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Abstract We consider the problem of creating fair course timetables in the setting of a
university. Our motivation is to improve the overall satisfaction of individuals concerned
(students, teachers, etc.) by providing a fair timetable to them. The central idea is that un-
desirable arrangements in the course timetable, i. e., violations of soft constraints, should be
distributed in a fair way among the individuals. We propose two formulations for the fair
course timetabling problem that are based on max-min fairness and Jain’s fairness index, re-
spectively. Furthermore, we present and experimentally evaluate an optimization algorithm
based on simulated annealing for solving max-min fair course timetabling problems. The
new contribution is concerned with measuring the energy difference between two timetables,
i. e., how much worse a timetable is compared to another timetable with respect to max-min
fairness. We introduce three different energy difference measures and evaluate their impact
on the overall algorithm performance. The second proposed problem formulation focuses on
the tradeoff between fairness and the total amount of soft constraint violations. Our exper-
imental evaluation shows that the known best solutions to the ITC2007 curriculum-based
course timetabling instances are quite fair with respect to Jain’s fairness index. However,
the experiments also show that the fairness can be improved further for only a rather small
increase in the total amount of soft constraint violations.

Keywords Curriculum-based Course Timetabling, Max-Min Fairness, Fairness Index

1 Introduction

We consider the problem of creating fair course timetables in the setting of a university.
In academic timetabling, the courses need to be assigned to a limited number of resources
(rooms and timeslots) such that certain constraints are satisfied There are typically two
kinds of constraints called hard and soft constraints. The hard constraints are basic require-
ments, so a timetable which does not satisfy all hard constraints is considered useless. The
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soft constraints characterize certain undesirable properties of a timetable for students and
teachers, as well as for abstract entities such as courses and curricula. The quality of a
timetable is determined by the extent to which soft constraints are violated: the fewer soft
constraint violations, the better. The usual approach is to use an objective function which
penalizes the soft constraint violations so the goal is to f nd a timetable with a minimal total
penalty. Situations may arise however, in which a large part of penalty hits only a small
group of individuals, who would thus receive a poor timetable in comparison to others. In
other words, a timetable may be unfair due to an unequal distribution of penalty.

Fairness and inequality in the distribution of resources are a major concern for instance
in economics [15,36] and computer networks [4–6,17,18,20,31,35]. In the area of opera-
tions research, fairness criteria have been applied for example to the aircraft landing prob-
lem [37]. To the best of our knowledge, no previous paper on academic timetabling ad-
dresses fairness explicitly. In this paper, we investigate two approaches that avoid unfair
distributions of penalty in the context of academic course timetabling. The f rst approach
uses a purely qualitative measure of fairness, i. e., given two timetables the fairness measure
determines which of the two is better. In contrast, the second approach is based on a quan-
titative fairness measure, which represents the fairness of a timetable as a number between
zero and one.

The f rst approach considers groups of students ranked by the quality of the course
timetable from the students’ perspective. The goal is to improve the student satisfaction by
imposing the following fairness conditions: The courses should be assigned to rooms and
timeslots such that the worst course schedule for any of the students is as good as pos-
sible with respect to the various soft constraints. Under this condition, the second-worst
course schedule for any student should be as good as possible, and so forth. This fairness
concept is called lexicographic max-min fairness. For the sake of succinctness, we will re-
fer to this fairness concept just as max-min fairness. In the literature, max-min fairness
has for example been applied to network bandwidth allocation problems [31,35]. In this
work, we propose the MMF-CB-CTT problem model, a max-min fair variant of the popular
curriculum-based course timetabling (CB-CTT) problem formulation from [13]. We further
propose MAXMINFAIR SA, an optimization algorithm based on simulated annealing (SA),
for solving max-min fair optimization problems. Although our evaluation of MAXMIN-
FAIR SA focuses on MMF-CB-CTT problems, the algorithm can be tailored to other max-
min fair problems by choosing an appropriate neighborhood exploration mechanism and a
suitable evaluation function. A delicate part of the algorithm is the energy difference func-
tion, which quantif es how much worse one solution is compared to another solution. We
propose three different energy difference functions and evaluate their impact on the perfor-
mance of MAXMINFAIR SA on the 21 standard instances from [13].

The fairness conditions imposed by max-min fairness are rather strict in the sense that
no tradeoff arises between fairness and total penalty. When creating course timetables for a
university, however, it may be desirable to pick a timetable from a number of solutions with
varying tradeoffs between fairness and total penalty. Our second proposed approach offers
this f exibility. The approach is based on a bi-criteria problem formulation which includes
fairness as an option, but does not enforce it like max-min fair optimization. In this problem
formulation, referred to as JFI-CB-CTT, we use Jain’s fairness index, an inequality measure
proposed by Jain et al. in [17]. The fairness index allows us to quantify the fairness of a
timetable explicitly. Please note that since max-min fairness is a purely qualitative fairness
measure, it is not applicable in this setting. We investigate the tradeoffs between fairness
and total penalty for the six standard instances from [13] whose known best solutions have
the highest total penalty compared to the other instances. Our motivation for this choice of
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instances is simply that if the total penalty of a timetable is very small, then there is not much
gain in distributing the penalty in a fair way. Our conclusion regarding this approach is that,
although the known best solutions for the six instances are quite fair, we can improve the
fairness further with only a rather small increase in total penalty. For a theoretical treatment
of the price of fairness on so-called convex utility sets with respect to proportional fairness
and max-min fairness, see the recent work by Bertsimas et al. [6].

The remainder of this paper is organized as follows. In Section 2, we will provide a
brief review of the curriculum-based course timetabling (CB-CTT) problem model as well
as the two fairness concepts max-min fairness and Jain’s fairness index. In Section 3 we
will propose two fair variants of the CB-CTT model, and in Section 4, we will introduce the
optimization SA-based algorithm MAXMINFAIR SA for solving max-min fair allocation
problems. Section 5 is dedicated to our experimental evaluation of the fairness of the known
best solutions to 21 standard instances from [13] with respect to max-min fairness and Jain’s
fairness index, and the performance of the MAXMINFAIR SA algorithm.

2 Preliminaries

In this section, we provide a brief review of the curriculum-based course timetabling prob-
lem formulations as well as relevant def nitions concerning max-min fairness and Jain’s
fairness index.

2.1 Curriculum-based Course Timetabling Problems

Curriculum-based Course Timetabling (CB-CTT) is a problem formulation for a class of
optimization problems which arise when creating course schedules in the setting of a uni-
versity. A central entity in the problem model is the curriculum. Each curriculum consists of
a set of courses which must be attended by a common group of students and thus must not
be held simultaneously. Our experimental evaluation of fairness in academic timetabling is
based on the CB-CTT problem formulation introduced for Track 3 of the Second Interna-
tional Timetabling Competition (ITC2007) [27]. This formulation has emerged as one of the
standard problem formulations in academic timetabling – both in research and in practice.

CB-CTT problems are NP-hard and a lot of effort has been devoted to f nding heuristic
approaches which provide high quality solutions within reasonable time. A wide range of
techniques has been employed for solving CB-CTT instances including but not limited to
approaches based on Max-SAT [2], mathematical programming [24,8], local search [12,
26], evolutionary computation [1] as well as hybrid approaches [29]. There has been a lot of
progress in terms of the achieved solution quality in the recent years. Interestingly however,
there seems to be no single approach which is superior to the other approaches on all (or
even most) ITC2007 instances (see [13] for current results).

A CB-CTT instance consists of the following data: We are given a set of days and each
day is divided into a f xed number of timeslots. A pair composed of a day and a timeslot
will be referred to as period. A period in conjunction with a room is called a resource.
Additionally, we are given sets of teachers, courses, rooms and curricula. Each course has
a teacher and consists of a number of lectures; each curriculum is a set of courses. For
each room, we are provided with the maximum number of students it can accommodate.
Now, given a CB-CTT instance I, the task is to create a course timetable τ , i. e., to f nd an
assignment of lectures to resources such that hard constraints are satisf ed and soft constraint
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violations are minimal. A comprehensive description of the problem model and the rationale
behind it can be found in [11].

A timetable which satisf es all hard constraints is called feasible. The hard constraints
ensure that no student and no teacher has to be present at two lectures at the same time
and no two lectures can occupy a room at the same time. Additionally, all lectures have
to be assigned to a suitable resource and, for each lecture, the teacher has to be available
in the given period. For our purpose of creating fair course timetables, we will consider
the distribution of soft constraint violations among the curricula. The CB-CTT formulation
features the following four soft constraints:
S1 RoomCapacity: Each lecture should be assigned to a room of suff cient size.
S2 MinWorkingDays: The lectures of each course should be distributed over a certain min-

imum number of days.
S3 IsolatedLectures: For each curriculum, all lectures associated to the curriculum should

be scheduled in adjacent timeslots.
S4 RoomStability: The lectures of each course should be assigned to the same room.
Each violation of one of the soft constraints results in a penalty for the timetable. The ob-
jective function aggregates individual penalties by taking their weighted sum. Detailed de-
scriptions of how hard and soft constraints are evaluated and how much penalty is applied
for a particular soft constraint violation can be found in [11].

2.2 Fairness in Resource Allocation

Fairness issues typically arise when scarce resources are allocated to a number of individ-
uals with demands. E. g., fair resource allocation has received much attention in economic
theory [15], but also occurs in a wide range of applications in computer science includ-
ing bandwidth allocation in networks [5] and task scheduling [34]. In many optimization
problems related to resource allocation, the goal is to maximize the amount of resources
allocated to each individual. Fairness conditions can be imposed implicitly or explicitly in
order to prevent unfair distributions of the allocated resources.

Consider a resource allocation problem with n entities or, in the following, individuals
receiving resources. A particular resource allocation (an admissible solution) induces an al-
location vector X = (X1, . . . ,Xn), where each item Xi,1 ≤ i ≤ n, corresponds to the amount
of resources allocated to individual i. There are various approaches to determining the fair-
ness of a resource allocation from the corresponding allocation vector. A fairness concept
which allows for a qualitative comparison of two allocation vectors is (lexicographic) max-
min fairness. It has received attention in the area of network engineering, in particular in
the context of f ow control [4,20,35,41]. Another class of approaches are inequality mea-
sures such as the Gini index [16] and Jain’s fairness index [17,25]: an inequal distribution
of resources is considered unfair. The inequality of a resources distribution is typically rep-
resented as a number, which allows for a quantitative comparison of the fairness of resource
allocations. Inequality measures have been studied in economics [15], in particular in the
context of income distribution. Furthermore, in many resource allocation problems, the no-
tion of fairness is implicitly contained in the objective function. Depending on the notion of
fairness, the task can be to f nd allocations maximizing or minimizing the sum of the indi-
vidual allocations, the mean allocation, the root mean square (RMS), the smallest allocation,
and so forth [30,37].

Our evaluation of fairness in academic course timetabling focuses on the two fairness
criteria max-min fairness and Jain’s fairness index.
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Max-min Fairness. Max-min fairness can be stated as iterated application of Rawls’s Sec-
ond Principle of Justice [33]:

“Social and economic inequalities are to be arranged so that they are to be of greatest
benef t to the least-advantaged members of society.” (the Difference Principle)

Once the status of the least-advantaged members has been determined according to the dif-
ference principle, it can be applied again to everyone except the least-advantaged group in
order to maximize the utility (in the economic sense) for the second least-advantaged mem-
bers, and so on. The resulting utility assignment is called max-min fair. A max-min fair
utility assignment implies that no member can improve its utility at the expense of any other
member who received less utility. A max-min fair resource allocation is Pareto-optimal.

In order to def ne max-min fairness more formally, we introduce some notation. Let X
be an allocation vector. Then let ~X be the corresponding vector containing the values of
X arranged in nondecreasing order. Let Y be another allocation vector. We write X �mm

Y if X is at least as good as Y in the max-min sense, that is if ~Y �lex ~X , where �lex is
the usual lexicographic comparison. A resource allocation X is called max-min optimal, if
X �mm Y holds for all feasible resource allocations Y . Since the allocations are sorted, max-
min fairness does not discriminate between individuals, but only between the amounts of
resources assigned to them.

A weaker version of max-min fairness results if the fairness conditions are not applied
iteratively as stated in the above def nition. This means that we are just concerned with
chosing the best possible outcome for the least-advantaged individuals. In the literature,
related optimization problems are referred to as bottleneck optimization problems [14,32].
In the context of academic timetabling however, this weaker fairness concept does not lead
to desirable results: although, from the perspective of the least-advantaged group a timetable
may be optimal, the quality of the timetable from the perspective of other stakeholders is not
considered.

Jain’s Fairness Index. While max-min fairness enforces a certain eff ciency in resource uti-
lization and provides a qualitative measure of fairness, Jain’s fairness index [17] quantif es
the inequality of a given resource distribution. An equal distribution of resources is consid-
ered fair, while an inequal distribution is considered unfair. It is the crucial fairness measure
that is applied in the famous AIMD algorithm used in TCP Congestion Avoidance [10]. The
fairness index J(X) of an allocation vector X is def ned as

J(X) =

(

∑
1≤i≤n

Xi

)2

n · ∑
1≤i≤n

X2
i

. (1)

It has several useful properties like population size independence, scale and metric inde-
pendence, it is bounded between 0 and 1, and it has an intuitive interpretation. In particular
J(X) = 1 means that X is a completely fair allocation, i. e., the allocation is fair for every
individual, and if J(X) = 1/n then all resources are occupied by a single individual. Further-
more, if J(X) = x% then the allocation X is fair for x percent of the individuals.

3 Fairness in Academic Course Timetabling

Course timetabling problems f t quite well in the framework of fair resource allocation prob-
lems described in the previous section: A timetable is an allocation of resources (rooms,
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timeslots) to lectures. In this section, we will def ne two fair versions of the CB-CTT prob-
lem model. The f rst one, MMF-CB-CTT, is based on max-min fairness. Since max-min
fairness enforces eff ciency (maximum utility) as well as fairness at least to some extent, it
is not a suitable concept for exploring the tradeoff between fairness and eff ciency. There-
fore we propose a second fair variant of CB-CTT called JFI-CB-CTT that is based on Jain’s
fairness index.

In order to employ the fairness concepts mentioned in the previous section, we need
to def ne how to determine the allocation vector for a timetable. The central entities in the
CB-CTT problem model are the curricula. Therefore, in this work, we are interested in a
fair distribution of the penalty values assigned to the curricula. Please note that we interpret
utility as the opposite of penalty. Hence, a timetable which receives less penalty than an-
other timetable has a higher utility. We achieve the transformation from penalty to utility by
simply changing the signs of the penalty values. Let I be a CB-CTT instance with curricula
c1,c2, . . . ,ck and let fc be the usual CB-CTT objective function from [11], which evaluates
(S1)-(S4) restricted to curriculum c. This means fc determines soft constraint violations only
for the courses in curriculum c. For a timetable t the corresponding allocation vector is given
by the allocation function

A(t) = (− fc1(t),− fc2(t), . . . ,− fck(t)) . (2)

Definition 1 (MMF-CB-CTT) Given a CB-CTT instance I, the task is to f nd a feasible
timetable t such that A(t) is max-min optimal.

If a feasible timetable corresponds to a max-min optimal allocation, then any curriculum
c could receive less penalty only at the expense of other curricula which receive more penalty
than c. Since each student is struck only by the penalty assigned to his or her curriculum the
group of students with the worst timetable receive the best possible timetable and under this
condition, the students with the second-worst timetable receive the best possible timetable,
and so on.

In order to explore the tradeoff between eff cient and fair resource allocation in curricu-
lum-based timetabling, we propose another fair variant of CB-CTT called JFI-CB-CTT that
is based on Jain’s fairness index [17]. In order to get meaningful results from the fairness
index however, we need a different allocation function. Consider an allocation X , where all
penalty is allocated to a single curriculum while the remaining k− 1 curricula receive no
penalty. Then J(X) = 1/k, which means that only one curriculum is happy with the alloca-
tion (see [17]). In our situation however, the opposite is the case: k− 1 curricula are happy
since they receive no penalty at all. The following allocation function shifts the penalty
values such that the corresponding fairness index in the situation described above becomes
(k−1)/k, which is in much better agreement with our intuition:

A′(t) = ( fmax− fc1(t), fmax− fc2(t), . . . , fmax− fck(t)) , (3)

with
fmax = max

1≤i≤k
{ fci(t)} .

Definition 2 (JFI-CB-CTT) Given a CB-CTT instance I, the task is to f nd the set of fea-
sible solutions which are Pareto-optimal with respect to the two objectives of the objective
function

F(t) = ( f (t),1− J(A′(t))) , (4)

where f is the CB-CTT objective function from [11] and J is def ned in Eq. (1).
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In a similar fashion, other classes of timetabling problem such as post-enrollment course
timetabling, exam timetabling and nurse rostering can be turned into fair optimization prob-
lems. For example, for post-enrollment course timetabling, the central entities of interest
would likely be the individual students, not the curricula as for CB-CTT problems. There-
fore, the goal would be a fair distribution of penalty over all students. Once an appropriate
allocation function has been def ned, we immediately get the corresponding fair optimiza-
tion problems.

Our proposed problem formulations are concerned with balancing the interests within
one group of indiviuals, namely the students. In practice however, there are often several
groups of individuals with possibly conf icting interest, for example students, lecturers and
administration. The proposed models can be extended to multiple groups of stakeholders in
a straight-forward manner: The penalty values for all individuals (in all groups) are stored in
the allocation vector, and since all values are just penalty values, the fairness concepts can be
applied as proposed above. This approach requires some additional thought however, since
the interest of all individuals are considered to be equally important, which may or may
not be intended in practice (weighting can be applied of course). Another approach, which
avoids the problem of giving explicit priorities to the interests of different groups extends the
problem formulation based on Jain’s fairness index: The fairness index can be determined
independently for each group and the problem model can be extended to a (d+1)-objective
optimization problem, where d is the number of groups of stakeholders under consideration.
The set of Pareto-optimal solutions characterizes the tradeoffs between the interests of the
different groups and the total penalty.

4 Simulated Annealing for Max-Min Fair Course Timetabling and Three Measures
for Energy Difference

Simulated Annealing (SA) is a popular local search method which works surprisingly well
on many problem domains [19]. SA has been applied successfully to timetabling prob-
lems [21,38] and some of the currently known best solutions to CB-CTT instances from the
ITC2007 competition were discovered by simulated annealing-based methods [13]. Our SA
for max-min fair optimization problems shown in Algorithm 1 below (algorithm MAXMIN-
FAIR SA) is conceptually very similar to the original SA algorithm proposed by Kirkpatrick
et al. [19]. Since max-min fairness only tells us which of two given solutions is better, but not
how much better, the main challenge in tailoring SA to max-min fair optimization problems
is to f nd a suitable energy difference function, which quantif es the difference in quality
between two candidate solutions. In the following, we propose three different energy differ-
ence measures for max-min fair optimization and provide details on the acceptance criterion,
the cooling schedule, and the neighborhood exploration method used for the experimental
evaluation of MAXMINFAIR SA in the next section.

Acceptance Criterion. Similar to the original SA algorithm proposed by Kirkpatrick et al.
in [19], algorithm MAXMINFAIR SA accepts an improved or equally good solution snext
with probability 1. If snext is worse than scur then the acceptance probability depends on the
current temperature level ϑ and the energy difference ∆E. The energy difference measures
the difference in quality of the allocation induced by snext compared to the allocation induced
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Algorithm 1: MAXMINFAIR SA
input : scur: feasible timetable, ϑmax: initial temperature, ϑmin: f nal temperature, timeout
output: sbest: Best feasible timetable found so far
sbest ← scur
ϑ ← ϑmax
while timeout not hit do

snext ← neighbor(scur)
if Paccept ≥ random() then scur ← snext
if A(scur)�mm A(sbest) then sbest ← scur
ϑ ← next temperature(ϑ)

end
return sbest

by the current solution scur. The acceptance probability Paccept is def ned as:

Paccept =







1 if snext �mm scur

exp
(

−
∆E(X ,Y )

ϑ
)

otherwise,

where X = A(scur) and Y = A(snext). With max-min fair optimization in mind, we propose
the following three energy different measures for the energy difference, ∆Elex, ∆Ecw, and
∆Eps, which are based on lexicographic comparison, component-wise ratios and the ratios
of the partial sums of the sorted allocation vectors, respectively. Our experiments presented
in the next section indicate that choosing one energy difference function over another has a
clear impact on the performance of Algorithm MAXMINFAIR SA. Hence the choice of the
energy difference function is a critical design choice.

For two allocation vectors X and Y of length n, let the energy difference ∆Elex be (note
~Xi denotes the ith entry after sorting the entries of X ,~Yi is def ned analoguously)

∆Elex(X ,Y ) = 1−
1
n
·

(

min
1≤i≤n

{

i | ~Xi >~Yi

}

+1
)

. (5)

∆Elex determines the energy difference between X and Y from the index of the sorted al-
location vectors at which the comparison X �mm Y shows that X is better than Y . Thus,
sorted allocation vectors which differ at the most signif cant indices have a higher energy
difference than those which differ at later indices. In order to make the numerical range of
∆Elex independent of the actual size of the allocation vector, which may vary from instance
to instance, the result is normalized by the length nof the allocation vectors.

∆Elex only considers the earliest index at which two sorted allocation vectors differ
but ignores how much the actual entries differ. We additionally propose the two energy
difference measures ∆Ecs and ∆Eps which take this information into account. These two
energy difference measures were inspired by the def nitions of approximation ratios for max-
min fair allocation problems given by Kleinberg et al. in [20]. An approximation ratio is a
measure for how much worse the quality of a solution is relative to a possibly unknown
optimal solution. In our case, we are interested in how much worse one given allocation
is relative to another given allocation. Despite the different context, we can use the same
general ideas. Let µX ,Y be the smallest value of the two allocation vectors X and Y offset by
a parameter δ > 0, i. e.,

µX ,Y = min{~X1,~Y1}−δ . (6)
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The component-wise energy difference ∆Ecw of two allocations X and Y is def ned as:

∆Ecw(X ,Y ) = max
1≤i≤n

{

µX ,Y −~Xi

µX ,Y −~Yi

}

−1 (7)

Unlike ∆Elex, the component-wise energy difference does not take into account explicitly
which entries of the sorted allocation vectors are responsible for X �mm Y . There is however
a bias towards the ratios of entries which occur early in the sorted allocation vectors. Since
all entries are subtracted from µX ,Y , the ratios of the most signif cant entries with respect to
�mm tend to govern the value component-wise energy difference. Consider for example the
situation that Y is much worse than X , say, min{~X1,~Y1} occurs more often in X than in Y .
Then for δ ≪ 1 the energy difference ∆Ecw(X ,Y ) becomes large. On the other hand, if X is
nearly as good as Y then the ratios are all close to one and thus ∆Ecw(X ,Y ) is close to zero.

The third proposed energy difference measure ∆Eps is based on the ratios of the partial
sums σi(X) of the sorted allocation vectors.

σi(X) = ∑
1≤ j≤i

X j .

The intention of using partial sums of the sorted allocations is to give the individuals who
receive the most penalty, and hence occur early in the sorted allocation vectors, more inf u-
ence on the resulting energy difference compared to ∆Ecw. The energy difference ∆Eps is
def ned as

∆Eps(X ,Y ) = max
1≤i≤n

{

i ·µX ,Y −σi(~X)

i ·µX ,Y −σi(~Y )

}

−1 . (8)

Cooling Schedule. In algorithm MAXMINFAIR SA, the function next temperature up-
dates the current temperature level ϑ according to the cooling schedule. We use a standard
geometric cooling schedule

ϑ = α t ·ϑmax ,

where α is the cooling rate and t is the elapsed time. Geometric cooling schedules de-
crease the temperature level exponentially over time. It is a popular class of cooling sched-
ules which is widely used in practice and works well in many problem domains including
timetabling problems [23,22,39]. Geometric cooling was chosen due to its simplicity, since
the main focus of our evaluation in Section 5 is the performance impact of the different en-
ergy difference functions. We have made a slight adjustment to the specif cation of the geo-
metric cooling schedule in order to make the behavior more consistent for different timeouts.
Instead of specifying the cooling rate α , we determine α from ϑmax, the desired minimum
temperature ϑmin and the timeout according to:

α =

(

ϑmin

ϑmax

)
1

timeout
. (9)

Thus, at the beginning (t = 0) the temperature level is ϑmax and when the timeout is reached
(t = timeout), the temperature level becomes ϑmin. We chose to set a timeout rather than a
maximum number of iterations since this setting is compliant with the ITC2007 competition
conditions, which are a widely accepted standard for comparing results.
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Table 1: Fairness of the known best timetables from [13] for the ITC2007 CB-CTT instances.

Instance Curricula f (sbest) J(A′(sbest)) −~A(sbest)

comp01 14 5 0.8571 52,012

comp02 70 24 0.9515 4,210,059

comp03 68 66 0.9114 13,103,9,72,64,513,4,26,037

comp04 57 35 0.8964 7,63,54,42,2,046

comp05 139 291 0.8277 412,367,355,325,316,309,28,277,262,2514, . . . ,2,03

comp06 70 27 0.9657 12,72,54,23,060

comp07 77 6 0.9870 6,076

comp08 61 37 0.9020 7,63,54,42,22,049

comp09 75 96 0.8047 105,9,710,66,510,4,2,041

comp10 67 4 0.9701 22,065

comp11 13 0 − 013

comp12 150 300 0.9128 45,3014,28,272,265,2519,224,216,208,19, . . . ,22,03

comp13 66 59 0.8830 8,7,65,57,42,23,047

comp14 60 51 0.9023 84,7,52,26,047

comp15 68 66 0.8495 103,93,7,64,513,4,27,036

comp16 71 18 0.9176 72,57,4,061

comp17 70 56 0.9248 102,63,59,24,052

comp18 52 62 0.9009 17,15,14,13,11,10,92,519,22,023

comp19 66 57 0.9612 13,7,64,52,4,27,050

comp20 78 4 0.9744 22,076

comp21 78 76 0.8838 12,11,104,9,74,64,512,4,23,12,045

Neighborhood. In our max-min fair SA implementation, the function neighbor picks at
random a neighbor in the Kempe-neighborhood of scur. The Kempe-neighborhood is the set
of all timetables which can be reached by performing a single Kempe-move, which is a well-
known and widely used operation for swapping events in a timetable [7,26,28,39,40]. A
prominent feature of Kempe-moves is that they preserve the feasibility of a timetable. Since
the algorithm MAXMINFAIR SA only uses Kempe-moves to modify timetables the output
is guaranteed to be feasible if the input timetable is feasible. In the future, more advanced
neighborhood exploration methods similar to those proposed for example in [12,26] could
be used, which may well lead to an improved overall performance of MAXMINFAIR SA.

5 Evaluation

In this section, we will f rst address the question how fair or unfair the known best timetables
for the ITC2007 CB-CTT instances are with respect to Jain’s fairness index and max-min
fairness. Table 1 shows our measurements of how fair the best existing solutions to the CB-
CTT instances comp01, comp02, . . . , comp21 are (see [13] for instance data). Please note
that the known best timetables were not created with fairness in mind, but the objective was
to create timetables with minimal total penalty. In Table 1, sbest refers to the known best
solution for each instance. A and A′ refer to the allocation functions given in (2) and (3),
respectively. The data indicates that the timetables with a low total penalty are also rather
fair. This can be explained by the fact that these timetables do not have a large amount
of penalty to distribute over the curricula. Thus, most curricula receive little or no penalty
and consequently, the distribution is fair for most curricula. We will show in Section 5.2
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Table 2: The performance of MAXMINFAIR SA with ∆E = ∆Ecw for different values of δ .

δ 100 10−2 10−3 10−6

100 – 02 02,05 02

10−2 10,19,20 – 09 19

10−3 01,10,19,20 – – 03,19

10−6 01,10,20 – – –

however, that for timetables with a comparatively large total penalty there is still some room
for improvement concerning fairness.

The rightmost column of Table 1 contains the sorted allocation vectors of the best so-
lutions. For a more convenient presentation, all entries of the sorted allocation vectors are
multiplied by -1. The exponents denote how often a certain number occurs. For example,
the sorted allocation vector (−5,−5,0,0,0) would be represented as 52,03. The sum of the
values of an allocation vector is generally much larger than the total penalty shown in the
second column. The reason for this is that the penalty assigned to a course is counted for
each curriculum the course belongs to. With a few exceptions the general theme seems to be
that the penalty is assigned to only a few curricula while a majority of curricula receives no
penalty. In the next section we will show that the situation for the curricula which receive
the most penalty can be improved with max-min fair optimization for 15 out of 21 instances.

5.1 Max-Min Fair Optimization

In Section 4, we presented a SA-based algorithm for solving max-min fair resource allo-
cation problems. A crucial part of this algorithm is the energy difference measure which
determines how much worse a given solution is compared to another solution, i.e. the en-
ergy difference of the solutions. We evaluate the impact of the three energy difference mea-
sures (5), (7) and (8) on the performance of MAXMINFAIR SA.

Our test setup was the following: For each energy difference function we independently
performed 50 runs with MAXMINFAIR SA. The temperature levels were determined ex-
perimentally, we set ϑmax = 5 and ϑmin = 0.01; the cooling rate α was set according to (9).
In order to establish consistent experimental conditions for fair optimization, we used a
timeout, which was determined according to the publicly available ITC2007 benchmark
executable. On our machines (i7 CPUs running at 3.4GHz, 8GB RAM), the timeout was
set to 192 seconds. The MAXMINFAIR SA algorithm was executed on a single core. We
generated feasible initial timetables for MAXMINFAIR SA as a preprocess using standard
sequential heuristics [9]. The soft constraint violations were not considered at this stage.
Since the preprocess was performed only once per instance (not per run), it is not counted
in the timeout. However, the time it took was negligible compared to the timeout (less than
1 second per instance).

Table 2 shows the impact of the parameter δ on the performance of MAXMINFAIR SA
with energy difference measure ∆Ecw. For each pair of values we performed the one-sided
Wilcoxon Rank-Sum test with a signif cance level of 0.01. The data indicates that for best
performance, δ should be small, but not too small. For δ = 1, MAXMINFAIR SA beats the
other shown conf gurations on instance comp02 but performs worse than the other conf g-
urations on instances comp10 and comp20. For δ = 10−6 the overall performance is better
than for δ = 1, but worse than for the other conf gurations. With δ = 10−2 and δ = 10−3,
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Table 3: The performance of MAXMINFAIR SA with energy difference measures ∆Elex, ∆Eps and ∆Ecw.

∆E ∆Elex ∆Eps ∆Ecw

∆Elex – – –
∆Eps all except 01,06,08,11,17 – 18

∆Ecw all except 11 06,07,08,17,21 –

MAXMINFAIR SA shows the best relative performance. Thus, for our further evaluation we
set δ = 10−3.

Table 3 shows the relative performance of Algorithm MAXMINFAIR SA for the pro-
posed energy difference measures (5), (7) and (8). The table shows for any choice of two
energy difference measures i and j, for which instances MAXMINFAIR SA with measure i
performs signif cantly better than MAXMINFAIR SA using measure j. Again, we used the
Wilcoxon Rank-Sum test with a signif cance level of 1 percent. The data shows that ∆Ecw

is the best choice among the three alternatives, since it is a better choice than ∆Elex on all
instances except comp11 and a better choice than ∆Eps on f ve out of 21 instances. However,
although ∆Ecw shows signif cantly better performance than the other energy difference mea-
sures, it did not necessarily produce the best timetables on all instances. For the instances
comp03, comp15, comp05 and comp12 for example, the best solution found with ∆E = ∆Eps

was better than with ∆E = ∆Ecw.
The data in Table 4 shows a comparison of the sorted allocation vectors of the known

best solutions from [13] with the best solutions found by the 50 runs of MAXMINFAIR SA
with ∆E = ∆Ecw. First of all, for instances comp01 and comp11, the allocation vectors of
the best existing solutions and the best solution found by MAXMINFAIR SA are identical.
This means that MAXMINFAIR SA f nds reasonably good solutions despite the certainly
more complex f tness landscape due to max-min fair optimization. We can also observe that
the maximum penalty any curriculum receives is signif cantly less for most instances and
the penalty is more evenly distributed across the curricula. This means that although max-
min fair timetables may have a higher total penalty, they might be more attractive from the
students’ perspective, since in the f rst place each student notices an unfortunate arrangement
of his/her timetable, which is tied to the curriculum. Furthermore, we can observe that if the
total penalty of a known best solution is rather low, then it is also good with respect to
max-min fairness. For several instances in this category, (comp01, comp04, comp07, comp10
and comp20), the solution found by MAXMINFAIR SA is not as good as the known best
solution with respect to max-min fairness. We can conclude that if there is not much penalty
to distribute, it is not necessary to bother about a fair distribution of penalty.

5.2 The Tradeoff Between Fairness and Eff ciency

We proposed the JFI-CB-CTT problem formulation in Section 3, which allows us to inves-
tigate the tradeoff between fairness and eff ciency which arises in course timetabling. We
can observe in column 4 of Table 1 that for all of the best solutions from [13] the fairness
index (1) is greater than 0.8, i. e., the known best solutions are also fair for more than 80
percent of the curricula. In order to solve the corresponding JFI-CB-CTT instances, we use
the multi-objective optimization algorithm AMOSA proposed in [3] that is based on simu-
lated annealing like Algorithm MAXMINFAIR SA. Since we do not expect from a general
multi-objective optimization algorithm to produce solutions as good as the best CB-CTT
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Table 4: Comparison of the sorted allocation vectors of the known best solutions from [13] with the allocation
vectors found by MAXMINFAIR SA with respect to max-min fairness.

Instance Known best solution MAXMINFAIR SA (∆E = ∆Ecw)
comp01 52,012 52,012

comp02 4,210,059 42,231,17,030

comp03 13,103,9,72,64,513,4,26,037 64,411,222,13,028

comp04 7,63,54,42,2,046 64,42,24,1,046

comp05 412,367,355,325,316,309,28, . . . ,2,03 192,183,173,165,152,1415,135, . . . ,48,33,2
comp06 12,72,54,23,060 12,42,230,113,024

comp07 6,076 6,223,124,029

comp08 7,63,54,42,22,049 64,42,27,15,043

comp09 105,9,710,66,510,4,2,041 69,414,217,035

comp10 22,065 219,16,042

comp11 013 013

comp12 45,3014,28,272,265,2519,224, . . . ,22,03 103,96,831,77,643,52,436,32,216,1,03

comp13 8,7,65,57,42,23,047 66,44,213,16,037

comp14 84,7,52,26,047 84,42,3,218,035

comp15 103,93,7,64,513,4,27,036 64,411,223,12,028

comp16 72,57,4,061 45,216,14,046

comp17 102,63,59,24,052 102,62,47,3,225,17,026

comp18 17,15,14,13,11,10,92,519,22,023 420,211,15,016

comp19 13,7,64,52,4,27,050 64,46,215,114,027

comp20 22,076 45,33,231,17,032

comp21 12,11,104,9,74,64,512,4,23,12,045 10,64,5,415,3,236,13,017

solvers, we will consider the following scenario to explore the tradeoffs between fairness
and eff ciency: starting from the known best solution we examine how much increase in
total penalty we have to tolerate in order to increase the fairness further. We will take as ex-
amples the six instances with the highest total amount of penalty, comp03, comp05, comp09,
comp12, comp15 and comp21.

The temperature levels for the AMOSA algorithm were set to ϑmax = 20 and ϑmin =
0.01; α was set according to (9) with a timeout determined by the off cial ITC2007 bench-
mark. The plots in Figure 1 show the (Pareto-) non-dominated solutions found by AMOSA.
The arrows point to the starting point, i.e. the best available solutions to the corresponding
instances. For instances comp05 and comp21 solutions with a lower total cost than the the
previously known best solutions were discovered by this approach. The plots show that the
price for increasing the fairness is generally not very high – up to a certain level, which
depends on the instance. In fact, for comp09 and comp21, the fairness index can be increased
by 3.5 percent and 1.4 percent, respectively, without increasing the total penalty at all.

In Figure 1, the straight lines that go through the initial solutions show a possible tradeoff
between fairness and eff ciency: the slopes were determined such that a 1 percent increase
in fairness yields a 1 percent increase in penalty. For the instances shown in Figure 1, the
solutions remain close to the tradeoff lines up to a fairness of 94 to 97 percent, while a further
increase in fairness demands a signif cant increase in total cost. For the instances comp05,
comp09 and comp15, there are several solutions below the tradeoff lines. Picking any of the
solutions below these lines would result in an increased fairness without an equally large
increase in the amount of penalty. This means picking a fairer solution might well be an
attractive option in a real-world academic timetabling context. For comp05 for example, the
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fairness of the formerly best known solution with a total penalty of 291 can be increased by
5.4 percent at 302 total penalty, which is a 3.8 percent increase.

In summary, improving the fairness of an eff cient timetable as a post-processing step
seems like a viable approach for practical decision making. Using a very eff cient solution
as a starting point means that we can benef t from the existing very good approaches to
creating timetables with minimal total cost and provide improved fairness depending on the
actual, instance-dependent tradeoff.

6 Conclusion

In this paper we introduced two new problem formulations for academic course timetabling
based on the CB-CTT problem model from track three of the ITC2007, MMF-CB-CTT
and JFI-CB-CTT. Both problem formulations are aimed at creating fair course timetables
in the setting of a university but include different notions of fairness. Fairness in our setting
means that the penalty assigned to a timetable is distributed in a fair way among the different
curricula. The MMF-CB-CTT formulation aims at creating max-min fair course timetables
while JFI-CB-CTT is a bi-objective problem formulation based on Jain’s fairness index. The
motivation for the JFI-CB-CTT formulation is to explore the tradeoff between a fair penalty
distribution and a low total penalty.

Furthermore, we proposed an optimization algorithm based on simulated annealing for
solving MMF-CB-CTT problems. A critical part of the algorithm is concerned with mea-
suring the energy difference between two timetables, i.e., how much worse a timetable is
compared to another timetable with respect to max-min fairness. We evaluated the perfor-
mance of the proposed algorithm for three different energy difference measures on the 21
CB-CTT benchmark instances. Our results show clearly that the algorithm performs best
with ∆Ecw as energy difference measure.

Additionally, we investigated the fairness of the known best solutions of the 21 CB-CTT
instances with respect to max-min fairness and Jain’s fairness index. These solutions were
not created with fairness in mind, but our results show that all of the solutions have a fairness
index greater than 0.8. This means they can be considered quite fair. Nevertheless, our results
show that some improvements are possible with respect to both max-min fairness and Jain’s
fairness index. The timetables produced by our proposed MAXMINFAIR SA algorithms are
better than the known best ones with respect to max-min fairness for 15 out of 21 instances.
Our investigation of the tradeoff between fairness and the total amount of penalty using the
JFI-CB-CTT problem formulation shows that the fairness of the known best timetables can
be increased further with only a small increase of the total penalty.
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Fig. 1: Non-dominated solutions found by the AMOSA algorithm for the JFI-CB-CTT versions of instances
comp03, comp05, comp09, comp12, comp15 and comp21. All graphs show the fairness index on the horizon-
tal axis and the amount of penalty on the vertical axis.
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