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Abstract This paper presents a constraint programming approach to solve a speci�c

scheduling problem arising in a company specialized in drug evaluation and pharmacol-

ogy research. The aim is to build employee timetables covering the demand given by a

set of �xed tasks. The optimality criterion concerns the equity of the workload sharing.

A solution to this problem is the assignment of all tasks whose resulting working shifts

respect tasks requirements as well as legal and organizational constraints. Scheduling

problems usually consider a �xed set of shifts which have to be assigned to a given

number of employees whereas in our problem shifts are not �xed and must be deduced

from the task assignment.

Keywords Tour Scheduling Problem · Fixed Job Scheduling Problem · Constraint
Programming

1 Introduction

Personnel scheduling problems tackle the di�cult task of building employee rosters

respecting legal and organizational constraints in order to satisfy the demand. These

problems are of tremendous importance for services oriented companies, especially for

those working around the clock. Consequently, many researchs have been carried out

into this area (see [12] for an overview). These complex and highly constrained problems

proved to be very di�cult to solve in a satisfactory way and even more to optimality.

In this paper, we present a real-world problem which arises in a company special-

ized in drug evaluation and pharmacology research. The problem at hand is to build

�ne rosters which respect legal and organizational constraints. This task is currently

hand-performed on a weekly basis by the chief nurse, which is very time-consuming.

The remainder of the paper is organized as follows: section 2 is devoted to the

description of the problem, section 3 presents some related works, in section 4 we
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propose a modelling of our problem, section 5 describes some branching strategies

which aim at �nding quickly a good solution. Our approach is validated by experimental

results in section 6.

2 Problem description

The company carries out clinical studies on behalf of pharmaceutical laboratories which

need to control the impact of newly developed drugs on the human body. The company

recruits volunteers who are hospitalized during the whole study so that nurses could

perform each required task on each volunteer. Laboratories deliver to the company

a very speci�c study procedure which contains a description of all the clinical tasks

to be performed, along with their relative starting time and duration. Based on this

protocol, the company needs to assign these tasks to quali�ed and available employees.

The individual plannings resulting from this task assignment have to respect a set of

legal and organizational constraints, and also, up to a point, they are expected to be

as fair as possible, which makes the scheduling task very di�cult and time-consuming

for the chief nurse.

During a week, employees divide their working time between three kinds of job:

1. Clinical tasks are �xed by the protocol and must be performed at the given

starting minute, which means that the granularity of the problem drops to the

minute. These tasks are �xed whenever during the day of the week and the hour

of the day. The chief nurse has to assign one employee to every clinical task.

2. Compulsory administrative tasks are also �xed but they are already assigned

before the shift-building procedure. This kind of tasks, such as meetings and train-

ings, are counted as working time, but not as clinical working time, and they could

be assigned to more than one employee (in case of meetings within the company).

These assignments lead to �xed periods of clinical unavailability that have to be

included in designed shifts.

3. Free administrative tasks, such as medical reports writing, are not �xed and do

not require any speci�c skills. Each employee has a speci�c set of administrative

tasks to do during the week, and they are free to work on it whenever they want,

provided they are not already assigned in the mean time to clinical or compulsory

administrative tasks. Consequently, these tasks do not appear in the �nal timetable.

One characteristic of the problem lies in the lack of �xed shifts: employees could

start and end their day whenever it is necessary, provided the resulting shift sequences

respect the set of hard constraints due to work regulation, company organization, and

nurses agreements. Consequently, working days refer to working periods and they may

overlap two calendar days if needed. The main constraints are summarized in the fol-

lowing.

Organizational constraints

� HC 1: Employees cannot perform tasks which require unmastered skills.

� HC 2: Employees cannot perform tasks while unavailable.

� HC 3: Every clinical task must be assigned to one employee.

� HC 4: The assignment of compulsory administrative tasks must be respected.

� HC 5: Employees must �nish a task before starting another one.
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Work regulation / nurses agreements constraints

� HC 6: The daily working load must not exceed 10 hours.

� HC 7: The weekly working load must not exceed 48 hours.

� HC 8: The duration of a working day must not exceed 11 hours.

� HC 9: The duration of a rest period must not be less than 11 hours.

� HC 10: The duration of the weekly rest must not be less than 35 hours.

� HC 11: Series of consecutive working days must not exceed 6 days.

� HC 12: Depending on their working days, nurses have di�erent breaks.

During the task assignment process, the chief nurse takes into account this whole

set of hard constraints which might lead to dead end, meaning that the problem admits

no solution. In this case, the chief-nurse strengthen the workforce with externals, who

abide by the same rules as regular workers.

Objective function

Hard constraints must be satis�ed, but they only ensure the feasibility of schedules.

In order to build �ne schedules, the chief nurse takes into account multiple criteria

based on equity among employees. In this paper, we consider the most important of

these criteria: we want to share the workload resulting from clinical and writing tasks

in a fair way. However, some nurses are less con�dent with the writing of medical

reports than others. As a consequence, the chief nurse associates to each employee a

weekly targeted clinical load: nurses who are less con�dent with writing tasks have a

higher targeted clinical load in order to counterbalance the higher administrative load

of nurses who are more con�dent with writing tasks. The idea of our objective is to

�t with this targeted clinical load in order to get "fair" schedules. As a consequence

our objective is to minimize the di�erence between the highest and the lowest nurse's

gap value which is de�ned as the di�erence between the clinical targeted time and the

clinical assigned time. A small di�erence between the highest gap and the smallest gap

means that the workload is well balanced among nurses.

Dimensions of the problem

A typical problem involves 200 tasks, whose durations range from 5 minutes to 4 hours,

which have to be assigned to about 20 nurses whose set of skills is closed to 30 di�erent

skills. One characteristic of our problem lies in the time granularity which drops to the

minute over a scheduling horizon of a week. This might look like an excess of preci-

sion, but it is very important for the company to follow scrupulously the given protocol.

To highlight this fact, one can state the use of synchronised clocks in the whole building.

Problem studied

As a �rst step towards the resolution of this industrial problem, we propose to focus

on the problem of designing schedules and assigning tasks to the regular workforce,

i.e. externals are not taken into account. By doing this, we simulate the �rst step of

the hand-performed resolution process which is done by the chief nurse. In order to

provide as much information as possible regarding to needs on externals, we relax the

constraint HC 3, which allows us to �nd solutions with an incomplete assignment of

tasks to workers.
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Constraints related to nurses breaks are particularly complicated because they deal

with several kind of breaks which depends on the kind of shift performed:

� some of them have to occur on a given time window whereas others are not time

constrained,

� some of them are included in the working time whereas others are not,

� some of them last a few minutes whereas others last one hour.

From our point of view, ensuring these breaks would require heavy constraints

without improving much schedules. This may be explained in two steps:

1. because of the �xed start and end of clinical tasks, it is highly probable that short

breaks will be respected automatically,

2. the chief nurse pointed out that nurses are very �exible regarding to their breaks,

and they are free to exchange some tasks in order to improve their schedules.

Consequently, in this paper, we decided to put aside the constraint HC 12. However,

warnings are displayed in a post-processing step to alert the chief nurse about these

breaks.

In this paper, compulsory administrative tasks are considered to be �xed in time

because they are scheduled by the chief nurse before the assignment of clinical tasks,

which is the part of the problem we focus on. It would have been possible to give some

freedom to these tasks in order to schedule them during the resolution, but it would

have make the problem much harder to solve. Consequently, we consider them as data,

which is exactly the way it is done in the company.

3 Related work

Over the years, many approaches have been proposed in order to model and solve Per-

sonnel Scheduling Problems (see [12] for an overview). Mathematical models, usually

based on the Dantzig set-covering formulation, often achieve the lowest cost solutions

but they are di�cult and time-consuming to implement. In particular, speci�c con-

straints and objectives may be di�cult to express easily. Consequently, research often

focus both on simpli�ed problems and general methods. In [3] for instance, the au-

thors proposed a general mathematical model covering several personnel scheduling

problems. Another important trend has been to develop implicit modeling in order

to tackle more complex problems. In [2] for instance, the authors present an implicit

integer linear programming formulation for the inclusion of meal/rest-break �exibil-

ity. On the contrary, metaheuristics, such as Tabu Search, Simulated Annealing and

Genetic Algorithms, o�er the opportunity to incorporate problems speci�cities. These

approaches do not guarantee the optimality of the solution, but they are quite robust

and they could be adapted even to the smallest problem speci�city. They have been

successfully tested to varying kind of real-world problems (see for instance [5] and [8]).

Constraint Programming (CP) o�ers a promising alternative: CP is very close to a

form of declarative programming, and consequently, it o�ers very powerful tools to

state complex problems and produce �exible implementations, which is desirable in

a business context. For instance, the Nurse Rostering Problem (NRP), and also the

Crew Rostering Problem (CRP), which are some of the most constrained personnel
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scheduling problems, belong to the set of problems that could be e�ectively stated as

a constraint satisfaction problem (see [21] and [9]).

Tour Scheduling Problem

Personnel scheduling problems could be adressed in two steps: the �rst step, referred

to as the days-o� problem, aims at assigning days-o� to workers whereas the second

one, referred to as the shift scheduling problem, consists of assigning shift sequences to

workers. The combined version of these two problems is referred to as the Tour Schedul-

ing Problem ([17]). This last problem o�ers a wide range of combinations which enables

substantial improvements in the labor utilization. Consequently, many approaches have

been proposed and tested (see [1] for an overview).

Loucks and Jacobs ([16]) present a heuristic approach to the dual problem of Tour

Scheduling and Task Assignments involving workers who di�er in their availabilities

and quali�cations. In this problem, two ranked objectives are considered: the �rst one

is the minimization of the total man-hours of oversta�ng, and the second one is the

minimization of the sum of the squared di�erences between the number of tour hours

scheduled and the number targeted for the workers. However, the approach requires

to divide the horizon into one-hour periods, which is far too big for our own problem.

More generally, to our knowledge, the Tour Scheduling Problem with one-minute pe-

riods has not been studied yet. This may be explained in three steps, as mentioned

by [16]: �rst of all, working with one-minute periods means that the demand is known

with a one-minute precision, which makes no sense if the demand comes from fore-

casting methods. Besides, managers would be under the obligation to make e�orts so

that employees respect their schedules. Finally, managers often prefer to keep some

�exibility in schedules in order to cope with potential delays, and other uncertainties.

Fixed Job Scheduling Problem

Given a set of jobs along with their �xed starting times and processing times, the Fixed

Job Scheduling Problem (FJSP), also known as the Interval Scheduling Problem, con-

sists of deciding whether or not to accept a job, knowing that chosen jobs have to be

assigned to available ressources (see [15] for an overview). The assignment part of our

problem could consequently be seen as a FJSP, where every job has to be accepted. In

this last case, deciding whether a feasible schedule exists is NP-Complete ([15]).

As pointed out in [15], the FJSP constitutes the core of a variety of applications,

such as the well-known Crew Rostering Problem. For instance, in [9] the authors pro-

pose a mixed approach based on CP and OR techniques to solve a speci�c CRP.

However, they consider only the rostering step, meaning the sequencing of the given

duties, and not the scheduling step, meaning the generation of duties. Moreover, many

CRPs integrate some constraints on the feasible sequences of tasks in order to take

into account the geographical location of the tasks, which is not relevant in our case.

However, CRPs also consider the scheduling of ground station personnel, which

is closer to our problem since the geographical location is absent. In [11] the authors

present a decision support system designed for the aircraft maintenance departement of

KLM Royal Dutch Airlines. However the scheduling problem of KLM is di�erent from

our own problem in several points: �rst of all, ground station personnel operates in a

four-shift system with �xed shifts. Besides, members of the same team are assigned to
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the same shifts. In [4] the authors present an approach in two steps based on column

generation and simulated annealing in order to schedule the work of the ground sta-

tion personnel in airport. In order to solve this problem, they used a 15-minutes period

interval on a weekly horizon, which is too coarse-grained for our problem. Moreover,

they assume that shifts of the same tour are the same, which means that employees

are assigned to the same shift during the whole week.

Nurse Rostering Problem

The core of NRPs is to assign shifts to nurses over a scheduling period so that the

resulting rosters respect a set of constraints and cover the demand. Most NRPs are

NP-Complete [13] and real-world applications, due to their large set of speci�c con-

straints, are very challenging and hard to solve.

Our problem clearly shares some characteristics with the NRP as described in [6]:

constraintsHC 1 andHC 2 are common personnel constraints of the NRP, constraints

HC 3 to HC 5 can be seen as coverage constraints and constraints HC 6 to HC 11

are common work regulation constraints of the NRP. However, the core of the problem

is di�erent since both the demand and the work assignment are di�erent: in the NRP,

the demand is given by a number of nurses for each skill category and for each demand

period, whereas in our problem, it is given by a set of tasks with any possible starting

and ending times. Moreover, in the NRP, the work assignment corresponds to a shift

assignment with usually a very limited number of shifts (see for instance [7], [14] and

[10]), whereas in our problem, the work assignment is given by a tasks assignment

from which shifts have to be deduced. In addition to these di�erences, NRPs usually

consider patterns to penalize or favour, such as consecutive night shifts, stand-alone

day-o� shift or complete weekends, which are not taken into account in our problem.

Consequently, our problem is much closer to the Tour Scheduling Problem ([17]) and

from the Fixed Job Scheduling Problem ([15]) than from the NRP.

The problem of designing schedules by taking into account skills, availabilities and

work regulation constraints in order to cover personnel requirements has been widely

studied in several business environnements (NRP, TSP). In these problems, person-

nel requirements are usually given for a set of �xed time slots/shifts, whereas in our

problem personnel requirements are given by a set of �xed tasks which cannot be

preempted. Translating our personnel requirements into the classical time index rep-

resentation would lead to allow preemption which is not possible. On the contrary, the

problem of assigning �xed tasks to ressources (FJSP) do not take into account some

basic constraints related to work regulations, such as the minimal resting time between

two worked days. Finally, the design of schedules for ground stationned personnel seems

to be the closest problem in the related literature ([4]). However, in practice, addition-

nal constraints related to the internal organization of airports are often taken into

account. Besides, even if the equity among workers may be an interesting objective in

these kind of problems it is also often important to minimize iddle times in order to

improve the productivity of workers, whereas in our problem it is required to let some

iddle time so that nurses could work on their free administrative tasks.

On the whole, even if some related problems are relatively close to the one we

consider, none of them allow to grasp its full complexity (the time granularity which

drops to the minute, the lack of �xed shifts and the optimality criterion are good
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Table 1: Data

Data De�nition

N = {1, .., N} Set of nurses
D = {1, .., D} Set of days
T = {1, .., T} Set of clinical tasks

A = {T + 1, .., A} Set of compulsory administrative tasks
∀n ∈ N ,An ⊂ A Set of tasks assigned to the nurse n

O = {O1, .., Ocard(O)} Set of sets of overlapping tasks
∀t ∈ T ∪ A, s[t] Starting minute (over the week) of task t
∀t ∈ T ∪ A, e[t] Ending minute (over the week) of task t
∀n ∈ N ,Wo[n] Targeted clinical working time over the week
∀n ∈ N , Lo[n] Number of worked days since the previous day-o�

∀n ∈ N , U [n] = {u0, .., uk} Periods of unavailability for employee n

Table 2: Variables

Variables De�nition

Tu ⊂ T Set of unassigned tasks

∀n ∈ N For every employee n
Ta[n] ⊂ T ∪ A Set of weekly assigned tasks

Bs[n] ∈ [0; 7980] Start of the weekly break
Ww[n] ∈ [0; 2880] Weekly working load

Go[n] ∈ [-2880; 2880] Gap between Ww[n] and Wo[n]

∀n ∈ N , ∀d ∈ D For every employee n and every day d
Da[d][n] ⊂ T ∪ A Set of daily assigned tasks
At[d][n] ∈ [0; 660] Daily attendance time
Wd[d][n] ∈ [0; 600] Daily working load

Sh[d][n] ∈ {O�; Worked} Daily assigned shift
Fi[d][n] ∈ {ω} ∪ {s[t], t ∈ T ∪ A} Start of the daily working period
La[d][n] ∈ {α} ∪ {e[t], t ∈ T ∪ A} End of the daily working period

examples). Consequently, we propose in the following a dedicated method based on

Constraint Programming. The use of CP is motivated by recent works which highlight

its ability to tackle highly constrained problems with very speci�c objectives.

4 Constraints Modeling

Data and variables notations related to our model are presented in Tables 1 and 2.

The main idea of the model is to assign tasks to nurses using set variables. Since every

task is �xed, the search of a solution amounts to �nding a weekly set of tasks for each

nurse: the vector Ta gives, for each nurse, the set of assigned tasks. However, most of

the constraints deal with daily work instead of weekly work, which requires additional

variables. Consequently, the matrix Da gives, for each nurse and for each day, the set

of assigned tasks. In order to check constraints over shift sequences, the matrix Sh,

gives for each nurse and day whether it is a working day or a day-o�. Matrices Fi

and La stand for the starting and ending time of each day of each nurse. Domains
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of Fi (respectively La) correspond to the starting (respectively ending) time of tasks.

In order to deal with days o�, domains of Fi (respectively La) are completed with a

constant ω = 8 × 24 × 60 (respectively α = -24 × 60 ). The matrix At gives for each

nurse and for each day the minimal attendance time (i.e. the attendance time resulting

from clinical and compulsory administrative tasks). Finally, the vector Bs gives for

each nurse the starting time of the weekly break.

Based on these variables, organizational and legal constraints could then be written.

Some constraints refer directly to legal or organizational constraints whereas others

simply ensure the consistency between variables. The �rst set will be referred to as

business constraints whereas the second set will be denoted by channeling constraints.

Finally, some legal constraints could be ensured from the creation of the variables, by

reducing their domain of de�nition. This last set of constraints will be referred to as

preprocessing constraints since once stated, they do not impact the solver anymore.

In the following, preprocessing constraints, business constraints and �nally channeling

constraints are explained.

Preprocessing constraints

The domains of Ta and Da are reduced during the creation of variables by comparing

both the mastered skills of each employee with the required skills of each task and the

starting and ending times of each task with the availabilities of each employee. Basically,

a task t which requires the skill s will be removed from the domain of the variable Ta[n]
if the nurse n does not master s. Besides, if the processing interval of t, which is given

by [s[t]; e[t]] overlaps any periods of unavailibility of employee n, which are given by

U [n], then t will also be removed from Ta[n]. The same process holds for Da. Moreover,

the domain of the variables of Da could be even more reduced by taking into account

the day of the week: tasks which are �xed on Wednesday, for instance, could not be

performed on Monday, and so on. More precisely, a working period d could gather every

task whose starting time belongs to the interval : [60×(6+24×d); 60×(6+24×(d+1))],
which corresponds to a period of 24 hours starting every day at 6 am. Consequently,

employees who start working around 9 pm a day could �nish their work at 6 am the

following day. Thus, constraints HC 1 and HC 2 are veri�ed from the creation of the

problem, without any cost (i.e. the solver will not have to check these constraints during

the resolution). The bounds of working period intervals have been �xed to correspond to

the earliest starting time and the latest ending time applied by the company. Domains

ofWd andWw variables are also bounded from their creation, so that employees could

neither be assigned to more than 10 hours of work over a day (HC 4), nor to more

than 48 hours of work over the week (HC 5).

Business constraints

Constraints (1a) to (1c) aim at assigning the exact number of required employees

to each task (HC 3). More precisely, constraint (1a) aims at assigning at least one

employee to every task. Constraint (1b) ensures that tasks which have to be assigned

to one employee, are not assigned to several employees. Constraint (1c) ensures that

employees do not perform the same task several days. Constraint (2) ensures that the

assignment of compulsory administrative tasks is respected (HC 4). Constraint (3)

prevents employees from starting a new task before �nishing the previous one (HC 5).

Constraints (4) and (5) aim respectively at respecting the daily maximum attendance

time (HC 8) and the minimum resting time between two working days (HC 9). The
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constraint (6a) aim at building a weekly break of at least 35 hours (HC 10) by ensuring

that no work is assigned to employees on an interval of 35 hours. Constraint (7) ensures

that the maximal number of consecutive worked days does not exceed 6 days (HC 11).

Tu ∪
⋃

n∈N
Ta[n] = T ∪ A (1a)

∀(n1, n2) ∈ N 2 |n1 6= n2, Ta[n1] ∩ Ta[n2] = An1 ∩ An2 (1b)

∀n ∈ N , ∀(d1, d2) ∈ D2 | d1 6= d2, Da[d1][n] ∩Da[d2][n] = ∅ (1c)

∀n ∈ N , An ⊂ Ta[n] (2)

∀d ∈ D, ∀n ∈ N ,∀Oi ∈ O, card(Oi ∩Da[d][n]) ≤ 1 (3)

∀d ∈ D, ∀n ∈ N , At[d][n] ≤ 60× 11 (4)

∀d ∈ D�{D},∀n ∈ N , F i[d+ 1][n]− La[d][n] ≥ 60× 11 (5)

∀n ∈ N , ∀d ∈ D, (Fi[d][n] ≥ Bs[n] + 35× 60) ∨ (La[d][n] ≤ Bs[n]) (6a)

∀n ∈ N , card{d ∈ [0; 6− Lo[n]] |Sh[d][n] = O�} ≥ 1 (7)

Channeling constraints

Constraint (8) ensures that the daily and the weekly assignments of each employee are

consistent. Constraints (9) and (10) ensure that the weekly working load and the daily

working load of each employee correspond to the task assignment. Constraint (11) en-

sures that the matrix Sh is consistent with the matrix Da. Constraints (12a) and (12b)

aim at �nding the beginning and the end of the working days of each employee when

daily assigned sets are not empty. Empty sets, which refer to days-o�, are handled by

constraints (13a) and (13b). This last point might need some deeper explanations: �rst

of all, empty sets have to get a starting and ending times because of the construction

of Fi and La. In order to respect constraints HC 8 and HC 9, Fi and La are assigned

respectively to the end and the beginning of the week. This setting is also consistent

with constraint (6a). Constraint (14) aims at computing the daily attendance time of

each employee: for non-empty sets, the attendance time corresponds to the di�erence

between the end and the start of the corresponding day, for empty sets, the atten-

dance time corresponds to 0. Finally, constraints (15a) to (15d) calculate the objective

value. In constraint (15a) we substract compulsory administrative time from the weekly

workload, in order to keep only the clinical workload.
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∀n ∈ N ,
⋃
d∈D

Da[d][n] = Ta[n] (8)

∀n ∈ N , Ww[n] =
∑

t∈Ta[n]

e[t]− s[t] (9)

∀n ∈ N , ∀d ∈ D, Wd[d][n] =
∑

t∈Da[d][n]

e[t]− s[t] (10)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇔ Sh[d][n] = Worked (11)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇒ Fi[d][n] = min
t∈Da[d][n]

s[t] (12a)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) > 0⇒ La[d][n] = max
t∈Da[d][n]

e[t] (12b)

∀n ∈ N , ∀d ∈ D, card(Da[d][n]) = 0⇔ Fi[d][n] = ω (13a)

∀n ∈ N ,∀d ∈ D, card(Da[d][n]) = 0⇔ La[d][n] = α (13b)

∀d ∈ D,∀n ∈ N , At[d][n] = max(La[d][n]− Fi[d][n], 0) (14)

∀n ∈ N , Go[n] = (Ww[n]−
∑
t∈An

e[t]− s[t])−Wo[n] (15a)

∀n ∈ N , Gmin ≤ Go[n] (15b)

∀n ∈ N , Gmax ≥ Go[n] (15c)

Obj = 10 000× card(Tu) +Gmax−Gmin (15d)

Choice of the model

This model is oriented from a task assignment point of view, meaning that our con-

cern is to assign tasks to nurses. Based on this assignment, additional information

(such as starting times, ending times, daily load, weekly load, etc...) could then be

easily deduced. Another way of modeling the problem is to assign one nurse to every

task. However, a lot of constraints which are easily written with task sets, seem more

di�cult to write with such a model. Consequently, we decided to focus on the task

assignment instead of the nurse assignment. Another common way of modeling person-

nel scheduling problems with constraint programming is based on the use of a general

matrix giving the activity of each nurse (on lines) for each time period (on rows). For

instance, The Nurse Rostering Problem has been stated and solved by constraint pro-

gramming in such a way ([21]). However, this kind of approach requires to consider

identical time periods, or slots. Since the time granularity of our problem drops to the

minute over a planning horizon of a week, the use of identical time periods would lead

either to an explosion of the number of variables or to some approximations on the

duration of the tasks, which is not desirable. Consequently, our approach, based on

task assignment seems to handle the complexity of the problem in a more promising

way.

5 Variable and value strategies

When using constraint programming in order to build a good solution, it is very impor-

tant to implement a dedicated search strategy. Basically, CP aims at �nding a satisfying
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solution, not the optimal one. However CP could still be used to �nd the optimum by

solving the given problem in an iterative way: at each iteration, the cost of the solution

is constrained to be less (when minimizing) than the cost of the last solution.

The aim of a dedicated search strategy is to avoid backtracking time in the huge

space of unfeasible and unsatisfying solutions, by using the speci�cities of the problem.

Once the �ltering process is over, if every variable is not yet instantiated, the solver

has to branch on a variable. The variable ordering strategy (VarOS) aims at choosing

the most promising variable in order to branch on this variable, and the value ordering

strategy (ValOS) aims at starting the branching with the most promising value. This

value is chosen from the domain of the chosen variable. In our model, set variables are

represented by two sets: the kernel and the envelope. The �rst one represents the set

of values which belong to every solution whereas the second one refers to the set of

values which belong to at least one solution. Consequently, the kernel of a set variable

is a subset of its envelope. The chosen value must belong to the envelope, but not to

the kernel. This set of possible values is called the open domain.

Concerning set variables, the default strategy select the variable with the small-

est open domain, and among this domain, it selects the smallest value. However, this

strategy do not use the speci�cities of the problem. Consequently, two VarOS and �ve

ValOS are proposed and discussed in the following.

VarOS Among the variables of the vector Ta:

� Choose the variable corresponding to the nurse whose numerical di�erence between

the assigned clinical working time and the targeted clinical working time is the

smallest. The idea of this VarOS, which will be referred to as LW (Less Working),

is to start assigning tasks to the less working nurse, as soon as possible, in order

to improve the solution.

� Find the variable corresponding to the nurse whose weekly working load is the

highest among those which are under a �xed limit, controlled by a parameter l,

expressed in minutes. More precisely, among the variables respecting the following

inequality:

Ww[n]−Wo[n] ≤ l

choose the variable which maximizes (Ww[n]−Wo[n]). If such a variable does not

exist, choose a variable randomly. This strategy, which will be referred to as MW

(Most Working), could be used in two di�erent ways depending on the value of l.

For instance, setting l to a positive value allow the solver to keep assigning tasks to

nurses who are already above their targeted clinical load, in order to keep room for

further assignments and consequently, avoid dead ends. Consequently, this will not

lead to well-balanced solutions, but the idea is to evaluate the number of feasible

solutions which could be found by this way. On the contrary, setting l to a negative

value aim at ensuring a minimum working load for each nurse. Even if setting l

to a negative value is also a way of �nding good solutions, there is an important

di�erence between LW and MW : LW tries to improve the solution at every node

whereas MW allow the solver to deteriorate the solution, hoping to improve it in
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the end.

ValOS Among the open domain (referred to as O(Ta[nc])) of the chosen variable:

� Find the task which produces the highest increase of work density. The work den-

sity of a day corresponds to the working load of this day divided by the attendance

time of the day. If the highest increase of work density is higher than a given limit

controlled by a parameter δ, then choose the corresponding task, else choose the

�rst possible task. More formally, for each possible task t, we can compute the new

daily working load W t+
d [d][nc] and the new attendance time Att+[d][nc] resulting

from the addition of t to the corresponding working day of nc. We refer to the

increase of density produced by t as δ[t]:

δ[t] = Wd[d][nc]
At[d][nc]

− W t+
d [d][nc]

Att+[d][nc]
∈ [-1; 1]

Among tasks whose corresponding δ[t] is above δ, choose the task t which maximizes

δ[t]. If such a task does not exist, choose the �rst possible task. The idea of this

ValOS, which will be referred to as ID (Increase Density), is to produce compact

schedules, in order to avoid wasting time.

� Choose the task which belongs to the biggest set of overlapping tasks. The idea of

this ValOS, which will be referred to as BO (Biggest Overlap), is to assign as soon

as possible tasks which are �xed on activity peaks. Since employees cannot work

simultaneously on overlapping tasks, choosing such a task may also be interesting

because of the �ltering process which may lead to many deductions (the employee

could not anymore perform the other overlapping tasks).

� Choose the task which can be performed by the smallest number of nurses. The

idea of this ValOS, which will be referred to as LN (Lack of Nurses), is to avoid

backtracking procedure by avoiding dead ends.

� Find the task with the biggest duration. If this duration is higher than a given limit

controlled by a parameter p, then choose this task, else choose the �rst possible

task. More precisely, among the tasks which respect the following inequality:

e[t]− s[t] ≥ p

choose the longest task. The idea of this ValOS, which will be referred to as BT

(Biggest Task), is to assign biggest tasks as soon as possible.

Mixed Strategy

Based on these simple heuristics we implement a more complex one, which will be

referred to as Mx (Mixed). The idea of this ValOS, which is presented in detail in

Algorithm 1, is to use the previously described heuristics in a combined way. More

precisely, the global idea of Mx is to avoid dead ends by using Lack of Nurses and

Biggest Overlap, then, if possible choose an interesting task by using Biggest Task and

Increase Density, otherwise, choose a task which has a big impact on the search by

using Biggest Overlap.

In the �rst step of Mx (lines 1 to 5), we compare the number of employees available

for a task t with the number of tasks overlapping t. The idea is to avoid the assignment

of employees available for t to other tasks. In the second step (lines 6 to 10), we compare
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the highest processing time with the parameter p. The idea of this threshold is to focus

on the duration of tasks only when it is a highly distinguishing criterion. In the third

step (lines 11 to 15), we compare the highest increase of density with the parameter

δ. Again, this comparison aims to avoid making a decision on a hardly distinguishing

criterion. Finally (lines 16 to 18), we choose the task which corresponds to the highest

activity peak.

Algorithm 1 Mx ValOS: combine simple heuristics to choose the most promising task

Require:

p ∈ N, δ ∈ [-1; 1]
∀t ∈ O(Ta[nc]), available[t]: the number of available employees for task t
∀t ∈ O(Ta[nc]), overlapping[t]: the number of tasks overlapping task t
findIndex(value, vector): returns the index of value in the given vector.

1: for all t ∈ O(Ta[nc]) do
2: if available[t] ≤ overlapping[t] then
3: return t
4: end if

5: end for

6: maxP ← max
t∈O(Ta[nc])

e[t]− s[t]

7: tMaxP ← findIndex(maxP, p)
8: if maxP ≥ p then

9: return tMaxP
10: end if

11: maxD ← max
t∈O(Ta[nc])

δ[t]

12: tMaxD ← findIndex(maxD, δ)
13: if maxD ≥ δ then
14: return tMaxD
15: end if

16: maxO ← max
t∈O(Ta[nc])

overlapping[t]

17: tMaxO ← findIndex(maxO, overlapping)
18: return tMaxO

6 Experimental results

We implemented our model with Choco, a Java Constraint Satisfaction Problem Solver

[20]. Each instance has been runned on an Intel Core i3 (3.06 GHz) with a time limit of 5

minutes under default (see section 5) and dedicated ordering strategies, in optimization.

The time limit has been �xed to 5 minutes because the company would like to use the

method as a simulation tool, which requires great responsiveness.

6.1 Instances generation

In order to test our model, we have generated 720 instances gathered in 24 sets of 30

instances. Each set of instances corresponds to a speci�c combination of three parame-

ters: the number of tasks, the kind of skills required and the tightness of the workload

compared to the work capacity. The number of tasks ranges from 100 to 400 which
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allows us to check the behavior of the method for normal activity (200/300 tasks) and

extreme cases (100/400 tasks). Moreover we have generated two kinds of skills require-

ments: the �rst one considers only common skills, meaning that each skill is mastered

by most of the nurses whereas the second one considers also rare skills, meaning that

some skills are mastered by only a few nurses. For each instance the targeted clinical

workload of each employee is generated in order to �t to the global workload (+/-

5h). The tightness is de�ned as the average clinical working time of nurses: a usual

tightness does not exceed 700 minutes. The �rst set of instances has a tightness of 600

minutes, which corresponds to a usual workload. The second one has a tightness of 800

minutes which corresponds to a big workload. The tightness of the last set of instances

amounts to 1000 minutes which aims at testing the limit of the model. Finally, the task

distribution and pro�le are also based on realistic data: tasks are distributed all along

the week, with a density peak around 8 a.m. and three kinds of tasks, with speci�c

probabilities of occurrence:

1. small tasks ranging from 5 to 15 minutes, with a probability of occurrence of 5%.

2. medium tasks with a processing time close to one hour, with a probability of oc-

currence of 65%.

3. big tasks ranging from 2 to 5 hours, with a probability of occurrence of 30%.

Then, a simple procedure computes the required number of workers along with their

personal data (skills, availabilities, etc...). It ensures that the tightness of the instance

is respected but it does not ensure the feasibility of the instance. Consequently some

instances do not admit a complete assignment. In the following, we de�ne the size of

an instance as its number of tasks.

6.2 Parameters design

Parameter l (in minutes) has been tested with values: −180, 0 and 180. Increasing
l leads some ValOS, such as BO, to a higher number of complete assignments and

a smaller number os unassigned tasks. However this improvement is obtained at the

expense of the mean equity value. Moreover, some strategies such as BT and Mx do

not pro�t from this increase of l, on the contrary, it leads only to worsen the equity.

Parameters p and δ have been tested separately within the BT (Biggest Task) and

the ID (Increase Density) ValOS respectively.

Parameter δ has been tested from -1 to 0 with a range of 0.1. We did not try

to set δ to strictly positive values, because it seems unlikely to be possible to use

this strategy during the whole search. Results show no signi�cant di�erences for these

various settings, which means that making a big increase of density is not so important

compared to completing working days (whether it is by increasing or decreasing the

density). In order to get a well balanced Mx strategy, we set δ to 0, but when used

inside ID we set it to −1.
Parameter p (in minutes) has been tested with values 5, 30, 50, 120, 180 and 240

which enables us to consider either every task or only subsets of tasks. Increasing p

leads to a higher number of complete assignments and a smaller number of unassigned

tasks, but it worsen the equity. The best solutions (considering equity) are obtained

with values 5 and 30. Above 30 the equity value starts to decrease. Consequently, we

set p to 30. By doing this, we put aside small tasks whose durations range from 5 to
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30 minutes, but when used inside BT we set it to 5.

6.3 Results analysis

In order to evaluate our results, which are presented in detail in Table 3, we used 4

indicators:

1. "Complete": the number of solutions with a complete assignment.

2. "Equity": the mean equity value of best solutions, in minutes (over complete as-

signments only).

3. "Left": the average number of unassigned tasks.

4. "Time": the mean computation time of best solutions, in seconds (over complete

and incomplete assignments).

Table 3: Results (time limit: 5 min)

Strategy Indicator
Size

100 200 300 400 All

LW
Complete 27/180 43/180 45/180 52/180 167/720

BO
Equity 304 301 295 293 297

Left 6 8 9 11 8

Time 44 23 23 41 32

LW
Complete 30/180 43/180 64/180 61/180 198/720

BT(p = 5)
Equity 49 41 39 34 39

Left 5 6 7 6 6

Time 22 26 19 36 26

LW
Complete 57/180 89/180 104/180 108/180 358/720

ID(δ = −1) Equity 248 268 290 297 280

Left 4 5 3 3 4

Time 60 27 32 39 37

LW
Complete 54/180 75/180 90/180 93/180 312/720

LN
Equity 227 261 271 277 263

Left 4 5 5 5 5

Time 70 30 31 36 39

LW
Complete 33/180 50/180 64/180 72/180 219/720

Mx(p = 30, δ = 0)
Equity 42 43 40 36 40

Left 5 6 6 6 6

Time 35 5 16 37 23

LW
Complete 71/180 101/180 116/180 124/180 412/720

All
Equity 119 146 121 117 126

Left 3 3 2 2 2

Time 109 53 50 53 66

MW(l = −180) Complete 43/180 56/180 60/180 64/180 223/720

BO
Equity 389 471 500 540 483
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Strategy Indicator
Size

100 200 300 400 All

Left 5 8 7 8 7

Time 73 40 54 95 66

MW(l = −180) Complete 41/180 60/180 70/180 66/180 237/720

BT(p = 5)
Equity 286 363 390 414 372

Left 5 7 5 5 6

Time 96 58 59 78 71

MW(l = −180) Complete 79/180 102/180 126/180 125/180 432/720

ID(δ = −1) Equity 354 439 514 544 476

Left 4 5 3 3 4

Time 75 74 73 106 83

MW(l = −180 Complete 68/180 82/180 96/180 112/180 358/720

LN
Equity 349 477 551 579 505

Left 4 5 4 4 4

Time 101 89 94 100 96

MW(l = −180) Complete 45/180 63/180 75/180 77/180 260/720

Mx(p = 30, δ = 0)
Equity 312 369 375 419 376

Left 5 6 5 5 5

Time 66 69 77 75 73

MW(l=-180)
Complete 92/180 109/180 135/180 144/180 480/720

All
Equity 283 365 414 458 380

Left 3 3 2 2 2

Time 146 129 127 147 137

MW(l = 180)
Complete 59/180 71/180 78/180 81/180 289/720

BO
Equity 802 1056 1113 1185 1056

Left 4 6 6 7 6

Time 151 109 148 142 138

MW(l = 180)
Complete 63/180 85/180 96/180 97/180 341/720

BT(p = 5)
Equity 903 1102 1217 1284 1150

Left 5 6 5 4 5

Time 146 138 134 140 139

MW(l = 180)
Complete 91/180 108/180 128/180 128/180 455/720

ID(δ = −1) Equity 783 1003 1132 1213 1054

Left 3 4 3 3 3

Time 141 143 135 148 142

MW(l = 180)
Complete 90/180 108/180 127/180 144/180 469/720

LN
Equity 763 989 1122 1190 1043

Left 4 4 3 3 4

Time 168 155 139 162 156

MW(l = 180)
Complete 69/180 88/180 101/180 107/180 365/720

Mx(p = 30, δ = 0)
Equity 908 1104 1212 1282 1149

Left 5 6 5 4 5

Time 140 143 139 141 141

MW(l = 180)
Complete 103/180 123/180 139/180 152/180 517/720

All
Equity 732 952 1063 1152 975
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Strategy Indicator
Size

100 200 300 400 All

Left 2 2 1 2 2

Time 222 226 223 226 224

All
Complete 106/180 127/180 142/180 153/180 528/720

All
Equity 205 260 210 238 228

Left 2 2 1 1 2

Time 256 246 244 251 249

Table 3 gives for each size the value of the various indicators depending on the

branching strategy. Results obtained with l = 0 are not presented because they stand

between those obtained with l = −180 and l = 180. The column "All" gives for each

con�guration the sum of the indicator "Complete" along with the mean values of indi-

cators "Equity", "Left" and "Time". The line LW-All (respectively MW-All) gives the

results which can be found by using in parallel each ValOS with LW (respectivelyMW ).

Results regarding to feasibility

The default strategy gives similar results on each size: it �nds around 70 instances

with a complete assignment with a mean equity of 1600 minutes in 90 seconds. Com-

pared to the default strategy, dedicated strategies �nd more solutions, especially with

the MW VarOS, which illustrates the importance of using dedicated strategies.

Generally speaking, the number of solutions is bigger with the MW VarOS than

with the LW strategy, which is coherent with the idea of these strategies. The ID Va-

lOS gives the highest number of solutions for both VarOS, which means that building

compact schedules is a good lead to get a feasible solution. On the contrary, BO gives

few solutions for both strategies. This comes from the data speci�cities: the activity

peak turns around 8 a.m. every day, consequently, by systematically choosing these

tasks over the others we set to many shifts around the same time slot, which makes

the assignment of night tasks much more di�cult. The average number of unassigned

tasks turns around 5 which is quite small.

On the whole, small instances turned out to be more di�cult than bigger instances,

which comes from the variations of the number of employees: instances with 100 tasks

which corresponds to a small industrial activity have a smaller number of available

workers than instances with 400 tasks which corresponds to a big activity. On the

whole, tested ValOS perform di�erently on each instance, which means that they can

complete one another, at least to some extent. Consequently, a practical way of �nding

solutions is to solve the problem in series with various ValOS, which is highlighted by

the lines LW-All, MW-All and All-All. For instance, using each ValOS in parallel with

LW increases the number of found solutions by 54. Another way to make up for the

lack of solutions is to combine simple heuristics, as we do with Mx.

Instances with rare skills are harder to solve than those with only common skills.

On average the relative di�erence of the number of complete assignments between

these two sets turns around 10 to 20%. However, the average number of unassigned

tasks does not change between these two sets. Instances with a high tightness are much
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more di�cult to solve than those with a common tightness. On the whole, 96%, 85%

and 39% of the instances with a respective tightness of 600, 800 and 1000 minutes are

solved with a complete assignment. This means that the method encounters di�culties

to cope with heavy workload. However the number of unassigned tasks do not increase

much.

Results regarding to equity

On average, between �rst solutions and best solutions, the improvement of the objective

is not very big, which may be explained by the choice of the method: CP aims more at

�nding a solution rather than improving a solution. Consequently it is very important

to �nd a good solution from the beginning, especially for the biggest instances. LW-

BT �nds the best results regarding to the equity, but only on a very small subset of

instances. The LW-Mx strategy �nds more solutions than the LW-BT strategy, and

their value is relatively close to the best known value. Consequently, this heuristic is a

successful combination of the more simple heuristics.

6.4 Operational point of view

On the whole, the method is quite fast: the �rst solution is found within a few seconds

and the best solution is found in less than 3 minutes, which �ts the requirements of

the company. Given that some instances are not feasible without externals, the method

�nds a relatively good number of instances with a complete assignment and the number

of unassigned tasks is very small. Depending on the running con�guration, the number

of complete assignments along with the value of the equity may be very di�erent: LW-

BT and LW-Mx strategies perform very well on equity but they have some di�culties

to �nd complete assignments. On the contrary, LW-ID and LW-LN strategies perform

relatively well on the assignment but not so well regarding to the equity.

7 Concluding remarks

We have presented a CP model along with several branching strategies in order to

solve a real-world problem which shares similarities both with the Tour Scheduling

Problem and the Fixed Job Scheduling Problem. For the sake of clarity we did not

mention the problem into its full complexity, but this model could be extended in or-

der to deal with additional legal constraints such as break constraints but also more

complex equity objectives such as the distribution of night or weekend shifts which are

also important for the company. This would lead to the interesting problem of de�ning

a good solution when facing multiple objectives. This approach deals simultaneously

with the task assignment problem and the design of personnel scheduling. We intend to

compare this approach with a sequential one which deals with the design of personnel

schedules before the task assignement problem.

We believe that our model could be improved in two ways. The �rst one is to work

on the branching strategies which clearly have a big impact on results. For instance,

it may be interesting to design a more complex variable ordering strategy, able to

mediate between the need to improve a solution and the need to keep room to avoid
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dead ends. The second lead is to strengthen the �ltering process by using redundant

constraints: set variables are a powerful tool which makes constraints easy to write, but

they su�er from a weak �ltering. Consequently, adding integer variables and channeling

constraints may increase the �ltering and therefore the performances of the model.

Our results show that branching strategies can successfully complete one another

by being used, either in series or in a combined way. A more thorough study of the

impact of parameters would allow to get sharpened conclusions, but the main con-

clusions remain: many results are good enough to be used by the company whereas

others need to be improved. Since the model encounters some di�culties to improve a

solution, it may be interesting to use another method such as a Large Neighbourhood

Search ([19]), as a following of our method. Since the number of unassigned tasks is

on average very small, it may be much more e�cient to explore some targeted neigh-

bourhood rather than following the basic tree exploration in order to �nd complete

assignments. In order to evaluate in a better way the quality of our approach, future

work may also focus on the search of optimal solutions and lower bounds regarding to

the equity and the number of externals required to perform each tasks. However our

optimal criterion makes this task di�cult. Working on the sequential approach (shifts

are �xed) makes this task a bit easier. In this context, we proposed two lower bounds

for the equity value ([18]). However they do not correspond to the lower bound for the

general problem studied in this paper and hence need to be adapted which seems very

challenging.
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