
Integer Programming Techniques for the Nurse
Rostering Problem

Santos, H.G., Toffolo, T.A.M., Ribas, S.,
Gomes, R.A.M.

Received: date / Accepted: date

Abstract This work presents Integer Programming (IP) techniques to tackle
the problem of the International Nurse Rostering Competition. Starting from a
compact and monolithic formulation on which the current generation of solvers
performs poorly, improved cut generation strategies and primal heuristics are
proposed and evaluated. A large number of computational experiments with
these techniques produced the following results: the optimality of the vast
majority of instances was proved, the best known solutions were improved up
to 15% and strong dual bounds were obtained. In the spirit of reproducible
science, all code was implemented using the COmputational Infrastructure for
Operations Research (COIN-OR).

Keywords Nurse Rostering · Integer Programming · Cutting Planes ·
Heuristics

1 Introduction

A significant amount of research has been devoted to the computational so-
lution of the Nurse Rostering Problem [15]. Much of previous work, however,
concentrates on specific case studies, focusing in particularities of certain in-
stitutions. For these works, comparison between different search strategies is
a very difficult task. Recently, the International Nurse Rostering Competition
(INRC) [28] was organized to stimulate the research in this area. An instance
set was proposed and a significant number of different algorithms has been
empirically evaluated using it. As a result, best known solutions have been
updated since then.

In this work we present a monolithic compact Integer Programming for-
mulation, i.e. a formulation with a polynomial number of constraints and vari-

Computing Department
Federal University of Ouro Preto
Ouro Preto, Minas Gerais, Brazil 35400-000

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 257

ables, for the problem described in INRC. We propose and evaluate techniques
for improving the performance of state-of-art integer programming solvers us-
ing this formulation.

The proposed techniques can be divided in two groups: the first group
is devoted to the improvement of dual bounds. In this case we are not only
interested in the quick production of high quality solutions but also interested
in having a precise estimate for a lower bound on the optimal solution cost.
This obviously incurs additional processing time but it is a critical step for
methods aiming at proving the optimality. In the second group we present
techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be applied alone for those interested in solving real world
situations.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only very competitive heuristics but
we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for the remaining instances up to 15%.

In the spirit of the reproducible science, the implementation of the cut gen-
eration procedures was made using the open source branch-and-cut software[24]
of the COIN-OR Foundation, CBC[33]. We proposed alternative cut separation
routines for two of the cut generators included on CBC and showed that these
routines significantly outperform the included ones considering the required
time to produce better lower bounds for INRC instances. These routines are
being made available also as an open source project.

The paper is organized as follows: in section 2 an informal description of
the problem is presented along with a brief description of previous algorithms
proposed in the literature. In section 3 the NRP problem is formally stated us-
ing our proposed formulation. Sections 4 and 5 present our proposals for dual
and primal bound improvements, respectively. Section 6 includes computa-
tional experiments to evaluate our proposals. Finally, in section 7, conclusions
and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [16]. In the nurse-day view, allocations
are indexed for each nurse and each day. This way, a solution can be directly
represented by a matrix where each cell mi,j contains a set of shifts to be
performed by the nurse i in the day j. Broadly speaking this set may have
any number of shifts, but it the INRC problem and most practical cases a
nurse performs only one shift per day – which may include morning shift (M),
evening shift (E), night shift (N), day-off (-), among others. Table 1 presents
part of a weekly roster which indicates the shifts allocated to the nurses, in a
nurse-day view.

258 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

In the nurse-task view, the decision variable is indexed for each nurse and
each task that the nurse performs in the scheduling period. This decision
variable may assume a value of 1 if the nurse is assigned to the task, or 0
otherwise. In the nurse-shift pattern view, the decision variable is indexed for
each nurse and each pattern of shifts available. Cheang et al. [16] presents a
bibliographic survey of the many models and methodologies available to solve
the NRP.

In this work, we address the problem defined in the first International Nurse
Rostering Competition, sponsored by the leading conference in the Automated
Timetabling domain, PATAT. Competitors were allowed to submit a specific
technique for each instance type. Here follow brief descriptions of approaches
that succeeded in the competition.

Valouxis et al. [44], winners of the challenge, developed a two phase strat-
egy where in the first phase the workload for each nurse and for each day of
the week was decided while in the second phase the specific daily shifts were
assigned. Since the competition imposed quality and time constraint require-
ments, they partitionated the problem instances into sub-problems of man-
ageable computational size which were then solved sequentially using Integer
Mathematical Programming. Also, they applied local optimization techniques
for searching across combinations of nurses’ partial schedules. This sequence
was repeated several times depending on the available computational time.

Burke and Curtois [12] applied an ejection chain based method for sprint
instances and a branch and price algorithm for medium and long instances.
Problem instances have been converted to the general staff rostering model
proposed and documented by the same team. Then, their software Roster
Booster which included the above mentioned algorithmic approaches was used.

Bilgin et al. [6] applied a hyper-heuristic approach combined with a greedy
shuffle heuristic. The hyper-heuristic consisted of a heuristic selection method
and a move acceptance criterion. The best solution found was further improved
by exploring swaps of partial rosters between nurses.

Nonobe [37] modified the general purpose constraint optimization problem
tabu search based solver presented in [38]. Their main idea is to spend less time
in developing algorithms since after reformulating the problem as a constraint
optimization problem only user defined constraints have to be implemented.

More details about these approaches can be consulted on the site of the
competition1.

Another recent work developed by Burke et al. [13] is a hybrid multi-
objective model that combines integer programming (IP) and variable neigh-

1 https://www.kuleuven-kulak.be/nrpcompetition/competitor-ranking

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 259

bourhood search (VNS) to deal with NRP. An IP formulation is first used to
solve the subproblem which includes the full set of hard constraints and a sub-
set of soft constrains. Next, a basic VNS follows as a postprocessing procedure
to further improve the IP’s resulting solutions. The major focus of the VNS is
the satisfaction of the excluded constraints from the preceding IP model.

2.1 Constraints

Combinatorial optimization problems generally carry hard and soft constraints.
Roughly, the difference is that hard constraint must be met and soft constraint
violations should be avoided. A single violation of a hard constraint renders the
solution infeasible. In this work, we considered the following hard constraints,
as defined in INRC:

– a nurse can not work more than one shift per day;
– all shift type demands during the planning period must be met.

and the following soft constraints:

– minimum/maximum number of shifts assigned to a nurse;
– minimum/maximum number of consecutive free days;
– minimum number of consecutive working days;
– maximum number of consecutive working weekends;
– number of days off after a series of night shifts;
– maximum number of working weekends in four weeks;
– complete weekends: if a nurse has to work only on some days of the weekend

then penalty occurs;
– identical shift types during the weekend: assignments of different shift types

to the same nurse during a weekend are penalized;
– day on/off request: requests by nurses to work or not to work on specific

days of the week should be respected, otherwise solution quality is com-
promised;

– shift on/off request: similar to the previous but now for specific shifts on
certain days;

– unwanted patterns: an unwanted pattern is a sequence of assignments that
is not in the preferences of a nurse based on her contract;

– alternative skill: if an assignment of a nurse to a shift type requiring a skill
that she does not have occurs, then the solution is penalized accordingly;
– unwanted patterns not involving specific shift types;
– unwanted patterns involving specific shift types.

In the next section our compact Integer Programming formulation for the
INRC problem will be presented.

260 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

3 An Integer Programming Formulation for the INCR Problem

In this section we present an Integer Programming formulation which success-
fully models all constraints considered in instances of the International Nurse
Rostering Competition.

3.1 Input Data

N set of nurses
C set of contracts
c̃n contract of nurse n
S set of shifts
S̃ set of night shifts
D set of days with elements sequentially numbered from 1
Π set of all ordered pairs (d1, d2) ∈ D ×D : d1 ≤ d2 representing windows in

the planning horizon
W̃c set of weekends in the planning horizon according to the weekend definition

of contract c, with elements numbered from 1 to w̃c
D̃ic set of days in the i-th weekend of contract c
r̃ds number of required nurses at day d and shift s
Ṕc set of unwanted working shift patterns for contract c
P̂c set of unwanted working days patterns for contract c

The configuration of soft constraints depends on each contract c. Thus, each
contract has an associated weight (which may be null) for penalizing the vi-
olation of each soft constraint. Limits informing how tight is a given soft
constraint are also contract related.

We divide soft constraints in two groups. In the first group, denoted here
by Ranged Soft Constraints, we include constraints which state a range of valid
integer values for a variable in the format v ≤ v ≤ v. Values outside this range
need to penalized in slack variables according to its distance to the closest
valid value.

In the second group, the Logical Soft Constraints, are those constraints
which are satisfied or not, i.e. the maximum distance to feasibility is one.

In Table 2 each soft constraint is associated with an index. This index will
be used to express constants which state the minimum and maximum limit for
a given ranged soft constraint i and a contract c, which will be denoted here
by γi

c
and γic, respectively. The weight for violating the i-th minimum and

maximum limit of these constraints is denoted by ωic and ωic, respectively. For
logical soft constraints the weight of penalizing them is defined by ωic. Finally,
we denote by αin,αin α

i
n the slack variables associated with the the violation of

lower/upper limit of ranged and logical soft constraints i for nurse n, respec-
tively. Additional indexes in the αin variables may be used, for example, when
this violation must be computed for a specific location, so that α7

nk is the slack
variable related to the violation of the complete weekends soft constraint for
nurse n at the k-th weekend.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 261

Ranged Soft Constraints
1 total number of allocations
2 contiguous working days
3 contiguous resting days
4 total number of working weekends in four weeks
5 consecutive working weekends
6 number of resting days after a night shift

Logical Soft Constraints
7 complete weekends
8 no night shift before free weekend
9 same shift on weekends
10 alternative shifts
11 undesired working shifts pattern
12 undesired working days pattern
13 undesired shifts and days

Table 2 Indexes for ranged and logical soft constraints

Some specific sequences of working shifts (soft constraint 11) may be un-
wanted, e.g.: Late, Evening, Late. The set of these patterns for contract c
is specified in Ṕc and each pattern ṕ ∈ Ṕc has a size s̃(ṕ) and contents
ṕ[1], . . . , ṕ[s̃(ṕ)] ∈ S. Day related patterns are also considered in soft constraint
12: sequences of working/resting days should be avoided, e.g.: not working on
Friday and working on the succeeding weekend. The set of these patterns is
defined by P̂c with elements p̂ ∈ P̂c with size s̃(p̂). To specify which days
from the pattern represent the “not working” option we define a set of virtual
days Ḋ with negative numbered days representing this option, so that pattern
elements p̂[1], . . . , p̂[s̃(p̂)] are restricted to be in D ∪ Ḋ.

3.2 Decision variables

The main decision variables are the three indexed xnsd binary variables:

xnsd =

{
1 if nurse n is allocated to shift s and day d

0 otherwise

additionally, there are the following auxiliary variables:

yni =

{
1 if nurse n works at weekend i

0 otherwise

wnd1d2 =

{
1 if nurse n works from day d1 until day d2

0 otherwise

262 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

rnd1d2 =

{
1 if nurse n rests from day d1 until day d2

0 otherwise

zni1i2 =

{
1 if nurse n works from weekend i1 until weekend i2

0 otherwise

To simplify the statement of constraints we consider additional variables
yn0, which are always fixed to zero.

3.3 Objective Function

Before presenting the objective function we remark that some slack variables
(and their respective constraints) do not need to be explicitly included. This
is the case of constraints which are directly linked to the selection of a specific
working/resting window from the set Π by activating variables wnd1d2 and
rnd1d2 , respectively. This is obviously the case for soft constraints 2 and 3
(Table 2) and also the case for soft constraint 7, since every activation of
wnd1d2 finishing/starting in the middle of a weekend must be penalized. We
denote by σcd1d2 and τcd2 the weighted penalty of all violations incurred from
working (resting) continuously in a block starting at day d1 and finishing at
day d2 for nurses of contract c, respectively. Soft constraints 10 and 13 are
also directly penalized in xnsd variables with coefficients νnsd. Analogously,
soft constraint 5 is penalized in variables zni1i2 with coefficients ψni1i2.

Minimize:

∑
n∈N



∑
(d1d2)∈Π

(σc̃nd1d2wnd1d2 + τc̃nd1d2rnd1d2) +

∑
s∈S

∑
d∈D

νnsdxnsd + ω1
c̃nα

1
n + ω1

c̃n
α1
n +

∑
i∈{1...w̃c}

(ω4
c̃n
α4
ni + ω8

c̃n
α8
ni + ω9

c̃n
α9
ni) +

∑
i1,i2∈W̃c̃n :i2≥i1

ψni1i2zni1i2 +

∑
d∈D

ω6
c̃nα

6
n +

∑
ṕ∈Ṕc̃n

α11
nṕ +

∑
p̂∈P̂c̃n

α12
np̂



Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 263

3.4 Constraints

Constraints are presented in the following. Constraints 1 and 2 model the two
hard constraints of the INRC problem : to provide sufficient coverage of nurses
for every day and shift and to limit working shifts for nurses to a maximum
of one per day. Constraints 3 and 4 link the activation of variables x with
the activation of y variables which indicate working weekends. Constraints
from 5 to 9 ensure that every working window activation (w variables) is
immediately followed by the activation of a r variable with the corresponding
resting window and vice versa. This implies the selection of contiguous working
and resting periods of different sizes for the whole planning horizon.

The following constraints are all soft-constraints, which means that they
can be violated since they include a slack variable (variables α) which will
be penalized in the objective function when activated. Ranged constraints
10 model the minimum and maximum working days in the planning horizon.
Constraints 11 limit the maximum number of working weekends in four weeks.
Constraints 12 consider the maximum number of consecutive weekends. Con-
straints 13 impose a minimum number of resting days after a sequence of night
shifts. Constraints 14 ensure that a nurse is not allocated to a night shift in a
day preceding a free weekend. For a weekend, allocated shifts should be equal
for every working day, as stated in constraints 15 and 16. Undesired patterns
for days and shifts are modeled in constraints 17 and 18.

∑
n∈N

xnsd = r̃ds ∀d ∈ D, s ∈ S (1)

∑
s∈S

xnsd ≤ 1 ∀n ∈ N, d ∈ D (2)

yni ≥
∑
s∈S

xnsd ∀n ∈ N, i ∈ W̃c̃n , d ∈ D̃ic̃n (3)

yni ≤
∑

s∈S,d∈D̃ic̃n

xnsd ∀n ∈ N, i ∈ W̃c̃n (4)

∑
s∈S

xnsd =
∑

(d1,d2)∈Π : d∈{d1,...,d2}
wnd1d2 ∀n ∈ N, d ∈ D (5)

∑
s∈S

xnsd = 1− (
∑

(d1,d2)∈Π : d∈{d1,...,d2}
rnd1d2) ∀n ∈ N, d ∈ D (6)

∑
(d1,d2)∈Π : d∈{d1...d2}

(wnd1d2 + rnd1d2) = 1 ∀n ∈ N, d ∈ D (7)

∑
d
′∈{1,...,d}

w
nd

′
d

+
∑

d
′′∈D:d

′′ ≥ d+1

w
n,d+1,d

′′ ≤ 1 ∀n ∈ N, d ∈ D (8)

∑
d
′∈{1,...,d}

r
nd

′
d

+
∑

d
′′∈D:d

′′≥d+1

r
n,d+1,d

′′ ≤ 1 ∀n ∈ N, d ∈ D (9)

γ1
c̃n
− α1

n ≤
∑

s∈S,d∈D
xnsd ≤ γ1

c̃n
+ α1

n ∀n ∈ N (10)

∑
i
′∈{i,...,i+3}

y
ni

′ ≤ γ4
c̃n

+ α4
ni ∀n ∈ N, i ∈ {1, . . . , w̃c̃n − 3} (11)

264 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

∑
i
′∈{i,...,i+γ5

c̃(n)
}

y
ni

′ ≤ γ5
c̃n

+ α5
ni ∀n ∈ N, i ∈ {1, . . . , w̃c̃n − γ

5
c̃n
} (12)

∑
s
′∈S̃

γ6
c̃n
x
ns

′
d

+
∑

s∈S\S̃,d′∈{d+1,...,d+γ6
c̃(n)
}

x
nsd

′

≤ γ6
c̃n

+ α6
nd ∀n ∈ N, d ∈ D : d ≤ |D| − γ6

c̃(n)
(13)∑

s∈S̃

∑
d∈W̃ic̃n :d≥2∧d≤d′∀d′∈W̃ic̃n

xn,s,d−1 + yni ≤ 1 + α8
ni ∀n ∈ N, i ∈ W̃ic̃n (14)

α9
n ≥ xnsd1−xnsd2 ∀n ∈ N, s ∈ S, i ∈ W̃c̃n , d1, d2 ∈ D̃ic̃(n) : d1 < d2 (15)

α9
n ≥ xnsd2−xnsd1 ∀n ∈ N, s ∈ S, i ∈ W̃c̃n , d1, d2 ∈ D̃ic̃(n) : d1 < d2 (16)∑

j∈{1,...,s̃(ṕ)}
xn,ṕ[1],d+j−1

≤ s̃(ṕ) + α11
nṕ ∀n ∈ N, ṕ ∈ Ṕc̃n , d ∈ {1, . . . , |D| − s̃(ṕ) + 1} (17)∑

s∈S

∑
j∈{1,...,s̃(p̂):p̂[j]≥1}

xn,s,p̂[j] +

∑
j∈{1,...,s̃(p̂):p̂[j]≤−1}

(1−
∑
s∈S

xn,s,−p̂[j]) ≤ s̃(p̂) + α12
n ∀n ∈ N, p̂ ∈ P̂c̃n (18)

4 Dual Bound Improvement : Cutting Planes

The problem considered contains mostly binary variables linked by several
GUB (generalized upper bound) constraints. Constraints of this type define
an implicit conflict graph [3] indicating the set of pairs of variables whose si-
multaneous activation is forbidden. Linear programming relaxations for these
problems can be significantly strengthened by the inclusion of inequalities de-
rived from the set packing polytope (SPP) [39]. The most common classes of
cuts for SPP are the clique cuts and the odd-hole cuts. A clique inequality for
a set C of conflicting variables has the form

∑
j∈C xj ≤ 1 and an odd-hole

inequality with conflicting variables C can be define as:
∑
j∈C xj ≤ b

|C|
2 c. It is

well known that in practice clique cuts are by far the most important ones [7].
The impact of these cuts has been explored for some hard timetabling prob-
lems [4,14]. Considering generic clique separation routines, the most common
ones are the star clique and the row clique method [21,29,7]. These are fast
separation routines which are used in the current version of the COIN-OR Cut
Generation Library. Our algorithm proposal considers aggressive clique sepa-
ration: instead of searching for the most violated clique inequality we search for
all violated clique inequalities. Some previous results indicate that this is the
best strategy. In [14], for example, although authors used a branch-and-bound
code to search for the most violated clique, computational results motivated
the inclusion of non-optimally violated cuts found during the search. This re-
sult is consistent with reports of application of other cuts applied to different
models, such as Chvàtal-Gomory cuts [23]. The option for inserting a large

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 265

number of violated inequalities at once is also responsible for reviving the go-
mory cuts importance [17]. The proposed clique separation routine has two
main components:

1. a module to separate all violated cliques in the conflict subgraph induced
by the fractional variables;

2. a lifting module which extends generated cliques considering the original
conflict graph.

The clique separation module was implemented using an improved version of
the Bron-Kerbosch algorithm [11]. This version implements an optimized piv-
oting rule [10] to speed up the discovery of maximal cliques with large weight.
This rule assigns the highest priority for visiting first nodes with large modified
degree (summation of node degree and of its neighbors) and weight. Although
this algorithm has an exponential worst case performance, the heuristic pivot
rules make the algorithm suitable not only for running in the enumeration con-
text but also for executing with restricted times, since larger violated cliques
tend to be discovered first. Nevertheless, our experiments showed that all vio-
lated inequalities for all instances can be enumerated in a fraction of a second
using our implementation. It is important to remark also that even if a subset
of cliques were inserted, the optimal solution would not be missed, branching
would take care of the rest. This situation does not occur in column generation:
an interruption of the pricing algorithm before the optimal column to be dis-
covered in the last iteration would make it impossible to prove the optimality
of the discovered solution. In other words, for exact algorithms the cut sepa-
ration problem can be hard, but column generation cannot, as pointed in [40].
The importance of lifting clique inequalities can be explained with the conflict
graph in Figure 1. Nodes inside the gray area indicate variables with non-zero
values in the fractional solution. In this solution, only nodes x2, . . . , x4 could
contribute to define a maximally violated clique inequality. Nevertheless, sub-
sequent linear programming relaxations could include three different violated
k3

2 cliques by alternating the inactive variable. If the k4 clique inequality were
inserted at the first fractional solution additional re-optimizations of the linear
program could be saved, furthermore, a less dense constraint matrix will be
obtained with the insertion of these dominant constraints first.

It is well known that the separation of odd-holes contributes only marginally
for lower bound improvement [7,35]. Nevertheless, its inclusion in the branch-
and-cut procedure is cheap, since these inequalities can be separated in poly-
nomial time using shortest path algorithms [25]. Odd hole inequalities can be
strengthened by the inclusion of a wheel center, such as variable x6 in the
conflict graph presented in Figure 2. In fact, for an odd hole with variables C
and W being the set of candidates to be included as wheel centers of C, the
following inequality is valid:∑

j∈W
b |C|

2
cxj +

∑
j∈C

xj ≤ b
|C|
2
c (19)

2 a clique with three nodes

266 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

x2

x3 x4

x1

Fig. 1 Example of a k3 which could be lifted to a k4

x5 x2

x1

x4 x3

x6

Fig. 2 Example of an odd hole and its possible extension to a wheel

The conflict graph is built by the analysis of the constraint matrix. Al-
though the presented formulation is complete for modeling the INRC problem,
we observed that solvers can detect a larger conflict graph if the following valid
inequalities are inserted:

∑
d′∈{1..d1}

rnd′d1 +
∑

d′′∈{d2..|D|}

wnd2d′′ ≤ 1 ∀n ∈ N, (d1, d2) ∈ Π : d2 − d1 = 2}

(20)

∑
d′∈{1,...,d1}

wnd′d1+
∑

d′′∈{d2,...,|D|}

rnd2d′′ ≤ 1 ∀n ∈ N, (d1, d2) ∈ Π : d2−d1 = 2}

(21)
We also observed that one subset of variables is directly linked to most of

the costs in the objective function: variables wnd1d2 and rnd1d2 . In the optimal
solution of the linear programming relaxation these variables often appear with
fractional values, weakening the quality of the dual bound. Since the number
of these active variables per nurse is quite limited, we opted for a specific cut
separation for these variables. Our routine, which separates the the fractional
value for a restricted group of these variables per nurse was implemented using
the Fenchel cutting planes [8,9]. These cuts will be called hereafter Window
cuts.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 267

5 Primal Bound Improvement : MIP heuristics

The use of MIP (Mixed Integer Programming) solvers in a heuristic context,
i.e. for producing good quality solutions in very restricted times is a grow-
ing trend in optimization [34,43]. A pervasive term in this area is subproblem
optimization. To speedup the improvement of feasible solutions, solvers work
on smaller problems performing local search. Subproblems can be defined ei-
ther with soft-fixation of variables, as in Local Branching and similar methods
[22,27], or with hard fixation of variables as in Relaxation Induced Neighbor-
hood Search (RINS)[19]. This latter work presented better results in tests with
MIPLIB[31] instances.

The proposed MIP heuristic employs a hybrid heuristic subproblem opti-
mization scheme. Heuristic rules are used to create subproblems P ′(H), defined
by hard fixation of a given set of variables H of the original problem P. The
algorithm consists basically of two subsequent phases: construction phase and
local search phase. The construction phase builds a feasible initial solution us-
ing simple heuristic rules, outside the MIP framework. MIP search is used in
all the remaining time for exploring large neighborhoods until a local minimum
is found. The procedure returns either the local optimum solution of all the
neighborhood structures or the best solution found within maxtime seconds.

Before presenting the MIP heuristic developed, we present a simple proce-
dure to build feasible solutions which will be used in our experiments.

5.1 A Greedy Constructive Algorithm

This method builds an allocation matrix M|N |×|D|, initializing all mij cells
with days off. Sequentially, for each day d and shift s, the demand r̃ds is
satisfied by selecting, one by one, a nurse n for which this new allocation incurs
the smallest increase in the objective function considering augmented partial
solution defined in M|N |×|D|. This process is repeated until all the demand
units are allocated. The algorithm has time complexity of O(|N |2 × |D|).

5.2 Neighborhood structures

The local search phase explores the search space through several neighbor-
hoods, using a VND (Variable Neighborhood Descent) [26] scheme. Consider-
ing the results obtained with recent uses of RINS heuristics [18], we proposed
two different neighborhood structures that are based on the resolution of small
partitions of the original problem to optimality. The differences between the
neighborhoods lie on the rules considered to generate such subproblems.

Given a feasible solution S0, a neighbor is obtained basically by (i) defining
a set of nurse allocations that will be fixed, according to the solution S0 and
(ii) solving to optimality the NRP subproblem obtained with the fixations. In
preliminary experiments, two of the evaluated neighborhoods presented much
better results. The following paragraphs describe these two neighborhoods.

268 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

5.2.1 Fix Days neighborhood structure

In the Fix Days neighborhood structure, the NRP subproblems are generated
by fixing all the nurse allocations of |D| − ndays days of the month, where
ndays is a parameter of the neighborhood.

In the first iteration (iter = 0), a subproblem is created from a solution
S by fixing every nurse allocation but the ones on the days from 1 to ndays.
The subproblem is then solved to optimality. If the solution is improved, S is
updated. In the next iteration, another subproblem is generated by fixing all
nurse allocations but those on the days between dayA and dayB (equations
(22) and (23)):

dayA = 1 + (iter × step) (22)

dayB = ndays+ (iter × step) (23)

The equations (22) and (23) calculate, respectively, the beginning and the
end of a time window in which the nurse allocations remain unfixed. In these
equations, iter is the number of the current iteration and step is a parameter
that defines the number of days between two consecutive subproblems. If the
value of dayA or dayB is greater than the number of days, |D|, we consider the
day to be the remainder of its value divided by |D|. The algorithm proceeds
until |D|/step consecutive iterations without improvement are reached, which
indicates that a local optimum for the neighborhood was found. Figure 3
shows how the search on the solution space is performed by the Fix Days
neighborhood structure.

Unfixed days

2 Santos, H.G., To↵olo, T.A.M., Ribas, S., Gomes, R.A.M. and Vareto, R.H.

techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be used alone for those interested in the use of this
formulation in real world applications.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only a very competitive heuristics
but we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for remaining instances up to 15%.

In the spirit of the reproducible science the implementation which required
an in-depth integration with the solver, the cut generation, was made using
the branch-and-cut software[11] of the COIN-OR Foundation [15]. We pro-
posed alternative cut separation routines for two of cut generations included
on CBC and showed that these routines significantly outperform the included
ones considering the required time to produce better lower bounds for INRC
instances. These routines are being made available as an open source project.

The paper is organized as follows: in section 2 an informal description
of the problem is presented along a brief description of previous algorithms
proposed in literature. In section 3 the NRP problem is formally stated using
our proposed formulation.

is formally stated using the compact Integer Programming formulation
used in this work. Afterwards, MIP neighborhoods are presented. Following,
we present our heuristic which was used to provide initial feasible solutions.
Computational experiments with these modules are included and finally, con-
clusions and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [?]. In the nurse-day view, the decision
variable is indexed for each nurse and each day. This way, a solution can be
direct represented by a matrix where each cell mi,j contains a set of shifts to
be performed by the nurse i in the day j. Despite formally this set may have
any number of shifts, it is common in pratical cases a nurse performs only one
shift per day – which may include morning shift (M), evening shift (E), night
shift (N), day-o↵ (-), among others. Table 1 presents part of a weekly roster
which indicates the shifts allocated to the nurses, in a nurse-day view.

Tabela 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

2 Santos, H.G., To↵olo, T.A.M., Ribas, S., Gomes, R.A.M. and Vareto, R.H.

techniques to speedup the production of near optimal feasible solutions. These
latter techniques can be used alone for those interested in the use of this
formulation in real world applications.

Our computational experiments showed that fast methods for the produc-
tion of good primal and dual bounds can be obtained using the proposed
techniques: our algorithms provided not only a very competitive heuristics
but we also proved the optimality for the vast majority of INRC instances and
improved best known solutions for remaining instances up to 15%.

In the spirit of the reproducible science the implementation which required
an in-depth integration with the solver, the cut generation, was made using
the branch-and-cut software[11] of the COIN-OR Foundation [15]. We pro-
posed alternative cut separation routines for two of cut generations included
on CBC and showed that these routines significantly outperform the included
ones considering the required time to produce better lower bounds for INRC
instances. These routines are being made available as an open source project.

The paper is organized as follows: in section 2 an informal description
of the problem is presented along a brief description of previous algorithms
proposed in literature. In section 3 the NRP problem is formally stated using
our proposed formulation.

is formally stated using the compact Integer Programming formulation
used in this work. Afterwards, MIP neighborhoods are presented. Following,
we present our heuristic which was used to provide initial feasible solutions.
Computational experiments with these modules are included and finally, con-
clusions and future works are discussed.

2 The Nurse Rostering Problem

The nurse rostering problem can be described by a nurse-day view, a nurse-
task view, or a nurse-shift pattern view [?]. In the nurse-day view, the decision
variable is indexed for each nurse and each day. This way, a solution can be
direct represented by a matrix where each cell mi,j contains a set of shifts to
be performed by the nurse i in the day j. Despite formally this set may have
any number of shifts, it is common in pratical cases a nurse performs only one
shift per day – which may include morning shift (M), evening shift (E), night
shift (N), day-o↵ (-), among others. Table 1 presents part of a weekly roster
which indicates the shifts allocated to the nurses, in a nurse-day view.

Tabela 1 Example of an NRP solution in a nurse-day view

Nurse Mon Tue Wed Thu Fri Sat Sun
N1 M M N - - E E
N2 E N E E M - -
N3 - E M - M - N

iter=0 iter=1 iter=2

Fig. 3 Fix Days neighborhood subproblems with ndays = 3 and step = 2.

The neighborhood has two parameters, step and ndays. As said before, the
first one indicates the number of days between two consecutive subproblems.
The smaller the value, the greater is the number of different subproblems
in the neighborhood. The other parameter, ndays, defines the size of each
subproblem and so is a critical one. Small values may create subproblems that
do not contain any better solution and large values may create unmanageable
subproblems.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 269

5.2.2 Fix Shifts neighborhood structure

In the Fix Shifts neighborhood structure, the subproblems are created by fixing
all the allocations of |S| − 1 shifts. On the first iteration, only the allocations
of the first shift remain unfixed. On the second iteration, only the alloca-
tions of the second shift aren’t fixed, and so on. Since the number of different
subproblems generated in this neighborhood is equal to |S|, the algorithm pro-
ceeds until |S| consecutive iterations without improvement are reached. The
neighborhood doesn’t have any parameter.

Given that an average instance has from 3 to 5 shifts, it may seem that the
subproblems of this neighborhood are hard to solve. But such subproblems
can actually be solved in very small time, as seen on section 6.

5.3 Mathematical programming heuristic

In the latter section, we presented the neighborhood structures used by our
mathematical programming heuristic (MPH). The heuristic works in a VND
fashion, searching each one of the neighborhoods until their local minima are
found. We decided to use the following neighborhoods in our algorithm:

Nm
1 : Fix Days neighborhood structure with ndays = 2m and step = m
N2 : Fix Shifts neighborhood structure

First, the algorithm performs a complete search on the neighborhoods Nm
1

and N2. After that, the algorithm increases the value of m by 1, searching for
the best solution on the neighborhood Nm+1

1 . If any improvement is produced
by the latter search, the algorithm searches the neighborhood N2 before in-
crementing the value of m. Otherwise, the algorithm just increases the value
of m by 1, moving to the neighborhood Nm+1

1 . This procedure repeats until
m > |D|/2 or until the time limit is reached.

Figure 4 shows the pseudocode of the proposed heuristic. In this figure, the
procedures Nm

1 (S0) and N2(S0) return, respectively, the best neighbors of S0

in the neighborhoods Nm
1 and N2. If no better solution than S0 is found, then

S0 is returned.
It is important to note that on a standard VND, it is typical to choose

a specific order of neighborhoods to be searched. If one neighborhood is able
to improve the solution, VND moves back to the first neighborhood, restart-
ing the search. Our algorithm always increments the value of m. We decided
to do so because we observed that searching again the neighborhood Nm

1 al-
most never improves the solution, but takes considerable processor time. Since
neighborhood Nm

1 is smaller than Nm+1
1 , and most neighbors of Nm

1 are also
in the neighborhood Nm+1

1 , looking again for a better solution on Nm
1 can be

a waste of time.
Another interesting thing to note is that if a time limit is not set, the

original problem will be solved in the last iteration of the heuristic. This occurs

because finding the local minimum of any solution S in the neighborhood N |D|1

is the same as solving the original problem itself.

270 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Require: S0, m
1: S∗ ← Nm1 (S0)
2: S∗ ← N2(S∗)
3: m = m+ 1
4: while m ≤ |D|/2 and time limit not reached do
5: S ← Nm1 (S∗)
6: if S is a better solution than S∗ then
7: S∗ ← N2(S)
8: end if
9: m = m+ 1

10: end while
11: return S∗;

Fig. 4 Pseudocode of MPH Algorithm

6 Computational Experiments

Our code was written in C++ using the open source COIN-OR libraries. This
approach allowed us to deeply integrate our routines with the COIN-OR MIP
solvers [24,42,32] and also communicate with commercial solvers through the
Open Solver Interface (OSI)[41]. Closed source solvers can also have additional
code integrated by using callbacks, but this approach is ultimately limited by
which callbacks are available and how many decisions they delegate. Thus, all
cut generation routines were implemented and tested using the COIN Branch-
and-Cut solver (CBC) [24], which is the fastest open source mixed integer
programming solver available [36].

The code was compiled on GCC/g++ version 4.6. We ran all the exper-
iments on several Core i7 3.4GHz computers with 16Gb of RAM memory
running Linux Ubuntu 10.10 64-bits. We used CPLEX version 12.2.0 and
COIN-OR CBC 2.7.6.

The instance set used within the experiments was the same used during
the INRC, including the harder hidden instances. Further information about
these instances can be found in [28] or at the competition website3.

Before proceeding to the evaluation of our proposals, we present some
experiments with a state-of-art integer programming solver. The objective is
to determine how powerful these solvers are handling the INRC instances with
the proposed formulation and the application of only small additional settings,
if any.

6.1 Standalone solvers

We included experiments with the commercial CPLEX [30] standalone solver.
In Table 3 the results of CPLEX running with different optimization em-

phasis with execution times time restricted to 10 minutes and one hour are
included. The final lower and upper (lb/ub) bounds are presented with the
computed gap ub−lb

lb × 100.

3 http://www.kuleuven-kulak.be/nrpcompetition

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 271

http://www.kuleuven-kulak.be/nrpcompetition

Results are summarized per instance group, including the maximum value,
average and standard deviation (m/a/s.d.) gap values.

Since the production of a feasible solution for INRC instances can be done
very quickly using a greedy heuristic (see section 5.1) and CPLEX standalone
solver can read initial solutions, we also included experiments where CPLEX
starts from an already produced feasible solution (columns with s = gr(.)). For
sprint instances CPLEX always found the optimal solution in a few minutes,
so we did not report results for these instances.

Results in Table 3 indicate that although there are large instances which
are easy for the standalone solver, so that optimality was proven in less than
10 minutes, there are several instances where the solver alone (columns s = ∅)
could not reach any feasible solution in one hour of processing time, even
with the activation of the heuristic emphasis. Even though entering one initial
solution (columns s = gr(.)) solves the feasibility problem, the final solution
quality after one hour of processing time is still far from acceptable, with gaps
ofabout 70% appearing in some cases. These results show that in spite of the
progresses in generic MIP solvers, in many cases of real world applications the
hybridization of these solvers with methods which consider problem specific
information is still very important and in many cases absolutely necessary.

6.2 Cutting planes

The objective of the separation procedure is to speed up the improvement
of the lower bound and consequently to prove the optimality faster. In the
first experiment we ran several rounds of cut separation using our proposed
clique separation procedure, named here as eclq and the clique separation
routine included in the COIN-OR Cut Generation Library, denoted here as
cgl, restricted by the following time limit: 100 seconds for sprint instances and
600 seconds for larger instances. To measure the improvements we computed
for each instance and time instant the relative distance (gap) to best upper
bound: the optimal solution or best known solution. Let a given lower bound
lb and an upper bound ub the gap is ub−lb

ub × 100. In Figure 5 the evolution of
the average gap for groups of instances in time is presented. It can be observed
that the inclusion of our lifted inequalities allows a faster reduction in the gap.
Furthermore, eclq cuts still make progress when cgl cuts cannot perform any
significant change in the dual limit. The separation of odd holes showed no
surprises for us: as previous works say, they have no significant impact for
dual bound improvement. One reason for this is that most violated odd-holes
found are k3, so that the clique separation routines already finds it. Violated
odd holes of size 5 or more are scarce in the root node relaxation. Nevertheless,
these are safe cuts (i.e. they do not depend on rounding numbers computed
with limited floating point accuracy) which can be instantly separated, so they
are worth keeping in branch-and-cut procedure even if they have a marginal
contribution observed in the root node relaxation.

272 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

C
P

L
E
X

1
2
.1

d
e
fa

u
lt

s
e
t
t
in

g
s

C
P

L
E
X

1
2
.1

h
e
u
r
is

t
ic

e
m

p
h
a
s
is

1
0
m

in
/

s
=

∅
1
0
m

in
/

s
=

g
r
(
.)

1
h
o
u
r

/
s

=
∅

1
h
o
u
r

/
s

=
g
r
(
.)

1
0
m

in
/

s
=

∅
1
0
m

in
/

s
=

g
r
(
.)

1
h
o
u
r

/
s

=
∅

1
h
o
u
r

/
s

=
g
r
(
.)

In
s
t
a
n
c
e

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

L
B

U
B

g
a
p

long

early

0
1

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

1
9
7

1
9
7

0
.0

0
2

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

2
1
9

2
1
9

0
.0

0
3

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
4

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

0
5

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

2
8
4

2
8
4

0
.0

hidden
0
1

3
1
9

∞
∞

3
1
9

4
8
7

3
4
.5

3
3
7

6
1
5

4
5
.2

3
3
4

3
7
4

1
0
.7

3
1
9

∞
∞

3
1
9

4
8
7

3
4
.5

3
3
7

6
0
2

4
4
.0

3
3
4

3
8
0

1
2
.1

0
2

8
1

∞
∞

8
1

1
1
1

2
7
.0

8
1

1
5
3

4
7
.1

8
6

9
2

6
.5

8
1

∞
∞

8
1

1
1
1

2
7
.0

8
1

1
4
3

4
3
.4

8
6

9
3

7
.5

0
3

1
7

∞
∞

1
8

6
1

7
1
.0

1
7

∞
∞

2
5

5
5

5
5
.2

1
7

∞
∞

1
8

6
1

7
1
.0

2
6

∞
∞

2
6

5
1

4
9
.9

0
4

1
4

∞
∞

1
4

4
4

6
8
.8

1
4

∞
∞

1
9

4
4

5
6
.1

1
4

∞
∞

1
4

4
4

6
8
.8

1
9

∞
∞

1
4

4
2

6
7
.2

0
5

3
6

∞
∞

3
6

1
3
0

7
2
.7

4
0

∞
∞

4
1

4
1

0
.0

3
6

∞
∞

3
6

1
3
0

7
2
.7

4
0

∞
∞

4
0

4
6

1
4
.1

late

0
1

2
1
2

∞
∞

2
0
4

3
8
5

4
6
.9

2
3
1

∞
∞

2
3
2

2
3
7

2
.1

2
1
2

∞
∞

2
0
4

3
8
5

4
6
.9

2
3
1

∞
∞

2
3
3

2
6
7

1
2
.7

0
2

2
1
4

∞
∞

2
0
8

4
0
9

4
9
.2

2
2
9

2
8
2

1
8
.8

2
2
9

2
2
9

0
.0

2
1
4

∞
∞

2
0
8

4
0
9

4
9
.2

2
2
9

5
1
7

5
5
.7

2
2
9

2
2
9

0
.0

0
3

2
1
3

∞
∞

2
1
2

3
9
1

4
5
.8

2
1
8

2
5
0

1
2
.8

2
1
8

2
2
1

1
.4

2
1
3

∞
∞

2
1
2

3
9
1

4
5
.8

2
1
6

2
9
5

2
6
.8

2
1
8

2
2
5

3
.1

0
4

1
9
6

∞
∞

1
9
7

3
1
0

3
6
.5

2
1
3

∞
∞

2
1
3

2
3
0

7
.4

1
9
6

∞
∞

1
9
7

3
1
0

3
6
.5

2
1
3

∞
∞

2
1
2

2
3
4

9
.3

0
5

7
9

6
3
5

8
7
.5

7
9

2
7
0

7
0
.9

7
9

5
4
2

8
5
.4

8
0

2
2
9

6
5
.3

7
9

6
3
5

8
7
.5

7
9

2
7
0

7
0
.9

7
9

5
4
5

8
5
.5

8
0

2
6
9

7
0
.4

(
m

/
a

/
s
.d

.)
(
∞

/
6
5
.8

/
4
8
.3

)
(
7
2
.7

/
3
4
.9

/
2
9
.0

)
(
∞

/
4
7
.3

/
4
5
.1

)
(
6
5
.3

/
1
3
.6

/
2
3
.7

)
(
∞

/
6
5
.8

.
4
8
.3

)
(
7
2
.7

/
3
4
.9

/
2
9
.0

)
(
∞

/
5
0
.4

/
4
3
.8

)
(
7
0
.4

/
1
6
.4

/
2
4
.8

)

medium

early

0
1

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
2

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
2
4
0

2
4
0

0
.0

2
4
0

2
4
0

0
.0

0
3

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
2
3
6

2
3
6

0
.0

2
3
6

2
3
6

0
.0

0
4

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
2
3
7

2
3
7

0
.0

2
3
7

2
3
7

0
.0

0
5

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
3
0
3

3
0
3

0
.0

3
0
3

3
0
3

0
.0

hidden

0
1

6
0

1
0
9
3

9
4
.5

5
9

3
1
4

8
1
.3

6
2

2
8
7

7
8
.3

6
1

2
2
7

7
3
.0

6
0

1
0
9
3

9
4
.5

5
9

3
1
4

8
1
.3

3
6
6

1
0
6
0

9
3
.8

6
4

2
2
0

7
1
.1

0
2

1
8
3

∞
∞

1
8
0

3
5
2

4
8
.9

1
8
8

3
1
2

3
9
.6

1
8
8

2
5
8

2
7
.0

1
8
3

∞
∞

1
8
0

3
5
2

4
8
.9

1
8
9

2
9
1

3
5
.2

1
8
8

2
9
1

3
5
.3

0
3

2
2

4
4
9

9
5
.0

2
2

9
3

7
6
.0

2
3

9
3

7
4
.9

2
4

9
3

7
4
.7

2
2

4
4
9

9
5
.0

2
2

9
3

7
5
.9

9
2
4

6
0

6
0
.3

2
4

4
9

5
1
.9

0
4

5
8

∞
∞

5
9

1
3
6

5
7
.0

6
0

9
7

3
8
.6

6
3

9
6

3
4
.8

5
8

∞
∞

5
9

1
3
6

5
6
.9

9
6
2

9
6

3
5
.8

6
2

1
0
9

4
2
.8

0
5

5
6

∞
∞

5
6

2
3
3

7
5
.9

8
4

4
8
8

8
2
.9

7
8

2
3
3

6
6
.7

5
6

∞
∞

5
6

2
3
3

7
5
.8

9
8
4

4
2
7

8
0
.4

8
2

2
0
5

6
0
.0

late

0
1

1
4
8

1
7
1

1
3
.5

1
4
5

2
1
5

3
2
.5

1
5
2

1
5
7

3
.1

1
5
2

1
5
7

2
.9

1
4
9

1
6
6

1
0
.5

1
4
7

2
1
2

3
0
.7

7
1
5
1

1
5
8

4
.4

1
5
1

1
5
7

3
.5

0
2

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
.0

1
8

1
8

0
1
8

1
8

0
.0

1
8

1
8

0
.0

0
3

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
.0

2
9

2
9

0
2
9

2
9

0
.0

2
9

2
9

0
.0

0
4

3
3

3
5

4
.4

3
4

3
7

9
.4

3
4

3
5

2
.9

3
5

3
5

0
.0

3
5

3
5

0
.0

3
3

3
7

9
.8

3
5

3
5

0
.0

3
5

3
5

0
.0

0
5

1
0
4

1
1
4

9
.2

1
0
3

1
2
0

1
3
.9

1
0
6

1
0
7

1
.0

1
0
7

1
0
7

0
.0

1
0
4

1
2
3

1
5
.8

1
0
3

2
1
6

5
2
.5

5
1
0
7

1
0
7

0
.0

1
0
7

1
0
7

0
.0

(
m

/
a

/
s
.d

.)
(
∞

/
3
4
.4

/
4
6
.6

)
(
8
1
.3

/
2
6
.3

/
3
2
.4

)
(
8
2
.9

/
2
1
.4

/
3
2
.5

)
(
7
4
.7

/
1
8
.6

/
2
9
.4

)
(
∞

/
3
4
.4

/
4
6
.7

)
(
8
1
.3

/
2
8
.8

/
3
2
.9

)
(
9
3
.8

/
2
0
.7

/
3
2
.8

)
(
7
1
.1

/
1
7
.6

/
2
6
.4

)

Table 3 Results of the standalone commercial solver CPLEX

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 273

 6

 8

 10

 12

 14

 16

 18

 20

 1 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - sprint instances

eclq
cgl

 35

 40

 45

 50

 55

 60

 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - medium instances

eclq
cgl

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 10 100

a
v
e
ra

g
e
 g

a
p
 (

%
)

time (sec)

lower bound improvement - long instances

eclq
cgl

Fig. 5 Dual bound improvement for COIN-OR built in cut generator (cgl) and the pro-
posed cut cut separation procedure (eclq)

After a series of experiments with all cuts available in the COIN-OR Cut
Generation Library (CGL), we found out that the following generic cutting
planes were also useful in improving the dual bound: Mixed Integer Gomory[5],
Two-Step Mixed Integer Rounding[20], RedSplit[1] and the Zero-Half (0/ 1

2)[2]
cuts. Zero-Half cuts are not available yet in the latest formal CGL release,

274 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Window Zero-Half Gomory RedSplit TwoMIR

sp
ri

n
t max. 50.1 51.5 93.7 52.9 52.8

min. 1.9 3.7 3.7 3.7 3.7
av. 19.7 21.6 26.2 22.3 22.6

std.dev 15.2 15.3 23.1 15.8 15.9

m
ed

iu
m max. 100.0 100.0 100.0 100.0 100.0

min. 0.0 0.0 0.0 0.0 0.0
av. 50.1 51.2 51.9 50.7 41.1

std.dev 46.6 46.3 47.7 46.7 47.9

lo
n

g

max. 100.0 100.0 58.9 100.0 36.5
min. 0.0 0.0 0.0 0.0 0.0
av. 37.5 38.7 14.5 38.0 5.9

std.dev 39.1 39.3 17.8 40.3 9.3

Table 4 Contribution of different cuts to improve root node relaxation lower bound

but authors gently offered the code for our experiments. The contribution of
all these additional cuts applied jointly with our clique cuts for improving
the lower bound for each group of instances is shown in Table 4. Considering
the linear programming relaxation limit (lp) and the lower bound obtained at
the end of the root node cut application in CBC (lb) we computed for each
instance the improvement: min{ lb−lplp+ε × 100, 100}, where ε is a small constant
to avoid division by zero. A summary of these results is presented in Table 4.
As it can be seen, although gomory cuts are of crucial importance for small
instances, its relevance diminishes in larger instances. The reason is that these
cuts tend to produce very dense constraints for large linear programs and are
probably discarded by the branch and cut code of CBC in large instances. The
proposed Window cuts, on the other hand, appear to be more important in
larger instances.

6.3 Mathematical Programming Heuristic

The MPH uses CPLEX within the algorithm to solve the subproblems. Parallel
mode was disabled, so both the heuristic and CPLEX ran sequentially. All 60
instances from the INRC [28] were tested with the parameter m assuming
values from 1 to 9. The results are reported in Table 5.

In this table, the column BKS shows the best known solutions, including
the ones found in this work (marked with a ~). The following columns show
the best results found in the literature (PUB), the best results by CPLEX,
the best results obtained by the MPH with m in the range of 1 to 9 and the
best results obtained in each one of these. For each result, the table reports
the best upper bound (ub) obtained and the gap between this upper bound
(ub) and the best known solution (BKS): ub−BKS

ub × 100.
The results for “sprint” instances weren’t reported in Table 5 because, for

all of them, the heuristic was able to find the optimal solution within 3 minutes
with m starting with values in the range [1,9].

Some comments about the results shown in Tables 5:

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 275

C
P
L
E
X

b
e
s
t

M
P
H

M
P
H

r
e
s
u
lt
s

w
it
h

d
if
fe

r
e
n
t

v
a
lu

e
s

fo
r

m

P
U
B

(
m

=
1
4
)

(
m

∈
[1

,
9
])

m
=

1
m

=
2

m
=

3
m

=
4

m
=

5
m

=
6

m
=

7
m

=
8

m
=

9

In
s
t
a
n
c
e

B
K

S
U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

U
B

g
a
p

long

early

0
1

1
9
7

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

1
9
7

0
.0

0
2

2
1
9

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
2
0

0
.5

2
2
0

0
.5

2
2
0

0
.5

2
2
0

0
.5

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

2
1
9

0
.0

0
3

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
4

3
0
3

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

0
5

2
8
4

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

2
8
4

0
.0

hidden

0
1

~
3
4
6

3
6
3

4
.7

4
8
7

2
9
.0

3
4
6

0
.0

3
4
7

0
.3

3
4
8

0
.6

3
4
6

0
.0

3
4
6

0
.0

3
5
9

3
.6

3
4
6

0
.0

3
5
5

2
.5

5
3
4

3
5
.2

5
0
6

3
1
.6

0
2

~
8
9

9
0

1
.1

1
1
1

1
9
.8

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

8
9

0
.0

9
6

7
.3

0
3

3
8

3
8

0
.0

6
1

3
7
.7

3
9

2
.6

3
9

2
.6

4
0

5
.0

4
0

5
.0

4
1

7
.3

4
1

7
.3

4
2

9
.5

1
3
0

7
0
.8

1
1
9

6
8
.1

1
1
8

6
7
.8

0
4

2
2

2
2

0
.0

4
4

5
0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

2
2

0
.0

3
7

4
0
.5

4
1

4
6
.3

1
1
2

8
0
.4

0
5

4
1

4
1

0
.0

1
3
0

6
8
.5

4
1

0
.0

4
3

4
.7

4
5

8
.9

4
2

2
.4

4
3

4
.7

4
3

4
.7

4
3

4
.7

4
1

0
.0

4
9

1
6
.3

1
7
4

7
6
.4

late

0
1

2
3
5

2
3
5

0
.0

3
8
5

3
9
.0

2
3
9

1
.7

2
3
9

1
.7

2
4
1

2
.5

2
3
9

1
.7

2
4
1

2
.5

2
4
2

2
.9

2
4
4

3
.7

2
4
4

3
.7

2
4
4

3
.7

2
5
7

8
.6

0
2

2
2
9

2
2
9

0
.0

4
0
9

4
4
.0

2
3
5

2
.6

2
3
5

2
.6

2
3
5

2
.6

2
3
7

3
.4

2
3
5

2
.6

2
3
9

4
.2

2
4
2

5
.4

2
3
5

2
.6

2
4
2

5
.4

2
4
3

5
.8

0
3

2
2
0

2
2
0

0
.0

3
9
1

4
3
.7

2
2
0

0
.0

2
2
1

0
.5

2
2
5

2
.2

2
2
1

0
.5

2
2
0

0
.0

2
3
3

5
.6

2
3
9

7
.9

2
3
3

5
.6

2
2
0

0
.0

3
8
0

4
2
.1

0
4

2
2
1

2
2
1

0
.0

3
1
0

2
8
.7

2
2
2

0
.5

2
2
5

1
.8

2
3
1

4
.3

2
2
8

3
.1

2
2
4

1
.3

2
2
9

3
.5

2
2
7

2
.6

2
2
2

0
.5

2
2
8

3
.1

2
3
3

5
.2

0
5

8
3

8
3

0
.0

2
7
0

6
9
.3

8
3

0
.0

8
6

3
.5

8
3

0
.0

8
3

0
.0

8
3

0
.0

8
3

0
.0

8
3

0
.0

9
2

9
.8

1
5
9

4
7
.8

2
4
0

6
5
.4

g
a
p

(
a
v
g
./

s
t
d
.
d
e
v
ia

t
io

n
)

(
0
.4

/
1
.2

)
(
2
8
.6

/
2
4
.7

)
(
0
.5

/
0
.9

)
(
1
.2

/
1
.5

)
(
1
.8

/
2
.6

)
(
1
.1

/
1
.6

)
(
1
.3

/
2
.2

)
(
2
.1

/
2
.5

)
(
2
.3

/
3
.3

)
(
9
.1

/
2
0
.0

)
(
1
5
.1

/
2
2
.7

)
(
2
6
.0

/
3
1
.6

)

medium

early

0
1

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
2

2
4
0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

2
4
0

0
.0

0
3

2
3
6

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

2
3
6

0
.0

0
4

2
3
7

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

2
3
7

0
.0

0
5

3
0
3

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

3
0
3

0
.0

hidden

0
1

~
1
1
1

1
3
0

1
4
.6

3
1
4

6
4
.6

1
1
1

0
.0

1
1
6

4
.3

1
1
1

0
.0

1
1
8

5
.9

1
1
8

5
.9

1
1
6

4
.3

1
1
7

5
.1

1
1
8

5
.9

1
2
0

7
.5

3
0
7

6
3
.8

0
2

2
2
1

2
2
1

0
.0

3
5
2

3
7
.2

2
2
1

0
.0

2
2
1

0
.0

2
2
3

0
.9

2
2
4

1
.3

2
2
7

2
.6

2
2
3

0
.9

2
3
5

6
.0

2
2
1

0
.0

2
2
6

2
.2

2
5
6

1
3
.7

0
3

~
3
4

3
6

5
.6

9
3

6
3
.4

3
4

0
.0

3
4

0
.0

4
0

1
5
.0

4
1

1
7
.1

3
8

1
0
.5

3
6

5
.6

3
8

1
0
.5

3
6

5
.6

3
6

5
.6

4
1

1
7
.1

0
4

~
7
8

8
0

2
.5

1
3
6

4
2
.6

8
0

2
.5

8
0

2
.5

8
0

2
.5

8
4

7
.1

8
1

3
.7

8
2

4
.8

8
1

3
.7

8
1

3
.7

8
0

2
.5

1
4
7

4
6
.9

0
5

~
1
1
9

1
2
2

2
.5

2
3
3

4
8
.9

1
1
9

0
.0

1
2
1

1
.7

1
2
0

0
.8

1
2
3

3
.3

1
2
1

1
.7

1
2
0

0
.8

1
1
9

0
.0

1
2
7

6
.3

1
2
1

1
.7

2
3
2

4
8
.7

late

0
1

~
1
5
7

1
5
8

0
.6

2
1
5

2
7
.0

1
5
7

0
.0

1
6
1

2
.5

1
6
0

1
.9

1
6
0

1
.9

1
6
1

2
.5

1
6
1

2
.5

1
5
7

0
.0

1
5
9

1
.3

1
6
1

2
.5

1
6
4

4
.3

0
2

1
8

1
8

0
.0

1
8

0
.0

1
9

5
.3

1
9

5
.3

1
9

5
.3

2
2

1
8
.2

2
3

2
1
.7

2
4

2
5
.0

2
0

1
0
.0

2
0

1
0
.0

2
0

1
0
.0

2
4

2
5
.0

0
3

2
9

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

2
9

0
.0

0
4

3
5

3
5

0
.0

3
7

5
.4

3
5

0
.0

3
5

0
.0

3
6

2
.8

3
5

0
.0

3
6

2
.8

3
6

2
.8

3
7

5
.4

3
7

5
.4

3
5

0
.0

3
6

2
.8

0
5

1
0
7

1
0
7

0
.0

1
2
0

1
0
.8

1
0
8

0
.9

1
0
8

0
.9

1
1
4

6
.1

1
1
3

5
.3

1
1
8

9
.3

1
1
4

6
.1

1
1
4

6
.1

1
1
9

1
0
.1

1
0
9

1
.8

1
1
2

4
.5

g
a
p

(
a
v
g
./

s
t
d
.
d
e
v
ia

t
io

n
)

(
1
.7

/
3
.9

)
(
2
0
.0

/
2
4
.9

)
(
0
.6

/
1
.5

)
(
1
.1

/
1
.7

)
(
2
.4

/
4
.0

)
(
4
.0

/
6
.0

)
(
4
.1

/
6
.0

)
(
3
.5

/
6
.4

)
(
3
.1

/
3
.8

)
(
3
.2

/
3
.7

)
(
2
.2

/
3
.1

)
(
1
5
.1

/
2
1
.3

)

Table 5 Results of the Mathematical Programming Heuristic

276 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

– The impact of the parameter m is very perceptible and the best average
result were obtained when m = 1.

– The upper bounds provided by the MPH are certainly very good, especially
when m = 1 in the first iteration. Considering all the runs (m starting
from 1 to 9), the heuristic was able to outperform the best solution on the
literature for 6 instances. Considering the “sprint” instances, the gap was
greater than 0 only for 7 out of 60 instances. The average gap from the
best known solution was also very low: 0.5% for “long” instances and 0.6%
for “medium” instances, with a maximum gap of 5.3% considering all the
instances, which is specifically related to one unit on the objective function
value of instance medium late02.

– Since the MPH was able to robustly find good solutions in up to 10 minutes
of sequential processor time, we decided not to report results of longer runs.
Such decision is easy to be explained, since running the heuristic for longer
times may result in solving the original problem (see section 5.3), which
can take a very long time for some instances.

– The comparison with the upper bounds of the method and the best results
from literature should take into account the difference of order of magni-
tude in the running times for “long” instances. While MPH running times
are limited to 600 seconds, Valouxis et al. [44] report times of up to 36,000
seconds on these instances. The comparison is more fair when considering
the “medium” instances, since running times are similar.

Figure 6 shows the improvement in time with regard to the upper bound by
MPH using different values for the initial m. From this figure we can conclude
that for values lower than 7 for the initial m, the MPH is capable to produce
good solutions in the early stages of the search. The figure also shows that,
as the value of the initial m becomes larger, the heuristic takes more time to
generate better solutions. Such additional time is not worthwhile, since the
final solution is still worse than the ones produced by MPH with smaller m
in the first iteration.

6.4 Best Results

The best results obtained from all experiments are presented in Table 6. Table
cells marked with ~ indicate some improvement over the best known solution
as reported in the INRC site at time of the writing of this work. It is important
to remember that this site has received updates in the years following the
competition, so the previous best known solutions (column PUB) were already
very hard to find. Most instances were solved to optimality and the harder
among the unsolved instances is medium hidden05 where the lower bound
distance is now at 23.7%.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 277

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - long instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - medium instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

 0

 2

 4

 6

 8

 10

 12

 14

 1 10 100

a
ve

ra
g

e
 g

a
p

 (
%

)

time (sec)

upper bound improvement - sprint instances

m=1
m=2
m=3
m=4
m=5
m=6
m=7
m=8
m=9

Fig. 6 Improvement in time graphic for MPH with different values for the initial m.

278 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Instance LB PUB UB GAP Instance LB PUB UB GAP

lo
n
g

e
a
r
ly

01 197.0 197 197 0.0

s
p
r
in

t

e
a
r
ly

01 56.0 56 56 0.0
02 219.0 219 219 0.0 02 58.0 58 58 0.0
03 240.0 240 240 0.0 03 51.0 51 51 0.0
04 303.0 303 303 0.0 04 59.0 59 59 0.0
05 284.0 284 284 0.0 05 58.0 58 58 0.0

h
id

d
e
n

01 341.0 363 ~ 346 1.4 06 54.0 54 54 0.0
02 86.0 90 ~ 89 3.4 07 56.0 56 56 0.0
03 35.3 38 38 7.1 08 56.0 56 56 0.0
04 19.0 22 22 13.8 09 55.0 55 55 0.0
05 41.0 41 41 0.0 10 52.0 52 52 0.0

la
t
e

01 232.0 235 235 1.3

la
t
e

01 32.0 33 ~ 32 0.0
02 229.0 229 229 0.0 02 32.0 32 32 0.0
03 219.0 220 220 0.5 03 62.0 62 62 0.0
04 214.6 221 222 3.3 04 66.0 67 ~ 66 0.0
05 83.0 83 83 0.0 05 59.0 59 59 0.0

m
e
d
iu

m

e
a
r
ly

01 240.0 240 240 0.0 06 130.0 134 ~ 130 0.0
02 240.0 240 240 0.0 07 153.0 153 153 0.0
03 236.0 236 236 0.0 08 204.0 209 ~ 204 0.0
04 237.0 237 237 0.0 09 338.0 338 338 0.0
05 303.0 303 303 0.0 10 306.0 306 306 0.0

h
id

d
e
n

01 87.2 130 ~ 111 21.5

h
id

d
e
n

01 37.0 37 37 0.0
02 196.6 221 221 11.1 02 42.0 42 42 0.0
03 27.7 36 ~ 34 18.5 03 48.0 48 48 0.0
04 72.8 80 ~ 78 6.7 04 73.0 75 ~ 73 0.0
05 90.8 122 ~ 119 23.7 05 44.0 44 44 0.0

la
t
e

01 155.7 158 ~ 157 0.8 06 42.0 42 42 0.0
02 18.0 18 18 0.0 07 42.0 42 42 0.0
03 29.0 29 29 0.0 08 17.0 17 17 0.0
04 35.0 35 35 0.0 09 17.0 17 17 0.0
05 107.0 107 107 0.0 10 43.0 43 43 0.0

Table 6 previous upper bound (PUB), updated lower (LB) and upper (UB) bounds

7 Conclusions and Future Works

This work presented Integer Programming techniques for the Nurse Rostering
Problem. Although there are several detailed results published in the literature
for heuristics evaluated using the INRC instance set, we believe that this is the
first work which also devotes a considerable attention to the computational
production of strong dual bounds obtained from the linear programming re-
laxation. These bounds allowed us to prove the optimality for many instances,
and its importance is not restricted to exact methods: improved dual bounds
allows a more effective pruning of nodes in the search tree, which is useful to
speedup MIP heuristic search in large neighborhoods, as the one presented in
this work. The large number of experiments made using the open source CBC
solver allowed us to spot existing previously unknown CBC bugs. These bugs
were subsequently fixed by CBC developers. We proposed and implemented a
much better clique cut generator for CBC, showing that it can produce better
dual bounds in the early stages of the search. This code will also be released
as open source. This work was not enough to make CBC competitive with
the best commercial solvers when solving INRC instances, since to develop a
competitive MIP heuristic we still needed to rely on CPLEX. Nevertheless,
we believe that this is a step towards validating and improving this important
open source integer programming solver.

The proposed MIP heuristic, built upon the presented formulation and
evaluated with the state-of-art CPLEX solver, improved several best known
solutions, requiring very short computing times and still being competitive
with the best heuristics for this problem. We believe that the new improved

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 279

primal and dual bounds will allow a more precise evaluation of the quality of
available heuristics for this problem.

8 Acknowledgements

The authors would like to thank FAPEMIG (grant APQ-01779-10) and CNPq
(grant 480388/2010-5) for supporting the development of this research and
the anonymous reviewers of this paper for the detailed suggestions and cor-
rections.

References

1. Andersen, K., Cornuejols, G., Y., L.: Reduce-and-split cuts: Improving the performance
of mixed integer gomory cuts. Management Science 51, 1720–1732 (2005)

2. Andreello, G., Caprara, A., Fischetti, M.: Embedding cuts in a branch and cut frame-
work: a computational study with 0,1/2-cuts. INFORMS Journal on Computing 1
19(2), 229–238 (2007)

3. Atamtürk, A., Nemhauser, G.L., Savelsbergh, M.W.P.: Conflict graphs in solving integer
programming problems. European Journal of Operational Research 121, 40–55 (2000)

4. Avella, P., Vasil’ev, I.: A computational study of a cutting plane algorithm for university
course timetabling. Journal of Scheduling 8, 497–514 (2005)

5. Balas, E., Ceria, S., Cornueljols, G., Natra, N.: Gomory cuts revisited. Operations
Research Letters 19, 1–10 (1996)

6. Bilgin, B., Demeester, P., Mısır, M., Vancroonenburg, W., Berghe, G., Wauters, T.: A
hyper-heuristic combined with a greedy shuffle approach to the nurse rostering compe-
tition. In: the 8th International Conference on the Practice and Theory of Automated
Timetabling (PATAT10)-the Nurse Rostering Competition (2010)

7. Borndorfer, R.: Aspects of set packing, partitioning, and covering. Ph.D. thesis, Faculty
of Mathematics at Technical University of Berlin (1998)

8. Boyd, E.: Fenchel cutting planes for integer programming. Operations Research 42,
53–64 (1992)

9. Boyd, E.: Solving 0/1 integer programs with enumeration cutting planes. Annals of
Operations Research 50, 61–72 (1994)

10. Brito, S., Santos, H.G.: Pivoting in the bron-kerbosch algorithm for maximum-weight
clique detection (in portuguese). In: Anais do XLIII Simpsio Brasileiro de Pesquisa
Operacional (2011)

11. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Com-
mun. ACM 16, 575–577 (1973). DOI http://doi.acm.org/10.1145/362342.362367. URL
http://doi.acm.org/10.1145/362342.362367

12. Burke, E., Curtois, T.: An ejection chain method and a branch and price algorithm
applied to the instances of the first international nurse rostering competition, 2010.
In: Proceedings of the 8th International Conference on the Practice and Theory of
Automated Timetabling PATAT 2010 (2010)

13. Burke, E., Li, J., Qu, R.: A hybrid model of integer programming and variable neigh-
bourhood search for highly-constrained nurse rostering problems. European Journal of
Operational Research 203(2), 484–493 (2010)

14. Burke, E., Mareček, K., Parkes, A.J., Rudová, H.: A branch-and-cut procedure for the
udine course timetabling problem. Ann. Oper. Res. pp. 1–17 (2011). DOI http://dx.
doi.org/10.1007/s10479-010-0828-5. URL http://cs.nott.ac.uk/~jxm/timetabling/

patat2008-paper.pdf

15. Burke, E.K., De Causmaecker, P., Berghe, G.V., Landeghem, H.V.: The state of the art
of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

280 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://doi.acm.org/10.1145/362342.362367
http://cs.nott.ac.uk/~jxm/timetabling/patat2008-paper.pdf
http://cs.nott.ac.uk/~jxm/timetabling/patat2008-paper.pdf

16. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems–a bibliographic
survey. European Journal of Operational Research 151(3), 447–460 (2003)

17. Cornuéjols, G.: Revival of the gomory cuts in the 1990´s. Annals of Operations Research
149(1), 63–66 (2007)

18. Danna, E., Rothberg, E., Le Pape, C.: Exploring relaxation induced neighborhoods to
improve mip solutions. Tech. rep., ILOG (2003)

19. Danna, E., Rothberg, E., Le Pape, C.: Integrating mixed integer programming and local
search: A case study on job-shop scheduling problems. In: Proceedings CPAIOR’03
(2003)

20. Dash, S., Goycoolea, M., Gunluk, O.: Two step MIR inequalities for mixed-integer
programs. INFORMS Journal on Computing (2009)

21. Eso, M.: Parallel branch-and-cut for set partitioning. Ph.D. thesis, Cornell University
Ithaca, NY, USA (1999)

22. Fischetti, M., Lodi, A.: Local branching. Mathematical Programming 98, 23–47 (2003)
23. Fischetti, M., Lodi, A.: Optimizing over the first Chvàtal closure. Mathematical Pro-

gramming B 110(1), 3–20 (2007)
24. Forrest, J., Lougee-Heimer, R.: CBC user guide. INFORMS Tutorials in Operations

Research. pp. 257–277 (2005). DOI 10.1287
25. Grotschel, M., Lovasz, L., Schrijver, A.: Geometric Algorithms and Combinatorial Op-

timization. Springer (1993)
26. Hansen, P., Mladenović, N.: Variable neighborhood search. Computers and Operations

Research 24(11), 1097–1100 (1997)
27. Hansen, P., Mladenović, N., Urosević, D.: Variable neighborhood search and local

branching. Comput. Oper. Res. 33(10), 3034–3045 (2006)
28. Haspeslagh, S., De Causmaecker, P., Stolevik, M., A., S.: First international nurse roster-

ing competition 2010. Tech. rep., CODeS, Department of Computer Science, KULeuven
Campus Kortrijk. Belgium (2010)

29. Hoffman, K., Padberg, M.: Solving airline crew scheduling problems by branch-and-cut.
Management Science 39(6), 657–682 (1993)

30. IBM: CPLEX 12.2 User’s Manual (2011)
31. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R., Danna,

E., Gamrath, G., Gleixner, A., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Sal-
vagnin, D., Steffy, D., Wolter, K.: MIPLIB 2010. Mathematical Programming Com-
putation 3, 103–163 (2011). URL http://dx.doi.org/10.1007/s12532-011-0025-9.
10.1007/s12532-011-0025-9

32. Linderoth, J.T., Ralphs, T.K.: Noncommercial software for mixed-integer linear pro-
gramming. In: J. Karlof (ed.) Integer Programming: Theory and Practice, Operations
Research Series, vol. 3 (2005)

33. Lougee-Heimer, R.: The Common Optimization INterface for Operations Research: Pro-
moting open-source software in the operations research community. IBM Journal of
Research and Development 47(1), 57–66 (2003)

34. Martins, A.X., Souza, M.C., Souza, M.J., Toffolo, T.A.M.: GRASP with hybrid
heuristic-subproblem optimization for the multi-level capacitated minimum span-
ning tree problem. Journal of Heuristics 15, 133–151 (2009). DOI 10.1007/
s10732-008-9079-x. URL http://dl.acm.org/citation.cfm?id=1527562.1527566

35. Méndez-Dı́az, I., Zabala, P.: A cutting plane algorithm for graph coloring. Discrete
Applied Mathematics 156, 159–179 (2008)

36. Mittelmann, H.: Benchmarks for optimization software (2012). URL http://plato.

asu.edu/bench.html
37. Nonobe, K.: Inrc2010: An approach using a general constraint optimization solver. The

First International Nurse Rostering Competition (INRC 2010) (2010)
38. Nonobe, K., Ibaraki, T.: A tabu search approach to the constraint satisfaction problem

as a general problem solver. European Journal of Operational Research 106(2-3), 599–
623 (1998)

39. Padberg, M.: On the facial structure of set packing polyhedra. Mathematical Program-
ming 5(1), 199–215 (1973)

40. Poggi de Aragão, M., Uchoa, E.: Integer program reformulation for robust branch-and-
cut-and-price. In: Annals of Mathematical Programming in Rio, pp. 56–61. Buzios,
Brazil (2003)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 281

http://dx.doi.org/10.1007/s12532-011-0025-9
http://dl.acm.org/citation.cfm?id=1527562.1527566
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

41. Ralphs, T., Saltzman, M., Ladnyi, L.: The COIN-OR Open Solver Interface: Technology
Overview (2004). URL http://www.coin-or.org/Presentations/CORS2004-OSI.pdf

42. Ralphs, T.K., Gzelsoy, M.: The symphony callable library for mixed integer program-
ming. In: B. Golden, S. Raghavan, E. Wasil, R. Sharda, S. Vo (eds.) The Next Wave in
Computing, Optimization, and Decision Technologies, Operations Research/Computer
Science Interfaces Series, vol. 29, pp. 61–76. Springer US (2005)

43. Uchoa, E., Toffolo, T.A.M., de Souza, M.C., Martins, A.X., Fukasawa, R.: Branch-
and-cut and hybrid local search for the multi-level capacitated minimum spanning tree
problem. Networks 59(1), 148–160 (2012). DOI 10.1002/net.20485. URL http://dx.

doi.org/10.1002/net.20485

44. Valouxis, C., Gogos, C., Goulas, G., Alefragis, P., Housos, E.: A systematic two phase
approach for the nurse rostering problem. European Journal of Operational Research
(2012)

282 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.coin-or.org/Presentations/CORS2004-OSI.pdf
http://dx.doi.org/10.1002/net.20485
http://dx.doi.org/10.1002/net.20485

