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The results show that the using near-optimal solutions from the MIP
model, with a relative MIP gap of around 0.01-0.1 allows us to find very
good solutions in a reasonable amount of time that compare favorably with
both the manual solutions and the solutions found by the local search based
algorithm.
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1 Introduction

Staff scheduling is a problem that is well known to all companies that have
employees working on irregular schedules. Usually, the problem is to determine
which employees should cover which shifts so that the demand for manpower
is met at every time period and without breaking any regulations or con-
tracts. Additionally, the schedule should be good, i.e. it should meet with the
employees’ approval and satisfy as many of their requests as possible.

The nurse rostering problem has been studied by personnel managers, op-
erations researchers and computer scientists for over 50 years. Variations of
the problem are NP-hard [21,10,29,25]. Because the nurse rostering problem
is well known and since it can include many types of constraints and cover
a large set of staff scheduling problems, a large part of the research on staff
scheduling is focused on nurse rostering and the terms nurse rostering and
nurse scheduling have been used over the years to cover several types of per-
sonnel scheduling problems [14].

In nurse rostering there are three key approaches: cyclical scheduling, pref-
erence scheduling and self scheduling [9]. A cyclical scheduling problem is a
scheduling problem in which several sets of schedules are generated that cover
a certain period of time i.e. a month or three months. Then the staff is assigned
to a schedule that best fits their preferences so that all demands for manpower
are met. The schedules are then repeated for each period. Cyclical scheduling
is somewhat inflexible and therefore not able to adjust rapidly to changes in
the environment [27]. The main advantage of the cyclical scheduling is that
the employees know their schedule a long time in advance.

In preference scheduling, the employees list their preferences for the staff
manager who then creates schedules, trying to fulfill as many preferences as
possible but also makes sure that all demands for manpower and all work
restrictions are met. Thus the personnel manager has a great deal of respon-
sibility for the quality of the schedules. The preference scheduling has many
advantages, the major ones being its flexibility and its individual tailoring.
Preferences of the staff have become a vital feature of any successful schedul-
ing system. Kellogg and Walczak [24] state that any academic nurse rostering
model that does not include some opportunity for preference scheduling will
probably not be implemented. The major downside to preference scheduling
is the time it takes for the personnel manager to create a good schedule.

In self scheduling the employees themselves become responsible for creating
the schedule, instead of the staff manager. These schedules are created by
each employee signing up for their preferred shifts knowing the minimum and
maximum number of staff needed for each shift with the requirement that
the resulting schedule must be a feasible one. The biggest advantages of the
self scheduling, beside possible time savings, are the potentially greater staff
satisfaction, more commitment and reduced staff turnover, since the employees
are empowered by making the schedules themselves. However until recently
self scheduling has not been a good approach since it was too difficult to
execute this method fairly [22,8], the order in which the personnel sign up
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did matter, there was a possibility that the system might get manipulated by
some personnel, new employers were unfamiliar with the system and might
therefore be disadvantaged and some employees might not sign up for any
shifts at all. With the advent of the Internet it has become easier to implement
self scheduling fairly, putting self scheduling back on the map as a viable
approach. However, having the employees involved in the decision process will
always bring some risk of game playing, where employees try to manipulate
the system for their own gain [4].

A good way to implement self scheduling is by mixing preference scheduling
and pure self scheduling. Here the staff signs up for shifts, making a draft that
the personnel manager then turns into feasible schedule. The personnel man-
ager makes sure that the demand for manpower is met at every time and that
no work regulations are broken. In this approach the personnel is responsible
for creating a good preliminary schedule but the final responsibility of creating
the schedule lies with the personnel manager, making this approach better and
more fair than either pure preference scheduling or pure self scheduling. This
is the approach used in this paper.

Due to the multiple and often changing objectives and goals of staff schedul-
ing, the research on staff scheduling has included many different methods [19].
Mathematical programming techniques, such as column generation [5,23] and
branch and price methods [30], have shown good results. The research on staff
scheduling has also focused on more flexible metaheuristic approaches such
as genetic algorithms [1,2,18,28] and variable neighborhood search [13], with
Tabu-Search [12,17] and Simulated Annealing [11] being particularly success-
ful [20]. Good overviews of staff scheduling are [3,20,26].

The paper is structured as follows: Section 2 the problem is defined, in
Section 3 the model is introduced while Section 4 contains the result of the
model using real data, as well as a comparison to a local search based heuristic
from [6]. Finally, Section 5 contains conclusions and suggestions for further
work.

2 Problem Definition

Staff scheduling problems have a large number of constraints that need to be
satisfied. Those constraints can be divided into two groups, hard constraints
and soft constraints. Hard constraints must always be satisfied in order to have
a feasible schedule. Hard constraints are often a result of physical resource re-
strictions and legislations. Soft constraints are requirements that are desirable
but not obligatory and therefore allowed to be violated if necessary but it will
result in a penalty in the model. Soft constraints violations are often used to
evaluate the quality of feasible schedules.
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2.1 Hard constraints

The hard constraints are mainly based on contracts with the employees and
union contracts and must therefore be satisfied at all times. Not all the con-
straints are the same for all employees although usually the main constraints
are the same. The constraints that are usually not the same for all employees
are the work limit constraints. The labels in parenthesis after each constraint
in the following lists refer to the classification introduced in [7]. In the model
the following hard constraints are considered:

– Restrictions on working hours and rest periods from union reg-
ulations and employee contracts. The union regulations about rest
periods, maximum lengths of continuous work within a day, maximum
number of continuous days worked, minimum length of continuous rest
between shifts and other limits have to be met. Employee contracts can
include restrictions on when employee can work, for example an employee
that will never work nights or weekends. (R1,R4,R5,R7,R8)

– Vacation request. Vacations are considered to be a hard constraint to
ensure that no employee will be assigned to a shift while on a vacation.
(R2)

– Requests for time off. Each employee has a right to some time off,
how many hours depending on the company and the employee contract. In
our settings this needs to be a hard constraint so these requests won’t be
violated. (R1)

– Working weekends. There can be limits on how many weekends employ-
ees are allowed to work in each scheduling period. Each employee has to
receive at least A out of every B weekends off, where A ≤ B. These are
limits like 2 or 3 weekends off out of every 4 consecutive weekends. (R3)

– Special shifts, training sessions or meetings. Employees often have
work related duties that are not flexible and are often not included in the
number of employees on duty. Since training sessions and meetings are not
flexible these constraints must be satisfied. (R6,O6)

– Other limits on shifts or working hours, for example split shifts.
Split shifts are defined as two separate shifts within the same day, where the
time between the shifts is less than the minimum resting period between
shifts. It can differ between companies whether splits shifts are allowed or
not. Splits shifts are only hard constraints when split shifts are not allowed.
(R9)

Each company is different when it comes to number of employees, contracts,
habits and regulations, therefore the constraints differs from one company to
another. Each company wants to be able to quickly generate a high quality
schedule that satisfies all hard constraints and as many of the soft constraints
as possible.
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2.2 Soft constraints

Each time a soft constraint is violated the schedule receives a penalty that
appears in the objective function. How high the total penalty is depends on
which constraints are violated and how often they are violated. The penalties
have different weight factors, depending on how serious a violation of the
relevant constraint would be. In the model the following soft constraints are
considered:

– Minimum and maximum staff level. An estimate of the demand for
manpower at every time slot over the whole period the schedule is supposed
to cover is necessary. This estimate can vary greatly between companies
depending on how good their forecast for the demand of manpower is. Some
companies use minimum and maximum staff level for every time slot while
others give exact number of employees needed for every time slot. We want
the on-duty employees in the schedule to be between the minimum and
maximum staff level or as close as possible to the exact number of required
on-duty employees, otherwise the schedule will be penalized. (C2,C3)

– Minimum and maximum number of on-duty hours for each em-
ployee. In every employee contract a number of required on-duty hours are
given. However since the employees are often working irregular hours, there
must be some flexibility in required on-duty hours for each scheduling pe-
riod. Therefore the required on-duty hours are interpreted as minimum and
maximum number of on-duty hours for each employee. Minimum and max-
imum numbers of on-duty hours for each employee are calculated based on
monthly working hours given in the contracts and accumulated deviations
from the required on-duty hours from the previous period. (R1)

– Employee requests for shifts. The first step in making a schedule is to
make each employee signs up for their preferred shifts knowing the mini-
mum and maximum number of staff needed for each shift. This encourages
employees to create their own work schedule and makes the schedule more
acceptable for the employees. It is therefore important to meet as many
requests as possible. (P3,P4)

– Employees assigned to shifts on weekends before or after their
vacations. If an employee is finishing his vacation on Friday or begin-
ning his vacation on Monday it is unlikely he wants to work the adjacent
weekend. So unless otherwise requested we will try to have the adjacent
weekend free. (E8)

3 The MIP Model

The model contains five sets of binary variables to keep track of the staff
allocation. The binary variable yitk determines if employee i ∈ I is working
in timeslot t ∈ T on day k ∈ K, where I is the set of employees, T is the
set of timeslots within a single day and K is the set of days in the scheduling
period. Each day is partitioned into timeslots, which, in our examples are
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usually 30 minutes, although some companies use 15 minutes or whole hours.
The employees are assigned to shifts, where a shift is subset of the timeslots.
The timeslots within a single shift are usually contiguous, although this is
not necessary. The binary variable xijk determines whether employee i ∈ I is
assigned to shift j ∈ J on day k ∈ K, where J is the set of allowed shifts. A
shift can include timeslots from two consecutive days, so we say that shift j
belongs to day k if the first timeslot in shift j is within day k.

Additionally, we have binary variables dik that determine if employee i ∈ I
is working on day k ∈ K. Since some regulations concern weekends, we use
binary variables ωiw that denote if employee i is working on the w-th weekend,
where 1 ≤ w ≤ |W | andW = [W1,W2, ...] ⊂ (K×K) is the set of all weekends,
i.e. Saturdays and Sundays, inK, andWw is a set containing the corresponding
days for the w-th weekend.

Every employee contract we’ve seen so far contains the requirement that
the employee must have a specific number of contiguous hours of rest in every
24 hour period. We generate so called rest-shifts to ensure that the employees
get their contiguous rest. For each day, we generate all possible rest-shifts
starting within that day of length equal to the required rest. Each employee
is then assigned to one such rest shift every day. The binary variables zilk
determine if employee i ∈ I is assigned to rest-shift l ∈ L on day k ∈ K, where
L is the set of all possible contiguous timeslots of the required length, i.e. the
rest-shifts.

The model also contains a number of variables to determine the soft con-
straint violations. These variables are called pαγ where α corresponds to the
equation number where the penalty applies and γ denotes the indices over
which the penalty variable is defined. The penalties are weighted, the con-
stant cα is the weight of penalty pαγ . One such penalty is a binary variable,
while the other penalties are continuous.

The objective of the mixed integer model is to minimize the total weighted
sum of the penalties that correspond to the soft constraint violations.

min c2 ×
∑
t∈T

∑
k∈K

p2tk + c3 ×
∑
t∈T

∑
k∈K

p3tk + c9 ×
∑
i∈I

p9i

+c10 ×
∑
i∈I

p10i + c11 ×
∑
i∈I

p11i + c12 ×
∑
i∈I

∑
k∈K

p12ik

+c13 ×
∑
i∈I

∑
t∈T

∑
k∈K

p13itk + c14 ×
∑
i∈I

∑
k∈K

p14ik

+c18 ×
∑
i∈I

p18i (1)

s.t.
∑
i∈I

yitk ≥ demandmintk − p2tk ∀t ∈ T, k ∈ K (2)∑
i∈I

yitk ≤ demandmaxtk + p3tk ∀t ∈ T, k ∈ K (3)
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yitk =
∑

j∈shifts

xijk ∀i ∈ I, t ∈ T, k ∈ K (4)

yitk ≤ 1− zilk ∀i ∈ I, t ∈ T, l ∈ L, k ∈ K where t ∈ L (5)∑
l∈L

zilk = 1 ∀i ∈ I, k ∈ K (6)

yitk = 0 ∀(i, t, k) ∈ NotAvailable (7)
xijk = 0 ∀(i, j, k) ∈ NotAvailableShift (8)∑
t∈T

∑
k∈K

yitk ≥ timemini − p9i ∀i ∈ I (9)∑
t∈T

∑
k∈K

yitk ≥ timemini ∗ (1− p10i ) ∀i ∈ I (10)∑
t∈T

∑
k∈K

yitk ≤ timemaxi + p11i ∀i ∈ I (11)∑
t∈T

yitk ≤ timeperdaymaxik + p12ik ∀i ∈ I, k ∈ K (12)

yitk = 1− p13itk ∀(i, t, k) ∈ Requests (13)∑
j∈J

xijk = dik + p14ik ∀i ∈ I, k ∈ K (14)

xijk ≤ dik ∀i ∈ I, j ∈ J, k ∈ K (15)
dmax∑
δ=0

di(k+δ) ≤ dmax ∀i ∈ I, k ∈ {K : k ≤ |K| − dmax} (16)

dik ≤ ωiw ∀i ∈ I, 1 ≤ w ≤ |W |, k ∈Ww (17)
Wmax∑
δ=0

ωi(w+δ) ≤Wmax + p18i ∀i ∈ I, 1 ≤ w ≤ |W | −Wmax (18)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (19)
yitk ∈ {0, 1} ∀i ∈ I, t ∈ T, k ∈ K (20)
zilk ∈ {0, 1} ∀i ∈ I, l ∈ L, k ∈ K (21)
dik ∈ {0, 1} ∀i ∈ I, k ∈ K (22)
wiω ∈ {0, 1} ∀i ∈ I, ω ∈W (23)
p10i ∈ {0, 1} ∀i ∈ I (24)
p2tk, p

3
tk ≥ 0 ∀t ∈ T, k ∈ K (25)

p9i , p
11
i , p

18
i ≥ 0 ∀i ∈ I (26)

p12ik , p
14
ik ≥ 0 i ∈ I, k ∈ K (27)

p13itk ≥ 0 ∀i ∈ I, t ∈ T, k ∈ K (28)

Constraints 2 and 3 handle the number of on-duty employees at all times,
demandmintk and demandmaxtk denote the minimum and maximum estimated
demand for manpower during timeslot t in day k. The penalty variable p2tk
counts how many employees are needed to achieve the minimum number of
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employees in each timeslot, while p3tk count how many employees are above
the maximum number of required on-duty employees. By summing p2tk over all
t ∈ T and k ∈ K, we get the total number of man-hours that are understaffed,
and similarly for the total number of overstaffed man-hours using p3tk. We
use constraint 4 to connect timeslots to shifts. Constraint 5 ensures that the
employees are not working during their mandatory daily rest while constraint
6 ensures that each employees gets a rest period exactly once every day.

The availability of an employee is determined by various factors, such as
contracts (e.g. no night shifts), vacations or requests for time off. We use
constraints 7 and 8 and the sets NotAvailable and NotAvailableShift to limit
the availability of employees. Constraints 9 and 11 make sure that the total
working hours for each employee is within given limits, while constraint 10 is
used to count how many employees are below the minimum required working
hours over the planning period. Constraint 12 ensures that the number of
working hours within a single day.

Employees sign up for shifts, but we translate those into timeslots, and use
constraint 13 to figure out which requested timeslots are fulfilled. This method
of fulfilling requests is the same as the one used in [6]. Constraints 14 and 15 are
used to determine if an employee is working on a specific day, while the penalty
associated with constraint 14 is used to determine if split shifts are allowed
or not. Most employee contracts state the maximum number of consecutive
days that the employee is allowed to work. Constraint 16 ensures that this is
not violated. The constant dmax is the maximum allowed consecutive working
days. Finally, constraint 17 is used to determine if an employee is working on
a weekend while constraint 18 handles the maximum number of consecutive
working weekends that are allowed, the constantWmax denotes the maximum
number of consecutive working weekends.

Since the scheduling period is not isolated from the day to day running
of the company or institution, we need to be careful with the boundary con-
ditions, e.g. if an employee is working on the last shift before the start of
the scheduling period, we cannot assign him/her to a shift at the start of the
scheduling period. These boundary conditions can be encoded into the sets
that we use to determine availability and preprocessed as a fixed assignment
in the instances where an employee is working on a shift that straddles the
boundary of the scheduling period.

3.1 Model limitations

One of the major limitations of the MIP model is the issue of fairness. The
model does not include any notion of fairness to employees, so we might get
a solution where no requests are granted for one employee while other em-
ployees have all their wishes fulfilled. We could improve the fairness, e.g. by
adding a bound on the fraction of fulfilled requests, but that would also require
additional penalties and weights.
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Other limitation is that, if the workforce doesn’t match the requirements
so that the company or institution is forced to have understaffing or over-
staffing, our partners would prefer if this is spread somewhat equally, instead
of having a massive under- or overstaffing on a single shift and no problems at
other times. Our model does not include any mechanism for leveling out any
potential deviations. However, by adjusting the required manpower based on
the workforce, this leveling could be achieved.

For some of the cases that we tried, the running time it took the solver
to find an optimal solution was not within reasonable limits for the optimal
solution. Instead of finding the optimal solution, we settle for a near optimal
solution, i.e. a solution that is provably within some fraction of the optimal
solution. Using our test cases, we found a solution that was within 1% of the
optimal solution in a reasonable timeframe. By increasing the relative MIP gap,
i.e. the difference between our solution and the bound on the optimal solution,
we can speed up the solution time, but at the cost of a higher objective value.
However, since a large part of the input, such as the manpower estimates, is
often only based on a best guess it is debatable whether finding the optimal
solution is actually worthwhile, especially if the time required is orders of
magnitude larger than the time it takes to find a solution within 1%-5% of the
optimum.

4 Experimental Results

To evaluate the performance of our algorithm, we use actual data from four
companies and institutions. These companies and institutions include a nursing
home, call centers and an airport service company. We will present the details
of each problem instance and show examples of the preliminary schedule and
the near-optimal solution. To get a better feeling for the complexity of the
problem and the quality of the solutions, we also compare the near-optimal
MIP solution to the solution of the local search algorithm introduced in [6].
The local search algorithm is designed to emulate the behavior of a typical
staff manager. The local search algorithm iterates through multiple stages,
with different objectives and different neighborhoods for all the stages, each of
which is designed to emulate a specific action taken by the staff manager. For
our examples, the scheduling period is usually 6 weeks, but we will plot the
preliminary schedule and the improved schedule for only a single week for each
problem instance. We tried to select a typical week for each instance. The data
for the problem instances is available online [31]. Most of the instances include
employees that have predefined or fixed schedules. For the purpose of the the
MIP problem, we preprocess these employees, so they are not included in the
MIP problem, and adjust all parameters such as staffing levels accordingly.

Figure 1 shows a log-scale of the relative MIP gap as a function of running
time for two of the examples that we have. The problems were all solved using
Gurobi 4.6.1 on a laptop with a 2.5 GHz Intel Core 2 Duo processor and 4
GB of memory, running Mac OS X 10.6. As can be seen from Figure 1, the
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Table 1 Default penalty weights for soft constraint violations.

c2 c3 c9 c10 c11 c12 c13 c14 c18

15 2 10 100 10 10000 1 10000 10000

Fig. 1 The logarithm of the relative MIP gap for two instances as a function of the running
time. These instances are of the two call centers from our datasets.

solver manages to find a solution within 1% of optimum after 21 minutes in the
first instance. After running the solver for over 8.5 hours for the first instance,
the solver still had not found an optimal solution. The second instance is
significantly harder, there we were only below 10% after around 3 hours and
around 3% after more than 4.5 hours. The easiest problem in our problem
sets was however solved to optimality within 2 minutes. Since these schedules
are usually created for periods of 4-6 weeks, a few hours of computation are
usually acceptable. However, the difference between the two graphs in Figure 1
emphasizes the unreliability of the MIP approach with regards to the running
time. When presented with a new instance, it can be difficult to guess if the
solution will be ready in minutes or if we will have to wait a few hours until
we have a good solution.

The default penalty weights that we used are shown in Table 1. The weights
for maximum hours per day for an employee, more than one shift per day
and consecutive working weekends is set very high, so these constraints are
effectively hard constraints. Our partners prefer overstaffing to understaffing,
so overstaffing has a penalty of 2 while understaffing carries a penalty of 15 for
each timeslot. To minimize the number of people below their minimum duty
hours, the corresponding penalty weight of 100 is relatively high, while the
penalty for each timeslot over or under the duty hour limits carries a penalty
of 10. Finally, the penalty for each unfulfilled requested timeslot carries a
penalty of 1. By adjusting these penalties, we can tailor our model to different
company cultures, e.g. put more emphasis on satisfying employee requests by
increasing the corresponding penalty.

Using the notation introduced by De Causmaecker [15,16], we can describe
the following problem instances as (AS|TVNO|PLGO).
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Table 2 Results for the nursing home instance.

Preliminary Local Search MIP

Scheduled hours 4669 5198 4774
Man-hours overstaffed 478 220 0
Man-hours understaffed 777 21 109
Employees below minimum duty hours 3 0 0

Requested hours granted 0.97 0.98

4.1 Problem instance: Nursing home

The first problem instance comes from a nursing home with 55 employees. The
scheduling period is 6 weeks with 30 minute intervals. Each day contains of
18 shifts. The length of each shift ranges from 4 hours up to 12 hours. After
preprocessing 5 employees with fixed schedules, we’re left with 50 employees.
If we sum up the total maximum working hours over the scheduling period,
we get that the maximum number of hours that we can assign, without any
overstaffing, is 5217 hours. However, the total duty hours of the employees
is 5333 hours, so unless we violate the overstaffing constraint, we can never
satisfy all duty hour requirements for the employees. Table 2 shows the soft
constraint violations for the preliminary schedule, the local search algorithm
from [6] and the near-optimal MIP solution.

The nursing home has the following hard constraints. An employee cannot
work on more than 6 consecutive days, the maximum length of a shift is 9 hours
while the minimum length of a shift is 4 hours. In any 24 hour period, each
employee must get at least 8 consecutive hours of rest, while the maximum
number of working hours in any 24 hour period is 9 hours. Initially, the problem
had 1.204.482 rows, 351.032 columns and 3.378.221 nonzeros. After presolve
the problem had 50.116 rows, 57.409 columns and 591.422 nonzeros. Gurobi
managed to solve the problem to optimality within 2 minutes.

Figure 2 shows the preliminary schedule, the local search solution and the
MIP solution for a typical week in the scheduling period. We see that the MIP
solution has almost the same fraction of satisfied requests as the local search
solution and the plan fits better into the manpower limits, although we’re still
left with a slight understaffing problem. All employees are within their duty-
hours limits. We can see the slight understaffing in the MIP solution in Figure
2 over the last two days, i.e. the solution is a couple of employees short during
the morning shift on the weekend.

4.2 Problem instance: Call center A

The second problem instance is the first of the two call centers in our datasets.
Call center A has 92 employees and the scheduling period is 6 weeks in 30
minute intervals. After preprocessing, i.e. removing employees that have fixed
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Fig. 2 Staffing levels for the nursing home problem instance. The gray area denotes the
number of employees on duty while the two lines denote the minimum and maximum required
staff on duty at each time.
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Table 3 Results for the call center A problem instance.

Preliminary Local Search MIP

Scheduled hours 9424 11920 10578
Man-hours overstaffed 390 791 38
Man-hours understaffed 1560 14 77
Employees below minimum duty hours 19 5 8

Requested hours granted 0.96 0.79

schedules, the number of employees drops down to 74. Each day consists of 97
shifts, whose lengths vary from 4 hours up to 11 hours. The total maximum
required on-duty employees is 11582, while the total duty hours for all employ-
ees is 12054, so it will be impossible to satisfy both the duty hour constraints
and the overstaffing constraints. The maximum number of consecutive work-
ing days is 6, the maximum number of working hours in each 24 hour period
is 9 hours. In any 24 hour period, each employee must get at least 11 consec-
utive hours of rest. Table 3 shows the data from the preliminary schedule, the
results of the local search and the results of the near-optimal MIP solution.

The MIP problem for call center A had 2.419.592 rows, 763.124 columns
and 9.794.776 nonzeros. After presolve we were left with 118.445 rows, 267.630
columns and 3.277.415 nonzeros. Gurobi managed to solve the problem to
within 1% of optimality within 22 minutes. The solution we show here is
within 0.2% of optimum, after 8.5 hours of computations.

We see from Table 3 that the near-optimal MIP solution manages to sat-
isfy the manpower requirements extremely well, with just a few hours of
over/understaffing. However, this comes at the cost of satisfying employee
requests, which is down do 79%. We could improve the request ratio by mod-
ifying the manpower requirements or decreasing the penalty of overstaffing.
However, for these instances, we would recommend that the unfulfilled re-
quests would be better handled manually, i.e. by allowing the staff manager
to decide whether to accept a request or to have the number of on-duty staff
within limits. The solution to the MIP problem along with a list of unsatisfied
requests would make such a task relatively easy.

Figure 3 shows a typical week for call center A. We see that the preliminary
schedule has problem with both under- and overstaffing. The local search puts
emphasis on satisfying employee requests at the expense of overstaffing, while
the near-optimal MIP solution focuses on the staffing levels while sacrificing a
larger share of the employee requests.

4.3 Problem instance: Call center B

Call center B does the planning for only 4 weeks in advance, specifying exactly
how many should be on duty in every 15 minute interval. The total number of
employees at call center B is 62, which, after preprocessing drops down to 46.
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Fig. 3 Staffing levels for call center A. The gray area denotes the number of employees on
duty while the two lines denote the minimum and maximum required staff on duty at each
time.
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Table 4 Results for the call center B problem instance.

Preliminary Local Search MIP

Scheduled hours 6623 7554 6071
Man-hours overstaffed 795 609 234
Man-hours understaffed 1306 189 37
Employees below minimum duty hours 15 7 17

Requested hours granted 0.86 0.65

The call center is overstaffed, the total available man-hours for the scheduling
period is 8134 hours while the total required man-hours over the same period
is 7134 hours. There are 115 possible shifts for each day. The hard constraints
that must be satisfied for call center B are that employees cannot be working
on more than 6 consecutive days, in every 24 hour period there must be at
least 11 consecutive hours of rest and at most 11 hours of work. The maximum
length of a shift is 11 hours while the length of a shift must be at least 4 hours.

The MIP problem consists of 5.110.509 rows, 585.322 columns and 10.399.996
nonzeros. After presolve, the problem has 126.839 rows, 218.628 columns and
4.598.686 nonzeros. Call center B was by far the most challenging instance
that we tried. The Gurobi solver didn’t find a feasible solution until after 50
minutes and we had to wait for more than 3 hours before the value of solution
was within 10% of optimum.

Table 4 shows the results for the local search procedure, the near optimal
MIP solution as well as the preliminary schedule.

Figure 4 shows the staffing levels for a typical week. The three figures
contain the preliminary schedule, the local search solution and the solution
of the MIP problem. The required staffing level for the MIP solution has a
different shape than the other two due to the fixed assignments that were
preprocessed in the MIP solution, but kept as a part of the input in the
preliminary schedule and the local search solution.

Since there is no flexibility in the staffing level limits, both algorithms have
some problems with both under- and overstaffing. As seen in Figure 4 and
Table 4, the near-optimal MIP solution manages to stay close to the required
staffing levels, but at the expense of employee requests. Since the call center is
overstaffed, it is not surprising that both solutions have some employees that
are below the minimum required duty hours as well as overstaffing problems.

4.4 Problem instance: Airport ground service.

The fourth problem instance is an airport ground service company. The schedul-
ing period is six weeks in 30 minute intervals. The demand for on-duty employ-
ees depends on the flight schedules at the airport. In this particular instance,
there are many flights that leave during the early morning, and then there is
another concentration of flights in the afternoon. Since there are almost no
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Fig. 4 Staffing levels for call center B. The gray area denotes the number of employees on
duty while the solid line denotes the exact number of employees that are required to be on
duty at each time.
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Table 5 Results for the airport ground services problem instance.

Preliminary Local Search MIP

Scheduled hours 3997 6670 6608
Man-hours overstaffed 192 641 50
Man-hours understaffed 2464 517 11
Employees below minimum duty hours 23 0 0

Requested hours granted 0.94 0.89

flights scheduled at any time apart from the morning and afternoon busy pe-
riods, the requirements for employees peaks during the two busy periods but
drops sharply during other times. Each day contains 53 different shifts and
the airport ground service has 53 employees, one of which has a fixed sched-
ule. Due to the structure of the manpower requirements, the employees often
work a short morning shift and then another short afternoon shift with a few
hour break in-between. This means that split shifts are allowed so we change
the weight c14 to zero. This problem instance is understaffed compared to the
previous examples, here the total maximum required man-hours is 8152 hours
over the scheduling period while the available man-hours is only 6350. Table
5 shows the preliminary schedule, the results of the local search method and
the near-optimal MIP solution.

The hard constraints for the airport ground service are that there must be
a minimum continuous rest of 11 hours in any 24 hour period, each employee
can not work more than 5 consecutive days, employees cannot work more than
12 consecutive hours while the number of working hours in any 24 hour period
is also 12 hours.

The MIP problem consists of 1.716.477 rows, 441.352 columns and 5.342.624
nonzeros. After presolve, the problem has 113.047 rows, 170.851 columns and
2.132.307 nonzeros. It took Gurobi around 25 minutes until the value of solu-
tion was within 1% of optimum.

As we can see in Figure 5, the near-optimal MIP solution manages to fit
the staffing levels almost perfectly, while still satisfying the majority of the
employees requests. For comparison, the local search method has a slightly
higher ratio of fulfilled requests, but both the over- and understaffing is at
least an order of magnitude larger than for the MIP solution.

5 Conclusions

In this paper we have introduced a mixed-integer programming (MIP) for-
mulation to create a high quality feasible staff schedule from a partial staff
schedule based on requests from employees. The results from the four different
companies and institutions show that it is possible to find high quality sched-
ules in a reasonable amount of time by using mixed integer programming. The
data for these problem instances is available online [31]. Our MIP model al-
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Fig. 5 Staffing levels for the airport ground services. The gray area denotes the number of
employees on duty while the two lines denote the minimum and maximum required staff on
duty at each time.
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lows flexibility in terms of shifts lengths and shifts starting times, as well as
handling all the constraints and requirements of our real-life instances. Due to
time constraints, we only solved one of the four instances to optimality. The
other three were solved until we had a solution that was within 1% of optimum
for the easier problems and within 10% for the most difficult problem. The
longest time it took for such a solution was around 3-4 hours, which, is ac-
ceptable in these cases, since these scheduling problems are only solved every
4-6 weeks.

We also compared the near-optimal solution to a solution from a local
search based method [6]. The results show that the MIP solution does an
extremely good job of keeping the number of on-duty personnel within the re-
quired limits, at the expense of employees requests, while the local search had
more emphasis on satisfying requests. For the easier problems, the local search
method does quite well, so that there is not much of a difference between the
solutions. However, when the problems became more difficult, with compli-
cated shift structures, and in one case, split shifts, the MIP solver produced
solutions that were vastly superior to the local search solutions.
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