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Abstract The present contribution proposes an extension to the patient as-
signment (PA) planning problem in a dynamic context. Two ILP-models have
been developed for optimizing this day- to- day planning problem. The first
considers finding the optimal assignment for newly arrived patients, whereas
the second also considers future, but planned, arrivals. The performance of
both models is compared to each other on a set of benchmark instances. The
relative performance with respect to a known lower bound is also presented.
Furthermore, the effect of uncertainty on the patients’ length of stay is stud-
ied, as well as the effect of the percentage of emergency patients. The results
show that the second model provides better results under all conditions, while
still being computationally tractable.

Keywords Patient assignment problem · Dynamic planning · Integer Linear
Programming

1 Introduction

Rooms and beds belong to the critical assets of just any hospital. They account
for a considerable part of a hospital’s infrastructure, and a large amount of
financial resources are invested in equipping them with medical apparatus to
facilitate patient care. Furthermore, they also represent the place where most
patients will spend a large part of their stay, as they recover from surgery,
wait for examinations to take place, etc. In order to improve their comfort,
patients are offered a choice between single bed rooms, luxury rooms with
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private showers, and other amenities. As a result, a large variety of hospital
rooms exists in terms of capacity, which are equipped with different medical
apparatus and amenities. Assigning patients to such a variety of hospital rooms
can therefore be challenging, necessitating an efficient plan for making such
an assignment.

Bed managers aim at finding an assignment of patients to rooms that
strikes a balance between patients’ preferences and comfort on the one hand,
and patients’ clinical conditions and the resulting required room facilities on
the other. However, both the availability of rooms and equipment, and hospital
policies and standards need to be considered, making it difficult to generate
a balanced patient-to-room assignment. A lack of overview on occupied beds
and the uncertainty on how long patients will stay in the hospital, further
complicate the matter.

Demeester et al (2010) defined and studied the patient assignment (PA)
problem in the context just described. They consider a set of patients that
arrive at a hospital over a certain period of time. The hospital comprises a
set of rooms, each with given capacity and characteristics. The problem is
to find an effective assignment of patients to rooms, satisfying room capacity
restrictions. Moreover, a perceived cost is associated with each patient to room
assignment relating to the appropriateness of that assignment. The objective
is to minimize the total cost of these assignments. The present contribution
focuses on this problem.

1.1 Related work

As pointed out by Rais and Viana (2011) in their survey on operations research
in healthcare, a great deal of the considered literature has focussed on schedul-
ing of patients and hospital resources. Notably, nurse rostering and operating
theatre (OT) planning and scheduling have received a considerable amount
of attention (see e.g. Burke et al 2004; Cardoen et al 2010), which is evident
given that personnel and the OT are among the most expensive resources for
any hospital.

The PA problem considered in this paper comprises an assignment problem
that occurs at the operational level of hospital admission offices. It assumes
that patients have already been attributed an admission date, a decision that
is made as part of either an intervention scheduling1 process (see e.g. Riise and
Burke 2010) during operational surgery scheduling, or an appointment schedul-
ing process when no surgery is required. The type of patients and the arrival
pattern of patients with different pathologies is often also largely influenced
by the Master Surgery Schedule (MSS), a timetable that allocates operating
rooms and operating time to different medical disciplines. For example, Beliën
and Demeulemeester (2007) show how a cyclic MSS can be constructed that
results in an expected levelled bed occupancy.

1 Also known as advance scheduling.
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Demeester et al (2010) introduced the PA problem to the academic com-
munity as a challenging combinatorial optimization problem. In a follow up
paper, Bilgin et al (2012) presented a new hyper-heuristic algorithm to the
PA problem. They provide new benchmark instances and report test results.
Vancroonenburg et al (2011) show that the PA problem is NP-hard.

The problem was also studied by Ceschia and Schaerf (2011), who devel-
oped a Simulated Annealing algorithm that improves on the best known results
for the benchmark instances. Lower bounds for these instances are provided
as well. Furthermore, they argue that the problem definition only assumes
patients that are planned in advance (elective patients), and that it does not
capture the dynamics of uncertainty on patient arrivals and departures. An
extension to the problem definition is proposed where patient admission and
discharge dates are revealed a few days before they occur (denoted as the fore-
cast level). To this end, Ceschia and Schaerf developed a dynamic version of
their algorithm that can be used for day- to- day scheduling. The performance
of this algorithm is analysed under an increasingly larger forecast level.

The PA problem where patient transfers are not allowed, is related to
the interval scheduling problem: patients can be represented by fixed length
intervals/jobs with fixed start and end time, that need to be assigned to a
machine (a room) for ‘processing’. The PA problem comprises required jobs
and non-identical machines with different capacities, the goal being to find a
minimum-cost schedule subject to side-constraints. In the dynamic context,
it constitutes an online interval scheduling problem with uncertainty on the
interval lengths. We refer to Kolen et al (2007) for a review on the subject
of (online) interval scheduling problems. Ouelhadj and Petrovic (2009) give a
survey of dynamic scheduling problems in manufacturing in general.

1.2 Present contribution

Similarly to Ceschia and Schaerf (2011), we define a new extension to the PA
problem in a dynamic context. To this end, registration dates for each patient
are added to the problem definition to denote when a patient’s (possibly fu-
ture) arrival time is revealed. Contrary to Ceschia and Schaerf (2011) however,
an estimate of the length of stay (LOS) for each patient is also assumed to be
available, which in practice often is the case. Special care is taken to accom-
modate the decision process when patients outstay their estimated length of
stay.

This dynamic version of the problem is modelled and solved using Integer
Linear Programming (ILP). We discuss the performance of this approach and
study the effect of the percentage of emergency cases and the accuracy of the
LOS estimate.
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2 Problem formulation

2.1 PA in a static context

The PA problem considers a set of patients P that each need to be assigned to
one of a set of hospital rooms R over a certain time horizon H = {1, . . . , T}.
Each room r ∈ R has a given capacity, denoted by c(r). Each patient p ∈ P
is attributed an arrival time a(p) and a departure time dd(p), with the time
interval [a(p), dd(p)) representing the patient’s stay in the hospital. The length
of the patient’s stay, dd(p)− a(p), is denoted as los(p).

The problem is to find an assignment σ : P 7→ R of patients to rooms that
minimizes a certain cost w(σ) related to these assignments. This cost w(σ)
consists of two parts:

– w1(σ) =
∑
p∈P los(p) · c(p, σ(p)) : each patient/room combination is at-

tributed a cost c(p, r), that relates to the appropriateness of assigning pa-
tient p to room r for one time interval (the lower c(p, r), the better). The
goal is to minimize the sum of these assignment costs.

– w2(σ) =
∑
r∈R

∑T
t=1 Conflictσ,r,t : the sum of all gender conflicts in all

rooms r over the entire planning horizon H. The goal is to avoid that male
and female patients are assigned to the same room at the same time. These
conflicts are calculated as follows:

Conflictσ,r,t = min( |p ∈ Pσ,r,t : p is male|,
|p ∈ Pσ,r,t : p is female|) (1)

with
Pσ,r,t = {p ∈ P : a(p) ≤ t < dd(p), σ(p) = r} (2)

denoting the set of patients assigned to room r at time t. Furthermore, this
assigment should respect the room capacities at all times, i.e. :

∀t = 1, . . . , T, r ∈ R : |Pσ,r,t| ≤ c(r) (3)

The definition proposed by Demeester et al (2010) allows for patients to
be transferred from one room to another during their stay. The present con-
tribution considers the slightly simpler version of the problem, which does not
allow for transfers.

2.2 PA in a dynamic context

In practice, the arrivals and departures of patients are gradually revealed over
the planning horizon. The problem definition is therefore extended to account
for these dynamics. Each patient p is attributed a registration date r(p), at
which point the patient becomes known to the system, and an expected de-
parture date ed(p), which is an estimate of the patient’s departure date. The
departure date of the patient dd(p) however, remains hidden until the patients’
departure date has passed.

At each point t′ ∈ H of the planning horizon, two sets are revealed:
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– Pt′ : the set of patients with r(p) = t′, i.e. the patients that are registered
at time t′. At this point, for each patient p ∈ Pt′ only a(p) and ed(p) are
known, dd(p) remains hidden.

– DPt′ : the set of patients with dd(p) = t′, i.e. the patients that leave the
hospital at time t′.

Let At′ denote the set of patients that arrived at t′, i.e. :

At′ = {p ∈ P : a(p) = t′} (4)

The goal of the problem is to find at each time t′ an assignment

σt′ :
t′⋃
i=1

Ai 7→ R (5)

that maps each arrived patient p (i.e. all p for which t′ ≥ a(p)) to a hospital
room r. Furthermore, patients who arrived before t′ should not be moved, i.e. :

∀p ∈
t′−1⋃
i=1

Ai : σt′(p) = σt′−1(p) (6)

The assignment σT denotes the solution at the end of the planning hori-
zon. It contains all the patients’ assignments within that period. The solution
quality can be assessed by computing w(σT ). It is interesting to compare this
value with the quality obtained for the static variant of the problem, which
supposes that each patient’s departure date is fixed in advance. Any lower
bound for (or the optimal solution to) the static version is a lower bound for
the dynamic problem.

3 Optimization models

Two models were developed for the dynamic PA planning problem that cor-
respond to the situation at each decision step t′. They extend the previous
assignment σt′−1 to include available information on newly arrived patients
p ∈ At′ .

The first approach is modelled after current practice, namely the assign-
ment decision is made shortly before patient arrival and only current room
availability is considered. The model tries to find the optimal assignment for
the patients who arrived at the current decision step. Moreover, it uses the
estimate of the newly arrived patients’ LOS. The second model builds on the
previous model by also considering all registered patients at each decision step,
therefore anticipating future occupancy and room demand.

Both models are implemented as ILP-models. They are described in Sec-
tions 3.1 and 3.2. To simplify the description, the following notation will be
used:

– Pt′ =
⋃t′

i=1 Pi, the set of all registered patients up till t′,
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– At′ =
⋃t′

i=1Ai, the set of all patients who arrived up till t′,
– PM , PF ⊆ P , restricts a set of patients to either males or females respec-

tively,
– elos(p) = max (ed(p)− a(p), t′ − a(p)), the expected length of stay of pa-

tient p as it is known at the decision time t′. If the patient’s stay has
exceeded his or her expected departure date ed(p), he or she is expected
to stay at least one day longer.

– APtt′ = {p ∈ At′ : a(p) ≤ t < a(p) + elos(p)}, the set of arrived patients
that are expected to be present at time t,

– PPtt′ = {p ∈ Pt′ : a(p) ≤ t < a(p)+elos(p)}, the set of registered patients
that are expected to be present at time t.

3.1 Model 1

The decision variables are defined as follows:

xp,r =

{
1 if patient p is assigned to room r,

0 otherwise.
(7)

vr,t = the number of gender conflicts in room r at time t (8)

yr,t =


1 if the number of male patients assigned to room r

at time t is larger than or equal to the number of female patients,

0 otherwise.

(9)

The optimization problem is then modelled as follows:

Min
∑
p∈At′

∑
r∈R

elos(p) · c(p, r) · xp,r +
∑
r∈R

T∑
t=1

wG · vr,t (10)

s.t.∑
r∈R

xp,r = 1 ∀p ∈ At′ (11)∑
p∈APtt′

xp,r ≤ c(r) ∀r ∈ R, t = 1, . . . , T (12)

∑
p∈APM

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (13)

∑
p∈APF

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (14)

∑
p∈APM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ R, t = 1, . . . , T (15)

∑
p∈APF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ R, t = 1, . . . , T (16)

198 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



xp,r = 1 ∀p ∈ At′−1, r = σt′−1(p) (17)

xp,r ∈ {0, 1} ∀p ∈ At′ , r ∈ R
vr,t ≥ 0 ∀r ∈ R, t = 1, . . . , T

yr,t ∈ {0, 1} ∀r ∈ R, t = 1, . . . , T

The model describes an assignment that minimizes the expected cost of the
newly arrived patients (Expression (10)). Constraint (11) specifies that each
arrived patient has to be assigned to a room, while constraint (12) expresses
that room capacity should be respected at all times. Constraints (13), (14),
(15), and (16) relate the variables vr,t and yr,t, forcing vr,t to take on the
expected value of the minimum number of either males or females in room r
at time t. Finally, constraint (17) ensures that the new assignment respects
the assignments of previously arrived patients.

3.2 Model 2

The second model defines the same decision variables as Model 1, however
it differs in the set of patients for which they are defined. Whereas the xp,r
variables are defined for all arrived patients At′ in the first model, in this
model they are defined for all registered patients Pt′ .

Another difference is that patients can be assigned to a dummy room,
denoted as ⊥. Only registered patients who have not arrived are allowed in
this dummy room, to ensure feasibility of the model under an expected, future,
undercapacity. These assignments are attributed a high cost c(p,⊥) in such a
way that the model gives priority to a real assignment for each future arrival.

The model is defined as follows:

Min
∑
p∈Pt′

∑
r∈R∪⊥

elos(p) · c(p, r) · xp,r +
∑
r∈R

T∑
t=1

wG · vr,t (18)

s.t.∑
r∈R

xp,r = 1 ∀p ∈ At′ (19)∑
r∈R∪⊥

xp,r = 1 ∀p ∈ Pt′\At′ (20)∑
p∈PPtt′

xp,r ≤ c(r) ∀r ∈ R, t = 1, . . . , T (21)

∑
p∈PPM

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (22)

∑
p∈PPF

tt′

xp,r ≥ vr,t ∀r ∈ R, t = 1, . . . , T (23)

∑
p∈PPM

tt′

xp,r ≤ vr,t + c(r) · yr,t ∀r ∈ R, t = 1, . . . , T (24)
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instance |P | |R|
∑

r∈R c(r) avg. occupancy (%) planning horizon

1 652 98 286 59.69 14
5 587 102 325 49.32 14
8 895 148 441 43.90 21
10 1575 104 308 47.76 56

Table 1: Problem characteristics of the instances.

∑
p∈PPF

tt′

xp,r ≤ vr,t + c(r) · (1− yr,t) ∀r ∈ R, t = 1, . . . , T (25)

xp,r = 1 ∀p ∈ At′−1, r = σt′−1(p) (26)

xp,⊥ = 0 ∀p ∈ At′ (27)

xp,r ∈ {0, 1} ∀p ∈ Pt′ , r ∈ R∪ ⊥
vr,t ≥ 0 ∀r ∈ R, t = 1, . . . , T

yr,t ∈ {0, 1} ∀r ∈ R, t = 1, . . . , T

The objective of the model, expression (18), is again to minimize the total
assignment cost, including minimizing any possible dummy assignments. Con-
straints (19) and (20) specify that each arrived and registered patient should
be assigned to one room, allowing for dummy assignments for future arrivals.
Constraints (21) - (26) are similar to their counterparts in Model 1, this time
also considering future arrivals. Constraint (27) ensures that arrived patients
are not assigned to dummy rooms.

4 Experimental setup

We tested the sensitivity of the two models to the following problem charac-
teristics:

– Occupancy
– Accuracy of the length of stay estimate (see further)
– Emergency versus planned cases

For this purpose, we used a subset2 of the benchmark instances for the static
PA problem available from the patient admission scheduling website (De-
meester 2012). The instances were extended to the dynamic problem by adding
a random registration date rd(p) and an expected departure date ed(p) for each
patient p over the planning horizon. See Table 1 for the characteristics of these
instances. The procedure for enriching the instances is as follows:

– ed(p) is selected uniformly from the interval [dd(p) − acc, dd(p) + acc] for
each patient individually. If ed(p) <= a(p), then it is set to ed(p) = a(p) +
1. We investigate the effect of acc, i.e. the effect of the accuracy of the
expected departure date estimate.

2 The subset consists of instances 1,5, 8 and 10.
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– rd(p) is either selected uniformly from the interval [a(p)− T, a(p)− 1] for
planned patients, or is set to a(p) for emergency patients. We investigate
the effect of the percentage (denoted em) emergency versus planned cases.

To test the effect of increasing occupancy, we randomly remove (uniformly
selected) beds from the instances to increase the projected average occupancy.
This procedure is similar to what Ceschia and Schaerf (2011) did. To maintain
feasibility, we limit this increase such that the peak occupancy is never above3

100%.

A lower bound for each instance was obtained by calculating the linear
relaxation of a straightforward MIP model (not included in this paper) on
the static version of the problem (i.e. where everything is known a priori).
For studying the effect of increasing occupancy, we have calculated the lower
bound for every occupancy setting since it increases as beds are removed from
the instance. In the figures discussed in the following section, this lower bound
is denoted as LB.

The ILP models have been implemented using Gurobi 4.5.2 with a free
academic license and were solved with a time limit of 300 seconds per decision
step. Thus, for example, an instance with a planning horizon of 14 days (14
decision steps) is solved in at most 14× 300 = 4200 seconds.

All experiments were performed on a computer equipped with a 3.0 GHz
Core2Quad processor, and 4 GB of ram memory, running Windows XP Profes-
sional (Service Pack 3). The solver was configured to use only one processing
thread. The supporting code was implemented in Java 1.6.

5 Discussion

5.1 Emergency versus planned cases, and the effect of the LOS estimate

Both models were tested on all combinations of the factors acc (LOS estimate)
and em (percentage emergency cases), with acc ranging from 0 time units (per-
fect estimate) to 5 time units (a poor estimate) and em ∈ {0, 0.25, 0.50, 0.75, 1.0}.
All tests were performed on 10 randomized instances for each specified combi-
nation of the mentioned factors. The subsequent figures and tables report on
the averages over these 10 runs.

Figure 1 shows the effect of an increasing percentage of emergencies, under
a perfect LOS estimate (left column) and a poor LOS estimate (right column),
for instances 1 and 5 (top and bottom row). The results show that Model 2
consistently outperforms Model 1. However, in the limit for increasing percent-
age of emergencies, the result of Model 2 converges to Model 1. Obviously, in
the case for 100% emergency cases, no future arrivals can be planned and the
model is reduced to Model 1.

3 Note however, that hospitals do face a 100% occupancy (and higher, using unlisted beds)
from time to time.
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For a perfect LOS estimate, Model 1 is not sensitive to the percentage
of emergency cases, as it only considers arrived patients, whether they are
emergency or planned.

Under a poor LOS estimate, both models show a more erratic behaviour.
This appears unrelated to the percentage of emergencies. The reason for this
change is that a decision (both for Model 1 and Model 2) may turn out good
or bad when patients depart earlier or later than estimated. However, Model
2 still outperforms Model 1 for both good and bad estimates.
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Fig. 1: Model performance for increasing percentage of emergencies, under a
perfect LOS estimate (left) and a poor LOS estimate (right). Results shown
for instance 1 and 5.
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The above conclusions are again confirmed in Figure 2 that shows the
effect of the model performance under an increasingly poorer LOS estimate,
for a low to high percentage of emergencies. From the results, it follows that
the performance of both models deteriorates for an increasingly poorer LOS
estimate, while Model 2 always outperforms Model 1. This result was expected,
as an increasing inaccuracy of the LOS estimate causes an inaccurate weighing
of the patient assignments and thus suboptimal solutions. Furthermore, more
patients will (significantly) go over their planned LOS, requiring future arrivals
to be replanned. Again, in the limit for 100 % emergency cases, Model 2
converges to Model 1. For an overview of the results, please refer to Table 2.
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Fig. 2: Model performance for an increasing error on the LOS estimate, under
a low percentage of emergencies towards a high percentage of emergencies.
Results shown for instance 8.
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5.2 Effect of increasing occupancy

The effect of an increasing occupancy was tested by artificially forcing a higher,
average, occupancy in instances 1 and 5, ranging from 59% to 77% for instance
1 and from 49% to 67% for instance 5. Both instances reach a peak occupancy
of 100%. Again, all combinations of factors were tested 10 times to reduce
random effects. The following results report on the averages of those 10 runs.

Figure 3 shows the effect of an increasing occupancy on the performance of
both models, under an increasing percentage of emergencies (from left-to-right,
top-to-bottom) for instance 1. It is clear that both models perform worse under
an increasing occupancy. However, the lower bounds of the instances also in-
crease as beds are removed from the instances. Thus, the relative performance
of the models compared to the lower bound does not change, indicating that
occupancy does not have an effect on what the models can achieve. Figure 4
shows the same effect for instance 5.

6 Conclusion

In the present contribution, a dynamic version of the patient assignment prob-
lem that models a day- to- day planning process at hospital admission offices
was proposed. The problem definition extended the previous, static, definition
to account for the dynamics of online patient arrivals, including emergency
patients, and explicitly models the LOS of patient as an estimate.

Two ILP models were developed: one that is modelled after current prac-
tice, namely assigning patients to rooms as they arrive, and one that also ac-
counts for future planned arrivals. The first model improves on current practice
by also considering the expected LOS of patients, therefore enabling a proper
weighing of patient assignments. The second model also accounts for future,
planned, arrivals in order to weigh patient assignments even better.

Experimental results showed that the second model can still be solved effi-
ciently using a commercial MIP solver (under 5 minutes per scheduling step),
outperforming the first model as it considers more available information on fu-
ture arrivals. Furthermore, experimentation with the percentage of emergency
patients, poorer LOS estimates and an increasing hospital occupancy indicate
that this behaviour does not change under these conditions, advocating the
use of model two over model one.
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Fig. 3: Model performance for an increasingly higher occupancy rate, under
different levels of emergency vs planned patients. Results shown for instance
1 with a perfect estimate.
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Fig. 4: Model performance for an increasingly higher occupancy rate, under
different levels of emergency vs planned patients. Results shown for instance
5 with a perfect estimate.
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