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Abstract. Workforce scheduling has become increasingly important for both the public sector 

and private companies. Good rosters have many benefits for an organization, such as lower costs, 

more effective utilization of resources and fairer workloads and distribution of shifts. This paper 

presents a successful way to roster nurses in an intensive-care unit in a Finnish hospital. The 

rosters are generated using a population-based local search method called the PEAST algorithm. 

The algorithm has been integrated into market-leading workforce management software in 

Finland. 
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1   Introduction 

Workforce scheduling, also called staff scheduling and labor scheduling, is a difficult and time 

consuming problem that every company or institution that has employees working on shifts or on 

irregular working days must solve. Different variations of the problem are NP-hard and NP-

complete (Garey and Johnson 1979, Bartholdi 1981, Tien and Kamiyama 1982, Lau 1996), and 

thus extremely hard to solve. Good overviews of workforce scheduling are published by Alfares 

(2004), Ernst et al. (2004) and Meisels and Schaerf (2003). 

 

Nurse rostering (Burke 2004) is by far the most studied application area in workforce 

scheduling. Other successful application areas include airline crews (Dowling et al. 1997), call 

centers (Beer et al. 2008), check-in counters (Stolletz 2010), ground crews (Lusby et al. 2010), 

nursing homes (Ásgeirsson 2010), postal services (Bard et al. 2003), retail stores (Chapados et al. 

2011) and transport companies (Nurmi et al. 2011). 

 

Most of the workforce scheduling cases in which academic researchers have announced that 

they have signed a contract with a customer concern nurse rostering (Van Wezel and Jorna 1996, 

Meyer auf’m Hofe 2001, Diaz et al. 2003, Kawanaka et al. 2003, Bard and Purnomo 2005, Burke 

et al. 2006, Bilgin et al. 2008, Beddoe et al. 2009). Hospitals tend to be very open about their 

operational details, enabling easy cooperation with academics who wish to publish the results of 

their work. However, we believe there is still a gap between academic and commercial solutions. 

The commercial products may not include the best academic solutions. Yet we have experienced 

that nurse rostering cooperation between a commercial software vendor and academics does work. 

According to our experience, the best action plan for real-world nurse rostering research is to 

cooperate both with a problem owner and a software vendor. Collaboration with software vendors 

and problem owners allows academics to concentrate on modeling issues and algorithmic power 

instead of user interfaces, financial management links, customer reports, help desks, etc. 

 

The need for effective commercial workforce scheduling has been driven by the growth in the 

customer contact center industry and retail sector, in which efficient deployment of labor is of 

crucial importance. The balance between offering a superior service and reducing costs to generate 

revenues must constantly be found. There are five basic reasons for the increased interest in nurse 

rostering optimization. First, hospitals around the world have become more aware of the 

possibilities in decision support technologies and no longer want to handle the schedules manually. 

Second, human resources are one of the most critical and most expensive resources for hospitals. 

Careful planning can lead to significant improvements in productivity. Third, good schedules are 

very important for the welfare of the staff, resulting in increased happiness and reduction of sick-

leaves. Fourth, new algorithms have been developed to tackle previously intractable nurse 

rostering instances, and, at the same time, computer power has increased to such a level that 

researchers are able to solve large-scale instances. Finally, one further significant benefit of 
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automating the scheduling process is the considerable amount of time saved by the administrative 

nurses involved. 

 

The goal of this paper is to show that the PEAST (Population, Ejection, Annealing, Shuffling, 

Tabu) algorithm can be used to roster nurses in Finnish hospitals. Section 2 introduces the 

workforce scheduling process with notes on nurse rostering. It also introduces the necessary 

terminology. In Section 3 we describe the characteristics of the nurse rostering problems occurring 

in intensive-care units in Finnish hospitals. Section 4 gives an outline of the PEAST algorithm. 

Section 5 presents our computational results. 

2   Workforce Scheduling and Nurse Rostering 

Workforce scheduling consists of assigning employees to tasks and shifts over a period of time 

according to a given timetable. The planning horizon is the time interval over which the 

employees have to be scheduled. Each employee has a total working time that he/she has to work 

during the planning horizon. Furthermore, each employee has competences (qualifications and 

skills) that enable him/her to carry out certain tasks. Days are divided into working days (days-on) 

and rest days (days-off). Each day is divided into periods or timeslots. A timeslot is the smallest 

unit of time and the length of a timeslot determines the granularity of the schedule. A shift is a 

contiguous set of working hours and is defined by a day and a starting period on that day along 

with a shift length (the number of occupied timeslots). Shifts are usually grouped in shift types, 

such as morning (M), day (D) and night (N) shifts. A specific sequence of shifts, such as DDDNN, 

is called a stint. Each shift is composed of a number of tasks that should be completed during the 

shift. A shift or a task requires the employee assigned to it to possess one or more competences. A 

work schedule for an employee over the planning horizon is called a roster. A roster is a 

combination of shifts and days-off assignments that covers a fixed period of time. 

 

We classify the real-world workforce scheduling process as given in Figure 1. Workload 

prediction, also referred to as demand forecasting or demand modeling, is the process of 

determining the staffing levels – that is, how many employees are needed for each timeslot in the 

planning horizon. Shift generation is the process of determining the shift structure, tasks to be 

carried out on particular shifts and the competences needed on different shifts. Traditionally, 

hospitals work in three shifts – morning, day and night – but in the intensive-care units the 

customer flow should be considered when constructing the shift structure, as is the case in, e.g. the 

call center and retail sector businesses. The shifts generated from a solution to the shift generation 

problem form the input for subsequent phases in the workforce scheduling. Another important goal 

for shift generation is to determine the size of the workforce required to solve the demand. Note 

that shifts are created anonymously, so there is no direct link to the employee that will eventually 

be assigned to the shift. 

 

Fig. 1. The real-world workforce scheduling process. 

In preference scheduling, each employee gives a list of preferences and attempts are made to 

fulfill them as well as possible. It is very important to pay attention to employee requests. Kellog 

and Walczak (2007) report that any academic nurse rostering model that does not include some 

opportunity for preference scheduling will probably not be implemented. Nurses tend to use 

complex decision-making skills when selecting their personal schedules. The employees’ 

preferences are considered in the days-off scheduling and staff rostering phases. 
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Days-off scheduling deals with the assignment of rest days between working days over a given 

planning horizon. Days-off scheduling also includes the assignment of vacations and special days, 

such as union steward duties and training sessions. Staff rostering, also referred to as shift 

scheduling, deals with the assignment of employees to shifts. Days-off and shifts are often 

scheduled simultaneously. However, if a hospital scheduled days-off every tenth week and 

rostering staff every second week, the nurses would be able to plan their free time more 

conveniently.  

 

Rescheduling deals with ad hoc changes that are necessary due to sick leaves or other no-shows. 

The changes are usually carried out manually using some level of computer support. Finally, 

participation in evaluation ranges from the individual employee through personnel managers 

(administrative nurses) to executives (head nurses). A reporting tool should provide performance 

measures in such a way that the personnel managers can easily evaluate both the realized staffing 

levels and the employee satisfaction. When necessary, the workload prediction and/or shift 

generation can be reprocessed and focused, and the whole workforce scheduling process restarted. 

3   Nurse Rostering in an Intensive-Care Unit 
in a Finnish Hospital 

We have experience in solving workforce scheduling problems occurring in the transportation 

industry, see for example (Nurmi and Kyngäs 2011, Nurmi et al. 2011, Kyngäs et al. 2012). Our 

current research is focused on workforce scheduling in call centers and hospitals. Based on our 

experiences, we believe that the framework for implementation-oriented staff scheduling we 

presented in (Ásgeirsson et al. 2011) can be used to model a considerable number of real-world 

workforce scheduling scenarios. With the help of administrative staff from Finnish hospitals we 

used the framework to describe the problem occurring in intensive-care units in Finnish hospitals. 

This problem includes five characteristics that are not always present in the nurse rostering cases 

reported in the academic literature:  

 

1. The number of nurses is over 100 

2. The nurses are grouped in four categories based on their total working hours within the 

planning horizon (100%, 78.43%, 50% and 40% of the full-time work) 

3. Some shifts last more than 14 hours and actually include two consecutive shifts 

4. Some nurses should always work on the same shifts 

5. The nurses’ wishes for days-off and shifts cover as much as 50% of their total work. 

 

The implementation should present a wide variety of real-world constraints and be tractable 

enough to enable the addition of new constraints. It is important to concentrate on the acceptance 

by and satisfaction of both the administrative staff and the nurses. Despite the fact that the 

algorithm should be as robust as possible, no parameter tuning should be expected from the end-

users. On the other hand, it should be possible for the end-users to influence different aspects of 

the algorithm, like weighting between constraints or limiting running times, if he/she wishes to. 

 

We are well aware that it is difficult to incorporate the experience and expertise of the 

administrative nurses into a nurse rostering system. They often have extremely valuable 

knowledge, experience and detailed understanding of their specific staffing problem, which will 

vary from hospital to hospital. To formalize this knowledge into constraints is not an easy task. 

Still, we believe that the model given in this section builds up a solid foundation for nurse 

rostering scenarios in hospitals and specifically in intensive-care units. 

 

The most important goal is to minimize understaffing and overstaffing. Low-quality rosters can 

lead either to an undersupply of nurses with a need to hire part-time nurses or an oversupply of 

nurses with too much idle time, implicating a loss of efficiency. The overall objective is to meet 

daily staffing requirements and personal preferences at minimum penalty without violating work 

contracts and government regulations. The framework presented in (Ásgeirsson et al. 2011) makes 

no strict distinction between hard and soft constraints; that will be given by the instances 

themselves. The goal in an instance is to find a feasible solution that is most acceptable for the 

hospital, that is, a solution that has no hard constraint violations and that minimizes the weighted 

sum of the soft constraint violations. The weights will also be given by the instances themselves 

and will vary between hospitals. Still, one should bear in mind that an instance is usually just an 
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approximation of practice. In reality, hard constraints can turn out to be soft, if necessary, while 

giving weights to the soft constraints can be difficult. 

 

The framework classifies the constraints into coverage, regulatory and operational 

requirements, and operational and personal preferences. The coverage requirement ensures that 

there are a sufficient number of nurses on duty at all times. The regulatory requirements ensure 

that the nurses’ work contract and government regulations are respected. Operational and personal 

preferences should be met as far as possible; this leads to greater staff satisfaction and 

commitment, and reduces staff turnover.  

 

We discuss the problem occurring in intensive-care units (ICU) in Finnish hospitals using an 

example from the Satakunta Hospital District which offers specialized medical care services for 

the 231,000 residents of the Satakunta region. The number of nurses in the ICU is 130. The 

problem can be modeled as follows; the constraint numbers refer to the constraints presented in 

(Ásgeirsson et al. 2011): 

 

Coverage requirement 

(C1) An employee cannot be assigned to overlapping shifts 

(C2) A minimum number of employees with particular competences must be guaranteed for 

each shift 

(C4) A balanced number of surplus employees must be guaranteed in each working day 

Regulatory requirements 

(R1) The required number of working days, working hours and days-off within a timeframe 

must be respected 

(R2) The required number of holidays within a timeframe must be respected 

(R3) The required number of free weekends (both Saturday and Sunday free) within a 

timeframe must be respected 

(R5) The minimum time gap of rest time between two shifts must be respected 

(R6) The number of special shifts (such as union steward duties and training sessions) for 

particular employees within a timeframe must be respected 

(R7) Employees cannot work consecutively for more than w days 

Operational requirements 

(O1) An employee can only be assigned to a shift he/she has competence for 

(O2) At least g working days must be assigned between two separate days-off breaks 

(O5) An employee assigned to a shift type t1 must not be assigned to a shift type t2 on the 

following day (certain stints are not allowed) 

Operational preferences 

(E1) Single days-off should be avoided 

(E2) Single working days should be avoided 

(E3) The maximum length of consecutive days-off is d 

(E4) A balanced assignment of single days-off and single working days must be guaranteed 

between the employees 

(E5) A balanced assignment of different shift types must be guaranteed between the 

employees 

(E7) A balanced assignment of weekdays must be guaranteed between employees 

(E8) Assign or avoid a given shift type before or after a free period (days-off, vacation) 

Personal preferences 

(P1) Assign or avoid assigning given employees to the same shifts 

(P2) Assign a requested day-on or avoid a requested day-off 

(P3) Assign a requested shift or avoid an unwanted shift. 

 

Often, a nurse cannot be assigned to more than one shift per day. However, two consecutive 

shifts per day are allowed in Finnish hospitals (see shift types C and E described later). The 

definition of constraint C1 allows two or more shifts to be assigned provided they do not overlap. 

Employees have seven possible competences: casting skill, intravenous skill, transportation skill, 

help skill, novice-nurse, intermediate-nurse and top-nurse. It is obvious that a nurse can only be 

assigned to a shift he/she has competence for (O1). The minimum number of employees of 

particular competences for time of day (C2) is given in Table 1. Note that the competences may 

overlap, e.g. a top nurse probably has an intravenous skill as well. Quite often, hospitals and ICUs 

have more nurses working than are needed to cover the minimum number of nurses each working 

day. The surplus nurses are used to cover the expected sick leaves and other no-shows. In our 

example case a balanced number of surplus nurses must be guaranteed in each working day (C4). 
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Table 1.  Minimum number of employees with particular competences for each time of day. 

 

 

 

 

 

 

 

 

 

 

Within the last two years the hospital has started to consider the patient flow as a basis for the 

shift structure. Even though the shift structure is not near-optimal, it is a good start towards 

generating the shifts based on real workload prediction in the near future. The shift structure for 

the ICU is given in Table 2. Note that C and E are so-called double-shifts that last 14 hours and 30 

minutes. 

Table 2.  The shift structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The planning horizon is six weeks. The total working hours for each full-time nurse are 229 

hours and 30 minutes (R1). The working hours can also be 180h, 114h 45min or 181h 30min if a 

nurse is on part-time pension or has small children. The holidays (R2) and special shifts (R6) are 

included in the working hours. 

 

The working days and shifts are built up using the following rules. The number of free 

weekends within a timeframe must be at least two (R3). At least nine hours of rest are required 

between two shifts (R5). Nurses cannot work consecutively for more than nine days (R7). At least 

two working days must be assigned between two separate days-off (O2). Single days-off and 

single working days should be avoided (E1 and E2). The maximum length of consecutive days-off 

is four (E3). A balanced assignment of single days-off and single working days must be 

guaranteed between the employees (E4). A nurse assigned to a night shift (code Y) must not be 

assigned to an early shift (A,X,U,B,E,C) the following day (O5). Furthermore, a night/early shift 

should be avoided before/after a free period (E8). 

 

Each six-week planning horizon is preceded with a phase where nurses express their wishes for 

days-off and shifts (P2 and P3). These wishes cover as much as 50% of their total work on 

average. This is why a balanced assignment of different shift types cannot be guaranteed between 

the employees as given in constraint E5. The same holds for balancing the assignment of 

weekdays (E7). A special request is that some nurses should always work on the same shifts 

because they travel together to work from the nearby cities (P1). 

 

As per the nurse rostering problem classification given in (De Causmaecker and Vanden Berghe 

2011), the problem could be classified as ASBC|V3O|PX. 

 

 min #emp 

Casting skill 1 

Intravenous skill 11 

Transportation skill 1 

Help skill 1 

Novice-nurse 0 

Intermediate-nurse 
5 (at night) 

10 (otherwise)  

Top-nurse 4 

Code Description From To 

A Morning 07.30 15.15 

X Transport I 07.30 15.15 

U Admin 07.30 15.30 

B Help I 07.30 16.00 

C Double 07.30 22:00 

E Transport D 07.30 22.00 

O Acute I 10.00 18.00 

Z Acute II 12.00 20.00 

F Special 14.00 22.00 

I Evening 15.00 22.00 

P Help II 15.00 23.00 

J Transport II 15.00 23.00 

R Help III 16.00 24.00 

D Acute III 17.00 24.00 

Y Night 21.30 07.45 
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The next section gives an outline of the PEAST algorithm that is used to solve the problem  

occurring in intensive-care units (ICU) in Finnish hospitals and especially in the Satakunta 

Hospital District. Section 5 presents our computational results. 

4   The PEAST Algorithm 

The usefulness of an algorithm depends on several criteria. The two most important are the quality 

of the generated solutions and the algorithmic power of the algorithm (i.e. its efficiency and 

effectiveness). Other important criteria include flexibility, extensibility and learning capabilities. 

We can steadily note that our PEAST algorithm (Kyngäs 2011) realizes these criteria. The 

acronym PEAST stems from the methods used as Population, Ejection, Annealing, Shuffling and 

Tabu. It has been used to solve real-world school timetabling problems (Nurmi and Kyngäs 2007), 

real-world sports scheduling problems (Kyngäs and Nurmi 2009) and real-world workforce 

scheduling problems (Kyngäs and Nurmi 2011). 

 

The PEAST algorithm is a population-based local search method. As we know, the main 

difficulty for a local search is 

 

1) to explore promising areas in the search space that is, to zoom-in to find local optimum 

solutions to a sufficient extent while at the same time 

2) avoiding staying stuck in these areas for too long and 

3) escaping from these local optima in a systematic way. 

 

Population-based methods use a population of solutions in each iteration. The outcome of each 

iteration is also a population of solutions. Population-based methods are a good way to escape 

from local optima. The PEAST algorithm uses GHCM, the Greedy Hill-Climbing Mutation 

heuristic introduced in (Nurmi 1998) as its local search method. The outline of the algorithm is 

given in Figure 2 and the pseudo-code of the algorithm is given in Figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The outline of the population-based PEAST algorithm. 

 

88 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway



The reproduction phase of the algorithm is, to a certain extent, based on steady-state 

reproduction: the new individual replaces the old one if it has a better or equal objective function 

value. Furthermore, the least fit is replaced with the best one when n better individuals have been 

found, where n is the size of the population. Marriage selection is used to select an individual from 

the population for a single GHCM operation. In the marriage selection we randomly pick an 

individual, A, and then we try at most k – 1 times to randomly pick a better one. We choose the 

first better individual, or, if none is found, we choose A. 

 
 

Set the time limit t, no_change limit m and the population size n 

Generate a random initial population of individuals 

Set no_change = 0 and better_found = 0 

WHILE elapsed_time < t 

REPEAT n times 

         Select an individual A by using a marriage selection with k = 3 

         (explore promising areas in the search space) 

         Apply GHCM to A to get a new individual A’ 

         Calculate the change Δ in objective function value 

     IF Δ < = 0 THEN 

               Replace A with A’ 

           IF Δ < 0 THEN 

               better_found = better_found  + 1 

                    no_change = 0 

               END IF 

          ELSE 

               no_change = no_change + 1 

     END IF 

END REPEAT 

IF better_found > n THEN 

     Replace the worst individual with the best individual 

     Set better_found = 0 

END IF 

IF no_change > m THEN 

     (escape from the local optimum) 

     Apply shuffling operators 

     Set no_change = 0 

END IF 

     (avoid staying stuck in the promising search areas too long) 

Update simulated annealing framework 
Update the dynamic weights of the hard constraints (ADAGEN) 

END WHILE 

Choose the best individual from the population 
 

Fig. 3. The pseudo-code of the PEAST algorithm. 

The heart of the GHCM heuristic is based on similar ideas to the Lin-Kernighan procedures 

(Lin and Kernighan 1973) and ejection chains (Glover 1992). The basic hill-climbing step is 

extended to generate a sequence of moves in one step, leading from one solution candidate to 

another. The GHCM heuristic moves an object, o1, from its old position, p1, to a new position, p2, 

and then moves another object, o2, from position p2 to a new position, p3, and so on, ending up 

with a sequence of moves. 

 

Picture the positions as cells, as shown in Figure 4. The initial cell selection is random. The cell 

that receives an object is selected by considering all the possible cells and selecting the one that 

causes the least increase in the objective function when only considering the relocation cost. Then, 

another object from that cell is selected by considering all the objects in that cell and picking the 

one for which the removal causes the biggest decrease in the objective function when only 

considering the removal cost. Next, a new cell for that object is selected, and so on. The sequence 

of moves stops if the last move causes an increase in the objective function value and if the value 

is larger than that of the previous non-improving move. Then, a new sequence of moves is started. 

A tabu list prevents reverse order moves in the same sequence of moves. The initial solution is 

randomly generated. 
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Fig. 4. A sequence of moves in the GHCM heuristic. 

In the nurse rostering problem, each row corresponds to a nurse, and each column to a day. An 

object is a shift. A move involves removing a shift from a certain day and inserting it into another 

day. 

 

The decision whether or not to commit to a sequence of moves in the GHCM heuristic is 

determined by a refinement (Nurmi 1998) of the standard simulated annealing method (Laarhoven 

and Aarts 1987). Simulated annealing is useful to avoid staying stuck in the promising search areas 

for too long. The initial temperature T0 is calculated by  

T0 = 1 / log(1/X0) . (1) 

where X0 is the degree to which we want to accept an increase in the cost function (we use a value 

of 0.75). The exponential cooling scheme is used to decrement the temperature:  

Tk = Tk-1 , (2) 

where  is usually chosen between 0.8 and 0.995. We stop the cooling at some predefined 

temperature. Therefore, after a certain number of iterations, m, we continue to accept an increase 

in the cost function with some constant probability, p. Using the initial temperature given above 

and the exponential cooling scheme, we can calculate the value:  

 = (–1/( T0 log p))
–m

 . (3) 

We choose m equal to the maximum number of iterations with no improvement to the cost 

function and p equal to 0.0015. 

 

A hyperheuristic (Cowling et al. 2000) is a mechanism that chooses a heuristic from a set of 

simple heuristics and applies it to the current solution, then chooses another heuristic and applies 

it, and continues this iterative cycle until the termination criterion is satisfied. We use the same 

idea, but the other way around. We apply shuffling operators to escape from the local optimum. 

We introduce a number of simple heuristics that are normally used to improve the current solution 

but, instead, we use them to shuffle the current solution - that is, we allow worse solution 

candidates to replace better ones in the current population. In the nurse rostering problem the 

PEAST algorithm uses two shuffling operations: 

 

1) Move a random shift to a random day and repeat this l1 times. 

2) Swap two random shifts and repeat this l2 times. 

 

A random shuffling operation is selected every l/20th iteration of the algorithm, where l equals 

the maximum number of iterations with no improvement to the cost function. The best results were 

obtained using the values l1 = 5 and l2 = 3. 

 

We use the weighted-sum approach for multi-objective optimization. A traditional penalty 

method assigns positive weights (penalties) to the soft constraints and sums the violation scores to 

the hard constraint values to get a single value to be optimized. We use ADAGEN, the ADAptive 

GENetic penalty method introduced in (Nurmi 1998) to assign dynamic weights to the hard 

constraints. This means that we are searching for a solution that minimizes the (penalty) function  

Σiαifi(x) + Σicigi(x), (4) 

where 

 

αi = a dynamically adjusted weight for hard constraint i 

fi(x)  = cost of violations of hard constraint i 

ci = a fixed weight for soft constraint i 

gi(x) = cost of violations of soft constraint i 
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The hard constraint weights are updated every kth generation using the method given in (Nurmi 

1998).  

5   Computational Results 

This section presents our results for solving a nurse rostering instance occurring in an intensive-

care unit in the Satakunta Hospital District in Finland. The unit has 130 employees. Section 3 

outlined the characteristics and constraints of the problem. Table 3 summarizes the hard and soft 

constraints of the problem. As the hard constraints state, the most important goal is to find a 

solution that has no overlapping shifts and guarantees a sufficient number of competences for each 

shift, and where employees do not work consecutively for more than nine days, have sufficient rest 

time between shifts and are not assigned to a forbidden shift before/after a night shift. As the soft 

constraint penalties state, the most important goal is to find individual rosters with exactly the 

required number of working hours. The rosters with less than 229 hours and 30 minutes for full-

time nurses are considered as bad as the rosters with more than 229 hours and 30 minutes. The 

second most important goal is to fulfill the employee’s requests. 

 

Table 3 shows the manual solution and the PEAST solution to the problem. Neither solution has 

any hard constraint violations. The PEAST algorithm only needed 100 employees for generating a 

feasible and acceptable schedule. Note that the employees on vacation are not counted in this 

value. The PEAST algorithm was able to find a solution where all but one employee had exactly 

the required number of working hours. The algorithm also found a solution where 99% of all the 

employees’ wishes were fulfilled even though those wishes covered as much as 50% of the 

employees’ total work on average. Furthermore, the PEAST solution is clearly better at the 

number of single working days and finding a suitable weekend solution (see R3 and E7). 

Table 3. The hard and soft constraints of the problem, the penalties for soft constraint violations, the manual 

solution and the solution obtained by the PEAST algorithm. The solutions indicate the number of violations 

for the constraints. 

Constraint Description Penalty Manual solution PEAST solution 

C1 Overlapping shifts Hard 0  (108*) 0  (100*) 

C2 Number of competences Hard 0 0 

C4 Balanced surplus employees 2 22 4 

R1 Working hours / nurse 10 140 3 

R3 Free weekends 4 50 16 

R5 Sufficient rest time Hard 0 0 

R7 Consecutive working days Hard 0 0 

O1 Sufficient competence Hard 0 0 

O2 Working days in between 1 285 53 

O5 Forbidden stints Hard 0 0 

E1 Single days-off 4 274 124 

E2 Single working days 2 285 53 

E3 Consecutive days-off 2 34 0 

E4 Balanced singles 1 18 5 

E5 Balanced shift types 1 37 46 

E7 Balanced weekdays 1 343 127 

E8 Forbidden shifts 4 0 0 

P1 Same shifts 5 0 0 

P2 Requested days-on 6 76% fulfilled 99% fulfilled 

P3 Requested shifts 6 57% fulfilled 99% fulfilled 
* The required number of employees needed for generating the schedule 

 

The PEAST solution was found by generating ten solutions and selecting the best one. The 

algorithm was run on an Intel Core 2 Extreme QX9775 PC with a 3.2GHz processor and 4GB of 

random access memory running 64bit Windows Vista Business Edition. The best solution was 

found in 18 hours of computer time. The time may appear to be long. However, the point here is 

not to find a solution fast enough and with sufficient quality, but to find a solution of high quality. 

It is perfectly reasonable to run the algorithm overnight, because the solution is only needed once 

every six weeks. Note also that the manual solution took three weeks to generate. The detailed data 

for the instance can be obtained from the authors by email. 
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The Hospital Board members were very satisfied with our results. We are currently negotiating 

with them to optimize their overall workforce management process. This includes 1) generating an 

optimal shift structure based on the predicted patient flow, 2) optimizing the employees’ 

preferences with a centralized self-scheduling system and 3) optimizing the days-off and shift 

assignments. As was stated in Section 1, the best action plan for real-world nurse rostering 

research is to cooperate with both a problem owner and a software vendor. We have a business 

partner that has workforce management software that already includes our optimization 

component. We are now looking to include nurse rostering in that software as well. 

6   Conclusions and Future Work 

We described an effective method for rostering nurses in an intensive-care unit in a Finnish 

hospital. The rosters were generated using a population-based local search method called the 

PEAST algorithm. The acronym PEAST stands for Population, Ejection, Annealing, Shuffling and 

Tabu, which represent the building blocks of the algorithm. The PEAST algorithm is flexible, 

easily extended and has good learning capabilities.  The algorithm is based on a thorough local 

search method while still containing a strong global search element through the population based 

setup and randomized shuffling. The hospital was very satisfied with our results. We are currently 

negotiating with them to optimize their overall workforce management process. The PEAST 

algorithm has been integrated into market-leading workforce management software in Finland. 

 

Future work includes modeling the instance presented in this paper using the xml-based 

modeling format introduced and managed by Tim Curtois (2010). We will also use the PEAST 

algorithm to solve the benchmark instances in (Curtois 2010). Our direction for future research is 

to strengthen our competence in workforce optimization concerning contact centers. 
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