation is often

suggested for permutation based Evolutionary Algorithms (e.g., Gottlieb, 2000).

5 Decoding

The decoding procedure aims to construct a feasible timetable T on the basis of a

coded solution C. A timetable T consists of sub-events, which are extended by

starting times and event resources. The decoding method is very complex, since it

considers all constraints of the problem at hand in order to find a feasible solution.

In the following, we just present some of the basic ideas of the procedure.

To construct a timetable T, three steps are executed within each iteration of the

iterative decoding procedure: (i) One eligible sub-event sj = (ij, kj, dj) is selected;

(ii) the split kj is checked to be “practicable”; (iii) in the positive case (kj is a

practicable split), an insertion heuristic is executed in order to assign a starting

time and all required event resources to sj.

The order to select sub-events in step (i) is based on the order of indices in the

coded solution C. If the index j of sub-event sj is ordered more left than the index

q of sub-event sq, sj is selected before sq and thus has a higher priority to be inser-

ted into the timetable T.

A split kj is defined as “practicable” in step (ii), if no sub-event of the

corresponding event ij has been inserted into T or if only sub-events of split kj

have been inserted into T so far. The check of practicability is necessary, since for

each event only sub-events of the same split can be inserted into a timetable.

The insertion heuristic of step (iii) checks, if at least one assignment of a

starting time and of event resources for sj exists, such that all hard constraints are

satisfied. In a positive case, the heuristic inserts sj into T, i.e., assigns a starting

time and event resources such that no hard constraint is injured (time and resource

decisions are made). If sj is the first sub-event of the event ij, which is inserted

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 487

into T, the corresponding split kj is selected for ij (split-decision is made). In the

case, that no such feasible assignment of time and resources exists, the sub-event

sj is not inserted into T.

There is one exception from the rule that in each iteration of the decoding

procedure only one sub-event (sj) is selected and inserted into T. In case of link

events constraints, where one or more events exist, which should be placed in

parallel to ij, sub-events of these events are also selected in step (i) and inserted

together with sj in step (iii).

It should be remarked, that sub-events of an event are not inserted at all, if the

insertion would violate hard constraints. However, not inserting an event violates

assign times constraints. The decoding method could be improved by executing an

additional construction step (at the end of decoding) which inserts all these events,

which were not inserted so far, in order to reduce the infeasibility value.

6 Conclusion

The developed Evolutionary Algorithm is suitable to solve the problems of the

ITC2011. Our solver was a finalist in ITC2011. However, the solutions generated

in round 1 are not a match to the existing best known or optimal solutions.

References

Beligiannis GN, Moschopoulos CN, Likothanassis SD (2009) A genetic algorithm

approach to school timetabling. Journal of the Operational Research Society

60(1), 23–42

Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehensive

introduction. Journal Natural Computing 1(1), 3–52

Bufe M, Fischer T, Gubbels H, Hacker C, Hasprich O, Scheibel C, Weicker K,

Weicker N, Wenig M, Wolfangel C (2001) Automated solution of a highly con-

strained school timetabling problem – preliminary results. In: Proc. of the Evo-

workshops on Applications of Evolutionary Computing, Springer, pp 431–440

Burke EK, Newall JP (1999) A multi-stage evolutionary algorithm for the time-

table problem. IEEE Transactions on Evolutionary Computation 3(1), 63–74

Gottlieb J (2000) Permutation-based evolutionary algorithms for multidimen-

sional knapsack problems. In: Proceedings of the 2000 ACM Symposium on

Applied Computing – Vol. 1, ACM New York, NY, USA, pp 408–414

Mester D, Bräysy O (2007) Active-guided evolution strategies for large-scale

capacitated vehicle routing problems. Computers and Operations Research 34,

2964–2975

Miettinen K, Mäkelä MM, Neittaanmäki P, Périaux J (eds), Evolutionary

algorithms in engineering and computer science. Chichester et al., 1999

Post G, Gaspero LD, Kingston JH, McCollum B, Schaerf A (2012) The third

international timetabling competition. In: Proceedings of the Ninth International

Conference on the Practice and Theory of Automated Timetabling (PATAT

2012), Son, Norway, August 2012

Raghavjee R, Pillay N (2010) An informed genetic algorithm for the high school

timetabling problem. In: Proceedings of the 2010 Annual Research Conference

of the South African Institute of Computer Scientists and Information

Technologists, pp 408–412

488 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.researchgate.net/researcher/70545750_Grigorios_N_Beligiannis
http://www.researchgate.net/researcher/33684724_Charalampos_N_Moschopoulos
http://www.researchgate.net/researcher/35446147_Spiridon_D_Likothanassis
http://dl.acm.org/author_page.cfm?id=81341490842&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81384621973&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://dl.acm.org/author_page.cfm?id=81100281142&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280

International Timetabling Competition 2011:

An Adaptive Large Neighborhood Search algorithm

Matias Sørensen · Simon Kristiansen ·
Thomas R. Stidsen

Keywords Adaptive Large Neighborhood Search · High School Timetabling ·
International Timetabling Competition 2011 · XHSTT

1 Introduction

An algorithm based on Adaptive Large Neighborhood Search (ALNS) for solv-
ing the generalized High School Timetabling problem in XHSTT-format (Post
et al (2012a)) is presented. This algorithm was among the �nalists of round
2 of the International Timetabling Competition 2011 (ITC2011). For problem
description and results we refer to Post et al (2012b).

2 Adaptive Large Neighborhood Search

Adaptive Large Neighborhood Search was �rst developed as a metaheuristic
for the class of Vehicle Routing Problems (Pisinger and Ropke (2005); Ropke
and Pisinger (2006)). It has been applied for few other problem classes as well,
including Project Scheduling (Muller (2009, 2010)), Lot-sizing (Muller and
Spoorendonk (2011)), Optimal Statistic Median Problem (Katterbauer et al
(2012)).

Recently we have developed a framework based on ALNS for solving com-
binatorial optimization problems (written in C# 4.0). This framework is part
of the commercial product Lectio1, where it is used to solve various practi-
cal timetabling problems, see Kristiansen et al (2011); Sørensen and Stidsen
(2012) and Kristiansen and Stidsen (2012).

The pseudo code for a general ALNS algorithm is given in Algorithm 1.

Matias Sørensen [msso@dtu.dk], Simon Kristiansen, Thomas R. Stidsen
Operations Research, DTU Management Engineering
Technical University of Denmark

1 http://www.lectio.dk
Cloud-based administration system for high schools. Developed by MaCom A/S, Vesterbro-
gade 48 1., 1620 Copenhagen V, Denmark

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 489

Algorithm 1 Adaptive Large Neighborhood Search

1: candidate solution x, remove-methods Ω−, insert-methods Ω+

2: xbest = x
3: while stop-criterion not met do
4: x′ = x
5: RemoveStrategy: select q as some quantity to be removed
6: AdaptiveStrategy: select remove-method r ∈ Ω− and insert-method i ∈ Ω+

7: remove requests from x′ using r(q)
8: insert requests into x′ using i
9: AdaptiveStrategy: update performance indicators
10: if c(x′) ≤ c(xbest) then
11: xbest = x′

12: end if

13: AcceptStrategy: set candidate solution x to either x′, xbest or x itself
14: end while

15: return xbest

The main points of the algorithm are described below in general terms.

� In each iteration, a remove and insertion method is chosen and applied
to the candidate solution. The combination of these methods de�nes the
neighborhood of the algorithm, hence there exists |Ω−| · |Ω+| di�erent
neighborhoods.

� RemoveStrategy: Governs the selection of q. This has major in�uence on
how much computational time each iteration requires.

� AdaptiveStrategy: Responsible for selecting remove and insertion meth-
ods in each iteration, and updating their respective performance indicators
of these method by some metric.

� AcceptStrategy: Determines which solution to use as candidate solution
for next iteration. This could in principle be any known solution, but is
usually selected as either the current candidate solution x itself, the newly
produced solution x′, or the current best solution xbest.

3 Algorithm setup for ITC2011

Here we describe our implementation of a ALNS algorithm for the XHSTT
format. The choice of ALNS strategies are brie�y mentioned below. More
details will be available in the full paper.

� RemoveStrategy: The remove and insertion methods deal with sub-events.
q is de�ned as the sum of the duration of the sub-events which are re-
moved from the solution. We select q as a random number, bounded by a
percentage of the total duration of all instance events.

� AdaptiveStrategy: We have chosen a metric essentially based on two pa-
rameters for each method; The number of times the method was part of
an iteration which yielded a better solution than the current one, and the

490 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

relative gap between the current solution and the resulting solution from
applying the method.

� AcceptStrategy: An acceptance criteria borrowed from Simulated An-
nealing (SA) is used, with the following additional property: If no new
best solution has been found in a number of iterations, the temperature is
increased by a factor, and the candidate solution is set to the best known
solution. The intention is to allow more diverse exploring of the area around
the best known solution, in case the algorithm gets 'stuck'.

Let a move be a small perturbation on a solution. The following moves are
used in this implementation: Move Mse,t denotes the assigning of sub-event
se to time t. Mr,er,se denotes the assigning of resource r to event resource er
on sub-event se. Furthermore we also implement the corresponding unassign-
moves, denoted M¬se,t and M

¬
r,er,se, respectively.

Using these moves a total of 9 insertion methods (all more or less based
on the greedy principle, e.g. regret heuristics (Potvin and Rousseau (1993);
Sørensen and Stidsen (2012)), and 14 remove methods (all based on some
element of relatedness and an element of randomness) are implemented. These
methods are divided into three categories, based on what they (un-)assign:
Only times, only resources, or both times and resources.

An example of a remove method is the following, which removes sub-events
from non-preferred times: Given an XHSTT instance, and a solution S to this
instance. Find all tuples 〈se, t〉 of S, where sub-event se is assigned time t,
and t is not a preferred time for sub-event se (see Prefer times constraints,
Kingston (2010)). Let the set of these tuples be denoted U . Select randomly
a subset of these tuples U ⊆ U such that the sum of the duration of all sub-
events of the tuples in U equals q. Perform an unassign time move M¬se,t for

each of the tuples in U .
An example of an insertion method is the following: Let ∆ (M) ∈ R be

the pro�t of performing move M on the solution at hand S. Select Mbest =
argminse,t (∆ (Mse,t)), and if ∆ (Mbest) ≤ 0, apply Mbest to S and repeat,
otherwise stop. This is a greedy method which assigns times to sub-events,
until no pro�table move can be found.
In the full paper all insert/remove methods will be described in detail.

The �nal algorithm contains 9 free parameters, which were tuned for best
performance using the irace package (see López-Ibáñez et al (2011); Birattari
(2005)).

4 Final remarks

This paper documents how Adaptive Large Neighborhood Search can be ap-
plied to problems in XHSTT format.

The proposed algorithm was applied to all instances in archive XHSTT-
ITC2011, and showed competitive results in most cases (comparing to the best
known solutions at that point in time).

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 491

ALNS has not been used much in the �eld of timetabling, but we see
no reason to believe that ALNS should not perform well on other (related)
problems in this �eld.

Acknowledgements Thank you goes to Michael Herold for fruitful discussions concerning
ALNS strategies. Thank you to Manuel López-Ibáñez for help using the irace package. And
�nally thank you to David Pisinger for advice on ALNS implementation.

References

Birattari M (2005) The Problem of Tuning Metaheuristics as seen from a Machine Learning
Perspective, vol 292 Dissertations in Arti�cial Intelligence - In�x, 1st edn. Springer

Katterbauer K, Oguz C, Salman S (2012) Hybrid adaptive large neighborhood search for
the optimal statistic median problem. Computers & Operations Research 39(11):2679 �
2687

Kingston JH (2010) The hseval high school timetable evaluator. URL http://it.usyd.edu.

au/~jeff/hseval.cgi

Kristiansen S, Stidsen TR (2012) Adaptive large neighborhood search for student sectioning
at danish high schools. In: Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012)

Kristiansen S, Sørensen M, Stidsen T, Herold M (2011) Adaptive large neighborhood search
for the consultation timetabling problem, to appear

López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package: It-
erated racing for automatic algorithm con�guration. Tech. Rep. TR/IRIDIA/2011-004,
Université Libre de Bruxelles, IRIDIA, Av F. D. Roosevelt 50, CP 194/6 1050 Bruxelles,
Belgium, http://iridia.ulb.ac.be/irace

Muller L (2009) An adaptive large neighborhood search algorithm for the resource-
constrainted project scheduling problem. In: MIC 2009: The VIII Metaheuristics In-
ternational Conference

Muller L (2010) An adaptive large neighborhood search algorithm for the multi-mode
resource-constrained project scheduling problem. Tech. rep., Department of Manage-
ment Engineering, Technical University of Denmark Produktionstorvet, Building 426,
DK-2800 Kgs. Lyngby, Denmark

Muller L, Spoorendonk S (2011) A hybrid adaptive large neighborhood search algorithm ap-
plied to a lot-sizing problem. European Journal of Operational Research Volume 218(Is-
sue 3):614�623

Pisinger D, Ropke S (2005) A general heuristic for vehicle routing problems. Computers &
Operations Research 34:2403�2435

Post G, Ahmadi S, Daskalaki S, Kingston J, Kyngas J, Nurmi C, Ranson D (2012a) An
xml format for benchmarks in high school timetabling. Annals of Operations Research
194:385�397

Post G, Gaspero LD, Kingston JH, McCollum B, Schaerf A (2012b) The third international
timetabling competition. In: Proceedings of the Ninth International Conference on the
Practice and Theory of Automated Timetabling (PATAT 2012), Son, Norway

Potvin JY, Rousseau JM (1993) A parallel route building algorithm for the vehicle routing
and scheduling problem with time windows. European Journal of Operational Research
66(3):331 � 340

Ropke S, Pisinger D (2006) An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows. Transportation Science 40:455�472

Sørensen M, Stidsen TR (2012) High school timetabling: Modeling and solving a large
number of cases in denmark. In: Proceedings of the Ninth International Conference on
the Practice and Theory of Automated Timetabling (PATAT 2012)

492 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

A SA-ILS approach for the High School Timetabling

Problem

Fonseca, G.H.G., Santos, H.G., Toffolo,

T.A.M., Brito, S.S., Souza, M.J.F.

Received: date / Accepted: date

Abstract This work presents a heuristic approach proposed by one of the
finalists of the Third International Timetabling Competition (ITC2011). The
KHE school timetabling engine is used to generate an initial solution and
then Simulated Annealing (SA) and Iterated Local Search (ILS) perform local
search around this solution.

Keywords Simulated Annealing · Iterated Local Search · High School
Timetabling Problem · Third International Timetabling Competition

1 Introduction

The diversity of School Timetabling models encountered around the world
motivated the definition of an XML format to express different entities and
constraints considered when building timetables[6]. The format evolved and
a public repository[1] with a rich set of instances was built. To stimulated
the research in this area, the Third International Timetabling Competition
(ITC2011) occurred in 2012. This papers presents one of the finalists’ solvers
in this competition.

2 Solution Approach

Our approach uses the KHE school timetabling engine [2] to generate initial so-
lutions and the metaheuristics Simulated Annealing and Iterated Local Search
to perform local search around this solution. Since the constructive method is
described in high level of details in[2], only the local search procedures will be
detailed in the next sections.

Computing Department
Federal University of Ouro Preto
Ouro Preto, Minas Gerais, Brazil 35400-000

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 493

2.1 Local Search

Seven neighborhood structures were used in our local search approach:

– Event Swap (es): two events e1 and e2 have their timeslots t1 and t2
swapped;

– Event Move (em): an event e1 is moved from timeslot t1 to another timeslot
t2;

– Event Block Move (ebm): like es, but when moving adjacent events with
different duration keeps these events adjacent;

– Resource Swap (rs): two events e1 and e2 have their assigned resources r1
and r2 swapped, resources r1 and r2 should play the same role (e.g. both
have to be teachers);

– Resource Move (rm): an event e1 has his assigned resource r1 replaced by
a new resource r2.

– Permute Resources (pr): given a resource r1, up to npr events assigned to
r1 have their timeslots permutated; the events are chosen at random and
the parameter npr is set to 7 so that all the permutations can be computed
in a short amount of time.

– Kempe Move (km): two times t1 and t2 are fixed and one seeks the best
path at the bipartite conflict graph containing all events in t1 and t2; arcs
are build from conflicting events which are in different timeslots and their
cost is the cost of swapping the timeslots of these two events;

All local search methods can apply any move on the proposed neighbor-
hoods (except pr, which is used only in the perturbation phase of ILS, return-
ing the best different neighbor). If the instance requires assignment of resources
(i.e. there exists at least one AssignResourceConstraint constraint), the kind
of neighborhood is chosen based on the following probabilities: es = 0.20,
em = 0.38, ebm = 0.10, rs = 0.20, rm = 0.10 and km = 0.02, otherwise, the
neighborhood rs and rm are not used and the odds are: es = 0.40, em = 0.38,
ebs = 0.20 and km = 0.02. These values were empirically adjusted.

2.1.1 Simulated Annealing Implementation

Proposed by [3], the metaheuristic Simulated Annealing is a probabilistic
method based on an analogy to thermodynamics simulating the cooling of
a set of heated atoms. This technique starts its search from any initial solu-
tion. The main procedure consists of a loop that randomly generates, at each
iteration, one neighbor s

′

of the current solution s. Movements are proba-
bilistically selected considering a temperature T and the cost variation of the
movement ∆.

The developed implementation of Simulated Annealing is described in Al-
gorithm 1. Parameters used were α = 0.97, T0 = 1, SAmax = 10, 000 and
SAreheats = 5. The method selectNeighborhood() just chooses a neighbor-
hood structure according to the neighborhood probabilities previously defined.

494 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Algorithm 1: Developed implementation of Simulated Annealing

Input: f(.), N(.), α,SAmax , T0,SAreheats, s, timeout

Output: Best solution s∗ found.
s∗ ← s; IterT ← 0; T ← T0; reheats← 0;
while reheats < SAreheats and elapsedT ime < timeout do

while IterT < SAmax do
IterT ← IterT + 1;
k ← selectNeighborhood();

Generate a random neighbor s
′

∈ Nk(s);

∆ = f(s
′

)− f(s));
if ∆ < 0 then

s← s
′

;

if f(s
′

) < f(s∗) then s∗ ← s
′

;

else
Take x ∈ [0, 1];

if x < e−∆/T then s← s
′

;

T ← α× T ;
IterT ← 0;
if T < 0.1 then

reheats← reheats+ 1;
T ← T0

return s∗;

2.1.2 Iterated Local Search

The method Iterated Local Search (ILS)[4] is based on the idea that a local
search procedure can achieve better results by optimizing different solutions
generated through disturbances on the local optimum solution.

Our ILS algorithm starts from an initial solution s0 obtained by the Sim-
ulated Annealing procedure and makes disturbances of size psize under s0 fol-
lowed by a descent method. A disturbance is the unconditional acceptance of a
neighbor generated by neighborhoods pr or km, both with 0.5 of probability.

The descent phase uses a Randomic Non Ascendent Method, which accepts
only neighbors if they are better than or match the current solution. Tested
moves are excluded from the neighborhood and return only when an improve-
ment to the current best solution is reached. The local search phase ends when
there is no remaining neighbor to be explored.

The local search produces a solution s
′

which will be accepted if it is better
than the best solution s∗ found. In such case, the disturbance size psize gets
back to the initial size p0. If the iteration Iter reaches a limit Itermax, the
disturbance size is incremented. Yet if the disturbance size reaches a bound
pmax, it goes back to the initial size p0. Algorithm 2 presents the developed
implementation of ILS. The considered parameters are ILSmax = 10, 000,
p0 = 1, pmax = 10 and MaxIterp = 10.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 495

Algorithm 2: Developed implementation of ILS

Input: f(.), N(.), ILSmax, p0, pmax,MaxIterp, s, timeout

Output: Best solution s∗ found.
s← descentPhase(s); s∗ ← s;
psize ← p0; Iter ← 0;
for i← 0 until ILSmax do

if elapsedT ime ≤ timeout then
for j ← 0 until psize do

s← sp ∈ N(s);

s
′

← descentPhase(s);

if f(s
′

< f(s∗)) then

s← s
′

; s∗ ← s
′

;
Iter ← 0; psize ← p0;

else
s← s∗;
Iter ← Iter + 1;

if Iter = MaxIter then
psize ← psize + p0;
if psize ≥ pmax then psize ← p0;

return s∗;

3 Concluding Remarks

This paper presented a SA-ILS approach proposed by one the competition
finalists of the Third ITC2011. Even though final results will only appear in
the organizer’s paper [5] we are confident that our method produced good
results: we are finalists of the competition and our method improved several
best known solutions for the competition instance set. Possible improvements
are the development of an augmented set of (larger) neighborhoods and a
proper experimental study to fine tune parameter selection. This almost surely
will improve these results.

References

1. Benchmarking project for (high) school timetabling (2012). URL
http://www.utwente.nl/ctit/hstt/

2. Kingston, J.H.: A software library for school timetabling (2012). Available at
http://sydney.edu.au/engineering/it/~jeff/khe/, May 2012

3. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science
220, 671–680 (1983)

4. Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search. In: F. Glover, G. Kochen-
berger (eds.) Handbook of Metaheuristics, chap. 11. Kluwer Academic Publishers, Boston
(2003)

5. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third interna-
tional timetabling competition. In: Proceedings of the 9th International Conference on
the Practice and Theory of Automated Timetabling

6. Post, G., Kingston, J., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi, C.,
Musliu, N., Pillay, N., Santos, H., Schaerf, A.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research pp. 1–7

496 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.utwente.nl/ctit/hstt/
http://sydney.edu.au/engineering/it/~jeff/khe/

HySST: Hyper-heuristic Search Strategies and
Timetabling

Ahmed Kheiri · Ender Özcan ·
Andrew J. Parkes

Received: date / Accepted: date

1 Introduction

High school timetabling (HST) is a well-known real-world combinatorial opti-
misation problem. It requires the scheduling of events and resources, such as
courses, classes of students, teachers, rooms and more within a fixed number of
time slots subject to a set of constraints. In a standard fashion, constraints are
separated into ‘hard’1 and soft. The hard constraints must be satisfied in order
to achieve feasibility, whereas the soft constraints represent preferences and a
solution for a given problem; solutions are expected to satisfy all hard con-
straints and as many soft constraints as possible. The HST problem is known
to be NP-complete [2] even in simplified forms. For a recent survey of HST
see [4]. Also, see [5] for a description of the specific HST version studied here,
and also of the third international timetabling competition, ITC2011. Briefly,
the ITC2011 problem instances contain 15 types of constraints and a candidate
solution is evaluated in terms of two components: feasibility and preferences.
The evaluation function computes the weighted hard and soft constraint vi-
olations for a given solution as infeasibility and objective values, respectively.
For the comparison of algorithms, a solution is considered to be better than
another if it has a smaller infeasibility value, or an equal infeasibility value
and a smaller objective value.

Our approach to solving the HST is based on development of a hyper-
heuristic (see [1] for a recent survey) in order to intelligently control the
application of a range of neighbourhood move operators. Hyper-heuristics
explore the space of (meta-)heuristics, as opposed to directly searching the
space of solutions, and generally, split into one of two types: selection hyper-
heuristics that select between existing low-level heuristics, and generation

University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
{ axk, exo, ajp }@cs.nott.ac.uk

1 In the competition, such constraints are not strictly hard but are simply much more
heavily penalised than the ’soft’ constraints.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 497

Algorithm HySST Solver ITC2011

S = create initial solution(); // takes tinit time
tremaining = toverall − tinit

Sbest = S;
while (tremaining notExceeded)

Sstage best = S;
Sstage start = S;
while (tstage notExceeded) // stage entry

LLH = SelectRandomlyFrom(MutationalHeuristics);
S′ = ApplyHeuristic(LLH,S);
if (S′ isBetterThan Sbest) then Sbest = S′;
if (S′ isBetterThan Sstage best) then Sstage best = S′;
S = MoveAcceptance(S, S′, ϵ); // can accept with factor (1 + ϵ) worse

if (Sstage best isNotBetterThan Sstage start) then
S = ApplyHillClimbing(S); // uses the hill climbing heuristics

return Sbest;

Fig. 1 Pseudocode of the implemented hyper-heuristic. Here ϵ is a small (tunable) param-
eter that controls the level of worsening moves that are acceptable.

hyper-heuristics that build the decision procedures used with the heuristics. A
selection hyper-heuristic generally includes both heuristic selection and move
acceptance within a single point search framework (that is, without the use of
populations of solutions): At each iteration, a candidate new solution is pro-
duced by selecting and applying a heuristic (neighbourhood operator) from
a set of low level heuristics; A ‘move acceptance’ component then decides
whether or not the candidate should replace the incumbent solution.

In this work, we develop and exploit a generalised selective hyper-heuristic
(though envisage that future work could well exploit generative methods). We
build on a previous study [3] that demonstrated the effectiveness of a gen-
eralised version of the iterated local search approach. Specifically, our hyper-
heuristic uses a structured and staged application of multiple perturbative and
hill climbing operators as opposed to simple selection from a single pool of all
operators.

2 Hyper-heuristic Search for High School Timetabling

The search algorithm is implemented as a time contract algorithm and com-
pletes its execution in toverall time. It consists of an initial construction phase
followed by an extended improvement; see Figure 1 for the pseudocode. The
initial construction of a complete solution is performed using the general solver
implemented by Jeff Kingston in the KHE library2. The improvement phase
uses the remaining time left (tremaining) after the construction of the initial so-
lution which takes tinit time. Subsequently, a hyper-heuristic is used to control
and mix a set of 11 low-level domain-specific heuristics and that are (mostly)

2 http://sydney.edu.au/engineering/it/~jeff/khe/

498 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

fairly simple moves such as moving a task to a different resource, or swaps of
events. They are divided into two sets; 9 mutational operators that do a ran-
domised move, and 2 hill climbing operators that search their neighbourhoods
for better solutions. Note that the construction phase often gives a solution in
which hard constraints are violated, and so the improvement phase also needs
to improve the hard constraints. The hyper-heuristic divides the search into
stages where each stage takes a prefixed amount of time (tstage). In each stage,
firstly and repeatedly, one of the 9 mutational heuristics is applied and the
move is accepted if it is improving or is not worsening by more than a small
amount. If no improvement is achieved during a stage, a hill climbing phase is
applied using the 2 hill climbing heuristics. Unlike most of the mutational oper-
ators, these 2 hill-climbing heuristics are capable of making quite large changes
to a solution. The hill climbing phase is itself also slightly non-standard. One
of the operators is designed using neighbourhood structures based on ejection
chains while the other operator is a type of first improvement hill climbing
operator. Both hill climbing operators attempt to make moves which respect
a particular constraint type while hoping to improve upon the other types of
constraint violations but might have a net worsening of the objective, how-
ever, then such worsening moves are rejected. A hill climbing step is always
non-worsening and so can be repeatedly applied in standard fashion until a
local minimum is reached. A notable difference from standard methods (such
as in memetic algorithms) is that we found that performance is better if the
hill climbing is not applied if the mutational operators managed to improve
the best solution. We suspect that excessive use of the hill climbing somehow
gives over-optimised local solutions that afterwards lead to restricted move-
ment within the search space.

In summary, we have developed and applied a hyper-heuristic to intelli-
gently and effectively exploit a suite of neighbourhood move operators. Since
the aim of hyper-heuristics is to separate adaptive search control from the
details of the specific domain, we naturally also envisage our hyper-heuristic
could be applied to other PATAT-related problems, such as to the timetabling
of university examinations and courses.

References

1. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Journal of the Operational Research Society
(to appear)

2. Even, S., Itai, A., Shamir, A.: On the Complexity of Timetable and Multicommodity
Flow Problems. SIAM Journal on Computing 5(4), 691–703 (1976)

3. Özcan, E., Bilgin, B., Korkmaz, E.E.: A comprehensive analysis of hyper-heuristics. In-
telligent Data Analysis 12(1), 3–23 (2008)

4. Pillay, N.: An overview of school timetabling research. In: Proceedings of the 8th In-
ternational Conference on the Practice and Theory of Automated Timetabling (PATAT
2010), pp. 321–335 (2010)

5. Post, G., Gaspero, L.D., Kingston, J.H., McCollum, B., Schaerf, A.: The third interna-
tional timetabling competition. In: Proceedings of the Ninth International Conference
on the Practice and Theory of Automated Timetabling (PATAT 2012) (2012)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 499

Index

500 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

List of Authors

A
Al-Betar, Mohammed Azmi
Alefragis, Panayiotis
Ângelo Machado Toffolo,
Túlio
Asaju Laaro, Bolaji
Ásgeirsson, Eyjólfur Ingi
Awadallah, Mohammed A.

B
Bar, Doron
Bellenguez-Morineau, Odile
Boeres, Maria
Bolaji, Asaju La'Aro
Brac De La Perriere, Louise
Burke, Edmund K.

C
Capua, Renatha
Carpio, Martin
Castillo-Salazar, J. Arturo
Ceschia, Sara
Chiarandini, Marco
Cohen-Zamir, Ilana
Conniss, Richard
Curtois, Tim

D
De Causmaecker, Patrick
Di Gaspero, Luca
Domrös, Jonathan
Dwyer, Rick

E
Elhag, Anas

F
Fagerberg, Rolf

G
Gambini Santos, Haroldo
Goerigk, Marc
Gogos, Christos
Gomes, Rafael
Gonzalez-Rubio, Ruben
Gualandi, Stefano
Gukhool, Balkrishna Sharma
Gunawan, Aldy
Günther, Maik

H
Hamilton-Bryce, Ryan
Henrique Godim Da
Fonseca, George
Homberger, Jörg
Housos, Efthymios
Hurink, Johann

J
Jablonski, Stefan
Jamilson Freitas Souza,
Marcone
Jouglet, Antoine

K
Kendall, Graham
Khader, Ahamad Tajudin
Kheiri, Ahmed
Kingston, Dr. Jeffrey H.
Kloster, Oddvar
Kristiansen, Simon
Kyngäs, Jari
Kyngäs, Nico

L
Lamorgese, Leonardo
Landa-Silva, Dario
Lapègue, Tanguy
Larsen, Jesper
Lau, Hoong Chuin
Lusby, Richard

M
Mannino, Carlo
Marecek, Jakub
Martin, Simon
Martins, Simone
McCollum, Barry
McMullan, Paul
Mühlenthaler, Moritz
Müller, Tomáš

N
Nace, Alexandre
Nace, Dritan
Nissen, Volker
Nu, Tha
Nurmi, Kimmo

O
Ouelhadj, Djamila
Outteryck, Christophe
Özcan, Ender

P
Parkes, Andrew J.
Pesant, Gilles
Petrovic, Sanja
Pillay, Nelishia
Post, Gerhard
Prot, Damien
Puga, Héctor J.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 501

Q
Qu, Rong

R
Range, Troels Martin
Rangel, Maria
Ribas, Sabir
Ribeiro, Celso
Riise, Atle
Rocha, Walace
Rudová, Hana

S
Salassa, Fabio
Santos, Haroldo Gambini
Schaerf, Andrea
Schutten, Marco
Shah, Viral
Sigurardóttir, Guríur Lilla
Smet, Pieter
Soria-Alcaraz, Jorge Alberto
Sotelo-Figueroa, Marco
Souza Brito, Samuel
Stidsen, Thomas K.
Swan, Jerry
Sørensen, Matias

T
Tao, Baiyun
Thomas, J. Joshua
Toffolo, Túlio

U
Uijland, Suzanne
Urrutia, Sebastián

V
Valouxis, Christos
van der Veen, Egbert
van Veldhoven, Sophie
Vancroonenburg, Wim
Vanden Berghe, Greet

W
Wanka, Rolf
Westphal, Stephan
Wright, Mike

Z
Zeising, Michael
Zhu, Chun Bao

502 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

	 Introduction
	Preface
	Program Committee
	Table of Contents
	Plenary Presentations
	Full Papers
	Extended Abstracts
	System Demonstrations
	ITC 2011

	Plenary Presentations
	Greet Vanden Berghe

	Full Papers
	Jeffrey H. Kingston
	Soria-Alcaraz et al
	Goerigk and Westphal
	Muller and Rudova
	Tao and Dwyer
	Kyngäs et al
	Lapègue et al
	Mühlenthaler and Wanka
	La'aro Bolaji et al
	Smet and Vanden Berghe
	Salassa and Vanden Berghe
	Lau and Gunawan
	Vancroonenburg et al
	Valouxis et al
	Ásgeirsson et al
	Günther and Nissen
	Santos et al
	Salazar et al
	Gilles Pesant
	Nelishia Pillay

	Extended Abstracts
	Ribeiro and Urrutays
	Mark Wright
	Range et al
	Capua et al
	R.Conniss et al
	Sørensen and Stidsen
	Kristiansen and Stidsen
	Smet et al
	Ceschia and Schaerf
	Jouglet et al
	Veldhoven et al
	Uijland et al
	Chiarandini et al
	Zeising and Jablonski
	Swan et al
	Marecek and Parkes
	de Souza Rocha et al
	de la Perriere et al
	Özcan et al
	Lane and McCollum
	McCollum et al
	Hamilton-Bryce et al
	White-Overton et al
	Riise et al
	Mannino and Lamorgese
	Oddvar Kloster

	Demonstrations
	IIEESS System
	Aspen Scheduler System
	Diamant System
	IttTimeTable System

	 ITC2011
	The ITC 2011 Report
	Domrös and Homberger
	Sørensen et al
	Fonseca et al
	Kheiri et al

	Index
	List of Authors

