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Abstract  An Evolutionary Algorithm for high school timetabling problems, 

which is used for the Third International Timetabling Competition (ITC2011), is 

presented. The solver is based on two ideas: Firstly, an indirect representation of 

timetables is used. Each coded solution consists of a permutation of sub-events. 

Secondly, the evolutionary search is controlled by the population concept of the 

(1+1)-Evolution Strategy.  
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1  Introduction 

Evolutionary Algorithms are metaheuristics which are often based on a coding of 

decision variables or solutions (e.g., Miettinen et al., 1999). They have been used 

successfully for (high) school timetabling so far (e.g., Burke and Newall, 1999; 

Bufe et al., 2001; Beligiannis et al., 2009; Raghavjee and Pillay, 2010). However, 

most approaches have been developed and evaluated for high school timetabling 

problems with a smaller number of constraints than the problems used for the 

ITC2011. 

The high school timetabling problems of the ITC2011 are described in Post et 

al. (2012). In order to describe our algorithm, especially our coding, it is 

important to know, that the problems take up to three different kinds of problem 

decisions into account: (1) split-decisions (for a given event the number of sub-

events and the duration of each sub-event have to be calculated); (2) time-

decisions (for a sub-event a starting time has to be assigned); and (3) resource-

decisions (for a sub-event one or more event resources have to be assigned). 

2  Overview of the Evolutionary Algorithm 

An overview of the developed Evolutionary Algorithm is shown in Fig. 1.  
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(1)   preprocessing: calculate all feasible sub-events; 

(2)   initialization: calculate one coded timetable C randomly on the basis of (1);  

(3)   decoding: construct a timetable T by decoding C; 

(4)   evaluation: calculate the infeasibility value and the objective value for T; 

       WHILE (NOT a given computational time limit has been reached) 

(5)    mutation: calculate a new coded timetable C* by mutation of C; 

(6)    decoding: construct a new timetable T* by decoding C*; 

(7)    evaluation: calculate the infeasibility value and the objective value for T*; 

(8)  replacement: IF(T* is better than T) THEN (C := C*; T := T*); 

(9)   output: the timetable T; 
 

Fig. 1  The Evolutionary Algorithm for High School Timetabling 

As shown in Fig. 1, the population concept of the (1+1)-Evolution Strategy, which 

is simply a randomized hill-climbing method, is used in order to control the search 

(e.g., Beyer and Schwefel, 2002; Mester and Bräysy, 2004). That means, in each 

iteration one solution or timetable T* is calculated by mutation of the current best 

solution T. The latter is replaced by T*, if T* is better than the current best 

solution T (for the evaluation of timetables see Post et al., 2012). The mutation 

does not directly work on timetables. Instead, the mutation varies a coded version 

C of the current best timetable T. The coding of solutions and the steps of the 

algorithm are explained in the next sections. 

3  Coding of solutions and preprocessing 

Solutions are coded by a permutation of eligible sub-events or, more precisely, a 

permutation of the indices of eligible sub-events. The aim of preprocessing is to 

calculate the set of eligible sub-events, taking split events constraints, distribute 

split events constraints, and link events constraints into account. Therefore, for 

each given event i and its given duration Di all feasible splits are calculated. A 

split of an event i is a division into one or more sub-events with individual 

durations. A split is feasible, if the split events constraints and the distribute split 

events constraints are fulfilled for i. The number of feasible splits of event i is 

denoted by ni. Each sub-event sj = (ij, kj, dj) can be described by a triple, which 

consists of the corresponding event ij, the corresponding split kj (kj = 1, ..., ni), and 

a sub-event duration dj. The total duration of all sub-events, which corresponds to 

the same split of an event i is equal to Di. Fig. 2 describes the prepossessing 

procedure by an example. The example takes the split events constraints into 

account, i.e., a minimum and a maximum duration for sub-events, and a minimum 

and a maximum amount of sub-events have to be considered, when eligible sub-

events are calculated. 

Link events constraints could reduce the set of feasible splits. In case that two 

events i and l must be executed in parallel, the corresponding splits must be 

“compatible”, i.e., for each sub-event sm of event i exists one sub-event sn of event 

l, such that dm = dn. Thus, each feasible split of i (l) with no compatible split of l 

(i) is deleted from the set of feasible splits.  

As mentioned, each coded solution is just a permutation of the indices of the 

calculated eligible sub-events. In our example of Fig. 2 each coded solution is a 

permutation of the indices 0, ..., 7.  
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Fig. 2  Preprocessing procedure  

4  Initialization and mutation 

At the beginning of the search (step 2) one coded solution C* is constructed 

randomly, i.e., a random permutation of the indices of the eligible sub-events is 

calculated. During mutation (step 5) this permutation is varied randomly, i.e., two 

indices are randomly chosen and then swapped. The swap-mutation is often 

suggested for permutation based Evolutionary Algorithms (e.g., Gottlieb, 2000). 

5  Decoding 

The decoding procedure aims to construct a feasible timetable T on the basis of a 

coded solution C. A timetable T consists of sub-events, which are extended by 

starting times and event resources. The decoding method is very complex, since it 

considers all constraints of the problem at hand in order to find a feasible solution. 

In the following, we just present some of the basic ideas of the procedure.  

To construct a timetable T, three steps are executed within each iteration of the 

iterative decoding procedure: (i) One eligible sub-event sj = (ij, kj, dj) is selected; 

(ii) the split kj is checked to be “practicable”; (iii) in the positive case (kj is a 

practicable split), an insertion heuristic is executed in order to assign a starting 

time and all required event resources to sj.  

The order to select sub-events in step (i) is based on the order of indices in the 

coded solution C. If the index j of sub-event sj is ordered more left than the index 

q of sub-event sq, sj is selected before sq and thus has a higher priority to be inser-

ted into the timetable T.  

A split kj is defined as “practicable” in step (ii), if no sub-event of the 

corresponding event ij has been inserted into T or if only sub-events of split kj 

have been inserted into T so far. The check of practicability is necessary, since for 

each event only sub-events of the same split can be inserted into a timetable.  

The insertion heuristic of step (iii) checks, if at least one assignment of a 

starting time and of event resources for sj exists, such that all hard constraints are 

satisfied. In a positive case, the heuristic inserts sj into T, i.e., assigns a starting 

time and event resources such that no hard constraint is injured (time and resource 

decisions are made). If sj is the first sub-event of the event ij, which is inserted 
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into T, the corresponding split kj is selected for ij (split-decision is made). In the 

case, that no such feasible assignment of time and resources exists, the sub-event 

sj is not inserted into T.  

There is one exception from the rule that in each iteration of the decoding 

procedure only one sub-event (sj) is selected and inserted into T. In case of link 

events constraints, where one or more events exist, which should be placed in 

parallel to ij, sub-events of these events are also selected in step (i) and inserted 

together with sj in step (iii).  

It should be remarked, that sub-events of an event are not inserted at all, if the 

insertion would violate hard constraints. However, not inserting an event violates 

assign times constraints. The decoding method could be improved by executing an 

additional construction step (at the end of decoding) which inserts all these events, 

which were not inserted so far, in order to reduce the infeasibility value.  

6  Conclusion 

The developed Evolutionary Algorithm is suitable to solve the problems of the 

ITC2011. Our solver was a finalist in ITC2011. However, the solutions generated 

in round 1 are not a match to the existing best known or optimal solutions.  
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