
Application of a parallel computational approach in the
design methodology for the Course timetabling problem

Soria-Alcaraz Jorge A. · Carpio Mart́ın ·
Puga Héctor · Sotelo-Figueroa Marco A.

the date of receipt and acceptance should be inserted later

Abstract The process of gathering enough experimental statistical data over
a set of instances of the Course timetabling problem (CTTP) could take a
lot of time to an interested researcher. There exist several parallel computing
models capable to accelerating the execution process of metaheuristic algo-
rithms. This paper explores the idea to use a parallel model in a metaheuristic
algorithm over the Course Timetabling Problem in order to reduce the time
that a investigator needs to collect enough data to make a proper conclusion.
our parallel approach uses the Methodology of design model for CTTP. The
methodology of design is a strategy applied before the execution of an algo-
rithm for timetabling problem. This strategy has recently emerged and aims to
generalize and provide a context-independent layer to different versions of the
Course timetabling problem. Finally a well-know set of instances was tested
with a parallel GA and a sequential GA in order to determine the advantages
of the proposed approach for CTTP.

Keywords Methodology of design · Parallel computing · Genetic Algorithm ·
Cellular Genetic Algorithm

1 Introduction

The timetabling problem is one of the most difficult, common and diverse
problems inside an university. This problem tries to assign several activities
into timeslots to make a timetabling. The main objective of this problem is to
obtain a timetabling with the minimum conflicts between assigned activities.
[1]

There exist several university timetabling problems as described by Adri-
aen et. al [2] for example the Faculty timetabling tries to assign teachers to

León Institute of Technology, División de Estudios de Posgrado e Investigación, León Gua-
najuato, México E-mail: soajorgea@gmail.com,jmcarpio61@hotmail.com

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 31

subjects Class-teacher timetabling assigns subjects to a fixed group of stu-
dents. Classroom assignment ensures that every pair teacher-subject have a
classroom. Examination timetabling assigns events like final exams to a set of
individual student and Course timetabling assigns subjects to individual stu-
dents minimizing the conflicts (usually time-conflicts) between the assigned
events. This paper is focused into the last timetabling problem type.

Like most timetabling problems, the Course timetabling is NP-Complete
[3] [4]. The reason for this is attributed by the literature to a combinatorial
explosion of possible events assigned into time slots, as well as the constraints
that each university uses in its own course timetabling creation.

The course timetabling problem (CTTP) is also considered by Rodriguez y
Quezada[5], like a ”offline” problem meaning that the resolution of the course
timetabling is not needed in real time i.e the final user of a solver for the
CTTP can wait a reasonable time (several days or even a week) in order
to get a ”good” solution. However in the academic or experimental field the
researcher needs to perform a high number of test with his/her proposed al-
gorithm in order to accumulate enough statistical data to prove the quality of
the proposed approach.

That is why the researcher of CTTP have an added challenge: in addition
to create an algorithm that is at least comparable with the current state of
the art, such algorithm needs to be reasonably fast in order to perform enough
experiments and gather statistical evidence to finally make a conclusion. This
paper explores the possibility by means of parallel metaheuristics and parallel
computing to create fast algorithms for the CTTP with good performance over
a well-know instances of the CTTP.

It is an undisputed fact that the CTTP problem usually differs greatly from
one university to another. So the researcher has the risk that once he tuned
his algorithm to a specific college and moving to testing in another university
his approach could do not replicate desired characteristics or ,in the worst of
cases, cannot be possible to obtain a solution applicable to reality. In this sense
a new approach has emerged ,The Methodology of Design, this approach give
us a generic methodology to resolve a widely set of CTTP problems by means
of the application of a context-independent layer. [1] In this paper we use this
Methodology of Design in order to build a parallel algorithm capable to: A)
being applied to the ITC2002, ITC2007 instances and B) have a higher speed
than its sequential counterpart making faster the process of experimentation
and gathering data.

The paper is organized as follows. Section 2 presents a brief explication of
the Methodology of Design, the parallel build-up for the course timetabling
problem, the solution approach and its justification. Section 3 contains the
experimental set-up, results, their analysis and discussion. Finally Section 4
include some conclusions and future work.

32 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 1 MMA Matrix

2 Solution Approach

2.1 Problem Definition

A clear and concise definition of the CTTP is given by Conant-Pablos [6]: A
set of events(courses or subjects) E = e1, e2, . . . , en is the basic element of a
CTTP. Also there are a set of periods of time T = t1, t2, . . . , ts, a set of places
(classrooms) P = p1, p2, . . . , pm, and a set of agents (students registered in
the courses) A = a1, a2, . . . , ao. Each member e ∈ E is a unique event that
requires the assignment of a period of time t ∈ T , a place p ∈ P and a set of
students S ⊆ A, so that an assignment is a quadruple(e, t, p, S). A timetabling
solution is a complete set of n assignment, one for each event, which satisfies
the set of hard constraints defined usually by each university of college. This
problem is documented to be at least as a NP-complete problem [3] [4].

2.2 Methodology of Design for the Course Timetabling Problem

In the literature it can be seen that there is a problem with the diversity of
course timetabling instances due different university policies. This situation
directly impacts in the reproducibility and comparison of course timetabling
algorithms[7]. The state of art indicates some strategies to avoid this problem.
For example, a more formal problem formulation [7] as well as the construc-
tion of benchmark instances [8]. These schemes are useful for a deeper un-
derstanding of the university timetabling complexity, but the portability and
the reproducibility of a timetabling solver in another educational institution is
still in discussion[1]. In this sense, we use a context-independent layer for the
course timetabling resolution process. This new layer integrates timetabling
constraints into three basic structures MMA matrix, LPH list and LPA list.

MMA matrix: This matrix contains the number of students in conflict be-
tween subjects i.e. the number of conflicts if two subjects are assigned in
the same timeslots. An example of this matrix can be seen in the Figure 1.

LPH list :This structure have in its rows the subjects offered. In its columns
have the offered timeslots, So this list give us information about the allowed
timeslots per subject. one example of this list can be seen on 1.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 33

Table 1 LPH list

Day 1 Day 2
e1 < t3 > < t2 >
e2 < t2 > < t2 or t1 >

LPA list :This list shows in its rows each event and the classrooms available
to be assigned to each event without conflict.

Table 2 LPA list

event Classrooms
e1 < p4, pl1, pc2 >
e2 < plab, pc2 >
e3 < p6, pb2, pb3, pb4 >
e4 < plab, pl2 >
...

...
e530 < pd7 >

Once we obtain these structures by means of the natural/original inputs
of our CTTP problem, we ensures by design the non-existence of violations
by the selection of any values shown in LPH and LPA. Our problem now is
to deal with students conflicts only. We work with these conflicts by means of
the next minimization function:

min(FA) =

k∑
i=1

FAVi (1)

FAVj =

(MVj
)−1∑

s=1

MVi
−s∑

l=1

(Aj,s ∧Aj,s+l) (2)

Where: FA= Student conflicts of current timetabling. Vi= Student con-
flicts from ”Vector” i of the current Timetabling. Aj,s ∧Aj,s+l= students that
simultaneously demand subjects s and s+ 1 inside the ”Vector” j. A means a
student that demands subject s in a timetabling j.

Now we can talk about the most important element in the design method-
ology: the concept of vector. This vector is a binary representation of an
event.[9][1] We can construct them as seen on table 3 where each vi is a vector
who represents event ei.

The vectors can be easily added and subtracted allowing them to form
sets. the symbols used for these sets of vectors are VA, VB , . . . and so on. One
characteristic is that the number of vectors sets is related with the number
of timeslots offered by the current timetabling. The main idea about vectors
is to have a space where we can work with events without assigned them yet
to a fixed timeslot. This independent layer of context generalizes in some way
the solution process of the CTTP problem.

34 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Our problem now is to construct a fixed number of vectors sets (usually the
cardinality of timeslots set) in order to obtain zero conflict on MMA, LPH and
LPA. It is precisely for the vector sets construction that we build a parallel
metaheuristic algorithm, but once we have it, if other CTTP problem can be
expressed by means of the Methodology of design then we expect work with
it without any modification in the algorithm.

Table 3 Vector Construction

Events e1 e2 . . . ea−1 ea
v1 1 0 . . . 0 0
v2 0 1 . . . 0 0
...

...
... . . .

...
...

va−1 0 0 . . . 1 0
va 0 0 . . . 0 1

2.3 Parallel Computing and Cellular Genetic Algorithms

The main objective of parallel computing is to execute code concurrently on
different processors i.e in the simplest sense, parallel computing is the simul-
taneous use of multiple compute resources to solve a computational problem
for example: To be run using multiple CPUs, To solve a problem broken into
discrete parts that can be executed concurrently and instructions from an
algorithm executed simultaneously on different CPUs [10].

Also we use a genetic algorithm. A genetic algorithm (GA) is a search
heuristic that mimics the process of natural evolution.[11] This heuristic is rou-
tinely used to generate useful solutions to optimization and search problems.
Genetic algorithms belong to the larger class of evolutionary algorithms (EA),
which generate solutions to optimization problems using techniques inspired
by natural evolution, such as inheritance, mutation, selection, and crossover
[11].

With these two concepts we built a Cellular Genetic Algorithm (cGA). the
cellular genetic algorithm was initially designed for working in massive parallel
machines composed of many processors executing simultaneously the same
instructions on different data.[12]. The first cGA model know was proposed by
Robertson in 1987 [13] implemented on a CM1 computer. It was a model were
all steps of GA algorithm(selection, replacement, recombination and mutation)
were executed in parallel.[12]. This approach has shown great execution speed
as well as better fitness performance against sequential or canonical GA.

Many researchers still think about the equivalence between cGA and mas-
sive parallel machines. Today with technologies like Java Threads or CUDA
cores, we do not need a massive parallel computer in order to build and execute
a cGA.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 35

The cGA model simulates the natural evolution from the point of view of
the individual. The essential idea of this model is to provide the population of a
special structure defined as a connected graph, where each vertex is a common
GA individual or Cell that is only allowed to communicate with its nearest
neighbours. Particularly, individuals are conceptually in a toroidal mesh and
are only allowed to recombine with close individuals.[12] An example of this
type of interaction can be seen on figure 2.

Fig. 2 Simple toroidal population and interaction

The neighborhood of a specific individual on the cellular grid is overlapped
by its neighbors. This ensures that good traits and characteristics can travel
throughout the grid. In cGAs the reproductive cycle is execute inside the
neighborhood of each individual and, generally, consists in selecting among its
neighbors with a certain criterion (Tournament selection or Roulette wheel) a
parent with witch the cell can apply any recombination operators and finally
update its own genetic material.

The mutation is simply performed by selecting randomly one cell and min-
imum change its genetic material. This reproduction cycle can be execute in
parallel, executing each cell in a different java thread or CUDA core. A pseudo-
code of canonical cGA proposed by Alba Et.al [12] can be seen on algorithm
1.

Algorithm 1 Pseudo-code of a canonical cGA
1: procEvolve(cga)
2: GenerateInitialPopulation(cga.pop)
3: Evaluation(cga.pop)
4: while !StopCondition() do
5: for individual← 1 to cga.popsize do
6: neighbors← CalculateNeighborhood(cga, position(indicidual));
7: parents← Selection(neighbors);
8: offspring ← Recombination(cga.Pc, parents);
9: offspring ←Mutation(PM);

10: Replacement(position(individual), auxiliaryPop, offspring);
11: end for
12: cga.pop← auxiliaryPop;
13: end while
14: return Best(cga.pop)

36 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Table 4 Cell Codification

e1 e2 . . . el
cell1 VB VD . . . VB

cell2 VA VB . . . VC
...

...
...

. . .
...

celln VD VA . . . VC

From algorithm 1 we seen that the cGA algorithm not differ greatly from a
sequential GA. The differences of cGA approach are simply the Grid/Toroidal
interaction and its parallelism.

2.4 Combining methodology of Design with cGA for the CTTP problem

As seen in previously sections the definition of the cGA have similar operators
and parameters as a Sequential GA(sGA). In this section we define the cod-
ification, operators and parameters used as well as several details of our grid
configuration.

We use the Methodology of Design approach shown in section 2.2 in order
to have a CTTP solver to test over different CTTP type instances. We have
for each instance 3 list MMA,LPH and LPA. The construction of each of these
lists is beyond the scope and purpose of this article. These list ensures by
design that every 3-tuple (e, t, p) will be an allowed selection so it can be
applied to reality. The main optimization exercise is to minimize the conflict
of students S ⊆ A by means of the permutation of the events/vectors into
timeslots/Vector-sets and the MMA matrix.

The Codification of each Cell or individual is an array of Integer values each
integer represent an ID of a Vector set and its size is equal that the cardinality
of the event set. The number of Vector sets is defined by the cardinality of
the desire timeslots set. So basically from table 4 we can read for the Cell 1:
event 1 is assigned into V ector − set B, event 2 is assigned into V ector − set
D... and so on.

The operators used in each cell are simple. For Selection we use Roulette
wheel so every neighbour may have the chance to reproduce with the selected
cell but better solutions have more probability to do it. Given the integer
representation the recombination operator is single point crossover, in each
generation a random crossover point is selected so the genetic material of
parents is interchanged from it. The Mutation operator is done at the final
of each generation, where we randomly selects a cell and a single integer to
change. Also we implement a form of Elitism: in each execution the best cell
from the grid will not be modify it all i.e the best cell can interact and update
genetic information to its neighbors but no one neighbor can change its own
genetic material.

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 37

The Parameters used are: for stop criteria we use a fixed number of func-
tions points (a function point means a single decoding of the information of the
cell and its execution in the fitness function), for recombination and mutation
we use a percentage fixed by the user.

For the grid configuration we divide our population (cells) into several
islands. At the beginning of each iteration, all the islands send the cells of their
first/last column/row to their neihgbor islands. After receiving the individuals
from the neighbors, a sequential cGA is executed in each island/subpopulation
(figure). This approach has been documented by Alba et al [12] with good
results. Finally the neighborhood model used by each cell and island is the
NEWS model (North, West, East, South) similar to figure 3. Each island is
executed in a JAVA Thread and synchronously waits for all the other islands
ends a generation to interchange cells to continue.

Fig. 3 Grid configuration model used. From Alba et. al

3 Experiments and Results

Once we have cGA proposed algorithm we can do several experiments in order
to find the speed-up or performance difference between our cGA and sGA. In
this section we will explain each experiment as well as the characteristics of
the used benchmark.

3.1 Instances Used

We chose a set of well-known instances for the TTP such as ITC2002, ITC2007
from PATAT. The timetabling problem instances ITC 2002 has been designed
by Ben Paechter for the Metaheuristics Network.[15] It is a reduction of a
typical university course timetabling problem. It consists of a set of events to
be scheduled in 45 timeslots (5 days of 9 hours each), a set of rooms in which

38 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

events can take place, a set of students who attend the events, and a set of
features satisfied by rooms and required by events. Each student attends a
number of events and each room has a size.

The ITC2007 instances has been uses as benchmark for the the second In-
ternational Timetabling Competition contest sponsored by PATAT and WATT.
These instances are similar to the ITC2002 ones but, these instances have 3
more constraints: a subset of valid timeslots for subject, an ordering between
subjects and a preferred set of timeslots per subject.

3.2 Experimental design

According to Alba et.al [12] the recommendations used to compare parallel-
sequential algorithm we will use two algorithms: Our parallel proposed ap-
proach (cGA) defined in section 2.4 and its sequential counterpart(sGA). For
the cGA we implement 16 isles divided into a 4x4 grid, each island have a
inner grid of 16 Cells in a 2D array of 4x4 cells similar to figure 3 making
256 individuals/cells in total with an elitism of 16 cells per generation(one
cell per island). For the sGA we can say that it is a normal GA without any
special modifications. Its recombination, selection and mutation operators are
the same that the proposed cGA. Its Elitism is implemented by selecting the
best 16 individuals from a population of 256 elements the same of our cGA.

We use a the weak speedup metric proposed by Alba et.al [12] because
it compares the parallel algorithm developed by a researcher against his own
sequential version. For the experiment we execute 100 independent test in
each instance from ITC2002 and ITC2007 with cGA and sGA. Each algorithm
executes exactly 1000 functions points before stop, the results are shown on
table 5.

Our tables 5 and 6 shown the results for our test over ITC2002 and
ITC2007 instances. Our fitness function evaluates the number of conflicts (stu-
dent conflicts) on the timetabling built by the algorithms, so a less value of
fitness means a better solution for the CTTP.We need to say that these eval-
uations was made just only considering hard constraints for ITC2002 and
ITC2007. The column Best fit shows the best fitness reached by the Algo-
rithm (sGA or cGA) in our experiments. Avg fit shows the average fitness
from our algorithms over 100 independent test. stddevf shows the standard
deviation value for the fitness obtained from our series of test. Avg.time shows
the average time in seconds needed for the algorithm to finish one single test.
std devt shows the standard deviation value of the time used. Finally the
speedup column shows the weak speed-up metric proposed by Alba et.al [12].

3.3 Analysis of results

As it can be seen on table 5 we achieve a better speed in the cGA against the
sGA, this is not a surprise because we utilize JAVA Threads so each island

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 39

Table 5 Results experiment ITC2002

Instance Best fit Avg fit Std devf Avg.time std devt Speedup
ITC2002-1 sGA 281 324.3 18.8 12.59 2.96

cGA 149 188 14.9 2.35 0.09 5.35
ITC2002-2 sGA 262 305.5 18.2 7.97 2.50

cGA 146 179 14.0 2.97 0.15 2.68
ITC2002-3 sGA 296 330.4 15.3 10.96 2.58

cGA 165 202.7 13.0 2.95 0.17 3.71
ITC2002-4 sGA 429 485.5 23.9 8.30 2.25

cGA 255 304 22.9 3.01 0.10 2.75
ITC2002-5 sGA 424 480.18 26.57 6.82 2.09

cGA 246 293.3 21.4 2.78 0.13 2.45
ITC2002-6 sGA 427 481.8 26.56 7.09 2.24

cGA 247 294.8 21.06 2.65 0.15 2.67
ITC2002-7 sGA 419 503.4 30.55 7.21 2.23

cGA 238 287.9 24.9 2.63 0.16 2.74
ITC2002-8 sGA 311 371.94 25.14 8.25 2.51

cGA 168 210.2 18.65 3.01 0.19 2.74
ITC2002-9 sGA 299 346.8 20.54 12.99 2.82

cGA 186 207.9 16.56 3.2 0.20 4.05
ITC2002-10 sGA 285 335.15 21.24 9.67 2.74

cGA 176 201.9 14.2 3.0 0.19 3.22
ITC2002-11 sGA 304 350.4 19.4 12.12 2.43

cGA 174 208.2 14.56 3.12 0.32 3.88
ITC2002-12 sGA 268 312.1 19.15 10.03 3.12

cGA 148 188.5 14.25 3.40 0.52 2.95
ITC2002-13 sGA 343 396.44 24.26 9.51 1.42

cGA 186 231.6 19.54 2.30 0.32 4.13
ITC2002-14 sGA 455 520.15 28.17 7.79 0.877

cGA 251 313.3 23.20 3.21 0.19 2.42
ITC2002-15 sGA 362 449.5 28.65 8.06 0.8

cGA 209 261.4 22.44 3.10 0.22 2.6
ITC2002-16 sGA 304 369.67 20.44 10.14 1.69

cGA 191 223.6 18.22 3.70 0.36 2.74
ITC2002-17 sGA 396 468.9 29.22 7.33 2.46

cGA 231 289.4 22.19 3.18 0.05 2.30
ITC2002-18 sGA 250 307.14 20.3 12.19 2.55

cGA 148 181.5 14.98 3.59 0.06 3.39
ITC2002-19 sGA 408 497.1 28.95 9.45 2.97

cGA 224 297.9 23.0 3.60 0.13 2.28
ITC2002-20 sGA 380 449.14 26.35 8.35 2.47

cGA 224 266.0 21.54 3.18 0.16 2.62

or sub population is working in a parallel way. However we obtained not only
a better speed but a good performance as well, as seen on the results table,
our cGA presents a lower fitness value and a lower standard deviation value
for both the time and the objective function. This result can be explained
because the elitism used in the cellular model. This approach conserves several
cell/individual with different genetic value, then in the phase of interchange
this genetic material travels over the grid. In the sGA cells preserved by the
elitism have similar genetic material. An snapshot of the Celular Grid as well
as its performance graph can be seen on fig 4 and 5.

40 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

Fig. 4 Snapshot of cGA grid after a test

Fig. 5 Performance of cGA over a test

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 41

Table 6 Results experiment ITC2007

Instance Best fit Avg fit Std devf Avg.time std devt Speedup
ITC2007-1 sGA 1253 1362.4 55.0 11.1 3.0

cGA 881 975.3 45.96 3.92 1.05 2.83
ITC2007-2 sGA 1251 1388.5 56.87 11.21 3.06

cGA 892 999.0 42.78 4.57 0.37 2.45
ITC2007-3 sGA 434 556.8 57.80 4.79 1.11

cGA 215 286.75 27.0 2.66 0.28 1.80
ITC2007-4 sGA 527 619.2 44.0 4.71 1.08

cGA 275 342.8 30.55 2.56 0.29 1.83
ITC2007-5 sGA 698 805.3 35.70 9.73 3.04

cGA 479 564.4 32.28 4.68 0.42 2.07
ITC2007-6 sGA 723 794.81 36.72 10.73 3.41

cGA 480 552.18 33.15 3.8 0.39 2.82
ITC2007-7 sGA 265 334.9 28.96 4.5 1.27

cGA 154 187.8 15.5 2.46 0.39 1.82
ITC2007-8 sGA 287 375 36.14 5.75 0.93

cGA 147 196.3 18.72 2.5 0.42 2.3
ITC2007-9 sGA 1190 1403.1 69.77 10.52 3.26

cGA 860 979.23 52.67 4.29 0.70 2.45
ITC2007-10 sGA 1256 1400.3 53.58 11.05 3.41

cGA 899 1011.6 47.38 3.83 0.45 2.88
ITC2007-11 sGA 488 612.84 58.64 4.55 0.97

cGA 235 319.21 32.20 2.68 0.14 1.69
ITC2007-12 sGA 433 588.11 65.15 4.83 1.24

cGA 249 317.74 28.55 1.56 0.16 3.09
ITC2007-13 sGA 751 843.75 34.24 8.26 2.66

cGA 521 590.17 31.19 2.75 0.20 3.00
ITC2007-14 sGA 724 813.11 36.41 8.20 2.62

cGA 512 572.86 26.77 2.28 0.08 3.59
ITC2007-15 sGA 231 300.96 30.23 4.67 1.04

cGA 131 154.0 12.20 1.43 0.06 3.26
ITC2007-16 sGA 237 326.85 34.47 4.59 0.96

cGA 113 147.21 16.82 1.41 0.06 3.255
ITC2007-17 sGA 286 432.15 69.81 3.23 0.21

cGA 46 160.15 35.05 1.10 0.05 2.93
ITC2007-18 sGA 865 1000.59 56.14 4.47 0.95

cGA 512 635.17 38.87 1.47 0.04 3.04
ITC2007-19 sGA 686 814.96 58.10 7.14 2.24

cGA 426 482.5 32.52 1.88 0.05 3.79
ITC2007-20 sGA 738 879.07 59.34 10.53 2.86

cGA 430 497.52 38.96 2.38 0.05 4.42
ITC2007-21 sGA 761 847.17 28.99 12.97 4.34

cGA 516 614.27 26.82 3.03 0.07 4.28
ITC2007-22 sGA 1400 1556.15 59.93 16.87 4.98

cGA 1084 1185.74 75.48 3.84 0.08 4.39
ITC2007-23 sGA 2595 2882.6 114.88 7.93 2.42

cGA 1902 2137.85 88.12 2.36 0.07 3.36
ITC2007-24 sGA 757 886.48 52.31 8.78 2.61

cGA 453 527.9 35.12 2.41 0.06 3.64

42 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

4 Conclusions and future work

This paper has presented a comparison between a parallel computing model
for a genetic algorithm and a sequential genetic algorithm for the context of
CTTP problem. The cGA proposed aims to help the researcher of CTTP to
obtain good solutions in a relative short lapse of time against sequential Ge-
netic Algorithm. The cGA proposed utilizes a toroidal grid configuration that
ensures the interchange of good genetic material over the whole population.
The proposed approach utilizes the Methodology of Design model to general-
ize the process of CTTP solution by means of generic structures, this model
ensures that if any other type of CTTP can be produce the same structures the
proposed algorithm will be capable to work over it with similar performance.
This paper has explored the use of parallel computing for a well known set of
instances for the CTTP. The cGA has show a better performance against a se-
quential GA in a better time allowing the researcher to accelerate the process
of gathering statistical data.

For future work we propose to apply this approach to Unitime.org in-
stances. Also we Propose to apply this model over not only Java Threads but
CUDA Nvidia cores in order to perform a faster experimentation.

Acknowledgement

Authors thanks the support received from the Consejo Nacional de Ciencia y
Tecnologia (CONACYT) México.

References

1. J.A. Soria-Alcaraz, Diseño de horarios con respecto al alumno mediante tcnicas de
cmputo evolutivo. Master’s thesis, Instituto Tecnologico de Len (2010)

2. M. Adriaen, P. Causmaecker, Proccedings PATAT 1, 330 (2006)
3. T.B. Cooper, J.H. Kingston, The compexity of timetable construction problems. Ph.D.

thesis, The University of Sydney (1995)
4. R.J. Willemen, School timetable constructrion: Algorithms and complexity. Ph.D. the-

sis, Institutefor Programming research and Algorithms (2002)
5. R. Martinez, Q. Aguilera, COMCEV 1, 169 (2005)
6. S.E. Conant-Pablos, D.J. Magaa-Lozano, H. Terashima-Marin, MICAI Mexican inter-

national conference on artificial intelligence 1, 408 (2009)
7. A. Schaerf, L.D. Gaspero, Practice and Theory of Automated Timetabling, PATAT,

Springer-Verlag Berlin Heidelberg, LNCS 3867 1, 40 (2007)
8. R. Lewis, Metaheuristics for university course timetabling. Ph.D. thesis, University of

Notthingham. (August 2006)
9. J.A. Soria-Alcaraz, M. Carpio, H. Puga, Dcima Primera Reunin de Otoo de Potencia,

Electrnica y Computacin del IEEE, XI ROPEC, Morelia 1, 24 (2009)
10. B. Barney. Introduction to parallel computing. URL

https://computing.llnl.gov/tutorials/parallel comp/
11. J. Holland, The University of Michigan Press, Ann Harbor (1975)
12. E. Alba, B. Dorronsoro, Cellular Genetic Algorithms 1, Springer Science+Business Me-

dia, LLC (2008)
13. G. Robertson, in In Proc. of the Second International Conference on Genetic Algo-

rithms(ICGA) (1987), pp. 140–147

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 43

14. E. Alba, B. Dorronsoro, Cellular Genetic Algorithms Springer Science+Business Media,
LLC (2008)

15. B. Paechter. The course timetable problem (2002). URL
http://www.metaheuristics.net/index.php?main=4&sub=44

44 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

