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Introduction Semidefinite programming (SDP) is a subfield of convex optimisation (Wolkowicz,
Saigal, & Vandenberghe, 2000). It has recently gained considerable attention, as it makes
it possible to derive strong lower bounds for minimisation problems in combinatorial op-
timisation (Goemans & Rendl, 2000), as well as to obtain very good solutions using ran-
domised rounding. In some of the present-best approximation algorithms, both lower and
upper bounds are obtained in this fashion. There seem to be, however, only few applications
to practical scheduling, timetabling, or rostering problems.

At PATAT 2010, (Burke, Mareček, & Parkes, 2011) presented an SDP relaxation of
bounded graph colouring, which can be used to detection the infeasibility in many timetabling
problems. Subsequently, they have introduced relaxation for a number of timetabling prob-
lems in an extended version of their paper. In this abstract, we present augmented La-
grangian methods, also known as boundary point methods or proximal methods, for solving
such relaxations.
Semidefinite Programming Semidefinite programming (SDP, Bellman & Fan, 1963; Al-
izadeh, 1995; Wolkowicz et al., 2000) is a popular generalisation of linear programming,
replacing the vector variable with a square symmetric matrix variable and the polyhedral
symmetric convex cone of the positive orthant with the non-polyhedral symmetric convex
cone of positive semidefinite matrices. The primal-dual pair in the standard form is:

zp = min
X∈S n

〈C,X〉 s. t. AA(X) = b and X � 0 (P SDP)

zd = max
y∈Rm,S∈S n

bT y s. t. A ∗
A (y)+S =C and S� 0 (D SDP)

where X is a primal variable in the set of n× n symmetric matrices S n, y and S are the
corresponding dual variables, b is an m-vector, C, Ai are compatible matrices, and lin-
ear operator AA(X) maps symmetric n× n matrices to vectors in Rm. The ith element
AA(X)i = 〈Ai,X〉, and the adjoint is A ∗

A (y) = ∑i yiAi. M � N or M−N � denotes M−N
is positive semidefinite. Note that an n×n matrix, M, is positive semidefinite if and only if
yT My≥ 0 for all y ∈Rn.
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All relaxations of (Burke et al., 2011), use linear equalities given by the adjacency
matrix of the conflict graph, further linear equalities and further linear inequalities. These
are best treated explictly in the primal-dual pair:

zp = min
X∈S n

〈C,X〉 s. t. AA1(X) = b1 and AA2(X) = b2 and AB(X)≥ d and X � 0

zd = max
y1∈Rm,y2∈Rp,v∈Rq,S∈S n

bT
1 y1 +bT

2 y2 +dT v (1)

s. t. A ∗
A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S =C and S� 0 and v≥ 0.

where AA1(X),b1,AA2(X),b2 are given by the conflict graph and further linear equalities,
specific to a particular timetabling problem, respectively, d is a q-vector, and linear operator
AB(X) maps n×n matrices to q-vectors similarly to AA above. As all linear combinations
with non-negative coefficients of positive semidefinite matrices are positive semidefinite,
X � 0 should again be seen as a restriction to a convex cone. This extends the approach of
Wen, Goldfarb, and Yin (2010), who treat linear inequalities explicitly.
Semidefinite Programming Solvers Traditionally, SDP is solved using primal-dual interior
point methods (Wright, 1997): From the KKT conditions, comprising of the primal (P
SDP) and dual (D SDP) problems and the complementarity condition ZX = 0, one derives
the “Newton system” by relaxing the complementarity condition to ZX = µI or similar.
These methods are also referred to as second-order, as they employ the second-order par-
tial derivatives, unlike first-order methods, which use only first derivatives. Povh, Rendl,
and Wiegele (2006) observe that implementations of second-order methods for computing
theta-like SDP relaxations are currently limited to graphs of about 10,000 edges, which
amounts to little more than 100 vertices in the dense graphs found in timetabling applica-
tions.

First-order Lagrangian methods have long been used as an alternative. In iteration k of
solving a semidefinite program in standard form, one updates Xk to Xk+1 as follows:

(yk+1,Sk+1) =argminy,S−bT y+ 〈Xk,A ∗
A (y)+S−C〉 (2)

Xk+1 =Xk +µ
−1(A ∗

A (y
k+1)+Sk+1−C) (3)

This approach suffers from two major drawbacks: the convergence may be frail and the
minimisation of the Lagrangian (2) may turn out to be expensive. The first drawback may
be alleviated by augmenting the Lagrangian (Powell, 1969; Hestenes, 1969) with a Frobe-
nius norm term:

Lµ(X ,y,S) =−bT y+ 〈X ,A ∗
A (y)+S−C〉+ 1

2µ
||A ∗

A (y)+S−C||2F (4)

The second drawback can be alleviated by minimising the Lagrangian first for y and only
subsequently for S. Using fixed point arguments, one can still show the convergence of
such two-step minimisation.
Our Solver The augmented Lagrangian of the dual (1) is:

Lµ(X ,y1,y2,v,S) =−bT
1 y1−bT

2 y2−dT v (5)
+ 〈X ,A ∗

A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S−C〉

+
1

2µ
||A ∗

A1
(y1)+A ∗

A2
(y2)+A ∗

B (v)+S−C||2F

The multiple splitting is elaborated in Algorithm Schema 1.
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Algorithm Schema 1 AugmentedLagrangianMethod(A1,A2,B,C,b1,b2,d)
1: Input: Instance I = (A1,A2,B,C,b1,b2,d) of SDP (1)
2: Output: Primal solution Y , computed up to a certain precision

3: Set iteration counter k = 0
4: Initialise Xk � 0 with a heuristically obtained colouring
5: Compute matching values of dual variables yk

1,y
k
2,v

k ≥ 0, and Sk � 0
6: while the precision is insufficient do
7: Increase iteration counter k

8:
Update yk+1

1 = argminy1∈Rm Lµ (Xk,y1,yk
2,v

k,Sk)

= −(A1AT
1 )
−1(µ(A1(Xk)−b1)+A1(AT

2 (y
k
2)+BT (vk)+Sk−C))

9:
Update yk+1

2 = argminy2∈Rm Lµ (Xk,yk+1
1 ,y2,vk,Sk)

= −(A2AT
2 )
−1(µ(A2(Xk)−b2)+A2(AT

1 (y
k+1
1 )+BT (vk)+Sk−C))

10:

11:

Update vk+1 = argminv∈Rq ,v≥0 Lµ (Xk,yk+1
1 ,yk+1

2 ,v,Sk)

= argminv∈Rq ,v≥0

((
B
(

Xk + 1
µ

(
AT

1 (y
k+1
1 )+AT

2 (y
k+1
2 )+Sk−C

))
−d
)T

v+ 1
2µ

vT (BBT )v
)

which is a single-cone second-order cone program (Alizadeh & Goldfarb, 2003)

12:

Update Sk+1 = argminS�0 Lµ (Xk,yk+1
1 ,yk+1

2 ,vk+1,S)

= argminS∈S n ,S�0

∥∥∥S−
(

C−AT
1 (y

k+1
1 )−AT

2 (y
k+1
2 )−BT (vk+1)−µXk

)∥∥∥2

F
which can be solved by spectral decomposition of the term subtracted from S (Stewart, 1993)

13: Choose any step-length µ ≥ 0

14: Update Xk+1 = Xk +
AT

1 (y
k+1
1 )+AT

2 (y
k+1
2 )+BT (vk+1)+Sk+1−C)

µ

15: end while
16: Return X

An important aspect of implementing the augmented Lagrangian method is problem-
specific simplification of linear algebra involved. In relaxations of bounded graph colouring
of a graph on n vertices, one can exploit properties of the relaxation to:

– not compute (A1AT
1 )
−1

– compute AT
1 y1 in time O(m)

– compute (A2AT
2 )
−1 in time O(n2)

– compute AT
2 y2 in time O(n)

– compute (ABT )−1 in time O(n)
– compute BT v in time O(n)
– evaluate the augmented Lagrangian and its gradient at a given v in time n2

This allows for an efficient implementation using a variant of limited memory BGFS seach
with projection to non-negative v to minimise the quadratic program on Line 11. The bulk
of the run-time is hence spent an eigenvalue decomposition in Line 12. Our particular
implementation relies on Intel Math Kernels.

Recovering an Assignment Finally, since the seminal paper of Karger, Motwani, and Su-
dan (Karger, Motwani, & Sudan, 1998), there has been a continuing interest in algorithms
recovering a colouring from semidefinite relaxations. Typically, such algorithms are based
on simple randomised iterative rounding of the semidefinite programming relaxation. One
such algorithm, specialised to simple timetabling is displayed in Algorithm Schema 2.

Conclusions SDP solvers are less well-developed than LP solvers, in general. Compared
to interior point methods, augmented Lagrangian drastically reduce the dependence of per-
iteration run-time on the number of constraints. Preliminary computational results suggest
this method is practical for instances with up to millions of edges in the conflict graph.
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Algorithm Schema 2 IterativeRounding(X) based on Karger, Motwani, and Sudan
1: Input: Matrix variable X of the solution to the SDP (??) of dimensions n× n, bound m, number amax of

randomisations to test, plus the input to Simple Timetabling, if required
2: Output: Partition P of the set V = 1,2, . . . ,n

3: Compute vector v,X = vT v using Cholesky decomposition
4: for Each attempted randomisation a = 1, . . . ,amax do
5: Initialise Pa = /0, i = 1,X =V
6: while There are uncoloured vertices in X do
7: Pick a suitable c =

√
2(k−2)
k loge ∆

for ∆ being the maximum degree of the vertices in X
8: Generate a random vector r of dimension |X |
9: Pick Ri ⊆ X of at most m elements in the descending order of viri, where (1) positive and (2) indepen-

dent of previously chosen and, in Simple Timetabling, (3) the respective events fit within the rooms
and (4) require only features available

10: Update Pa = Pa ∪{{Ri}},X = X \Ri, i = i+1
11: end while
12: end for
13: Return Pa of minimum cardinality
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