
An Evolutionary Algorithm for High School

Timetabling

Jonathan Domrös · Jörg Homberger
1

Abstract An Evolutionary Algorithm for high school timetabling problems,

which is used for the Third International Timetabling Competition (ITC2011), is

presented. The solver is based on two ideas: Firstly, an indirect representation of

timetables is used. Each coded solution consists of a permutation of sub-events.

Secondly, the evolutionary search is controlled by the population concept of the

(1+1)-Evolution Strategy.

Keywords High school timetabling · International timetabling competition ·

Evolutionary algorithm

1 Introduction

Evolutionary Algorithms are metaheuristics which are often based on a coding of

decision variables or solutions (e.g., Miettinen et al., 1999). They have been used

successfully for (high) school timetabling so far (e.g., Burke and Newall, 1999;

Bufe et al., 2001; Beligiannis et al., 2009; Raghavjee and Pillay, 2010). However,

most approaches have been developed and evaluated for high school timetabling

problems with a smaller number of constraints than the problems used for the

ITC2011.

The high school timetabling problems of the ITC2011 are described in Post et

al. (2012). In order to describe our algorithm, especially our coding, it is

important to know, that the problems take up to three different kinds of problem

decisions into account: (1) split-decisions (for a given event the number of sub-

events and the duration of each sub-event have to be calculated); (2) time-

decisions (for a sub-event a starting time has to be assigned); and (3) resource-

decisions (for a sub-event one or more event resources have to be assigned).

2 Overview of the Evolutionary Algorithm

An overview of the developed Evolutionary Algorithm is shown in Fig. 1.

J. Homberger

University of Applied Sciences Stuttgart, Schellingstr. 24, 70174 Stuttgart, Germany

Tel.: +49 711 8926 2511

Fax.: +49 711 8926 2553

E-mail: joerg.homberger@hft-stuttgart.de

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 485

http://dl.acm.org/author_page.cfm?id=81384621973&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://dl.acm.org/author_page.cfm?id=81100281142&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280

(1) preprocessing: calculate all feasible sub-events;

(2) initialization: calculate one coded timetable C randomly on the basis of (1);

(3) decoding: construct a timetable T by decoding C;

(4) evaluation: calculate the infeasibility value and the objective value for T;

 WHILE (NOT a given computational time limit has been reached)

(5) mutation: calculate a new coded timetable C* by mutation of C;

(6) decoding: construct a new timetable T* by decoding C*;

(7) evaluation: calculate the infeasibility value and the objective value for T*;

(8) replacement: IF(T* is better than T) THEN (C := C*; T := T*);

(9) output: the timetable T;

Fig. 1 The Evolutionary Algorithm for High School Timetabling

As shown in Fig. 1, the population concept of the (1+1)-Evolution Strategy, which

is simply a randomized hill-climbing method, is used in order to control the search

(e.g., Beyer and Schwefel, 2002; Mester and Bräysy, 2004). That means, in each

iteration one solution or timetable T* is calculated by mutation of the current best

solution T. The latter is replaced by T*, if T* is better than the current best

solution T (for the evaluation of timetables see Post et al., 2012). The mutation

does not directly work on timetables. Instead, the mutation varies a coded version

C of the current best timetable T. The coding of solutions and the steps of the

algorithm are explained in the next sections.

3 Coding of solutions and preprocessing

Solutions are coded by a permutation of eligible sub-events or, more precisely, a

permutation of the indices of eligible sub-events. The aim of preprocessing is to

calculate the set of eligible sub-events, taking split events constraints, distribute

split events constraints, and link events constraints into account. Therefore, for

each given event i and its given duration Di all feasible splits are calculated. A

split of an event i is a division into one or more sub-events with individual

durations. A split is feasible, if the split events constraints and the distribute split

events constraints are fulfilled for i. The number of feasible splits of event i is

denoted by ni. Each sub-event sj = (ij, kj, dj) can be described by a triple, which

consists of the corresponding event ij, the corresponding split kj (kj = 1, ..., ni), and

a sub-event duration dj. The total duration of all sub-events, which corresponds to

the same split of an event i is equal to Di. Fig. 2 describes the prepossessing

procedure by an example. The example takes the split events constraints into

account, i.e., a minimum and a maximum duration for sub-events, and a minimum

and a maximum amount of sub-events have to be considered, when eligible sub-

events are calculated.

Link events constraints could reduce the set of feasible splits. In case that two

events i and l must be executed in parallel, the corresponding splits must be

“compatible”, i.e., for each sub-event sm of event i exists one sub-event sn of event

l, such that dm = dn. Thus, each feasible split of i (l) with no compatible split of l

(i) is deleted from the set of feasible splits.

As mentioned, each coded solution is just a permutation of the indices of the

calculated eligible sub-events. In our example of Fig. 2 each coded solution is a

permutation of the indices 0, ..., 7.

486 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

event i = 0

duration D0 = 2

minimum duration = 1

maximum duration = 2

minimum amount = 1

maximum amount = 2

event i = 1

duration D1 = 3

minimum duration = 1

maximum duration = 2

minimum amount = 2

maximum amount = 3

0 1 2

2 1 1

1 2 2

j

duration dj

split kj

3 4 5 6 7

2 1 1 1 1

1 1 2 2 2

sub-events sj

event ij 0 0 0

1 1 1 1 1

j

duration dj

split kj

event ij

Fig. 2 Preprocessing procedure

4 Initialization and mutation

At the beginning of the search (step 2) one coded solution C* is constructed

randomly, i.e., a random permutation of the indices of the eligible sub-events is

calculated. During mutation (step 5) this permutation is varied randomly, i.e., two

indices are randomly chosen and then swapped. The swap-mutation is often

suggested for permutation based Evolutionary Algorithms (e.g., Gottlieb, 2000).

5 Decoding

The decoding procedure aims to construct a feasible timetable T on the basis of a

coded solution C. A timetable T consists of sub-events, which are extended by

starting times and event resources. The decoding method is very complex, since it

considers all constraints of the problem at hand in order to find a feasible solution.

In the following, we just present some of the basic ideas of the procedure.

To construct a timetable T, three steps are executed within each iteration of the

iterative decoding procedure: (i) One eligible sub-event sj = (ij, kj, dj) is selected;

(ii) the split kj is checked to be “practicable”; (iii) in the positive case (kj is a

practicable split), an insertion heuristic is executed in order to assign a starting

time and all required event resources to sj.

The order to select sub-events in step (i) is based on the order of indices in the

coded solution C. If the index j of sub-event sj is ordered more left than the index

q of sub-event sq, sj is selected before sq and thus has a higher priority to be inser-

ted into the timetable T.

A split kj is defined as “practicable” in step (ii), if no sub-event of the

corresponding event ij has been inserted into T or if only sub-events of split kj

have been inserted into T so far. The check of practicability is necessary, since for

each event only sub-events of the same split can be inserted into a timetable.

The insertion heuristic of step (iii) checks, if at least one assignment of a

starting time and of event resources for sj exists, such that all hard constraints are

satisfied. In a positive case, the heuristic inserts sj into T, i.e., assigns a starting

time and event resources such that no hard constraint is injured (time and resource

decisions are made). If sj is the first sub-event of the event ij, which is inserted

Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway 487

into T, the corresponding split kj is selected for ij (split-decision is made). In the

case, that no such feasible assignment of time and resources exists, the sub-event

sj is not inserted into T.

There is one exception from the rule that in each iteration of the decoding

procedure only one sub-event (sj) is selected and inserted into T. In case of link

events constraints, where one or more events exist, which should be placed in

parallel to ij, sub-events of these events are also selected in step (i) and inserted

together with sj in step (iii).

It should be remarked, that sub-events of an event are not inserted at all, if the

insertion would violate hard constraints. However, not inserting an event violates

assign times constraints. The decoding method could be improved by executing an

additional construction step (at the end of decoding) which inserts all these events,

which were not inserted so far, in order to reduce the infeasibility value.

6 Conclusion

The developed Evolutionary Algorithm is suitable to solve the problems of the

ITC2011. Our solver was a finalist in ITC2011. However, the solutions generated

in round 1 are not a match to the existing best known or optimal solutions.

References

Beligiannis GN, Moschopoulos CN, Likothanassis SD (2009) A genetic algorithm

approach to school timetabling. Journal of the Operational Research Society

60(1), 23–42

Beyer HG, Schwefel HP (2002) Evolution strategies: a comprehensive

introduction. Journal Natural Computing 1(1), 3–52

Bufe M, Fischer T, Gubbels H, Hacker C, Hasprich O, Scheibel C, Weicker K,

Weicker N, Wenig M, Wolfangel C (2001) Automated solution of a highly con-

strained school timetabling problem – preliminary results. In: Proc. of the Evo-

workshops on Applications of Evolutionary Computing, Springer, pp 431–440

Burke EK, Newall JP (1999) A multi-stage evolutionary algorithm for the time-

table problem. IEEE Transactions on Evolutionary Computation 3(1), 63–74

Gottlieb J (2000) Permutation-based evolutionary algorithms for multidimen-

sional knapsack problems. In: Proceedings of the 2000 ACM Symposium on

Applied Computing – Vol. 1, ACM New York, NY, USA, pp 408–414

Mester D, Bräysy O (2007) Active-guided evolution strategies for large-scale

capacitated vehicle routing problems. Computers and Operations Research 34,

2964–2975

Miettinen K, Mäkelä MM, Neittaanmäki P, Périaux J (eds), Evolutionary

algorithms in engineering and computer science. Chichester et al., 1999

Post G, Gaspero LD, Kingston JH, McCollum B, Schaerf A (2012) The third

international timetabling competition. In: Proceedings of the Ninth International

Conference on the Practice and Theory of Automated Timetabling (PATAT

2012), Son, Norway, August 2012

Raghavjee R, Pillay N (2010) An informed genetic algorithm for the high school

timetabling problem. In: Proceedings of the 2010 Annual Research Conference

of the South African Institute of Computer Scientists and Information

Technologists, pp 408–412

488 Practice and Theory of Automated Timetabling (PATAT 2012), 29-31 August 2012, Son, Norway

http://www.researchgate.net/researcher/70545750_Grigorios_N_Beligiannis
http://www.researchgate.net/researcher/33684724_Charalampos_N_Moschopoulos
http://www.researchgate.net/researcher/35446147_Spiridon_D_Likothanassis
http://dl.acm.org/author_page.cfm?id=81341490842&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://www.acm.org/publications
http://dl.acm.org/author_page.cfm?id=81384621973&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280
http://dl.acm.org/author_page.cfm?id=81100281142&coll=DL&dl=ACM&trk=0&cfid=106053003&cftoken=56023280

