
A Constraint Programming Approach to the

Traveling Tournament Problem with Predefined

Venues

Gilles Pesant

the date of receipt and acceptance should be inserted later

Abstract The Traveling Tournament Problem with Predefined Venues (TTPPV)
has been introduced as an abstraction of sports scheduling. Exact integer pro-
gramming and heuristic approaches have been proposed so far. We investigate
an exact constraint programming approach for this problem, discussing dif-
ferent models and search strategies. We report their respective performance
on the standard set of benchmark instances and compare them to the current
state of the art.

Keywords traveling tournament problem with predefined venues · constraint
programming · sports scheduling

1 Introduction

The Traveling Tournament Problem with Predefined Venues (TTPPV) was
introduced in [13] and consists of finding an optimal compact single round
robin schedule for a sport tournament. Given a set of n teams, each team
has to play once against every other team. In each game, a team is supposed
to play either at home or away, however no team can play more than three
consecutive times at home or away (in the rest of the paper, we will refer
to this restriction as the stretch constraint). We seek to minimize the total
distance traveled by all the teams. The main distinctive feature of this variant
of the Traveling Tournament Problem (TTP) [4] is that the venue of each game
is predefined, i.e. for the game in which team a plays against b it is already
known whether it is going to be held at a’s home or at b’s home. A TTPPV
instance is said to be balanced if the number of home games and the number
of away games differ by at most one for each team; otherwise it is referred to

G. Pesant
École Polytechnique de Montréal, Canada
CIRRELT, Montreal, Canada
E-mail: Gilles.Pesant@cirrelt.ca

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 303



as non-balanced or random. TTPPV benchmark instances were created in [13]
from existing TTP instances (the Circle instances, see [4]) by adding a venue
for each game. The number of teams goes from 4 to 20 and there are twenty
instances (ten balanced; ten random) of each size. Instances on n teams will
be denoted CIRCn.

The integer programming models described in [13] solve to optimality in-
stances with up to 8 teams but have great difficulty finding feasible solutions
beyond 16-team instances. By removing the travel distance from the objective
and replacing it with penalties associated with the (now relaxed) predefined
venue and stretch constraints, they manage to generate feasible solutions for
larger instances. More recently an iterated local search approach achieves much
better solutions [2].

This paper’s contribution is to show how to model and solve the TTPPV
using constraint programming. This approach provides a concise formal model
that can be used both in an exact or heuristic setting. It also offers the possi-
bility to integrate side constraints easily. The rest of the paper is organized as
follows: Section 2 gives a short introduction to constraint programming, Sec-
tion 3 gradually describes CP models and search heuristics for the TTPPV,
Section 4 presents search space exploration strategies and empirical results on
instances of realistic size.

2 Constraint Programming

Constraint Programming (CP) is a powerful technique to solve combinatorial
problems. It applies sophisticated inference to reduce the search space and a
combination of variable- and value-selection heuristics to guide the exploration
of that search space. The problem to solve is described through a formal model
expressed using constraints from a rich set of modeling primitives. Each type
of constraint encapsulates its own specialized inference algorithm.

2.1 CP Inference

To every variable of a CP model is associated a finite set called its domain:
each value in that domain represents a possible value for the variable. Con-
straints on the variables forbid certain combinations of values. Picturing the
model as a network whose vertices are the variables and whose (hyper)edges
are the constraints provides insight into the basic algorithm used in CP. A
vertex is labeled with the set of values in the domain of the corresponding
variable and an edge is incident to those vertices representing the variables
appearing in the associated constraint. Looking locally at a particular edge
(constraint), the algorithm attempts to modify the label (reduce the domain)
of the incident vertices (variables) by removing values which cannot be part of
any solution because they would violate that individual constraint; this local

consistency step can be performed efficiently. If every violating variable-value

304 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



pair is identified and removed, we achieve domain consistency which is the best
we can do locally; sometimes achieving that level of consistency is computa-
tionally too costly and we will only remove values at both ends of a domain,
achieving bounds consistency (typically for domains from a totally ordered set
such as the integers).

The modification of a vertex’s label triggers the inspection of all incident
edges, which in turn may modify other labels. This recursive process stops
when either all label modifications have been dealt with or the empty label
is obtained, in which case no solution exists. The overall behavior is called
constraint propagation.

2.2 CP Search

Since constraint propagation may stop with indeterminate variables (i.e. whose
domain still contains several values) the solution process requires search, which
can potentially take exponential time. It usually takes the form of a tree search
in which branching corresponds to fixing a variable to a value in its domain,
thus triggering more constraint propagation. We call variable-selection heuris-

tic and value-selection heuristic the way one decides which variable to branch
on and which value to try first, respectively. For combinatorial optimization
problems, the tree search evolves into a branch-and-bound search in which
branching is the same as before and lower bounds at tree nodes are obtained
by various means.

2.3 CP for Sports Scheduling

The area of sports scheduling has already been quite successful for CP. For
example it plays an important role in scheduling Major League Baseball in
North America [5], it has been used to schedule the National Football League
in the US [12], and has been shown to perform well for College Basketball [9].
In particular a CP model for the TTP is proposed in [10].

3 Modeling the TTPPV

In this section we present and evaluate empirically several models and search
heuristics for the TTPPV. All tests were performed on a AMD Opteron
2.2GHz with 1GB of RAM and used the Ilog Solver 6.6 constraint program-
ming language.

3.1 Initial Model

A CP model for the TTP was presented in [10] and can be partly transposed
to the TTPPV. We describe an adaptation of it as our first model. For a

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 305



tournament with n teams, we will have n − 1 rounds since it is built as a
single round robin, as opposed to the TTP. We define opponent variables oij ,
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 to represent the opponent of team i in round j. We
also define home variables hij , 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 which are equal to 1
if team i plays at home in round j and zero otherwise.1 The model is partly
expressed as

alldifferent((oij)1≤j≤n−1) 1 ≤ i ≤ n (1)

ooij ,j = i 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (2)

oij ∈ {1, . . . , i− 1, i+ 1, . . . , n} 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (3)

hij ∈ {0, 1} 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (4)

The alldifferent constraint, defined on a set of variables, enforces that
these variables take on distinct values and a few different consistency levels
(with corresponding filtering algorithms) can be achieved for it [11]. We will
use domain consistency, the strongest possible for filtering variable domains.
Constraints (1) state that each team plays exactly once against every other
team (single round robin): all opponents must be different and there are as
many opponents as there are rounds.2 By definition, Constraints (3) guarantee
that each team plays exactly one game in every round (compact tournament).
However one must ensure that the schedule is consistent: Constraints (2) state
that in any given round, the opponent of team i has its opponent variable set
to i. This is an instance of the element constraint, which allows array index-
ing by finite-domain variables and maintains domain consistency [7]. Finally
Constraints (4) express the choice of the venue for the game team i plays in
round j.

To take into account the predefined venue of each game, we again use
element with the n× n matrix V giving the venue of each game (V [i, k] = 1
if the game is hosted by i and 0 if it is hosted by k):

hij = V [i, oij ] 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1 (5)

Reference [10] is not very clear on how it handles the stretch constraint
and there is only mention of “some inequalities”. Since its publication there
has been significant progress in modeling restrictive patterns on sequences
of variables, notably the regular language membership (regular) constraint
that takes as input an automaton describing the allowed patterns and achieves
domain consistency [14]. We use it here:

regular((hij)1≤j≤n−1,A) 1 ≤ i ≤ n (6)

The small automaton A for this constraint is depicted at Figure 1.

1 away variables are also introduced in [10], but these are unnecessary since they are
simply the opposite of the home variables.

2 [10] uses the more general cardinality constraint since each opposing team is met twice
in the TTP.

306 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



3H2H1H

3A2A1A

start

1 1

0

1 0

0

1
0

1

0

0

1

Fig. 1 Automaton for the “maximum 3 consecutive home or away games” restriction

Expressing the cost of a schedule is a bit tedious with this model because
individual travel distances depend on pairs of consecutive variables. Let D

represent the n× n travel distance matrix and variable dij the travel distance
for team i to go play its game in round j. We follow [10] by considering four
cases: two consecutive games for a team are either both played home, home
then away, away then home, or both played away:

(hij = 1 ∧ hi,j+1 = 1) ⇒ di,j+1 = 0 1 ≤ i ≤ n, 1 ≤ j < n−1 (7)

(hij = 1 ∧ hi,j+1 = 0) ⇒ di,j+1 = D[i, oi,j+1] 1 ≤ i ≤ n, 1 ≤ j < n−1 (8)

(hij = 0 ∧ hi,j+1 = 1) ⇒ di,j+1 = D[oij , i] 1 ≤ i ≤ n, 1 ≤ j < n−1 (9)

(hij = 0 ∧ hi,j+1 = 0) ⇒ di,j+1 = D[oij , oi,j+1] 1 ≤ i ≤ n, 1 ≤ j < n−1(10)

(hi1 = 1) ⇒ di1 = 0 1 ≤ i ≤ n (11)

(hi1 = 0) ⇒ di1 = D[i, oi1] 1 ≤ i ≤ n (12)

(hi,n−1 = 1) ⇒ din = 0 1 ≤ i ≤ n (13)

(hi,n−1 = 0) ⇒ din = D[oi,n−1, i] 1 ≤ i ≤ n (14)

dij ∈ {0} ∪ {min{D}, . . . ,max{D}} 1 ≤ i ≤ n, 1 ≤ j ≤ n (15)

z =

n
∑

i=1

n
∑

j=1

dij (16)

Constraints (7)-(10) state the four cases in terms of the home variables and
correspondingly define the travel distance variables through indexing the travel
distance matrix by the opponent variables. Constraints (11)-(14) handle the
special cases of the first and last rounds. Note that these “p⇒ q” constraints
propagate in both directions: when p is satisfied then q is enforced; when q

is violated then ¬p is enforced. Constraint (16) sums the individual travel
distances into z, the cost objective to be minimized.

Finally we must specify a search heuristic. [10] guides search by selecting
uniformly at random the next variable to branch on (value selection is not
mentioned). To be more precise, a team is first selected at random, then all
rounds for that team are fixed in random order, where the home variable is
fixed before the opponent variable. We initially do something similar, select-
ing uniformly at random the next opponent variable among those of smallest
current domain size (a proven simple generic heuristic criterion) and selecting
values randomly as well. We also report on the even simpler static heuristic
selecting both variables and values lexicographically.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 307



Table 1 Average computation time for Model (1)-(16) on the CIRC6 and CIRC8 instances

instance time (sec)
size type randomMinDom lexico

6 random 0.07 0.10
balanced 0.15 0.16

8 random 395.50 298.60
balanced – –

Table 2 Average computation time for Model (1)-(17)

instance time (sec)
size type randomMinDom lexico

8 random – 567.8
balanced – 2926.4

On the TTP, [10] reported that he could solve the n = 4 and n = 6
instances but the latter required more than 10 minutes and 100 000 backtracks.
Table 1 shows our results on the TTPPV n = 6 and n = 8 instances. The 6-
team instances are easily solved whereas only the random 8-team instances are
within reach with this model: neither search heuristic could solve a majority of
the CIRC8 balanced instances. Note that one CIRC8 random instance could
not be solved within the one-hour time limit and was therefore excluded from
the average. The lexicographic search heuristic appears to do a little better
than randomized smallest domain.

3.2 Adding Redundant Constraints

Even though our model accurately describes an optimal solution to the TTPPV,
adding some constraints can help us to solve it faster. They will be redundant
from a declarative point of view but the inference algorithms they encapsulate
may filter out more values from the domains of variables and thus reduce the
search space further, at the expense of extra computation.

As already pointed out in [10], the opponent variables in a given round
must take distinct values:

alldifferent((oij)1≤i≤n) 1 ≤ j ≤ n− 1 (17)

Note that these do not replace Constraints (2), which are still needed.
Table 2 presents new results once redundant Constraints (17) are added.

This time every 8-team instance is solved to optimality by the lexicographic
heuristic, but not by the randomized-smallest-domain one. Henceforth we will
use the former. There is still a sharp difference in performance between the
random and balanced instances, probably due to the fact that the former are
more constrained and therefore have a smaller search space.

308 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



H

H H H HA A A A A A A A A

+ 2 H

(i)

(ii) H A H HA A A A A A A A A

Fig. 2 14-team individual schedule with 3 predefined home games and starting with a home
game. Both (i) and (ii) completed schedules are invalid.

Table 3 Average computation time for Model (1)-(5), (7)-(18) with the lexico search heuris-
tic on the CIRC8 instances

instance time (sec)
size type

8 random 413.2
balanced 2666.4

3.3 Catching Infeasible Instances

In addition to proving optimality, another advantage of exact methods is iden-
tifying infeasibility. Arguably a successful tree search algorithm needs to be
good at pruning infeasible subtrees. Among the CIRC instances, 14 are known
to be infeasible. Using the previous model and search heuristic, five of these
are proven without any search (the 6- and 8-team infeasible instances), one
requires 367 backtracks, and another 2595142 backtracks in about 12 minutes.
The other seven could not be proven within one hour.

One source of infeasibility is a team not having enough home (resp. away)
games to separate long stretches of away (resp. home) games. A necessary
condition is given in [13] and states that at least ⌊n−1

4
⌋ of each are needed.

The inability of our model to detect this stems from Constraints (6) and (1)
being handled separately: the former would need to know that games cannot
be repeated. Alternatively we could make sure that we have the correct number
of home games in each team’s schedule. The cost regular constraint [3], a
variant of regular that additionally assigns an individual cost to each value
taken by a variable and constrains their sum, can do just that:

cost regular((hij)1≤j≤n−1, A,
∑

1≤k≤nV [i, k], [0, 1]) 1 ≤ i ≤ n (18)

The last argument attributes a cost to each value possibly taken by the
hij variables: here an away game for i costs nothing whereas a home game
costs 1, effectively counting the latter. The third argument counts the number
of home games for team i according to matrix V and constrains the sum of
individual costs to that value. This way the constraint simultaneously enforces
the correct number of home/away games and the stretch requirement — it is
also strictly stronger than the ⌊n−1

4
⌋ condition. Consider Figure 2: thirteen

games are to be planned, three of them home games, and the first one being

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 309



Table 4 Average computation time for Model (1)-(5), (7)-(19) with simple static symmetry
breaking and the lexico search heuristic on the CIRC8 instances

instance time (sec)
size type

8 random 249.1
balanced 1372.5

played home. Despite the ⌊n−1

4
⌋ condition being satisfied, there is no valid

way to complete that schedule. For example, schedule (i) respects the stretch
constraint but not the number of predefined home games, whereas schedule
(ii) respects the latter but not the former. With this more powerful constraint
replacing (6), the 14 instances are shown to be infeasible without any search (0
backtrack). This confirms that the source of infeasibility here is an insufficient
number of home (or away) games for a team to respect the stretch restriction,
now captured by a single constraint. Table 3 also shows that the additional
inference improves the overall performance on feasible instances as well by
pruning more infeasible subtrees.

3.4 Symmetry Breaking

The presence of symmetry in models can considerably slow down tree search
approaches because the same infeasible subtree will be met repeatedly. This
is especially true when we are solving an optimization problem and the whole
tree must be traversed (even if only implicitly by pruning infeasible or provably
suboptimal subtrees). Identifying and removing all symmetries is generally a
very difficult task. Here there is one symmetry that is easy to see and remove:
the mirror image of a schedule, going from the last round to the first. Such
a transformation preserves the compact single round robin structure of the
schedule and the stretch restriction. Games are still played at the same venues.
And because travel distances are symmetric, its cost will be identical. We break
that symmetry by selecting the first team, arbitrarily, and requiring that its
first opponent be smaller than its last (according to team identifiers):

o11 < o1,n−1 (19)

Table 4 shows breaking that symmetry improves the overall performance
further, cutting the computation time almost by half. However solving the
10-team instances to optimality remains out of reach within one hour of com-
putation time.

4 Exploring the Search Space

Given a CP model and search heuristics to dictate how we branch at a search
tree node, there are still many ways we can explore the search space, even if
it is all based on tree search. This section explores two possible avenues.

310 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



Table 5 Average solution value for the CIRC 10-team random instances with and without
limited discrepancy search

LDS 1 sec. 1 min. 1 hour

no 168.9 163.4 158.9
yes 171.1 164.0 158.6

Table 6 Best solution value for the feasible CIRC 18-team random instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1040 1028 998 1054 986 962 1124 940 806
D 1052 1014 1006 – 1020 972 1060 914 800
E 1018 994 994 1038 1018 972 1092 922 804
F 986 970 962 1006 974 936 1098 956 802
G 1002 988 976 – 990 962 1098 924 782
H 996 972 972 – 1004 956 1110 944 804
I 1000 990 968 – 958 936 1104 932 818
J 944 928 918 – 970 896 1102 898 782

4.1 Adding Robustness to the Search Heuristic

It is well known for tree search that regardless of a search heuristic’s qual-
ity, a depth-first traversal may take a very long time to undo a bad branching
decision made early on. Our simple static search heuristic certainly is no excep-
tion. There are a few devices commonly used to add robustness to such search
heuristics, e.g. randomized restarts and limited discrepancy search (LDS) [6].
The latter modifies the order in which the leaves of a search tree are vis-
ited according to how often the corresponding path deviates from the search
heuristic’s recommendation: first the leaf with 0 deviation, then those with
1k deviations, followed by those with 2k deviations, and so forth, for a given
parameter k. This has the effect of more quickly changing decisions close to
the root. We add LDS to the lexicographic search heuristic as its tree traversal
strategy.

Table 5 compares the average value of solutions found for the 10-team
random instances after 1 second, 1 minute, and one hour, with and without
LDS (the behavior on the balanced instances is similar). Note that the quality
starts out worse with LDS but it eventually catches up to and exceeds the
performance of the heuristic without LDS. The improvement observed here is
small but we next confirm it on instances of realistic size, comparing it at the
same time to the state of the art.

The two previous papers on the TTPPV both use the CIRC 18- and 20-
team instances. Table 6 and 7 report our results for n = 18 (Column 2 to
7) as well as the best ones for [13] (Column 8) and [2] (Column 9 and 10).
Our solutions are considerably better than the ones obtained with IP or their
polishing/enumerative heuristics, even after only 1 second of computation.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 311



Table 7 Best solution value for the feasible CIRC 18-team balanced instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 998 972 960 1036 980 932 1106 912 776
B 1012 1006 990 1036 972 924 1100 896 796
C 1068 1040 1022 1050 980 978 1038 892 794
D 1020 1002 986 – 1022 988 1096 882 788
E 1018 1012 1006 – 954 948 1074 892 784
F 1044 1030 1016 1034 1014 976 1060 910 792
G 972 948 942 1018 972 918 1100 894 784
H 986 964 956 – 984 918 1094 880 780
I 1004 994 978 1074 982 968 1102 894 778
J 1022 994 966 994 968 930 1078 878 780

Table 8 Best solution value for the feasible CIRC 20-team random instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1422 1410 1380 – 1418 1340 1502 1270 1106
B 1456 1454 1446 – 1436 1358 1522 1258 1082
C – – 1440 – 1424 1324 1488 1318 1096
D 1386 1376 1360 – 1368 1334 1510 1294 1136
E 1432 1410 1404 – 1432 1346 1574 1250 1100
G 1400 1380 1370 – 1386 1362 1540 1278 1078
I 1388 1366 1348 – 1360 1304 1516 1236 1082
J 1376 1360 1356 – 1344 1272 1516 1220 1070

For every instance but one, using LDS yields noticeably improved solutions
after one hour. Our best solutions after one hour are comparable to those
obtained by ILS after one second on the random instances but are inferior on
the balanced instances. This may be explained by the larger search space of
the latter for our exact approach. On none of the instances are we competitive
with ILS given a reasonable amount of time (two hours).

Table 8 and 9 report our results for n = 20 (Column 2 to 7) as well as the
best ones for [13] (Column 8) and [2] (Column 9 and 10). Again our solutions
are much better than the ones from [13] and LDS systematically improves our
exact algorithm. Unfortunately the gap between our performance and that of
ILS widens.

4.2 Applying Large Neighborhood Search to the CP Model

Local search is often the method of choice to solve large combinatorial op-
timization problems and as we saw it is currently the best method for this
problem. Several ways to combine CP and local search have been proposed in
the literature, e.g. [15], [16], [8]. Large Neighborhood Search (LNS) iteratively

312 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



Table 9 Best solution value for the feasible CIRC 20-team balanced instances using different
approaches

instance CP without LDS CP with LDS IP ILS
1 sec. 1 min. 1 hour 1 sec. 1 min. 1 hour 2 hours 1 sec. 2 hours

A 1380 1368 1360 1362 1356 1302 1520 1236 1094
B 1412 1386 1382 1432 1394 1346 1530 1252 1082
C 1408 1388 1370 1366 1362 1338 1470 1234 1072
D 1404 1400 1398 – 1430 1354 1464 1238 1100
E 1426 1416 1402 – 1414 1356 1526 1214 1076
F 1390 1372 1356 1440 1404 1340 1546 1236 1072
G 1348 1334 1316 – 1368 1296 1536 1210 1068
H 1446 1430 1410 1444 1358 1336 1516 1268 1094
I 1378 1356 1352 1422 1362 1310 1544 1238 1078
J 1410 1400 1368 – 1340 1308 1484 1222 1086

Table 10 Compared best solution value for the feasible CIRC 18-team random (left) and
balanced (right) instances using LNS

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 962 894 940 806
D 972 902 914 800
E 972 882 922 804
F 936 902 956 802
G 962 896 924 782
H 956 868 944 804
I 936 888 932 818
J 896 870 898 782

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 932 890 912 776
B 924 896 896 796
C 978 910 892 794
D 988 900 882 788
E 948 866 892 784
F 976 918 910 792
G 918 882 894 784
H 918 856 880 780
I 968 914 894 778
J 930 874 878 780

freezes part of the current solution and explores the remaining search space
(its potentially large neighborhood) by applying a (typically incomplete) CP
tree search, benefiting from the usual inference and search heuristics. It is thus
easy to transform an exact CP approach to one using LNS.

We tried a simple implementation of this idea. We run our exact CP algo-
rithm for a few seconds in order to get a fair initial solution. We then freeze
the schedule of a randomly selected small subset of the teams (here, 6 teams).
We explore the neighborhood with the same exact CP algorithm, stopping at
the first improving solution or until a time limit of 30 seconds is reached. We
stop after 100 consecutive unsuccessful iterations or one hour. Admittedly this
is a bare-bones representative of local search methods.

Table 10 reports empirical results on the n = 18 instances. It reiterates
some of the results from previous tables and adds a column for LNS. On every
instance LNS significantly improves our LDS results. On random instances
LNS solution values now lie somewhere between the one-second and two-hours
results of ILS. On balanced instances they are now comparable to the one-
second results. Table 11 reports empirical results on the n = 20 instances.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 313



Table 11 Compared best solution value for the feasible CIRC 20-team random (left) and
balanced (right) instances using LNS

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 1340 1206 1270 1106
B 1358 1294 1258 1082
C 1324 1286 1318 1096
D 1334 1250 1294 1136
E 1346 1278 1250 1100
G 1362 1280 1278 1078
I 1304 1258 1236 1082
J 1272 1234 1220 1070

LDS LNS ILS
1 hour 1 hour 1 sec. 2 hours

A 1302 1270 1236 1094
B 1346 1270 1252 1082
C 1338 1264 1234 1072
D 1354 1268 1238 1100
E 1356 1244 1214 1076
F 1340 1218 1236 1072
G 1296 1248 1210 1068
H 1336 1266 1268 1094
I 1310 1268 1238 1078
J 1308 1242 1222 1086

Again LNS dominates LDS. On both random and balanced instances it is
often comparable to the one-second results of ILS.

5 Conclusion

We presented a constraint programming approach to the traveling tourna-
ment problem with predefined venues. A model was gradually refined and a
few search heuristics and strategies were considered. On standard benchmark
instances of realistic size, this approach outperforms a previous integer pro-
gramming exact approach and its related heuristic variants but falls short of
competing with the current best local search approach to this problem.

Much has yet to be tried with this CP approach and we believe there is
real potential for improvement. This is especially true of our search heuristic
which is currently static: it has performed well but a dynamic search heuristic
tailored to the problem should perform better. There is definitely a lot of room
for improvement in the local search approach with LNS which is currently
very simple. As an exact algorithm it could be brought to solve the 10-team
instances in reasonable time. Finally the easy integration of side constraints is
also an asset for a CP approach in the real world of sports scheduling.

References

1. Burke, E.K., Trick, M.A. (eds.): Practice and Theory of Automated Timetabling V,
5th International Conference, PATAT 2004, Pittsburgh, PA, USA, August 18-20, 2004,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 3616. Springer (2005)

2. Costa, F., Urrutia, S., Ribeiro, C.: An ILS heuristic for the traveling tournament problem
with predefined venues. Annals of Operations Research 194(1), 137–150 (2012)

3. Demassey, S., Pesant, G., Rousseau, L.M.: A Cost-Regular Based Hybrid Column Gen-
eration Approach. Constraints 11(4), 315–333 (2006)

4. Easton, K., Nemhauser, G.L., Trick, M.A.: The Traveling Tournament Problem De-
scription and Benchmarks. In: T. Walsh (ed.) CP, Lecture Notes in Computer Science,
vol. 2239, pp. 580–584. Springer (2001)

314 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



5. Easton, K., Nemhauser, G.L., Trick, M.A.: Solving the Travelling Tournament Problem:
A Combined Integer Programming and Constraint Programming Approach. In: E.K.
Burke, P.D. Causmaecker (eds.) PATAT, Lecture Notes in Computer Science, vol. 2740,
pp. 100–112. Springer (2002)

6. Harvey, W.D., Ginsberg, M.L.: Limited Discrepancy Search. In: Proceedings of the
Fourteenth International Joint Conference on Artificial Intelligence, IJCAI- 95, pp. 607–
615. Morgan Kaufmann (1995)

7. Hentenryck, P.V., Carillon, J.P.: Generality versus Specificity: An Experience with AI
and OR Techniques. In: H.E. Shrobe, T.M. Mitchell, R.G. Smith (eds.) AAAI, pp.
660–664. AAAI Press / The MIT Press (1988)

8. Hentenryck, P.V., Michel, L.: Constraint-based local search. MIT Press (2005)
9. Henz, M.: Scheduling a Major College Basketball Conference—Revisited. Operations

Research 49(1), 163–168 (2001)
10. Henz, M.: Playing with Constraint Programming and Large Neighborhood Search for

Traveling Tournaments. In: Burke and Trick [1]
11. van Hoeve, W.J.: The alldifferent Constraint: A Survey. CoRR cs.PL/0105015 (2001)
12. Lustig, I.: Scheduling the NFL with Constraint Programming. In: Burke and Trick [1]
13. Melo, R., Urrutia, S., Ribeiro, C.: The traveling tournament problem with predefined

venues. Journal of Scheduling 12(6), 607–622 (2009)
14. Pesant, G.: A Regular Language Membership Constraint for Finite Sequences of Vari-

ables. In: M. Wallace (ed.) CP, Lecture Notes in Computer Science, vol. 3258, pp.
482–495. Springer (2004)

15. Pesant, G., Gendreau, M.: A constraint programming framework for local search meth-
ods. J. Heuristics 5(3), 255–279 (1999)

16. Shaw, P.: Using constraint programming and local search methods to solve vehicle
routing problems. In: M.J. Maher, J.F. Puget (eds.) CP, Lecture Notes in Computer

Science, vol. 1520, pp. 417–431. Springer (1998)

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 315




