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Abstract: The process of timetable construction is a common and repetitive task for High Schools 

worldwide. In this paper a generic approach is presented for Greek High Schools organized around 

the idea of solving a significant number of tractable Integer Programming problems. Variables of 

the underlying mathematical model correspond to daily teacher schedules while a number of hard 

and soft constraints are included so as for the model to handle practical aspects that manifest 

themselves in Greek High Schools. By selecting better teacher schedules that exist in sub-

problems the quality of the overall solution gradually improves. The collected results which are 

obtained within reasonable time are most promising. The strength of the approach is supported by 

the fact that it managed to find the best known results for two public instance problems included in 

the Benchmarking Project for High School Timetabling (XHSTT-2012
1
).  

Keywords: high school timetabling, integer programming 

1. Introduction 

Timetabling problems manifest themselves across various domains of practice and research and 

can be described as the task of allocating resources to available time slots so as a set of constraints 

are satisfied. Additionally, a set of quality features renders alternative timetables superior or 

inferior with respect to each other. Timetabling problems in their general form belong to the class 

of NP-complete problems giving little hope of finding an algorithm that produces an optimal 

solution in polynomial bounded time. Nevertheless, specific timetabling problems with great 

practical interest can be solved satisfactorily. Therefore, a wealth of solution approaches has been 

studied originating mainly from Mathematical Programming, Computational Intelligence and 

Metaheuristics. 

                                                 

1
 http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/ 
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Educational Timetabling problems are a specialization of timetabling problems. They have 

been studied in detail and even before the new millennium a plethora of approaches have been 

proposed as can be consulted in (Schaerf, 1999). The volume of papers published since then about 

the subject has been increased steadily. Educational Timetabling problems can be broadly 

classified in three main types: 

• High School Timetabling problems: Sets of students forming classes have to be scheduled 

in teaching hours involving specific availability and specialization of teachers so as to 

generate a feasible and balanced timetable. The underlying model of High School 

Timetabling has been formulated as an edge coloring problem on a bipartite graph. Under 

this formulation the abstract problem can be polynomially solvable. Nevertheless, the 

addition of real life constraints makes it NP-complete. The edge colouring formulation of 

the problem can be traced in (Csima, 1971) and (Bondy and Murty, 1976) with the latter 

having references to (de Werra, 1970) and (Dempster, 1971).  

• University Course Timetabling problems: This problem can be seen as a specialization of 

the previous type with the difference of students that can belong to more than one classes. 

The main objective is to minimize lecture overlaps involving the same students. 

• Examination Timetabling problems: This problem involves exams undertaken by sets of 

students and the goal is to reduce instances of students having to take part in more than 

one examinations simultaneously and evenly spread the exams over the whole exam 

period. 

A significant number of papers about the High School problem in general and the Greek 

variant of it in particular have been published. Some representative papers are (Valouxis and 

Housos, 2003), (Burke et al, 2007), (Beligiannis et al, 2008), (Birbas et al, 2009) and (Liu et al, 

2009). In this contribution we address the Greek High School Problem through a two phase 

process that incrementally solves parts of the problem. A feasible solution is progressively formed 

using solutions obtained through mathematical programming. Then, better solutions are located by 

keeping parts of the schedule fixed and changing the remaining schedule. The process gradually 

converges to better schedules. A similar methodology has been applied by our team for the nurse 

rostering problem with exceptionally good results. The interested reader is forwarded to the related 

paper (Valouxis et al, 2012). 

The paper is structured as follows.  Section 2 presents the problem as it occurs in Greek High 

schools. Constraints are categorized in hard and soft ones and a case study of a specific High 

school is documented. Section 3 gives the details of our approach by presenting the mathematical 

model used in the two phases. Then both phases are analyzed. Section 4 discusses implementation 

issues of our approach. Section 5 analyzes the experimental results obtained. Finally, section 6 

provides conclusions drawn from our approach.  
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2. Problem Description 

In Greek High schools, students have to attend a three year curriculum and in each year students 

are grouped in class sections alphabetically. Lectures are given from Monday to Friday and the 

teaching daily hours must be six or seven without idle hours in between for all students. The 

lectures that must be given to every class are predefined and common across Greece. Most of the 

lectures are given to students belonging to the original class sections by a single teacher for each 

subject. However, class sections can be split so as each group to attend a different course or to be 

merged with groups from other class sections in order to form temporary class sections attending 

certain courses. This usually occurs in courses like foreign languages where class sections are 

partitioned subject to the knowledge level of the students or subject to each student preference 

amongst the foreign language options provided by their school (usually English and French but 

also other languages in some schools). Class splitting also occurs for lessons that have to be 

attended in rooms with smaller capacity than that of the full number of a class section. Such 

courses are chemistry, technology and informatics which take place in laboratories. In order to 

have a full day schedule for all students of a class section that is split in two groups for a lesson 

like chemistry the first group might attend chemistry while the second group might attend different 

lesson like gymnastics or career guidance. Then at another time slot courses taught to each group 

appear to be swapped. Every teacher is qualified to teach a subset of the courses while the teaching 

load is different across teachers depending on seniority, motherhood and other conditions. It is 

possible for a teacher not to teach exclusively in a specific school and to have to complement his 

weekly work duty by teaching to more than one school. If that is the case then he is available for 

teaching to each school for certain days only.  

In the model of the problem examined every class has its own predefined room but certain 

rooms or other resources like video projectors might be shared by more than one classes. Teachers 

are assigned for certain hours to each class section before the creation of the timetable. As, usually 

is the case in combinatorial optimization problems two categories of constraints can be identified: 

hard constraints and soft constraints. Hard constraints must hold for a solution to be considered 

valid while soft constraints violations degrade the quality of the proposed solution.  Hard 

constraints of the problem are the following: 

• HC1: Each teacher should teach a specified number of hours to each class. 

• HC2: Each teacher should teach only at days that he is present at school. 

• HC3: Each teacher should teach only to one class per time period. 

• HC4: Each teacher should teach at least one hour for the days that he is present at school. 

• HC5: Each class should have no more than one lesson per time period. 

• HC6: Lectures of the same lessons should not be positioned in the same day. 

• HC7: Empty time periods for each class section should only be positioned at the last 

period of each day. 
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• HC8: A resource should not be consumed more times than its availability in each time 

period. 

On the other hand soft constraints are: 

• SC1: Each teacher should have the smallest possible number of idle periods in his 

schedule. An idle period for a teacher is defined as a not busy period with a busy period 

earlier in the day and another busy period later in the day. 

• SC2: Each teacher should have a balanced daily work schedule. 

• SC3: Teacher preferences for teaching in early or in late hours should be respected to the 

highest possible degree. This constraint can also serve as an indirect way of giving 

preference to certain courses to be positioned in early or late time periods (e.g. 

Mathematics in the early hours).  

Throughout the paper a specific problem instance depicted in Tables 1 and 2 will be presented 

and analyzed so as to better grasp the underlying concepts of the problem. This problem comes 

from the “3nd Gymnasium” High School in the city of Patras, Greece for the period from 

September 2010 to June 2011. It is about a medium size by Greek standards school with 9 classes, 

29 teachers giving 340 lessons either to entire classes or to classes formed from student groups 

coming from different classes. Each class has to attend 7 teaching hours per day. For those 

teachers that have preferences for teaching early or late hours in some days this is marked in Table 

1 with the letter E or L respectively. The letter X implies that the teacher is not available in this 

day. When a teacher prefers early teaching in a day this means that the solution will be penalized if 

he has to teach in hours 5 to 7 of this day. Likewise when a preference is late teaching assignments 

in hours 1 to 3 gets penalized. Furthermore, each teacher should have a balanced scheduled across 

the days that he is present at school. So lower and upper bounds, shown under column “Low” and 

column “High” in Table 1, are imposed. Columns A1A2, A3A4, B1B2, C1C2 and C2C3 denote 

class formations generated by joining groups of students between classes. For example, teachers 

T15 and T16 teach to mutually exclusive groups of students from classes A1 and A2 subject 

“English Language” for 3 hours each week. 

 

  Week Hours per day Classes   

Teacher M T W T F Low High A1 A2 A3 A4 A1A2 A3A4 B1 B2 B1B2 C1 C2 C3 C1C2 C2C3 Total 

T0 E E X   E 1 1   2   2                     4 

T1 L L L E   1 2                   2 2 2     6 

T2 E L E E X 2 4 2 2 2 2     2 2             12 

T3 L E   L E 2 4   3 10 2                     15 

T4   E L L L 2 4                   3 12       15 

T5 E   E E L 2 4 2             5   9         16 

T6   L L L E 2 4   2           4       9     15 

T7 E     L   2 4   5   3     9               17 

T8   E E E E 2 4 8     5               3     16 

T9 X       L 1 1               4             4 

T10 L L L   L 2 4             4     4 4 4     16 

T11 L L L L   2 4 4 4 4 4                     16 

T12 E L   L E 2 4 2   2       3 3   1 1 1     13 

T13 E E E   L 1 3             2 2   2 2 2     10 

T14 L E   X L 3 5 2 2 2 2           2 2 2     14 
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T15 L L L E   1 3         3 3     2     2 2   12 

T16 E   E L E 2 4         3 3 2 2 2     2 2   16 

T17   E E   E 2 4 4 4 2 2     2             2 16 

T18 E L   X E 1 3       2       2   2       2 8 

T19 L L E E   1 2     2 2       2             6 

T20 X X L X L 1 3   2               2         4 

T21   X X E   2 4 1 1 1 1     1 1   1 1 1     9 

T22 L X L L   3 5 1 1 1 1     2 2   2 2 2     14 

T23   L L E L 3 5 3 3 3 3     3     2 2       19 

T24 E E E L   1 1               3       2     5 

T25   E   L E 1 3 1 1 1 1     1 1   1 1 1     9 

T26 L   E E L 2 4 2 2 2 2     2 2   1 1 1     15 

T27 L   L E L 1 3 2 2 2 2           1 1 1     11 

T28 E E E   E 1 2             2 2   1 1 1     7 

Table 1. Teacher availabilities, preferences and teaching hours per class 

 

Table 2 presents a compact form of all “lessons” that have to be taught to all classes or 

combinations of classes. Based on the observation that a timetable consists of meetings between 

teachers and classes for specific durations each table value represents a number of such meetings. 

For example, value “T2;TH;2” in the second row under column A1 means that the entire class A1 

will have 2 lessons of 1 hour duration with teacher T2 teaching subject TH and these meetings 

should not be scheduled in the same day.  

A different situation occurs in column A1 and row 15 having value “T26,T27;TE,PL;1”. This 

means that class A1 will be split into two groups and teacher T26 will teach subject TE to one 

group while teacher T27 will simultaneously teach possibly a different subject (in this case subject 

PL) to the other group. This will happen 2 times: one corresponding to row 15 and a second one 

corresponding to row 16. These lessons can coexist in the same day but certainly in different 

hours. Note that if those two cells were replaced by a single one with “T26,T27;TE,PE;2” this 

would have implied that the lesson taught by T26 and the lesson taught by T27 could not have 

coexisted in the same day. This is the case with row 17, column A2 having value 

“T20,T17;GL,FL;2”. So, teacher T26 teaches “Technology” while teacher T27 teaches 

“Informatics” in subclasses formed from class A1. On the other hand teacher T20 teaches 

“German Language” and teacher T17 teaches “French Language” to subclasses originated from 

class A2. The conclusion is that while “Informatics” and “Technology” lessons can be positioned 

in the same day for the same group of students, this could not happen for lessons “Germany 

Language” and “French Language” of class A2. This occurs because in the first case all students 

will be taught “Informatics” and “Technology” while in the latter case students will be taught 

either “Germany language” or the “French Language” based on their preference. 

Another situation manifests itself with value “T15,T16;AG,AG;3” of merged columns A1 and 

A2 in row 17. This value means that class A1 and class A2 are joined and then split into 2 groups 

of students. Teacher T15 takes over one group while teacher T16 takes over the other group. 

During the week the 3 lessons of teacher T15 should be scheduled to different days and start at the 

same time with the corresponding lessons of teacher T16. 
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  A1 A2 A3 A4 B1 B2 C1 C2 C3 

1 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T2;TH;2 T1;TH;2 T1;TH;2 T1;TH;2 

2 T5;NE;2 T6;NE;2 T3;NE;2 T8;NE;2 T7;NE;2 T6;NE;2 T5;NE;2 T4;NE;2 T6;NE;2 

3 T8;AM;2 T7;AM;2 T3;AM;2 T3;AM;2 T7;AM;2 T5;AM;2 T5;AM;2 T4;AM;2 T6;AM;2 

4 T8;AR;3 T7;AR;3 T3;AR;3 T7;AR;3 T7;AR;3 T5;AR;3 T5;AR;3 T4;AR;3 T6;AR;3 

5 T8;GD;3 T3;GD;3 T3;GD;3 T8;GD;3 T7;GD;2 T6;GD;2 T5;GD;2 T4;GD;2 T6;GD;2 

6 T11;MA;4 T11;MA;4 T11;MA;4 T11;MA;4 T10;MA;4 T9;MA;4 T10;MA;4 T10;MA;4 T10;MA;4 

7 T12;GE;2 T0;GE;2 T12;GE;2 T0;GE;2 T12;GE;2 T12;GE;2 T26;SE;1 T26;SE;1 T26;SE;1 

8 T14;BI;2 T14;BI;2 T14;BI;2 T14;BI;2 T12;XH;1 T12;XH;1 T12;XH;1 T12;XH;1 T12;XH;1 

9 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 T21;KA;1 

10 T22;OO;1 T22;OO;1 T22;OO;1 T22;OO;1 T22;OO;2 T22;OO;2 T22;OO;2 T22;OO;2 T22;OO;2 

11 T23;GY;3 T23;GY;3 T23;GY;3 T23;GY;3 T23;GY;3 T24;GY;3 T23;GY;2 T23;GY;2 T24;GY;2 

12 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 T25;MO;1 

13 T17;IS;2 T17;IS;2 T17;IS;2 T17;IS;2 T16;IS;2 T16;IS;2 T4;IS;3 T4;IS;3 T8;IS;3 

14 T17;FL;2 T26,T27;TE,PL;1 T19;2 T26,T27;TE,PL;1 T13;PH;2 T13;PH;2 T13;PH;2 T13;PH;2 T13;PH;2 

15 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T26,T27;TE,PL;1 T17;FL;2 T26,T28;TE,PL;1 T14;BI;2 T14;BI;2 T14;BI;2 

16 T26,T27;TE,PL;1 T20,T17;GL,FL;2 T26,T27;TE,PL;1 T18,T19;HI,IL;2 T26,T28;TE,PL;1 T26,T28; TE,PL;1 T28,T27;TE,PL;1 T28,T27;TE,PL;1 T15,T16;AG,AG;2 

17 T15,T16;AG,AG;3 T15,T16;AG,AG;3 T26,T28;TE,PL;1 T18,T19;HI,IL;2 T20,T18;GL,HI;2   T27,T28;TE,PL;1 

18        T15,T16;AG,AG;2 T15,T16;AG,AG;2   

19               T17;T18;FL,GL;2 

 Total 35 35 35 35 35 35 35 35 35 

Table 2. Lessons that have to be taught. Value between semicolons refers to the subject been 

taught 

3. The Algorithm 

The algorithm can be considered as a two phase approach. During the first phase IP problems are 

iteratively solved in order to create a schedule for one day at a time. The first phase ends when all 

days are solved and after a number of improvements considering each day in isolation have been 

tried. The second phase systematically selects pairs of days and attempts to move teaching events 

between days. Again a series of IP problems are generated and gradually better solutions are 

reached. Firstly, a formal description of the mathematical model employed in solving each 

problem is presented and subsequently the two phases are analyzed. The second phase can be seen 

as a very large-scale neighbourhood (VLSN) search. More techniques about VLSN in timetabling 

problems can be consulted in (Meyers and Orlin, 2007). 

3.1 The Mathematical Model 

The basic sets used in the problem’s model definition are the following: 

• T is the set of teachers. 

• C is the set of classes. 

• D is the set of days in the timetable, usually 5 working days of a single week. 

• H is the set of teaching hours in a day. 

• E is the set of events.  

• R is the set of resources that might be shared by more than one lesson. A resource can be 

a room of a certain type, a room with special equipment, a video projector etc. 

 

From those sets the following subsets are derived: 

• Dt is the set of days that teacher t is available. 

• Et is the set of events that involve teacher t. 

• Wt is the set of legal daily schedules for teacher t for all days that he or she is available for 

work at the school.  
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Each legal daily schedule of a teacher is a combination of events and idle hours having length 

|H|. The set of legal daily schedules for a teacher is formed by creating all the combinations of 

events selected from set Et and idle hours. Events that should not be scheduled in the same day 

(e.g. events of the same course) cannot exist in the same combination. The selected daily schedules 

for all teachers should cover the teaching workload of all days so the problem can be categorized 

as a Set Covering Problem. 

Let xtdw be a binary variable that assumes value 1 if teacher t at day d is assigned the daily 

schedule w and 0 otherwise. Let ctdw be the cost of the daily schedule w for teacher t at day d. This 

cost comprises from: 

• Penalty for idle hours between work in teacher schedules.  

• Penalty for deviation from the lower or upper limit of the desired total teaching hours per 

day. 

• Penalty for teaching in an hour that is not in the preferences of the teacher. 

 

The mathematical model of the problem is presented below: 
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Eq. 1 is the objective function and represents the total cost of a solution that should be 

minimized. It is the sum of the cost over all selected daily schedules for all teachers and for all 

days of the teaching week.  

Constraint shown in Eq. 2 states that one daily schedule should be selected for each teacher. 

Eq. 3 states that all events must be assigned meaning that each event must exist at exactly one 

selected daily schedule of a teacher. In this equation parameter atdwe assumes value 1 if daily 

schedule w of teacher t in day d includes event e or 0 otherwise.  

Eq. 4 guarantees that the schedule of each class will have no idle times. So, for each day and 

hour 1 event must exist that involves each class. It should be noted that atdwhc is a parameter that 
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assumes value 1 if the daily schedule w of teacher t in day d and hour h includes an event that 

involves class c and 0 otherwise.  

Eq. 5 handles events with more than 1 teacher and instructs them to be included in the same 

day and hour in the daily schedules of the affected teachers. Binary variable y assumes value 1 

when ke teachers should teach concurrently and value 0 when no concurrent teaching occurs. 

Parameter atdwhe assumes value 1 if the daily schedule of teacher t in day d and hour h includes 

event e and 0 otherwise. 

Eq. 6 appears in case room or other potentially shared resources exist. MaxQr is the available 

quantity for resource R while parameter atdwe is the number of the required quantities for resource r 

if daily schedule w of teacher t in day d and hour h includes an event that requires resource r and 0 

otherwise.  

The size of the problem is too big to be solved including all possible legal daily work 

schedules for all teachers and all days. So, an approximation method is employed where a 

preliminary solution is initially created and subsequently gets improved. Problem sizes in each 

step of the method are relatively small and can be solved in reasonable time. 

3.2 First Phase: Solve by Day 

An initial solution is generated by solving the mathematical model of the problem considering a 

single day at a time. Eq. 3 of the mathematical model is no longer needed because each single day 

can have a subset only of the events from E scheduled in it. Each column of the mathematical 

model represents a work schedule of a teacher for the day under consideration. 

The order of days that will be considered is determined by estimating how difficult each day 

timetable construction might be. A day is considered more difficult than another when less 

teachers with a lot of teaching hours are available.  

After the day is selected a list of yet unscheduled lessons that are legitimate to be taught is 

constructed for each teacher. Then, all possible combinations of each list’s lessons that could have 

been scheduled in the available hours are generated. So, for each teacher a set of legitimate work 

patterns is assembled with the presupposition that the size of the set is manageable. Otherwise, 

subsets of combinations unlikely to be included in the final solution are prematurely rejected. For 

each teacher’s set of patterns only one will be included in the schedule of the day under question.  

In order to solve the first day, daily work schedules of each teacher for this day are generated.  For 

each teacher t all events Et are considered. After each day gets solved daily schedules for all 

teachers are re-computed considering events that still remain unscheduled. In solving each day 

every legitimate daily work schedule for a teacher t should contain all events characterized as 

mandatory. If not then infeasible problems will result in solving next days. 

Nevertheless, for teachers with many events the number of possible daily work schedules 

might be overwhelming. So, an artificial upper bound to the number of generated daily work 

schedules that contain a specific event at a specific hour is imposed. When this bound is reached, 

by counting work patterns, this event is removed from the list of possible events for this hour. So, 

gradually the number of combinations diminishes while daily work schedules of each teacher 

having each event in every possible hour do exist. 

216 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



When the daily work schedules of all teachers are finished generated the linear relaxation of 

the mathematical model can be solved. The rather small problem size results in fast solve times for 

each relaxed problem. When the solution of the relaxed problem shows that a margin for better 

solutions does exist, the integrality constraints are enforced and the problem gets solved again this 

time as an IP problem. A time limit of 1 minute is allowed which might be less than the time 

needed for solving the problem to optimality. When results are obtained from solving the IP 

problem, even if they are suboptimal, they are used to define the daily work schedule for each 

teacher. 

The process continues by generating a new problem for the same day that is examined to give 

better cost values. The solution derived from the relaxed problem of the previous step is exploited 

in two ways. Firstly, a column is selected that corresponds to the daily work schedule of a single 

teacher with the smallest cost contribution that has also the greatest value in the solution of the 

relaxed LP. The set of events that are included in the selected daily schedule are decided to 

“freeze” meaning that these events should be scheduled thereafter in the day and hour dictated by 

the relaxed LP. Such decisions ease subsequent daily work schedule generations by lowering the 

total number of combinations that have to be considered. Secondly, dual values derived from 

solving the LP problem are exploited in calculating the reduced cost value of each column if 

included in the solution. Reduced cost of a variable is the amount by which its coefficient in the 

objective function has to be decreased so as to be included in the solution.  

Legitimate teacher day schedules that have negative reduced cost are stored so as to be 

included in the next problem that will be solved. This result in gradual decrease of the cost value 

found by the LP solver or in the worst case achieving the same cost value as before. By selecting 

columns from the LP problem that lowers the value of its objective function we hope to discover 

better values for the IP problem too. This process repeatedly occurs during our approach. A 

column, that represents a teacher day schedule, is stored if its cost is better than the cost of the best 

solution found so far for this day. Naturally, a column with cost equal or greater cannot be 

included in a solution better than the solution that we already have.  

The cost of the best LP solution found so far is inserted as upper bound for the objective 

function in the IP problem. The new problem contains columns forming the basis of the LP model, 

columns of the best integer solution and the new columns that have been generated. The procedure 

repeats until no more columns can be found that can be frozen or when no more teacher daily 

schedule programs can be generated. 

3.3 Second Phase: Solve by day pairs 

The previous phase results in an initial solution where all days have complete schedules for all 

teachers and classes. The second phase tries to find a better solution by selecting two days and 

trying to move teacher events between them. So, for every pair of days under investigation new 

daily teacher schedules are examined that improve the cost of the two day solution and therefore 

the cost of the full planning period solution. Teacher schedules in the days not belonging to the 

selected pair remain unaffected.  
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The same mathematical model described previously is used but in this case it includes two 

instead of one day. The set of events Et that involve teacher t is formed from the original set Et by 

removing events that are scheduled in the unaffected days of the planning period. The solution 

procedure is the same as that of the previous phase and it continues until no improvement can be 

found by any two days combination. 

4. Implementation 

The implementation of our approach was undertaken in Java using the open source mathematical 

solver GLPK (http://www.gnu.org/software/glpk/). Three key modules of the software can be 

identified that facilitated the process undertaken in the phases described in the previous 

paragraphs. These are: CostEvaluator, MandatoryFinder and CombinationsGenerator. A brief 

description of each module’s role follows. 

CostEvaluator is the component that calculates the cost of each solution which might be 

partial or complete. Furthermore, it computes the cost of every teacher daily schedule that is 

subsequently used as a coefficient in the mathematical problem. 

On the other hand, given a partial solution MandatoryFinder calculates the events that have to 

be scheduled in the day under consideration so as to avoid infeasibilities that would occur latter in 

case that these events were left to be scheduled later. For example, suppose that a lesson have to be 

taught 4 times in a week and after solving the first day all events of this lesson are still 

unscheduled. Then, for all subsequent days an event of this lesson has to be taught. 

MandatoryFinder also handles more complex situations like when an event involves more than one 

teacher. 

CombinationsGenerator is a heavily used module that is responsible for computing the 

combinations of events that should be scheduled in the hours available in each day. In order to 

reduce the number of combinations generated that occurs when the number of possible events of a 

teacher is large, heuristics are used so as to select a representative subset of all available 

combinations. 

5. Experimental Results 

The datasets used in our experiments originate from High schools in Greece. We tested our 

approach in several problem instances with different characteristics and in all cases a feasible 

solution of High quality was able to be achieved. Execution times even for bigger schools (~50 

teachers, ~15 classes) were less than 20 minutes in our test computer which was an Intel i3 380M 

(2.53GHz) with 3GBytes RAM running Windows 7 64 bit. 

Among datasets used two of them, presented in Table 3, belong to the benchmarking project 

for High School Timetabling. These datasets alongside with solutions achieved by our and other 

approaches are publicly available in (http://www.utwente.nl/ctit/hstt/). The benchmarking project 

for High School Timetabling is a joint effort from researchers across several countries so as to 

create a common XML standard for exchanging datasets. Description of the XML format can be 

consulted in (Post et al, 2012) and (Post et al, 2011). In both datasets our approach found the 
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optimal solution in less than 10 minutes. Dataset GreeceThirdHighSchoolPatras2010 and 

GreeceThirdHighSchoolPreveza2008 don’t have room constraints. Nevertheless, other custom 

datasets including such type of constraints were solved. 

 

Dataset Periods Teachers Classes Events Duration 

GreeceThirdHighSchoolPatras2010 35 29 9 178 340 

GreeceThirdHighSchoolPreveza2008 35 29 9 164 340 

Table 3. Datasets included in the benchmarking project for High School Timetabling 

 

The solution schedule that has been produced and satisfied all constraints for dataset 

GreeceThirdHighSchoolPatras2010 is presented in Table 4. Each asterisk represents a scheduled 

teaching for the associated teacher and period. It can be easily observed that the generated daily 

schedule of each teacher consists of consecutive busy periods. 

 

 

Table 4. Optimal schedule for GreeceThirdHighSchoolPatras2010 

 

6. Conclusions 

Quality schedules for High Schools are vital for the success of the education effort. Obtaining 

manually such a schedule is unlikely to occur so computer generated solutions seem to be the only 

logical option. Nevertheless, practical issues often prohibit schools of operating based on an 

optimal schedule for students and teachers. In this contribution we presented an approach for the 

Greek case of the High School problem and we showed its ability to generate very good and in 

some cases optimal results. The approach is based on a two phase process that incrementally 
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solves parts of the problem, using mathematical programming. Better schedules are unmasked 

while portions of the schedule remain fixed. The process gradually converges to better schedules.  

We acknowledge the fact that adaptation of new automated timetabling solutions by High 

Schools is a target hard to achieve but we believe that the quality of the schedules that we produce 

should entice schools in Greece to test the proposed approach. It is in our plans to offer a web 

service that schools in Greece will be able to use so as to enter the schedule problem as it occurs in 

their specific case and our application will propose a High quality schedule based on this data. We 

also plan to offer a re-schedule service that a High School could use so as to make changes 

throughout the year to an existing schedule while keeping most of it unchanged. 
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