
exo
Stamp

PATAT 2014

Proceedings of the 10th International Conference on the

Practice and Theory of Automated Timetabling

26 - 29 August 2014, York, United Kingdom

Edited by:

Ender Özcan, University of Nottingham, UK

Edmund K. Burke, University of Stirling, UK

Barry McCollum, Queen’s University Belfast, UK

ISBN 978‐0‐9929984‐0‐0

Published by PATAT

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Preface

On behalf of the Steering Committee and the Programme Committee of the
PATAT (Practice and Theory of Automated Timetabling) series of confer-
ences, we would like to welcome you to the tenth conference in York, United
Kingdom. The PATAT conferences, which are held biennially, serve as a forum
for an international community of researchers, practitioners and vendors on
all aspects of computer-aided timetable generation and related issues. This
includes personnel rostering, educational timetabling, sports scheduling and
transportation timetabling.

Fostering the development of leading edge research techniques in under-
pinning innovate timetabling approaches has always been a fundamental as-
pect of the PATAT mission in bridging the gap between practitioners and
researchers in this increasingly important field. A dedicated stream entitled
“Practical Timetabling” is included bringing both practitioners and theoreti-
cians together with the goal of addressing the well recognised gap which exists
between the practice and theory of automated timetabling. It is intended that
the PATAT conferences continue to integrate and combine both the research
and practice agendas across all areas of timetabling.

The programme of this years conference features 76 presentations which
represent the state-of-the-art in automated timetabling: there are 5 plenary
papers, one of them is from the Scientia Ltd representing practitioners, 26
full papers, 38 extended abstracts, 5 system demonstrations and 2 key note
practitioner talks. It is encouraging to see the number of submissions which
are orientated towards timetabling systems which draw upon leading edge
approaches. As were the cases in Montreal in 2008, Belfast in 2010 and Son in
2012, a post-conference volume of selected and revised papers is to be published
in the Annals of Operational Research journal. Authors of full papers and
extended abstracts are encouraged to submit to this special issue after the
conference.

We would like to express our gratitude to the large number of individuals
who have helped organise the conference. We thank the members of the Steer-
ing Committee who continue to ensure the ongoing success of the series and
the members of the Programme Committee who have worked hard to referee
the conference submissions in a timely manner. As always we are grateful to
all authors and delegates. Special thanks go to the organising committee for
their tireless help and support in ensuring that the conference runs to the
highest possible standard. Finally we would like to thank our sponsors who
not only have helped fund the conference but are also all making a valuable
contribution in terms of presentations. We are delighted to welcome you all to
York. We hope you enjoy the conference talks and networking opportunities
provided.

Ender Özcan, Edmund K. Burke and Barry McCollum

i

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

PATAT 2014 Programme Committee

Salwani Abdullah Erwin Pesch

Panayiotis Alefragis Sanja Petrovic

Hesham Alfares Nelishia Pillay

Peter Cowling Gerhard Post

Patrick De Causmaecker Jean-Yves Potvin

Kathryn Dowsland Atle Riise

Wilhelm Erben Rong Qu

Luca Di Gaspero Louis-Martin Rousseau

Michel Gendreau Celso C. Ribeiro

Bernard Gendron Hana Rudova

Graham Kendall Andrea Schaerf

Jeffrey Kingston Jonathan Thompson

Raymond Kwan Paolo Toth

Gilbert Laporte Michael Trick

Rhyd Lewis Pascal Van Hentenryck

Amnon Meisels Greet Vanden Berghe

Paul McMullan Stefan Voss

Keith Murray Dominique de Werra

Tomáš Müller George White

Ben Paechter Michael Wright

Andrew J. Parkes Jay Yellen

Gilles Pesant

ii

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

PATAT 2014 Organising Committee

Una Benlic University of Stirling, UK

Tim Curtois University of Nottingham, UK

Mike Earl Loughborough University, UK

PATAT Steering Committee

Edmund K. Burke (Chair) University of Stirling, UK

Barry McCollum (Treasurer) Queenś University Belfast, Northern Ireland, UK

Patrick De Causmaecker Katholieke Universiteit Leuven, Belgium

Jeffrey H. Kingston University of Sydney, Australia

Ender Özcan University of Nottingham, UK

Atle Riise SINTEF, Norway

Hana Rudova Masaryk University, The Czech Republic

George White University of Ottawa, Canada

iii

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Angeliki Gretsista University of Stirling

Bob John University of Nottingham, UK

Vicki Lawlor University of Stirling, UK

Table of Contents

Plenary Papers

Scheduling in an unknown, diverse consumer world
 and Geoffrey Forster

2

“Mine’s better than yours” – comparing timetables and timetabling
Ben Paechter

8

Visualising the diversity of benchmark instances and generating new test
instances to elicit insights into algorithm performance
Kate Smith-Miles

10

Passenger Oriented Railway Disruption Management by Adapting
Timetables and Rolling Stock Schedules
Lucas P. Veelendurf, Leo G. Kroon and Gábor Maróti

11

Pushing the Envelope: the role of slot scheduling in optimising the use of
scarce airport resources
Konstantinos G. Zografos

35

Full Papers

Assigning and Scheduling Hierarchical Task Graphs to Heterogeneous Re-
sources
Panayiotis Alefragis, Christos Gogos, Christos Valouxis, George Goulas,
Nikolaos Voros and Efthymios Housos

40

Feature-based tuning of single-stage simulated annealing for examination
timetabling
Michele Battistutta, Andrea Schaerf and Tommaso Urli

53

A Simulation Scenario Based Mixed Integer Programming Approach to
Airline Reserve Crew Scheduling Under Uncertainty
Christopher Bayliss, Geert De Maere, Jason Atkin and Marc Paelinck

62

A linear mixed-integer model for realistic examination timetabling prob-
lems
Lisa Katharina Bergmann, Kathrin Fischer and Sebastian Zurheide

82

A Multi-Stage IP-Based Heuristic for Class Timetabling and Trainer Ros-
tering
Oliver Czibula, Hanyu Gu, Aaron Russell and Yakov Zinder

102

iv

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

algorithms

Paul Harrington

A model and fast heuristics for the multiple depot bus rescheduling prob-
lem
Balázs Dávid and Miklós Krész

128

Solving High School Timetabling with Satisfiability Modulo Theories
Emir Demirović and Nysret Musliu

142

Indoor football scheduling
Dries Goossens and Frits Spieksma

167

Asynchronous Island Model Genetic Algorithm For University Course
Timetabling
Alfian Akbar Gozali, Jimmy Tirtawangsa and Thomas Anung Basuki

179

Partially-Concurrent Open Shop Scheduling
Tal Grinshpoun, Hagai Ilani and Elad Shufan

188

A Mathematical Model and Metaheuristics for Time Dependent Orien-
teering Problem
Aldy Gunawan, Zhi Yuan and Hoong Chuin Lau

202

Directed Selection using Reinforcement Learning for the Examination
Timetabling Problem
Ryan Hamilton-Bryce, Paul McMullan and Barry McCollum

218

A Multi-Phase Hybrid Metaheuristics Approach for the Exam
Timetabling
Ali Hmer and Malek Mouhoub

233

A Criteria Transformation Approach to Timetabling based on Non-Linear
Parameter Optimization
Christian John, Dietmar Tutsch, Reinhard Möller, Thomas Lepich and
Bernard Beitz

252

KHE14: An Algorithm for High School Timetabling
Jeffrey H. Kingston

269

A two-phase heuristic and a lexicographic rule for improving fairness in
personnel roster
Komarudin, Marie-Anne Guerry, Pieter Smet, Tim De Feyter and Greet
Vanden Berghe

292

Scheduling the Australian Football League Using the PEAST Algorithm
Jari Kyngäs, Kimmo Nurmi, Nico Kyngäs, George Lilley and Thea Salter

309

Diversity-Oriented Bi-Objective Hyper-heuristics for Patrol Scheduling
Mustafa Mısır and Hoong Chuin Lau

318

The Connectedness of Clash-free Timetables
Moritz Mühlenthaler and Rolf Wanka

330

v

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

ing

FlexMatch - A Matching Algorithm with Linear Time and Space Com-
plexity
Nina Nöth and Peter Wilke

347

Improvement by Combination - How to increase the Performance of Op-
timization Algorithms by combining them
Johannes Ostler and Peter Wilke

359

Integer Programming for Minimal Perturbation Problems in University
Course Timetabling
Antony E. Phillips, Cameron G. Walker, Matthias Ehrgott and David M.
Ryan

366

A Study of the Practical and Tutorial Scheduling Problem
Nelishia Pillay

380

Hybrid Local Search for The Multi-Mode Resource-Constrained Multi-
Project Scheduling Problem
Haroldo Gambini Santos, Janniele Soares and Túlio A. M. Toffolo

397

Polynomially solvable formulations for a class of nurse rostering problems
Pieter Smet, Peter Brucker, Patrick De Causmaecker and Greet Vanden
Berghe

408

Branch-and-Price and Improved Bounds to the Traveling Umpire Problem
Túlio A. M. Toffolo, Sam Van Malderen, Tony Wauters and Greet Vanden
Berghe

420

Extended Abstracts

A self-generating memetic algorithm for examination timetabling
Cevriye Altıntaş, Shahriar Asta, Ender Özcan and Tuncay Yiğit

434

Exam timetabling at Université de Technologie de Compiégne: a memetic
approach
Taha Arbaoui, Jean-Paul Boufflet, Kewei Hu and Aziz Moukrim

438

A Tensor-based Approach to Nurse Rostering
Shahriar Asta and Ender Özcan

442

The Effects of the Planning Horizon on Heathrow TSAT Allocation
Jason A. D. Atkin, Geert De Maere and Edmund K. Burke

446

Dantzig-Wolfe decomposition of Meeting planning problems
Niels-Christian Fink Bagger, Matilda Camitz and Thomas Stidsen

4

Room Allocation Optimisation at the Technical University of Denmark
Niels-Christian Fink Bagger, Jesper Larsen and Thomas Stidsen

454

vi

50

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Modeling and Solving a Real-Life Multi-Skill Shift Design Problem
Alex Bonutti, Fabio De Cesco, Nysret Musliu and Andrea Schaerf

459

Airport Ground Movement: Real World Data Sets and Approaches to
Handling Uncertainty
Alexander E. I. Brownlee, Jason A. D. Atkin, John R. Woodward, Una
Benlic and Edmund K. Burke

462

Scheduling Air Traffic Controllers
Richard Conniss, Tim Curtois, Sanja Petrovic and Edmund K. Burke

465

A Matheuristic Approach for the High School Timetabling Problem
Árton P. Dorneles, Olinto C. B. Araújo and Luciana S. Buriol

469

FIFA Ranking and World Cup Football Groups: Quantitative Methods
for a Fairer System
Guillermo Durán, Sebastián Cea, Mario Guajardo, Denis Sauré and Gon-
zalo Zamorano

470

Predictive scheduling for optimal cloud configuration
Michael G. Epitropakis, Andrea Bracciali, Marco Aldinucci, Emily Potts
and Edmund K. Burke

472

Personalized nurse rostering through linear programming
Han Hoogeveen and Tim van Weelden

476

The Impact of Reserve Duties on Personnel Roster Robustness: An Em-
pirical Investigation
Jonas Ingels and Broos Maenhout

479

Lessons from Building an Automated Pre-Departure Sequencer for Air-
ports
Daniel Karapetyan, Andrew J. Parkes, Jason Atkin and Juan Castro-
Gutierrez

485

Integrated Student Sectioning
Jeffrey H. Kingston

489

Large-Scale Rostering in the Airport Industry
Andreas Klinkert

493

Graphics Processing Unit acceleration of a memetic algorithm for the
Examination Timetabling Problem
Vasileios Kolonias, George Goulas, Panayiotis Alefragis, Christos Gogos
and Efthymios Housos

495

Integer Programming for the Generalized (High) School Timetabling
Problem
Simon Kristiansen, Matias Sørensen and Thomas R. Stidsen

498

vii

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

The impact of cyclic versus non-cyclic scheduling on the project staffing
cost
Broos Maenhout and Mario Vanhoucke

502

Decomposition and Recomposition Strategies to Solve Timetabling Prob-
lems
Dulce J. Magaña-Lozano, Ender Özcan and Santiago E. Conant-Pablos

505

An Investigation Into the Use of Haskell for Dynamic Programming
David McGillicuddy, Andrew J. Parkes and Henrik Nilsson

508

Fairness in Examination Timetabling: Student Preferences and Extended
Formulations
Ahmad Muklason, Andrew J. Parkes, Barry McCollum and Ender Özcan

512

HyperILS: An Effective Iterated Local Search Hyper-heuristic for Combi-
natorial Optimisation
Gabriela Ochoa and Edmund K. Burke

516

Planning the Amusing Hengelo Festival
Gerhard Post and Martin Schoenmaker

521

Investigation into an Evolutionary Algorithm Hyper-Heuristic for the
Nurse Rostering Problem
Christopher Rae and Nelishia Pillay

527

Models for the Shift Design Problem
Troels Martin Range, Richard Martin Lusby and Jesper Larsen

533

Course Timetabling Using Graph Coloring and A.I. Techniques
Jordan Rickman and Jay Yellen

536

Set Partitioning Methods for Robust Scheduling: an Application to Op-
erating Theatres Optimisation
Elizabeth Rowse, Paul Harper, Rhyd Lewis and Jonathan Thompson

539

Master State Examination Timetabling
Hana Rudová, Jiř́ı Rousek and Radoslav Štefánik

541

An Exponential Monte-Carlo Local Search Algorithm for the Berth Allo-
cation Problem
Nasser R. Sabar, Masri Ayob and Graham Kendall

544

Timetabling in Higher Education: Considering the Combinations of
Classes Taken by Students
Carlos Sánchez

549

The second International Nurse Rostering Competition
Sara Ceschia, Nguyen Thi Thanh Dang, Patrick De Causmaecker, Stefaan
Haspeslagh and Andrea Schaerf

554

viii

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Hybridizing Integer Programming and Metaheuristics for Solving High
School Timetabling
Matias Sørensen and Thomas R. Stidsen

557

Online Scheduling System for Server Based Personnel Rostering Applica-
tions
Premysl Šucha, István Módos, Roman Václav́ık, Jan Smejkal and Zdeněk
Hanzálek

561

Optimal Duty Rostering for Toll Enforcement Inspectors
Elmar Swarat, Guillaume Sagnol and Thomas Schlechte

565

Meta-heuristic algorithm for binary dynamic optimisation problems and
its relevancy to timetabling
Ayad Turky, Salwani Abdullah and Nasser R. Sabar

568

From sales data to workforce schedules
Egbert van der Veen

574

System Demonstrations

Do it yourself (DIY) optimisation approach to practical timetabling
Yuri Bykov, Sanja Petrovic and Christos Braziotis

579

Meeting Rural Transport Needs through Demand Responsive Transport
Scheduling (Bwcabus)
Owen Clark, Andrew Olden

584

Bullet TimeTabler Education - System demonstration
Pedro Fernandes, Armando Barbosa and Luis Moreira

592

Bullet TimeTabler Education: latest improvements towards a more effi-
cient timetabling
Pedro Fernandes, Carla Sofia Pereira and Armando Barbosa

597

A Web-Software to handle XHSTT Timetabling Problems
George H.G. Fonseca, Thaise D. Delfino and Haroldo G. Santos

601

ix

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Plenary

Presentations

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

1

Scheduling in an unknown, diverse consumer world!

Different challenges, different response!

Abstract Resource scheduling within the Higher Education environment has
been focused on improving the utilisation of ever decreasing resources to con-
struct a schedule that delivers an optimised use of resources in the delivery of
a fixed set of outcomes.

With the Higher Education Sector competing globally for a more demand-
ing, consumer oriented, technology savvy group of students institutions are
having to offer more student choice. This student demand and flexibility of
choice presents challenges to the current generation of scheduling tools and to
the working practises of scheduling departments.

The pace of change in the HE sector, all over the globe, has been so fast
and transformational in the recent years that the usual responses on the edges
and the surface will not suffice.

Introduction

Resource scheduling within the Higher Education environment has been fo-
cused on improving the utilisation of ever decreasing resources to construct a
schedule that delivers an optimised use of resources in the delivery of a fixed
set of outcomes.

With the Higher Education Sector competing globally for a more demand-
ing, consumer oriented group of students, institutions will need to offer more
student choice and provide better advice to students. This student demand and
flexibility of choice presents challenges to the current generation of scheduling
tools and to the working practises of scheduling departments.

The pace of change in the HE sector, all over the globe, has been so fast
and transformational in the recent years that the usual responses on the edges
and the surface will not suffice. We believe that a re-conceptualization of what

Mohamad Djahanbakhsh, CEO and Geoffrey Forster, Director
Scientia

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

2

Paul Harrington · Geoffrey Forster

a next generation planning and scheduling system should provide is required,
and the paper describes some of these new concepts.

Scientia is the established market leader in timetabling and resource schedul-
ing solutions for the Higher Education sector worldwide. Our Syllabus Plus
products provide solutions to the problems faced by organisations in optimis-
ing their assets and resources, most notably time and space, and in a way that
best meets the needs of staff and students.

The approach for these solutions has been to define the problem to be
solved as early as possible, providing as much concrete information for the
scheduling engine to use to create a solution. This requires the working prac-
tises within the University to capture requirements early. With the introduc-
tion of greater student choice and more emphasis on student satisfaction, these
requirements are more fluid until much later in the scheduling process.

Planning, Scheduling and Allocation is business critical with the capability
to improve revenues and reduce costs, and will be used by everyone at the
institution every day of the year. This will require more effective integration
with the other core business systems like SIS and LMS.

Trends in HE that will impact planning and timetabling

Cost pressures to get more for less

The reduction in HE budgets seen in the Western World is continuing to drive
the need for further optimisation of resources, not only within the academic
schedule, but making maximum use of resources through commercial enter-
prise.

With these tightening budgets systems will need to be capable of effec-
tive cost modelling and scheduling decisions will not only be about meeting
the needs of staff and students but also cost effectiveness. These budgetary
constraints will have an impact on staff workload planning, with institutions
looking to ensure that they have the right balance of research, lectures and
teaching. This will be important for attracting the best lecturers and invalu-
able funding for research.

Enhancing the student experience

The cost of their education and career opportunities are important to many
students. They want to know that they will graduate by a particular date, with
the courses that they wanted, that fit around their requirements. This could
include features such as employability, previous success rates of particular
study paths and other advice and guidance.

They expect the university to create a schedule of classes that satisfies their
academic requirements and allocates them to a set of classes that takes their
personal preferences for attendance into account.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

3

Students may have gaps in attendance in order to clear debts or take
internships. Some students may prefer a 2-year degree that condenses 3 years
of study into 2 years, and take no holiday.

Short courses for students are offered throughout the academic year and
students may take courses from other institutions.

MOOC’s & blended learning

Massive open online courses (MOOCs) are a revolutionary element of higher
education today. Institutions may embed MOOCs from other institutions in
their awards. Scheduling resources for virtual courses to fit the demands of
students from around the globe presents a fresh and exciting challenge.

Blended learning will increase the demand for new meetings at short notice.

– Classes offered off campus.
– Blended learning.
– Flipped lectures.
– Classes offered across time-zones.

Rapid change & unpredictable demand

Student meetings are increasingly planned and scheduled at short notice. The
requirement still remains that there is an efficient use of resources. This lack
of certainty around requirements presents significant challenges to both the
systems and working practises of scheduling departments.

Features of a Next Generation planning and scheduling system

Undoubtedly the next generation set of solutions will be based around new
and emerging technologies, taking advantage of the capability of the cloud for
high computational power that can flex on demand. Collaborative technologies
will enable the scheduling departments to work more efficiently with academic
departments while designing the schedule, helping to make decisions quickly
and effectively.

The system needs to be able to continually optimise throughout the schedul-
ing cycle, with different rule sets firing at differing points of the cycle. It needs
to be able to cope with change, recognising that change happens but has to
keep disruption to a minimum.

Some key factors in delivering that solution are explored below.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

4

Smarter Anticipation of Demand

One approach to reduce the amount of change in the requirements could be
to use past data to better anticipate demand. Using the information about
pathways that previous students took on programmes would enable pseudo
class sizes to be created and space provided for students to take the course.
This of course is what academics will say is done when planning class sizes,
in reality this is more likely to be a constraint of supply and restricts the
flexibility of choice that is required to meet student satisfaction.

The use of guided allocation when collecting student requirements would
also enable the problem to be modelled more effectively. The presentation of
information to the student while they are selecting the courses they wish to
undertake. This information could include data such as success rates of previ-
ous students and pathways that previous successful students took. Collecting
students’ preferences for courses that meet requirements such as childcare ar-
rangements as early as possible also allows for improved modelling and reduces
the potential for change.

An exciting opportunity presents itself in the use of big data to anticipate
real world demand for specific programmes. The use of inference engines to
analyse the data points such as employability, popularity of subject, scarcity
of qualified people (skills gap), number of offerings, career paths etc. pro-
vide an opportunity to the university to increase competitiveness by providing
programmes that meet real world demand. This anticipation of demand will
enable management to more effectively manage the long term decisions of
manpower planning. This anticipation ensures that the right mix of staff is
recruited to ensure that the courses that are in highest demand are able to
meet the demand.

Early Planning or Lazy Allocation?

As has been seen allowing student choice creates uncertainty in the scheduling
process, the most common approach to solving this problem is to complete
the planning as early as possible in the process presenting a clear statement
of the requirements to be scheduled.

Where this isn’t possible the challenge is “to introduce the minimal amount
of perturbation into the solution already created”. This challenge can be fur-
ther refined as “to introduce the minimal amount of perturbation into the
published elements of the schedule”.

This redefinition of the problem allows the use of “lazy allocation” of re-
sources to any activity to be scheduled. This lack of eagerness to resolve the
problem fully early in the scheduling process presents greater degrees of flexi-
bility when requirements do change late in the process. The trick is to allocate
the minimum resources required and “reserve” types of resources. This ensures
that a theoretical solution exists for the schedule created and allows for prob-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

5

lem resolution without being constrained to specific resources to early in the
process.

Scheduling for MOOCs

What happens when time and space become almost limitless? When lectures
no longer need to be delivered within the boundaries of a classroom or even
attended at a set time. The challenges for scheduling MOOCs will present
a different challenge with very different demands on access to resources that
current systems are not designed to meet.

While lectures may no longer need to be scheduled, access to high quality
support will be required to students looking for a blended approach to learn-
ing and the Universities that can deliver this will be those most successful
in recognising the commercial opportunity that MOOCs undoubtedly bring.
This access could be in the form of physical face to face meetings with tutors
or online meetings with tutors and mentors. It will become important to con-
sider factors such as geographical location and time zones to ensure accurate
matching of students to appropriate resources. This matching of resources will
be on increased data set sizes, it is not unknown for MOOC courses to have
over 100,000 students.

This new challenge will require very different approaches to scheduling
with simpler constraints but higher demand. This will require the matching
of students? demand to available resources to be carried out in a just in time
manner. This approach could learn much from the resource management of
companies such as Amazon where meeting the demands of the consumer is the
difference between survival or closure.

Conclusion

It is clear that the current generation of Scheduling Solutions have to evolve
to meet the rapidly changing requirements in the HE sector.

The command and control nature of current solutions where certainty is
required before an efficient and effective schedule can be created will not be
able to meet the challenges of this new consumer focused, student experience
led revolution. Systems that can adapt and manage large degrees of uncertainty
and are capable of guiding the user and presenting solutions to the problems
as they emerge will be the dominant successful solutions in this new diverse
consumer world.

Scientia and Syllabus Plus

Syllabus Plus was released in 1991 and was the first commercial product that
could generate an optimised schedule for an institution, taking into account
human and physical resources and student course requirements. The Syllabus

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

6

Plus scheduling engine has hard constraints and preferences and provides
multi-user cooperative scheduling, so it can scale to schedule the largest insti-
tution. Auto-scheduling uses a heuristic based upon the difficulty of schedul-
ing each activity. Manual scheduling allows a scheduler to reschedule part of
a schedule, and with the engine giving advice about the best way to make
a change. Important additional products has been added to Syllabus Plus in-
cluding: Award and course planning tools, staff workload management, student
award planning, student self-allocation to classes, staff and student timetables,
data analysis reports, and examination scheduling. Enterprise Syllabus Plus
was released in 2008, allowing anyone at an institution to access the services
that they were allowed to access from a web browser.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

7

“Mine’s better than yours” – comparing timetables
and timetabling algorithms

Ben Paechter

Automated timetabling papers, along with papers about all types of optimisa-
tion methods are full of claims that a particular algorithm, or adaption to an
algorithm “out-performs the state-of-the-art”. If science is going to move the
world forward then we need to be sure what we mean when we make claims
such as this and have ways of verifying that the claim is indeed the case.
Taking a tutorial approach, this talk begins by looking at how we might de-
cide how good a particular timetable solution might be or how we might, at
least, compare one solution with another. Ways of considering the hard and
soft constraints are examined, along with methods of dealing with multiple
objectives. Three classifications of soft constraints are defined. The need to
work with the person using the automated system to fully understand what
is “good” about a timetable is underlined. This might include non-obvious
criteria, such as the need to reduce the chance that users of the timetable will
be able to suggest variations which lead to improvement.

Once we understand how we can compare two solutions to a particular
timetabling problem, we can then look at how we might compare two algo-
rithms trying to find good solutions to problems. Factors that might be taken
into account are, for example, speed, reliability, closeness to optimum, or the
chances of a really super result once in a while. Non-obvious criteria might be
for example the extent of the ability for the user to change their mind about
what they care about (in terms of either timetable or algorithm quality) in the
middle of producing the timetable. Again, in order to be really useful to the
world, the emphasis here needs to be on finding out what the users of the algo-
rithm really want from it. The use of standard problem instances is examined
along with analysis of the conditions that make this is useful or not. The talk
argues that, in order to be useful, problem instances need to be accompanied
by one or more standard sets of criteria on which solutions will be measured

Edinburgh Napier University, UK
E-mail: B.Paechter@napier.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

8

and, just as importantly, one or more sets of criteria on which algorithms will
be measured.

Even when there are clear criteria for judging between algorithms on a
specified set of problem instances there can still be problems interpreting the
results meaningfully. For example we have to be careful that an algorithm is
not just good at solving the particular problem instances, i.e. over-fitted to
those instances. One way to try to solve this problem is to have public com-
petitions where algorithms are developed on one set of problem instances, and
then compared on another set. Competitions also help to encourage work in a
particular area, and work which is genuinely comparative. The talk will discuss
the author’s experience of running competitions, and what makes a successful
competition. The problem of competition entrants using different hardware,
compilers, interpreters and operating systems is also discussed. Competitions
have largely concentrated on hidden problem instances having the same user
criteria. The author will argue that the future may lie in competitions where
hidden problems change the user requirements in some way, so as to encourage
the development of algorithms which are more generally useful.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

9

Visualising the diversity of benchmark instances and
generating new test instances to elicit insights into
algorithm performance

Kate Smith-Miles

Objective assessment of optimization algorithm performance is notoriously
difficult, with conclusions often inadvertently biased towards the chosen test
instances. Rather than reporting average performance of algorithms across a
set of chosen instances, we discuss a new methodology to enable the strengths
and weaknesses of different optimization algorithms to be compared across a
broader instance space. Results will be presented on timetabling, graph colour-
ing and the TSP to demonstrate: (i) how pockets of the instance space can be
found where algorithm performance varies significantly from the average per-
formance of an algorithm; (ii) how the properties of the instances can be used
to predict algorithm performance on previously unseen instances with high
accuracy; (iii) how the relative strengths and weaknesses of each algorithm
can be visualized and measured objectively; and (iv) how new test instances
can be generated to fill the instance space and provide desired insights into
algorithmic power.

School of Mathematical Sciences
Monash University, Australia
E-mail: kate.smithmiles@gmail.com

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

10

Passenger Oriented Railway Disruption Management

By Adapting Timetables and Rolling Stock Schedules

Lucas P. Veelenturf · Leo G. Kroon ·
Gábor Maróti

Abstract In passenger railway operations, unforeseen events require railway
operators to adjust their timetable and their resource schedules. The passen-
gers will also adapt their routes to their destinations. When determining the
new timetable and rolling stock schedule, the railway operator has to take
passenger behavior into account. The capacity of trains for which the operator
expects more demand than on a regular day should increase. Furthermore, at
locations with additional demand, the frequencies of trains serving that station
could be increased.

This paper describes a real-time disruption management approach which
integrates the rescheduling of the rolling stock and the timetable by taking the
changed passenger demand into account. The timetable decisions are limited
to additional stops of trains at stations at which they normally would not call.
Several variants of the approach are suggested, with the difference in how to
determine which additional stops should be executed.

Real-time rescheduling requires fast solutions. Therefore a heuristic ap-
proach is used. We demonstrate the performance of the several variants of our
algorithm on realistic instances of Netherlands Railways, the major railway
operator in the Netherlands.

Keywords Railways · Disruption Management · Rolling Stock · Timetable

L.P. Veelenturf and L.G. Kroon∗

Rotterdam School of Management, Erasmus University
Department of Technology & Operations Management
P.O. Box 1738, 300 DR Rotterdam, The Netherlands
E-mail: lveelenturf@rsm.nl, lkroon@rsm.nl

G. Maróti∗

VU University Amsterdam, Faculty of Economics and Business Administration
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands
E-mail: g.maroti@vu.nl

∗ Netherlands Railways, Process quality & Innovation
Utrecht, The Netherlands

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

11

1 Introduction

In passenger railway operations, unforeseen events (such as infrastructure mal-
functions, accidents or rolling stock breakdowns) can make parts of the railway
infrastructure temporarily unavailable. Then it is not possible to operate the
timetable, rolling stock schedule and crew schedule as planned. Within min-
utes, or even better, seconds, a new timetable and new resource (rolling stock
and crew) schedules must be available. In Cacchiani et al. [2] an overview is
given of recovering models and algorithms to solve these rescheduling steps. In
this overview it becomes clear that, although the schedules are interdependent,
most research focuses on rescheduling one of the schedules at a time. By the
complexity of the rescheduling problems, there is not enough time to solve the
integrated problem. In this paper we partly integrate the rescheduling of the
rolling stock plan and the timetable. Our particular focus lies on passenger
service, and we take passenger behavior explicitly into account.

We propose a fast passenger oriented rolling stock rescheduling approach
which allows to slightly adapt the timetable. Current literature on integrated
rescheduling of the timetable and the rolling stock schedule is scarce. Adenso-
Dı́az et al. [1] and Cadarso et al. [3] did research on integrated rescheduling
of the timetable and rolling stock on cases of the Spanish railway operator
RENFE. Like the main focus of our paper, Cadarso et al. [3] take the dynam-
ics of the passenger behavior into account. However, the fundaments of the
approach in the current paper are from Kroon et al. [8]. In Kroon et al. [8]
the focus is on improving passenger service by considering passenger behavior
while rescheduling the rolling stock. Kroon et al. [8] use an iterative proce-
dure for rescheduling the rolling stock and evaluating the resulting passenger
behavior which is inspired by the iterative framework of Dumas and Soumis
[5]. Changing the timetable can also improve the passenger service. Therefore
we extend the approach of Kroon et al. [8] by allowing the timetable to be
slightly adapted as well.

It is important to focus on the passenger service since a disruption does not
only affect the timetable and the resource schedules, but also the passengers.
However, for railway operators without a seat reservation system it is difficult
to reschedule the passengers. The passengers will make their new travel plan
by themselves. If they had planned to take a train which is canceled due
to the disruption, they will decide not to travel or to reroute themselves.
Rerouting of passengers means that they take other trains to their destination
than originally planned. This does not necessarily require the passengers to
take a detour: They can also take a later train on the same line.

By the changed passenger flows, the disruption causes changes in the de-
mand for seats. Therefore, a rolling stock rescheduling approach to handle a
disruption must take the modified passenger flows into account dynamically,
and not the passenger flows of a regular day. For example, since some passen-
gers will take a detour, additional capacity on the detour routes is necessary.
One way to handle this is to increase the capacity of the trains on this route.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

12

Another option is to increase the capacity by inserting more train services or
by letting trains make additional stops.

The consequences of the timetable adaptations may not turn out to be
advantageous for all passengers. For example, an additional stop of a train will
delay the train with a few minutes. As a consequence, the original passengers
of the train will get an additional delay in favor of reducing the delay of the
passengers at the station at which an additional stop is made. The small delay
of the train can even lead to a large delay for the passengers if they miss
their transfer at a later station. The railway operator has to make trade-offs
between the different consequences for the passengers.

In this research we limit the timetable decisions to adapting the stopping
patterns. Other timetable decisions to influence the passenger flows, for ex-
ample by inserting additional trains, are left out since an additional train
requires the railway operator also to adapt the crew schedules. By adapting
the stopping patterns only, the crew schedule remains feasible.

Delay management, which consist of deciding on whether or not trains
have to wait for delayed connecting trains, is another problem in which slight
timetable adaptations influence the passenger flows. Delay management is a
hard problem on its own and thereby not considered in our approach. We refer
the interested reader to Schachtebeck and Schöbel [10], Kanai et al. [7] and
Dollevoet et al. [4] for recent work on delay management approaches.

The framework of our rolling stock rescheduling approach is discussed in
Section 2. In Section 3 we show a relaxation of the model discussed in Section
2. Instead of solving the relaxation, we make use of an iterative procedure of
which in Section 4 up to Section 7 the components are explained. Results of
different variants of our approach, based on a scenario in the Netherlands are
discussed in Section 8, and Section 9 concludes this paper.

2 Rolling stock and timetable rescheduling with dynamic passenger
flows

The performance of the disruption management process investigated in this
paper arises from the interaction of 3 factors: (i) the timetable, (ii) the rolling
stock schedule (seat capacity), and (iii) the passenger behavior.

We consider disruptions where passenger behavior has a large impact on the
performance of the railway system if the timetable and rolling stock schedule
are not changed. Examples are disruptions where certain tracks are blocked for
a number of hours. Passengers react to these disruptions by finding alternative
routes to their destinations. However, the capacity on these alternative routes
can be limited, resulting in overcrowded trains and thereby longer dwell times
and delays.

Two ways to handle the increased demand on the alternative routes are
to enlarge the capacity of the trains and to adapt the timetable. Adapting
the capacity of the trains alone is not always enough. For example, it can be
impossible to increase the capacity of a train by lack of time and/or reserve

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

13

rolling stock or due to limited platform lengths. Therefore, timetable adap-
tations such as adding extra train services, rerouting trains or adding extra
stops for trains are worthwhile as well.

By adapting the timetable, the railway operator can influence the passenger
flows by providing new alternative travel routes and by influencing the demand
for certain trains. For example, a train can make an additional stop at a station
to give passengers at that station an additional, earlier, travel option to their
destination and to decrease the demand for the next train calling at that
station and travelling in the same direction.

In this research we limit the timetable adaptations to adaptations of the
stopping patterns of trains. A stopping pattern of a train indicates the stations
where the train makes a stop. A stopping pattern can contain, next to the
scheduled stops, also new stops at stations where the train did not have a
scheduled call.

To make a new rolling stock schedule and timetable for the remainder of
the day, we assume that the complete characteristics of the disruption are
revealed at the moment the disruption starts. For example, at that time, the
exact duration of the disruption is known.

Then, a general framework for rescheduling the rolling stock and timetable
by considering the passenger behavior based on the model of Kroon et al. [8],
with the difference that now also decision variables for the timetable decisions
are included, can be stated as follows:

min c(x) + d(y) + e(z) (1)

subject to z ∈ Z (2)

x ∈ Xz (3)

y = f(x, z) ∈ Y (4)

Here Z is the set of all possible timetables given the disruption, Xz is the set of
all possible rolling stock schedules matching with timetable z, and Y is the set
of feasible passenger flows. The function f(x, z) returns the emerging passenger
flow for a given timetable z ∈ Z and rolling stock schedule x ∈ Xz. Note that
the chosen timetable z and rolling stock schedule x uniquely determine the
passenger flow y by the function f . This means that the only real decision
variables are the rolling stock schedule x and the timetable z.

The objective function consists of three terms. The function c(x) gives the
system related costs of a rolling stock schedule, which can also be seen as the
rolling stock rescheduling costs. The function d(y) gives the service related
costs of a passenger flow. The function e(z) that gives the system related costs
of a timetable, so the timetable rescheduling costs. The highest priority is
given to assigning at least one rolling stock unit to each train, to prevent the
train to be cancelled by lack of rolling stock. Such cancellations will not only
have a large negative influence on the passenger flows, but also make the crew
schedule infeasible.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

14

Passenger flow simulation

Rolling stock reschedulingStart

Passenger flow simulation

Timetable adaptation

Passenger flow Updated rolling stock assignment

Updated timetable Passenger flow

1

Fig. 1 Iterative procedure for solving the rolling stock rescheduling problem with dynamic
passenger flows.

2.1 Iterative Procedure

The optimization model (1)-(4) is very difficult to solve directly, mainly due
to the complex structure of the objective function f . We are not aware of
any algorithmic framework that would be able to handle realistic instances of
(1)-(4). Therefore we propose an extension to the iterative heuristic of Dumas
and Soumis [5] and Kroon et al. [8]; the approach is sketched in Figure 1.

The input of our algorithm consists of the original (i.e., undisrupted) time-
table, the original rolling stock schedule as well as a list of train services that
must be cancelled as an immediate reaction to the disruption. The removal of
these inevitably cancelled services gives the initially modified timetable.

In each iteration, we evaluate the passenger flows by using a simulation
algorithm. The simulation is based on the previous iteration’s timetable and
rolling stock schedule. Here the rolling stock schedule is only needed because it
determines the capacities of the trains. We use the simulation model introduced
by Kroon et al. [8]. The details of this simulation model are summarized in
Section 4. Note that the first iteration uses the initially modified timetable,
and assumes that each train has the same capacity as in the original schedule.

The passenger simulation pinpoints the trains with insufficient capacities.
The rolling stock rescheduling model computes a new schedule based on these
findings, balancing it with other criteria, such as operational costs. For details
we refer to Section 5.

After another round of passenger simulation, we evaluate which adapta-
tions of the timetable could potentially improve the service quality. Each indi-
vidual adaptation is a minor change, such as requiring a train to make an extra
stop. Therefore we can assume that the just computed rolling stock schedule
remains feasible. We describe several variants for finding the most promising
timetable adaptation in Section 6. Having decided on the timetable, the next
iteration will start by launching a passenger simulation.

Our method differs from the framework of Kroon et al. [8] by adding the
timetable adaptation step to the loop. Since the passenger flows can be heavily

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

15

impacted both by a new rolling stock schedule and by an adapted timetable,
we carry out passenger simulations after each of them.

The iterative approach is purely heuristic; it does not necessarily converge,
and has no optimality guarantee. Motivated by the limited time in real-life
applications, we terminate our algorithm after a certain number of iterations,
and we report the best solution found. In addition, we compute lower bounds,
described in Section 7, in order to be able to judge the quality of the solution.

3 Operator control

The rescheduling process may result in a better outcome if the operator can
directly influence the passengers’ behavior by appropriately assigning them to
the train services (rather than letting the passengers choose their routes). We
call this situation operator control. In this section we describe an optimization
model for operator control which is a relaxation of the model (1)-(4). We are
not going to use this model in our computational tests, since it is a computa-
tionally large model and we do not want to assume operator control. However,
we still want to present this relaxation of the model to give an idea about its
complexity, and thereby justifying our use of an iterative procedure.

We split all timetable services into trips t ∈ T representing a movement of a
train between two consecutive planned stops. The main decision for the rolling
stock schedule is to assign compositions to trips, where a composition consists
of one or more combined train units. Let Gt be the set of all compositions g
which can be assigned to trip t, and the capacity of composition g is denoted by
Capg. Binary variables xt,g indicate whether composition g is used (xt,g = 1)
for trip t or not (xt,g = 0).

For the timetable decisions every trip t ∈ T has a set Jt of possible stop-
ping patterns for calls at the intermediate stations. Here a stopping pattern
indicates a sequence of intermediate stations at which the train makes an ad-
ditional stop. Binary variables zj indicate whether stopping pattern j is used
(zj = 1) or not (zj = 0).

A passenger p ∈ P should take a path from its origin to its destination
within his/her proposed deadline, where a path itself is a sequence of rides
on trains between two stations. Let Kp be the set of all paths that passenger
p ∈ P could take and let Kp

t ⊂ Kp be all paths which passenger p could take
with (part of) trip t in it. Note that the paths in Kp and Kp

t can be based on
every possible stopping pattern. Let J̄k be the set of all stopping patterns j
matching with path k. The binary variable ykp is 1 if passenger p picks path

k and 0 otherwise. The parameter dkp indicates the associated cost (delay) of
passenger p taking path k.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

16

Then, in case of operator control, the model of (1)-(4) can be relaxed by:

min c(x) +
∑
p∈P

∑
k∈Kp

ypkd
p
k + e(z) (5)

s.t. x ∈ X̄z (6)∑
j∈Jt

zj = 1 ∀t ∈ T (7)

∑
k∈Kp

ypk = 1 ∀p ∈ P (8)

ypk − zj ≤ 0 ∀p ∈ P, ∀k ∈ Kp and ∀j ∈ J̄k (9)∑
p∈P

∑
k∈Kp

t

ypk ≤
∑
g∈Gt

xt,gCapg ∀t ∈ T (10)

ypk ∈ {0, 1} ∀p ∈ P and ∀k ∈ Kp (11)

zj ∈ {0, 1} ∀t ∈ T and ∀j ∈ Jt (12)

The objective function (5) is to minimize the total costs of the rolling stock
rescheduling, the passenger flows (sum of delays) and the timetable reschedul-
ing. Constraints (6) compactly summarize the constraints on the underlying
rolling stock rescheduling problem. These rolling stock decisions are influenced
by the chosen timetable z since there are some minimum process times required
in the rolling stock schedule. So, if some trips take longer than planned cer-
tain processes can become infeasible. Constraints (7) determine that for every
trip exactly one stopping pattern must be selected. Every passenger must pick
exactly one path, which is modeled by Constraints (8). Constraints (9) ensure
that only matching paths and stopping patterns can be chosen. The chosen
paths by the passengers should also match with the available capacity in the
trains which is modeled by Constraints (10).

Even this relaxation of the model of (1)-(4) is a complex model to solve
in a real-time environment by the interdependence between the rolling stock
and the timetable via the passenger flows. Therefore, we will solve the model
in (1)-(4) by an iterative procedure as discussed in Section 2.1.

4 Passenger flow simulation

The iterative procedure starts with a simulation of the passenger flows, and
each time the timetable or rolling stock schedule is updated a new simulation
of the passenger flow is necessary.

To keep the simulation tractable, all passengers with the same character-
istics (origin, destination and arrival time at the origin) are aggregated into
passenger groups.

To simulate the passenger flows we use the simulation algorithm as de-
scribed in Kroon et al. [8]. It is important to mention that this is a deter-
ministic simulation algorithm to calculate the emerging passenger flows. This

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

17

means that, given a timetable and rolling stock schedule, there is a uniquely
defined resulting passenger flow. Here we shortly summarize the assumptions
of the model as described in Kroon et al. [8]. For more details we refer to that
paper. We emphasize that the approach is modular, which allows us to replace
the simulation model by any other simulation model to model the passenger
behavior.

4.1 Assumptions

For the simulation of passenger behavior, Kroon et al. [8] make assumptions on
three fundamental issues: (i) What information is available to the passengers?
(ii) Which traveling strategy do passengers apply to the available information?
and (iii) How do passengers interact?

Information available for the passengers

It is assumed that passengers always know the most recent timetable. This
means that if the timetable is updated due to a disruption, they know which
trains are canceled, which trains make additional stops, and which trains are
delayed. Passengers do not know the future timetables, so they cannot antici-
pate on cancellations, delays and additional stops before the disruption occurs.
Furthermore, they do not know anything about whether or not they fit in the
trains they would like to take.

Strategy of the passengers

Each passenger has a traveling strategy. This strategy decides for the passenger
what will be the preferred path to the destination given the most recent time-
table. In Kroon et al. [8] all passengers have the same strategy. In our research
we also use this single strategy. The used strategy is that passengers want
to reach their destination as early as possible. If several paths have the same
earliest arrival time, the passengers prefer the path with the least transfers
between trains. If we have multiple paths with the same earliest arrival time
and the same minimum number of transfers, the passengers will take the path
with the earliest departure time. It is worthwhile to mention that in practice
there is a more balanced trade off between transfers and travel time. It seems
to be highly unrealistic that passengers are willing to transfer 2 times to save
1 minute of travel time. Note that one could easily include other strategies as
well.

Each passenger wants to reach his destination before a certain deadline. If a
passenger is not able to reach his destination before the deadline, it is assumed
that the passenger gives up travelling by train. In this way it is modeled that
passengers are not willing to wait endlessly.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

18

Interaction between the passengers

If a train arrives, first passengers who want to leave the train get the option
to do so, then the passengers waiting at the platform who want to enter the
train compete for the available capacity in the train. It can happen that there
is not enough capacity for all passengers. Then it is assumed that the number
of passengers from each passenger group who actually board a train is relative
to the size of the group. This could lead to a fractional number of passengers
but it is assumed that the contribution of fractional flows are neglectable.

It is possible that not all members of a passenger group are able to board
the train: Some of them have to stay behind. We say that these passengers
are rejected by the train. In case of rejections, the passenger group is split
into two: those passenger who were able to board the train and those who
were not. The rejected passengers must find a new preferred path from their
current location, while the boarded passengers can just follow their previously
computed preferred path.

4.2 Evaluating the passenger flow

In this research we evaluate the passenger flows by the delays which passengers
face in comparison with their original expected arrival times and by the num-
ber of passengers who did not reach their destination within their set deadline.
In our experiments we try different ways to penalize delay minutes. In one set-
ting the delay minutes are penalized uniformly and in another setting longer
delays are penalized more, since one may argue that longer delays are worse
than several small delays. For passengers who are not able to reach their desti-
nation within their deadline we penalize passengers leaving the system by the
difference between the deadline and the expected arrival time of the intended
traveling path. For each passenger, his delay or penalty for not reaching his
destination within his deadline is called his inconvenience.

5 Rolling stock rescheduling

The rescheduling of rolling stock follows the procedure of Kroon et al. [8]. In
this procedure the rolling stock is rescheduled based on the model described in
Nielsen et al. [9] (which is an extension of Fioole et al. [6]). The basic decisions
in the model are to assign a rolling stock composition to each trip such that as
many of the passengers are accommodated. The difficulty of the rolling stock
rescheduling is that a composition consists of multiple combined train units.

During operations the operator can change the compositions by decoupling
or coupling units in the front or the back of the train. These operations are
called shunting operations. Shunting personnel must be arranged to facilitate
these operations. Therefore, changing the shunting operations also includes
new tasks for the shunting personnel, which is not preferred.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

19

Since a composition can consist of different types of train units, the order
in which they are combined within a composition matters (i.e. one could not
decouple a unit in the middle).

As discussed, the main objective of our approach is to prevent cancellations
caused by lack of rolling stock. Therefore we once determine how many trains
need to be cancelled due to lack of rollings stock. To do this we run the rolling
stock rescheduling approach on the initially modified timetable with the single
goal to find a feasible rolling stock schedule by minimizing the number of trains
without rolling stock. This means that we have only a penalty for trains which
do no get rolling stock assigned to them. All other penalties are set equal
to 0. The result shows how many trains need to be cancelled inevitably by
lack of rolling stock. In the rolling stock rescheduling steps we enforce the
number of cancelled trains to be equal to this to ensure that no more trains
than necessary are cancelled. Still the rolling stock rescheduling approach has
freedom in which trains it does not assign rolling stock to.

For all remaining rolling stock rescheduling steps, the model has two objec-
tives: It consists of a trade of between minimizing the rolling stock rescheduling
costs and the inconvenience for the passengers. The rolling stock rescheduling
costs are mostly based on how much the rolling stock schedule is changed.
For example one does not want to make too many new shunting operations,
since these new shunting operations must be communicated (with a certain
probability of miscommunication) and it requires personnel to perform them.

The inconvenience for passengers is based on the latest simulation run
with the timetable and rolling stock schedule of the last iteration. Penalties
are defined for assigning a certain composition to a trip. The penalties are de-
termined by estimating the effect of the train capacities on the total passenger
inconvenience measured as discussed in Section 4.2.

Per trip the average inconvenience per passenger who was not able to
board the train is computed. To do this, per passenger group the difference in
inconvenience between passengers who were not able to board and passengers
who were able to board is determined. Then, the weighted (based on group
size) average of these differences is considered as the average inconvenience
per passenger who is not able to board the train. In the objective function
the number of seat shortages is multiplied with this average inconvenience per
rejected passenger. For more details we refer to Kroon et al. [8].

Kroon et al. [8] reported that the approach of updating the objective func-
tion could lead to cyclical behavior if the feedback from earlier iterations is
ignored. We follow the described exponential smoothing procedure in Kroon et
al. [8] (which is based on Dumas and Soumis [5]) to take feedback from earlier
iterations into account as well. We use the setting which performed best in
their case. This setting means that feedback from earlier iterations is weighted
for 35 percent.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

20

6 Timetable adaptations

The disruption management process admits timetable decisions in order to
better facilitate the passenger flows. In this paper we limit the allowed time-
table modifications to adding stops to timetable services.

In this paper, adapting the stopping patterns means that trains may call
at stations where they normally just pass through. Making an additional stop
results in new traveling options for some passengers but also in an increased
travel time for others. Therefore it is necessary to make a trade off between the
positive and negative effects of the changed stopping pattern. The objective of
this research is to minimize the sum of the delays of all passengers. Therefore,
we only allow timetable changes that do not increase the total delay of all
passengers. We assume that an additional stop will delay all further trips of
a train by a fixed number of minutes and that those delays will not influence
other train traffic.

The (greedy) procedure to adapt the stopping patterns goes as follows: (i)
we have a list of candidate timetable adaptations, (ii) we evaluate for each
candidate the consequences, (iii) we apply the timetable adaptation with the
most positive consequences.

First of all, this approach requires that in step (i) a list of candidate time-
table adaptations is given. The dispatchers can give this as input to the ap-
proach. In the extreme case, every timetable service is allowed to make an
additional stop at every station it passes.

The effect measured in step (ii) indicates how much the total delay of
the passenger will change if only that single timetable adaptation will be ap-
plied. Therefore, in step (iii) we limit ourselves to allow only one timetable
adaptation per iteration of the solution approach. If no candidate timetable
adaptation reduces the total delay of the passengers, no timetable change is
made.

For all candidate timetable adaptations, the consequences of applying the
adaptation needs to be computed. In Sections 6.1-6.4 we discuss several meth-
ods and approximations to compute these consequences. In Section 6.1 we
discuss a method to compute the exact effect of the additional stop. The exact
effect can be computed since we use a deterministic passenger flow simulation.
However, computing the exact effect can be time consuming. Therefore, we
also suggest a faster approximation algorithm in Section 6.2. Furthermore, we
introduce two heuristics in Sections 6.3 and 6.4 which are more transparent
for use in practice.

In the different variants we evaluate the effects of different candidate time-
table adaptations. We refer to train i as the train of which the stopping pattern
an be adapated within the candidate timetable adaptation. Furthermore, the
station at which train i will make the additional stop within the candidate
timetable adaptation is called station b.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

21

6.1 Exact effect of an additional stop (EXACT)

To determine the exact consequences of an additional stop, we need to run
the simulation algorithm which is discussed in Section 4 twice. First the sim-
ulation is performed with the current timetable and then the simulation is
performed with the timetable which results from the timetable adaptation.
From both simulations we get the total delay minutes of the passengers. The
difference between these two total delay minutes shows the consequences of
the candidate timetable adaptation. This approach measures the exact effect
of the additional stop and is called EXACT.

A variant of EXACT, denoted by EXACT*, will not use the current ca-
pacity of train i in the simulation but the capacity of the largest possible
composition allowed for train i. The difference between this simulation and
the simulation of the current timetable will then not measure the exact effect
of the extra stop but the potential (which can be larger) effect of the addi-
tional stop. In this case it is left to the rolling stock rescheduling phase to
check whether it is possible to increase the capacity of train i.

6.2 Estimated effect of an additional stop (EST)

In this section we introduce an approach to estimate the effect of an additional
stop. In this variant, both the positive and the negative effects of the additional
stop are considered. For all passengers their preferred path to their destination
is known. If we change the timetable by including an additional stop, some
passengers might get another preferred path to their destination.

Some passengers arrive earlier at their destination due to an additional
stop at their origin or destination. Other passengers might profit from the
delay of the train caused by the additional stop, since due to the delay they
were able to catch this train which departs earlier than the train they were
intending to take. All these passengers originally did not have train i on their
preferred path, but in case the additional stop is executed they have train i
on their preferred path.

However, since the additional stop takes some time it also causes some
delays for passengers who had train i on their preferred path in the current
timetable. Due to the delay of train i it can be that their preferred path
changes. Also if the preferred path does not change it can still mean that the
passengers are delayed if the trip on train i was the final trip in their path.

To estimate the effect of the additional stop we compute for each passen-
ger his preferred path in the current timetable and the preferred path in the
timetable in which train i makes an additional stop. The sum of all these dif-
ferences is our estimate of the consequences of the additional stop. Note that
this is an estimate since this method assumes that every passenger can take
his preferred path which might not be true by the capacity of the rolling stock.

We make variants of this approach by assuming different durations of the
additional stop in the determination of the shortest path. This means that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

22

we can use for the estimation of the effect another duration of the additional
stop than the real duration of the additional stop. For example, if we assume
a shorter duration of the additional stop, we over-estimate the potential effect
of the additional stop. However, maybe this will lead to a good optimization
direction. The duration of the extra stop used in the estimation approach will
be called the extra stop penalty.

6.3 Rule of thumb: Do not pass passengers who did not fit in a previous train
(PRACT1)

If passengers did not fit in a train, then they have to wait for the next train
in the same direction. Especially for these passengers, since they were already
rejected, it is very frustrating if a train in their direction passes them without
stopping. A rule in practice could be that it is not allowed to pass a group
of passengers who were rejected by a previous train. This is an easy to use
rule of thumb. We will evaluate the performance of this rule which is called
PRACT1.

To decide whether or not train i needs to make an additional stop we have
to consider two other trains. The first considered train h is the last train which
arrived at station b before the passing time of train i at station b. If there were
passengers with destination b rejected to board train h at the departure from
the last station a before station b, train i will make an additional stop at
station b to let these rejected passengers travel from station a to b.

The second considered train j (which is in most cases the same as train h),
is the last train which departed from station b in the same direction as train i
before train i passes station b. If there were passengers rejected to board train
j at station b, train i will make an additional stop at station b to let these
rejected passengers in.

Since we allow one timetable adaptation per iteration we have to make a
comparison on how effective the additional stop will be: Therefore, we sum
up the advantages for all passengers who were rejected to board train h in
station a or train j in station b. For the passengers rejected to board train h in
station a the advantage is measured by the difference between the arrival time
of train i at station b and the arrival time of the first train from a to b after
train i. For the passengers rejected to board train j in station b the advantage
is estimated by the arrival time of train i at the first station after station b
where both trains h and i call and the arrival time at the same station of the
first train departing after train i from station b.

In this measurement we assume that all passengers are able to board train
i, so that train i is assumed to have infinite capacity. We do not use the actual
capacity since in the rolling stock rescheduling phase the capacity of train i
could be increased.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

23

6.4 Rule of thumb: including the negative effects PRACT2

The approach PRACT1 based on a rule of thumb only considers the positive
effects of an additional stop. This results in a situation that even if only one
passenger may profit from the additional stop, the stop will be executed. In
another rule of thumb, PRACT2, the delay for passengers traveling by train
i caused by the additional stop is included. In this approach, the advantages
for passengers are measured in the same way as approach PRACT1, and the
inconvenience per passenger who travels by train i at the moment train i
makes an additional stop at station b will be equal to a fixed parameter. This
parameter is equal to the duration of the extra stop plus an eventual penalty.
Note that for practitioners this rule requires more knowledge. In PRACT1 the
dispatchers only need monitor whether there are trains where some passengers
did not fit in the train. In PRACT2 the dispatchers also need to know how
many passengers did not fit in the train, and how many passengers are in the
next train passing station b.

7 Lower bound

The proposed approach does not guarantee to converge to an optimal solution.
To consider the quality of our solutions, we check the gap between a lower
bound and the value of our solution. Depending on the nature of the disruption,
the lower bound on the rolling stock rescheduling costs will not differ that much
from 0, but the lower bound on the passenger delays can be quite interesting.
In this section we come up with a lower bound which takes the positive effects
of an additional stop into account.

This lower bound can be reached by assuming infinite capacity on all trains,
together with assuming that all extra stops are executed and that an extra
stop does not cause any arrival delay.

To be more precise, in this lower bound all extra stops are executed and
the departure times at stations after the additional stop are delayed by the
time an extra stop will take, and all arrival times are kept the same. This way
we ensure that no passenger faces an arrival delay caused by the additional
stop and that passengers who may profit from a delayed train caused by an
additional stop still have the opportunity to enter the train. Then a simulation
run with infinite capacity on the trains and with the timetable as described
above gives a lower bound on the total passenger delay.

It can happen that passengers have an advantage by a delayed train since
they can pick a train earlier than their planned train. This must be considered
in the lower bound. Therefore we cannot just add the extra stops and leave
all departure and arrival times the same.

By delaying the departure times we have a lower bound which is valid for
both cases, with and without the extra stop. No one gets an arrival delay, and
some passengers arrive earlier since they have an extra travel opportunity by
the extra stop.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

24

This lower bound represents the delay of the passengers which the operator
cannot prevent by increasing the rolling stock capacities or adapting the time-
table. This delay is caused by the train services that are inevitably cancelled
due to the unavailability of infrastructure caused by the disruption.

8 Computational Results

We tested the proposed approach on instances based on cases of Netherlands
Railways (NS) which is the major railway operator in the Netherlands. In
these instances, a disruption, due to some blocked switches, caused that fewer
trains than normally can be operated on certain tracks.

8.1 Detailed case description

The instances take the busiest part the Dutch railway network into account
which is represented in Figure 2. The original passenger flows are constructed
conform a regular weekday of Netherlands Railways, which resulted in 15064
passenger groups with a total of about 450,000 passengers.

In almost each of the trajectories we have four Intercity trains per hour in
each direction. A Intercity train is a train which only calls at the larger sta-
tions. All intercity trains in this network are considered, furthermore the re-
gional trains, that stop at every station, between The Hague (Gv) and Utrecht
(Ut) are also considered.

For the rolling stock rescheduling, four types of rolling stock are available;
two types for regional trains and two types for intercity trains. The regional
train types can be coupled together, which leads to 5 possible compositions,
and the Intercity train types can also be coupled together in 10 different com-
positions.

In Figure 2 the dotted line represents the disrupted area. On those tracks
on a normal day each hour 4 Intercity trains and 4 regional trains run in each
direction. We constructed two instances with a disruption in the rush hours
between 7:00 A.M. and 10:00 A.M. In the first instance (ZTM1), 2 regional
trains per hour per direction are canceled. In the second instance (ZTM2)
also 2 Intercity trains per hour per direction are canceled. This means that in
instance ZTM1 in each direction 6 trains per hour still run between Gouda
(Gd) and The Hague (Gv), and only 4 trains per hour in each direction in
instance ZTM2.

8.2 Parameter settings

The objective function consists of system related costs for the timetable adap-
tation and the rolling stock rescheduling, and costs for the passenger delays.
For the timetable adaptations we do not consider any penalties other than
that we assume that an additional stop will delay a train by 3 minutes.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

25

Gv

Rtd
Gd

Ut

Amf

Zl

Dv
Shl

Asd

Amr

Ht

Ah

Ledn

Ddr

Ztm

1

Fig. 2 Part of the Dutch railway network

Table 1 Rolling stock rescheduling costs

Type of costs value

New shunting operation 500
Changed shunting operation 500
Canceled shunting operation 100
Off balances at the end of the day, per unit 200
Seat shortage per seat per kilometer 0.1
Carriage Kilometers 0.0001

The rolling stock rescheduling costs are given in Table 1. Most important
is that the rolling stock schedule should not change too much from the original
plan, since changed plans require communication between the dispatchers and
the personnel, and a failure in this communication is easily made. Therefore we
introduce costs for having other shunting operations than planned. Changing
the shunting operations also includes new tasks for the shunting personnel,
which is not preferred. We consider the carriage kilometers as least important.

The passenger service costs consist of the passenger delay minutes as dis-
cussed in Section 4.2, where the penalties for passengers who left the system
because of not reaching their end station within their deadline are also mea-
sured in delay minutes.

The approach will make at maximum 15 iterations.

To solve the composition model of the rolling stock rescheduling we used
CPLEX 12.5. The test instances are run on a laptop with a Intel(R) Core(TM)
i7-3517U 1.9/2.4 Ghz and 4.0 GB RAM.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

26

Table 2 Results

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 33526 55927 55874 53 4 4 563
(EXACT*) 33526 55927 55874 53 4 9 573

(EST 0min) 33526 57372 56818 554 3 3 349
(EST 1min) 33526 58857 58304 554 4 4 352
(EST 2min) 33526 57372 57318 53 5 9 352
(EST 3min) 33526 91534 90980 554 0 1 291
(PRACT1) 33526 64304 64251 53 3 4 282
(PRACT2) 33526 64304 64251 53 3 4 307

(NO STOP) 49626 91534 90980 554 - 1 235

Instance ZTM2

(EXACT) 110848 139588 136527 3061 3 3 456
(EXACT*) 110848 139588 136527 3061 3 8 427

(EST 0min) 110848 139630 136368 3262 3 4 352
(EST 1min) 110848 139630 136368 3262 3 4 315
(EST 2min) 110848 162228 159167 3061 2 6 351
(EST 3min) 110848 177123 173861 3262 0 1 291
(PRACT1) 110848 152062 149000 3061 4 4 320
(PRACT2) 110848 166356 163295 3061 3 7 326

(NO STOP) 120373 177123 173861 3262 - 1 249

8.3 Results

This section provides the results of the two test instances. For the timetable
rescheduling part we had different approaches to decide which Intercity trains
should make an additional stop. We compare the effect of the different ap-
proaches on the final solution. We also compare our approach (which includes
the option to adapt the timetable) with the method of Kroon et al. [8] (which
does not have an option to adapt the timetable) referred to as (NO STOP).
In the approach (EST) we estimated in the timetable rescheduling step the
effect of an additional stop. Within this estimation we discussed that we could
assume different lengths of the additional stops. This assumed length of the
additional stop is also called the extra stop penalty. In our experiments we
used 0, 1, 2 and 3 minutes for the extra stop penalty. Note that an extra stop
penalty of 0 minutes means that it is assumed that nobody faces negative
effects of the additional stop. Furthermore, note that the realized timetable
adaptation always includes a 3 minute delay caused by the additional stop.

In Table 2 we provide the best result found in the iterative procedure for
each of the variants of the approach. Note that the iterative procedure does
not necessarily converge to an optimal solution and thus the best solution can
be found at any iteration. Therefore, we included the number of the iteration
where the best solution was found. For each approach the lower bound as dis-
cussed in Section 7 is given. Furthermore, the table contains the value of the
objective function which consist of the sum of the rolling stock rescheduling
costs (by considering the parameters in Table 1) and the passenger inconve-
nience (measured in passenger delay minutes as discussed in 4.2). We also

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

27

report how many extra stops are included in the timetable of the best result.
The computation time is measured in seconds and reports the computation
time over all 15 iterations, and not just the computation time up to the mo-
ment the best solution is found. The latter would not be fair, since beforehand
it is not known at which iteration the best solution will be found.

Performance

In the approach NO STOP based on Kroon et al. [8], timetable adaptations
were not allowed. Our results show that allowing the stopping patterns to
be adapted can reduce the passenger delays dramatically by about 25 to 35
percent.

From Table 2 we can deduce that the approach EXACT led in both cases
to the lowest passenger delay minutes and the lowest rolling stock reschedul-
ing costs. EXACT*, the variant of the approach EXACT, reaches the same
solutions, but it takes longer to get there. The estimation approach works well
as long as we overestimate the positive effects of the additional stop by having
a lower extra stop penalty (0 or 1 min) than the realized delay (3 min).

The performance of the approach EST 0min is surprising. It underesti-
mates the negative effects and overestimates the positive effects of the addi-
tional stop but it is still able to reach solutions which do not differ much from
the solutions reached by the approach EXACT. In deciding on which train
should make an additional stop, the approach EST 0min assumes that an ad-
ditional stop does not cause any delay and thereby no one faces negative effects
of the additional stop. In every iteration an additional stop is introduced (by
assuming that every additional stop has at least some positive effect).

On the other hand, the bad performance of the approach EST 3min is also
surprising. Especially since in this approach the duration of the additional stop
in the estimation approach matches the realized duration of an additional stop.
However, this approach finds it never worthwhile to make an additional stop.
Since this approach does not consider the capacities of the trains, it does not
take rejected passengers into account. The EST approaches, thereby underesti-
mate the positive effect the additional stop could have for rejected passengers.
It seems that in EST 0min and EST 1min this underestimation is balanced by
the overestimation of the other positive effects, but in the EST 3min approach
the underestimation is not corrected by another overestimation.

The rules of thumb approaches PRACT1 and PRACT2 are outperformed
by our exact approach EXACT and by our estimation approaches EST 0min
and EST 1min. This shows that our more complex approaches are able to
come to better solutions.

Iterative behavior

In Figures 3 - 8 we show for six of the variants how the solution of the case
ZTM1 changes over the iterations. The black dot indicates the first solution

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

28

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Fig. 3 EXACT case ZTM1

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Fig. 4 EST 0min case ZTM1

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Fig. 5 EST 1min case ZTM1

Rolling stock

0 1000 2000

S
er
v
ic
e

50000

60000

70000

80000

90000

100000

Fig. 6 EST 2min case ZTM1

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Fig. 7 EST 3min case ZTM1

Rolling stock

0 1000 2000

P
as
se
n
ge
r
D
el
ay
s

50000

60000

70000

80000

90000

100000

Fig. 8 PRACT1 case ZTM1

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

29

Rolling stock

2000 3000 4000 5000

P
as
se
n
ge
r
D
el
ay
s

130000

140000

150000

160000

170000

180000

190000

200000

Fig. 9 EXACT case ZTM2

Rolling stock

2000 3000 4000 5000

S
er
v
ic
e

130000

140000

150000

160000

170000

180000

190000

200000

Fig. 10 EST 0min case ZTM2

and by arrows we indicate how the solution evolves. On the horizontal axis we
have the rolling stock rescheduling costs and on the vertical axis we have the
passenger delays. With the rolling stock rescheduling both the rolling stock
rescheduling costs and the passenger delays can change. However a timetable
adaptation only influences the passenger delays, and therefore, a vertical drop
or increase in the figure can most of the time be associated with a timetable
adaptation.

The EXACT approach has a quite clear converging path to its best solu-
tion by decreasing passenger delays and rolling stock rescheduling costs. The
solution of the approaches EST 0min and EST 1min first goes to solutions
with low passenger delays and low rolling stock rescheduling costs, but from
a certain moment, the passenger delays are increasing again. The approaches
EST 2min and PRACT1 converge like the EXACT approach to their best
solution, but especially the solution of PRACT1 does not come close to the
solution of EXACT. The approach EST 3min has in every iteration the same
solution.

In Figures 9 and 10 the iterative behavior of our best performing variants
(EXACT and EST 0min) on case ZTM2 are given. All variants did not show
converging behavior for this case. The figures demonstrate that the EXACT
approach explores a smaller region of solutions. The approach EST 0min first
goes to solutions with large passenger delays, then gets to solutions with low
passenger delays and in the end it goes again into the direction of solutions
with high passenger delays.

Computation time

Our approach added a module which adapts the timetable to the iterative
procedure of the approach NO STOP of Kroon et al. [8]. This means that we
assume that by the additional computations our approach cannot be faster
than the NO STOP approach.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

30

Table 3 Results with passenger flow costs times 10

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 335260 558793 55874 53 4 7 568
(EXACT*) 335260 558793 55874 53 4 14 541

(EST 0min) 335260 568737 56818 554 3 3 346
(EST 1min) 335260 583589 58304 554 4 4 351
(EST 2min) 335260 568737 56818 554 3 6 350
(EST 3min) 335260 910355 90980 554 0 1 363
(PRACT1) 335260 642566 64251 53 3 7 297
(PRACT2) 335260 642566 64251 53 3 7 296

(NO STOP) 496260 910355 90980 554 - 1 210

Instance ZTM2

(EXACT) 1108480 1363686 135920 4064 3 11 431
(EXACT*) 1108480 1363686 135920 4064 3 5 430

(EST 0min) 1108480 1375949 137189 3262 4 4 346
(EST 1min) 1108480 1366944 136368 3262 3 4 298
(EST 2min) 1108480 1593181 158992 3262 2 4 331
(EST 3min) 1108480 1741873 173861 3262 0 1 359
(PRACT1) 1108480 1473060 146900 4064 2 2 313
(PRACT2) 1108480 1628519 162446 4064 3 12 293

(NO STOP) 1203730 1741873 173861 3262 - 1 237

If we use the EXACT approach, an instance is solved in about double the
time of the NO STOP approach. The other variants of the approach solve the
instances faster (within 6 minutes).

The first rolling stock rescheduling step, to determine the number of trains
without rolling stock, is carried out in about 80 seconds. Then, next rolling
stock rescheduling steps take 4 to 5 seconds per iteration. The timetable
rescheduling phase takes 8 to 15 seconds per iteration within the EXACT
approach, since multiple simulations must be carried out. The computation
time of the timetable rescheduling phase drops to 1 to 6 seconds per iter-
ation for the estimation approaches EST and to less than 1 second for the
approaches PRACT1 and PRACT2.

8.4 Additional tests

To see what happens with the solutions if we put more weight on the passenger
delays, we run all approaches also with an objective in which the costs of the
passenger flow is multiplied by 10. The results are presented in Table 3. The
results and the performance are almost similar to the results in Table 2. In
one third of the cases the rolling stock rescheduling costs are slightly higher
to reach lower passenger delays.

In a third test we experiment on how the approaches behave if we give
additional penalties to longer delays. In these tests we penalize delays between
15 and 30 minutes with an additional 5 minutes delay and delays longer than
30 minutes with an additional 10 minutes delay. Again one can see from the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

31

Table 4 Results with 5 minutes additional penalty for delays larger than 15 minutes and
10 minutes additional penalty for delays larger than 30 minutes

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time

minutes costs solution (sec)

Instance ZTM1

(EXACT) 36171 59342 55874 53 4 8 572
(EXACT*) 36171 59342 55874 53 4 8 563

(EST 0min) 36171 60777 56818 554 3 3 341
(EST 1min) 36171 62297 58304 554 4 4 348
(EST 2min) 36171 60777 56818 554 3 3 361
(EST 3min) 36171 94969 90980 554 0 1 360
(PRACT1) 36171 67684 64251 53 3 8 290
(PRACT2) 36171 67683 64251 53 3 8 273

(NO STOP) 52741 94969 90980 554 - 1 214

Instance ZTM2

(EXACT) 114988 144513 136527 3061 3 5 417
(EXACT*) 114988 144513 136527 3061 3 5 492

(EST 0min) 114988 144540 136368 3262 3 4 312
(EST 1min) 114988 144540 136368 3262 3 4 331
(EST 2min) 114988 167383 159167 3061 2 5 344
(EST 3min) 114988 182073 173861 3262 0 1 339
(PRACT1) 114988 155026 146930 3061 4 4 324
(PRACT2) 114988 167639 159563 3061 2 5 309

(NO STOP) 124813 182073 173861 3262 - 1 201

results in Table 4 that these additional penalties do not influence the solutions.
In more than half of the cases, the best solution found is the same as in the
situation without these additional penalties (as presented in Table 2). For the
other cases the differences were not large.

These two additional tests show that our approach is not sensitive to
changes in the evaluation of the passenger inconvenience.

9 Conclusions and further research

In this paper we proposed a disruption management approach which integrates
the rescheduling of rolling stock and the adaptation of stopping patterns with
the aim of improving passenger service.

Computational tests are performed on realistic large scale instances of the
Dutch railway network. The two tested instances show that allowing the time-
table to be adapted can reduce the total delay of passengers by more than 20
percent without increasing the rolling stock rescheduling costs. We suggested
several variants of the approach, with the difference lying in the way of how the
timetable changes are evaluated. These variants lead to different results and
different computation times, but the results per variant are not quite sensitive
to the exact cost parameter settings.

Our solution approach does not necessarily converge to an optimal solution.
The lower bounds indicate that the gap between the solution and the lower
bound is decreased by allowing stopping pattern adaptations. However the gap

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

32

is still significant, which is probably caused by the weak lower bound. This is
a topic for future research.

In future research we will incorporate other timetable decisions as well, for
example reroutings of trains. Furthermore we want to proceed with integrating
delay management decisions into the model, which will be quite challenging
since the delay management approach is already a difficult problem to solve
on its own.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

33

References

1. B. Adenso-Dı́az, M. Oliva González, and P. González-Torre. On-line timetable reschedul-
ing in regional train services. Transportation Research Part B: Methodological, 33:387–
398, 1999.

2. V. Cacchiani, D. Huisman, M. Kidd, L. Kroon, P. Toth, L. Veelenturf, and J. Wage-
naar. An overview of recovery models and algorithms for real-time railway rescheduling.
Transportation Research Part B: Methodological, 63(0):15 – 37, 2014.

3. L. Cadarso, Á. Maŕın, and G. Maróti. Recovery of disruptions in rapid transit networks.
Transportation Research Part E: Logistics and Transportation Review, 53:15–33, 2013.

4. T. Dollevoet, D. Huisman, M. Schmidt, and A. Schöbel. Delay management with rerout-
ing of pasengers. Transportation Science, 46:74–89, 2012.

5. J. Dumas and F. Soumis. Passenger Flow Model for Airline Networks. Transportation
Science, 42(2):197–207, 2008.

6. P.J. Fioole, L.G. Kroon, G. Maróti, and A. Schrijver. A Rolling Stock Circulation Model
for Combining and Splitting of Passenger Trains. European Journal of Operational
Research, 174(2):1281–1297, 2006.

7. S. Kanai, K. Shiina, S. Harada, and N. Tomii. An optimal delay management algorithm
from passengers’ viewpoints considering the whole railway network. Journal of Rail
Transport Planning & Management, 1:25–37, 2011.

8. L.G. Kroon, G. Maróti, and Nielsen L.K. Rescheduling of Railway Rolling Stock with
Dynamic Passenger Flows. Transportation Science, 2014.

9. L.K. Nielsen, L. Kroon, and G. Maróti. A rolling horizon approach for disruption man-
agement of railway rolling stock. European Journal of Operational Research, 220:496 –
509, 2012.

10. M. Schachtebeck and A. Schöbel. To wait or not to waitand who goes first? delay
management with priority decisions. Transportation Science, 44:307–321, 2010.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

34

Pushing the Envelope: the role of slot scheduling in
optimising the use of scarce airport resources

Konstantinos G. Zografos

The rapid growth of demand for air transport services coupled with political,
physical and institutional constraints for building new airport capacity has
resulted in acute airport congestion in UK and across Europe. Demand is ex-
pected to exceed capacity by as much as 2.3 million flights (or 11%) in the
most-likely growth forecast scenario by 2030 at 138 Eurocontrol airports1. Im-
balances between traffic and capacity generate serious undesirable externalities
for air transport and the society at large. Almost one third of flights delayed
in ECAC area in 2013, with the average delay per delayed flight exceeding
26 minutes2. Similarly, ATM inefficiencies in EU3 were estimated to result in
10.8 million minutes of ATFM delays in 2012, costing around AC11.2 billion
to airspace users and passengers and producing 7.8 million tonnes of wasted
CO2. Increasing complications for expanding capacity render a pure supply-
side solution both expensive and practically difficult to implement. In effect,
a more sustainable approach being able to better cope with the congestion
problem with existing resources is called for.

Solutions aiming to manage congestion through the optimum allocation of
scarce airport capacity have received a great deal of consideration from the
airport community, policy makers, and researchers. Capacity at schedule co-
ordinated airports is expressed in slots and allocated within the framework of

Department of Management Science
Lancaster University Management School
Lancaster, UK
E-mail: k.zografos@lancaster.ac.uk

1 Eurocontrol, 2008. Long-Term Forecast: IFR Flight Movements 2008-2030. Forecast
prepared as part of the Challenges of Growth 2008 project, Brussels, Belgium.

2 Eurocontrol, 2014. CODA Digest: Delays to Air Transport in Europe Annual 2013.
Report prepared by Eurocontrol’s Central Office for Delay Analysis (CODA), Brussels,
Belgium.

3 International Air Transport Association (IATA), 2014. Fact Sheet: Single European Sky
(SES). Available online at: http://www.iata.org/pressroom/facts_figures/fact_sheets/
pages/ses.aspx (accessed May 20, 2014).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

35

http://www.iata.org/pressroom/facts_figures/fact_sheets/pages/ses.aspx
http://www.iata.org/pressroom/facts_figures/fact_sheets/pages/ses.aspx

voluntary guidelines developed and evolved over the years under the auspices
of IATA. A slot identifies a time interval, specific date and time, during which
a carrier is permitted to use the airport infrastructure for landing or take-off at
a slot-controlled airport. A fundamental concept in the slot allocation process
is declared capacity and particularly its rationing and allocation on the basis
of a complicated set of administrative rules, criteria, and priorities. Declared
capacity represents an “artificial” measure of capacity specifying and control-
ling the number of slots available per unit of time. Therefore, slot scheduling
and the setting of optimum declared capacity levels are closely interdependent
and both lie at the heart of optimising the allocation and use of scarce airport
resources.

The objective of this presentation is to provide an overview of the evolution
of slot scheduling and declared capacity modelling, identify open research is-
sues, and underline the potential of slot scheduling in optimising the allocation
and use of scarce airport resources.

The existing slot allocation process produces poor outcomes in that it fails
to properly match requested slots with those allocated to airlines. On top of
that, slot misuse sharpens the capacity shortage due to poor use of scarce
capacity. Even at airports where slot demand exceeds capacity, over 10% of
the allocated slots go unused4. ACI Europe5 estimated that slots unused due
to their late return account for losses of around AC20 million per season at
large, congested European airports.

In order to deal with inefficiencies and limitations of the existing allocation
practice, the policy and research community has placed the focus on two alter-
native (and potentially complementary to each other) directions: i) approaches
introducing alternative, market-driven mechanisms aiming to allocate capac-
ity among competing users by considering real market (or approximations of)
valuations of access to congested airport facilities (e.g., congestion-based pric-
ing schemes, primary/secondary trading, auctioning of part of or the entire
slot pool) and ii) efforts aiming to improve the allocation efficiency of the
IATA-based allocation mechanism from a slot scheduling point of view.

Slot scheduling signifies a challenging stream of research due to its poten-
tial to generate quick and drastic capacity utilisation improvements and the
complexity and size of the resulting mathematical problems. The slot schedul-
ing procedures currently in use suffer from a number of limitations such as
the following: i) they are very simplistic in modelling the objectives, as well as
the operational and regulatory constraints of the stakeholders involved in and
affected by the slot allocation process, ii) they fail to consider the inherent
dependency and complementarity of slots allocated to a network of airports,
iii) they do not sufficiently capture the dynamic nature and uncertainty as-

4 Steer Davies Gleave, 2011. Impact Assessment of Revisions to Regulation 95/93. Study
prepared for the European Commission (DG MOVE), London, UK.

5 Airport Council International (ACI) Europe, 2009. ACI Europe position on the proposed
revision of the Council Regulation (EEC) No 95/93 on common rules for the allocation of
slots at Community airports. Presentation at the TRAN Meeting at the European Parlia-
ment, March 25, Strasbourg, France.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

36

sociated with airport capacity, iv) they employ empirical or ad hoc processes
for determining (rather than assessing/computing) declared capacity, and v)
they hardly address strong interdependencies among various resource alloca-
tion problems at strategic, (pre)tactical, and operational level. In addition,
difficulties and inefficiencies in current allocation practice at a single airport
feed into the hugely complex network-wide slot allocation problem for which
there is no available decision support to authorities responsible for slot al-
location. As a result, existing slot scheduling procedures do not realistically
address the complexities of the real-world problem and apply an oversimpli-
fied approach that is eventually in the expense of allocation efficiency and
utilisation of scarce airport resources.

Existing research has mainly focused on the tactical, ground holding prob-
lem, while more recently simplified modelling approaches of the strategic,
single-airport, single-objective slot allocation problem were examined in the
literature. The latter considered replacing the current allocation mechanism
by mathematical models focusing mostly on the strategic (2-12 months be-
fore operation) allocation of slots at single-airport level. A common objective
for the single-airport slot allocation problem is the minimisation of a delay-
based cost function such as the so-called “schedule delay”. Schedule delay is a
distance-based measure expressing the difference between requested and allo-
cated slot times (often modelled as linear cost functions) subject to declared
(mainly runway) capacity, turnaround, and slot/flight assignment constraints.

Future research towards the next generation of slot scheduling models
should capitalise on existing models and expand their capabilities in several
directions such as: i) new, realistic modelling representations of the strategic
slot allocation problem taking into account various operational and regulatory
constraints, the dynamic nature of both demand and capacity, the uncertainty
of air transport operations, and, most importantly, the inherent interaction
and complementarity of slots at the airport network level, ii) simultaneous
consideration of multiple objectives (e.g., schedule delay, operational/queuing
delay, resource utilisation, fairness and equity, environmental externalities),
iii) alternative formulations of the objectives (e.g., non-linear cost functions
for delay) and/or the constraints (e.g., rolling capacity, turnaround, flight con-
nectivity) of the allocation problem coping with the trade-off between com-
plexity and accuracy of the solution, and iv) powerful new adaptive search
algorithms which can provide high quality solutions to complex, large-scale,
real-world problems. Furthermore, despite its utmost importance and substan-
tial influence on the efficiency of the allocation process, the declared capacity
determination process has not been sufficiently examined in the literature. In
particular, the setting of optimal declared capacity levels with view to the
modelling of trade-offs between declared capacity levels, allocation efficiency,
service level (e.g., actual operational/queuing delays), and utilisation of scarce
airport resources merit further research in the years to come.

Existing research has already demonstrated the large room for improve-
ment of the allocation outcomes. Improvements in slot allocation affect the
demand-capacity mismatch and eventually reflect on the efficient use of scarce

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

37

airport resources. Due to the intrinsic complexity and large scale of the slot
allocation problem, the full potential of such improvements can only be viewed
under the prism of airport network synergies. Fundamentally new mathemati-
cal structures, solution techniques and methodologies pave the way and bring
promises for an enormous economic, environmental and societal impact with
clear benefits for airlines, airports, passengers and the society at large.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

38

Full Papers

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

39

Assigning and Scheduling Hierarchical Task

Graphs to Heterogeneous Resources

Panayiotis Alefragis1, Christos Gogos3, Christos Valouxis1,2, George Goulas1,2,

Nikolaos Voros1, and Efthymios Housos2

1Technological Educational Institute of Western Greece. Dept. of Computer &

Informatics Engineering, Greece

2University of Patras-Greece. Dept. of Electrical and Computer Engineering,

Greece

3Technological Educational Institute of Epirus. Dept. of Accounting and Finance,

Greece

Keywords: Hierarchical Task Graphs, integer programming, parallel processing

Abstract

Task Scheduling is an important problem having many practical applications. More often than not,

precedence constraints exist between tasks, and a common way to capture them is through

Directed Acyclic Graphs (DAGs). A DAG might contain a great number of tasks representing

complex real life scenarios. It might be the case that logical groupings of tasks exist giving a

hierarchical nature to the graph. Such Hierarchical Task Graphs (HTGs) have nodes that are

further analyzed to DAGs or to other HTGs. In this paper a method of solving an HTG problem is

presented based on the idea of gradually solving the problem by replacing subgraphs with virtual

nodes. Integer Programming is used to generate virtual nodes that replace a subgraph, results from

solving the subgraph problem using. So a series of subproblems are solved and starting from the

deeper levels of the HTG a solution to the full problem emerges.

Introduction

Hierarchical task graphs (HTG) are directed graphs where nodes can either be

simple or composite activities. Each hierarchy level is a set of interconnected

directed acyclic graphs (DAG). Simple tasks are considered atomic, requiring a

single resource to be used for their execution while a composite activity can use

multiple resources at different hierarchical levels. Each composite activity can be

represented as a subtree in the HTG. HTG is a typical high level representation of

computer program kernels, but they can also be used in the scheduling of multiple

development teams that are involved in multiple concurrent projects where each

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

40

activity generates results that are used by other activities or involve recurring

activities. The usual goal of these problems is to reduce the global makespan of

the presented problem.

In this paper, we present a method that uses a MIP model to solve individual DAG

sub-problems to optimality and a heuristic approach to solve the whole problem

using a bottom up traversal of the HTG tree. The example is derived from the

solution of an HTG for the assignment and scheduling of computational kernels to

embedded multicore architectures. In the example presented in Figure 1, a two

level HTG with 6 nodes at the top level is presented. Three resources are available

to perform the tasks, in our case they are heterogeneous processors. The top level

is presented on the left side, where node 5 is a composite activity and all other

nodes are atomic ones. Node 5 is a DAG only containing simple nodes and is

presented on the right side of the same figure.

Table 2. After the execution of activity, the result has to be “communicated” to

the dependent tasks if these tasks are not performed by the same resource. This

can be perceived as the communication time of variable values in our example, or

the transportation time between two sites in a production example, or the

collaboration time between two individuals that work on the same problem. In this

simplified example, the “communication” cost is depicted by the values on the

arcs of the DAGs. In the more general case, it can be the result of a function that

involves the communicating resources, the time that this communication occurs,

other available resources that help to perform the communication, etc. The

required processing time to perform composite task 5 contains currently contains

no values as it may be executed by different processors in parallel. Which

processors and for how long task 5 will occupy will be the result of solving the

sub-problem represented by the DAG at the lower level of HTG.

Two approaches to solve the problem of scheduling a Hierarchical Task Graph

will be presented. The first approach embeds each subgraph to the graph that

contains it. This process can occur recursively until no more composite tasks

exist. Then the resulting flat DAG can be assigned and scheduled at the available

resources using either a heuristic method like HEFT or if the size of the problem

permits it using an ILP solver. The second approach uses an ILP formulation in

order to solve each subgraph in turn and uses the generated subgraph schedule as

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

41

a resource based clustering of the contained tasks to form the schedule of the

graph that contains the subgraph.

1

432

5

6

10 30 25

40

20 17

11

5_1

5_2 5_3

5_4 5_5 5_6

5_7

16 20

182115

20 15 9

subgraph

of node 5

Figure 1: Example of a Hierarchical Task Graph

Table 1: Execution Times for Tasks of the HTG

 Tasks

Resources 1 2 3 4 5 6

R0 15 16 38 19 - 17

R1 22 31 40 20 - 25

R2 37 42 51 30 - 22

Table 2: Execution Times for Tasks of the Subgraph

 Tasks

Resources 5_1 5_2 5_3 5_4 5_5 5_6 5_7

R0 10 29 38 19 20 15 29

R1 15 32 40 25 28 36 31

R2 37 27 26 32 47 30 42

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

42

DAG makespan optimization

DAG scheduling is a well-studied subject [1],[2]. Several methods exist that can

be used in order to assign tasks to resources and create individual schedules for

each resource. What is interesting is that the individual resource schedules cannot

be decided in isolation due to task dependencies and the “communication” cost

they imply. Heuristics based methods are able to efficiently solve DAGs with

several hundreds of nodes. These methods either belong to the category of list

scheduling with prominent examples being Earliest Time First (ETF) [3],

Heterogeneous Earliest Finish Time (HEFT) [4],[5] and Critical Path on a

Processor (CPOP) [6] or to the category of clustering where examples of such

algorithms are Dominant Sequence Clustering (DSC) [7] and Linear Clustering

Method (LCM) [8]. Mathematical programming based methods exhibit much

bigger execution time and do not scale well for bigger instances, but are able to

find high quality solutions [9],[10],[11],[12].

ILP Model for solving a task DAG

As our test case is part of a compiler tool chain and each execution requires the

solution of 100 - 10000 DAG it was a requirement that each DAG formulation

and solution should take no more that some seconds. A practical observation was

that if the total number of nodes for each DAG is less than 30 then the problem

can be efficiently solved using an ILP solver within the available time budget. In

our experiments this restriction has been satisfied using the open source IP solver

COIN-CBC running on a current PC. The topography of the DAG seems to have

little impact on the execution time of the approach due to the fact that equations

are effectively generated for all pairs of nodes.

The mathematical model uses the set of tasks T and the set of available resources

P. Each resource can process a given task at different time horizon, i.e. that the

problem model is heterogeneous which in our example means that the processors

are not identical. For project planning problems this would mean that the worker

will have different skills and could handle the same task with a different execution

duration. The execution time of each task t by each resource p is given by the

parameter wtp. The “communication” cost between task t and task t’, when they

are not assigned at the same resource is given by ctt’, 0 otherwise. We have two

sets of decision variables. The binary variables ytp depict an assignment of task t

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

43

T to resource p P and take the value 1 if task t is assigned at processor p and 0

otherwise. The integer variables xt are defined over each t T and their value

represents the start time of task t by the resource corresponding to the ytp variable

with value 1. Since the problem is described as a DAG with a set of nodes V and a

set of edges E, it should be noted that the set of tasks and the set of nodes are

conceptually identical, while the set of edges represents precedence constraints

between tasks with weights of edges associated with communication costs.

The objective function of the model is shown in equation (1) representing the

target of minimizing the total schedule length, which is also known as makespan.

 (1)

Three groups of constraints are defined. The first one ensures that each task

should be assigned at exactly one resource (2).

 (2)

For each task t let Tt be the set of tasks that have to be completed before t starts

execution. The second group of constraints states that for each task t the

corresponding start time should be greater than all the finish times of tasks that

belong to Tt. In addition, when task t is scheduled to a different resource than a

task t’ that it depends on, the “communication” cost between them should also be

considered. In order to model this constraint three new variables are introduced

ett, ztt’ and kptt’. ett is an integer variable and corresponds to the execution time of

task t derived from equation (3). Variable ztt’ is binary and equals 1 when both

tasks t and t’ are assigned at the same resource and 0 otherwise. It is defined by

variable kptt’ which corresponds to the product of binary variables yt’p and yt’p.

Since the product between variables violates the linearity of the model variable

kptt’ assumes its value indirectly through inequalities (4), (5) and (6). ztt’ is defined

by equation (7) as the sum of products between variables yt’p and yt’p. Finally,

inequality (8) states that the difference between execution times for task t and task

t’ provided that t depends on t’ should be no less than the processing time of task t

on the designated resource plus the extra communication time needed when tasks

are not assigned at the same resource.

 (3)

 (4)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

44

 (5)

 (6)

 (7)

 (8)

For each task t, let T’t be the set of tasks for which there is no path in the graph

that connects then to task t. Two tasks t and t’ are considered to be independent if

by starting from t (or t’) and then recursively examining all predecessors of this

task, the entry node is met before node t’ (or t). The third group of constraints

guarantees that when two independent tasks are assigned at the same resource,

they will not overlap. Given that two independent tasks t and t’ are are assigned at

the same resource then ztt’=1. If xt, the start time of task t, is less than xt’, the start

time of task t’, then xt plus the execution time of task t (ett) should be less than xt’

(9). Likewise, when xt’ is less than xt inequality (10) assures that no execution

overlap occurs. Binary variable mtt’ ensures that exactly one of inequalities (9) and

(10) should hold.

 (9)

 (10)

The proposed model is adequate to solve real world problems that arise during the

mapping and scheduling of sequential Scilab code in an automatic parallelizing

compiler toolflow that targets embedded multicore architectures in the context of

the EU founded FP7 ICT ALMA project.

In the case where an HTG does not contain-subgraphs that represent recurring

events (loops), it is possible to embed these subgraphs that are deeper in the

hierarchy of the HTG to the subgraph that contains them. In a computer program

this can be perceived as function inlining, as each subgraph is a DAG of tasks. In

a project schedule this can be perceived as including the activities of each

department in the global scheduling of a store and then the produced solution will

be embedded in the assignment and scheduling problem of the firm, where staff

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

45

members (resources) that perform the tasks do not work for a single department or

store. After flattening, the resulting graphs will be a DAG. For example, Figure 2

represents the HTG of Figure 1 after the flattening transformation is performed.

1

432

6

10 30 25

40

20
17

11

5_1

5_2 5_3

5_4 5_5 5_6

5_7

16 20

182115

20 15 9

Figure 2: Flattened DAG of Figure 1 HTG

At the lowest level of an HTG most subgraphs will be DAGs that contain only

simple tasks. After solving such a subgraph, the emerged solution will specify the

assigned resource that each task should be scheduled on and for each task the

sequence and the estimated time that it will start executing relative to the

execution start time of the initial task. For example, when the subgraph of Figure

1 is solved, the solution presented in Figure 3 may arise. This solution schedules

tasks 5_1, 5_2, 5_5, 5_4 and 5_7 in resource 0, schedules no tasks to resource 1

and schedules tasks 5_3 and 5_6 on resource 2. The makespan of the given

schedule is 124 time units. If the generated graph can be efficiently solved by the

ILP model, the ILP formulation is passed to an ILP solver and the optimal

solution is produced.

Bottom-up solution of HTG by subgraph

replacement with virtual nodes

With or without flattening at the lower levels, most large problems that are

represented by an HTG cannot be totally converted to a DAG. In order to use the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

46

subgraphs solutions in the solution process of the enclosing subgraph, the

following procedure is applied. The HTG is traversed bottom up and the

subgraphs that can be solved without any modification, i.e. they only contain

simple tasks or their subgraphs can be flattened, are solved applying a DAG

algorithm. The selection of the solution algorithm is done based on characteristics

of the graph. If the graph is small an ILP solver is used, if the graph is large a

heuristic is applied. For the graphs that contain composite tasks that we have a

solution for their subgraph the following transformation is performed. The

composite task is replaced by a number of virtual tasks that are equal to the

number of the used resources in the solution found. Each virtual task has an

execution time of the combined work of the assigned tasks on the associated

resource. All incoming and outgoing dependency arcs of the composite resource

are replicated and the outer DAG is solved in a similar manner. This process

continues iteratively until the top HTG layer is solved. For example, in Figure 4,

pseudo task 5_R0 is a task that has an execution duration of 124 and should be

executed in processor R0 and pseudo task 5_R2 is a task that has an execution

duration of 56 and should be executed on processor R2. Theoretically, a pseudo

task 5_R1 could have been created, but since it contains no tasks on the

subgraph’s schedule, it can be neglected. It is important to note that by specifying

the schedule start time of the pseudo task that contains the root node of the

subgraph, all other pseudo tasks are relatively positioned based on the solution of

the subgraph. If for example pseudo task 5_R0 is scheduled to start at time point

100 then pseudo task 5_R2 should start at 130 and should finish at 186. If any of

the virtual tasks is delayed to start compared to the offset of the subgraph solution,

a new makespan for the subgraph solution should be calculated.

The virtual task that contains the root node of the subgraph (5_R0 in the example,

since node 5_1 is scheduled on processor R0) should inherit the incoming edges

of the nodes that were immediate predecessors (node 3 and node 4) of the

composite task that was removed. Likewise the pseudo task that contains the sink

node of the subgraph (5_R0 in the example, since node 5_7 is scheduled on

processor R0) should inherit the outgoing edges to the nodes that were immediate

successors (node 6) of the composite task that was removed.

The graph shown in Figure 4 is solved using the mathematical module using

execution information included in Table 3. The information about the resource

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

47

that each pseudo task should be assigned is implicitly included in the model and

the only variable about the subgraph that remains to be decided is the start time of

the pseudo task containing the root node of the subgraph. A natural extension is to

calculate the total execution time of the assigned tasks of each virtual task for all

the available resource and constraints that only one resource should be assigned at

a virtual task and that no two virtual tasks that belong to a virtual task group

should be assigned at the same resource. This will provide the required flexibility

to exchange the assigned work to a resource when the surrounding tasks

information is available during the solution of the outer subgraph.

Figure 3: Schedule of subgraph

1

432

5_R0

6

10 30 25

40

20 17

11

5_R25_R1

X

Figure 4: HTG with Composite Task 5 Replaced by Pseudo Tasks 5_R0, 5R1 and 5R2. Task 5_R1

is immediately dropped since no tasks of the subgraph are scheduled in processor R1.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

48

A special case exists, when the subgraph represents the body of nested recurring

events (loops). In this case, the subgraph solution represents a recurring task

schedule that will be executed for each loop iteration and thus it is not possible to

determine the exact makespan of the virtual tasks in the general case. In this case,

for all the resources that are used in the solution of the subgraph, it is only

possible to estimate the execution time of the assigned tasks before the execution

of the virtual task. For all the other tasks that are assigned at the processor and

scheduled after the virtual task, their start time can only be determined in relation

to the finish time of the recurring virtual task.

Table 3. Execution Times for Tasks and Pseudo Tasks of the HTG

 Tasks

Resources 1 2 3 4 5_R0 5_R2 6

R0 15 16 38 19 124 X 17

R1 22 31 40 20 X X 25

R2 37 42 51 30 X 56 22

Our current approach is to split the outer DAG scheduling problem into two sub

problems, the “before” sub problem that determine tasks scheduling of all

resources before the recurring event and the “after” subproblem for all the tasks

after the execution of the virtual tasks. This implies that tasks that depend on the

virtual tasks will belong to “after” sub problem, tasks that the virtual tasks depend

on will belong to the “before” sub problem and independent tasks can be assigned

and scheduled before, after or in parallel to the virtual tasks using resources that

are not used by the virtual tasks. The above process may lead to a possibly

suboptimal solution. On the other hand, this approach guarantees that no

prolonged wait time for tasks that require results generated during the execution

of the virtual tasks will occur, thus preventing execution blocking on all the other

resources. The side effect is that no deterministic execution makespan of the

subgraph can be determined if the number of recurring events is not algebraically

determined. For our application problem, the ALMA toolchain provides feedback

from a platform simulator and thus the real execution time of the recurring task

can be determined, irrelevant to the actual iterations number. In our use case,

during the subsequent applications of the described optimization algorithm the

estimation of the actual execution time of the recurring event will be used,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

49

allowing the algorithm to improve resource utilization, as the whole DAG can be

scheduled as in the case where the subgraph does not include loop nests.

Figure 5: Schedule of the graph including pseudo tasks

ILP model modifications

A set of modification to the ILP model that was previously described are needed

in order to recursively solve each subgraph until the original HTG is fully

scheduled. The main modification that is necessary is the replacement of each

composite task with a number of pseudo tasks, equal to the number of the

resources used in the solution of the corresponding subgraph. These pseudo tasks

have predefined values for their corresponding binary variables ytp since the

assigned resource that each one of them will be scheduled to is known. For each

pseudo task group, the value of variable xt, which denotes the start time of pseudo

task t, has to be determined only for the pseudo task that contains the root node of

the subgraph. The values of variables xt for the remaining pseudo tasks in a group

are determined based on the offset exposed in the solution of the subgraph.

Regarding the constraints, only the pseudo task that contains the root node of the

subgraph and the pseudo task that contains the sink node of the subgraph have to

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

50

be included in the set of tasks that participate in the generation of the second

group of constraints. Pseudo tasks that neither contain the root nor the sink node

of the subgraph only have to participate to the third group of constraints in order

to prevent simultaneous execution of tasks by the same resource.

This is required as no edges exist between the pseudo tasks and all the other tasks

in the DAG, making them look independent. It should be noted that pseudo tasks

share the same set of independent tasks with the composite task that they replace.

Consequently, for each pseudo task, constraints belonging to the third group have

to be generated with respect to all other tasks that have no direct or indirect path

to the composite task that they replace.

The final schedule of the graph of Figure 4 is presented in Figure 5. The HTG is

finally scheduled, having a makespan of 218 time units. The proposed algorithms

have been applied to code sources that are represented by HTGs with up to 15

layers, 200 to 500 composite tasks and 1000 to 2000 leaf tasks that included

recurring tasks and managed to produce parallel solutions in less than 1h using a

typical PC.

Conclusions and future work

In this paper, a generic algorithmic approach to assign and schedule hierarchical

task graphs to heterogeneous resources is presented. The proposed approach is

currently applied to a parallelizing compiler tool chain for automatic

parallelization of sequential SciLab programs to embedded multicore architectures

but can be used in other application areas. We are currently working in supporting

multiple solutions selection for the composite tasks during the bottom up solution

process as well as the application of meta-heuristic local search optimization

techniques for post processing of the generated solutions. We also plan the

inclusion of a more detailed modeling of both the “communication” model

between tasks as well as a more detailed modeling of the processing resources.

Acknowledgement: This work is co-funded by the European Union under the 7th Framework

Program under grant agreement ICT-287733, project “Architecture oriented parallelization for

high performance embedded Multicore systems using scilAb (ALMA)”.

References

1. Sinnen O., Task Scheduling for Parallel Systems. John Wiley & Sons, 2007.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

51

2. Canon L.-C., E. Jeannot, R. Sakellariou, and W. Zheng, Comparative Evaluation Of The

Robustness Of DAG Scheduling Heuristics, in Grid Computing, S. Gorlatch, P. Fragopoulou, and

T. Priol, Eds. Springer US, pp. 73–84, 2008.

3. Hwang J.-J., Y.-C. Chow, F. D. Anger, and C.-Y. Lee, Scheduling Precedence Graphs in

Systems with Interprocessor Communication Times, SIAM Journal on Computing, vol. 18, no. 2,

pp. 244-257, Apr. 1989.

4. Topcuoglu H., S. Hariri, and M.-Y. Wu, Performance-effective and low-complexity task

scheduling for heterogeneous computing, IEEE Transactions on Parallel and Distributed Systems,

vol. 13, no. 3, pp. 260 –274, Mar. 2002.

5. Bittencourt L. F., R. Sakellariou, and E. R. M. Madeira, DAG Scheduling Using a Lookahead

Variant of the Heterogeneous Earliest Finish Time Algorithm, in 2010 18th Euromicro

International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 27 –

34, 2010.

6. Kwok Y.-K. and I. Ahmad, Dynamic critical-path scheduling: an effective technique for

allocating task graphs to multiprocessors, IEEE Transactions on Parallel and Distributed Systems,

vol. 7, no. 5, pp. 506-521, 1996.

7. Gerasoulis A. and T. Yang, A comparison of clustering heuristics for scheduling directed

acyclic graphs on multiprocessors, Journal of Parallel and Distributed Computing, vol. 16, no. 4,

pp. 276-291, Dec. 1992.

8. Kim S. J. and J. C. Browne, A general approach to mapping of parallel computation upon

multiprocessor architectures, in International Conference on Parallel Processing, vol. 3, pp. 1-8,

1988.

9. Davare A., J. Chong, Q. Zhu, D. M. Densmore, and A. L. Sangiovanni-Vincentelli,

Classification, Customization, and Characterization: Using MILP for Task Allocation and

Scheduling, Technical Report Identifier: EECS-2006-166, EECS Department, University of

California at Berkeley, California, Dec. 2006.

10. Valouxis C., C. Gogos, P. Alefragis, G. Goulas, N. Voros and E. Housos, DAG Scheduling

using Integer Programming in heterogeneous parallel execution environments, in Proceeding of

the Multidisciplinary International Conference on Scheduling: Theory and Applications (MISTA

2013), pp. 392-401, Gent, Belgium, 26th - 30th August 2013.

11. Davidovic, T., Liberti, L., Maculan, N., & Mladenovic, N., Mathematical Programming-Based

Approach to Scheduling of Communicating Tasks, Les Cahiers du GERAD, 2004.

12. Tompkins, M. F., Optimization techniques for task allocation and scheduling in distributed

multi-agent operations, Doctoral dissertation, Massachusetts Institute of Technology, 2003.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

52

Feature-based tuning of single-stage simulated
annealing for examination timetabling

Michele Battistutta · Andrea Schaerf ·
Tommaso Urli

Abstract We propose a single-stage Simulated Annealing procedure for the
Examination Timetabling problem (as formulated in the 2nd International
Timetabling Competition). Over our approach, we perform a statistically prin-
cipled experimental analysis, in order to understand the effect of parameters
and to devise a feature-based parameter tuning strategy. The outcome of this
work (which is still ongoing) is that this rather straightforward search method,
if properly tuned, is able to compete with all the state-of-the-art specialized
solvers.

Keywords Examination Timetabling · Simulated Annealing · Parameter
Tuning

1 Introduction

We consider the Examination Timetabling problem in the version used in
the 2nd International Timetabling Competition (ITC2007 [16], Track 1). For
this problem (see [15] for the detailed formulation), we propose a single-stage
Simulated Annealing (SA) procedure, along the lines of our previous work on
the other two tracks of ITC2007 [2, 3, 6].

We perform an experimental analysis of our solver on the 12 public in-
stances released for the ITC2007, which are, up to now, the only available
ones. Specifically, we propose a parameter tuning procedure to obtain a good
configuration of the solver for the general case. The tuning procedure works
in two steps. In the first step, we identify the most important parameters and
we fix the value for all the other ones. In the second one, we develop, through

M. Battistutta, A. Schaerf, and T. Urli
DIEGM, University of Udine
Via delle Scienze 206
E-mail: {michele.battistutta,schaerf,tommaso.urli}@uniud.it

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

53

a regression model, a linear function that correlates the value of the most
important parameters to the features of the instances.

The outcome of this work (which is still ongoing) is that this rather straight-
forward search method, properly tuned with a statistically-principled proce-
dure, is able to compete with all state-of-the-art specialized solvers, producing
also the best results for a few instances.

2 Search method

Our search method is based on local search. To this regard, we use the following
features:

Search Space: The search space is composed by all the assignments of exams
to periods and rooms. States that violate hard constraints (e.g., precedences
and conflicts) are included in the search space, and they are penalized in
the cost function with a high weight (called wH).

Neighborhood Relation: The neighborhood relation is composed by the
union of two basic moves: 1) Reschedule a single exam to a new period
and/or new room 2) Swap both period and room of two exams. The random
selection of the candidate neighbor is performed in two steps: First select
the neighborhood (Reschedule or Swap) according to a non-uniform distri-
bution that selects Swap with probability sr and Reschedule with proba-
bility 1 − sr (where sr stands for swap rate, and is a parameter of the
method). Second, perform a uniform selection of the specific move within
the corresponding neighborhood.

Stop Criterion: The stop criterion is based on the total number of iterations,
so as to have approximately a constant running time independently of the
other parameters of the method.

Initial Solution: The initial solution is totally random, and is obtained by
assigning a random period and a random room to each exam.

We employ a Simulated Annealing method that uses a cutoff-based non-
geometric cooling scheme[11], that speeds up the search in the initial phase.
Specifically, the temperature is decreased (multiplying it by the cooling rate
α) when the first of the following two conditions holds: a) the allotted number
of iterations (nS) has been expired or b) the allotted number of accepted moves
(nA) have been performed.

The stopping condition of the method is based on the total number of
iterations itmax, rather than explicitly on the final temperature. For the sake
of comparability, itmax is set to a fixed value such that the running time is
approximately the one prescribed by the ITC2007 benchmarking tool (324s on
our machine). The resulting value is itmax = 5 × 108.

The final temperature tmin is passed to the solver and it is used along with
itmax and the cooling rate α to compute the number of neighbors sampled at
each temperature (nS). More precisely, we pass to it the ratio tr = t0/tmin

between the initial and the final one.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

54

nS = itmax

/(
− log (tr)

logα

)
(1)

Actually, the final temperature tmin is different for each run due to cut-
offs, but we consider the one that is reached in case of a standard cut-off-free
execution.

Similarly, instead of using directly the parameter nA, we replace it with its
ratio ρ = nS/nA with the neighbors sampled nS .

The use of the ratios (tr and ρ) instead of absolute values prevents from
including meaningless configurations in the analysis, such as those in which
the final temperature is greater than the initial one.

Summarizing, the search procedure relies on the following six parameters:

– starting temperature (t0),
– temperature range (tr),
– ratio between neighbors accepted and neighbors sampled at each temper-

ature (ρ),
– cooling rate (α),
– hard constraints weight (wH),
– swap rate (sr)

that have to be tuned as explained in the following section.

3 Experimental analysis

In order to tune the parameters of our method, we have carried out a statisti-
cally principled experimental analysis over the 12 available instances from the
ITC2007 competition.

3.1 Preliminary tuning

For the tuning phase, without resorting to any “premature commitment” [10],
we have assigned meaningful ranges to the six parameters described in Section
2, and we have sampled 100 alternative configurations from the Hammersley
point set [9] based upon such ranges. The Hammersley point set is scalable,
both with respect to the number of sampled points, and to the dimensions
of the sampling space. Moreover, the sampled points exhibit low discrepancy,
i.e., they are space-filling, despite being random-like, and are thus particularly
indicated for parameter tuning applications. The sampled configurations were
then tuned through an automated F-Race(RSD) [4] with confidence 95 (p-value
< 0.05). The considered parameters are summarized in Table 1, together with
the values identified by the tuning.

All the experiments were generated and executed automatically using the
tool json2run [18] on an Ubuntu Linux 13.04 machine with 16 Intel R© Xeon R©

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

55

Parameter Symbol Tuned value
Starting temperature t0 900
Temperature range tr 1000
Cooling rate α 0.99
Neighbors sampled / neighbors accepted ratio ρ 0.08
Hard constraints weight wH 30
Swap rate sr 0.8
Final temperature tmin 0.9 (derived)
Neighbors sampled at each temperature nS 727467 (derived)
Neighbors accepted at each temperature nA 58197 (derived)

Table 1 Parameters identified by automatic tuning through F-Race(RSD).

CPU E5-2660 (2.20 GHz) physical cores, hyper-threaded to 32 virtual cores.
A single virtual core has been dedicated to each experiment.

3.2 Feature-based tuning

The results attained by our tuned algorithm were good on some instances, but
not on all of them. We therefore decided to investigate the origin of this effect,
by looking closely at the instances that failed. The outcome of the analysis was
that the overall best parameter configuration (see Table 1) was actually sub-
optimal for the failing instances, and yielded violations of the hard constraints.
A subsequent F-Race(RSD) limited to those instances, revealed that, while for
most parameters the winning values found in the preliminary race were also
good for the failing instances, t0 and wH had to be tuned differently. Since
F-Race(RSD) is based on ranks, and not directly on the obtained costs, the
failing instances were only seen as instances with low statistical significance.

We thus ran an exploratory set of experiments on all the instances, and
with 100 repetitions for each experiment, by varying t0 and wH together. The
experiments revealed that, because of the geometric-like temperature update
scheme, which is based on α and ρ, the time spent at high temperature is very
short, and thus setting a high value for t0 is always a reasonably safe choice.
We thus set t0 = 1000, and ran another set of experiments to study the effect
of wH , which appeared to be much more relevant.

This second set of experiments revealed a recurrent correlation between
the value of wH and the distributions of costs, which is depicted in Figure 1
for one specific instance (no. 4).

As it is visible from the plot, when approaching low values of wH , the cost
increases very steeply because of the increase in the hard constraint violations.
This is expected, as a low wH makes it more likely to choose a neighboring
solution with hard constraint violations. On the other hand, as wH gets farther
from the danger zone, the number of solutions with hard constraint violations
decreases, but the costs related to soft constraints increases, because the search
procedure is not able to exploit the possibility to cross the feasibility boundary.

Ideally, the goal of a good tuning would be to find the parameter configura-
tion that yields the best cost related to soft constraints, while also minimizing

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

56

Fig. 1 Correlation between wH and cost distribution (in logarithmic scale) on instance 3.

the number of violations of the hard constraints. However, since the ideal wH

can differ significantly from instance to instance, we decided to drop the choice
of single-point tuning, i.e., one parameter configuration for all instances, and
explored a way to compute the ideal wH “on-the-fly”, based on the features
of the instance at hand.

3.2.1 Per-instance tuning

First, we observed that a robust strategy to reduce the number of hard con-
straint violations without increasing too much the cost related to soft con-
straints, consisted in choosing, for each instance, the value of wH that mini-
mized the 95th percentile, of the cost distributions (highlighted by the vertical
red line in Figure 1).

3.2.2 Feature-based parameter regression

Once an ideal value for wH was identified for each instance, we looked at the
instance features to see whether it was possible predict this value dynamically
based on them.

We have considered the set of features described in [14], and a number
of additional ones. The features that turned out more useful in our case are
summarized in Table 2.

Given the feature values, we built a linear regression model in R [17] based
on the 100 repetitions of the experiments with varying wH . The model selection
procedure works as follows. First, a model without any variable is generated,
this model generates a constant wH for all the instances and, as expected, has
a bad approximation of the ideal wH . Then, we add one feature at a time,
always choosing the one that, if added to the model, minimizes the Akaike
information criterion (AIC) [12], which is known to have good performances
for prediction. The procedure stops when adding one more feature would not
lead to a model with a better approximation.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

57

I Exams Students Periods Rooms Two Two Period Frontload Frontload
in a row in a day spread (Exams) (Periods)

1 607 7891 54 7 7 5 5 100 30
2 870 12743 40 49 15 5 1 250 30
3 934 16439 36 48 15 10 4 200 20
4 273 5045 21 1 9 5 2 50 10
5 1018 9253 42 3 40 15 5 250 30
6 242 7909 16 8 20 5 20 25 30
7 1096 14676 80 15 25 5 10 250 30
8 598 7718 80 8 150 0 15 250 30
9 169 655 25 3 25 10 5 100 10
10 214 1577 32 48 50 0 20 100 10
11 934 16349 26 40 10 50 4 400 20
12 78 1653 12 50 35 10 5 25 5

Table 2 Instance features for the ITC2007 benchmark instances.

Component Symbol Coefficient (Cumulative) R2

Intercept — 18.356988 —
Period Spread Penalty PS 2.311492 0.26

Frontload Periods FlP -1.7743 0.509
Periods P 1.322 0.824

Two In a Day TiD 1.005 0.894
Students S -0.0027 0.943
Rooms R 0.292 0.975

Table 3 Coefficients and correlation of the linear predictor for wH .

Table 3 shows, in order, the features added to the model, with their coef-
ficient and cumulative coefficient of correlation (R2) which measures its pre-
diction quality. Therefore, the linear model corresponds to computing the fol-
lowing formula

wH = 18.356988 + 2.311492 ×PS− 1.7743 × FlP

+1.322 ×P + 1.005 ×TiD− 0.0027 × S + 0.292 ×R,

which can thus be used to obtain a per-instance tuning of the wH , which
should ideally generalize also to instances outside of the training set.

We have validated the effectiveness of this tuning for our approach over
the 12 instances of the ITC2007 competition. The results of the comparison
are described in the next section.

4 Comparison of results

Table 4 reports the comparison with the 5 finalists of ITC2007. Specifically,
we add our solver as a further competitor, and rerun the competition adjudi-
cation by applying the ranking procedure on 10 runs for each of the 6 solvers.
According to Table 4 our solver has the lowest sum of ranks (8.58), and thus
would have won the competition if submitted at that time.

Table 5 shows our average results (for 100 runs), in comparison with sub-
sequent results available from the literature. We include in Table 5 only those

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

58

I Müller Gogos Atsuna et al De Smet Pillay Us
1 15.5 25.5 45.5 35.5 55.5 5.5
2 14.8 35.5 48.8 25.5 52.2 6.2
3 28.7 20.5 34.9 53 36.1 9.8
4 30.1 31.95 38.55 48.5 28.4 5.5
5 15.3 35.5 45.5 25.5 55.5 5.7
6 20.1 28.95 35.6 45.9 46.95 5.5
7 15.4 35.5 46.5 25.5 54.5 5.6
8 14.7 25.5 35.5 55.5 45.5 6.3
8 15 31.4 43.6 33.5 53.4 6.1
10 35.9 54.5 21.8 9.5 40.9 20.4
11 41.4 22.5 45 45 16.5 12.6
12 24.8 50 9.7 50 34.7 13.8
avg 22.64 33.11 37.58 37.74 43.34 8.58

Table 4 Comparison with the competition finalists.

I McCollum et al [14] Bykov & Petrovic [5] Hamilton-Bryce [8] Alzaqebah [1] Us
f̄ F% f̄ F% f̄ F% f̄ F% f̄ F%

1 4799 100 4008 100 5469 100 5517 100 4004 100
2 425 100 404 100 450 100 538 100 399 100
3 9251 100 8012 100 10444 100 10325 100 9033 98
4 15821 100 13312 100 20241 100 16589 100 15132 100
5 3072 100 2582 100 3185 100 3632 100 2876 100
6 25935 100 25448 100 26150 100 26275 100 25912 100
7 4185 100 3893 100 4568 100 4592 100 3747 100
8 7599 100 6944 100 8081 100 8328 100 7711 100
9 1071 100 949 100 1061 100 — — 994 100
10 14552 100 12985 100 15294 100 — — 14956 96
11 29358 100 25194 100 44820 100 — — 28773 89
12 5699 100 5181 100 5464 100 — — 5648 98

Table 5 Comparison of available results.

results that are compliant with ITC2007 rules, in terms of timeout. The col-
umn F% reports the percentage of feasible solutions obtained. Average costs
are computed on feasible solutions only.

Table 5 shows that our results are outperformed by the ones of Bykov and
Petrovic [5] in 9 out of 12 instances, and they are superior on the 3 remaining
ones. With respect to all the other researchers, our results are globally superior.

We acknowledge that our solver does not find feasible solutions more often
than the other solvers. This is inherent to the choice of using a single-stage
approach that does not solve the feasibility in advance, but rather tries to
optimize the objective function and to satisfy the hard constraints all at once.

5 Conclusions

Our solver turned out to have complementary characteristics with respect to
previous research. Specifically, it is able to improve the costs on the easier
instances (in terms of hard constraints), but it is not always able to find a
feasible solution for the hard ones.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

59

Admittedly, the results of Bykov and Petrovic [5], that rely on the Kempe-
chain neighborhood, are superior. Nevertheless, we consider these results, which
are still preliminary, quite encouraging for further improvements.

Given that wH turned out to be the most critical parameter, current work
involves the use of a strategic oscillation approach [7] that adaptively changes
the value of wH , depending on the current number of violations. This seems to
be a promising approach to improve our performances on the harder instances.

Regarding the experimental analysis, one of the main obstacles to our study
was the scarcity of instances to use for training the linear regression model.
In order for the model to attain better generalization properties, i.e., to work
well on instances outside of the training set, the size of the training set should
ideally be much larger. To deal with this aspect, we are working on an instance
generator, in the spirit of the one developed by Lopes and Smith-Miles [13],
that will be able to create realistic instances with diverse features.

References

1. M Alzaqebah and S Abdullah. An adaptive artificial bee colony and late-
acceptance hill-climbing algorithm for examination timetabling. Journal
of Scheduling, pages 1–14, 2013.

2. Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea Schaerf, and Tom-
maso Urli. A simulated annealing approach to the curriculum-based course
timetabling problem. In Proc. of the 6th Multidisciplinary International
Conference on Scheduling : Theory and Applications (MISTA-13), 2013.

3. Ruggero Bellio, Luca Di Gaspero, and Andrea Schaerf. Design and sta-
tistical analysis of a hybrid local search algorithm for course timetabling.
Journal of Scheduling, 15(1):49–61, 2012.

4. Mauro Birattari, Z. Yuan, P. Balaprakash, and Thomas Stützle. F-Race
and iterated F-race: An overview. Springer, Berlin, 2010.

5. Yuri Bykov and Sanja Petrovic. An initial study of a novel step counting
hill climbing heuristic applied to timetabling problems. In Proc. of the 6th
Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA-13), pages 691–693, 2013.

6. Sara Ceschia, Luca Di Gaspero, and Andrea Schaerf. Design, engineering,
and experimental analysis of a simulated annealing approach to the post-
enrolment course timetabling problem. Computers & Operations Research,
39:1615–1624, 2012.

7. Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publish-
ers, 1997.

8. R Hamilton-Bryce, P McMullan, and B McCollum. Directing selection
within an extended great deluge optimization algorithm. In Proc. of the
6th Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA-13), pages 499–508, 2013.

9. John Michael Hammersley, David Christopher Handscomb, and George
Weiss. Monte Carlo methods. Physics today, 18:55, 1965.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

60

10. Holger H. Hoos. Programming by optimization. Communications of the
ACM, 55(2):70–80, 2012.

11. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: an experimental evaluation; part I, graph
partitioning. Operations Research, 37(6):865–892, 1989.

12. Roger Koenker. Quantile regression. Cambridge University Press, Cam-
bridge, 2005.

13. Leo Lopes and Kate Smith-Miles. Pitfalls in instance generation for Udine
timetabling. In Learning and Intelligent Optimization (LION4), pages
299–302. Springer, 2010.

14. B McCollum, PJ McMullan, AJ Parkes, EK Burke, and S Abdullah. An
extended great deluge approach to the examination timetabling problem.
In Proc. of the 4th Multidisciplinary International Conference on Schedul-
ing : Theory and Applications (MISTA-09), pages 424–434, 2009.

15. Barry McCollum, Paul McMullan, Edmund K. Burke, Andrew J.
Parkes, and Rong Qu. The second international timetabling
competition: Examination timetabling track. Technical Report
QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University, Belfast
(UK), September 2007.

16. Barry McCollum, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd
Lewis, Andrew J. Parkes, Luca Di Gaspero, Rong Qu, and Edmund K.
Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing,
22(1):120–130, 2010.

17. R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008.

18. Tommaso Urli. json2run: a tool for experiment design & analysis. CoRR,
abs/1305.1112, 2013.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

61

A Simulation Scenario Based Mixed Integer
Programming Approach to Airline Reserve Crew
Scheduling Under Uncertainty

Christopher Bayliss · Geert De Maere ·
Jason Atkin · Marc Paelinck

Abstract Airlines operate in an uncertain environment for many reasons, for
example due to the effects of weather, traffic or crew unavailability (due to
delay or sickness). This work focuses on airline reserve crew scheduling under
crew absence and journey time uncertainty for an airline operating a single hub
and spoke network. Reserve crew can be used to cover absent crew or delayed
connecting crew. A fixed number of reserve crew are available for scheduling
and each requires a daily standby duty start time. Given an airline’s crew
schedule and aircraft routings we propose a Mixed Integer Programming ap-
proach to scheduling the airline’s reserve crew. A simulation of the airline’s
operations with stochastic journey time and crew absence inputs and with-
out reserve crew is used to generate disruption scenarios for the MIPSSM
formulation (Mixed Integer Programming Simulation Scenario Model). Each
disruption scenario corresponds to a record of all of the disruptions in a simula-
tion for which reserve crew use would have been beneficial. For each disruption
in a disruption scenario there is a record of all reserve crew that could have
been used to solve or reduce the disruption. This information forms the input
to the MIPSSM formulation, which has the objective of finding the reserve
schedule that minimises the overall level of disruption over a set of scenarios.
Additionally, modifications of the MIPSSM are explored, and a heuristic
solution approach and a reserve use policy derived from the MIPSSM are
introduced. A heuristic based on the proposed Mixed Integer Programming
Simulation Scenario Model or MIPSSM outperforms a range of alternative

Christopher Bayliss · Geert De Maere · Jason Atkin
ASAP, University of Nottingham, UK
E-mail: cwb,gdm,jaa@cs.nott.ac.uk

Marc Paelinck
KLM Decision Support, Information services department
KLM Royal Dutch Airlines
KLM Headquarters, The Netherlands
E-mail: Marc.paelinck@klm.com

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

62

approaches. The heuristic solution approach suggests that including the right
disruption scenarios is as important as ensuring that enough disruption sce-
narios are added to the MIPSSM .

Keywords Airline Reserve Crew Scheduling · Simulation · Mixed Integer
Programming

1 Introduction

An airlines primary product is its schedule, due to operating costs airlines
maximise the utilisation of resources (crew and aircraft) resulting in schedules
with little slack. This makes each resource a critical component of an airlines
network and if a component is missing all flights related to that component
may be disrupted. Crew can be absent or delayed on connecting flights, in such
circumstances airlines may call on reserve crew. This work focusses on reserve
crew scheduling, using simulation generated disruption scenarios added to a
Mixed Integer Programming model to schedule reserve crew.
A Mixed Integer Programming Simulation Scenario Model (MIPSSM) has
been developed which will use information from repeat simulations of an air-
line network where reserve crew are not available. Then reserve crew are to
be scheduled in such a way that the level of delay and cancellation that would
have occurred in the original simulations (disruption scenarios) is minimised.
Simulation (Section 3.3) is used to generate the set of input disruption sce-
narios for the MIPSSM . A disruption scenario corresponds to the set of
disrupted flights in a single run of the airline simulation, where a single run
corresponds to executing the airlines schedule in the considered time horizon
from start to finish once. For each disruption in a disruption scenario there is a
record of all of the reserve crew start times (discretised according to scheduled
departure times) which, if scheduled, would allow the corresponding reserve
crew to be used to solve completely, or reduce, the given disruption. In the
MIPSSM there are 2 types of variables, X the reserve crew schedule and
y the reserve use decisions within each disruption scenario that are feasible
with respect to X. Reserves can only be used if they are scheduled. Solving
the MIPSSM in an appropriate solver finds the reserve crew schedule X and
reserve use decisions y that minimises delay and cancellations in the set of dis-
ruption scenarios used to form the constraints and objective of the MIPSSM .
The remainder of the paper is structured as follows. Section 2 outlines closely
related work. Section 3 introduces the simulation used to generate disrup-
tion scenarios, how disruption scenarios are derived from the simulation and
presents the formulation of the MIPSSM . Section 4 covers modifications and
variants of the basic MIPSSM formulation. Section 5 gives experimental re-
sults. Section 6 concludes the paper with a summary of the main findings.
Section 7 discusses future work.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

63

2 Related work

The MIPSSM has similarities to Recoverable Robustness [4]. In [4] Liebchen
provides a framework for timetabling problems with the objective that the
schedule must be feasible in each of a limited set of disruption scenarios given
limited availability of recovery from disruptions. The approach reduces to strict
robustness (feasible in all outcomes without recovery actions) if the feature of
limited available recovery is removed. The similarity between Recoverable ro-
bustness and the MIPSSM lies in the idea of solving a scheduling problem
over a limited number of realistic disruption scenarios. The MIPSSM is in-
fluenced by stochastic programming, which optimises over a set of explicit
independent possible outcomes as opposed to optimising over the expected
outcome, which may not even correspond to a possible outcome.
In [7], Bailey et al. present an airline reserve crew scheduling model that takes
training days and bidline conflicts into account. Such conflicts arise when crew
bid for rosters which overlap with recurring training and this leads to open
time (flights without scheduled crew) which have to be covered with reserve
crew. In [6], Shebalov tackles the robust airline crew pairing problem using
the concept of move-up crews. Move-up crews refers to crews who can swap
pairings in the event of delay (the available crew can adopt the delayed crew’s
pairing). Their objective is to maximise move-up crews. Shebalov measures
the robustness of schedules/quality of the scheduled move-up crews in compu-
tational experiments in terms of the number of deadheads (crew transported
as passengers to the origin of their next flight leg), reserve crew used, num-
ber of uncovered flight legs and the cost of crew schedule. For the interested
reader other work carried out previously on the problem of airline reserve crew
scheduling includes [2,3,5].

3 Deriving and formulating the MIPSSM

This section starts by introducing the notation, it then introduces the delay
cancellation measure function (Section 3.2), which converts delays into a quan-
tity with units of cancellations. This approach means the MIPSSM remains
a single objective problem. The cancellation measure function is used in the
disruption scenario generating simulation (Section 3.5) to find the cancellation
measures associated with all possible reserve crew start times that if sched-
uled could be used to solve or reduce a given disruption in the given disruption
scenario. Section 3.3 gives details of the single hub airline simulation used for
disruption scenario generation and (in Section 5) experimental validation of
reserve crew schedules derived from the MIPSSM as well as other meth-
ods. Section 3.5 defines what is meant by a disruption scenario and how the
information it stores is collected from simulation. Section 3.6 defines the no-
tation used in the MIPSSM formulation. Section 3.7 presents and explains
the MIPSSM in terms of its objective and constraints.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

64

3.1 Schedule notation

Dh : Scheduled departure time of flight h

Ch : Crew team number scheduled to flight h

Ah : Aircraft number scheduled to flight h

cdh : Crew related delay at departure h that occurs in disruption scenario generating

simulation

rdh,l : Delay when reserve crew with start time index l used to cover disrupted crew of

flight h

tdh : Total delay at departure h

crewSizeh : number of crew in crew team scheduled to flight h

cetah : Estimated time of arrival of crew scheduled to flight h

aetah : Estimated time of arrival of aircraft scheduled to flight h

CT : Cancellation threshold over which delayed flights are cancelled

MS : Minimum sit or minimum rest time required by crew between consecutive flights

within a duty shift

TT : Minimum turn/ground time required by aircraft between consecutive flights

|Pn| : Length of crew pairing n in terms of hub departures

Pn,m : Departure number of the m
th

hub departure of crew pairing n

3.2 Cancellation measure of a delay

To retain the simplicity of a single objective problem Equation 1 converts
delay into a measure of cancellation. The simulation cancels flights with a
delay over the cancellation threshold so the maximum cancellation measure
of a delay is 1. cmh is the cancellation measure of flight h, tdh (Equation 2)
is the total delay of flight h, cdh (Equation 3) is the delay of flight h due to
crew over and above delay due to the aircraft, i.e. the delay which could be
absorbed by using reserve crew. Equation 4 gives the delay due to waiting for
reserve crew with start time index l (start time=Dl as reserve start times are
discretised according to scheduled departure times) to begin their duty shift,
counting only delay over and above delay due to the aircraft assigned to the
same flight.

cmh =

(
tdh − cdh
CT

)n
(1)

tdh = max (0, max (aetah + TT, cetah +MS)−Dh) (2)

cdh = max (0, cetah +MS −max (Dh, aetah + TT)) (3)

rdh,l = max (0, Dl −max (Dh, aetah + TT)) (4)

A decision maker choice is required for the delay exponent n of the can-
cellation measure function. Choosing higher values for n > 1 corresponds to

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

65

giving lower weight to delays below the cancellation threshold. Using the de-
lay cancellation measure function means that the objective measures of using
reserve crew teams to cover delayed connecting crew and using reserve crew
to cover absent crew are both in the same units, that of cancellations. In the
following n = 2 is used.

3.3 Simulation

The simulation of a single hub airline is used without reserve crew to generate
disruption scenarios which contain information on the possible benefit of using
reserve crew scheduled at specified times in response to the given disruption.
These disruption scenarios form the input for the MIPSSM formulation (Sec-
tion 3.7).
Simulation takes as input the airline’s scheduled flights, the crew and air-
craft scheduled to each of those flights. The simulation’s stochastic inputs are
journey times and crew absence, each of which have corresponding statistical
distributions derived from real data. Crew and aircraft were scheduled using
first in first out scheduling. In the crew schedule 30% of crew connections at
the hub involve a change of aircraft. The scheduled journey times correspond
to a 0.6 probability of early arrival.
A single run of the simulation proceeds by considering each scheduled depar-
ture in departure time order. If a departure corresponds to the start of a crew
duty then the number of crew absent is instantiated from the cumulative sta-
tistical distribution of possible numbers of absent crew. If reserve crew are not
available then the flight has to be cancelled. At this point in the simulation, in-
formation on the possible benefit of scheduling reserves at different start times
is collected (Section 3.5). If reserve crew are available (as is the case in the
validation simulation used in Section 5 to validate reserve crew schedules cre-
ated using the methods proposed herein) they are considered for use in earliest
start time order. If a departure is delayed by more than the delay threshold
(15 minutes) all combinations of single crew and aircraft swaps are considered.
Swaps are only considered feasible if the swap can take place without invoking
additional delay on the flights affected by the swap, the crew must be able to
complete each other’s duties without violating maximum working hours and
it must be possible to undo the swap in the overnight break (same overnight
station).
In the disruption scenario generation simulation, after the consideration of
swap recovery actions, if the delay is still above the delay threshold, informa-
tion is collected for the given disruption on the possible benefit of scheduling
reserve crew at different possible start times (Section 3.5). In the validation
simulation, after the consideration of swap recovery actions, possible combina-
tions of reserve crew are considered for replacing delayed connecting crew. If
after delay recovery the delay is above the cancellation threshold (180 minutes)
the flight is cancelled.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

66

3.4 Disruption scenario notation

W : Number of disruption scenarios

Wi : Number of disruptions in scenario i

Ni,j : The number of reserve crew required to cover disruption j in scenario i

CMi,j : Cancellation measure contribution when no reserves are used to cover disruption j

in scenario i

Ni,j : Number of crew required to cover disruption j in scenario i

Fi,j : Set of feasible reserve instances for disruption j in scenario i

Fi,j,k : k
th

instance of a reserve feasible to cover disruption j in scenario i

F
V
i,j,k : k

th
reserve use variable index feasible for disruption j in scenario i

F
U
i,j,k : k

th
index of reserve use variable first used at disruption j in scenario i which can

subsequently be used to absorb crew related delay propagated to a following flight

F
CM
i,j,k : Cancellation measure that occurs as a result of using the k

th
feasible reserve

for disruption j in scenario i

F
RD
i,j,k : reserve delay corresponding to feasible reserve use instance k feasible for disruption j

in scenario i

Gi,j : Set of feasible reserve instances corresponding to reserve crew first used to absorb

delay on a preceding flight that also have the knock-on effect of preventing or

reducing delay disruption j in scenario i

Gi,j,k : k
th

instance of a reserve feasible corresponding to a reserve first used to absorb crew

delay on a preceding flight that also has the knock-on effect of reducing delay

disruption j in scenario i

G
V
i,j,k : k

th
reserve use variable index corresponding to a reserve first used to absorb delay

on a preceding flight that has the knock-on effect of reducing delay disruption

j in scenario i

G
CM
i,j,k : Cancellation measure corresponding to the k

th
feasible reserve use instance first used

to absorb delay on a preceding flight that also has the knock-on effect of reducing

delay disruption j in scenario i

Ri,k : Set of feasible reserve use variable instances corresponding to reserve k in scenario i

Ri,k,l : Reserve use variable index corresponding to the l
th

reserve use variable

corresponding to reserve k in scenario i

3.5 Simulation derived scenarios

Simulation is used to derive disruption scenarios that are used as input for the
MIPSSM . This section explains how simulation is used to derive the infor-
mation for disruption scenarios. A given disruption scenario i corresponds to
a single run of the simulation.
In disruption scenario i, a disruption j is a flight which has a delay over the
delay threshold after the consideration of swap recovery or has to be can-
celled due to crew absence. Such disrupted flights have a positive cancellation
measure, where CMi,j denotes the cancellation measure of disruption j in dis-
ruption scenario i.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

67

In a given run of the simulation, when a disruption occurs with a positive
cancellation measure, data is collected regarding all of the possible feasible
reserve start times that, could be used to reduce the disruption. For each such
beneficial reserve start time, feasible reserve use instances are generated. A
feasible reserve use instance corresponds to a possible scheduled reserve crew
duty start time and subsequent use to cover a given crew disrupted flight in a
given scenario. The number generated is equal to the number of reserve crew
required to cover the given disruption, which is the number of crew absent in
the event of a crew absence disruption or the size of the crew team assigned
to flight h (crewSizeh) in the event of a delay. For each feasible reserve use
instance (b) there is a corresponding cancellation measure (bCM) that replaces
the cancellation measure (CMi,j) of the disruption if the reserve is used, a
unique reserve use variable index (bV), a unique knock on effect reserve use
variable index (bU) (if applicable) and a reserve delay (bRD). Let Fi,j denote
the set of feasible reserve use instances corresponding to possible reserve start
times that could be used to solve or reduce disruption j of disruption scenario
i.
For the specific case of delay disruptions it is also possible that if there was
crew delay on the preceding flight then the delay on the current flight might
possibly be prevented or reduced by reserve crew used to absorb the initial
delay. For this purpose the set Gi,j is introduced and denotes the set of feasi-
ble reserve use instances corresponding to reserves used to cover crew related
delay propagated from a previous previous flight. These feasible reserve use
instances only apply if the corresponding feasible reserve use instances are
used to cover the root crew related delay. G accounts for reserve crew that can
have the effect of absorbing knock on crew delays. Algorithms 1 and 2 outline
the procedure of collecting information for the disruption scenarios from the
single hub airline simulation.

Algorithm 1 Pseudocode for deriving disruption scenario information for a
crew absence disruption occurring at simulation run i departure k

1: During simulation run i the kth scheduled flight is disrupted resulting in the jth disrup-
tion for which reserve crew use could potentially be beneficial

2: if Crew absence disruption then
3: Create new disruption (j) for scenario (i), store the size of the disruption if not

absorbed by utilising reserve crew, i.e. The number of flights cancelled=size of pairing
(|PCk

|) and store the number of crew absent (Ni,j)
4: for each hub departure (m) in the crew absence disrupted pairing do
5: for each reserve duty start time (l) feasible to cover the absence disrupted pairing

at the mth hub departure of the disrupted pairing do
6: Add Ni,j new feasible reserve use instances to Fi,j , each with a unique variable

number index (V), compute the associated cancellation measure (CM), Add
the generated feasible reserve use instances to Ri,l for the constraints regarding
reserves only being used once per scenario.

7: end for
8: end for
9: j = j + 1

10: end if

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

68

Algorithm 1 is used in the simulation when a crew absence occurs. The
number of reserves required to cover this disruption is the number of absent
crew (line 3). The cancellation measure of the absence disruption (CMi,j) is
the number of hub departures in the disrupted crew pairing that would have
to be cancelled if reserves are unavailable to cover the absent crew (line 3),
with no delay cancellation measure contribution. The algorithm then considers
each possible reserve start time (line 5) which can be used to cover absent
crew at each hub departure in the disrupted crew pairing (line 4). If reserve
start time l is feasible, Ni,j new instances of feasible reserve use instances
are created with unique reserve use variable indices and cancellation measures
equal to the number of flights that have to be cancelled before crew absence is
covered at the mth hub departure in the disrupted crew pairing plus a delay
cancellation measure contribution from any delay caused by the reserve start

time (lines 6). cm = m − 1 +
(
rdf,l
CT

)n
is the equation for the cancellation

measure associated with reserve crew with start time index l being used to
cover crew absence disrupted pairing at the mth flight in the crew pairing,
where f = PCk,m is the departure number of the flight the reserve crew are used
to cover the absence disrupted crew pairing. The newly generated instances
of feasible reserve use are also stored from a reserve perspective (R) (line 6),
which is useful later on when creating constraints for feasible reserve use in
the MIPSSM formulation.

Algorithm 2 Pseudocode for deriving disruption scenario information for a
crew delay disruption occurring at simulation run i departure k

1: During simulation run i the kth scheduled flight is disrupted resulting in the jth disrup-
tion for which reserve crew use could potentially be beneficial

2: if crew delay disruption then
3: Store the number of delayed connecting crew that need to be replaced (Ni,j =

crewSizek) and the cancellation measure of the delay CMi,j =
(

tdk
CT

)n

4: for Each reserve start time index l that if scheduled could feasibly reduce the crew
related delay of departure k do

5: Generate Ni,j reserve use instances with unique reserve use variable indices (V),
store the corresponding cancellation measure that applies if the reserves with start
time Dl are used, add the reserve use instances to Ri,l

6: end for
7: if Current crew delay is crew delay propagated from the crew’s previous flight q,

disruption o then
8: for l = 1 to |Fi,o| do
9: Create new reserve use instance, with unique reserve use variable index (V) and

store in Gi,j , store the corresponding cancellation measure that applies if the
root crew delay is absorbed using the reserve associated with the reserve use
instance Fi,o,l

10: FU
i,o,l = GV

i,j,a, where a = |Gi,j |
11: end for
12: end if
13: j = j + 1
14: end if

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

69

Algorithm 2 is used in the simulation when a crew related delay occurs,
the number of reserves required to cover this disruption is the number of
crew in the delayed crew team (line 3). The cancellation measure of the delay
disruption if reserve crew are not available to cover the delayed crew is also
computed (line 3). The algorithm then considers each feasible reserve start
time (line 4) used to cover the delay, and for each generates Ni,j new feasible
reserve use instances with unique reserve use variable indices and cancellation
measures calculated using Equation 1 with Equation 4 added to the numerator.
Lines 7 to 12 of Algorithm 2 apply if the given delay originated from a crew
delay in the scheduled crew’s previous flight. In this case it’s possible that
reserve use instances generated for that previous flight may have the effect
of preventing delay propagating to the given delayed flight. For such feasible
reserve use instances (line 8) U denotes new unique reserve use variable index
for the reserve first used earlier, used to reduce the knock-on delay. For the
current disruption j the set G stores the same newly generated reserve use
variable index and a cancellation measure (line 9) that depends on the amount
of delay that would have propagated if the reserve use instance feasible to
cover the root crew delay is utilised. The MIPSSM has constraints ensuring
that the beneficial knock on effects can only apply if the reserve is actually
used to absorb the root crew delay that propagated in the simulation. After
the disruption scenarios have been created they can be used to create the
constraints and objective of the MIPSSM .

3.6 MIPSSM notation

X : Reserve crew schedule

xk : Number of reserves with start time index k

Y : Set of reserve use variables

ym : Reserve use instance variable m

δi,j : Binary variable describing whether or not disruption j in scenario i

is left uncovered (1) or covered (0) by reserve crew

γi,j : Real valued variable which takes on the cancellation measure of disruption j

in scenario i given the reserve recovery decision made by the model

Z : Variable that takes on a value equal to the cancellation measure total of the scenario

with the maximum cancellation measure

TR : Total reserve crew available for scheduling

ND : Total flights in reserve crew scheduling time horizon

Rtq : Reserve use policy, the minimum threshold number of reserve crew remaining

for using a team of reserve crew to cover a delayed connecting crew to be

considered acceptable

obsq : Number of times reserve teams are used to cover delayed connecting crew

at flight q in reserve use policy derivation

simRpts : Number of repeat simulations used to derive a reserve use policy for a

given reserve crew schedule

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

70

The reserve scheduleX specifies the number of reserves which are scheduled
to begin duties at a given time index k. γi,j is a real valued variable, which
equals the cancellation measure of disruption j in scenario i given the reserve
use decisions (y). Each y variable corresponds to an individual reserve with a
given start time index being used to cover a given disruption.

3.7 Mixed Integer programming formulation

Minimise:

W∑
i=1

Wi∑
j=1

γi,j (5)

s.t.

|Fi,j |∑
k=1

yFV
i,j,k

+

|Gi,j |∑
k=1

yGV
i,j,k

+ δi,jNi,j = Ni,j , ∀i ∈ 1..W , ∀j ∈ 1..Wi (6)

ND∑
i=1

xi = TR (7)

|Ri,k|∑
l=1

yRV
i,k,l
≤ xk, ∀k ∈ 1..ND, ∀i ∈ 1..W (8)

yRU
i,k,l
≤ yRV

i,k,l
, ∀l ∈ Ri,k|∃yRU

i,k,l
, ∀i ∈ 1..W , ∀k ∈ 1..ND (9)

δi,jCMi,j ≤ γi,j , ∀i ∈ 1..W , ∀j ∈ 1..Wi (10)

yFV
i,j,k

FCMi,j,k ≤ γi,j , ∀i ∈ 1..W , ∀j ∈ 1..Wi, ∀k ∈ Fi,j (11)

yGV
i,j,k

GCMi,j,k ≤ γi,j , ∀i ∈ 1..W , ∀j ∈ 1..Wi, ∀k ∈ Gi,j (12)

ym ∈ {0, 1}, ∀m ∈ Y (13)

δi,j ∈ {0, 1}, ∀i ∈ 1..W , ∀j ∈ 1..Wi (14)

Xk ∈ {0, 1...maxCAi − 1,maxCAi}, ∀k ∈ 1..ND (15)

Objective 5 minimises the sum of all cancellation measures over all dis-
ruptions in all the scenarios included in the model. Constraint 6 ensures that
disruptions are only considered covered if the required number of reserves are

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

71

used for the given disruption. Constraint 6 forces δi,j to 1 when no reserve
recovery can be applied to disruption j in scenario i and to 0 otherwise. Con-
straint 6 means that it is acceptable to cover a crew delayed departure with a
combination of reserves used now and reserves used to cover a preceding crew
delay that propagated, which may be useful if some of the reserves used to
cover the root delay are not feasible to cover the following flight. Constraint
7 ensures that no more than the total number of reserves available (TR) are
scheduled. Constraint 8 ensures that in each disruption scenario the number
of reserves used with the same start time index does not exceed the number
of reserves which are scheduled to that start time index. Constraint 9 ensures
that disruptions can only be absorbed by reserves which were first used to ab-
sorb delay on the preceding flight if the reserve is used to cover that preceding
flight. Constraints (10 to 12) ensure that the cancellation measure associated
with a given disruption is the maximum of that associated with the recov-
ery actions used for the given disruption. If no reserves are used for a given
disruption that disruption gets the cancellation measure CMij , the same as oc-
curred in the simulation in which the disruption occurred. If reserves are used
the cancellation measure corresponds to the reserve used for that disruption
that invokes the largest cancellation measure (as the flight can’t take off before
all the crew are present). Constraints 13 to 15 are integrality constraints.

4 Variants and Modifications

This section firstly considers 2 alternative formulations of the basic MIPSSM
formulation given in equations 5 to 15. Then a scenario selection heuristic
designed to address the question of whether the types of scenarios or the
number of scenarios included in the formulation has the greatest effect on
solution quality. The final part in this section introduces an approach for
deriving an optimal reserve use policy for a given reserve schedule, by repeated
solving of the MIPSSM for a single disruption scenario and fixed reserve
schedule and learning the circumstances in which reserve use is beneficial in
the long run.

4.1 Alternative objectives for the MIPSSM

Several alternative objectives are suggested in this section.

MiniMax1

The objective of minimising the sum of cancellations measures over all disrup-
tion scenarios included in the model (Objective 5) could be replaced with the
alternative objective MiniMax1 of minimising the sum of cancellation mea-
sures of the disruption scenario with the largest sum of cancellation measures.
This is a minimax objective function and can be implemented by replacing

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

72

Objective 5 with Objective 16 and adding Constraint 17. Information on im-
plementing minimax objectives in linear programs can be found in [8]. This
approach will have the effect of finding a reserve crew schedule that minimises
the extent of the worst case scenario as opposed to minimising the average
cancellation measure. In Table 1 the probability of delay over 30 minutes per-
formance measure is most relevant to the MiniMax1 formulation.

min: Z (16)

Wi∑
j=1

γi,j ≤ Z, ∀i ∈ 1..W (17)

MiniMax2

Instead of minimising the total cancellation measure of the disruption sce-
nario with the largest cancellation measure, the same principle can be applied
to individual scenarios with the alternative Objective MiniMax2. I.e. find the
reserve crew schedule that minimises the single largest disruption. To imple-
ment this approach replace Constraint set 17 with Constraint set 18. In Table 1
there is no performance measure which is directly relevant to the MiniMax2
formulation because in the reserve crew schedule validation simulation the
worst single disruption is a cancellation and these will inevitably occur in each
method. However in the MiniMax2 formulation the worst single disruption
is leaving an absence disruption uncovered which would result in all flights on
the absent crew’s line of flight being cancelled.

γi,j ≤ Z, ∀i ∈ 1..W , ∀j ∈ 1..Wi (18)

4.2 Alternative solution approach

Scenario Selection Heuristic

The basic MIPSSM and the two alternative formulations MiniMax1 and
MiniMax2 are solved over a given set of disruption scenarios in a linear pro-
gramming solver (CPLEX in this case). Although CPLEX yields optimal solu-
tions, the solutions are only optimal for the set of disruption scenarios consid-
ered in the model. This section introduces a scenario selection heuristic (SSH)
to address the issue of the choice of scenarios included in the MIPSSM . The
solution time increases sharply as the number of disruption scenarios increases,
which provides another motivation for considering a scenario selection heuristic
solution approach, which includes the right scenarios rather than ensuring that
enough disruption scenarios are included in the model. The following heuristic
for solving the model defined by Equations 5 to 15 is based on adding one
disruption scenario to the model at a time and stopping only when a new

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

73

disruption scenario cannot be found for which the incumbent solution (overall
reserve schedule) performs worse than in the worst disruption scenario al-
ready added to the model. The heuristic is analogous to column generation in
which the master problem and pricing problem are solved iteratively. Repeti-
tion ceases when a specified iteration limit (itLim) is reached (in which case
the whole algorithm terminates and returns a final solution), or, alternatively,
when no new scenario with a sub problem (subObj) objective value can be
found that is larger than the scenario already in the master problem with the
largest objective contribution (maxj(masterObjj)), after rptLim attempts. In
summary this scenario selection approach focusses on finding a reserve sched-
ule that can cope with a wide variety of difficult scenarios as opposed to a
random set of scenarios representing the average outcome. An outline of the
scenario selection heuristic is given in Algorithm 3.

Algorithm 3 Psuedocode for the scenario selection heuristic
1: newScenarioFound = true
2: its = 0
3: while newScenarioFound ∧ its ≤ itLim do
4: newScenarioFound = false
5: rpts = 0
6: while ¬newScenarioFound ∧ rpts < rptLim do
7: Run simulation to generate disruption scenario newScenario
8: Solve new scenario subproblem
9: if subObj > maxj(masterObjj) then

10: newScenarioFound =true
11: add new scenario to the master problem
12: else
13: rpts = rpts + 1
14: end if
15: if newScenarioFound then
16: resolve master problem
17: end if
18: end while
19: its = its + 1
20: end while
21: return solution

4.3 Optimal reserve use policy derivation

The simulation (Section 3.3) when used to test reserve schedules has a default
policy of using reserve crew whenever this is immediately beneficial. The de-
fault policy also uses reserve crew in earliest start time order, so as to leave the
largest amount of unused reserve crew capacity available for subsequent disrup-
tions. The MIPSSM approach uses reserve crew in each disruption scenario
in an optimal way based on full knowledge of future disruptions. Knowledge
of future disruptions is not available in the simulation, if a scenario which was
included in the MIPSSM formulation is repeated in the validation simula-
tion, reserves might not necessarily be used in the same optimal way.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

74

In this section an algorithm for deriving an optimal reserve use policy is de-
scribed. The policy is based on reserve use decisions in response to delayed
crew, where a team of reserve crew could be constructed and used to ab-
sorb the delay. The policy consists of threshold minimum numbers of reserve
crew remaining for each departure for which using reserve teams to absorb
crew related delay is deemed globally beneficial. The threshold numbers of
reserves remaining are derived from the simulation by solving for the reserve
use variables of the MIPSSM model for the given reserve schedule over the
disruptions that occur in the given run of the simulation and then averaging
the number of reserves remaining at times when the MIPSSM model uses
reserve crew to cover for delayed crew.
The default policy is used for reserve crew use in response to crew absence
since the penalty for not replacing absent crew with reserves is far too high
(cancellation) to consider a crew absence reserve holding policy, and the cost
of using teams of reserves to cover delayed crew is too high if this leaves too
few reserve crew to cover subsequent absences. In general using teams of re-
serve crew to cover delayed connecting crew is expensive as it solves a smaller
disruption (a delay compared to a cancellation) using more reserves than are
usually required to cover absent crew.

5 Experimental results

The reserve crew scheduling approaches MIPSSM of Section 3.7, MiniMax1
andMiniMax2 of Section 4.1 and SSH of Section 4.2 are tested and compared
to one another. IBM CPLEX Optimization Studio version 12.5 with Concert
technology is used as the MIP solver, on a desktop computer with a 2.79GHz
Core i7 processor. These methods are also compared to a range of alternative
methods for reserve crew scheduling (described below).

5.1 methods

Probabilistic reserve crew scheduling under uncertainty

The probabilistic approach (Prob) to reserve crew scheduling is an application
of the work by the same authors in [1]. Given knowledge of the probabilities
of crew absence for each flight in an airline’s schedule, the probabilistic model
evaluates the effect a given reserve crew schedule has on the probabilities of
cancellations due to crew absence. The solution space of reserve crew schedules
is then searched to find the reserve crew schedule that minimises the proba-
bilities of cancellations due to crew absence. It was found that constructive
heuristics provide near optimal solutions when solving the model put forward
in [1]. The work in [1] has been extended to account for different numbers of
crew being absent from each crew pairing in an airline schedule. Moreover the
constraint that reserve crew are only feasible for disruptions if their duty start

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

75

time is no later than the scheduled departure time of the disrupted flight has
been relaxed so that some reserve delay is permitted, just as in the MIPSSM .
Reserve delays in the probabilistic approach are accounted for using the delay
cancellation measure function (Equation 1).

Area Under the Graph

The Area Under the graph (Area) method is based on running a number
of simulations and recording the cumulative demand for reserve crew with
respect to time in the form of a bar chart (in terms of the cancellation measure
that could be avoided if reserve crew were available). Reserve crew are then
scheduled at equal area intervals under the reserve demand graph over the
whole scheduling time horizon. The Area approach is based on a simulation
without reserve crew to find reserve demand independent of the effects of a
reserve crew schedule.

Uniform start rate

The Uniform Start Rate method (USR) schedules reserve crew at equal time
intervals.

Zeros

The Zeros method (Zeros) schedules all reserve crew to begin standby duties
at the first departure of the first day.

5.2 Experiment design

The methods stated in Section 5.1 are each solved for a synthetic airline sched-
ule, synthetic in that the schedule is designed to increase the chance of delays
due to delayed connecting crew. Other than this the schedule is fully detailed in
terms of crew pairings and aircraft routings. Journey time uncertainty is mod-
elled by statistical distributions based on real data, crew absence uncertainty
is modelled as each individual scheduled crew member having a 1% chance of
being absent and missing their entire crew pairing. All teams of crew consist
of 4 individuals with identical rank (primarily aimed at cabin crew, but ex-
tending also to technical crew). The schedule is based on a 3 day single hub
airline schedule with 243 flight legs a day with half being from the hub station.
The schedule uses 148 teams of crew scheduled and 37 aircraft (single fleet).
The schedule was generated using a first in first out approach with stochastic
parameters controlling the rate of crew aircraft changes (0.3) and the 60th

percentile journey time from each destination’s cumulative journey time dis-
tribution. These parameters influence the likelihood of delay propagation and
the occurrence of delayed connecting crew. The following experiments investi-
gate the effect of the number of reserve crew available for scheduling for each

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

76

solution approach, and for the MIPSSM based approaches the effect of the
number of input disruption scenarios on solution time and solution quality.

5.3 Investigating the effect of varying the number of reserve available for
scheduling

Fig. 1 The effect of the number of reserves
which are scheduled on the solution quality
of different solution approaches

Fig. 2 The effect of the MIPSSM derived
reserve use policy

The results in Figure 1 show the effect on the average cancellation measure
of varying the number of reserve crew available for scheduling, using 20000 re-
peat validation simulation tests for each reserve crew schedule for each solution
approach. The MIPSSM based approaches are restricted to 50 input disrup-
tion scenarios and a maximum of 1 hour to find a solution.
Figure 1 shows how the various reserve crew scheduling approaches compare
for different numbers of reserve crew available for scheduling.
The MIPSSM , SSH and Prob obtain the lowest average cancellation mea-
sures for all numbers of reserve crew available for scheduling of those tested.
The Probmodel gives a smooth curve of average cancellation measures, whereas
MIPSSM and SSH have small fluctuations in average cancellation measure
as the number of reserve crew available for scheduling changes. This fluctua-
tion can in part be attributed to the limited number of disruption scenarios
used as input for these methods. The MiniMax1 modification generally lead
to higher average cancellation measures especially when between 9 and 12
reserve crew were available for scheduling. MiniMax2 gave the unexpected
result that scheduling more reserve crew can lead to a higher average cancella-
tion measure. This fluctuating behaviour of the MiniMax2 modification was
also observed to a lesser extent in the other methods based on the MIPSSM
and can be explained by the fact that the objective of the MiniMax2 modifi-
cation is to suppress the single largest delay or cancellation disruption that can

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

77

Method Average Average Probabi- Cance- Reserve solution
name cancella- delay lity of llation Utili- time

tion delay rate sation /mins
measure > 30mins rate

NoRes 15.009 11.147 0.00682 0.03925 - -
MIPSSM 1.159 12.180 0.00898 0.00140 0.674 28.688
MiniMax1 1.246 12.393 0.00938 0.00154 0.666 7.060
MiniMax2 1.724 13.874 0.01114 0.00171 0.656 2.259
SSH 1.066 11.870 0.00871 0.00141 0.667 2.871
Prob 1.077 11.518 0.00818 0.00166 0.690 0.443
Area 2.399 14.001 0.01130 0.00353 0.589 0.060
USR 2.925 14.970 0.01336 0.00438 0.555 <0.001
zeros 3.756 11.167 0.00725 0.00902 0.571 <0.001

Table 1 Performance measure averages from 20 repeats

occur and is not to minimise the average cancellation measure. This fluctua-
tion is due to the resultant schedules being designed for worst case disruptions
as opposed to the average outcomes. The Area under the graph approach
lead to average cancellation measures similar to those from the MiniMax2
modification without the fluctuations. The USR approach lead to the highest
average cancellation measures when 10 or fewer reserve crew are available for
scheduling, for more than 10 reserve crew the zeros approach gave the highest
cancellation measures. The zeros approach also gave the best results when
fewer than 4 reserve crew were available for scheduling, this is because most
crew absences are realised at the start of the first day, so scheduling reserve
crew at that time prevents cancellations due to crew absence from the outset.
The difference between the various solution approaches is clearest when there
are around 10 to 12 reserve crew available for scheduling, which also appears
to be the most sensible number of reserve crew to schedule (due to diminish-
ing returns). Between 10 and 12 reserve crew, Figure 1 shows that the best
performing solution approach was the SSH. 10 to 12 reserves for the given
problem instance is approximately proportionate to the number of reserve crew
scheduled in reality.
Figure 2 shows the effect of using the MIPSSM derived reserve use policy
described in Section 4.3 compared to the default policy of using reserve crew as
demand occurs. Using the MIPSSM derived policy had the effect of reducing
the average cancellation measure.

5.4 Other performance measure and solution stability comparison of methods

Table 1 gives average performance measures when each method is applied to
the same problem instance 20 times, for the MIPSSM approaches the simu-
lation generated scenarios differ in each of the 20 repeats as they start with a
different random seed. The results show that on average the MIPSSM per-
forms best on cancellation rate, however the MIPSSM is also the slowest
method with average solution times of an hour. The average cancellation mea-
sure can be interpreted as the number of cancellations expected in each three

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

78

Fig. 3 Percentile cancellation measures

day simulation, but this also includes delays which have been converted to a
cancellation measure using Equation 1 of Section 3.2. In terms of all round
performance the SSH is a highly efficient approach with the lowest cancella-
tion measure and also, a low average delay, the SSH is also much faster than
the MIPSSM with an average solution time of just under 3 minutes. The
solution time of the SSH is a result of the termination criteria being satis-
fied before more than 10 disruption scenarios are added to the master problem.
The Prob approach has the second highest average cancellation measure, good
average delay performance and a solution time much quicker the those of the
MIPSSM based approaches.
The results in Table 1 suggest there is merit in both the probabilistic and
MIPSSM approaches to scheduling airline reserve crew under uncertainty.
Table 1 also includes performance measures when no reserve crew are sched-
uled at all as a point of reference. Counter to expectation the probability of
delay over 30 minutes is lower without reserve crew, as is the average delay,
however this can be attributed to the high cancellation rate, since cancelled
flights do not count as delays. The Objectives MiniMax1 and MiniMax2 are
aimed at minimising worst case scenarios, however if the probability of delay
over 30 minutes is treated as a measure of worst case scenarios, it does not
support this. Reserve utilisation rates are also given in Table 1 and are loosely
correlated with the cancellation measures.
Figure 3 displays cancellation measure percentiles, the 100th gives the worst
cancellation measure from each approach, and this is the most appropriate
validation criteria for the MiniMax2 modification. The MiniMax2 modifi-
cation does not have the lowest cancellation measure for the 100th percentile,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

79

Fig. 4 Solution stability of MIPSSM based methods compared to Prob

so it appears that this modification does not achieve its objective. Figure 3
shows the spread of cancellation measures corresponding to each method over
the 20 repeats of each method, with each being tested in 20000 repeat vali-
dation simulations. Figure 3 demonstrates that for each given percentile the
ordering of the methods supports the results given in Table 1 except for the
zeros approach which has the lowest worst case cancellation measure. This
result suggests that the worst scenario is, for a very large number of crew to
be absent at the start of each day, which is precisely the situation the zeros
approach can cope with. Figure 4 shows that the MIPSSM based methods
have a solution stability issue. Each point on Figure 4 represents a solution
to the given method starting from a different random seed in the simulation
used to generate the set of disruption scenarios over which the method is
solved. Figure 4 shows that the MIPSSM based methods have the poten-
tial to give solutions of higher quality that the Probabilistic method, but this
depends on the selection of disruption scenarios which used as input for the
given MIPSSM based method.

6 Conclusion

In conclusion, a simulation based mixed integer programming approach to air-
line reserve crew scheduling has been introduced. The main idea is to schedule
reserve crew using information from repeat simulations of an airline network
where reserve crew are not available, and then scheduling reserve crew in a
hindsight fashion in such a way that had they been available, the level of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

80

delay and cancellation that was related to disrupted crew would have been
minimised. The MIPSSM formulation also took potential knock-on delays
into account.
Another feature of the general approach is that it does not depend on the de-
tails of the simulation of the airline (i.e. the simulation is almost a black box).
In the example problems the simulation had the capability to recovery from
delays using airline resource swaps, such swaps were applied before disruption
scenario data was derived. In effect the approach would work with any airline
schedule simulator, provided the assumption that the use of reserve crew is a
last resort recovery action is valid.
The SSH approach showed that the individual scenarios included in the model
is at least as important as the number of scenarios, as this heuristic scenario
selection approach yielded solutions of higher quality on average compared to
the MIPSSM approach, with only a fraction of the input disruption scenar-
ios. The Probabilistic model (Prob) represented an entirely different approach
to the MIPSSM and gave comparable results, suggesting both approaches
have their own merits. In general it was found that the MIPSSM , SSH
and Prob approaches gave results that were very similar on average, however
the MIPSSM based approaches had lower solution stability from one run to
the next due to the stochastic nature of these approaches, but significantly
outperformed the Prob approach in some cases.

7 Future work

The MIPSSM based approaches rely on stochastic inputs, this is both the
greatest strength and weakness of these approaches. Future work includes
investigating how to increase solution stability by improving the process of
selecting which disruption scenarios to include in the solution phase of the
MIPSSM based approaches.

References

1. Christopher Bayliss, Geert De Maere, Jason Atkin, and Marc Paelinck. Probabilistic
Airline Reserve Crew Scheduling Model. In Daniel Delling and Leo Liberti, editors,
12th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems, volume 25 of OpenAccess Series in Informatics (OASIcs), pages 132–143,
Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

2. Alexandre Boissy. Crew reserve sizing. In Agifors syposium.
3. Jeffrey E. Dillon and Spyros Kontogiorgis. Us airways optimises the scheduling of reserve

flight crews. Interfaces, 29(5):pp123, September/October 1999.
4. Christian Liebchen, Marco Lubbecke, Rolf H. Mohring, and Sebastian Stiller. Recoverable

robustness. Technical report, August 2007.
5. Marc Paelinck. KLM cabin crew reserve duty optimisation. In Agifors proceedings, 2001.
6. Sergey Shebalov and Diego Klabjan. Robust airline crew pairing: Moveup crews. Trans-

portation science, 2006.
7. Milind G. Sohoni, Ellis L. Johnson, and T. Glennn Bailey. Operational airlines reserve

crew scheduling. Journal of Scheduling, 2006.
8. H. Paul. Williams. Model building in mathematical programming. Wiley, 2002.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

81

A linear mixed-integer model for realistic
examination timetabling problems

Lisa Katharina Bergmann · Kathrin
Fischer · Sebastian Zurheide

Abstract An examination timetable has to satisfy a vast variety of require-
ments to be not only feasible, but also to be convenient to all parties involved.
Many different aspects, as e. g. spreading of exams for students’ convenience
or fixing exams to certain days or rooms for teachers’ convenience, have been
discussed in the literature. However, there are no model formulations which
take all aspects relevant for this work into account.

Therefore, in this work a new linear mixed-integer programming model for
the exam timetabling problem is presented. The model uses a penalty-based
goal programming approach to assure the construction of timetables which
fulfill important requirements made by teachers, students and administrators.
Based on this model, feasible solutions are derived by a standard solver and
subsequently are further improved by a tabu-search procedure. The trade-off
between different criteria is shown and some very promising results of the
approach for a real-world data set are presented.

Keywords Examination timetabling · University timetabling · Linear
programming · Mixed-integer programming

L. K. Bergmann
Institute for Operations Research and Information Systems
Hamburg University of Technology
Schwarzenbergstr. 95 D
21073 Hamburg
Germany
Tel.: +49-40-428784534
E-mail: katharina.bergmann@tuhh.de

K. Fischer
E-mail: kathrin.fischer@tuhh.de

S. Zurheide
E-mail: zurheide@tuhh.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

82

1 Introduction to exam timetabling at universities

The exam timetabling problem deals with the assignment of exams to rooms
and time slots such that there is never more than one exam per student at
a time. At universities, this combinatorial problem arises at the end of each
term or semester. Usually there is a predefined time-span within each term, in
which all exams have to be scheduled. For the assignment of exams to dates
this overall examination time-span is split into several time slots (or exam
periods) of equal length. The decision when and where to schedule an exam
is quite challenging for the planner, and therefore tools which support the
timetabling process are valuable.

One might assume that the exam timetable can be derived easily from the
course timetable, as teachers might use the last session of their course for the
respective examination. However, it is usually required that students do not
have to take more than one exam per day, but as they can do more than
one class per day, the course timetable cannot be used for the examinations.
Moreover, there are many additional conditions to be fulfilled by an exam
timetable, as will be explained below.

The course timetable is mainly determined by the curriculum of the re-
spective degree program and is based on the assumption that every student
participates in the courses scheduled in a term, and that he/she also passes the
corresponding exams in the same term. In reality, students often take classes
and exams in a different order. For example, due to lectures without compul-
sory attendance, illness during the examination time-span or failing of exams,
the participation in courses and in the related exams is often rather indepen-
dent from each other and hence the order in which exams are passed often
does not follow the curriculum anymore. In addition, at German universities
exams are usually offered in every term, even if the corresponding course is
only taught every other term. Hence, about half of the exams that have to be
scheduled are so-called resit exams which belong to courses that have not been
taught in the current term. Moreover, it is usually required that the seating
during an exam is more spacious than during a lecture (and thus a bigger
room is required for the exam). Last but not least, there are usually many
different electives between which students can choose, enhancing the danger
of exam overlaps. All this makes the task of exam timetabling a very complex
combinatorial problem.

A new approach for modeling the timetabling problem which is based on
students’ enrollments is presented in this work. Apart from the very basic
requirements, e. g. that every student can only attend one exam per period,
the linear mixed-integer model which is developed below contains several fea-
tures in order to meet realistic demands of teachers and students, like the
consideration of the work-load associated with an exam, the actual time-span
between two exams or the distinction between exams from courses from the
current term and resit exams. Additionally the changing availability of rooms,
the need of splitting large exams over several rooms, the booking of external
rooms for very specific exams and related to this also the preassignment of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

83

exams to dates or rooms is enabled. In order to implement all these require-
ments the model is based on a penalty based goal programming approach
where deviations from soft requirements are penalized and hard requirements
are integrated as constraints.

2 Literature review on examination timetabling

Several surveys on the topic state that the primary objective of exam timetable
planning is to set up a conflict free schedule for every student (Carter (1986),
Carter and Laporte (1996), Qu et al (2009)), i. e. a schedule in which no student
has to take more than one exam at a time.

Resulting from this requirement, the most fundamental case of the exam
timetabling problem is basically a graph coloring problem where each exam is
represented by a node. If at least one student is enrolled for two exams, the
corresponding nodes are connected by an undirected arc. The weights on the
arcs equal the number of students enrolled in the two exams. The objective
is then to find the minimal node coloring, where adjacent nodes do not have
the same color, i. e. a schedule where no student is required to take more
than one exam at a time. The colors can be identified with the available time
slots. As the NP-hard coloring problem can be mapped polynomially onto
the examination timetabling problem, the latter is also NP-hard (Garey and
Johnson, 1979, pp. 13-14).

In the following a distinction between first and second order conflicts has
to be made. A first order conflict arises if two exams are scheduled in the same
period and there is at least one student enrolled in both exams. These conflicts
have to be avoided by all means. Second order conflicts arise from exams that
are “only” scheduled too close to each other, but not in the same period, and
if there is at least one student enrolled for both exams.

In addition to the main requirement of being first order conflict-free, some
additional hard constraints should be fulfilled by any timetable (Qu et al,
2009):

– Every exam has to be scheduled exactly once and
– Available capacities (rooms, invigilators, time) must not be exceeded.

If it is not possible to find a solution that satisfies the capacity requirements
or the requirement of being conflict free, these constraints can be relaxed by
adding dummy capacities or by adjusting the objective such that the number
of first order conflicts is minimized (Carter and Laporte, 1996). However, this
can lead to timetables that cannot be implemented in reality.

Depending on the individual demands of the university, there can be sec-
ondary objectives and requirements that can be included in the model as soft
constraints. Table 1 lists some of the requirements that can be found in the lit-
erature and are often included in model formulations for realistic examination
timetabling problems (more potential requirements can be found in Qu et al

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

84

Table 1 Overview on selected realistic examination timetabling requirements and authors
considering them

Minimize the number of second order exam con-
flicts (i. e. spread the exams as much as possible
over the entire examination time-span)

Müller (2013), Eley (2007), Burke
and Newall (2004), Di Gaspero and
Schaerf (2001), Carter et al (1994),
Arani et al (1988), Laporte and
Desroches (1984)

Preassign an exam to a specific time slot (or ex-
clude this time slot)

Müller (2013), Carter et al (1994),
Laporte and Desroches (1984)

Preassign an exam to a specific room or room type
(or exclude this room/room type)

Müller (2013), Laporte and
Desroches (1984)

Enable the consideration of preferred or required
room types for some exams, e. g. rooms with large
tables or computers

Carter et al (1994), Laporte and
Desroches (1984)

Some rooms may not be available during the entire
examination time-span

Müller (2013), Di Gaspero and
Schaerf (2001), Laporte and
Desroches (1984)

If big rooms are scarce it is possible to assign more
than one room to an exam

Eley (2007)

Additionally the maximum number of rooms that
an exam may be split into is limited

Müller (2013), Laporte and
Desroches (1984)

Schedule more than one exam in a room (in the
same time slot) if the number of available rooms is
scarce

Eley (2007), Di Gaspero and
Schaerf (2001), Laporte and
Desroches (1984)

Penalize the scheduling of exams in certain time
slots, e. g. avoid exams in the last day of the exam-
ination time-span

Müller (2013)

Enable the consideration of preferred time slots for
some exams

Di Gaspero and Schaerf (2001),
Carter et al (1994)

(2009)). Next to each aspect a few authors who consider these requirements
in their articles are given.

The approaches by Müller (2013), Carter et al (1994) and Laporte and
Desroches (1984) aim to set up realistic examination timetabling systems
and consider many of the above named requirements, though none of them
gives a complete mathematical formulation taking all aspects relevant for this
work into account. Müller (2013) presents several benchmark data sets and
an algorithm that resolves second order conflicts in several phases. Laporte
and Desroches (1984) introduce an automatic timetabling procedure which in-
cludes the respective requirements from Table 1. Carter et al (1994) propose
a scheduling system that is based on the article by Laporte and Desroches
(1984) and implemented at the University of Toronto and at Carleton Uni-
versity. Carter et al (1996) also base their work on the article by Laporte
and Desroches (1984) and carry out several experiments with algorithms that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

85

determine the optimal length of the examination time-span. These tests are
conducted on unconstrained problems to determine the best strategy, which
is then used to solve several real-life constrained problems. Carter et al (1996)
do not explicitly state which requirements were considered for the constrained
problems, therefore their work has not been included in Table 1.

The focus of the other publications listed above is primarily on the solution
approach, and not on the formulation of a mathematical model. Eley (2007)
uses different ant algorithms to solve the examination timetabling problem,
Burke and Newall (2004) approach the problem through adaption of heuristic
orderings, Di Gaspero and Schaerf (2001) present several variants of tabu-
search based solution algorithms and Arani et al (1988) (and Arani and Lotfi
(1989)) propose a three phase approach using a Lagrangian relaxation.

A common approach, which is also used by some of the authors mentioned
above, to mathematically formulate the objectives and constraints listed in
Table 1 is in the form of the quadratic assignment problem where the variables
represent the assignment of exams to periods and sometimes also to rooms
(Eley (2007), Burke and Newall (2004), Di Gaspero and Schaerf (2001), Arani
and Lotfi (1989), Laporte and Desroches (1984)). For exams i and j being
scheduled in period t and t + a, the corresponding constraints of the type “at
most one exam per student within a certain time-span” can be formulated
as quadratic constraints by the expression cijxitxj(t+a) = 0, with cij being
the number of students that are enrolled for both exams i and j and xit

(xj(t−a)) being equal to one if exam i (j) is scheduled in period t (t + a) and
zero otherwise. Independent from the programming approach, the use of the
conflict matrix cij can often be found in the literature, e. g. in Eley (2007),
Burke and Newall (2004), Carter et al (1996) and Laporte and Desroches
(1984).

For the topic of course timetabling, linear models are presented in the
literature (e. g. Schimmelpfeng and Helber (2007), Van den Broek et al (2007),
Dimopoulou and Miliotis (2001)). Schimmelpfeng and Helber (2007) model a
course timetabling problem as a linear assignment problem. Using elements
from goal programming, their model penalizes conflicting dates for courses
and violations of room and teaching capacities. Instead of directly minimizing
the number of students affected by a bad schedule, the model balances the
students’ work-load by minimizing the sum of penalties that apply in case of
a bad schedule. Dimopoulou and Miliotis (2001) use a linear model to solve
the course timetabling problem at a Greek university. Based on the solution
of this model, an infeasible starting solution for the examination timetabling
problem is generated, then modified into a feasible one by an algorithm that
resolves the first order conflicts, and afterwards improved by rescheduling of
exams.

Various other publications on the topic of examination timetabling can be
found. An extensive literature review on examination timetabling is presented
by Qu et al (2009). However, most publications focus on solution methods and
use quadratic models whereas in this work, a linear approach is presented, to
enable the use of standard solution approaches.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

86

3 A new linear mixed-integer model for exam timetabling

Examination procedures may vary, e. g. depending on the educational institu-
tion, on the number of students, degree programs (timing, courses, choices),
teachers, available facilities, technical support of the planner, and many more
aspects. However, the following requirements and assumptions should match
a typical German university.

The linear mixed-integer model that is introduced below considers all of
the previously listed requirements, with a few exceptions regarding the room
allocation. Experience from different German universities shows, that usually
only one exam per room and period is scheduled. This is mainly due to the
fact that German universities tend to have only very few large rooms, but
enough small rooms, and hence it is usually possible to assign different exams
to different (smaller) rooms.

Also the distinction of room types, apart from their capacity, is not ex-
plicitly included, but the model enables the exclusion of specific rooms for
some exams (and therefore also the preassignment of a room to an exam).
The model also includes a few additional requirements which are typical for
German universities and were not taken into account by any of the above men-
tioned authors: If second order conflicts cannot be avoided, it is important to
consider whether an exam belongs to a course from the current term, or to
the previous term. Exams for courses from the current term are considered to
be more important, as universities want to encourage the students to follow
the curriculum as closely as possible. Hence, second order conflicts are to be
avoided especially if both exams belong to courses from the current term.

This is done by using a goal programming based approach, such that the
model penalizes three things: the occurrence of second order conflicts, the split-
ting of an exam over several rooms and the scheduling of exams in undesirable
periods. The approach takes into account the number of students involved
in second order conflicts, and the exams’ work-loads. A similar approach for
course timetabling can be found in Schimmelpfeng and Helber (2007).

3.1 General conditions and assumptions

It is assumed that students enroll for the exams they want to take in an
examination period before the examination timetable is created, and that there
are no exams without enrollments. In addition to the given enrollments, the
examination time-span is split into periods and the total number of available
periods within the overall examination time-span is predetermined. However,
the number of available periods is varied in the computational study presented
below to examine the effect of different examination time-spans. The periods
are of equal duration, which is given in hours. E. g. an exam day that starts at
8 a.m. and ends at 6 p.m. can be represented by a period length of 10 hours
and a total number of periods that equals exactly the number of days in the
examination time-span (i. e. one period per day). Alternatively it is possible

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

87

to represent each day by two periods, each being 4 hours long, or by any other
number of periods per day. It only has to be made sure that the periods are of
equal length, and of course there will be no feasible solution, if the duration of
any exam exceeds the period duration. Hence, the exams’ durations also have
to be given in hours. This also allows to schedule more than one exam in the
same room and period, if the sum of the exams’ durations does not exceed the
duration of a period. I. e. these exams are scheduled subsequently in the same
room and within the same period. The exact schedule and order of exams in
a room can easily be set up manually.

For the students it is very important that the work-loads associated with
the exams are taken into account, especially when second order conflicts cannot
be avoided. Therefore, in addition to the enrollments and duration of each
exam, the ECTS points (European Credit Transfer and Accumulation System)
for every exam have to be considered by the model.

In realistic timetabling situations, the room availabilities may not be the
same for every period. E. g. conferences or other events might take place during
part of the examination time-span, and hence certain rooms are not available
at certain times. Moreover, it is necessary to enable the model to predetermine
the period for an exam or exclude some periods for certain exams. The same
has to be possible for the room allocation: e. g. for a very large examination,
an external room might be booked, but other smaller exams should not take
place in that room. To allow a reasonable assignment of rooms and to limit
the number of invigilators needed, the maximum number of rooms into which
an exam may be split has to be limited.

Furthermore the model allows to specify a “room allocation enrollment
limit”. If this is done, only exams that exceed the limit have to be scheduled
with room. Smaller exams only get a period assigned. As pointed out above, at
many German universities, small rooms (e. g. for seminars or group work) are
available in abundance, such that the manual assignment of appropriate rooms
to small exams is easily possible. This can lead to a considerable reduction of
model size.

Finally it should be possible to avoid scheduling of exams in certain periods
if this is feasible. E. g. students as well as teachers usually prefer not to have
any exams in the very first or last periods of the overall examination time-span
which usually starts right after the end of the term. If also weekends can be
used for examinations, their use should also be avoided whenever possible.

3.2 Sets and parameters used in the model

In the following, the sets, indices and parameters which are needed to include
the stated requirements and assumptions in the model are introduced. I is
the set of all exams, and the indices for exams are i and j. Exams may be
scheduled in a room r out of all rooms R. The total number of available exam
periods is given by P with p being the index for periods such that p ∈ {1..P}.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

88

To balance the students’ work-load, they should not be required to take
more than one exam within a certain number of periods. The length (in peri-
ods) of this time-span is defined by A, indexed by a, a ∈ {1..A}. If an exam is
scheduled in period p, a penalty is applied if another exam is scheduled in a
period p + 1 to p + A, if there is at least one student enrolled in both exams.

To enable the distinction between exams from the current term and resit
exams from the previous term, several sets of ordered tuples are introduced.
Each tuple contains two exams that have a conflict potential, i. e. there is at
least one student enrolled in two exams, i and j. These tuples of conflicting
exams are generated in advance, based on the students’ enrollment informa-
tion. In the following sections and chapters, conflicting exams will be denoted
by i′ and i′′.

The set IT contains all exam pairs that have a conflict potential, i. e. all
exam pairs where at least one student enrolled for both exams. ITC contains
only tuples of exams that both belong to courses from the current semester,
while ITP contains only tuples where at least one exam belongs to a course
from the previous semester, such that IT = ITC ∪ ITP . All sets of tuples are
indexed by (i′, i′′).

The parameter Ei gives the number of students that are enrolled for an
exam i ∈ I while the number of students that are enrolled for two exams i′

and i′′ (thus with conflict potential) is given by the parameter C(i′,i′′).
To reduce the problem size, the original set of all exams I is also comple-

mented by two subsets: IZ and IW . IZ is the set of all “big” exams with EZ

or more enrollments. Only exams in this set have to be scheduled with a room.
As EZ is a parameter of the model, it is of course possible to set its value to
1; then all exams will be scheduled with a room. Analogously IW is the set of
all exams with special time requirements. If no time requirement exists, the
exam can be scheduled in any period. But if e. g. a teacher is absent during
specific periods, his or her exam should not be scheduled in these periods (see
also Oip below).

The individual work-load or severity for each exam is represented by the
parameter Si. It takes a value between 1 and 5, Si ∈ {1..5}. E. g. if i is a very
easy exam, with a low work-load (and thus few ECTS points), Si equals 1, but
if i is a very difficult exam, with high work-load (and many ECTS-points), Si

equals 5. The difficulty is combined with C(i′,i′′) to determine the parameter
B(i′,i′′), which gives the “badness” that occurs if exams i′ and i′′ are scheduled
too close to one another. It is obtained by multiplying C(i′,i′′) with the exams’
severities. Based on discussions and a university internal survey with students
it is assumed that they prefer taking a difficult exam first and then an easier
one, instead of the other way around. Hence, the “badness” value of a tuple
is doubled if i′′ has a higher work-load than i′, i. e. Si′ > Si′′ ⇒ B(i′,i′′) =
2C(i′,i′′)Si′Si′′ . Therefore, the elements of B are not symmetric (unlike C(i′,i′′)).

The duration of the individual periods is given in hours and denoted by H.
If H is set to a relatively large number (e. g. 8 hours), a high occupancy of each
room can only be achieved by allowing the scheduling of more than one exam
in a room. Therefore, the duration of each exam needs to be considered, to

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

89

make sure that several exams can take place consecutively in the same room.
This individual duration Di gives the hours needed for each exam i, including
time for preparation and follow up.

Krp is a (m × P) matrix, with m being the total number of available
rooms, and P the total number of available periods. The elements of Krp

are positive integer or zero and give the number of seats that are available
in room r during period p. If a room is not available in a specific period,
the value for the corresponding Krp is set to zero. The time requirements for
every exam are specified by the binary parameter Oip. It equals 1 if exam i
may be scheduled in period p and 0 otherwise. If a special time requirement
for an exam i exists (

∑
p∈{1..P}Oip < P), the exam will be added to the set of

exams with time requirements, IW , as mentioned above. Similar to this Qir is
a binary parameter which specifies the room requirements for every exam: It
equals 1 if exam i may be scheduled in room r and 0 otherwise. The parameter
F limits the number of rooms into which an exam may be split.

There are four penalty factors to enable a weighting of the different terms
of the objective function. (Note that the superscripted number is an index
to distinguish between the different parameters and not a mathematical ex-
ponent.) N1

a gives the penalty that applies if conflicting exams are scheduled
within A+ 1 periods, with a ∈ {1..A}. It enables the model to penalize second
order conflicts with respect to the actual distance of time, a, of the correspond-
ing exams (similar to Eley (2007) or Carter et al (1996)). N2 determines the
impact of second order conflicts of two exams from current courses compared
to conflicts with an exam from a previous term course. N3 defines the level
of the penalty for splitting an exam into several rooms. Finally, N4

p penalizes
the scheduling of exams in undesirable periods, e. g. all periods representing
a Saturday. These factors can of course also be used to favor certain sched-
ules (instead of penalizing them) if the values are set appropriately (i. e. if the
penalty values are set between 0 and 1).

3.3 Decision and deviational variables

The timetabling model presented below comprises two types of decision vari-
ables. There are two classical decision variables, yirp and xip, and two so called
deviational variables, u(i′,i′′)a and vip.

The variable yirp gives the information in which room and period an exam
is scheduled. Hence, it is equal to 1 if exam i is scheduled in room r in period
p, and otherwise it is zero. The second decision variable, xip, only gives the
information in which period an exam i is scheduled. xip is equal to 1 if exam i is
scheduled in period p and equal to 0 otherwise. Due to this separate allocation
of periods and rooms it is possible to ensure that every exam is scheduled
exactly once, but to allow several rooms to be assigned to one exam.

The first deviational variable u(i′,i′′)a is binary and indicates whether a
student has to sit two exams i′ and i′′ within A + 1 periods or not. If exam i′

is scheduled in period p and exam i′′ is scheduled in period p+ a then u(i′,i′′)a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

90

takes the value 1. If there is no student enrolled in both exams or there are
more than A periods in between the exams, u(i′,i′′)a takes the value 0. The
index a contains the information how many periods there are in between the
periods in which the two exams are scheduled.

The number of additional rooms that are assigned to exam i scheduled in
period p is given by vip. E. g. if exam i is scheduled in period p and assigned to
three rooms, then vip = 2. On the other hand, if vip = 0, exam i is either not
scheduled in period p or it is assigned to just one room. These two decision
variables are thus called positive deviational variables (Jones and Tamiz, 2010,
pp. 4-5, 20-22).

3.4 Model formulation

To provide a better overview of the notation used, the following lists contain
all sets, indices, parameters, decision and deviational variables.

Sets:

I Set of all exams
IW Set of exams with time specification
IZ Set of exams with EZ or more enrollments
IT Set of ordered tuples of all exam pairs with conflict poten-

tial, IT = ITC ∪ ITP

ITC Set of ordered tuples of exams with conflict potential that
belong to courses from the current term

ITP Set of ordered tuples of exams with conflict potential, where
at least one exam is a resit exam

R Set of rooms

Indices:

1–4 Naming indices for penalty factors
a Index for “time lags” between two exams, a ∈ {1..A}
i, j Indices for exams, i, j ∈ I, IZ or IW

(i′, i′′) Tuple of indices for exam pairs with conflict potential,
(i′, i′′) ∈ IT , ITC or ITP

p Index for periods, p ∈ {1..P}
r Index for rooms, r ∈ R

Parameters:

A Number of consecutive periods in which no student should
have to write more than one exam

B(i′,i′′) Badness for exams of tuple (i′, i′′) being scheduled too close
Di Duration of exam i
Ei Number of students enrolled for exam i

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

91

EZ Limit of enrollments, such that all exams with EZ or more
enrollments have to be scheduled with room

F Limit on rooms, an exam may be split into
H Length of each period in hours
Krp Seating capacity of room r in period p
N1

a Penalty factor that applies if exams of a tuple are scheduled
within a + 1 periods

N2 Additional penalty factor that only applies for tuples
(i′, i′′) ∈ ITC

N3 Penalty factor that applies if an exam is split into several
rooms

N4
p Penalty factor that depends on the period in which an exam

is scheduled
Oip Time specification that indicates if institutes/teachers pre-

fer exam i to be scheduled in period p or not
P Total number of available periods, being H hours long each
Qir Room specification that indicates if exam i may be sched-

uled in room r or not
Si Work-load (severity) of exam i

Decision variables:

xip Equal to 1 if exam i is scheduled in period p, and 0 otherwise
yirp Equal to 1 if exam i is scheduled in room r in period p, and

0 otherwise

Deviational variables:

u(i′,i′′)a Equal to 1 if exams of tuple (i′, i′′) are scheduled within
a + 1 periods, and 0 otherwise

vip Equal to the number of additional rooms occupied by exam
i in period p, and 0 otherwise

The following model formally states a realistic exam timetabling problem,
taking all above mentioned aspects into account, and using the notation pre-
sented.

Objective function:

min
∑

a∈{1..A}

N1
a

 ∑
(i′,i′′)∈ITC

N2B(i′,i′′)u(i′,i′′)a +
∑

(i′,i′′)∈ITP

B(i′,i′′)u(i′,i′′)a

+
∑
i∈I

∑
p∈{1..P}

N3vip +
∑
i∈I

∑
p∈{1..P}

N4
pSixip

(1)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

92

Subject to: ∑
p∈{1..P}

xip = 1 ∀i ∈ I (2)

xip ≤ Oip ∀i ∈ IW ,∀p ∈ {1..P} (3)

xi′p + xi′′p ≤ 1 ∀(i′, i′′) ∈ IT , ∀p ∈ {1..P} (4)

xi′p + xi′′(p+a) − u(i′,i′′)a ≤ 1 ∀(i′, i′′) ∈ IT ,∀p ∈ {1..P} , ∀a ∈ {1..A}
(5)∑

p∈{1..P}

yirp ≤ Qir ∀i ∈ IZ ,∀r ∈ R (6)

∑
r∈R

yirp − vip = xip ∀i ∈ IZ ,∀p ∈ {1..P} (7)∑
r∈R

yirp ≤ F ∀i ∈ IZ ,∀p ∈ {1..P} (8)∑
r∈R

Krpyirp ≥ Eixip ∀i ∈ IZ ,∀p ∈ {1..P} (9)∑
i∈IZ

Diyirp ≤ H ∀r ∈ R,∀p ∈ {1..P} (10)

yirp ≤ xip ∀i ∈ IZ ,∀r ∈ R,∀p ∈ {1..P} (11)

xip = 0 ∀p ∈ {P + 1..P + A} , ∀i ∈ I (12)

xip ∈ {0, 1} ∀i ∈ I, ∀p ∈ {1..P} (13)

yirp ∈ {0, 1} ∀i ∈ IZ ,∀r ∈ R,∀p ∈ {1..P} (14)

u(i′,i′′)a ∈ {0, 1} ∀(i′, i′′) ∈ IT , ∀a ∈ {1..A} (15)

vip ≥ 0 ∀i ∈ IZ ,∀p ∈ {1..P} . (16)

Constraints (2) ensure that every exam is scheduled exactly once. Equa-
tions (3) take the time requirements of institutes and teachers into account.
They also allow to predetermine the period p in which a certain exam i has to
be scheduled, by setting Oip to 1 for only this specific period p.

As represented in the constraints (4), no student can take two exams at
the same time, hence, first order conflicts cannot occur in a feasible solution.
Constraints (5) relate to exams being scheduled within A + 1 periods. As
both equations only apply to exams that have a conflict potential, they only
have to hold for the tuples of the set IT . In (5) the first set of deviational
variables, u(i′,i′′)a, is used: Whenever there is at least one student enrolled in
both exams i′ and i′′ and these exams are scheduled within A+ 1 consecutive
periods, u(i′,i′′)a takes the value 1.

The next six groups of constraints relate to exams that have to be scheduled
with a room, as they have EZ or more participants; these are all exams i ∈ IZ .
Constraints (6) determine the room specifications for each exam, similar to the
time specification in (3). Only if Qir is equal to 1, the exam i may be scheduled

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

93

in room r. This allows to predetermine the location(s) for exams, release rooms
only for selected exams and to exclude specific exams from a certain room.

In some cases it might be necessary to split up the participants of one exam
over several rooms. Equations (7) enable this, using the deviational variables
vip, which equal the additional number of rooms needed for an exam. Hence
their values should be minimized, as it is preferred not to split up exams. The
maximum number of rooms in which an exam might take place is determined in
constraints (8). Restrictions (9) make sure that the rooms which are assigned
to an exam have enough seats for all enrolled students.

Constraints (10) allow several exams to be scheduled in the same room
and period, as long as the sum of their durations does not exceed one period.
Constraints (11) restrict the assignment of rooms to the period in which the
corresponding exam is scheduled. Finally, constraints (12) to (16) declare the
decision and deviational variables’ domains.

The objective function (1) aims to find a schedule that keeps the work-
load for each student balanced, but also meets the university’s resources. This
is done by minimizing the deviations from the following three targets: First,
every student should take at most one exam (e. g. exam i′) within A + 1
periods. For every additional exam within this time range (e. g. exam i′′), the
deviational variable u(i′,i′′)a takes the value 1. The index a indicates within
how many periods these two exams are scheduled and is one of three factors
that determine the influence of a second order conflict on the objective function
value. If the values of N1

a are inverse proportional to a it is ensured that the
closer the two corresponding exams are scheduled, the larger the contribution
of a conflict to the objective function value will be.

The second influencing factor is the so-called badness B(i′,i′′), a combina-
tion of the number of affected students and the work-load of each exam, as
was explained in subsection 3.2. The last influencing factor is the informa-
tion whether the tuple (i′, i′′) contains an exam from the previous semester or
not. B(i′,i′′) is multiplied by N2 if the tuple (i′, i′′) contains only exams from
courses from the current semester.

Second, every exam should be scheduled in only one room. If, however, the
students enrolled for an exam do not fit into the biggest room available, it
is possible to split the exam over several rooms. For an exam i, scheduled in
period p, vip indicates how many additional rooms are required. The factor N3

enables an adequate weighting of this target and penalizes the use of additional
rooms.

The last target considered by the objective function (1) is the general choice
of favorable periods or, more explicitly, the choice of inconvenient periods.
Depending on the values of N4

p , scheduling exams e. g. at the beginning and
at the end of the overall exam period is penalized. Especially difficult exams
should not be scheduled right in the first periods to grant the students enough
time for preparation. For this reason, the penalty is multiplied by the work-
load Si of the corresponding exam.

For a better understanding of the objective function, a small example of
an exam schedule is presented in the following. Table 2 shows a timetable with

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

94

Table 2 Example schedule

Periods (p)
1 2 3 4 5

Room 1 iD iE iF
Room 2 iD iG iH

Example Student iD iE iF

N4
p 50 30 1 40 80

five periods, two rooms and five exams (named iD to iH). Furthermore, the
enrollments of an example student and the values of the parameter N4

p can be
found in this table.

The example student is enrolled for the exams iD, iE and iF . It is assumed
that 20 other students have the same exam conflicts. The degrees of difficulty
for these three exams are as follows: SD = 3, SE = 5 and SF = 1. The exams
iD and iE are from the current semester, and the exam iF belongs to a course
from the previous semester. The values of the remaining parameters are A = 3,
N1

1 = 100, N1
2 = 10, N1

3 = 1, N2 = 2 and N3 = 1000.

The badness of the exam tuples needs to be determined, based on the
formula presented in subsection 3.2, i. e. B(i′,i′′) = [2]C(i′,i′′)Si′Si′′ . Hence,
B(D,E) is equal to 2 ·20 ·3 ·5 = 600, B(D,F) is equal to 20 ·3 ·1 = 60 and B(E,F)

is equal to 20 · 5 · 1 = 100. Here, the first exam tuple has a high value for the
parameter B(D,E), because the conflicting exams have a high work-load, and
the exam with the lower work-load is scheduled first. The following calculation
shows how the objective function value for this small example is computed:

N1
1 N2 B(D,E) u(D,E)1

↓ ↓ ↓ ↓
(100 · 2 · 600 · 1 +

N1
3 B(E,F) u(E,F)3 N3 vD1

↓ ↓ ↓ ↓ ↓
1 · 100 · 1) + (1000 · 1) +

N4
1 SD xD1

↓ ↓ ↓
(50 · 3 · 1 +

N4
2 SE xE2

↓ ↓ ↓
30 · 5 · 1 + . . .)

In the first part of the calculation, the facts that the exams iD and iE are
planned without a period inbetween (a = 1) and that there is only a gap of
two periods between the exams iE and iF (a = 3) are penalized. The time
gap between the exams iD and iF is big enough so that it is not penalized.
The first exam conflict (iD, iE) accounts for 120 000 units of penalty costs,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

95

because the exams are scheduled in consecutive periods, both exams are from
the current semester and the badness value for this tuple is very high. The
conflict between the exams iE and iF results only in penalty costs of 100,
because the exam iF is for a course from the previous semester, there is a time
gap of two days between the exams and the badness value is low.

The second part of the calculation represents the penalties for splitting the
exam iD over two rooms. Each additional room is penalized with a penalty
value of 1000, hence the contribution to the objective function value is 1000 in
this case. The last part of the objective function adds penalty costs for each
exam depending on the scheduled period. For example, penalty costs of 150
are added for scheduling the exam iD in the first period. The other exams are
penalized accordingly.

4 Experimental results

The easiest way to derive a feasible solution for the model presented above
is using a standard solver, e. g. Gurobi Solver or IBM ILOG CPLEX Opti-
mization Studio. For the test case given below, Gurobi constructed feasible
solutions for different numbers of available periods. Due to the size of the test
case, which has been chosen to meet the size of realistic instances, and the
complexity of the problem these timetables were not very good (in terms of
the objective function values), even after two days of run-time. Therefore the
solutions found by the solver were further improved by a tabu-search based
heuristic.

As student numbers are relevant for the respective contribution to the
objective function, it shows that second order conflicts have a major impact
on the objective function value. Therefore, the heuristic focuses on resolving
these conflicts based on a feasible start solution which is constructed by Gurobi
and handed over in the beginning.

To improve the provided timetable there are four possible moves that can
be performed by the heuristic. The first move tries to move a single exam to
a new period, the second tries to exchange the periods of two exams and the
third move tries to exchange the periods of three exams. These moves are only
performed if they improve the timetable. Following the idea of tabu-search the
fourth move may also deteriorate the schedule, by exchanging all the exams
of two periods. By this the heuristic can escape from local optima.

As a test case, the original examination data from the Hamburg Univer-
sity of Technology (TUHH) of the winter term 2012/2013 is used. In that
term there were 243 exams to be scheduled, and a total of 23 317 enrollments
that yield 7132 tuples of exams with conflict potential. The durations of the
examinations and the capacities of the rooms are based on the original data
of the university. The values for the work-load of each exam were set accord-
ing to the ECTS points of the corresponding courses. At this university the
exams are scheduled in the lecture-free time at the end of each term. The
relevant time-span amounted to 39 days (= number of available periods P)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

96

in the corresponding term. It would be advantageous if this time-span could
be shortened, to provide students with more time for internships, laboratory
work or vacation. It turned out that the minimum number of days for which
a feasible solution could be generated is 24. Hence, the number of periods P
was varied from 24 to 39 to study the effect of the length of the examination
time-span. For all cases the number of consecutive periods, in which no student
should have to write more than one exam, was set to A = 3.

Values for the penalty parameters were defined as follows: The factors that
penalize conflicts according to the actual number of periods in between the
two corresponding exams are N1

a = 100 (for a = 1), 10 (for a = 2) and 1 (for
a = 3). The penalty that applies for conflicts of exams from the current term
is N2 = 2. For each additional room that an exam is split to the penalty is
N3 = 1000 and finally, to guide the spreading of exams the last penalty-vector
is N4

p = {60, 50, 40, 20, 5, 5, 5, 1, . . . 1, 10, 10, 20, 20, 30, 60, 80, 100, 140,
180, 220, 260} where all values are set to 1 for periods greater 7 and smaller
(P − 11).

Feasible solutions for the different time-spans were generated by the Gurobi
Solver (version 5.5) on a computer with two 2.27 GHz Intel Xeon quad core
processors and 24 GB RAM. The model for 39 periods consists of 1 140 612
rows, 237 496 columns and 3 888 846 non-zeros in the coefficient matrix. As the
resulting solutions after two days of optimization time still showed a huge inte-
grality gap, they were afterwards improved by the tabu-search based heuristic.

0,5

1

1,5

2

2,5

3

3,5

4

4,5

24 26 28 30 32 34 36 38 39

O
b

je
ct

iv
e

fu
n

ct
io

n
v
a
lu

e
×

1
0
−
6

No. of available periods P

Fig. 1 Improved solutions for different numbers of available periods P

Figure 1 shows the resulting objective function values for different numbers
of available periods P . The downward trend meets the expectation that the
incurred penalties decrease with an increase of the total number of available

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

97

Table 3 Number of second-order conflicts for selected improved timetables

Number of available periods P 24 periods 28 periods 39 periods

Total number of conflicts 762 640 379
- affecting 10 or less students 602 (79%) 512 (80%) 327 (86%)
- affecting only one student 215 (28%) 196 (31%) 126 (33%)

periods, as exams with conflict potential can more easily be scheduled with a
greater distance of time. In fact a closer look at the solutions shows that (e. g.
due to the chosen values of the penalty factors) the main contribution to the
objective function value results from second order conflicts: For the improved
24-periods-solution there are 762 second order exam conflicts (out of the 7132
exam pairs with conflict potential), but only seven exams (out of 243) had to
be split into several rooms (actually exactly two rooms per exam). For the 28-
periods-solution the improved timetable shows 640 second order conflicts and
11 exams were split into two rooms. For the 39-periods-solution the number
of second order conflicts reduces to 379, and also 11 exams were split into two
rooms.

For these three solutions, the number of conflicts can also be found in
Table 3, which shows that the occurring second order conflicts mostly affect
very few students. Moreover, a closer look at the solutions revealed that only
very few of these conflicts involve two exams from courses from the current
term.

The histogram in Figure 2 shows for the initial and improved 39-periods
solution the number of conflicts that result from exams being scheduled too
closely to each other. The horizontal axis gives the range in which the penalty
costs induced by the conflicts lie, while the vertical axis gives the number of
secondary conflicts per range. The total number of conflicts is reduced from ini-
tially 532 to 379. The figure shows that especially the number of conflicts with
large penalties, i. e. the number of conflicts that either affect many students
or concern difficult exams (or both), is significantly reduced by the heuristic
procedure.

The original examination timetable, as it was (manually) generated and
executed at the TUHH in the winter term 2012/2013 is not displayed in Fig-
ure 1. With respect to the model formulation in subsection 3.4, the original
timetable was infeasible: There were 55 first order conflicts, i. e. there were 55
exam pairs scheduled on the same day, although there were students enrolled
in both corresponding exams. Additionally, there were a few minor room size
mismatches, i. e. some exams were scheduled in too small rooms. In practice
this is not a problem, as there are usually a few students who do not attend
every exam they are enrolled for, such that a slightly smaller room suffices. Ig-
noring all infeasibilities, the executed solution results in an objective function
value of 736 882, but, due to the modifications that were necessary to resolve
the infeasibilities, it is not advisable to compare this timetable to those con-
structed by the approach suggested in this work.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

98

1

40

119

154
143

58

16

11

31

116

145

75

11
0 0

0

20

40

60

80

100

120

140

160

180

0-1
2-10

11-100

101-1000

1001-10 000

10
001-100 000

100 001-1 000 000

1
000 001-10 000 000

N
o
.

o
f

se
co

n
d

o
rd

er
co

n
fl
ic

ts

Penalty cost that contributes to objective function value

Initial

Improved

Fig. 2 Number of conflicts for initial and improved 39-periods-timetables

The results show that a compromise has to be found between the length of
the examination period and the number of second order conflicts, as there is
a trade-off between the two. Of course, which compromise is best may differ
and depends largely on the preferences of the decision makers at the respective
university. E. g. from Figure 1 it can be concluded, that in the specific case
under study the shortening of the examination time-span by one week would
lead to a still acceptable level of conflicts, which is only slightly higher than
the one for the 39-period solution; so this might be a good compromise for
this situation.

5 Summary and outlook

In this work, a linear mixed-integer model for the examination timetabling
problem is presented. This model includes not only the fundamental con-
straints that have to be fulfilled, but also possibilities to set certain exams in
specific periods or rooms. Furthermore, conflicts of exams are weighted based
on the work-load, the time-span between exams and the term in which the
respective course is taught. Based on students’ enrollments and the resulting
conflicts the model is aimed at finding the feasible solution which minimizes
these conflicts, avoids the splitting of exams over rooms and the assignment
of exams to inconvenient periods.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

99

Several feasible timetables that were constructed by the Gurobi solver and
improved by a tabu-search based heuristic demonstrate that the approach
presented in this work can contribute substantially to the overall contentment
of students and university teachers, as it is able to reduce the number of
conflicts considerably compared to solutions which are constructed manually.
The generated timetables could be used in practice at the TUHH, if the exam
scheduling could be based on the students’ enrollments. However, due to a
different organizational approach this is currently not the case.

Concerning the constraints and targets of the model, there are still many
issues that might be included in the future, e. g. the introduction of room types
to satisfy special requirements of some exams (e. g. if computer workstations
or tables for drawing are needed) or the assignment of exact start times for
exams (not only the period) and different treatment of exams from compulsory
and elective courses. Additionally, further analyses on the penalty parameters
of the model or with respect to solution strategies might be carried out. An
exact solution procedure like column generation might be able to solve realistic
instances to optimality. These aspects are left for future research.

References

Arani T, Lotfi V (1989) A Three Phased Approach To Final Exam Scheduling.
In: IIE Transactions, vol 21 (1), Taylor & Francis, pp 86–96

Arani T, Karwan M, Lotfi V (1988) A Lagrangian relaxation approach to solve
the second phase of the exam scheduling problem. In: European Journal of
Operational Research, vol 34, Elsevier Science B.V., pp 372–383

Van den Broek J, Hurkens C, Woeginger G (2007) Timetabling Problems at
the TU Eindhoven. In: Burke EK, Rudová H (eds) PATAT 2006. LNCS, vol
3867, Springer, pp 210–227

Burke EK, Newall JP (2004) Solving examination timetabling problems
through adaption of heuristic orderings. In: Annals of Operational Research,
vol 129, Kluwer Academic Publishers, pp 107–134

Carter MW (1986) A Survey of Practical Applications of Examination
Timetabling Algorithms. In: OR Practice, vol 34, Elsevier Science B.V.,
pp 193–202

Carter MW, Laporte G (1996) Recent Developments in Practical Examination
Timetabling. In: Burke EK, Ross EK (eds) PATAT 1995. LNCS, vol 1153,
Springer, pp 1–21

Carter MW, Laporte G, Chinneck JW (1994) A General Examination Schedul-
ing System. In: Interfaces 24, pp 109–120

Carter MW, Laporte G, Lee SY (1996) Examination Timetabling: Algorithmic
Strategies and Applications. In: Journal of the Operations Research Society
47, pp 373–383

Di Gaspero L, Schaerf A (2001) Tabu Search Techniques for Examination
Timetabling. In: Burke EK, Erben W (eds) PATAT 2000. LNCS, vol 2079,
Springer, pp 104–117

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

100

Dimopoulou M, Miliotis P (2001) Implementation of a university course and
timetabling system. In: European Journal of Operational Research, vol 130,
Elsevier Science B.V., pp 202–213

Eley M (2007) Ant Algorithms for the Examination Timetabling Problem. In:
Burke EK, Rudová H (eds) PATAT 2006. LNCS, vol 3867, Springer, pp
364–382

Garey MR, Johnson DS (1979) Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, San Francisco

Jones D, Tamiz M (2010) Practical Goal Programming, 1st edn. Springer
Laporte G, Desroches S (1984) Examination Timetabling by Computer. In:

Computers and Operations Research, vol 11, No. 4, pp 351–360
Müller T (2013) Real-life examination timetabling. In: Proceedings of the 6th

Multidisciplinary International Scheduling Conference
Qu R, Burke EK, McCollum B, Merlot LTG, Lee S (2009) A survey of

search methodologies and automated system development for examination
timetabling. In: Journal of Scheduling, vol 12, Springer, Heidelberg, pp 55–
89

Schimmelpfeng K, Helber S (2007) Application of a real-world university-
course timetabling model solved by integer programming. In: OR Spectrum,
vol 29, Springer, pp 783–803

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

101

A Multi-Stage IP-Based Heuristic for Class
Timetabling and Trainer Rostering

Oliver Czibula · Hanyu Gu · Aaron
Russell · Yakov Zinder

Abstract We consider an academic timetabling and rostering problem involv-
ing periodic retraining of large numbers of employees at an Australian electricity
distributor. This problem is different from traditional high-school and university
timetabling problems studied in the literature in several aspects. We propose a
three-stage heuristic consisting of timetable generation, timetable improvement,
and trainer rostering. Large-scale integer linear programming (ILP) models for
both the timetabling and the rostering components are proposed, and several
unique operational constraints are discussed. We show that this solution approach
is more flexible regarding constraints and objectives, and is able to generate solu-
tions of superior quality to the existing software system in use at the organisation.

Keywords Timetabling · Rostering · Integer Programming · Heuristic

O. Czibula
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142281
Fax: +61-2-95142260
E-mail: oliver.czibula@student.uts.edu.au

H. Gu
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142281
Fax: +61-2-95142260
E-mail: hanyu.gu@uts.edu.au

A. Russell
48-50 Holker Street
Silverwater, NSW 2128
Tel.: +61-2-87451569
Fax: +61-2-96486859
E-mail: ajrussell@ausgrid.com.au

Y. Zinder
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142279
Fax: +61-2-95142260
E-mail: yakov.zinder@uts.edu.au

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

102

1 Introduction

Ausgrid, Australia’s largest electricity distributor, is responsible for building, re-
pairing, and maintaining all the electrical substations, voltage transformers, and
overhead and underground cables that supply electricity to homes, businesses, and
industries within their operational area of 22,275km2. The voltages on Ausgrid’s
electricity network range from 230V to 132kV, and there is an extreme risk of
electrocution if works are not performed carefully and with strict safeguards in
place. In addition to electrocution, other hazards Ausgrid workers face include
falling from heights, having objects dropped on them from high above, working in
confined spaces, and working in the presence of hazardous materials such as toxic
gas, asbestos, or other harmful substances. Having such a hazardous working envi-
ronment and supplying such a vital utility to the population, it is among Ausgrid’s
highest priorities to deliver safety and technical training promptly and efficiently
to all people, including Ausgrid employees, contractors, and third parties, working
on or near the electricity network, as required by Australian industry law.

Most training delivered by Ausgrid has a limited validity period, after which it
is considered lapsed and no longer valid. Most courses have a validity period of 12
months from the date of successful completion. Others can last 3 or 5 years, and
a few have indefinite validity periods, and validity periods are subject to change
as the industry legislation related to training is occasionally revised. If a worker
does not successfully complete the required training again before it expires, they
will not be permitted to work on or near the electricity network until they do
successfully complete the training.

Ausgrid delivers many different training courses, and each course is composed of
one or more modules. All students enrolled in a course must complete all modules
together. Each module has a duration, and a maximum number of students that
it can have (some modules are better suited to be taught in large groups, whereas
others require more individual attention from the trainer, hence they should be run
in smaller groups). The modules of a course can be run in any order, however they
must be run back-to-back (Ausgrid does not permit gaps between the modules of
a course). The only exceptions are lunch time, which is fixed at 12:00 to 12:30,
and after-hours for courses that go for longer than a day. Courses may not start
at arbitrary times. If a course has a total duration of half a day or less, it may
start first thing in the morning, or right after lunch. Otherwise, if a course goes for
longer than half a day, it may only start first thing in the morning. Each course
can be run an arbitrary number of times, sometimes several times a day, and each
individual run is known as a course instance.

Ausgrid’s operational area can be divided into a number of disjoint and congruent
geographical regions, where each region contains one or more training facilities,
which we refer to as locations. Each location contains one or more rooms, which
come in various sizes and may contain certain equipment necessary for certain
modules. Some rooms have a built-in divider wall, which allows the room to be
split into two, separate, smaller rooms. The modules of courses are run in rooms.
Each room has a list of compatible modules, and a maximum number of students it
can accommodate. Since both modules and rooms have a limitation on the number

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

103

of students, a module-room pair has a maximum number of students given by the
minimum of these two values. While different modules of a course can be assigned
to different rooms, it is important that all the modules of a course are assigned to
a single location.

Modules are taught by trainers, each of whom has a location to which they are
assigned by default. Trainers may, however, travel to other locations with their
company vehicle when required. All trainers work a standard work day from 07:30
to 16:00 with a half-hour lunch break from 12:00 to 12:30. In addition to their
training requirements, trainers are also required to perform administrative tasks
such as general paperwork and course development, therefore each trainer has a
target training workload utilisation depending on which type of trainer they are.
Trainers may be unavailable due to planned annual leave, or planned or unplanned
sick leave.

Certain groups of modules may require shared, mobile resources. For example,
there may be a number of different fire fighting modules, which belong to different
courses and which all require a large piece of fire fighting equipment of which Aus-
grid may only own a limited number. These pieces of fire fighting equipment can
be relocated from place to place, however pack-up, transportation, and unpacking
time must be considered. The total number of these fire fighting modules that can
run at any given time in any given place is limited by the quantity of the required
equipment present.

Because training is delivered not only to Ausgrid employees, but also contrac-
tors and third parties over whom Ausgrid has little influence, Ausgrid does not
currently schedule individual participants into classes in advance, as is the case
in most high school and university timetabling. Instead, Ausgrid schedules classes
to run in times and places where people are expected to need training, and those
people book themselves, or are booked by their supervisors, into a suitable class
around their existing duties. Since the courses have a known validity period, Aus-
grid is able to cross-reference the training records with the current staff details
to get a fairly accurate breakdown of how many people will require certain types
of training in particular locations at particular times. We call this the demand,
which is characterised by the number of participants expected for a course in a
given region and window of time. Ausgrid must schedule at least enough courses
of each type in each region across the planning horizon to cater for the expected
demand.

The robustness of the training plan is of paramount importance to Ausgrid. Since
people are expected to book themselves into classes when needed, a good timetable
should exhibit certain characteristics that maximise the likelihood that people will
be able to find a class at a suitable time and place. For example, it is desirable for
courses to be distributed uniformly throughout the planning horizon. Moreover, a
timetable should exhibit robustness by minimising the impact of unforeseen events
that may affect the running of courses. One undesirable element in a timetable, and
source of uncertainty, is a room swap which happens when consecutive modules
of the same course instance are assigned to different rooms. We consider it highly

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

104

desirable if all the modules of a course can be run in a single room allowing the
students and trainer to remain in one place, uninterrupted, for the whole duration
of the course. Conversely, requiring the students and trainer to pack up and migrate
to a nearby room is not only disruptive to the flow of the course, but it also detracts
from the robustness of the timetable as the room may be unexpectedly unavailable,
jeopardising the whole course if a substitute room cannot be found.

When rostering trainers it is desirable for trainers not to have to travel excessively,
and it is desirable not to have to change trainers often throughout a course. Both of
these factors play a role in the robustness of the overall solution. Ideally, a whole
course instance should be taught by a single trainer where possible. By having
more trainers allocated to a course than necessary, the robustness of the timetable
is compromised as each new trainer allocated to a course has the possibility of
being sick or otherwise unavailable, jeopardising the entire course instance if no
substitute can be found. As with swapping rooms, trainer swaps take time and
can delay the progress of a course if one trainer is late. Similarly, having trainers
travel longer distances more often not only incurs the cost of travel (travel cost is
not directly considered in this model), but also increases the likelihood that the
trainer will fail to arrive at their class on time due to traffic, roadwork, accident,
etc., detracting from the overall robustness of the timetable.

Rooms in certain locations can be rented out when not in use. If these rooms are
not required by Ausgrid for an extended period of time, they can be advertised
to be leased by third parties generating some revenue for Ausgrid. Currently,
due to poor timetable optimisation, not many rooms are available for third-party
rental, however if the quantity of revenue generated can be shown to be significant,
Ausgrid may expand their room rental program.

Currently Ausgrid uses a software heuristic to generate their training plans on
a month-by-month basis. This software is able to rapidly generate a timetable,
however does not contain any optimisation functionality. Due to rising electricity
prices and resulting government pressure, Ausgrid must minimise their operational
costs where possible. Due to changing industry regulations related to safety and
technical training, as well as long-term fluctuations of demand, Ausgrid needs a
tool to manage and optimise their training plan which is capable of handling these
changes. The current software tool is not sufficiently flexible to handle many of
the changes that have happened in the recent past.

In this paper we propose a three-stage heuristic procedure consisting of an initial
timetable generation stage, an iterative timetable improvement stage, and finally
a trainer rostering stage. Integer linear programming (ILP) models are developed
for each stage, which can deal with all the practical requirements flexibly. Different
algorithms are designed to achieve the balance of solution quality and computing
time.

The remainder of the paper is organised as follows: Section 2 gives an outline of
the current state of research in the area of academic timetabling. Section 3 de-
scribes the three-stage heuristic in detail. Section 4 describes the class timetabling

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

105

ILP model, and section 5 describes the trainer rostering ILP model. Section 6 dis-
cusses some important details about the implementation of the approach. Section 7
describes our computational experimentation and results. Finally, our conclusions
are given in section 8.

2 Literature Review

The literature review in this section gives a brief overview of the types of problems
that have been solved in the field of academic timetabling. Ausgrid’s timetabling
problem is similar in certain ways to these problems and we can get some idea of
what approaches are likely to work well and what approaches may not.

Problems in the area of academic timetabling have attracted a great deal of re-
search attention over the last few decades[18]. In many cases the problem has been
shown to be NP-Hard[6], often by relating it to the graph colouring problem[11].
For the classroom assignment problem (CAP) — the problem problem of assigning
n classes to a set of m classrooms, in such a way that each class is run exactly
once and each room can be used at most once per period — Carter proposes in
[6] that there are three possible objectives: Feasibility, Satisfiability, and Optimi-
sation. Feasibility asks whether there is any feasible solution given the constraints
mentioned before, Satisfiability asks whether there is a feasible solution that puts
each class into a satisfactory room, and Optimisation is the objective of minimis-
ing some linear cost function. Carter showed that the interval CAP satisfiability
for even as little as two time periods, as well as the feasibility of the non-interval
CAP, are NP-Complete.

Researchers involved with large-scale timetabling generally do not attempt to find
optimal solutions to problems as they cannot be found in practically acceptable
time due to the computational complexity. Instead, much of the recent research
has been focused on approximation algorithms including metaheuristics[13][5],
and decomposition methods such as Lagrangian relaxation[8] and column gen-
eration[19][17]. Many different timetabling problems can be expressed as graph
colouring problems[14], and there has been some research activity in using graph
colouring heuristics to solve timetabling problems[16][15][21][4].

A recent trend has been to develop so-called “hybrid heuristics” that combine
certain features of one heuristic with another, with the aim of improving perfor-
mance by overcoming a weakness in one or both of the heuristics. In [9], attempts
were made to improve the convergence rate of SA by implementing the memory
characteristics of tabu search (TS) to solve a university course timetabling prob-
lem. The annealing rate in SA, given by the cooling function, can have dramatic
influence over the performance and success of an SA implementation[22]. It is not
uncommon for people to implement complex reheating rules to help the heuris-
tic avoid being trapped in local minima prematurely. A novel hybridisation was
presented in [3], where the authors propose a Genetic Program (GP) to optimise
the annealing schedule in simulated annealing. For several given problems, they
presented the dedicated cooling schedules found by GP that converge fastest, and
they also provided the cooling schedule that converges fastest across all problems.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

106

Despite the difficulty in modelling and solving large-scale IP-based models, sev-
eral researches have had some success. Perhaps the earliest examples are [12] from
1969 and [1] from 1973, where the authors increased tractability by grouping
students together and using layouts for each group, and by solving assignment
problems between sets of courses and time periods, respectively. A more recent
example of IP-based university course and examination timetabling is presented
in [7], where the authors augmented an IP with a heuristic improvement stage,
and high school timetabling is presented in [2], where the authors were able to
solve the IP directly with available computers. A full, integer linear programming
formulation was presented in [20], which had, amongst others, 99 teachers, 156
courses, and 181 teaching groups. The model had 35,611 rows, 91,767 binary or
integer variables, and 662,824 non-zeroes in the co-efficient matrix. An optimal
solution was obtained in just 10 seconds using IBM ILOG CPLEX 9.1.2, or about
2 minutes with Coin-OR Branch and Cut (CoinCbc).

The high school and university timetabling problems discussed in the literature
differ from Ausgrid’s timetabling problem in many ways. Generally, university and
high school timetabling is solved for just one or two weeks, that repeats throughout
the semester or year. Ausgrid, on the other hand, cannot solve for short periods
that will repeat; demand can fluctuate significantly from week to week or month
to month. This, alone, makes the Ausgrid problem size significantly larger and
existing solution approaches may not be suitable. In university and high school
scheduling, a fixed set of courses must be allocated to a fixed set of rooms, whereas
at Ausgrid, we do not know the number of times each course will run a priori. If
we choose to run all the instances of a course in large rooms, we may only have
to allocate very few instances. On the other hand, allocating the same course in
the same time window in smaller rooms may require many more instances. This
feature is unusual in the research area of academic timetabling. Courses in high
schools and universities can generally start at arbitrary time periods, whereas
courses at Ausgrid can start at permissible and, in certain cases, irregular periods.
While it may appear that restricting the times at which courses can start would
make the problem easier to solve, our analysis of scheduling problems with these
constraints suggests this may not be the case and that restricting the set of start-
ing times to irregular periods may actually be one of the sources of difficulty for
our problem. Ausgrid timetabling also contains “no-wait” constraints, as modules
within a course must run back-to-back; these constraints dramatically increase
the problem complexity and are rarely, if ever, seen in high school and university
timetabling. While splittable rooms do exist in many universities and high schools,
we did not find many papers that mentioned them. Ausgrid has several splittable
rooms and, especially in the high volume periods, efficient use of them is impor-
tant. Another difference arises with the objectives of university and high school
timetabling versus Ausgrid timetabling. The large majority of university and high
school timetabling models try to maximise student and teacher satisfaction, which
is given by how closely the solution meets their preferences. At Ausgrid we aim
to provide training to meet the local demands, with minimal complicating factors
in the courses (unnecessary swapping of rooms and/or trainers, etc.), and in ways
economically beneficial for Ausgrid (for example, maximising the potential to rent
out classrooms and auditoriums to third parties to bring extra revenue).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

107

Start Stage 1 Stage 2 Stage 3 Result

Instance
Data

Initial
Timetable

Improved
Timetable

Timetable
& Roster

Infeasibility InformationCourse List Permutation

Fig. 1 A high-level view of the three-stage approach.

We believe our research problem is novel, interesting, and relevant to many related
industrial applications as well. There are many electricity distributors worldwide
as well as other industries that engage in periodic safety and/or technical training.
Efficient solutions to timetabling problems like Ausgrid’s can be of benefit to many
organisations with similarly structured, periodic training requirements.

3 Optimisation Procedure

We have broken the main problem up into two sub-problems: a timetabling prob-
lem and a rostering problem. The timetabling problem is concerned only with the
movement of shared, mobile resources, how many times each course should be run
given the demand, and at what time and place their modules should be run. In
the timetabling problem, trainers are considered in a generalised and aggregated
way for capacity purposes only. The rostering problem is concerned with allocat-
ing individual trainers to individual modules, given a timetable of classes. The
solution to both these sub-problems will yield a complete, functional timetable
and roster. We have chosen to divide the main problem into these two components
to improve the tractability of the problem, as well as the understandability and
maintainability of the model.

To have a flexible tool that is able to solve these two complex sub-problems, we
have developed two Integer Programming (IP) models that represent each of the
two sub-problems. This approach, which is based on rigorous mathematical meth-
ods, guarantees, at least in principle, an optimal solution where one exists. IP is
flexible in the sense that one can simply add, remove, or substitute constraints
to modify the model in various ways; in contrast, problem specific computer al-
gorithms may need more convoluted modifications even for minor changes to the
problem. Even after dividing the problem, given Ausgrid’s data, the IP models for
the two sub-problems still have far too many variables and constraints to solve
them in practically acceptable time.

In order to produce a complete, usable timetable and roster in acceptable time,
we propose a three stage heuristic approach (see figure 1). The first stage produces
an initial feasible timetable, the second stage attempts to improve the timetable as
much as possible, and the third stage allocates individual trainers to the timetable.

3.1 First stage: Initial timetable construction

In the first stage, all course instances are placed in an ordered list and then ar-
ranged on the timetable one at a time. As more courses are placed on the timetable,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

108

rooms become unavailable at certain times, resources and trainers are consumed
in particular locations at particular times, and less decisions need to be made for
subsequent course instances, therefore the solving subsequent iterations becomes,
in general, much easier. The course instances can be considered in arbitrary order,
however certain rules may increase the likelihood of successfully finding a feasible
timetable at the end of the first stage. For example, some course instances are
considered easier to schedule if they have fewer modules and fewer resource re-
quirements. Considering the course instances in a different order will likely yield
a different timetable with a different cost, therefore we can generate several ini-
tial timetables by applying a different set of rules when constructing the course
instance list. Furthermore, if short courses are dotted around the timetable before
long courses are considered, then it is much more likely that there will not be a
sufficiently long gap to fit a long course instance. Conversely, if the longest courses
are considered first, then the shorter ones will have a greater chance of fitting into
the remaining gaps.

The individual course instances are assigned one at a time by solving the time-
tabling IP model. Only those variables and constraints that are related to the
course instance being assigned are included in the model. Any rooms unavailable
as a result of previously assigned course instances are also omitted from the model
during their periods of unavailability. The resulting IP model is much smaller
and easier to solve. To the best of our knowledge, even the single course instance
problem is quite challenging to solve and we know of no polynomial time algorithm
that will produce an optimal solution. We are not currently considered using a
heuristic approach for the single instance problem as allocating one instance at a
time is already heuristic at best.

To further reduce the size of the IP model, we consider a narrower planning
horizon for the course instance we wish to allocate. Knowing course instances
should be spread out uniformly in the ideal case, we can estimate when the course
instances should run. Since, however, we cannot guarantee that the course can be
scheduled at the times we expect, the set of considered time periods should have a
buffer at each end to allow some freedom in scheduling (see figure 2). The shorter
the buffer, the more control we have over the precise timing of the course, and
the less variables will be in the model, but the probability the solver will fail to
find a feasible solution will be increased. On the other hand, having longer buffers
requires more variables to be included in the model, allows greater freedom for the
solver in scheduling the courses, meaning it will be easier for the solver to find a
feasible placement given existing allocations. For a course instance c with duration
lc, we considered initial buffers of length lc meaning that, if we expect the course
to start at period τ , then the planning horizon initially contains periods τ − lc up
to τ + 2lc. If no feasible solution can be found, we gradually expanded the buffers
in both directions until a feasible solution is produced.

When scheduling course instances one-by-one, we need not consider all locations
at once either. It is possible to look at the demand information for a course and
the state of the current partial solution to decide in which region the next course
instance will be placed, and include only those locations which belong to that
region in the IP model.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

109

· · · · · ·

Total planning horizon
of main problem

Buffer Expected instance position Buffer

Considered horizon

Fig. 2 A buffer added to either end of the reduced timeline.

The final IP model for each iteration of the first stage becomes substantially
smaller and can be solved in just a few seconds. It contains only one course instance
with a small number of modules (typically 1 to 5), only a short planning horizon
(typically 24 to 144 time periods), only one region with a small number of locations
and rooms (typically 1 to 4 locations with 1 to 15 rooms in total).

3.2 Second stage: Timetable improvement

While the first stage can produce an initial timetable relatively quickly, it is
unlikely to find the optimal solution to the whole timetabling problem. Poor de-
cisions made at the early stages of the process can have a compounding effect on
the remaining allocations, leading to poor quality timetables.

The second stage attempts to improve the timetable, using an iterative LNS
heuristic. At the beginning of each iteration, a computer algorithm specifically
tailored to the objective being considered scans the current solution and attempts
to identify the components which contribute most to the objective function. For
example, suppose one course instance contributes a lot to the objective function
because it contains several room swaps. In order for this iteration of the improve-
ment stage to remedy this, additional degrees of freedom must be created. A new
timetabling model is constructed for this iteration for the location of the course
instance, and for the day in which the course instance is currently allocated, op-
tionally with a buffer at either end. All course instances for this location in this
reduced planning horizon are removed from the timetable and re-solved simulta-
neously. A list of previous states must be stored in memory to prevent cycling,
much like a Tabu list.

A feasible solution is guaranteed at each iteration, which must be no worse than
that of the previous iteration. At iteration i− 1, most courses were considered as
constants in the model, while some were variables that were optimised over the
objective function to produce the solution S(i−1). In the subsequent iteration i, a
different set of courses are considered constants and a different set are variables,
however the model is optimised over the same objective function. Since the solution
S(i−1) is feasible (and optimal given the model at iteration i − 1), S(i−1) must
also be feasible at iteration i and will necessarily have the same objective value.
However, it is possible that S(i) 6= S(i−1) and then it is possible that the objective

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

110

value at iteration i will be better than it was at i − 1, however it can never be
worse.

The features of timetables that stage 2 is currently set up to attempt improvement
over are:

– Course instances with excessive room swaps;
– Course instances using rooms larger than necessary when smaller rooms exist;
– Periods (or days) with unbalanced (too many or too few) allocations; and
– Courses with too many instances.

The IP model is again used at each iteration when attempting to improve the
timetable. At each iteration, after the scanning algorithm identifies a component of
the timetable that may be improved, a new IP model is set up in which the majority
of the timetable at the previous iteration are not included as decision variables,
only their student capacities, and room and trainer consumption is included as
constants in the model. The only decision variables included in the IP model are
the ones that pertain to the course instances being improved. Given the course
instances that are left as decision variables, the “large neighbourhood” in the large
neighbourhood search is the set of all feasible solutions to the IP model.

3.3 Third stage: Rostering

Once the first two stages have completed, the timetable is assumed to be finalised,
only requiring individual trainers to be allocated to specific modules. The third
and final stage constructs an IP model taking into consideration all the rostering
requirements. Given a typical monthly timetable from Ausgrid, the rostering IP
model can be solved directly by commercial IP solvers. The first two stages utilise
the timetabling IP model to generate solutions, whereas the third stage uses the
rostering IP model.

The objective of the rostering IP model is to minimise the flow cost along the
networks. The flow cost of each arc on the network is given by a linear combination
of the travel cost and trainer swap cost, either or both of which may be zero. While
worker pay is often a high cost component in many other problems, we do not
consider it in our rostering subproblem as Ausgrid trainers are paid a fixed salary
regardless of what courses the do or do not teach, although the case of considering
workforce pay may be a consideration in future research.

It is possible, though unlikely, that the timetable produced in the first two stages
has no feasible solution with respect to trainers in the third stage. If no feasible
solution can be found to the rostering IP model in the third stage, an algorithm
analyses the distribution of courses identifies which trainer capacity constraints are
violated. For instance, if there are n trainers capable of teaching a particular set of
modules, however there are m > n of those modules running at a particular time
period, then each of the course instances of those modules should be considered
for rescheduling. The algorithm briefly returns to stage two and solves the model
with the additional constraint that, at any given time, the total number of times
modules of this type can be run must not exceed n.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

111

4 Timetabling Model

4.1 Time Discretisation

In the timetabling model time is discretised into periods of half-hour blocks of
time. Periods that are not available for training are not considered, which include
the after-hours interval, lunch time and public holidays. Periods are grouped into
coarser intervals called days, each of which contain exactly 16 periods starting at
07:30 and ending at 16:00 with a break from 12:00 to 12:30. Many days are grouped
together into time windows, which represent longer durations such as a week or a
month. For practical purposes, we consider a window to start on the first working
day of the calendar month, end on the last working day of the calendar month, and
only include working days. This usually ends up being about 20 working days in a
calendar month. Finally, periods are grouped together into rental windows. Rental
windows can be as short as half a day, but can be as long as one or more days. A
rental window represents a set of periods in which a room can be rented out to a
third party. Once the room has been rented out, the room becomes unavailable for
Ausgrid. Renting out larger rooms brings in more revenue, as does renting them
out for longer periods of time.

4.2 Input Data Set-up

Once the raw problem instance data is imported, some pre-processing must first
be done. For the purpose of the timetabling model, we fix the number of instances
of each course to a practical estimation. In practice, one module can exist in many
different courses, for example, a basic first aid module may be a component in
several courses. For our model, however, each module must belong to exactly one
course instance - these are known as module instances.

Each location may have several rooms, however some rooms may be regarded as
identical - they have the same compatible list of modules, the same physical size,
the same number of seats, etc. In this case, we do not need to consider individual
rooms; instead we can consider room types, where each room type represents a set
of rooms in a given location which are functionally identical. Rooms in different
locations are not grouped together, and rooms that are in the same location but
are part of a compound room set (those rooms with removable dividers), cannot be
aggregated into room types; each piece of a compound room forms its own rooms
type with only one room.

Compound rooms can be modeled using a set of mutually exclusive room pairs.
Suppose room C can be split into two smaller rooms A and B. Rooms A and B
can be used simultaneously, however the use of A is mutually exclusive with that
of C, as is the the use of B with that of C.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

112

4.3 List of Symbols

Sets of primary objects:
P The indexed set of periods.
D The indexed set of days.
Ω The indexed set of time windows.
Λ The indexed set of rental windows.
L The set of locations.
Ξ The set of regions.

M̂ The indexed set of module instances.
C The set of courses.
R The set of room types.
T The set of resources types.

S(i) The ith element of an indexed set S.

Sets of derived objects:
Ic The indexed set of instances for course c ∈ C.

Bc,i The indexed set of modules instances for course c ∈ C instance
i ∈ Ic.

Pd The indexed set of periods in day d ∈ D.
Pω The indexed set of periods in time window ω ∈ Ω.
Pλ The indexed set of periods in rental window λ ∈ Λ.

P̂c The set of periods in which course c ∈ C may start.
Lξ The set of locations in region ξ ∈ Ξ.

R̃ The set of mutually exclusive room pairs.

R̃l The set of room types in location l ∈ L.

Rm The set of room types suitable for module m ∈ M̂ .

Primary decision variables:

Xm,r,p 1 if module m ∈ M̂ runs in a room of type r ∈ R starting at period
p ∈ P , or 0 otherwise.

Yc,i,p 1 if course c ∈ C instance i ∈ Ic starts at period p ∈ P , or 0
otherwise.

Ŷc,i,l 1 if course c ∈ C instance i ∈ Ic runs in location l ∈ L, or 0
otherwise.

ψt,l,k,p The quantity of resource t ∈ T moving from location l ∈ L to
location k ∈ L (l and k may be the same), starting at period p ∈ P .

ψ̂t,l,k,d The quantity of resource t ∈ T moving from location l ∈ L to
location k ∈ L (l and k may be the same), overnight at the end of
day d ∈ D.

φl,d The number of trainers assigned to location l ∈ L on day d ∈ D.

Auxiliary variables:

X̂m,r,p 1 if module m ∈ M̂ runs in a room of type r ∈ R during period
p ∈ P , or 0 otherwise.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

113

Ȳc,i 1 if course c ∈ C instance i ∈ Ic runs, or 0 otherwise.

Ỹc,i,ω,ξ The number of students expected to sit in course c ∈ C instance
i ∈ Ic during time window ω ∈ Ω in region ξ ∈ Ξ.

uc,ω,ξ The number of students not accommodated for course c ∈ C during
window ω ∈ Ω in region ξ ∈ Ξ.

tm The new room flag for module m ∈ M̂ . If the room type for this
module is that same type of room as for the previous module, if
applicable, then tm = 0, otherwise tm = 1.

ρr,λ The number of rooms of type r ∈ R occupied during rental window
λ ∈ Λ.

Zi The ith goal term in the objective function.

Constants:
σt The quantity available of resource t ∈ T .

δt,l,k The time required (in periods) for a unit of resource t ∈ T to move
from location l ∈ L to location k ∈ L.

θl,d The number of trainers normally allocated to location l ∈ L on day
d ∈ D.

θmax The maximum number of additional trainers permitted to any lo-
cation on any given day.

θmin The maximum number of subtracted trainers permitted from any
location on any given day.

Qr,p The quantity of room type r ∈ R available at period p ∈ P , or 0
otherwise.

dr,λ The expected revenue from renting out a unit of room type r ∈ R
during rental window λ ∈ Λ.

lc The length (in periods) of course c ∈ C.
bc The minimum class size (in students) required to justify running an

instance of course c ∈ C.
πc The length (in periods) of the rolling time window used to compute

the minimum and maximum number of times a course c ∈ C should
be run.

π+
c The maximum number of times a course c ∈ C should be run in

any given time window of length πc.
π−c The minimum number of times a course c ∈ C should be run in any

given time window of length πc.
sc,ω,ξ The demand (in students) for course c ∈ C during window ω ∈ Ω

in region ξ ∈ Ξ.
αi The coefficient of the ith goal in the objective function.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

114

4.4 Core Timetabling Constraints

The following constraints express the core requirements of the timetabling prob-
lem, and are likely to appear in many similar course timetabling problems:

X̂m,r,p =

dm−1∑
q=0

Xm,r,(p−q) ∀m ∈ M̂, r ∈ R̂m, p ∈ P (1)

∑
m∈M̂

X̂m,r,p ≤ Qr,p ∀r ∈ R, p ∈ P (2)

∑
m∈M̂

X̂m,r̃1,p +
∑
m∈M̂

X̂m,r̃2,p ≤ 1 ∀{r̃1, r̃2} ∈ R̃, p ∈ P (3)

∑
p∈P̂c

Yc,i,p ≤ 1 ∀c ∈ C, i ∈ Ic (4)

∑
r∈R

∑
p∈P

Xm,r,p = Ȳc,i ∀c ∈ C, i ∈ Ic,m ∈ Bc,i (5)

Ȳc,i =
∑
p∈P̂c

Yc,i,p ∀c ∈ C, i ∈ Ic (6)

The auxiliary variables X̂m,r,p are set up from Xm,r,p according to (1). The
constraints (2) express the requirement that rooms should not be double-booked,
however since identical rooms within a single location are aggregated together,
the right-hand-side is given by the quantities of the aggregated rooms. The con-
straints (3) also express the requirement that splittable rooms should not be
double-booked, however since splittable rooms are never aggregated together, the
right-hand-side remains 1. The constraints (4) ensures each course instance can
start at most once, and (5) ensure that each module of a course is run exactly
once if the course is run, or not at all. The expression (6) sets up the Ȳc,i variable,
which is a sum over all periods of Yc,i,p.

4.5 Characteristic Constraints

The remaining constraints express the operational requirements that are rarely
found in traditional timetabling problems.

4.5.1 Module Positioning Constraints

∑
m∈Bc,i

∑
r∈Rm

X̂m,r,p =

lc−1∑
q=0

Yc,i,(p−q) ∀c ∈ C, i ∈ Ic, p ∈ P (7)

∑
m∈Bc,i

∑
r∈R̃l

∑
p∈P

Xm,r,p = |Bc,i| × Ŷc,i,l ∀c ∈ C, i ∈ Ic, l ∈ L (8)

The constraints (7) expresses the requirement that the modules for a course run
back-to-back, and (8) expresses the requirement that all the modules for a course
must be run in exactly one location.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

115

4.5.2 Capacity Constraints

The following constraints determine the capacity of each course instance in each
time window and region based on the values of the X and Y variables:

Ỹc,i,ω,ξ ≤
∑

r∈Rm

⋂
Rl

∑
p∈P̄w

(min{um, vr} ×Xm,r,p) ∀c ∈ C, i ∈ Ic, ω ∈ Ω, ξ ∈ Ξ

(9)

bc × Ȳc,i ≤
∑
ξinΞ

∑
ω∈Ω

Ỹc,i,ω,ξ ∀c ∈ C, i ∈ Ic (10)

The constraints (9) set up the Ỹc,i,ω,ξ variables, and (10) ensure the capacity of
a course is at least as great as the minimum allowable class size.

4.6 Trainer Movement Constraints

Trainers are considered in a generalised, aggregated way for capacity purposes
only. Nevertheless, we permit the quantity of these generalised trainers to change
per location per day to give a coarse representation of trainer movements. Each
trainer has a location where they are normally based, however they may be required
to travel to other locations. The total quantity of trainers at location l ∈ L on day
d ∈ D, by default, is given by the constant θl,d (we have specified a subscript for
days so we can subtract trainers who are unavailable, such as trainers on annual
leave, etc.).

φl,d ≤ θl,d + θmax ∀l ∈ L, d ∈ D (11)

φl,d ≥ θl,d − θmin ∀l ∈ L, d ∈ D (12)∑
l∈L

φl,d =
∑
l∈L

θl,d ∀d ∈ D (13)

∑
m∈M̂

∑
r∈R̃l

X̂m,r,p ≤ φl,d ∀l ∈ L, d ∈ D, p ∈ Pd (14)

The constraints (11) and (12) establish the minimum and maximum number of
trainers permitted to be at a given location on a given day, and the constraints
(13) ensures that the total number of trainers allocated to each location is equal
to the total number of trainers expected to be working company-wide on that day.
The constraints (14) express the requirement that, at any given time, the total
number of modules run in a location concurrently must not exceed the number of
generalised trainers we have chosen to allocate there.

4.7 Resource Movement Constraints

A network formulation can be leveraged to represent the flow of resources between
locations across time in a convenient way. Resources, in this context, refer to mobile
pieces of equipment that are required for teaching particular modules. One such

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

116

example mentioned in section 1 is that of a set of different fire fighting modules
which require some fire fighting equipment in order to run; in this case we can use
a flow network to represent the movement of the fire fighting equipment between
the training facilities across time. For each type of resource and for each day, we
construct a flow network with the nodes arranged in a rectangular lattice (See
figure 3). The horizontal axis represents time, and the vertical axis represents
the various locations. Each node represents the end points of a time period at a
given location (note that the end of one time period is equivalent to the beginning
of the next, consecutive time period). Adjacent nodes are connected by directed
arcs horizontally and pointing forward in time, with the flow along those arcs
representing the quantity of the resource available at a particular location at a
particular time. Nodes are also connected between different locations by directed
arcs in such a way that the time interval from the source node to the destination
node is given by the time required to move the resource from the source to the
destination locations.

We permit any resource to move from any location to any other other location
overnight at no cost, therefore the initial condition for each resource network on
each day is simply that the sum across all location must equal the quantity of the
particular resource in Ausgrid’s possession.

Period p− 1 Period p Period p+ 1

ψt,2,2,p−1 ψt,2,2,p ψt,2,2,p+1

ψt,1,1,p−1 ψt,1,1,p ψt,1,1,p+1

Location 2: · · · · · ·

Location 1: · · · · · ·

ψ t
,2
,1
,p
−1

ψ t
,2
,1
,p

ψ
t,1,2,p−

1

ψ
t,1,2,p

Fig. 3 A sample flow network for some resource t about period p with 2 locations.

If l = k, the variables ψt,l,k,p represents the quantity of resource t ∈ T available
at location l ∈ L during time period p ∈ P . If l 6= k, the variable represents the
quantity of the resource moving from location l ∈ L to location k ∈ L starting its
journey at p ∈ P . Since the transport time of resource t ∈ T from l ∈ L to k ∈ K
is given by δt,l,k, the arc represented by ψt,l,k,p will be connected to the node that
represents the start of period p+ δt,l,k.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

117

The flow balance equations for the resource movement network are expressed as
follows:∑

l∈L

∑
k∈L

ψ
t,l,k,P

(1)
d

= σt ∀t ∈ T, d ∈ D (15)

∑
k∈L

ψt,k,l,(p−δt,k,l) =
∑
k∈L

ψt,l,k,p ∀t ∈ T, l ∈ L, d ∈ D, p ∈ (Pd \ P (1)
d) (16)

Now that we have constraints that govern the movement resources between loca-
tions across time, we ensure that the number of times we run modules is limited
by these quantities:∑

m∈M̂t

∑
r∈R̃l

X̂m,r,p ≤ ψt,l,l,p ∀l ∈ L, t ∈ T, p ∈ P (17)

4.8 Spreading Constraints

For each course, we have a defined minimum and maximum number of instances
that may be run in any arbitrary set of consecutive periods of a predetermined
length:

∑
i∈Ic

πc∑
q=0

Yc,i,p+q ≥ π−c ∀c ∈ C, p ∈ P̂c (18)

∑
i∈Ic

πc∑
q=0

Yc,i,p+q ≤ π+
c ∀c ∈ C, p ∈ P̂c (19)

The constraints (18) and (19) establish the minimum and maximum number of
instances, respectively, that must be run across all regions for each course. Selection
of the πc and the π−c and π+

c constants is made given the problem data.

4.9 Objective Function

Being a large-scale industrial problem, there are many potential objectives we
can consider. In this paper, we consider three objectives:

– Minimise the number of students not accommodated;
– Maximise the rental revenue;
– Minimise the number of room swaps in the timetable;

The objective function is the weighted linear combination of these three objective.
The weight for the first objective, which is to minimise the number of students for
whom there are no spots in any classes, has a much higher weight than the weights
for the remaining objectives, because it is extremely undesirable if this happens.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

118

The first objective, denoted by Z1, is to minimise the number of students not
accommodated:∑

i∈Ic

Ỹc,i,ω,ξ + uc,ω,ξ − oc,ω,ξ = sc,ω,ξ ∀c ∈ C,ω ∈ Ω, ξ ∈ Ξ (20)

uc,ω,ξ ≥ 0 ∀c ∈ C,ω ∈ Ω (21)

oc,ω,ξ ≥ 0 ∀c ∈ C,ω ∈ Ω (22)∑
c∈C

∑
ω∈Ω

∑
ξ∈Ξ

uc,ω,ξ = Z1 (23)

The second objective, denoted by Z2, is to maximise the rental revenue:

∑
m∈M̂

X̂m,r,p ≤ ρr,λ ∀r ∈ R, λ ∈ Λ, p ∈ P̂λ (24)

Z2 =
∑
r∈R

∑
λ∈Λ

[−dr,λ × (Q̂r,λ − ρr,λ)] (25)

where Q̂r,λ is the smallest value of Qr,p, ∀p ∈ P̂λ for each λ ∈ Λ.

The last objective, denoted by Z3, is to minimise the number of room swaps
across all courses:

Xm,r,p −
∑

n∈Bc,i,m 6=n

X̂n,r,(p−1) ≤ tm ∀c ∈ C, i ∈ Ic,m ∈ Bc,i, r ∈ Rm, p ∈ P

(26)

Z3 =
∑
m∈M̂

tm (27)

The objective function is a weighted linear sum of the the individual objectives:

minimise: Z = α1Z1 + α2Z2 + α3Z3 (28)

with weights α1 >> α2 and α1 >> α3.

5 Rostering Model

Given a solution to the class timetabling problem from section 4, the roster-
ing model describes the task of allocating specific trainers to modules to form a
complete, usable timetable and roster. A minimum cost network flow approach,
together with some side constraints, can be utilised to give a simple, convenient
representation of the rostering problem.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

119

Location 3

Location 2

Location 1

Day 1 Day 2 Day 3 Day 4

Course 3
Module 1

Course 2
Module 1

Course 1
Module 1

Crs 4
Mod 1

Crs 4
Mod 2

Crs 5
Mod 1

Crs 5
Mod 2

Crs 6
Mod 1

Crs 7
Mod 1

Crs 6
Mod 2

Fig. 4 A sample timetable, simplified for viewing in this format, showing 4 days, 3 locations,
and 7 courses each with 1 or 2 modules.

1:1

2:1

3:1

4:1 4:2

5:1 5:2

6:1 6:2

7:1

Time

Day 1 Day 2 Day 3 Day 4

Fig. 5 The flow network corresponding to the sample timetable shown in figure 4. (Home
nodes are hatched, and activity nodes are solid)

Given a timetable, a flow network is constructed for each trainer, which is referred
to as a trainer allocation network. There are two different types of nodes in the
trainer allocation network: home nodes and activity nodes. Home nodes can rep-
resent either the trainer’s own home, or their usual place of work. Activity nodes
represent specific modules that can be taught by the trainer. There are four differ-
ent types of arcs in the trainer allocation network: commencement arcs, transition
arcs, return arcs, and bypass arcs. Commencement arcs are those that originate
from the home nodes and end at the activity nodes; they are called commencement
arcs because they represent the first module the trainer will teach on a particular
day. Transition arcs are those that originate from activity nodes and end at activ-
ity nodes; they represent a trainer completing one module and starting another,
although trainers do not need to be allocated to modules back-to-back—they may
have a gap after teaching one module and before teaching the next. Return arcs
are those that originate from activity nodes and end at home nodes; they represent
the last module a trainer will teach on a particular day. Bypass arcs are those that
originate at home nodes and end at home nodes; they represent a trainer having
no allocations on a particular day.

As an example, Figure 4 shows a simplified view of a timetable with 7 courses,
with 1, 1, 1, 2, 2, 2, and 1 modules, respectively, and the corresponding flow
network is shown in Figure 5.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

120

Costs on the arcs of the network are determined by two factors. The first factor is
determined by the distance the trainer needs to travel for the allocation, including
travel to the first module taught in a day, travel from the last module taught in a
day, and also travel from module to module. The second factor is the trainer swap
cost. A trainer swap happens if the arc starts with an activity node which is not
the last module of a course instance, but ends with a home node or an activity
node from a different course instance.

We introduce the following symbols for the rostering model:

Set Description
D The indexed set of days.

M̂ The indexed set of module instances.
Md The set of modules that run within day d ∈ D

T The set of trainers.

Tm The set of trainers capable of teach module m ∈ M̂ .

pred(m) The set of predecessors of module m ∈ M̂ .

succ(m) The set of successors of module m ∈ M̂ .

Variable Description
ψ̄τ,m 1 if trainer τ teaches module m as their first module on that

day, or 0 otherwise.
ψτ,m,n 1 if trainer τ teaches module m followed by module n, or 0

otherwise.

ψ̃τ,m 1 if trainer τ teaches module m as their last module on that
day, or 0 otherwise.

ψ̂τ,d 1 if trainer τ doesn’t teach any modules on day d, or 0 otherwise.

The flow balance equations for the network are as follows:

ψ̂τ,d +
∑
m∈Md

ψ̄τ,m = 1 ∀τ ∈ T, d ∈ D (29)

ψ̄τ,m +
∑

n∈pred(m)

ψτ,n,m =
∑

n∈succ(m)

ψτ,m,n + ψ̃τ,m ∀τ ∈ T,m ∈ M̂ (30)

where (29) ensures that, at the start of each day, the trainer either teaches one or
more modules or does not teach any modules; and (30) conserves flow throughout
the day. Since the flow for each day is implicitly conserved by (29) and (30), we
do not require any additional equations to balance the flow from day to day.

It is important to note that any integral flow is always a feasible line of work for
a single trainer, i.e. the network is constructed in such a way the trainer will never
be required to be in two places at once, nor will the trainer be required to teach
a module they are not capable of teaching.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

121

The individual trainer networks on their own are not sufficient to guarantee a
feasible solution to the rostering problem as multiple trainers may be allocated
to the same module, or modules may be left with no trainer at all. We introduce
some side constraints that integrate the many trainer networks into a single IP
model.

ψ̄τ,m +
∑

n∈pred(m)

ψτ,n,m = Xm,τ ∀m ∈ M̂, τ ∈ T (31)

∑
τ∈Tm

Xm,τ = 1 ∀m ∈ M̂ (32)

where (31) sets up the auxiliary variable Xm,t, which is 1 if trainer t teaches
module m or 0 otherwise, and (32) ensures that every scheduled module is taught
be exactly one trainer.

Fairness is important when rostering at Ausgrid, and we wish to avoid, wherever
possible, the situation where one trainer is scheduled to train more or less than
their peers.

U−τ ≤
∑
m∈M̂

(wm ×Xm,τ) ≤ U+
τ ∀τ ∈ T (33)

where U−t and U+
t are the minimum and maximum number of periods, respectively,

that we permit trainer t ∈ T to teach.

The objective of the rostering problem is to minimise the flow cost all networks
simultaneously.

min
∑
τ∈T

∑
m∈M̂

[c1(τ,m)× ψ̃τ,m] +
∑
τ∈T

∑
m∈M̂

∑
n∈M̂

[c2(τ,m, n)× ψτ,m,n]+

∑
τ∈T

∑
m∈M̂

[c3(τ,m)× ψ̄τ,m] +
∑
τ∈T

∑
d∈D

[c4(τ, d)× ψ̂τ,d]
(34)

where c1(·), c2(·), c3(·), and c4(·) give the flow costs of the commencement, tran-
sition, return, and bypass arcs, respectively, where the flow costs are characterised
by any applicable trainer travel costs and trainer swap costs.

6 Implementation

6.1 Pre-Processing

In order to increase the tractability of our model, we wish to eliminate as many
variables and constraints as possible. We can reduce the set of permissible start
times for each module in a given course by identifying all the possible times the
module can start relative to the start time of the course. Since each of those
modules belongs to a particular course instance which does have a set of permissible
start times, the modules implicitly inherit a restriction on when they may start.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

122

Suppose a course c instance i has a set of modules {m1,m2, . . . ,m|Bc,i|}. Since
the order of the modules is unrestricted, there are Bc,i! possible permutations we
can choose to run the modules. For each permutation, each module has a starting
offset—the amount of time, in periods, between the course start time and the
module start time. If, for each permutation and for each module, we identify the
unique starting offsets, we can apply those offsets (which are in relative time,
relative to the time in which the course starts), to each permissible start time of
the parent course in order to enumerate the complete set of time periods in which
the modules may start.

6.2 Symmetry Breaking

One weakness of the timetabling model is the symmetry present in the solution
space. In many cases, objects can be arranged in a variety of ways, where each
configuration has no dominance over the rest. Suppose we start with a timetable
where course c instance 1 is run on Monday and instance 2 is run on Wednesday. If
we keep all practical aspects about the timetable the same, however we now refer
to the Monday course as instance 2 and the Wednesday course as instance 1, then
there is no difference in terms of solution cost. There are n! ways of indexing the
n instances of a single course across an existing timetable.

We may eliminate many symmetric solutions by introducing the following con-
straints:

p∑
q=0

Yc,i,q ≥ Yc,(i+1),p ∀c ∈ C, i ∈ Ic, p ∈ Pc (35)

which ensures that, for any given course, instance i must be run in order to run
instance i+ 1, and also that instance i must be run no later than instance i+ 1.

There are many other sources of symmetry in the model, however we will not
discuss these in this paper.

7 Computational Experiments

Ausgrid’s training department supplied both current and historical data. We
worked with their 8 most frequently run courses with module numbers ranging
from 1 to 4, and instance numbers ranging from 1 to 26. The planning horizon
we considered was 1 month, with a total of 23 working days. Across 5 regions,
there were 15 locations with room counts ranging from 1 to 8, and 12 composite
rooms. With 8 working hours per day, not including meal breaks, the planning
horizon was divided into 368 half-hour time periods, 69 rental windows, and 1
demand window. There were 21 trainers spread across 11 of the 15 locations,
and each trainer was qualified to teach between 8 and 14 modules. Two trainers
had physical disabilities that prevented them from travelling longer distances, and
we enforced this requirement by removing those arcs from the trainer allocation
networks that would require them to travel further.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

123

We used IBM ILOG CPLEX 12.5.0.0[10] on an Intel i7-2640M dual-core 2.8Ghz
system with 4GB DDR3 RAM, running Windows 7 Professional 64-bit, Service
Pack 1. The model was dynamically constructed from data files supplied by Aus-
grid using a program we developed in C# 4.0, interacting with CPLEX using
the IBM ILOG Concert API. Setting up the timetabling model directly for all
courses for the entire month resulted in, on average, over 3 million variables and
we were unable to obtain solutions at all. Setting up the timetabling model di-
rectly for all courses for a planning horizon of 5 days resulted in, on average,
about 600, 000 variables and it took 88 hours to arrive at the optimal solution.
Our prior experimentation with smaller test cases indicated that disabling all au-
tomatic cut generation and using CPLEX’s aggressive probing yielded the fastest
solution times.

Prior to investigating a mathematical programming approach to Ausgrid’s schedul-
ing problem, a list-based constructive software system was developed to auto-
mate the generation of timetables on a month-by-month basis. The software does
not perform any optimisation directly, focusing instead on producing a feasible
timetable quickly, with a “good” use of resources where possible. The problem
being solved in the existing system has some tighter assumptions based on current
practice, whereas the model discussed in this paper is more general. The existing
software system is written in in C# 4.0 running on the same machine. It is a col-
lection of algorithms that constructs a full timetable including trainer roster for a
given month.

We chose the objective weights to be α1 = 106, α2 = 1, and α3 = 6, based on
empirical testing and inspection of the produced timetables.

Table 6 shows the results for a timetable based on a one-year data set from 2012,
generated by the existing software system. From left-to-right, the columns show
the month of the year solved, the number of courses placed on the timetable,
the partial cost of the timetable contributed by the first, second, and third goals
respectively, the weighted linear sum of the three timetabling optimisation goals,
the cost of the trainer roster, and the combined cost of the timetable and roster.

Num. Courses Z1 Z2 Z3 Timetable Roster Total
Jan 47 0 -22.58 6 13.42 1580.61 1594.03
Feb 61 0 -6.30 7 35.70 1791.57 1827.27
Mar 49 0 -10.68 9 43.32 1908.55 1951.87
Apr 38 0 -32.78 5 -2.78 1170.40 1167.62
May 33 0 -26.55 3 -8.55 853.71 845.16
Jun 31 0 -14.27 5 15.73 789.33 805.06
Jul 58 0 -8.73 9 45.27 1607.18 1652.45
Aug 51 0 -9.73 7 32.27 1254.27 1286.54
Sep 44 0 -17.10 3 0.90 1146.64 1147.54
Oct 42 0 -22.10 6 13.90 1141.56 1155.46
Nov 47 0 -11.96 8 36.04 1945.33 1981.37
Dec 34 0 -30.80 4 -6.80 1238.28 1231.48

Table 6 Results for the existing software system.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

124

The existing system is able to produce a solution for one month in between 3.196
and 7.603 seconds, depending on the density of courses in the month. The system
was able to produce a feasible solution (where all students are accommodated) for
all months in all regions that we tested.

Table 7 shows the results for a timetable based on the same data set, generated by
the 3-stage heuristic. From left-to-right, the columns show the month of 2012 that
was solved, the number of courses placed on the timetable, the cost of the timetable
after initial timetable generation, the partial cost of the improved timetable con-
tributed by the first, second, and third goals respectively, the weighted linear sum
of the three timetabling goals after the improvement stage, the cost of the trainer
roster, and the combined cost of the timetable and roster.

Num. Courses Stage 1 Z1 Z2 Z3 Stage 2 Stage 3 Total
Jan 47 -22.81 0 -66.38 5 -36.38 977.6 941.22
Feb 61 35.57 0 -15.26 6 20.74 1509.75 1530.49
Mar 49 -13.02 0 -66.95 7 -24.95 1465.59 1440.64
Apr 38 -62.96 0 -99.12 4 -75.12 970.52 895.4
May 33 -61.56 0 -93.17 3 -75.17 596.64 521.47
Jun 31 -86.42 0 -125.54 4 -101.54 781.51 679.97
Jul 58 16.67 0 -28.96 6 7.04 1520.18 1527.22
Aug 51 -14.72 0 -66.62 6 -30.62 1241.85 1211.23
Sep 44 -57.59 0 -86.83 3 -68.83 639.32 570.49
Oct 42 -35.26 0 -72.22 4 -48.22 886.2 837.98
Nov 47 -21.83 0 -69.85 6 -33.85 1261.95 1228.1
Dec 34 -70.42 0 -109.23 4 -85.23 710.6 625.37

Table 7 Results for the three-stage heuristic.

For all twelve months, it took the three-stage heuristic in total 1 hour, 42 minutes,
and 39 seconds to complete stage 1, 13 hours, 18 minutes, 47 seconds to complete
stage two, and 2 hours 35 minutes, 7 seconds to complete stage 3. On average, it
takes the three-stage heuristic about 8.6 minutes per month for stage 1, and 12.9
minutes for stage 3, depending on the volume of courses being run. Stage 2 will
run until some stopping criterion is met, which we defined as being 2 hours for
each timetabled month. There is a slight overrun in time for stage 2 of about 6.6
minutes on average per timetabled month due to the time it takes to complete an
iteration.

Both the existing software system and the three-stage heuristic were able to
satisfy all demand for each month (Z1). Compared with the existing system, the
three-stage heuristic was able to produce a significantly improved solution with
respect to the room rental goal (Z2), and an improved solution with respect to
the room swap goal (Z3). It should be noted, however, that the existing system
does not give the same priority to the room rental objective as is given in our
model, as this was not a priority for Ausgrid when the original system was under
development. Stage 2 of the three-stage heuristic was able to improve on the initial
(stage 1) timetable by, on average, 13.15 units.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

125

This improvement comes at a significant time difference, with the three-stage
heuristic taking much longer to produce a solution than the existing software. It
should be noted, however, that the time taken by this system is still significantly
less than a human constructing a timetable, manually, which generally takes about
two uninterrupted working days for a one-month timetable and trainer roster. For
longer-term strategic planning purposes, these solution times are acceptable, how-
ever for day-to-day timetabling, these solution times are generally not practically
acceptable and it is a matter of ongoing research to further improve the process.

8 Conclusion(s)

In this paper we studied an academic timetabling and rostering problem involv-
ing periodic retraining of large numbers of employees at an Australian electricity
distributor. A three-stage heuristic framework has been presented which consists
of an initial timetable generation stage, an iterative timetable improvement stage,
and a trainer rostering stage. Integer linear programming (ILP) models were de-
veloped for each stage, which can deal with all the practical requirements flexibly.
Different algorithms are designed to achieve the balance of solution quality and
computation time. The preliminary computational results show that this approach
can generate solutions with lower trainer movement and swap costs, lower room
swap costs, and increased revenue from room rentals compared with the existing
software system in this organisation. More work needs to be done to further reduce
the computation time.

References

1. Akkoyunlu, E.: A linear algorithm for computing the optimum university timetable. The
Computer Journal 16(4), 347–350 (1973)

2. Birbas, T., Daskalaki, S., Housos, E.: Course and teacher scheduling in hellenic high
schools. In: 4th Balkan Conference on Operational Research, Thessaloniki, Greece (1997)

3. Bölte, A., Thonemann, U.W.: Optimizing simulated annealing schedules with genetic pro-
gramming. European Journal of Operational Research 92(2), 402–416 (1996)

4. Burke, E., Elliman, D., Weare, R.: A university timetabling system based on graph colour-
ing and constraint manipulation. Journal of Research on Computing in Education 27, 1–1
(1994)

5. Burke, E.K., Petrovic, S.: Recent research directions in automated timetabling. European
Journal of Operational Research 140(2), 266–280 (2002)

6. Carter, M.W., Tovey, C.A.: When is the classroom assignment problem hard? Operations
Research 40(1-Supplement-1), S28–S39 (1992)

7. Dimopoulou, M., Miliotis, P.: Implementation of a university course and examination
timetabling system. European Journal of Operational Research 130(1), 202–213 (2001)

8. Fischetti, M., Widmayer, P.: Towards solving very large scale train timetabling problems
by lagrangian relaxation. In: 8th Workshop on Algorithmic Approaches for Transporta-
tion Modeling, Optimization, and Systems (ATMOS’08), vol. 9. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik (2008)

9. Gunawan, A., Ng, K., Poh, K.: A hybrid algorithm for the university course timetabling
problem. In: Proceedings of the 7th International Conference on the Practice and Theory
of Automated Timetabling (2008)

10. IBM: Ibm cplex optimizer (2014). URL http://www.ibm.com/software/commerce/optimization/cplex-
optimizer/

11. Karp, R.M.: Reducibility among combinatorial problems. Springer (1972)
12. Lawrie, N.L.: An integer linear programming model of a school timetabling problem. The

Computer Journal 12(4), 307–316 (1969)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

126

13. Lewis, R.: A survey of metaheuristic-based techniques for university timetabling problems.
OR Spectrum 30(1), 167–190 (2008)

14. Marx, D.: Graph coloring problems and their applications in scheduling. In: in Proc. John
von Neumann PhD Students Conference. Citeseer (2004)

15. Mehta, N.K.: The application of a graph coloring method to an examination scheduling
problem. Interfaces 11(5), 57–65 (1981)

16. Neufeld, G., Tartar, J.: Graph coloring conditions for the existence of solutions to the
timetable problem. Communications of the ACM 17(8), 450–453 (1974)

17. Papoutsis, K., Valouxis, C., Housos, E.: A column generation approach for the timetabling
problem of greek high schools. Journal of the Operational Research Society 54(3), 230–238
(2003)

18. Pillay, N.: A survey of school timetabling research. Annals of Operations Research pp.
1–33 (2013)

19. Qualizza, A., Serafini, P.: A column generation scheme for faculty timetabling. In: Practice
and Theory of Automated Timetabling V, pp. 161–173. Springer (2005)

20. Schimmelpfeng, K., Helber, S.: Application of a real-world university-course timetabling
model solved by integer programming. OR Spectrum 29(4), 783–803 (2007)

21. Ülker, Ö., Özcan, E., Korkmaz, E.E.: Linear linkage encoding in grouping problems: ap-
plications on graph coloring and timetabling. In: Practice and Theory of Automated
Timetabling VI, pp. 347–363. Springer (2007)

22. Yao, X.: A new simulated annealing algorithm. International Journal of Computer Math-
ematics 56(3-4), 161–168 (1995)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

127

A model and fast heuristics for the multiple depot
bus rescheduling problem

Balázs Dávid · Miklós Krész

Abstract The daily schedule of a transportation company is often disrupted
by unforseen events. As a result, a new schedule has to be produced as soon as
possible to restore the order. In this paper, we consider the bus rescheduling
problem for solving such a scenario. We present a mathematical model for
the problem, and also introduce fast solution methods that give efficient solu-
tions with short running time. These methods are tested on different random
and real-life instances, and their results are compared to that of the optimal
solution of the mathematical model.

Keywords Disruption management · Vehicle scheduling · Heuristic

1 Introduction

Public transportation companies create their daily schedules in advance for
a longer planning period. This planning process is carried out by a complex
system, an example for which can be seen in [1]. However, several events (the
most common of which are vehicle breakdown and lateness) can render the
pre-planned schedules infeasible. In most of these cases, companies want to
restore the order as soon as possible, and need a new feasbile schedule where
all of their tasks are carried out in a feasible manner once again.

Such an unforseen event is called a disruption, and is defined by Clausen et
al. in [7] as ”an event or a series of events that renders the planned schedules
for aircraft, crew, etc. infeasible”. Although the above definition was given in
a technical paper about airline disruptions, this could be generalized for any

B. Dávid
University of Szeged, Gyula Juhász Faculty of Education
E-mail: davidb@jgypk.u-szeged.hu

M. Krész
University of Szeged, Gyula Juhász Faculty of Education
E-mail: kresz@jgypk.u-szeged.hu

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

128

means of transportation. In our paper, we will be dealing specifically with the
rescheduling of disruptions arising in public bus transportation.

To our knowledge, there are only a handful of papers that deal with disrup-
tions in bus transportation [12–14]. In practice, the problem is solved by the
operators of the company who use their past experience for constructing the
new schedule. However, the problem size is large, and many feasible solutions
exist for a disruption. Not even the most skillful operator can see all the good
possible solutions.

Addressing such a disruption and restoring the order in public transporta-
tion should be done as quickly as possible. The reason for this is the fact
that if a disruption remains unresolved, it could result in several other dis-
ruptions. This is why we need to introduce fast methods for the problem that
also give good quality solutions. Instead of solving the problem to optimality,
these algorithms should give a number of good quality feasible solutions to the
operator as suggestions. Using these suggestions, the operator can make the
final decision on how to reschedule the disrupted trips.

In the following sections, we define the bus rescheduling problem (BRP),
and give a mathematical model for it. As the size of this mathematical model
is large even for smaller instances, we propose two fast algorithms to solve
the BRP: a recursive heuristic and a local search method. We analyze the
solutions of these algorithms, and compare their results on random instances
to the optimal solution of our mathematical model.

2 Disruption management and rescheduling

The structure of the bus rescheduling problem is similar to that of the vehicle
scheduling problem (VSP). We are given a set V of vehicles and set T of
service trips. Every trip has a departure and arrival time, a starting and ending
location, and a set of vehicles that are able to serve the trip. A (t, t′) pair of
trips are compatible if a vehicle can service both trips with respect to the
running time and distance between the arrival location of t and the departure
location of t′ (such a journey is called a deadhead trip).

The VSP assigns the trips of the given timetable to the vehicles, satisfying
certain conditions:

– Every trip in t ∈ T must be executed exactly once.
– For every vehicle v ∈ V , the trips assigned to v must be compatible with

each other.
– The cost of the assignment must be minimal. The cost of the VSP is usually

given by two components: a cost proportional to the distance travelled in
the solution, and a cost given by the number of buses used.

Furthermore, vehicles can be classified into depots depending on two char-
acteristics: the type of the vehicle (eg. solo or articulated bus), and its starting
location at the beginning of the day. In this case, every trip is also assigned a
depot-compatibility vector which corresponds to the depots that can feasibly
serve it. Moreover, the arising costs can be different from depot to depot.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

129

If the problem has only 1 depot, it is called a single depot vehicle scheduling
problem (SDVSP), and can be solved in polynomial time. A formulation for the
SDVSP can be seen in [3]. If the number of depots is at least 2, we get a multiple
depot vehicle scheduling problem (MDVSP). The MDVSP was introduced by
Bodin et al. in [4], and proven to be NP-hard by Bertossi et al. [2]. An overview
of different VSP models can be found in [5].

2.1 The bus rescheduling problem

The bus rescheduling problem considers a given daily bus schedule. The sched-
ule consits of several vehicle duties, each such duty corresponding to a unique
vehicle. A vehicle duty is a sequence of compatible trips, where compatible
means that they can legally be executed one after the other. When a dis-
ruption happens in the daily schedule of a company at time s, the current
schedule becomes infeasible, and as a result, a number of trips can no longer
be executed by their original vehicles.

As an input for the problem, we need to consider the disrupted daily sched-
ule DS, which contains all the vehicles and trips that are still executed ac-
cording to the original schedule. We also have the set DT of disrupted trips,
which contains the trips that cannot be served due to the disruption. The set
DT can contain timetabled trips that no longer have their assigned vehicle as
a result of the disruption, and it can also contain newly introduced trips that
were not part of the original daily schedule. Let T ′ ⊆ T be the subset of trips
that start later than s. The aim once again is to give a feasible solution to the
problem by executing the trips T ′ ∪DT and minimizing the arising costs.

The cost of the problem depends on the restrictions that are taken into
consideration. We introduced the following cost components:

– Operational costs: This cost is proportional to the distance covered by
the given vehicle. If a new vehicle is introduced, it also has a fixed daily
cost. This cost can be scaled with a penalty parameter for new vehicles if
we want to primarily use our current vehicles in service.

– Deviation from the original schedule: If a trip is carried out by a
different vehicle in the solution of the BRP than in the original schedule,
we introduce an extra penalty. If we take the physical needs of the drivers
into consideration, the solution should be as close to the original schedule
as possible, and as a result, this cost should be high.

– Lateness of the trips: It is possible for a trip to be shifted in time, thus
introducing lateness to its starting time. Each minute of lateness should
be penalized.

– Trip cancellation: We can allow trips to be cancelled, but its cost must
always be higher than the actual cost of the trip and its possible deadhead
trips, and it must also be higher than the cost introduced to the deviation
from the original schedule.

Figure 1 models a typical situation that can arise in the daily practice of a
transportation company. A schedule is disrupted, and 2 trips (coloured blue)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

130

have to be rescheduled using 3 remaining vehicle duties (part a)). We give 2
different solutions: in part b), a task is moved from the first duty to the third
one before the insertion of the disrupted trips, while part c) gives a solution
with trivial insertion into the duties. Note, that different solutions are also
possible, for example one where we introduce lateness to one of the trips.

Fig. 1 A typical example for the BRP: there are two disrupted trips in example a) that
have to be inserted into the given duties, b) and c) represent possible solutions

2.2 Related work

Literature usually addresses recoveries from disruptions under the field of dis-
ruption management. Depending on its effect, there are two main types of
disruptions:

– A short term disruption only affects the schedule of the given day, and can
be addressed quickly.

– A long term disruption has a more lasting effect, and can affect several
days of the companies long term plan.

In this paper, we only deal with short term disruptions, where a few trips of
the original daily schedule become infeasible, and must be rescheduled. This
is the typical case when a vehicle that is late with regards to its schedule, and
would only be able to start some of its service trips with significant lateness, or
a vehicle that can not carry out some of its trips due to technical difficulties.

The first research into disruption management was carried out in the air-
line industry. Clausen et al. give a thorough overview of this field in [6,7]. The
underlying network is somewhat similar to the problem of the BRP. However,
the methods used for airline disruptions are computationally intensive, and
have a long running time on the significantly larger bus transportation prob-
lems. This size difference comes from the smaller instances sizes of the airline
industry, and the limited deadheading possibilites of the aircraft.

Disruption management in railway transportation is covered in [10]. These
problems have a different structure, which mainly comes from the fixed rail-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

131

way network, and the capacity limit of the tracks. Because of this, railway
disruptions are handled in a different manner than in the airline industry.

To our knowledge, bus rescheduling as we defined in the above section was
only considered by Li et al. In [13], they propose a quasi-assignment model and
an auction algorithm for the problem, while in [14] they introduce a network
flow model for the single depot BRP, which they solve using a lagrangean
method.

2.3 Mathematical model

In this section we give a multi-commodity network flow model for the BRP
described in subsection 2.1, which is similar to the network flow model reported
by Li et al. in [14]. While Li et. al presented a model for the single depot BRP
that allows trip cancellations, we propose a model for the multiple-depot BRP
with trip cancellations and lateness.

Our input is the schedule of the company for a given day, which is disrupted
at time point s. Let D be the set of depots, V be the set of vehicles currently
in service, and P = D ∪ V .

Let T ′ be the set of non-disrupted service trips of the given day that depart
after time s, and thus still need to be serviced, and let set DT contain the
disrupted trips. Let the set T = T ′∪DT represent all the trips of our problem.
Every trip t ∈ T has a departure time dt(t), arrival time at(t), starting location
sl(t) and ending location el(t). The set of depots and vehicles that can execute
a trip t is denoted by g(t). Let Td ⊆ T be the set of trips that can be executed
from depot d, and Tv ⊆ T the set of trips that can be carried out by vehicle v.

For every depot d ∈ D, we introduce notations sl(d) and el(d). A depot
d is represented by sl(d) when we consider it as the starting location of a
vehicle, while we use el(d) when it gives the ending location of the vehicle.
Similarly for every vehicle v ∈ V currently in service we define a starting
location sl(v) and ending location el(v). For a vehicle v, sl(v) corresponds to
the current geographical location of v at the time of the disruption, and el(v)
is the geographical location of its depot. The set of nodes of our network will
be the following:

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d) ∪ sl(v) ∪ el(v)|t ∈ T, d ∈ D, v ∈ V }.

Using the nodes above, we define the different edges of the network. Let

Jd = {(dt(t), at(t))|t ∈ Td}

be the set of trips that can be served by depot d, and let

Jv = {(dt(t), at(t))|t ∈ Tv}

be the set of trips that can be executed by vehicle v. Let

Kd = {(at(t), dt(t′))|t, t′ ∈ Td are compatible}

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

132

be the possible deadhead trips of a depot d and

Kv = {(at(t), dt(t′))|t, t′ ∈ Tv are compatible}

be the possible deadhead trips of a vehicle v.
Let

Ld = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}

be all the pull-in and pull-out edges of depot d, and let

Lv = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Tv}

be the pull-in and pull-out edges of vehicle v. The above sets together with
circulation edges for every depot and vehicle give us the set of edges of our
network:

E = {Jd ∪ Jv ∪Kd ∪Kv ∪ Ld ∪ Lv ∪ {(el(d), sl(d))} ∪ {(el(v), sl(v))} for
every d ∈ D, v ∈ V }.

With the nodes and edges introduced above, a solution of the vehicle re-
scheduling problem can be determined by using the network (N,E). We define
an integer vector x for every edge of the network. Every p ∈ P defines a com-
ponent belonging to edge e, and is denoted by xpe. We also introduce a variable
wt for every t ∈ T , which allows the cancellation of t.

The difference between the original schedule and the resulting schedule
should also be modeled. For every vehicle v, and trip-edge e ∈ Jv, we introduce
a constant qe. The value of qe is 0, if the trip corresponding to edge e is carried
out by the same vehicle v as in the original schedule, and 1 otherwise. The cost
of a trip will depend on this constant, because αqe will be added to the each
such edge, where α is the penalty for deviation from the original schedule.

To allow lateness for trips, we introduce variable zt, which gives a new
departure time for every trip t. This value includes the added lateness, if any.
For the trips to remain compatible, a constraint has to be added that examines
trip compatibilities with respect to zt:

(zt + length(t) + deadheadt,t′ − z′t)
∑
p∈P

xpa(t),d(t′) ≤ 0,∀(t, t′) ∈ E, (1)

where length(t) gives the running time of service trip t, and deadheadt,t′

represents the running time of the deadhead trip between al(t) and dt(t′).
Constraint (1) is not a linear equation, but such a constraint can be rewritten
with the introduction of a large constant M , as seen in [9].

The IP model of the problem can be formalized in the following way:∑
p∈g(t)

xpdt(t),at(t) + wt = 1,∀t ∈ T (2)

∑
e:(sl(d),dt(t))∈Kd

xde ≤ k(d),∀d ∈ D (3)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

133

 ∑
e:(sl(v),dt(t))∈Kv

xve = 1,∀v ∈ V (4)

∑
e∈n+

xpe −
∑
e∈n−

xpe = 0, ∀p ∈ P,∀n ∈ N (5)

zt + length(t) + deadheadt,t′ − z′t ≤
∑
p∈P

1− xpa(t),d(t′)M,∀(t, t′) ∈ E (6)

zt ≥ start(t),∀t ∈ T (7)

zt ≤ start(t) + L, ∀t ∈ T (8)

xpe, wt ∈ {0, 1}, ∀e ∈ E, p ∈ P, t ∈ T (9)

Due to constraint (2), every trip is either executed exactly once, or can-
celled. Constraint (3) gives maximum capacities for the depots of the problem,
while vehicles in service are always given duties according to constraint (4).
Constraint (5) ensures flow conservation. Constraint (6) is the linear reformu-
lation of constraint (1). Constraints (7) and (8) limit the values of the trip
starting times. A trip t ∈ T will always depart in the [start(t), start(t) + L]
time window, where start(t) is the departure time of t and L is the maximum
allowed lateness. To solve the problem to optimality, we need to minimize∑

e∈E

∑
p∈P

cpex
p
e +

∑
t∈T

β(zt − start(t)) +
∑
t∈T

γwt, (10)

where β and γ are penalty parameters for lateness and cancelling trips
respectively. cpe gives the corresponding operational cost of edge xpe, along
with the possible added penalty of deviation from the original schedule given
by α.

2.4 Importance of the model

The size of the above model grows quickly with an increase in the number of
compatible trips. As each commodity layer of the model contains the possible
connections of the given depot or vehicle, its size will increase significantly
with every added commodity. We have to represent every bus currently in
service as a new commodity in the model, which results in a significantly
high number of vehicle layers. For example, the middle-sized city of Szeged,
Hungary has about 2700 trips on a regular workday, which is executed by 108
vehicles (belonging to 4 vehicle types). This would mean a network with over
110 commodities, which is taxing to solve both in memory and running time.

In a real life application, solutions for disruptions are needed in real time,
because the resolution of a disruption does not end with the solution of the
problem. After solving the BRP, operators still need to communicate with bus
drivers about the recent changes, which also takes time.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

134

However, the mathematical model is important because it allows us to
compare our results to the optimal solution for the problem. This way it can
provide us with a quality control for any heuristic method that we use for the
fast solution of the BRP.

3 Applying fast solution heuristics

As we mentioned in subsection 2.4, the size of the model will grow quickly with
the increase of the problem size. The number of commodities in the network
is given by the number of depots and vehicles, and this will be dominated by
vehicle commodities (except for small test-instances).

Exact solution of such a big problem would take a long running time,
which is not acceptable for a real life application of the method. Recovering
from a disruption needs to be done as quickly as possible, thus fast and efficient
solution heuristics are needed.

It might well be that the costwise optimal solution is not be the best one
regarding operations planning. However, a solution given by an algorithm can
help the operator decide faster about how to resolve the disruption. Integrating
fast algorithms into a decision support system that gives multiple suggestions
for the solution can speed up the decision of the operators.

In the following sections, we present fast solution methods that provide
multiple good quality solutions in a short running time. These methods can
easily be integrated into a decision support system for disruption management
in public transportation, which recommends possible solutions for the oper-
ators depending on their parameter settings. We will be dealing with such a
system in one of our future papers.

Li et al. also presented a prototype decision support system in [12] for the
single depot BRP. In this system, they were only dealing with the optimal
solution for the problem that the operators could change on an interactive
interface.

3.1 A recursive search algorithm

One of the algorithms we propose is a recursive search heuristic for the prob-
lem. Recursive search seems an ideal method because of the expectations de-
scribed above. This algorithm is able to find multiple solutions with a short
running time. Our method can be seen in Algorithm 1.

The input of the algorithm is the following:

– vDuties: The disrupted daily schedule. It includes all available vehicles
and the duties assigned to those vehicles that were not disrupted.

– dTrips: The set of disrupted trips, which have no assigned vehicle duties.
– depth: A non-negative integer parameter that limits the depth of the

search tree. Every time trips are removed from a schedule, the value of this
parameter is decreased.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

135

Algorithm 1 Recursive search for bus rescheduling.
1: procedure RecSearch(vDuties, dTrips, depth)
2: if depth = 0 then
3: return 0
4: end if
5: for i = 1 to Size(dTrips) do
6: Trip = dTrips[i]
7: for j = 1 to Size(vDuties) do
8: nDuties = vDuties
9: nTrips = dTrips

10: Duty = vDuties[j]
11: if Trip and duty are not compatible then
12: continue
13: end if
14: if Trip overlaps with trips in Duty then
15: if Possible solution with lateness then
16: Duty’ = Insert Trip into Duty with introducing lateness
17: nDuties’ = nDuties with Duty’ inserted into nDuties[j]
18: nTrips’ = nTrips without Trip
19: if Size(nTrips’) = 0 then
20: Add(Solutions, nDuties’)
21: else
22: RecSearch(nDuties’, nTrips’, depth)
23: end if
24: end if
25: tRemoved = overlapping trips from duty
26: end if
27: Insert Trip into Duty
28: Remove Trip from nTrips
29: nDuties[j] = Duty
30: if Size(nTrips) = 0 then
31: Add(Solutions, nDuties)
32: else if Size(tRemoved) > 0 then
33: Add(nTrips, tRemoved)
34: RecSearch(nDuties, nTrips, depth-1)
35: else
36: RecSearch(nDuties, nTrips, depth)
37: end if
38: end for
39: end for
40: return Best solution in Solutions
41: end procedure

The input for the heuristic is the set of feasible vehicle duties, and the set
of disrupted trips. Every function call chooses the disrupted trip dt with the
earliest departure time, and tries to fit it into every compatible vehicle duty
vd. There are three possibilities for every dt− vd pair:

– One or more trips have to be removed from vd. The removed trips are
flagged as temporary disrupted trips.

– Trip dt can be inserted into vd, but lateness has to be introduced for some
of the trips of vd.

– Trip dt can be inserted into vd without additional modifications.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

136

If the set of disrupted trips is empty after a modification, and there are no
temporary disrupted trips, the heuristic has found a feasible solution, which
is saved. Otherwise, the recursive function is called with new parameters:

– vDuties’: The original vDuties is updated with the modified duty.
– dTrips’: The temporary disrupted trips are inserted into dTrips, while dt

is removed.
– depth’: If the size of dTrips′ is smaller than the size of dTrips, depth′ =
depth. Otherwise, depth′ = depth− 1.

The algorithm will explore the solution space determined by the trips and
the schedules of the problem, examining every possible solution found during
its runtime. The depth of this search tree is limited by the parameter depth.
Further limitations can be introduced into the method to exclude visiting
similar configurations multiple times.

These limitations (especially the parameter for the depth) help to keep the
running time of the algorithm from exploding. Introduction of this parameter
was also based on a practical observation: each level of the recursive search
tree corresponds to a vehicle whose original duty is modified. Companies want
to keep the number of modified vehicle duties low. Because of the way depth is
decreased, its initial value also defines the maximum number of vehicle duties
from which the algorithm can remove trips. As we mentioned in Subsection
2.1, altering the original schedule of a driver should have a high cost, so it
is unlikely that the optimal schedule will be cut from the search tree by this
parameter.

The algorithm terminates after it has traversed the above defined search
tree. If it has found at least 1 solution, then the one with the lowest cost is
returned as a result.

3.2 A local search algorithm

The other proposed algorithm is a local search method for finding a feasible
solution for the BRP. A brief outline of the algorithm can be seen in Algorithm
2.

The input of the algorithm is the following:

– vDuties: The disrupted daily schedule. It includes all available vehicles
and the duties assigned to those vehicles that were not disrupted.

– dTrips: The set of disrupted trips. These are currently not executed by
vehicles, and have to be assigned to vehicle duties.

– tRange: Gives a time window in which the events are considered. The
time window begins at the start time of the disruption, and ends after the
ending time of the last disrupted trip.

The initial candidate solution of the algorithm is constructed from the
original vehicle schedule. A new vehicle duty is added to the schedule, that
contains all the disrupted trips, increasingly ordered by their departure time.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

137

Algorithm 2 Local search for bus rescheduling.
1: procedure LocSearch(vDuties, dTrips, tRange)
2: Build infeasible duty dt from dTrips
3: Label dt temporary
4: Add(dt to vDuties)
5: tabuList = list of forbidden transformations
6: while notEmpty(dt) & !(terminatingConditions) do
7: tmpSchedules = empty container for vehicle schedules
8: for i = 1 to Size(vDuties) do
9: for j = i+1 to Size(vDuties) do

10: for each neighborhood transformation t do
11: if t(vDuties[i], vDuties[j]) is not forbidden then
12: newSchedule = apply t of vDuties
13: Add(newSchedule, tmpSchedules)
14: end if
15: end for
16: end for
17: end for
18: bSchedule = best schedule from tmpSchedules
19: tS = transformation that can reverse bSchedule
20: vDuties = bSchedule
21: Add(tabuList, tS)
22: end while
23: return vDuties
24: end procedure

If there is more than one disrupted trip, this new duty is more than likely
infeasible, which will make our initial solution also infeasible. This new duty
is labelled as a temporary duty.

In each iteration the algorithm will examine all (i, j) pairs of the duties. It
checks the trips of the duties that are in the given tRange time window, and
examines the following two neighborhood transformations:

– 1-move: Moves a trip from duty i to duty j. This transformation is not
carried out, if j is a temporary schedule.

– 1-change: Exchanges a trip from duty i with the corresponding trip(s)
from duty j. This transformation is not carried out, if any of the duties is
temporary.

All feasible neighbors given by the above transformations are assigned a
cost. This cost is computed from the operational cost of the duties and the
penalties introduced in subsection 2.1. If the transformation moves a trip from
a temporary schedule to another schedule, a high negative penalty is added
to decrease the cost, which will make it more likely to be chosen in an early
iteration of the local search.

The local search algorithm chooses the neighbor solution with the lowest
cost as its new candidate. If any trip t was removed from a duty D in the
process, the (t,D) pair is saved on a tabu list. For every (t,D) pair on the
tabu list, trip t cannot be moved to duty D with any of the transformations.

The algorithm terminates when at least one of the terminating conditions
is met. We use the following terminating conditions:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

138

– Limit for the running time.
– If the difference in quality of the consecutive candidates is always below a

given gap for a fixed amount of iterations.

If the algorithm has found at least 1 feasible solution, then the one with
the lowest cost is returned by default. The number of solutions returned can
be set higher using a parameter, if the user wants to ask for more suggestions.

4 Test results

In this section we provide the test results of the heuristics presented in section
3. To analyze the quality of our results, we will compare them to the optimal
solution of the BRP model given in subsection 2.3.

As it was mentioned earlier, the size of the mathematical model can grow
quickly with the increase of the instance size. The model we presented in 2.3
represents all possible connection between pairs of trips with a unique dead-
head edge for every commodity. Because of the high number of deadhead con-
nections, Kliewer et al. introduced the time-space network in [11] to solve the
MDVSP. This model aggregates deadhead edges, resulting in a much smaller
problem that is easier to solve. The number of deadhead edges of the BRP
model in subsection 2.3 can be decreased in the same way.

In our test instances, we used a time-space network equivalent of our BRP
model. We generated our daily schedules by solving a time-space network
model on random instances given by a method described in [8]. The disruption
time was set to 0, which means that we considered the whole daily schedule
in every case. We modelled the scenario when a new trip is introduced to the
daily schedule at the beginning of the day. This new trip is our disrupted
trip, which is generated as a single short trip by the same random method
referenced above.

We tested the methods on different instances with 12, 100, 500 and 800
trips in their original schedule. Several different test cases were generated for
each instance. Table 1 shows the average results of 10 randomly generated
cases for every instance.

Table 1 Test results of the heuristic methods

Instance Trips Depots Opt.(s) Rec.(s) Gap (Rec.) Loc.(s) Gap(Loc.)

R1 13 2 1.03 0.02 0 % 0.001 0%
R2 101 4 1.12 0.05 0 % 0.004 0%
R3 501 4 132 0.08 0 % 0.01 0%
R4 801 4 801 0.08 0.04 % 0.05 0%

The number of trips and depots of the BRP can be seen in columns 2 and
3. The running time of the solution of the exact model is given in column 4.
The running time of the heuristics and their gap from the optimal solution are

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

139

represented in columns 5-6 and 7-8 respectively. All tests were carried out on
a PC with and Intel Core i5 2.80GHz CPU and 4 GB RAM. The IP model
was solved using the COIN-OR Symphony solver.

We could not solve the IP for instances with higher number of trips, be-
cause the model itself was too big to be contained in memory. The heuristics
provided results for significantly larger input as well. We tested the two heuris-
tic methods on both random and real-life instances, and both of them returned
multiple solution suggestions. The biggest real-life instance we used contained
2674 trips, while the biggest random instance had 3500 trips.

The solution time of the heuristics remained fast, and took at most around
15 seconds. We also hand-tailored some of the bigger test instances, in which
we knew the best solution from the point of view of operational planning (e.g.
trivial insertion of a trip to a duty, or a certain trip has to be moved/delayed
to insert the disrupted trip). The algorithms found the desired solutions in
every case.

The results of the heuristic algorithms are promising, as they give multiple
solutions even for larger instances in a short time, while the number of modified
schedules and moved trips stay low. Their good speed and solution quality, and
the multiple given solutions make them suitable for a decision support system
described in the previous sections.

5 Conclusions and future work

In this paper, we considered the multiple depot BRP, which deals with resche-
duling the disrupted daily schedule of a transportation company. This problem
is important, as disruptions happen in the daily schedules of every company,
and the order of transportation should be restored as soon as possible. We
described the restrictions of the problem, and defined a mathematical model
based on the arising needs.

Such a problem requires a real-time solution, because the results must be
processed by operators and communicated to the bus drivers, which also takes
time. As the size of the model is too big to be solved in such short time,
we proposed two fast heuristic algorithms to produce results in a couple of
seconds. Our tests on randomly generated instances showed that the heuristics
give a solution that is close to the optimum. While we could not measure
the quality of the algorithms on bigger real-life instances, the running time
still remained fast, and both methods gave the expected results for artifical
disruption scenarios for these inputs.

Because of their ability to produce multiple good quality solutions in a
short time, these algorithms seem suitable for a decision support system that
helps the operators of a transportation company in the rescheduling process
by giving them possible solution suggestions for the problem. However, there
are still questions for future research.

The size of the mathematical model is too big to be contained in memory
for bigger instances. To get exact solutions for real-life problems, we can use

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

140

decomposition methods (e.g. column generation), or heuristic size reduction
of the model. Both approaches should be investigated in future works.

References

1. Békési, J., Brodnik, A., Krész, M., Pas, D.: An integrated framework for bus logistics
management: Case studies. Logistik Management 5(1), 389–411 (2009)

2. Bertossi, A., Carraresi, P., Gallo, G.: On some matching problems arising in vehicle
scheduling models. Networks 17(1), 271–281 (1987)

3. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11(1),
97–108 (1981)

4. Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and scheduling of vehicles and
crews: The state of the art. Computers and Operations Research 10(1), 63–212 (1983)

5. Bunte, S., Kliewer, N.: An overview on vehicle scheduling models. Journal of Public
Transport 1(4), 299–317 (2009)

6. Clausen, J., Larsen, A., J. Larsen, J., Rezanova, N.J.: Disruption management in the
airline industry-concepts, models and methods. Computers & Operations Research
37(5), 809–821 (2010)

7. Clausen, J., Larsen, A., Larsen, J.: Disruption management in the airline industry -
concepts, models and methods. Tech. rep., Informatics and Mathematical Modelling,
Technical University of Denmark, DTU (2005)

8. Dávid, B., Krész, M.: Application oriented variable fixing methods for the multiple
depot vehicle scheduling problem. Acta Cybernetica 21(1), 53–73 (2013)

9. Desrochers, M., Lenstra, J., Savelsbergh, M., Soumis, F.: Vehicle routing with time
windows: Optimization and approximation. Vehicle routing: Methods and studies 16,
65–84 (1988)

10. Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L.G., Maróti, G., ,
Nielsen, M.N.: Disruption management in passenger railway transportation. Tech. rep.,
Erasmus University Rotterdam (2007)

11. Kliewer, N., Mellouli, T., Suhl, L.: A time-space network based exact optimization model
for multi-depot bus scheduling. European Journal of Operational Research 175(3),
1616–1627 (2006)

12. Li, J.Q., Borenstein, D., Mirchandani, P.B.: A decision support system for the single-
depot vehicle rescheduling problem. Computers and Operations Research 34(4), 1008–
1032 (2007)

13. Li, J.Q., Mirchandani, P.B., Borenstein, D.: The vehicle rescheduling problem: Model
and algorithms. Networks 50(3), 211–229 (2007)

14. Li, J.Q., Mirchandani, P.B., Borenstein, D.: A lagrangan heuristic for the real-time vehi-
cle rescheduling problem. Transportation Research Part E: Logistics and Transportation
Review 45(3), 419–433 (2009)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

141

Acknowledgements This work was partially supported by the European Union and co-
funded by the European Social Fund through project HPC (grant no.: TÁMOP-4.2.2.C-
11/1/KONV-2012-0010).

Solving High School Timetabling with Satisfiability
Modulo Theories

Emir Demirović · Nysret Musliu

Abstract High School Timetabling (HSTT) is a well known
and wide spread problem. The problem consists of coordinat-
ing resources (e.g. teachers, rooms), time slots and events (e.g.
lectures) with respect to various constraints. Unfortunately,
HSTT is hard to solve and just finding a feasible solution for
simple variants of HSTT has been proven to be NP-complete.
In addition, timetabling requirements vary from country to
country and because of this many variations of HSTT exist.
Recently, researchers have proposed a general HSTT problem
formulation in an attempt to standardize the problem from
different countries and school systems.

In this paper, for the first time we provide a new detailed
modeling of the general HSTT as a Satisfiability Modulo The-
ory (SMT) problem in the bit vector form. In addition, we
present preliminary experimental results and compare to the
winner of the Third International Timetabling Competition
2011 (ITC), using both artificial and real-world instances, all
of which were taken from ITC 2011 benchmark repository.
Our current approach provides feasible solutions for some ex-
amples, which in some cases could not have been obtained
with the competition winner algorithm within 24 hours.

Vienna University of Technology
Database and Artificial Intelliegence Group
E-mail: {musliu ∨ demirovic}@dbai.tuwien.ac.at

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

142

Keywords SMT · High School Timetabling · Modeling

1 Introduction

In this paper, we describe a modeling of the high school
timetabling problem (HSTT) as a Satisfiability Modulo The-
ory (SMT) problem. By doing so, we were able to find feasible
solutions to some problem instances, which were proposed by
the International Timetabling Competition 2011 [13], which
in some cases could not have been obtained using the win-
ning algorithm of the competition in 24 hours, GOAL. In
two smaller instances, optimization could also be performed,
rather than just finding a feasible solution, but optimization
is difficult for our method at its current state.

The problem of timetabling is to coordinate resources (e.g.
rooms, teachers, students) with time slots in order to fulfill
certain goals or events (e.g. lectures).

Timetabling is encountered in a number of different do-
mains. Every educational institution, airport, public trans-
port system, etc requires some form of timetabling. The dif-
ference between a good and a bad timetable can be significant,
but constructing timetables by hand can be time consuming,
very difficult, error prone and in some cases impossible. There-
fore, developing high quality algorithms which would auto-
matically do so is of great importance. Note that there are
many different timetabling problems and algorithms for one
type of problem (e.g. HSTT) might not directly be suitable
for another problem (e.g. University Timetabling), because of
their different requirements. In this work, we focus on HSTT.
Respecting constraints is very important, as timetables di-
rectly contribute to the quality of the educational system,
satisfaction of students and staff and other matters. Every
timetabling decision affects hundreds of students and teach-
ers for prolonged amounts of time, since each timetable is
usually used for at least a semester.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

143

Unfortunately, High School Timetabling is hard to solve
and just finding a feasible solution of simple variants of High
School Timetabling has been proven to be NP-complete [7].

Apart from the fact that problems that need to be solved
can be very large and have many different constraints, high
school timetabling requirements vary from country to coun-
try and because of this many variations of the timetabling
problem exist. Because of this, it was unclear what the state
of the art was, as comparing algorithms was difficult.

Recently have researchers proposed a general high school
timetabling problem formulation [14] in an attempt to stan-
dardize the problem from different countries and school sys-
tems and this formulation has been endorsed by the Third In-
ternational Timetabling Competition 2011 (ITC 2011) [13] [14].
This was a significant contribution, as now algorithms can be
compared on standardized instances, that were proposed from
different researchers [12].

The winner of the competition was the group GOAL, fol-
lowed by Lectio and HySST. All of the algorithms were based
on heuristics. In GOAL, an initial solution is generated, which
is further improved by using Simulated Annealing and Iter-
ated Local Search, using seven different neighborhoods [8].
Lectio uses an Adaptive Large Neighborhood Search [16],
while HySST uses a Hyper-Heuristic Search [9]. Recently, [17]
used Integer Programming (IP) in a Large Neighborhood Search
algorithm and [15] introduced a two phase IP algorithm for
a different timetabling problem, but have managed to adjust
the method for a number of high school timetabling instances.

All of the best algorithms on the competition were heuristic
algorithms and this is why introducing a new exact method
(our approach) is important. Some advantages are being able
to provide proofs of optimality or infeasibility, calculate lower
bounds as well as an opportunity to hybridize algorithms, as
well as create valuable benchmarks for SMT solvers. Even
though significant work has been put into HSTT, optimal
solutions for most instances are still not known and this is
still an active research area.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

144

In this paper, we investigate the formulation of HSTT as
SMT. A SMT problem is a decision problem for logical for-
mulas with respect to combinations of background theories
expressed in classical first-order logic with equality. It is a
generalization of the Satisfiability problem (SAT) in which
sets of variables are allowed to be replaced by predicates from
a variety of underlying theories. SMT is usually used for ver-
ification and program analysis, but researchers have recently
been investigating solving Constraint Satisfaction Problems
with SMT [3] and other optimization problems [11]. There is
a natural connection between timetabling and logical formu-
las. HSTT as itself has many logic based characteristics and
as such some of its constraints can easily be encoded as SMT.
This has motivated us to investigate how efficient can a SMT
formulation for HSTT be. However, due to the generality of
the specification that we use, devising a complete model is
not a trivial task, because as we will see later, some of the
constraints are cumbersome. In addition to formulating a gen-
eral formulation, one needs to take care of important special
cases which arise in practice and can significantly simplify the
encoding.

The main contributions of this paper are as follows:

– We show that HSTT can be modeled as a SMT problem,
despite the fact that HSTT is very general and has many
different constraints, both hard and soft versions. All con-
straints are included in their general formulations, as well
as important alternative encodings for special cases.

– We give preliminary experimental evaluation of our model
using both artificial and real-world instances, all of which
were taken from the Third International Timetabling Com-
petition 2011 benchmark repository. A comparison with
the winning algorithm from ITC 2011 is given.

The rest of the paper is organized as follows: in the next
section, we give a more detailed look into the problem descrip-
tion which serves as an introduction for Section 3, where the
detailed presentation of our approach in modeling HSTT as

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

145

SMT is given. In Section 4, we provide computational results
obtained on artificial and real life problems. Finally, we give
concluding remarks and ideas for future work.

2 Problem Description

In our research we consider the general formulation of the
High School Timetabling problem, as described in [14].

The general High School Timetabling formulation specifies
three main entities: times, resources and events. Times refer
to time slots which are available, such as Monday 9:00-10:00,
Monday 10:00-11:00, etc. Resources correspond to available
rooms, teachers, students, etc. The main entities are the events,
which in order to take place require certain times and re-
sources. An event could be a Mathematics lecture, which re-
quires a math teacher and a specific student group (both con-
sidered resources) and two time slots.

Constraints impose limits on what kind of assignments are
legal. These may constraint that a teacher can teach no more
than five lessons per day, that younger students should attend
more demanding subjects (e.g. Mathematics) in the morning,
etc. We describe the constraints in the next section when we
present the SMT formulations.

Each constraint has a nonnegative cost function associated
with it, which penalizes assignments that violate it. It is im-
portant to differentiate between hard and soft constraints.
Hard constraints are constraints that define the feasibility of
the solution and are required for the solution to make sense,
while soft constraints define desirable situations, which define
the quality of the solution. Therefore, the cost function con-
sists of two parts: infeasibility value and objective value. The
goal is to first minimize the infeasibility and then minimize
the objective function value part. The exact way these two
are calculated will be discussed in the next section.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

146

3 Our Approach - Modeling HSTT for SMTs

Modern SMT solvers (e.g. z3 [5], Yices [6]) offer a number
of underlying theories to choose from, which are described in
detail in the standardization SMT-LIB [2]. Modeling of the
problem at hand depends heavily on which theory we have
chosen. In our initial phase, we used two different theories:
linear integer arithmetic and bit vector. In the following, we
present a bit vector formulation for HSTT, as it was more
successful in initial experiments and afterwards discuss briefly
the problems encountered with linear integer arithmetic.

3.1 Bitvector Theory

A bitvector is a vector of bits. The size of the vector is ar-
bitrary, but fixed. A number of standard operations (e.g.
addition, and, or operations on bitvectors) and predicates
(e.g. equality) are defined over bitvectors and an instance con-
sists of a conjunction of predicates. Most SMT solvers accept
formulas written in SMT-LIB file format, but can have their
own formats, like Yices. Since these files use prefix notation,
we will do so as well in the description of the constraints with
the addition of brackets and comas in order to ease reading.
E.g. In infix notation one would write (a = b), while in prefix
notation the same expression would be written as (= a b),
while we choose to write (= (a, b)).

Most operations are interpreted as usual and all bitvector
operands are of the same length. In the following we present
some of the notations we will use in which bva and bvb are
bitvectors and k is a constant integer:

– inv(bva) - inverts bva bits (e.g. inv(1011001) = 0100110).
– add(bva, bvb) - adds two bitvectors in the same way two

unsigned integers would be added (overflow might occur).
– or(bva, bvb) - performs bitwise or on its operands.
– lshift(bva, k) - applies noncyclic left shift by k operation

on bva (e.g. lshift(10011, 2) = 01100).
– rshift(bva, k) - similar to lshift, but uses right shifting.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

147

– extract(bva, k) - returns the k − th bit of bva

An example SMT instance would be the following:

(= (1010, lshift(bva, 1)) ∧ (< (bva, 1000)) (1)

The problem is to determine whether there exists a bitvec-
tor bva for which the above formula holds. It states that bva
must be equal to 1010 after it is shifted to the left by one
place (first clause) and bva must be less than (in the standard
way binary numbers are compared) 1000 (second clause). The
formula is satisfiable and bva = 0101 is a model since it satis-
fied both clauses, while bva = 1101 is not due to not satisfying
the second clause. Note that this is a decision problem.

In the optimization variant, weights may be assigned to
clauses and the goal is to find a model which will satisfy all
clauses without weights and will minimize the sum of weights
of unsatisfied clauses. Optimization is not part of standard
SMT solvers by default, although Yices [6] supports it. E.g.
if we assigned a weight of 10 to the second clause in the pre-
vious example, both bva = 1101 and bva = 0101 would be
considered solutions to the problem, but the latter would be
considered a better solution.

3.1.1 Variables and Definitions

For each event e (e.g. a lesson), we create a number of bit
vectors all of length n, where n is the number of time slots
available in the instance. The vectors along with their mean-
ings are as follows:

– Ye - the i− th bit is set (a bit is set if it has value 1) if the
event is taking place at time slot i and is not set otherwise.
In xHSTT terminology, Ye covers all subevents of event
e. This implies that two subevents of the same event can
never clash in this representation.

– Se - the i − th bit is set if the i − th time slot is declared
as a starting time for event e and is not set otherwise.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

148

– Ke,d - the i− th bit is set if the i− th time slot is declared
as a starting time of duration d for event e and is not set
otherwise.

As an example of the above variables, take the following
bitvectors:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)
0 1 1 0 0 0 1 0 (Se)
0 1 1 0 0 0 0 0 (Ke,1)
0 0 0 0 0 0 1 0 (Ke,2)

(2)

From Ye, we see that event e (e.g. a Math lesson) is taking
place at time slot 1, 2, 5 and 6, because those bits are set
within Ye. Similarly, time slots 1, 5 and 6 are labeled as start-
ing times from Se, meaning event e has been split into three
subevents. Time slot 1 is labeled as a double lesson by Ke,2,
while 5 and 6 as lessons of duration 1 by Ke,1. Note that time
slot 5 could have also been labeled as a double lesson instead
of having two lessons of duration 1. Reasons for choice one
possibility over the other is regulated by constraints.

In the formal specification of HSTT, there are no restric-
tions on what can be defined as a starting point. One could
regard a starting point as a time t where a lecture takes place,
but has not took place at t − 1. However, while this is true,
this cannot be the only case when a time would be regarded
as a starting time, since e.g. time t = 5 and t = 6 might
be interpreted as last time slot of Monday and first time slot
of Tuesday and an event could be scheduled on both of these
times, but clearly we must regard both times as starting times,
since a double lecture does not extend over such long periods
of time. Therefore, any time can in general be regarded as a
starting time. It is of interest to note that the previous as-
signment, by the general formulation, could also be treated
as a double lesson for the purpose of constraints, even though
it extends over two days. Constraints give more control over
these kind of assignments.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

149

Formalities that are tied to starting times with regard to
the specification are expressed as follows:

If a starting time for event e has been assigned at time
t, then the corresponding event must also take place at that
time:

∧
∀e∈E

(= (or(Se, Ye), Ye)) (3)

The or and = statements are required to ensure that Ye has
bits set at least in the same positions as Se. This type of en-
coding is used frequently and one should become accustomed
to it.

Event e starts at time t if e is taking place at time t and
it is not taking place at time (t− 1):∧

∀e∈Espec)

= (or(and(Ye, lshift(inv(Ye, 1)), Se), Se) (4)

Note that the ordering of the application of inv and lshift
is important.

Let K+
e be the bit vector which i − th bit is set if any of

Ke,d vectors have an i− th bit set. This is obtained by taking
the or of all of the Ke,d. If time t has been set as a starting
time, associate a duration with it:

∧
∀e∈Espec

(= (K+
e,d, or(Se,t, K

+
e,d)) (5)

Let Sd
e be the vector obtained as rshift(Se, d). If a subevent

of duration d has been assigned and immediately after the
event is still taking place, then assign that time as a starting
time:

∧
∀e∈Espec

∀d∈D

(= (or(and(rshift(Ye, d), Ke,d), S
d
e), Sd

e)) (6)

Let K∗e,d be the vector obtained by taking the and of all of

Sek for k = 1..d and Ye. When a bit in Ke,d is set, ensure that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

150

the event in question must take place for d consecutive hours
during this specified time:

∧
∀e∈Espec

∀d∈D

(= (or(K∗e,d, Ke,d), K
∗
e,d)) (7)

Let K
inv(k)
e,d be the vector obtained as rshift(inv(Ke,d), k),

K#k
e,d be the vector obtained by taking and of all Kj

e,d for j =

1..(k− 1) and K&k
e,d be the vector obtained by taking the and

of all K
#i)
e,d for i 6= k. If a duration has been specified for time

t, make sure that no other starting point other appropriate
Ke,t,d variables must be false:

∧
∀e∈Espec atopd∈D

(= (or(Ke,d, K
#d
e,d), Ke,d)) (8)

3.2 Cardinality Encodings

An important constraint that arises often is to determine the
number of set bits in a bit vector, as well as to impose penal-
ties if the appropriate number of bits are not set. E.g. if an
event must take place for two hours, then exactly two bits in
its Ye must be set.

Let us define a unary operation reduceBit(bva) = bva ∧
sub(bva, 1). When applied to bva, as the name suggests, it
produces a new bitvector which has one less bit set then bva.
For example:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))
1 1 0 0 0 0 (reduceBit(bva))

(9)

The original bitvector had three bits set, while the pro-
duced one was two set. The reduceBit operations is an im-
portant part for defining cardinality constraints.

In order to ensure that at least k bits are set in a bitvector,
we apply reduceBit k−1 times and require that the resulting

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

151

bitvector must be different from zero. For at most k, we apply
reduceBit k times and constrain that the resulting bitvector
must be equal to zero. For exactly k we encode at least k and
at most k. For example, asserting that at least 2 bits are set
is done in the following way:

∧ 1 1 0 1 0 0 (bva)
1 1 0 0 1 1 (sub(bva, 1))

∧ 1 1 0 0 0 0 (reduceBit(bva))
1 0 1 1 1 1 (sub(reduceBit(bva)), 1)
1 0 0 0 0 0 (reduceBit(reduceBit(bva)))

(10)
Since the final bitvector is different from the zero bitvector,

we conclude that at least 2 bits are set in bva.
For the soft cardinality constraints which penalize the ob-

jective value if a certain number of bits is set rather than for-
bidding their assignments, a similar technique. For at least k,
it is asserted before each i− th application of reduceBit that
the current bitvector is different from zero and is penalized
by some weight if it is not the case. For example, asserting
that at least 2 bits are set is done in the following way for
the soft version:

∧ 0 1 0 0 0 0 (bva 6= 0, no penalty)
0 0 1 1 1 1 (sub(bva, 1))
0 0 0 0 0 0 (reduceBit(bva) = 0, penalize)

(11)
Note that we checked for penalties in two cases (for the

initial bitvector bva and reduceBit(bva)), but only one case
was penalized. For at most k, a similar algorithm is used.
First, bitReduce is applied k times as in the regular cardinality
constraint version. Then, bitReduce is applied n− k times to
this bitvector (n is the size of bva) and before each application
it is asserted that the current bitvector is zero and is penalized
by some weight if it is not the case. Note that if we have some
hard constraint limiting the maximum number of bits that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

152

may be set in a bitvector to some kmax, we do not perform the
second part of the algorithm n−k times, but rather just kmax−
k times. This was used frequently in the implementation.

3.3 Constraints

Each constraint has its points of application and each point
generates a number of deviations. Cost of the constraint is
obtained by applying a cost function on the set of deviations
produced and multiplying it by a weight. A cost function may
simply be the sum of all deviations. Our current implementa-
tion supports cost functions of sums of deviations, while cost
function sum of squares of deviations is supported by the
model but not implemented. The HSTT specification allows
for other cost functions as well, such as square of sums, but
we do not have an encoding for them currently. Fortunately,
only two instances use nonsupported cost functions (Koso-
vaInstance1 and StPaulEngland instances). Some constraints
are always encoded as hard (e.g. Avoid Clashes Constraints,
Assign Times Constraints) and because of this we avoid dis-
cussing their soft constraint variants.

We simplify the objective function by not tracking the
infeasibility value, rather regarding it was zero or nonzero.
By doing so we simplify the computation, possibly offering a
faster algorithm.

E, T and R are sets of events, times and resources, re-
spectively. Each constraint is applied to some subset of those
three and will be denoted by Espec, Tspec and Rspec. These
subsets are naturally in general different from constraint to
constraint. Note that it is possible to have several constraints
of the same type, but with different subsets defined for them.

We present encodings used in the experimental results, in
which we assume that all resources are already assigned to
events. We make this assumption as this eases the modeling
and readability of the constraints. Later on we provide a de-
scription on how this limitation can be overcome.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

153

3.3.1 Assign Time Constraints

Every event must be assigned a given amount of times. For
example, if a lecture lasts for two hours, two time slots must
be assigned to it.

Each event’s Ye vector must have exactly d bits set, where
d is the duration of the event:

∧
∀e∈E

(exactly d[Ye,t : t ∈ T]) (12)

3.3.2 Avoid Clashes Constraint

Specified resources can only be used at most by one event at a
time. For example, a student may attend at most one lecture
at any given time.

Let E(r) be the set of event which require resource r. For
each resource r, each time slot i and each combination of
two Ye vectors of events from E(r) at most one bit at i − th
location may be set.

∧
∀r∈R∀e1,e2∈E(r)e1 6=e2

(= (and(Ye1, Ye2), 0)) (13)

For example, for resource r let E(r) = {Ye1, Ye2, Ye3} and
let this constraint be defined for r.

∧ 0 0 1 1 1 1 (Ye1)
0 1 0 0 0 0 (Ye2)
0 0 0 0 0 0 (= 0)

(14)

The previous check ensures that there are no clashes for
Ye1 and Ye2.

∧ 0 0 1 1 1 1 (Ye1)
0 0 0 0 1 0 (Ye3)
0 0 0 0 1 0 (6= 0, violated)

(15)

However, since a clash exists between Ye1 and Ye3, the con-
straint is detected to be violated and some changes to the Ye1,
Ye2, Ye3 bitvectors must be made.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

154

3.3.3 Avoid Unavailable Times Constraints

Specified resources are unavailable at certain times. For ex-
ample, a teacher might be unable to work on Friday.

For each resource r, each unavailable time slot i and each
Ye vector of events from E(r) we force the i− th bit to be set
to zero.

∧
∀r∈Rspec∀e∈E(r)∀i∈Tspec

(= (extract(Ye, i), 0)) (16)

If this constraint is used as a soft constraint, all of the
above clauses would be assigned the given weight, as points
of application are resources and deviations are calculated as
the number of times a resource is assigned to an unavailable
time.

For example, if time slots 1 and 4 are unavailable for re-
source r and event e requires r:

7 6 5 4 3 2 1 0 (time slot)
0 1 1 0 0 1 1 0 (Ye)

(17)

Ye would violate this constraint, as Ye is taking place on
time slot 1, which is a unavailable one, meaning that a differ-
ent bitvector needs to be assigned to Ye.

3.3.4 Split Events Constraints

This constraint has two parts.
The first part limits the number of starting times an event

may have within certain time frames. For example, an event
may have at most one starting time during each day, prevent-
ing it from being fragmented within days.

The second part limits the duration of the event for a single
subevent. For example, if four time slot must be assigned to
a Mathematics lecture, we may limit that the minimum and
maximum duration of a subevent is equal to 2, thus ensuring
that the lecture will take place as two blocks of two hours,
forbidding having the lecture performed as one block of four
hours.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

155

This constraint specifies the minimum Amin and maximum
Amax amount of starting times for the specified events:

∧
∀e∈Espec

(atLeast Amin[Se,t] ∧ atMost Amax[Se,t) (18)

In addition, this constraint also imposes the minimum dmin

and maximum dmax duration for each subevent.

∧
∀e∈Espec∀d∈ili<dmin∨i>dmax

(atMost 0[Ke,d]) (19)

If the constraint is specified as soft, then the soft cardinality
encodings are used instead. Points of applications are events
and deviations are calculated as the number of times an event
has been assigned a duration which is less than dmin or greater
than dmax, plus the amount by which the number of starting
times for the event event falls short of Amin or exceeds Amax.

3.3.5 Spread Events Constraints

Certain events must be spread across the timetable, e.g. in
order to avoid situations in which an event would completely
be scheduled only in one day.

An event group eg is a set of events. Let vector Zeg be a
bit vector which has its i − th bit set iff an event e ∈ eg is
taking place at time i. This is obtained by applying or to all
of the appropriate Ye vectors.

This constraint specifies event groups to which it applies,
as well as a number of time groups (sets of times) and for
each such time group the minimum and maximum number
of starting times an event must have within times of that
time group. Let TGspec denote this set of sets of times and let
masktg be the bit vector which has its i− th bit set iff i is a
time slot of time group tg:

There must be at least dmin
i starting times within the given

time groups (min is a subscript, not exponentiation):

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

156

∧
∀tgi∈TGspec
eg∈EGspec

(atLeast dmin
i [and(Zeg,masktg)]) (20)

A similar encoding to the one above is also used, but with
atMost dmax.

If this constraint is used as a soft constraint, the soft car-
dinality constraint is used instead. Points of application are
event groups (not events) and deviations are calculated as the
number by which the events group falls short of the minimum
or exceeds the maximum.

3.3.6 Distribute Split Events Constraint

This constraint specifies the minimal and maximum num-
ber of starting times of a specified duration. For example,
if duration(e) = 10, we may impose that the lecture should
be split so that at least two starting times must have duration
three. Formally:

There must be at least dmin starting times with given du-
ration d:

∧
∀e∈Espec

(atLeast dmin[Ke,d] ∧ atMost dmax[Ke,d]) (21)

3.3.7 Limit Busy Times Constraints

This constraints imposes limits on the number of times a re-
source can become busy within certain a time group, if the
resource is busy at all during that time group. For example, if
a teacher teaches on Monday, he or she must teach at least for
three hours. This is useful in preventing situations in which
teachers or students would need to come to school for only to
have a lesson or two.

A resource is busy at a time group tg iff it is busy in at
least one of the time slots of the tg. Let TGspec denote this
set of sets of times:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

157

∧
∀r∈Rspec

∀tg∈TGspec

(or(atLeast bmin[and(Ye,masktg)], (= (and(Ye,masktg)), 0)))

(22)

A similar encoding to the one above is also used, but with
atMost bmax. Note that in this case or represents logical or,
rather than bitvectoror.

If this constraint is used as a soft constraint, the soft cardi-
nality constraint is used instead, although special care must
be given as this is a conditional cardinality constraint: if the
calculated vector is different from zero then the cardinality
constraints need to be fulfilled. Points of application are re-
sources and each resource generates multiple deviations (one
for each time group) which calculated as the number by which
the events group falls short of the minimum or exceeds the
maximum.

3.3.8 Limit Idle Times Constraints

This constraint specifies the minimal and maximum number
of times in which a resource can be idle during the times in
the specified time groups. For example, a typical constraint
is to impose that teachers must not have any idle times.

A time slot t is idle with respect to time group tg (set
of times) if it is not busy at time t, but is busy at an early
time and at a later time of the time group tg. For example,
if a teacher teaches classes Wednesdays at Wed2 and Wed5,
he or she is idle at Wed3 and Wed4, but is not idle at Wed1
and Wed6. This constraint places limits on the number of idle
times for each resource. Let vector Ge,tg be the vector obtained
by taking or of bitvectors and(and(Ye,masktg), rshift((Ye,masktg), k))
where k = 1..n and n is the number of times in time group
tg. Let vector He,tg be similar, except using lshift instead of
rshift. We then encode the constraint as follows:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

158

There must be at least idlemin idle times during a time
group:∧

∀tg∈TGspec
r∈Rspec

(atLeast idlemin[and(inv(Ye), and(He,tg, Ge,tg))])

(23)
A similar encoding to the one above is also used, but with

atMost idlemax. If this constraint is used as a soft constraint,
the soft cardinality constraint is used instead.

3.3.9 Cluster Busy Times Constraints

This constraint specifies the minimal and maximum number
of specified time groups in which a specified resource can be
busy. For example, we may specify that a teacher must fulfill
all of his or her duties in at most three days of the week.

We first define a helper bitvector Br for each resource, in
which i− th bit is set iff the resource is busy at the i− th time
group. Therefore, i− th bit in Br is equal to the or operation
on all of the i− th bits of bitvectors in E(r). With this helper
bitvector, we may now encode the constraint as:

There must be at least bmin
tg busy time groups:

∧
∀r∈Rspec

(atLeast bmin
tg [Br]) (24)

A similar encoding to the one above is also used, but with
atMost bmax. If this constraint is used as a soft constraint,
the soft cardinality constraint is used instead.

3.3.10 Prefer Times Constraints

This constraint specified that certain events should be held
at certain times. If an optional parameter d is given, then
this constraint only applies to subevents assigned duration
d. For example, a lesson of duration 2 must be scheduled on
Monday, excluding the last time slot on Monday.

Let Pe be the bitvector in which i − th bit is set iff i is a
preferred time. We then encode:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

159

∧
∀e∈Espec

(atMost 0[and(?, inv(Pe))]) (25)

where ? is either Ye or Ke,d, depending on whether the
optional parameter d is given. Note that this constraint is not
the same when the optional parameter is not given and when
d = 1.

3.3.11 Order Events Constraints

This constraint specifies that one event can start only after
another one has finished. In addition to this, parameters Bmin

and Bmax are given which define the minimum and maximal
separations between the two events and are by default set to
zero and the number of time slots, respectively. The constraint
specifies a set of pairs of events to which it applies.

If the first event in a pair is taking place at time t, then
the second event cannot take place at time t + Bmin nor at
any previous times:

∧
∀(e1,e2)∈E2

spec

(< (lshift(ei, Bmin), ej)) (26)

A similar encoding to the one above is also used, but with
> and Bmax. Special care must be taken as overflows may
happen during the shift operations.

3.3.12 Link Events Constraints

Certain events must be held at the same time. For example,
physical education lessons for all classes of the same year must
be held together. This constraint specifies a certain number
of event groups and imposes that all events within an event
group must be held simultaneously. Let EGspec denote this
set of sets of events. All events within an event group must
be held at the same times:

∧
∀eg∈EGspec

ej∈eg

(atMost 0[and(Zeg, inv(Yej))]) (27)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

160

If the constraint is declared a soft one, the soft cardinal-
ity constraint is used instead. Points of application are event
groups (not events) and deviations are calculated as the num-
ber of times in which at least one of the events within the
event group is taking place, but not all of them.

3.3.13 Extending the Model

As mentioned in the beginning, we made the assumption that
all resources have been already assigned to events, as it is eas-
ier to model, implement and present the formulation. This is
a reasonable assumption, as most instances are of this form.
Still, a significant part of the instances require assignments
of resource to events. Our model is easy to extend with these
requirements by introducing new bitvectors: for each event e
and resource r, a bitvector is created in which i − th bit is
set iff resource r has been assigned to event e at time i. With
these bitvectors, the other resource assigning constraints (we
direct interested readers to [14]) can be encoded in a similar
fashion as the ones already presented, along with certain mod-
ifications need to be made to Assign Time and Avoid Clash
constraints.

However, special care needs to be given when doing so to
concrete instances, as requirements for resource assignments
can be diverse. For example, in instance SpainInstance given
in the ITC repository, assignments consist of assigning one
gym room out of two available. For instance EnglashStPaul,
room need to be assigned and many symmetries appear be-
cause all rooms are identical. Hence, it might be a better idea
to restrict the number of events at each time to the number
of rooms, rather than assigning rooms directly to events.

In addition, it may be of interest to simplify the Ke,d and Se

encodings which would simply state that if an event has three
consecutive bits set it is treated as a subevent of duration
3 rather than of the complicated formulation given or that
only the first constraint regarding Se should be used. The
reason the encoding is so complicated is because of the way

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

161

the general formulation specifies starting times, but this is
not necessary for all instances.

3.3.14 Other Theories

We have done some initial experiments with linear integer
arithmetic theories in two different formulations. One of the
formulations had variables which were restricted to binary val-
ues and the encodings were similar to a pure SAT formulation,
except that the cardinality constraints could be encoded more
elegantly. The second encoding took more advantage of the
integer arithmetic in which for each event we create a number
of variables equal to its duration. The value of the variable de-
termines which time slot the event takes place. This reduced
the number of variables significantly when compared to the
binary version, but some constraints were harder to encode.
However, regardless of that, both modeling options failed to
produce any solutions to problem instances, even when only
Assign Time, Avoid Clashes and Prefer Times constraints
were used. Therefore, we did not continue with these mod-
elings and continued with the bitvector formulation, which
performed better in these initial experiments.

4 Computational Results

In our current experiments we evaluated our approach on
some benchmark instances from HSTT which can be found on
the repository of the International Timetabling Competition
2011 [1]. A subset of instances which were suggested by the
competition as test beds, as well as the ones used in the com-
petition have been chosen (these two sets intersect). All tests
were performed on (Intel Core i3-2120 CPU @ 3.30GHz with
4 GB RAM) and each instance was given a single core. We
restricted the computational time to 24 hours per instance.

In the instances, the number of time slots ranges from 25
to 142, number of resources from 8 to 99, number of events
from 21 to about 350 (exception is the Italy4 instance with

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

162

748 events) with total event duration from 75 to around 1000.
These numbers are approximations and vary heavily from in-
stance to instance. We do not provide detailed information,
but direct the interested reader to [12] [1] [14].

In the tables below, we denote the objective function cost
by (x, y), where x is the infeasibility value and y is the objec-
tive value. If a dash is used, that means that the solver failed
to produce a solution. If an x is used, that means that we had
not provided an objective value, as in initial solution has been
generate in which only hard constraints had been considered
and the resulting objective value is essentially random.

We experimented with the SMT solver Yices 1.0.40 (re-
leased December 4, 2013) [6]. It was chosen because it is the
only SMT solver to our knowledge which directly supports
optimization, rather than just checking for satisfiability.

4.1 Comparisons of Results

We compare results we had obtained with our approach and
GOAL (the winning team of the competition). GOAL’s algo-
rithm first generates an initial solution using KHE [10] and
then performs its heuristic search algorithm. Note that the
initial solution generated can be unfeasible and in some cases
the algorithm fails to improve this solution to a feasible one.

In the table below we present the computational results. To
make our comparison fair, we ran our approach and GOAL on
the same computer platform and each solver was restricted to
24 hours and was given one core. The source code of GOAL
was provided by their authors [4]. The time to convert an
instance from xHSTT to a SMT instance is negligible (a few
seconds at most) when compared to the SMT solution process.

As we see in the table, we provide experimental results for
11 instances. Other instances were not included because the
current implementation does not support them. The reasons
for this are either that we did not yet implement constraints
which allow resource assignments (e.g. Assign Resource Con-
straints), use the square of sums (we currently do not have a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

163

model for this cost function) or the sum of squares cost func-
tion (we have a model for this cost function but is not yet
implemented).

The abbreviations used in the columns are as follows: OA
is our approach, GOAL is the winning team algorithm:

Name OA GOAL

BrazilianInstance1 (0, 47) (0, 54)

BrazilianInstance2 (0, 60) (1, 42)

BrazilianInstance4 (0, x) (16, 95)

BrazilianInstance5 (0, x) (4, 121)

BrazilianInstance6 (0, x) (4, 195)

BrazilianInstance7 (0, x) (11, 230)

SouthAfricaLewitt2009 (0, x) (0, 18)

SouthAfricaWoodlands (-, -) (2, 13)

GreeceHighSchool (0, 0) (0, 0)

ItalyInstance1 (-, -) (0, 19)

ItalyInstance4 (-, -) (0, 57)

Table 1 Results obtained after 24 hours.

There might be differences in the results obtained by GOAL
in the competition and obtained by our 24 hour runs, because
in the competition competitors in the final phase were given
one month to use whatever available resources to provide the
best results. We focus here on the comparison with the winner
of ITC competition, because we think that this gives a good
idea how good our approach performs in a limited amount of
time compare to one of best existing approaches for this prob-
lem. For some of the instances, better upper bounds were ob-
tained after the competition by GOAL and other approaches
without time or resource limitations.

It is interesting to note that Yices found an initial solu-
tion for all instance except three quickly (within 10 minutes
for all but SouthAfricaLewitt which took several hours), but
had not managed to perform any optimization for most in-
stances within the given time limit. Even so, as we can see
from Table 1, from the examples in which our encoding was

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

164

done successfully, our approach could find feasible solutions
in which GOAL could not in seven instances within the given
time limit. A feasible solution has been found for all except
for three instances. In the case of the Italy4 instance, the
program ran out of memory.

Overall, we conclude that the SMT approach can provide
feasible solutions in short time for several instances. Fur-
ther research is needed to successfully apply this technique
for the optimization variant. In general, it seems that SMT
strengths are in satisfiabiliy rather than optimization, while
GOAL could be used for optimizing solutions which are (near)
feasibility.

5 Conclusion

High school timetabling is a wide spread and important prob-
lem and because of this, developing algorithms to solve the
problem are of great importance.

In this paper, we have shown that the general HSTT prob-
lem [14] can indeed be modeled as a SMT problem, despite
the generality of the specification, with the exception of not
being able to model the square of sums of deviation cost func-
tion. We presented a complete and detailed encoding using
theory of bitvectors in the general sense as required by the
specification under the assumption that resources had been
preassigned to events, but have sketched how the model can
be extended and discussed some important special cases.

We implemented and evaluated our approach on a sub-
set of benchmark instances suggested and used by the Third
International Timetabling Competition 2011 and compared
our results with GOAL, the winning team of the Third In-
ternational Timetabling Competition 2011. For some of the
tested instance, our approach managed to find feasible solu-
tions within a given time limit and there is space for further
improvements. Generated encodings solve practical problems
and as such can be used as benchmarks for the evaluation of
SMT solvers.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

165

Furthermore, we plan on to investigate hybridization of
our approach with heuristic techniques (e.g. develop a large
neighborhood search algorithm) that will utilize SMT.

Acknowledgements The work was supported by the Vienna PhD School of Informatics
and the Austrian Science Fund (FWF): P24814-N23.

References

1. International timetabling competition 2011. http://www.utwente.nl/ctit/hstt/itc2011/welcome/.
Accessed: 2014-1-30

2. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: Version 2.0. In: Proceed-
ings of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh,
England), vol. 13, p. 14 (2010)

3. Bofill, M., Suy, J., Villaret, M.: A system for solving constraint satisfaction problems
with SMT. In: Theory and Applications of Satisfiability Testing–SAT 2010, pp. 300–305.
Springer (2010)

4. Brito, S.S., Fonseca, G.H.G., Toffolo, T.A.M., Santos, H.G., Souza, M.J.F.: A SA-VNS
approach for the high school timetabling problem. Electronic Notes in Discrete Math-
ematics 39, 169–176 (2012)

5. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Tools and Algorithms for
the Construction and Analysis of Systems, pp. 337–340. Springer (2008)

6. Dutertre, B., De Moura, L.: The Yices SMT solver. Tool paper at http://yices. csl. sri.
com/tool-paper. pdf 2, 2 (2006)

7. Even, S., Itai, A., Shamir, A.: On the complexity of time table and multi-commodity
flow problems. In: Foundations of Computer Science, 1975., 16th Annual Symposium
on, pp. 184–193. IEEE (1975)

8. Fonseca G. H. G., S.H.G.T.T.A.M.B.S.S.S.M.J.F.: A SA-ILS approach for the high
school timetabling problem. In: In Proceedings of the ninth international conference on
the practice and theory of automated timetabling, PATAT (2012)

9. Kheiri, A., Ozcan, E., Parkes, A.J.: HySST: hyper-heuristic search strategies and
timetabling. In: Proceedings of the Ninth International Conference on the Practice
and Theory of Automated Timetabling (PATAT 2012) (2012)

10. Kingston, J.H.: The KHE high school timetabling engine (2010)
11. Nieuwenhuis, R., Oliveras, A.: On SAT modulo theories and optimization problems.

In: Theory and Applications of Satisfiability Testing-SAT 2006, pp. 156–169. Springer
(2006)

12. Post, G., Ahmadi, S., Daskalaki, S., Kingston, J., Kyngas, J., Nurmi, C., Ranson,
D.: An XML format for benchmarks in high school timetabling. Annals of Op-
erations Research 194(1), 385–397 (2012). DOI 10.1007/s10479-010-0699-9. URL
http://dx.doi.org/10.1007/s10479-010-0699-9

13. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third inter-
national timetabling competition. Annals of Operations Research pp. 1–7 (2012)

14. Post, G., Kingston, J.H., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi,
C., Musliu, N., Pillay, N., Santos, H., et al.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research pp. 1–7
(2011)

15. Sørensen, M., Dahms, F.H.: A two-stage decomposition of high school timetabling ap-
plied to cases in Denmark. Computers & Operations Research 43, 36–49 (2014)

16. Sørensen, M., Kristiansen, S., Stidsen, T.R.: International timetabling competition 2011:
An adaptive large neighborhood search algorithm. In: Proceedings of the Ninth Inter-
national Conference on the Practice and Theory of Automated Timetabling (PATAT
2012), p. 489 (2012)

17. Sørensen, M., Stidsen, T.R.: Comparing solution approaches for a complete model of
high school timetabling. Tech. rep., DTU Management Engineering (2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

166

Indoor football scheduling

Dries Goossens · Frits Spieksma

Abstract This paper deals with a real-life scheduling problem from an am-
ateur indoor football league. The league consists of a number of divisions,
in each of which a double round robin tournament is played. The goal is to
develop a schedule which avoids close successions of matches involving the
same team. This scheduling problem is interesting, because matches are not
planned in rounds. Instead, each team has a number of time slots available to
play its home games. Furthermore, in contrast to professional leagues, alter-
nating home and away matches is hardly relevant. We present a mathematical
programming formulation and a heuristic based on tabu search, which resulted
in high-quality schedules that have been adopted in practice.

Keywords scheduling · non-professional · indoor football · time-relaxed ·
tabu search

1 Introduction

In this paper, we discuss the sports scheduling problem faced by the “Liefheb-
bers Zaalvoetbal Cup (LZV Cup)”, an amateur indoor football league founded
in 2002. This league currently involves 87 teams, all situated in the vicinity of
Leuven (Belgium), grouped in 6 divisions. The LZV Cup focusses on teams that

D. Goossens
Ghent University, Faculty of Economics and Business Administration
Management Information Science and Operations Management
Tweekerkenstraat 2, B-9000 Ghent
E-mail: dries.goossens@ugent.be

F. Spieksma
K.U. Leuven, Faculty of Business and Economics
Operations Research and Business Statistics
Naamsestraat 69, B-3000 Leuven
E-mail: frits.spieksma@kuleuven.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

167

consist of friends, is open to all ages, and considers fair play of paramount im-
portance. The matches are played without referees, since, according to the or-
ganizers, “referees are expensive, make mistakes, and invite players to explore
the borders of sportsmanship” (see also http://www.lzvcup.be [in Dutch]).

Academic interest for scheduling amateur leagues is rather limited, com-
pared to the attention that professional leagues receive. Perhaps this can be
explained by the fact that a lot less money is involved with non-professional
leagues. In addition, scheduling constraints coming from broadcasting rights,
security forces, public transport, media and fans usually are non-existing. This
does not imply however that amateur scheduling problems are less challenging
than their professional counterparts. Indeed, stadium or ground availability
is in general more limited, because the team’s venue tends to be shared with
other teams or sports disciplines. Moreover, practical considerations for the
players are far more important, since they have other activities (e.g. family,
work) as well.

In our indoor football scheduling problem, there are multiple divisions. In
each division, each team plays against each other team twice. The teams pro-
vide dates on which they can play a home game, and dates on which they
cannot play at all. The league organizers are not worried by (long) series of
consecutive home games (or away games), but do not want a close succession
of two matches featuring the same teams. The goal is to develop a schedule for
each of the divisions, where each team has a balanced spread of their matches
over the season.

In section 2, we give a formal description of the problem, followed by an
overview of the literature on related problems in section 3. We provide a math-
ematical formulation in section 4, which is used to tackle to the problem with
Ilog Cplex. In section 5, we develop a heuristic approach, based on tabu search.
Computational experiments with both methods for real-life problem instances
we solved for the LZV Cup are described in section 6. The paper ends with
conclusions and future work in section 7.

2 Problem description

In this section, we provide a formal problem description, and we introduce
the notation used in the remainder of this paper. The teams in the LZV Cup
are grouped according to their strength into a division. In each division, a
double round robin tournament is played, i.e. each team meets each other
team twice (once at its home venue, and once at the opponent’s venue). Apart
from the number of teams, the problem description is identical for all divi-
sions. A division has a set of teams T , with |T | = n, and a set of time slots
S = {1, 2, ..., |S|}, ranging from the first day of the season till the last. All

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

168

matches should be played within this time frame.

Each team i ∈ T provides a list of time slots Hi ⊆ S for which their home
ground is available. Home games for a team can only be scheduled on time slots
from this list. Obviously, if each match is to be scheduled, each team should
at least provide as many time slots as it has opponents, i.e. |Hi| > n− 1. This
list is called the home game set. Some teams may have a slot on the same
weekday every other week; other teams may have a more irregular home game
set. Each team can also provide a list of calender days Ai ⊆ S on which it
doesn’t want to play a match; we call this list the forbidden game set. Teams
can use this list to avoid matches in the Christmas and New Year period, on
holidays, during an exam period, etc. The forbidden game set implies that on
all days not in the list, the team is able to play an away game. We assume that
Hi ∩ Ai = ∅. A team is not allowed to play twice on the same day, or more
than twice in a period of Rmax days. Finally, there should also be at least m
calendar days between two matches featuring the same teams. Notice that it
is allowed to meet an opponent for the second time, before all other opponents
have been faced once.

In summary, we have the following constraints:

– each team plays a home match against each other team exactly once [C1]
– home team availabilities Hi are respected [C2]
– away team unavailabilities Ai are respected [C3]
– at least m days between two matches with the same teams [C4]
– each team plays at most one game per day [C5]
– each team plays at most 2 games in a period of Rmax days [C6]

The goal is to develop a schedule with for each team a balanced spread of
their matches over the season. More in particular, teams wish to avoid having
two matches in a period of Rmax days or less. We use pr to denote the penalty
incurred for every pair of consecutive matches played by a team within period
of r ∈ R = {2, 3, ..., Rmax} days. Obviously, having 2 matches in 2 days is
considered more unpleasant than having 2 matches in 4 days. The main idea
behind this, is that most players prefer not to fully spend their weekend with
their sport. Moreover, matches packed together could also lead to injuries. If a
team has more than Rmax days between two consecutive matches, we assume
that the league organizers no longer care, and consider any number greater
than Rmax as equally adequate. Constraint C1 is in fact interpreted as a soft
constraint, i.e. it is possible not to schedule a match, but only at a high cost.
This guarantees feasibility of any instance (e.g. in case some team does not
provide enough time slots for which their home ground is available). In prac-
tice, if a match cannot be scheduled, the league organizers leave it to the home
team to find a suitable date and location to play the match (if the home team
fails to organize the match, they lose the game).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

169

3 Related work

A large number of sports scheduling papers deal with professional leagues (see
e.g. [2], [4], and [6]; for a complete overview we refer to [9]). Academic inter-
est in problems faced by amateur leagues is far more rare. In general, there
are two main differences between professional and amateur leagues. Firstly,
in amateur leagues matches are typically not planned in rounds. Scheduling
problems in sports leagues can be divided into two types: temporally con-
strained and temporally relaxed problems. In the first type, the matches are
grouped in rounds, and no more than the minimum number of rounds required
to schedule all the matches is available. For leagues with an even number of
teams, this means that each team plays exactly once in each round. Nowa-
days, all European professional football schedules are temporally constrained
[7]. With temporally relaxed problems, the number of rounds is larger than
the minimum number of rounds needed. In this case, some teams will have one
or more rounds without a match. In the cricket world cup as reported in [1], 9
teams play a single round robin tournament, resulting in 36 games that need
to be scheduled in a 26-day period. In this tournament, several constraints
and practical considerations need to be respected, resulting in a schedule that
is suitable for a worldwide TV audience. The Australian state cricket sea-
son also provides a temporally relaxed scheduling problem, where one of the
constraints is that matches between the 6 states must be scheduled around
predetermined international and test match fixture dates [15]. Scheduling the
National Hockey League, as discussed in [3], involves planning 82 games per
team in a period of 28 weeks. In addition to other constraints, no team should
not play games on three days straight, nor should it play more than three
games in five consecutive days. In our problem, the slots themselves can be
seen as rounds, making the schedule extremely temporally relaxed.

Secondly, successions of home or away matches (breaks) are hardly relevant
in amateur leagues. The main reason is that there are usually few spectators,
and the home advantage is quite limited. Only extremely long series of consec-
utive home or away matches could be problematic. In our problem, however,
they are unlikely, because a team’s home game set is usually well balanced
over the season, and the number of days where its home venue is available
is not much larger than the number of home games. In professional leagues,
however, alternation of home and away matches is usually the most important
constraint. This is illustrated by the popularity of the so-called “first-break,
then schedule” approach (see e.g. [11]), and the attention for the break min-
imization problem (see e.g. [12]). A break in this alternating sequence is not
desirable for the spectators, and less spectators tend to show up for the second
or third home match in a row [5].

The concept of a list of dates on which no game should be scheduled for
some team has been introduced in [13]; they call it suspension dates. The
authors discuss a scheduling problem from a regional amateur table-tennis

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

170

federation in Germany, involving more than 30 leagues. This scheduling prob-
lem is quite similar to ours. In each league a double round robin tournament
is played; the schedule is temporally relaxed. All games have to be scheduled
within a given period, while each team may be involved in at most one game
per day. Home teams provide a list of permitted dates, and away teams can
also specify a number of dates on which they are not available. The teams
also specify the number of days-off they want between two successive games.
Unlike in our problem, the season is split in two halves, such that each teams
meets each other team once in each half. Furthermore, to be able to make
a meaningful ranking, the season is subdivided into six time periods of equal
length, and the number of matches that each team has to play in each period is
constrained by a lower and an upper bound. The authors solve this scheduling
problem with a permutation based genetic algorithm for which feasibility pre-
serving operators are defined. In a follow-up paper [14], the authors propose
a memetic algorithm, backed by a constraint propagation based heuristic and
use a co-evolutionary approach.

Knust [10] also starts from the table-tennis scheduling problem discussed
in [13], but adds a number of constraints (e.g. some matches should be played
on weekend days (instead of weekdays), and some matches should be sched-
uled in specific time intervals). More importantly, for each team home and
away matches should be scheduled alternately (i.e. breaks should be avoided).
Knust [10] models the problem as a multi-mode resource-constrained project
scheduling problem, for which a 2-stage heuristic solution algorithm is pro-
posed, involving local search and genetic algorithms.

4 A mathematical formulation

In this section, we write the scheduling problem more formally as an integer
problem. Our main decision variable is xijs, which is 1 if team i plays a home
game against team j 6= i on slot s, and 0 otherwise. The variable yist is 1
if team i plays a match on slot s, followed by its next match on slot t, for
each s and t such that t > s and t − s + 1 6 Rmax, and 0 otherwise. The
variable uij is 1 if no home game of team i against team j is scheduled, and 0
otherwise. Each unscheduled match results in a penalty P . We can now write
the following formulation for our problem:

minimize
∑
i∈T

∑
j∈T :i 6=j

Puij+
∑
i∈T

∑
s∈S

∑
t∈S

pt−s+1yist

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

171

subject to ∑
s∈Hi\Aj

xijs + uij = 1 ∀i, j ∈ T : i 6= j (1)

∑
j∈T

(xijs + xjis) 6 1 ∀i ∈ T, s ∈ S (2)

yist 6
∑
j∈T

(xijs + xjis) ∀i ∈ T, s, t ∈ S (3)

yist 6
∑
j∈T

(xijt + xjit) ∀i ∈ T, s, t ∈ S (4)

∑
j∈T

(xijs + xjis) +
∑
j∈T

(xijt + xjit)

−
∑
j∈T

t−1∑
k=s+1

(xijk + xjik)− 1 6 yist ∀i ∈ T, s, t ∈ S (5)

xijs + xjis′ 6 1 ∀i, j ∈ T, s ∈ Hi, s
′ ∈ Hj : |s− s′| < m (6)∑

j∈T

s+Rmax−1∑
k=s

(xijk + xjik) 6 2 ∀i ∈ T, s ∈ S (7)

xijs = 0 ∀i, j,∈ T, s /∈ Hi ∨ s ∈ Aj (8)

xijs ∈ {0, 1} ∀i, j,∈ T, s ∈ S (9)

yist ∈ {0, 1} ∀i ∈ T, s, t ∈ S (10)

uij ∈ {0, 1} ∀i, j ∈ T : i 6= j (11)

The objective function minimizes the number of unscheduled matches, and
penalizes each pair of matches scheduled within Rmax days. The first set of
constraints ensures that each team meets each other team exactly once in
a home game, unless the match is not scheduled. Consequently, each team
will meet each other team exactly once in an away game as well, and these
constraints are sufficient to construct a double round robin tournament [C1].
The next set of constraints make sure that each team plays at most once per
time slot [C5]. Constraints (3)-(5) keep track of the number of days between
two consecutive matches featuring the same team. The next set of constraints
puts at least m calendar days between the two confrontations of a pair of
teams [C4]. Constraints (7) enforce that a team plays at most two matches in
a period of Rmax slots [C6]. Constraints (8) make sure that there is no match
between two teams on a particular time slot if the home team does not have its
venue available [C2], or if the away team marked this time slot in its forbidden
game set [C3]. The final sets of constraints state that all variables are binary.

5 A heuristic approach

This section describes our heuristic approach, which is based on tabu search.
The core component of our algorithm consists of solving a transportation prob-
lem, which schedules (or reschedules) all home games of a team i ∈ T . This

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

172

.

.

All slots in
team i’s
home game
set Hi

.

.

Opponents of
team i

d

day 5

day 19

day 258

team a

team b

team n

q

Fig. 1 The graph Gi (example)

transportation problem is explained in section 5.1. Our heuristic approach
consists of three phases: the construction phase (section 5.2), the tabu phase
(section 5.3), and the perturbation phase (section 5.4).

5.1 Transportation problem

For any given team i, we construct a bipartite graph Gi = (U, V,E) as follows.
We have a set of supply nodes U , containing a node with supply equal to 1 for
each slot s ∈ Hi, i.e. the home team set of team i, and a node q with supply
equal to n−1, corresponding to an unscheduled slot. The set of demand nodes
V has a node with demand equal to 1 for each opponent of team i, i.e. T \{i},
and a node corresponding to a dummy team. The demand of this last node is
such that total supply equals total demand. Figure 1 represents an example
of Gi.

The costs for each edge in E are set as follows. The costs on the edges be-
tween the dummy team node and any node in U \ {q} are zero (dashed edges
in Figure 1). The costs on the edges from node q to the non-dummy nodes are
equal to P (dotted edges in Figure 1). Finally, an edge from a node u ∈ U
corresponding to a home slot s ∈ Hi and a node v ∈ V corresponding to a
team j ∈ T \ {i} has a cost that corresponds with inserting a home game of
team i against j on time slot s in the current schedule (more details follow in
Sections 5.2 and 5.3). If no matches involving team i or j have been scheduled
so far, then the cost is zero. These edges correspond to the solid edges in Fig-
ure 1, and we will refer to them as such in the remainder of this text. Notice
that the graph need not be complete: indeed, if the time slot corresponding
to node u is in team j’s forbidden game set, then there is no edge between u
and j. Solving this transportation problem will schedule (or reschedule) the
home games of team i; if flow is sent from node q to some opponent j, the
home game of i against j is not scheduled. Notice that by construction, this
problem is always feasible.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

173

5.2 Construction phase

In the construction phase, we solve the transportation problem sequentially,
for each team i ∈ T . The order of the teams is determined by Hi: we start
with the team with the lowest number of available home game slots. The end
result of the construction phase is a schedule (where some matches possibly
remain unscheduled).

Initially, no matches have been scheduled, and hence the cost on the solid
edges is zero. During the construction phase, the schedule will gradually be
filled with matches, and the costs on the solid edges will increase accordingly.
Indeed, the cost of an edge from a node u ∈ U to a node v ∈ V , corresponding
to scheduling the home game of team i against j on time slot s, will depend on
the previous and next match of i, and the previous and next match of j in the
preliminary schedule, with respect to time slot s. For instance, assume that a
match of team b has been scheduled on day 21, and an away game of team i
has been planned on day 18. In this case, the cost of the edge between day 19
and team b in Figure 1 is set to p1 + p2, which corresponds to the increase in
objective function value of the mathematical formulation described in section
4 if a match between i and team b is inserted on day 19.

Furthermore, an edge from u to v, which corresponds to planning team
i’s home game against team j on time slot s is removed if at least one of the
teams i and j already has a match scheduled on slot s, or if the match j − i
is already scheduled within m days of slot s.

Notice that there is in fact not a full correspondence between the objec-
tive function in section 4 and the costs as presented in this section. Indeed,
when scheduling the home games of team i, we do not take into account costs
related to scheduling two successive home games of i in less than Rmax days
(only away matches of team i are considered for this). Consequently, the total
cost resulting from solving the transportation problem is an underestimation
of the cost in the problem description section. In practice, however, this has
little or no effect, since teams almost never specify two home game slots with
less than Rmax days in between (for the majority of the teams, the home
ground is available on a fixed weekday, every other week).

5.3 Tabu phase

Tabu search is a heuristic search procedure which goes back to Glover [8] and
has proven its value in countless applications. In our implementation, the tabu
phase works with a tabu list of length 5, and is initially empty. We randomly
pick a team i which is not in tabu list, and add it to the tabu list. Next we
remove all the home games of this team from the current schedule, and solve

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

174

the transportation problem for this team.

If the resulting schedule is better than previous schedule, we accept the
new schedule and continue the tabu search phase with a new randomly picked
team (different from i). In the other case, we impose changes to the home
game assignment of team i. We do this by sequentially resolving the trans-
portation problem, each time with a different solid edge that was part of the
previous schedule removed from the graph. From these solutions we select the
best one, and accept the resulting schedule. Notice that this schedule may
be worse than the previous schedule. Also in this case, we continue the tabu
search phase with a new randomly picked team (different from i).

5.4 Perturbation phase

In order to escape local optima, we apply the following perturbation of the
current schedule if 500 iterations without improvement of the best schedule
found so far occur. We randomly remove 10% of the scheduled matches, in or-
der to open up some space in the schedule, and continue the tabu search phase.

6 Computational results

We solved the indoor football scheduling problem for all divisions for the sea-
sons 2009–2010 till 2012–2013, which corresponds with 18 instances. Most
divisions have 15 teams, although some division have 13 or 14 teams. The
season is played from September 1st to May 31st, which results in |S| = 273
(leap years excepted). The home game set of a team has on average 4.4 slots
more than what is needed for the league. However, in two instances, a team
provided less home game slots than it has opponents, which inevitably leads
to unscheduled matches. On average, teams ask not to play a match on 17
days. However, it turns out that 19 teams have a forbidden game set that
contains more than the allowed 28 days. This is tolerated, since most of these
teams also provide a home game set that largely exceeds the requirements. In
the opinion of the league organizers, it suffices to have 3 days between two
successive matches for a team (i.e. Rmax = 4). The penalties were chosen as
follows: p2 = 10, p3 = 3, p4 = 1. We set P = 1, 000 in order to maximize
the number of scheduled matches, and to be able to clearly distinguish the
contribution of unscheduled matches from matches in close succession in the
objective function value.

We implemented the formulation provided in section 4 using IBM Ilog
Cplex, version 12.2. Notice that constraints (10) and (11) can be relaxed by
stating that all y and u variables should be between 0 and 1. Indeed, given

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

175

Table 1 Results for real-life instances from seasons 2009–2010 till 2012–2013

IP formulation Heuristic

Instance Teams Best solution Lower bound Comp. Time (s) Best solution

1 14 0 0 18 0
2 14 16 0 5000 14
3 15 57 43 5000 2055
4 15 68 19 5000 2049
5 15 3000 3000 50 3000
6 15 27 0 5000 23
7 15 43 20 5000 55
8 15 2087 2067 5000 3086
9 13 0 0 9 0
10 14 21 0 5000 8
11 15 0 0 1976 0
12 15 50 12 5000 39
13 15 29 0 5000 11
14 15 7 0 5000 4
15 15 8 8 971 1006
16 15 113 60 5000 1065
17 15 60 9 5000 1052
18 15 2010 2000 5000 2006

the objective function, the integrality conditions on the x variables (9) are
sufficient to ensure that the y and u variables are 0 or 1. All models were
run on a Windows XP based system, with 2 Intel Core 2.8GHz processors,
with a maximum computation time of 5000 seconds. The heuristic was imple-
mented using C++ and run on the same machine, however with a maximal
computation time of 500 seconds. The transportation problems were solved to
optimality using an implementation of Kuhn-Munkres algorithm.

Table 1 presents our computational results. The first two columns provide
the instance number and the number of teams in this division. The next two
columns show the best found solution and lower bound found within the given
computation time using the IP formulation. Only 5 of the 18 instances were
solved to optimality; for other instances the maximal number of matches was
scheduled, given team availabilities. The computation times in the fifth col-
umn indicate that if Cplex manages to find and prove optimality, this usually
happens rather quickly. The final column shows the best found solution by
our heuristic. In 4 cases, the heuristic approach found an optimal solution,
however, for 6 instances, the heuristic failed to schedule the maximal number
of matches. This is not as bad as it may appear in terms of objective function
value, since in practice, a date for an unscheduled match is settled through
negotiations under the responsibility of the home team. It is striking that in
7 cases, the heuristic resulted in a better solution than Cplex, despite being
given 10 times less computation time.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

176

7 Conclusions and future research

In this paper, we described and solved a sports scheduling problem for the
LZV Cup, an amateur indoor football competition. This scheduling problem
is interesting, because matches are not planned in rounds. Instead, each team
has a number of time slots available to play its home games; away teams
can specify days on which they are not able to play. Furthermore, successions
of home or away matches are irrelevant. The goal is to balance each team’s
matches over the season, in the sense that there should be no close succession
of matches involving the same team.

We developed an integer programming formulation and a heuristic ap-
proach, and used them to generate schedules for all divisions for the seasons
2009–2010 till 2012–2013. Overall, the performance of the tabu search based
heuristic is comparable to that of Cplex, however, the reduced computation
time, and the absence of expensive licenses make the heuristic implementation
more suitable for (amateur) competitions such as the LZV Cup. These sched-
ules were approved by the league organizers and have been implemented in
practice, much to the satisfaction of the participating teams. In rare occasions
where not all matches could be scheduled, the organizers appreciated that our
approach makes it clear with which team to put the responsibility to find a
solution.

Some future work remains. First of all, it would be interesting to integrate
the planning of the cup competition in the scheduling process. Indeed, if the
cup and the league are planned together instead of sequentially, an even bet-
ter spread of the matches could be accomplished. Indeed, all teams take part
in a cup competition, creating dependencies between the division schedules.
Currently this matter is handled by scheduling the first round matches of the
cup competition beforehand, simply by using the first time slot for which the
home team has its venue available and which is not mentioned in the visitor’s
forbidden game set. If no such time slot exists between September 1st and
October 15th, then we invert the home advantage. If this still does not result
in a solution, we remove this cup match from the schedule, and leave it up to
both opponents to find a suitable time slot themselves (e.g. by finding another
venue). With this procedure, the divisions can be scheduled independently
from each other. Whereas simultaneous scheduling of all divisions and the cup
could clearly improve the quality of the schedules, a formulation like the one
provided in section 4 may not be tractable in this case, even for advanced IP
solvers. It could also be interesting to make an educated guess about which
teams will survive the first and the following rounds in the cup, such that for
these strong teams, we can leave gaps in their league schedule such that future
cup matches can be fit in more easily. Finally, it would also be interesting
to test the performance of the heuristic on a number of instances from other
(amateur) indoor sports.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

177

References

1. Armstrong, J. & Willis, R. (1993). Scheduling the cricket world cup - a case study, Journal
of the Operational Research Society 44: 1067–1072.

2. Bartsch, T., Drexl, A. & Kroger, S. (2006). Scheduling the professional soccer leagues of
Austria and Germany, Computers and Operations Research 33(7): 1907–1937.

3. Costa, D. (1995). An evolutionary tabu search algorithm and the NHL scheduling prob-
lem, INFOR 33: 161–178.

4. Della Croce, F. & Oliveri, D. (2006). Scheduling the Italian Football League: an ILP-
based approach, Computers and Operations Research 33(7): 1963–1974.

5. Forrest, D. & Simmons, R. (2006). New issues in attendance demand: The case of the
English football league, Journal of Sports Economics 7(3): 247–266.

6. Goossens, D. & Spieksma, F. (2009). Scheduling the Belgian soccer league, Interfaces
39(2): 109–118.

7. Goossens, D. & Spieksma, F. (2011). Soccer schedules in Europe: an overview, Journal
of Scheduling 15(5): 641–651.

8. Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.
Computers and Operations Research 13(5): 533-549.

9. Kendall, G., Knust, S., Ribeiro, C. & Urrutia, S. (2010). Scheduling in sports: An anno-
tated bibliography, Computers and Operations Research 37: 1–19.

10. Knust, S. (2010). Scheduling non-professional table-tennis leagues, European Journal of
Operational Research 200: 358–367.

11. Nemhauser, G. & Trick, M. (1998). Scheduling a major college basketball conference,
Operations Research 46: 1–8.

12. Post, G. & Woeginger, G. (2006). Sports tournaments, homeaway assignments, and the
break minimization problem, Discrete Optimization 3: 165–173.

13. Schönberger, J., Mattfeld, D. & Kopfer, H. (2000). Automated timetable generation for
rounds of a table-tennis league, In: Zalzala, A. (Ed.), Proceedings of the IEEE Congress
on Evolutionary Computation, pp. 277–284.

14. Schönberger, J., Mattfeld, D. & Kopfer, H. (2004). Memetic algorithm timetabling for
non-commercial sport leagues, European Journal of Operational Research 153: 102–116.

15. Willis, R. & Terrill, B. (1994). Scheduling the australian state cricket season using
simulated annealing, Journal of the Operational Research Society 45: 276–280.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

178

Asynchronous Island Model Genetic
Algorithm for University Course Timetabling
Alfian Akbar Gozali

Telkom University

Tel.: +62-22-7564108

Fax.: +62-22-7562721

Email: alfian@telkomuniversity.ac.id

Jimmy Tirtawangsa

Telkom University

Tel.: +62-22-7564108

Fax.: +62-22-7562721

Email: tirtawangsa@yahoo.com

Thomas Anung Basuki

Telkom University

Tel.: +62-22-7564108

Fax.: +62-22-7562721

Email: tirtawangsa@yahoo.com

Abstract University course timetabling problem (UCTP) is similar to general timetabling

problems with some additional unique parts. UCTP involves assigning lecture events to timeslots

and rooms subject to a variety of hard and soft constraints. Telkom University has almost similar

problem with its course timetabling. The current solution with Informed Genetic Algorithm for

Telkom University UCTP still has the time consuming problem.

Island Model informed Genetic Algorithm was used in this research to solve this problem. The

idea of this research is making distributed model exchanges an island’s local best Individu with

another island. Island model GA could create university course timetabling in reasonable time.

This distributed model could run faster rather than single machine model decreasing constraint

violations to reach optimum fitness. It could have less constraint violations because it could escape

from stagnant local optimum easier. Island model GA could even produce great accuracy for

Telkom University dataset (99.74%) and acceptable accuracy at 96.80% for Purdue dataset for

student level timetabling.

Keywords UCTP, informed genetic algorithm, island model genetic algorithm

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

179

1 Introduction

University course timetabling problem (UCTP) is general timetabling problems

with some additional unique parts [2]. One of the most recently studied for UCTP

is the application of genetic algorithms (GAs), which are based on the theory of

evolution [4], and that have proved to be efficient for problems of moderate and

realistic size [5, 6, 7]. It is well known that fitness evaluation is the most time

consuming part of the genetic programming (GAs) system. This limits the types

of problems that may be addressed by GAs, as large numbers of fitness cases

make GAs runs impractical.

Telkom University had almost similar problem with its course timetabling.

University timetabling for Telkom University has been previously studied by

Suyanto [9, 10] by implementing informed GA. The result was great, it can reduce

student meeting violation down to 741 from 58,660 student meetings [10]. But it

took until 3 days in practice.

Generic approach for university timetabling was done by Hana Rudová,

et.al. [11]. They built a generic timetabling engine named UniTime [12].

However, it is not generic enough as several constraints required for Telkom

University timetabling are not covered, for example “some special lecturers

should be scheduled in their time constraints”, “lecturer meeting spread”, and

“lecturers time preferences”. Moreover the result of UniTime may not be useful

for Telkom University. When the Telkom University timetabling constraints are

simplified to meet UniTime requirements, its resulting schedule still has high

number of conflicts.

2 Telkom University Timetabling Problem

Telkom University has 6,570 students in 4 departments and 9 study

programs. In one semester, there are 316 lecturers with 1,034 lecture meetings and

58,660 student meetings to schedule. It has 80 rooms categorized in 4 different

capacities: extra-large (XL), large (L), medium (M) and small (S). There are 24

time slots per week, and have high occupancy of more than 78.11%.

Previously, there was a research attempt conducted by Suyanto [10]. He

claimed that the most challenge in this case is that the courses are conducted in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

180

around 4 parallel classes in average and up to 27 parallel classes in maximum. It

makes reducing student conflicts is complex.

3 Genetic Algorithm Model

Refer to the [10]; GA variant used in this research is Informed Genetic

Algorithm (IGA). Directed mutation is also used for this research. This research

used only mutation process but not mutation and crossover like Karol [16] did.

Because crossover just scrambles the genes and does not make significant fitness

improvement [9].

3.1 Fitness Function

Penalty determines the value of an interest. Higher penalty value means

more important constraint. Fitness value can be calculated by the formula:

(1)

Where N is the total number of events, pi is declared value limits for

penalty for all i and Vi is the number of violations that occurred on the i-th

constraint. This fitness function is inverted fitness. Therefore, smaller fitness

value shows better solution and bigger fitness value shows worse solution.

3.2 Hard and Soft Constraints

Hard constraints (HC) are constraints that must be met. While soft

constraints (SC) have no restrictions to be complied with, but should be met in

order to improve quality of the class schedule. This research used same

constraints with [10] that have 12 constraints (5 HCs and 7 SCs) in total.

4 Island Model Genetic Algorithm

Architecture of island model GA used in this research consists of two

types of islands: master and slave islands. Island model architecture used in this

research described as below:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

181

Figure 1. View of Asynchronous Island Model GA (Architecture Level)

Master Island works as a controller who distributes the given Individu to

Slave Islands based on optimum fitness. Master Island can be attached to same

computer with one of the slave islands because of its low resource consuming

process. Slave Islands are the computational processor in the Island Model GA. It

does mutation, fitness evaluation, and selection between iteration/generation

processes. Individual or chromosome is a result representation of the GA process.

This Island Model will be run in asynchronous way. This means each

island runs its own process independently. Process in one island is not directly

depended on other island process. But at certain time, this island will take in

another island’s result to make better result. Figure 2 will explain the process of

asynchronous island model used in this research.

Figure 2. View of Asynchronous Island Model GA (Process Level)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

182

5 Constraints Mapping

One of these research objectives is to compare result of the current world

best-known solution [12] with proposed Island Model GA for university course

timetabling problem. It must be defined and mapped the format and constraint

mapping from UniTime to Telkom University data format and vice versa.

5.1 Constraint Mapping from Island Model GA into UniTime

The constraint mapping from Island Model GA into Unitime constraint is

listed in Table 2. Can be seen that there are some Island Model GA constraints

cannot be mapped into UniTime constraints directly.

Table 1. Constraint Mapping Island Model GA to Unitime

Island Model GA UniTime

No lecturer conflict No lecturer conflict

No class conflict No class conflict

Lecture suitable capacity room Lecture suitable capacity room,

SAME_ROOM

Lecturers time departments cons Lecturers time departments cons

Some special lecturers should be

scheduled in their time constraints

Not supported directly

Lecturer meeting spread Not supported directly

Class meeting spread SPREAD

Lecturers time preferences Not supported directly

Time constraints between meetings of the

same lectures

NHB_GTE, NHB_LT, NHB

Time constraints between different

lecture meetings in the same group

NHB_GTE, NHB_LT, NHB

Minimizing student conflicts Minimizing student conflicts

5.2 Constraint Mapping from Unitime GA into Island Model

The constraint mapping from Island Model GA into Unitime constraint is

listed in Table 3. Can be seen that there are some Island Model GA constraints

cannot be mapped into UniTime constraints directly:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

183

Table 2. Constraint Mapping from Unitime GA into Island Model

UniTime Island Model GA

SAME_ROOM (same room) Supported

SAME_TIME (same time) Supported

SAME_START (same start time) Supported

SAME_DAYS (same days) Supported

BTB_TIME (back-to-back time) Not supported

BTB (back-to-back) Not supported

NHB_GTE(1) Not supported

NHB_LT(6) Not supported

NHB(x) (x hr(s) between) Not supported

DIFF_TIME (different time) Not supported

SPREAD (time spread) Supported

6 Results

Population/sampling used in this research is Telkom University 2011-12 odd

semester schedule and Purdue University 2007 fall lecture large room [12]. The

result of system performance testing scenario for Telkom University course

timetabling with Island Model GA are shown in Table 5.

Table 3. Fitness comparison in scenario 1

Island numbers
Execution

time

Optimum

fitness

Number of

Violations

(lecturer/class)

Suyanto’s[10] 1 0h 41m 5s 90000 38/142

Proposed

scheme

2 0h 44m 34s 85000 32/133

3 0h 45m 43s 82500 29/133

4 0h 46m 29s 83000 30/130

5 0h 48m 1s 79000 24/130

Furthermore, figure 3 compares single and multiple island performance by

its time consumption for reaching single island’s optimum fitness. Compared to

single island model, multiple islands can reach single island’s optimum value in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

184

around half of the single island’s time consumption because single machine model

possibility to trap into a local optimum.

Figure 3. Duration Every Island to reach 90000 fitness

The result of system performance testing scenario for UniTime course

timetabling with Island Model GA with one until five islands is shown in figure 4.

There is a wide optimum (minimum) fitness gap between Purdue and Telkom

University dataset. The reason behind this is because of both of them different

characteristics.

Figure 4. Fitness Comparison between Purdue and Telkom University Datasets

The comparison result of time consumption in same iteration (100

iterations) was shown in Table 9 below. UniTime and Island Model GA

completes its running in just 16 minutes difference when applying Telkom

University dataset. But when applying Purdue dataset, the difference can

extremely widen the time gaps, more than 6 hours. Same with previous

explanation, the reasons are in numbers of UniTime soft constraints and suitability

of the engine.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

185

Table 4. UniTime and Island Model GA Result Time Comparison

Engine Dataset Time Accuracy

UniTime Telkom

University

0h 32m 1s 86.15%

Island GA Telkom

University

0h 48m 1s 99.74%

UniTime Purdue 0h 33m 51s 80.43%

Island GA Purdue 6h 38m 41s 96.80%

6 Conslusions

Island model GA could create university course timetabling in reasonable

time. This distributed model could run faster rather than single machine model to

decrease constraint violations to reach optimum fitness. It could have less

constraint violations because it could escape from stagnant local optimum easier.

Island model GA could even solve another UCTP problem (Purdue

University) but not quite well as Telkom University case. It produced great

accuracy for Telkom University dataset (99.74%) and acceptable accuracy at

96.80% for Purdue dataset for student level timetabling.

Characteristics of datasets significantly influence the result of timetabling

creating process. The main influencing characteristics are varieties and numbers

of the soft constraints. And the most efficient number of island for Telkom

University dataset is five islands.

References

[1] D. Johnson and M. Garey, Computers and intractability: A guide to the theory of NP-

completeness, San Francisco: W.H. Freeman, 1979.

[2] R. Lewis, "A survey of metaheuristic-based techniques for university timetabling problems,"

OR Spectrum, vol. 30, no. 1, p. 167–190, 2007.

[3] S. Abdullah, E. K. Burke and B. Mccollum, "A Hybrid Evolutionary Approach to the

University Course Timetabling Problem," in Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2007, Singapore, 2007.

[4] D. E. Goldberg, Genetic Algorithm in Search, Optimization, and Machine Learning, Boston:

Addison Wesley, 1989.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

186

[5] J. Abela and D. Abramson, ""A Parallel Genetic Algorithm for Solving the School

Timetabling Problem," CSIRO, Clayton South, 1991.

[6] E. K. Burke, J. P. Newall and R. F. Weare, "A Memetic Algorithm for University Exam

Timetabling," Practice and Theory of Automated Timetabling, Lecture Notes in Computer

Science, vol. 1153, no. 1, pp. 241-250 , 1996.

[7] D. Corne, P. Ross and H. L. Fang, "Fast Practical Evolutionary Timetabling," in AISB

Workshop on Evolotionary Computation, Leeds, 1994.

[8] R. Megasari, An Optimization of University Course Timetabling Using Case Based

Reasoning and Graph Coloring (Master Thesis), Bandung: Institut Teknologi Telkom, 2011.

[9] Suyanto, Algoritma Optimasi: Deterministik atau Probabilitik, Yogyakarta: Graha Ilmu,

2010.

[10] Suyanto, "An Informed Genetic Algorithm for University Course and Student Timetabling

Problems," Artifical Intelligence and Soft Computing Lecture Notes in Computer Science, vol.

6114, no. 1, pp. 229-236, 2010.

[11] H. Rudova, T. Muller and K. Murray, "Complex university course timetabling," Journal of

Scheduling, vol. 14, no. 2, pp. 187-297, 2011.

[12] T. Muller, "unitime," UniTime LLC, 13 September 2012. [Online]. Available:

www.unitime.org. [Accessed 26 December 2012].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

187

Partially-Concurrent Open Shop Scheduling

Tal Grinshpoun · Hagai Ilani · Elad
Shufan

Abstract The partially-concurrent open shop scheduling problem is presented.
The standard open shop scheduling problem is generalized by allowing some
operations to be processed concurrently. This generalization is directly moti-
vated from a real-life timetabling project of assigning technicians to airplanes
in an airplane garage. A schedule for the partially-concurrent problem is rep-
resented by a digraph. We show that the scheduling problem is equivalent to
a problem of orienting a given undirected graph, called a conflict graph. The
schedule digraph is then modeled by a matrix, generalizing the rank matrix
representation. The problem is shown to be NP-Hard. The rank matrix rep-
resentation is also used in an algorithm that heuristically constructs an open
shop schedule.

Keywords Open Shop Scheduling · Concurrent machines · Technician
timetabling · Graph orientation

1 Introduction

An open shop scheduling (OSS) problem consists of n jobs that should be
processed on m machines. An operation (i, j) refers to the processing of job
i = 1, 2, . . . , n in machine j = 1, 2, . . . ,m. The processing time of operation

Tal Grinshpoun
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
E-mail: talgr@ariel.ac.il

Hagai Ilani
Department of Industrial Engineering and Management, SCE – Shamoon College of Engi-
neering, Ashdod, Israel
E-mail: hagai@sce.ac.il

Elad Shufan
Physics Department, SCE – Shamoon College of Engineering, Beer-Sheva, Israel
E-mail: elads@sce.ac.il

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

188

(i, j) is denoted by pij . In a standard OSS every job visits one machine at a
time, and every machine hosts only one job at a time.

Shop scheduling problems were originally designed for machines. Never-
theless, there are many task scheduling applications in which employees are
represented as the machines; hence the resulting solution is a set of timetables
(schedules) for the employees.

An important aspect of OSS concerns the mathematical representation of a
given schedule. Bräsel and Kleinau have introduced the rank matrix represen-
tation [7,5], which is significant for both theory and practice. A major advan-
tage of the rank matrix representation when compared to its alternative [16]
is the one-to-one correspondence between a matrix and a schedule, provided
that the schedule is semi-active [18], for which operations are performed as
early as possible once the order of processing is known. Constructive heuristic
algorithms were suggested, based on rank matrices [10]. Rank matrix proce-
dures were applied to neighbourhood definitions in local search algorithms,
including those of crossover and mutations in genetic algorithms [1]. Among
the theoretical achievements that are based on the idea of rank matrix are the
irreducibility theory [2,8] as well as complexity analysis of some special OSS
problems [9].

In this work we extend the rank matrix representation to a problem of
partially-concurrent open shop scheduling (PCOSS). In a PCOSS problem
some operations are allowed to be processed concurrently, while some are not.
In the PCOSS presented herein preemption is not allowed, and no due or
release dates are given. A variety of previously discussed issues can be extended
by the more general PCOSS matrix representation. Several such extensions are
discussed in this article.

A related problem previously presented in the literature is that of con-
current open shop scheduling [21,17,15]. It is also referred to as a parallel
machine environment with m fully dedicated machines [14], denoted PDm.
In a PDm, a job can be split to be simultaneously processed on several ma-
chines. The two extremes of PCOSS are the standard OSS, where operations of
the same job are never processed concurrently, and the fully-concurrent open
problem, where all the operations of a given job are allowed to be processed
concurrently. The PDm notation does not reflect the connection between the
concurrent open shop and the standard one. We suggest that for all the dis-
cussed types of an OSS, the machine environment field α of Graham’s α|β|γ
classification scheme [12] will include O (or Om when the number of machines
should be specified explicitly). Concurrency issues will be included in the β
field, with the ”conc” entry for the concurrent open shop case, and ”pconc”
when a partially concurrent open shop is considered.

Roemer discusses the complexity of O|conc|
∑
wiCi [19], where Ci is the

completion time of job i, and wi the corresponding weight. It is shown that
the general problem is NP-hard in the strong sense. Minimizing the makespan
Cmax = max{Ci | 1 ≤ i ≤ n}, which is commonly considered in a
standard OSS, is not considered in the concurrent version. This is due to
its over simplicity: any semi-active schedule will be optimal with Cmax =

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

189

max{
∑n

k=1 pkj | 1 ≤ j ≤ m}. For the general PCOSS problem the complex-
ity of a schedule designed to minimize the makespan should be discussed,
with O|conc|Cmax being trivially polynomial, and a general O||Cmax being
NP-Hard.

The PCOSS problem is more general than the standard OSS and can there-
fore describe a large variety of real-life scenarios. In fact, the present study
is directly motivated from a timetabling project of assigning technicians to
airplanes in an airplane garage. The airplane garage task scheduling prob-
lem is mentioned in the literature with respect to both the standard [8] and
the concurrent [21] OSS versions. Consider a fleet of airplanes. A set of tasks
should be performed on each plane in order to prepare it for action. Every
task is done by a technician who has the expertise to do this task alone. In
reality, some tasks can be performed simultaneously on a plane, e.g., while one
technician checks the engine, another technician can check the wing. But other
tasks exist that disturb each other, and therefore cannot be performed concur-
rently, which is similar to the standard open shop. Indeed, in the timetabling
project that inspired the present research, some of the technicians’ tasks could
be performed in parallel. The O|pconc|fobj , with any objective function fobj ,
naturally describes this scenario, with airplanes corresponding to jobs, and
tasks (or technicians) corresponding to machines.

In section 2 the generalization of the rank matrix representation is given.
Section 3 deals with the complexity of PCOSS. A constructive algorithm, first
suggested with respect to the standard OSS [10], is extended to the PCOSS
problem in section 4, followed by experiments (section 5). A discussion is given
in section 6.

2 Matrix representation of Partially-Concurrent Open Shop
Scheduling

The standard OSS is reviewed first. A scheduling problem consists of a set
of n jobs Ji, where i ∈ I = {1, 2, . . . , n}, which should be processed on a set
of m machines Mj , j ∈ J = {1, 2, . . . ,m}. In addition, the processing times
of the operations are listed as elements of an n ×m matrix PT = [pij], with
pij denoting the processing time of an operation (i, j). In a general scenario
the jobs might visit only a partial set of machines. For clarity of presentation
we assume that every job visits all the machines, i.e., pij > 0 for every i ∈ I
and j ∈ J . In the discussion (Section 6) we explain how to treat the general
scenario. In a non-concurrent OSS two operations of the same job cannot be
processed concurrently. Therefore, a given schedule necessarily defines an order
between operations of the same job (machine order). Similarly, a schedule sets
an order between operations of the same machine (job order). Operations that
do not share either a job or a machine can obviously be processed concurrently.
Therefore, the schedule does not imply any order between such operations.
This is illustrated in the following OSS example.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

190

Example 1 In this example we consider n = 3 jobs and m = 4 machines, and
the following processing times matrix:

PT =

23 21 40 6
15 30 18 35
28 8 25 24

 (1)

A possible schedule for this instance is given in Figure 1(a) by its Gantt
chart. Jobs J1, J2, and J3 are recognized by their colours: dark red, white,
and light green, respectively. In the given schedule the machine order of Job
1, taken as an example, is M4 → M2 → M1 → M3. For machine 1, the job
order is J2 → J1 → J3. Both orders are easily read from the Gantt chart for
this compact example.

The machine and job orders can be represented by a non-cyclic digraph
called a sequence graph [7,6] – every operation is represented by a vertex (i, j)
and each pair of consecutive operations (vertices) are connected by an arrow.
The sequence graph that corresponds to the given schedule of example 1 is
shown in Figure 1(b).

(a) (b)

Fig. 1 A possible schedule for an OSS with 3 jobs and 4 machines is given by (a) a machine-
oriented Gantt chart, and (b) a sequence graph.

A convenient matrix representation for sequence graphs was suggested [7,
5]. The matrix, termed a rank matrix, is denoted by R. An entry rij is equal
to the number of vertices in the longest path from a source to the vertex (i, j).
A source is a vertex with zero indegree. It represents an operation that is
scheduled first. The rank matrix of the schedule given in Figure 1 is

R =

3 2 4 1
1 3 2 4
4 5 3 2

 (2)

The machine order or job order are both represented by the order of the
entries of the relevant row or column, respectively. If rij > 1, then in row
i or column j there exists an entry that equals (rij − 1). Operation (i, j) is
scheduled after the operation that corresponds to this entry. According to the
”Latin-rectangle theorem” [7], there is a one-to-one correspondence between

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

191

a unique Latin rectangle and a semi-active schedule: Consider a matrix of
size n×m whose elements are taken from the set {1, 2, . . . , q}. If in each row
and each column no entry appears more than once, the matrix is called a
Latin rectangle, denoted LR(n,m, q) = [lrij]. The Latin rectangle LR(n,m, q)
corresponds to a schedule of an open shop with n jobs and m machines, if for
every entry lrij 6= 1 there exists an entry (lrij − 1) in either row i or column
j.

In this article we show that the above ideas can be naturally extended to
the case of PCOSS. An instance of a PCOSS contains, in addition to PT , a
concurrence graph, or its complement, a conflict graph. These graphs describe
whether pairs of operations may be processed concurrently or not. More pre-
cisely, the concurrence graph, CG, has I × J as its vertex set, and two opera-
tions (i, j) and (k, l) are adjacent if they may be processed concurrently. In the
conflict graph, CG, (i, j) and (k, l) are adjacent if they may not be processed
concurrently.

To summarize, for any pair of operations:

– if they relate to different machines and different jobs the pair is an edge of
the concurrence graph.

– if they relate to the same machine and different jobs the pair is an edge of
the conflict graph.

– if they relate to different machines and to the same job the pair can be
either an edge of the concurrence graph or the conflict graph, depending
on whether the pair can be processed concurrently or not (respectively).
A pair of operations that is an edge of the conflict graph will be called
a conflict pair. Given an operation (i, j), we say that operation (k, l) is a
conflicting operation if the pair {(i, j), (k, l)} is a conflict pair.

In Figure 2 we show an example of CG and CG for 3 jobs and 4 machines.
For clarity, arrows connecting two operations that do not share a machine or
a job are not shown in CG.

(a) (b)

Fig. 2 An instance of a PCOSS includes (a) a concurrence graph (only horizontal edges
are shown) or (b) its corresponding conflict graph.

A schedule for the PCOSS is given by the n × m matrix ST = [stij], of
the starting times of all the operations, or by the matrix CT = [ctij], of the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

192

completion times of all the operations. Obviously, CT = ST +PT . A schedule
is feasible if for any conflict pair, {(i, j), (k, l)}, either ctij ≤ stkl or ctkl ≤
stij . A given feasible schedule naturally defines an orientation of the conflict
graph: an edge {(i, j), (k, l)} will be oriented, (i, j)→ (k, l), if ctij ≤ stkl and
(k, l) → (i, j), if ctkl ≤ stij . The resulting digraph, DG, is acyclic, because a
cycle (i, j)→ (k, l)→ . . .→ (i, j) in DG means ctij ≤ stkl < ctkl ≤ . . . ≤ stij ,
which is impossible – an operation cannot be completed before it starts.

An acyclic orientation of the conflict graph will be called a partial-sequence
graph. It generalizes the sequence graph representation.

Lemma 1 A partial-sequence graph defines a schedule with the property that
{(i, j), (k, l)} implies ctij ≤ stkl. The schedule defined is unique, assuming
semi-activeness.

Proof Given a partial-sequence graph, DG, a schedule is defined inductively
step by step as follows: For each stage i we define Ai to be the set of operations
that have already been scheduled up to stage i. Initially A0 = ∅. In the first
stage (i = 1), we schedule at t = 0 all the operations that have indegree 0.
Because DG is acyclic, at least one operation with indegree 0 exists. At stage i
we schedule all the operations that have indegree 0 in DG\Ai−1. An operation
(i, j) will start at stij = max{ctkl|(k, l) → (i, j)}. The uniqueness is forced
by semi-activeness; i.e., each operation is scheduled as early as possible while
keeping the order defined by DG. �

Corollary 1 Solving O|pconc|Cmax is equivalent to the problem of orienting
the edges of the conflict graph so that the digraph obtained will be acyclic and
the maximally-weighted path will be minimal.

The weight of a path is the sum of all the processing times of operations
(vertices) in that path.

Example 2 A PCOSS instance is composed of a matrix PT and a graph CG,
or CG. We take PT of Example 1 and CG of Figure 2(b). A possible schedule
for this PCOSS instance is shown in Figure 3 by its Gantt chart and the
corresponding orientation of the conflict graph, i.e., the partial-sequence graph
DG.

The rank matrix representation follows. We define the rank rij of an op-
eration (i, j) as the number of vertices in a longest path in DG from a source
vertex to the operation (i, j). The rank matrix is denoted R = [rij].

The rank matrix of Example 2 is

R =

3 2 4 1
1 3 1 3
4 1 3 2

 (3)

The rank matrix R has the following two properties:

1. rij 6= rkl for each conflict pair (i, j) and (k, l).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

193

(a) (b)

Fig. 3 A possible PCOSS schedule is given by its (a) Gantt chart, or its corresponding (b)
partial-sequence graph. Dashed arcs can be removed due to transitive closure.

2. For any operation (i, j) with rij > 1 there exists a conflicting operation
(k, l) with rkl = rij − 1.

Given a concurrence graph for a PCOSS instance, we call a positive integer-
valued matrix n×m a CG-rectangle if it satisfies conditions 1 and 2. In the case
of a standard OSS the concurrence graph has only edges connecting operations
if they belong to different jobs and different machines. The CG-rectangle then
reduces to a Latin-rectangle. The following theorem generalizes the ”Latin-
rectangle theorem” [7].

Theorem 1 An n × m matrix A = [aij] is a CG-rectangle iff it is a rank
matrix of a semi-active schedule for a PCOSS problem with n jobs and m
machines.

Proof Given a semi-active schedule for a PCOSS problem, a rank matrix is
constructed as defined previously. On the other hand, given a CG-rectangle,
A, we construct an appropriate partial-sequence graph by orienting the edges
of the conflict graph as follows: an edge {(i, j), (k, l)} will be oriented (i, j)→
(k, l) if aij < akl and (k, l)→ (i, j) if akl < aij . The obtained graph is obviously
acyclic. The theorem’s assertion then follows from Lemma 1. �

3 Complexity issues

Concerning the complexity of O|pconc|Cmax, it is proved next that the problem
with only one job and unitary processing times, denoted O|pconc, n = 1, pij =
1|Cmax, is already NP-Hard. It immediately follows that a general PCOSS is
also NP-Hard. It is worth noting that with one job, minimizing the makespan
in both the standard OSS problem and the concurrent open shop is a trivial
task. For O|n = 1|Cmax, any order of the operations leads to a schedule with
Cmax =

∑m
j=1 p1j . For O|conc, n = 1|Cmax, any order of the operations leads

to a schedule with Cmax = max{p1j |1 ≤ j ≤ m}. Moreover, for the standard
open shop problem with unitary processing times, Bräsel et al. developed a
polynomial-time algorithm for minimizing the makespan for any number of
jobs [9].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

194

Theorem 2 The problem O|pconc, n = 1, pij = 1|Cmax is NP-Hard.

Proof In the case where there is only one job and all processing times equal
1, the makespan of any schedule S is the length of the longest path in the
sequence graph defined by S, which is the maximum rank in the matrix
defined by S. By Corollary 1 the opposite is also true – the length of the
longest path in any acyclic orientation of the conflict graph is the makespan of
a feasible schedule for the problem. Because the conflict graph can be any
arbitrary undirected graph on the set of the n operations, it follows that
O|pconc, n = 1, pij = 1|Cmax is equivalent to the problem of orienting an undi-
rected graph in order to minimize the size of the longest directed path. The
latter is polynomially equivalent to the Graph-Colouring problem by the proof
of the Gallai-Roy-Vitaver theorem [3], which asserts that the minimal size of
the longest directed path in an orientation of an undirected graph G is equal to
the chromatic number of G. Because the Graph-Colouring problem is NP-Hard
it follows that O|pconc, n = 1, pij = 1|Cmax is NP-Hard. �

Corollary 2 The general problem O|pconc|Cmax is NP-Hard.

4 Constructive heuristic

The constructive heuristic considered in this section is an adaptation to the
partially-concurrent case of the insertion algorithm that was proposed for stan-
dard OSS [10]. The algorithm builds a full schedule (rank matrix) in an it-
erative manner. At each iteration, the algorithm inserts one operation into
a partial schedule, until a full schedule is reached. The order at which the
operations are inserted is determined before the iterative process commences.

Following [10], the operation insertions are combined with beam search.
That is, only a limited number of solution paths within the complete search
space are investigated. During the search process, each partial schedule has
one parent and several children. The parent is the partial schedule, excluding
the last inserted operation. The children result from the insertion of the next
operation. The number of parallel solution paths is limited by the beamwidth
p.

We consider the following possibilities for the insertion of an operation
(i, j) into the partial rank matrix R:

1. rij = 1. This means that i is the first job in the job order on machine j
and j is (one of) the first machine(s) in the machine order of job i.

2. rij = rkj + 1, where rkj is any of the values that appear in column j of R.
This means that operation (i, j) becomes a direct successor of one of the
operations on machine j.

3. rij = ril + 1, where ril is any of the values that appear in row i of R that
correspond to an operation of Ji, which is in conflict with operation (i, j).
This means that operation (i, j) becomes a direct successor of one of the
operations of job i, with which it has conflict.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

195

These possibilities correspond to the cases (c1) and (c2) in the original inser-
tion algorithm [10].

An insertion of rij to R results in a new (partial or full) matrix R′.
However, R′ may possibly not be a CG-rectangle. This happens when one
or more of the following conflicts occur: (I) ∃k 6= i • [rij = rkj]; (II) ∃l 6=
j • [rij = ril and (i, j) conflicts with (i, l)]. Note that there may possibly be
several instances of conflict (II) due to concurrent machines. All the conflicts
are resolved by incrementing by 1 all the conflicting entries. The entries with
incremented values may in turn be in conflict with a new set of entries. This
process continues until all conflicts in R′ are resolved.

The set of all obtained R′ matrices (each corresponding to a possible value
of rij) forms the list of children. In each iteration of the beam search, a list of
the most promising p children should be selected. Following [10], we consider
two variants:

– INSERT1: In each iteration we select the p-best children from the whole
set. This means that some selected children may have the same parent.

– INSERT2: For each of the p parents we select the best child. This means
that all children have different parents. The first variant is applied as long
as we do not have p parents.

We still must decide which children are considered the best in each step.
Similarly to [10], we assign to each child the cost of the longest path (cost-
wise) that goes through the newly inserted operation (i, j) in the relevant R′

matrix. A path in PCOSS is a series of adjacent operations in the conflict
graph CG. The children that are considered best are those with lowest costs.
A more detailed description of the insertion algorithm can be found in [10].

5 Experimental evaluation

The objective of the experimental evaluation of the present paper is twofold.
Naturally, one would like to evaluate the effectiveness of the proposed con-
structive heuristic in terms of the quality of the obtained solutions. Neverthe-
less, perhaps even more interesting is the question of how partial concurrency
affects the problems themselves, regardless of the chosen solution method.

In an attempt to shed light on these two issues, we turned to the commonly
used OSS problem instances that were proposed by Taillard [20]. We used the
entire set of Taillard’s OSS benchmark that consists of six problem sizes (4×4,
5×5, 7×7, 10×10, 15×15, 20×20), with 10 instances of each problem size. For
each of these 60 standard OSS problems we created 90 new PCOSS instances
with varying concurrency levels, where the concurrency level of a problem
relates to the percentage of non-conflicting operation pairs out of all operation
pairs sharing the same job. We used concurrency levels with 10% intervals,
varying from 10% to 90%. For each concurrency level we generated 10 problem
instances, each with a randomly chosen set of non-conflicting operation pairs.
For each problem in Taillard’s benchmark, we also considered the two PCOSS

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

196

extremes, which are the original (standard OSS) problem (0% concurrency)
and the fully-concurrent problem (100% concurrency).

Following [10], we consider three versions of the constructive heuristic: one
with beamwidth p = 1, and the two INSERT variants with beamwidth p = 2.
In order to evaluate the quality of the obtained solutions we relate to the
deviation of the corresponding Cmax from the machine lower bound. For each
problem, the machine lower bound is the maximal working time of any of the
machines, given by max{

∑
i pij |1 ≤ j ≤ m}.

Figure 4 presents the quality of obtained solutions for the PCOSS prob-
lems of size 4×4. The results shown for each concurrency level are the average
deviations of all the PCOSS problems of that level. The results in Figure 4
reveal interesting information regarding both issues of the evaluation’s objec-
tive. First, the obtained solutions of the heuristic are clearly of high quality,
even when using a very low beamwidth. These findings coincide with the re-
spective results for standard OSS [10]1. Second, the graph shows that as the
concurrency level increases the optimal Cmax gets closer to the machine lower
bound. This is not surprising, since more concurrency brings with it more effi-
cient scheduling possibilities that in turn reduce Cmax towards the bound set
by the machines.

æ

æ

æ

æ

æ
æ

æ

æ æ æ æ

à

à

à

à

à

à

à

à à à à

ì

ì

ì

ì

ì

ì

ì ì ì ì ì

0 20 40 60 80 100

0

2

4

6

8

Concurrency level H%L

D
ev

ia
ti

o
n

fr
o
m

lo
w

er
b
o
u
n
d

H%
L

ì INSERT2Hp=2L

à INSERT1Hp=2L

æ INSERT1Hp=1L

Fig. 4 The average deviation of Cmax from the machine lower bound as a function of the
concurrency level for problems of size 4 × 4.

For high levels of concurrency the heuristic algorithm gave the optimal solu-
tion. Therefore, in order to evaluate the scalability of the constructive heuristic
we focus on a low concurrency level (10%). Figure 5 presents the quality of ob-
tained solutions for PCOSS problems of different sizes. The displayed results

1 The results for 0% concurrency are worse than those presented in [10], since the machine
lower bound used herein is looser than the (machine and job) lower bound used in [10].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

197

are the average deviations of 100 PCOSS problems of each problem size, with
the size ranging from 4 × 4 to 20 × 20 according to the Taillard benchmark.
Again, the obtained solutions of the heuristic are of very high quality. The
results also indicate that as the problems get larger the optimal Cmax gets
closer to the lower bound. A similar phenomenon was observed for standard
OSS problems [10].

æ

æ

æ

æ

æ æ

à

à

à

à
à à

ì

ì

ì

ì
ì ì

5 10 15 20

0

1

2

3

4

5

6

Problem size

D
ev

ia
ti

o
n

fr
o
m

lo
w

er
b
o
u
n
d

H%
L

ì INSERT2Hp=2L

à INSERT1Hp=2L

æ INSERT1Hp=1L

Fig. 5 The average deviation of Cmax from the machine lower bound as a function of the
problem size (n× n) for problems with 10% concurrency level.

Another aspect is the runtime of the constructive heuristic. The advances
in hardware capabilities enable us to run the above experiments in reasonable
time. In fact, even the hardest considered PCOSS problems (size 20 × 20)
were solved in less than half a second with beamwidth p = 2 on a hardware
comprised of Intel i5 4th generation and 8GB memory.

6 Discussion

The presented PCOSS is a general open shop problem, connecting two previ-
ously discussed scheduling problems – that of the standard open shop and its
concurrent version. PCOSS enables natural representation of various realistic
problems, such as that of the airplane garage that was mentioned in the in-
troduction section. By extending the rank matrix scheme to the more general
scenario of PCOSS, one may utilize efficient solving techniques, such as the
presented constructive heuristic.

Investigating this general problem has highlighted the fact that generating
an open shop schedule (whether concurrent or not) is equivalent to orienting a
conflict graph, i.e., generating an acyclic digraph DG. The digraphs formally

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

198

presented in the literature with respect to the non-concurrent OSS are basically
transitive reductions of the partial-sequence graphs presented herein. Existing
studies on the topic of generating acyclic orientations of a given undirected
graph [4] can shed light on problems of OSS.

In this article we assumed that jobs in a PCOSS can be split to be processed
on several machines simultaneously, but each machine hosts only one job at
a time. Consequently, all the vertical edges existed in the conflict graph. Our
proposed formalism enables the removal of this limitation, allowing also some
operations of a given machine to be processed concurrently. The obtained rank
matrix might then have several entries on a given column that are the same,
as long as the corresponding operations are not conflicting.

We have also assumed that pij > 0 for all i ∈ I and j ∈ J , i.e., that
all the vertices I × J represent real operations, with each job visiting all the
machines. In real life it often happens that some jobs visit only a partial set of
machines. It is possible to include these scenarios without changing the given
formalism: I × J vertices are considered as proposed before. A non-processing
operation, i.e., any operation of a job i that does not visit machine j, has zero
processing time. A vertex (i, j), which represent a non-processing operation
has concurrent edges to all the other vertices, i.e., in the conflict graph it is
not connected to any other vertex. The rank of non-processing operations will
then be rij = 1, because it has 0 indegree and is therefore, by definition, a
source. Note that this procedure can lead to several 1’s in a given column.
Nevertheless, the rank matrix remains a CG-rectangle.

PCOSS was shown to be NP-Hard. Yet, the heuristic algorithm proposed
in Section 4 reaches the optimum in many instances, even when using a narrow
beam. The examined instances are that of Taillard, with varying concurrency
levels. For these instances, increasing the concurrency level resulted in obtain-
ing Cmax values that are very close to the machine lower bound. These results
can be misleading, suggesting that increasing the concurrency level makes the
problem easier to solve. Taillard’s benchmark is a standard for non-concurrent
OSS, for which the most difficult problems are those of square PT , with n = m.
Contrary to that, the possibility of processing a given job in several machines
concurrently suggests that it might be harder to solve problems with m > n.
The logic behind this assertion is demonstrated by considering a uniform n×n
OSS instance (uniform in the sense that pij = 1 for all i and j). This is an
easy OSS problem – a schedule represented by any Latin rectangle LR(n, n, n)
is optimal with Cmax = n. A uniform OSS problem with m > n is still easy
– an optimal schedule is given by LR(n,m,m), with Cmax = m. However, in
uniform PCOSS problems things are more complicated. The squared problem
remains easy, because Cmax cannot be lower than the machine lower bound.
Nevertheless, a uniform PCOSS with m > n is completely non-trivial. Even
obtaining an appropriate job lower bound is NP-Hard, being equivalent to the
maximum independent set problem.

Further generalizations can be achieved considering PCOSS and its repre-
sentation. For example, it is possible to extend the definition of a reducible
sequence given in irreducibility theory [2,8]. The known benchmarks should

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

199

be extended to include PCOSS instances that describe the schedule difficulties
more appropriately. We leave these interesting issues for future research.

Another interesting direction for future work is to model and solve the
most general scenario of an airplane garage, which was the initial motivation
for the present study. In the general real-life problem the airplanes are lo-
cated in several hangars, and some of the tasks need teams of technicians. We
plan to additionally generalize the OSS model to include issues of technicians’
transportation and teaming, which were previously referred to in Workforce
Scheduling and Routing Problems [11]. Additionally, some real-life scenarios
are multi-mode (cf. [13]), i.e., some tasks may be performed in several ways
(modes) using different amounts of resources (technicians). The adaption of
PCOSS to enable multiple modes is another challenging prospect.

References

1. Andresen, M., Bräsel, H., Mörig, M., Tusch, J., Werner, F., Willenius, P.: Simulated
annealing and genetic algorithms for minimizing mean flow time in an open shop. Math-
ematical and Computer Modelling 48(7), 1279–1293 (2008)

2. Andresen, M., Dhamala, T.N.: New algorithms and complexity status of the reducibility
problem of sequences in open shop scheduling minimizing the makespan. Annals of
Operations Research 196(1), 1–26 (2012)

3. Bang-Jensen, J., Gutin, G.: Theory, algorithms and applications. Springer Monographs
in Mathematics, Springer-Verlag London Ltd., London (2007)

4. Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undirected
graph. Information Processing Letters 72(1), 71–74 (1999)

5. Bräsel, H.: Matrices in shop scheduling problems. In: Perspectives on Operations Re-
search, pp. 17–41. Springer (2006)

6. Brasel, H., Harborth, M., Willenius, P.: Isomorphism for digraphs and sequences of
shop scheduling problems. Journal of combinatorial mathematics and combinatorial
computing 37, 115–128 (2001)

7. Bräsel, H., Kleinau, M.: On the number of feasible schedules of the open-shop-problem-
an application of special latin rectangles. Optimization 23(3), 251–260 (1992)

8. Bräsel, H., Kleinau, M.: New steps in the amazing world of sequences and schedules.
Mathematical methods of operations research 43(2), 195–214 (1996)

9. Bräsel, H., Kluge, D., Werner, F.: A polynomial algorithm for an open shop problem
with unit processing times and tree constraints. Discrete Applied Mathematics 59(1),
11–21 (1995)

10. Bräsel, H., Tautenhahn, T., Werner, F.: Constructive heuristic algorithms for the open
shop problem. Computing 51(2), 95–110 (1993)

11. Castillo-Salazar, J.A., Landa-Silva, D., Qu, R.: A survey on workforce scheduling and
routing problems. In: Proceedings of the 9th international conference on the practice
and theory of automated timetabling, pp. 283–302 (2012)

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.: Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics. v5 pp. 287–326 (1977)

13. Kolisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource-constrained
project scheduling. IIE transactions 29(11), 987–999 (1997)

14. Leung, J.Y.T., Li, H., Pinedo, M.: Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling 8(5), 355–386 (2005)

15. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimizing the
sum of weighted completion times in a concurrent open shop. Operations Research
Letters 38(5), 390–395 (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

200

16. Naderi, B., Fatemi Ghomi, S., Aminnayeri, M., Zandieh, M.: A contribution and new
heuristics for open shop scheduling. Computers & Operations Research 37(1), 213–221
(2010)

17. Ng, C., Cheng, T.C.E., Yuan, J.: Concurrent open shop scheduling to minimize the
weighted number of tardy jobs. Journal of Scheduling 6(4), 405–412 (2003)

18. Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)
19. Roemer, T.A.: A note on the complexity of the concurrent open shop problem. Journal

of scheduling 9(4), 389–396 (2006)
20. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Opera-

tional Research 64(2), 278–285 (1993)
21. Wagneur, E., Sriskandarajah, C.: Openshops with jobs overlap. European Journal of

Operational Research 71(3), 366–378 (1993)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

201

A Mathematical Model and Metaheuristics for Time
Dependent Orienteering Problem

Aldy GUNAWAN? · Zhi YUAN? ·
Hoong Chuin LAU

Abstract This paper presents a generalization of the Orienteering Problem, the
Time-Dependent Orienteering Problem (TDOP) which is based on the real-life
application of providing automatic tour guidance to a large leisure facility such
as a theme park. In this problem, the travel time between two nodes depends
on the time when the trip starts. We formulate the problem as an integer linear
programming (ILP) model. We then develop various heuristics in a step by step
fashion: greedy construction, local search and variable neighborhood descent, and
two versions of iterated local search. The proposed metaheuristics were tested on
modified benchmark instances, randomly generated problem instances, and two
real world problem instances extracted from two popular theme parks in Asia.
Experimental results confirm the effectiveness of the developed metaheuristic ap-
proaches, especially an iterated local search with adaptive perturbation size and
probabilistic intensified restart mechanism. It finds within an acceptably short
computation time, the optimal or near optimal solutions for TDOP instances of
realistic size as in our target application.

Keywords Time-Dependent Orienteering Problem · Integer Linear Program-
ming · Metaheuristics · Iterated Local Search

1 Introduction

The Orienteering Problem (OP) is originated from the sport game of orienteering
[2]. The main goal is to find a single route by visiting as many nodes as possible

? Contributed equally

A. Gunawan and H.C. Lau
School of Information Systems, Singapore Management University, Singapore
E-mail: aldygunawan, hclau@smu.edu.sg
Z. Yuan
Professorship of Applied Mathematics, Department of Mechanical Engineering, Helmut
Schmidt University, Hamburg, Germany
E-mail: yuanz@hsu-hh.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

202

that maximizes the total collected score subject to a given time budget frame. It is
assumed that the starting point and the end point are fixed. Many OP applications
are described in the literature: selective travelling salesperson problem [21]), home
fuel delivery problem [8], single-ring design problem [20], and mobile tourist guide
[17].

Several variants of the OP include: 1) Team Orienteering Problem (TOP) [2,
18], 2) Orienteering Problem with Time Windows (OPTW) [15], 3)Team Orien-
teering Problem with Time Windows (TOPTW) [23], 4) Time-Dependent Orien-
teering Problem (TDOP) [5].

In this paper, we study the Time-Dependent Orienteering Problem (TDOP),
which is a generalization of OP. In the classical OP, the changes to the network
over time are not taken into account. However, in certain networks, the route
between two nodes actually depends on the network properties, such as congestion
levels, construction zone on certain segments, etc., which will affect the travel time
between two nodes. Our target application of this work is to provide automatic
tour guidance to theme park visitors, taking into account the waiting time of a
theme park varies over time. The goal is to maximize the overall utility of the
visited attractions within the tourist’s available visiting period.

We formulate the TDOP as an Integer Linear Programming (ILP) model. Due
to the computational inefficiency in solving large-scale instances with a commercial
ILP solver, we then develop various metaheuristics, including a greedy construc-
tion heuristic, two local search operators and variable neighborhood descent, and
two versions of iterated local search: a basic version and a further improved version
by adaptive perturbation strength and probabilistic intensification mechanism. All
these approaches were tested on modified benchmark instances, randomly gener-
ated instances and two case studies extracted from real world theme park data.

The paper is organized as follows. We first provide a brief review of the OP
and TDOP in Section 2. We then describe the TDOP and formulate it as an In-
teger Linear Programming model in Section 3. In Section 4, metaheuristics are
proposed to solve the problem. Section 5 provides the computational results to-
gether with the analysis of the results. Finally, we provide concluding perspectives
and directions for future research.

2 Literature Review

The Orienteering Problem (OP) [21], also known as the selective travelling sales-
person problem [11] or traveling salesman problem with profits [3], has received
increasing attention among researchers during recent decades. A comprehensive
survey of OP can be found in [24]. An earlier work [3] also provided a survey of
different classes of applications, modeling approaches and solution techniques.

[21] is the first to introduce a general description of the sport of orienteering
and develop heuristic approaches based on a Monte Carlo technique for the OP.
[9] introduced a new procedure which is based on four concepts: center of gravity,
randomness, subgravity, and learning. Several metaheuristics for solving the OP
have been proposed by researchers, such as Tabu Search [7], Genetic Algorithm
(GA) [19] and Ant Colony Optimization [16].

Time-Dependent Orienteering Problem (TDOP) is an extension of OP by tak-
ing into account changes to the network over time. The travel time from one node

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

203

to another node varies with time and depends on the start time. It was first pro-
posed by [5], where a (2 + ε)-approximation algorithm is also proposed for solving
it. However, [5] considers only equal utility for all nodes, thus the problem actually
reduces to visiting as many nodes as possible rather than maximizing total col-
lected utilities; besides, the proposed algorithm has not been empirically studied.
A very recent work [25] proposed ant colony system for solving a variant of TDOP
based on speed model, where the travel time between two nodes does not depend
on the starting time but on the speed given at each time step during the travel.
The speed for travelling between two nodes at a time step is assumed invariant
under different starting time. This speed model is very interesting since it pre-
serves the FIFO property: a vehicle that starts earlier will always arrive earlier.
And this is practical in many real-world applications. However, this speed model
may not hold in the general TDOP. For example, if the travel time between two
nodes includes waiting for a shuttle that arrives according to a fixed time table,
then it is not straightforward to compute the waiting time by the speed model due
to the speed invariance. In this work, we follow the more general time-dependence
defined in [5] that the travel time between two nodes depends only on the starting
time, and these travel times are assumed to be given. Besides, no assumption of
FIFO property is assumed from the input travel time data.

Other related work for TDOP includes [12] that proposed the Time-Dependent
Team Orienteering Problem; [1] that proposed two genetic algorithms for the
Time-Dependent Orienteering Problem with Time Windows which stems from
the application of tour itinerary planning in complex and large urban areas in
Tehran; [6] that presented the Time-Dependent Team Orienteering Problem with
Time Windows which originated from the development of personalised electronic
tourist guides by integrating the tourist planning problem and the use of public
transportation, and two different approaches based on Iterated Local Search are
proposed to solve a set of test instances based on real data for the city of San
Sebastian, Spain.

3 Time Dependent Orienteering Problem

A graphical description of the Orienteering Problem (OP) [24] can be briefly in-
troduced as follows. Given a set of nodes N := {1, 2, . . . , n}, where node 1 is
the starting point, and n is the end point; also given the utility of each node
U := {ui : i ∈ N}, the distance matrix D := {di,j : i, j ∈ N} representing the
travel time between any two nodes i, j, and a maximum travel time budget Tmax,
the objective is to find a path P that starts from node 1 and ends at node n
before Tmax, such that the total utility collected at all visited nodes in path P is
maximized.

In the time dependent orienteering problem (TDOP), the travel time from
nodes i to j depends on the time when the trip starts. Given k time horizons
H := {h1, h2, . . . , hk} with hi = hi, hi + 1, . . . , hi, where the travel time within
each horizon is constant D := {di,j,h : i, j ∈ N,h ∈ H}.

In our target practical application, theme park tour guidance, the travel time
di,j,h from node i to node j includes traveling from i to j, waiting time at j, and
the service time at j. The length of di,j,h mainly depends on the waiting time
at attraction j. The high-utility attractions are usually preferred by most of the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

204

Table 1 Parameters and decision variables

Notations Descriptions

ui the utility score for node i
Tmax the time budget to leave node n; it also specifies the number of time steps.
di,j,t the travel time from node i to node j, started at time period t.

Xijt = 1 if travel occurs from node i to node j at time period t; otherwise, 0

tourists, and thus usually have a long queue during busy hours. If our tour guidance
is used by a small portion of the visitors, taking into account their attraction
preference as utility value, and the historical data or real-time crowd statistics as
prediction of the waiting time, an optimal tour is expected to maximize the total
utility of the visited attractions, while avoiding visiting a popular attraction at its
most crowded hour.

We formulate the TDOP as an integer linear programming (ILP) model. Table
1 presents parameters and decision variables required to formulate the ILP model.

Maximize
n∑
i=1

n∑
j=1
j 6=i

Tmax∑
t=1

ui ×Xi,j,t (1)

The objective function (1) is to maximize the total collected utility score when
visiting nodes at certain time periods.

n∑
i>1

Tmax∑
t=1

Xi,1,t = 0 (2)

n∑
j>1

Tmax∑
t=1

X1,j,t = 1 (3)

Constraint (2) ensures that there is no return trip to the start point and con-
straint (3) ensures that the start point is node 1.

n−1∑
j=1

Tmax∑
t=1

Xn,j,t = 0 (4)

n−1∑
i=1

Tmax∑
t=1

Xi,n,t = 1 (5)

Constraints (4) and (5) ensure that the last visited node is node n.

n−1∑
i=1
i 6=e

Tmax∑
t=1

Xi,e,t =
n∑
j=2
j 6=e

Tmax∑
t=1

Xe,j,t ∀e = 2, 3, . . . , (n− 1) (6)

Constraint (6) guarantees the connectivity of the path for each node visited.

n∑
j=2
j 6=i

Tmax∑
t=1

Xi,j,t ≤ 1 ∀i = 2, 3, . . . , (n− 1) (7)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

205

Constraint (7) ensures that each node is visited at most once.

∑
e6=i,j

Tmax∑
u=t+di,j,t

Xj,e,u ≥ Xi,j,t;∀i, j = 1, . . . , n−1, i 6= j, j 6= 1, t ≤ Tmax−di,j,t (8)

The constraint (8) enforces if a trip from i to j starts at time t, and j is not the
end point, then a trip must start from j at a time period later than after visiting
j.

Xi,j,t = 0,∀i 6= j, t > Tmax − di,j,t (9)

(9) removes infeasible trips that starts too late.

4 Metaheuristics

As proved by Golden et al. in 1987 [8] that orienteering problem (OP) is NP-
hard, i.e. no polynomial time algorithm could be designed to solve this problem
to optimality. As a generalisation of the OP with time-dependent travel time, the
TDOP is also NP-hard. The mathematical model introduced in Section 3 can be
regarded as a time-expanded graph of the OP, which substantially increases the
problem dimension, making computation even more challenging.

In this paper, our target application of the TDOP is to provide real-time tour
guidance to theme park visitors, so it is practically infeasible to make the tourists
wait minutes or even hours for an optimal route. Therefore, a fast and effective
heuristic approach is essential for devising a practical theme park routing tool in
a dynamic environment.

4.1 Greedy Construction Heuristic

A greedy construction heuristic is a myopic strategy that always chooses one so-
lution component that is with the best immediate desirability based on a greedy
criterion. In TDOP, A path P is initialized with the starting node 1 and end node
n. Then, the construction proceeds iteratively by adding a solution component, in
our case, one unvisited node, to P . In each iteration, the selected unvisited node
is added to the end of the path, right before the end node n.

One important feature in the TDOP is to handle the time-dependent travel
time di,j,h. Since travel time changes as the starting time changes, and no FIFO
property is assumed, we are faced with the following non-trivial subproblems:

– EarliestArrival: given a starting time tstart to travel from node nprev to
current node ncur, find the earliest arrival time tarr at ncur; and

– LatestDeparture: given an arrival time tend at node nnext, find the latest
departure time tdep from node ncur.

An example of these two subproblems can be illustrated in Figure 1. They are
handled is as follows: EarliestArrival, as outlined in Procedure 1, iteratively
checks the earliest possible arrival time of each proceeding time horizon, until
a horizon surpasses current earliest possible arrival time; LatestDeparture in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

206

Procedure 1 EarliestArrival (tstart, nprev, ncur, D, H)

hcur ← the time horizon that contains tstart

tend ← tstart + dnprev,ncur,hcur

for all h ∈ {hcur + 1, . . . , H} do
if tend < h then

break
else

if h + dnprev,ncur,h ≤ tend then

tend ← h + dnprev,ncur,h

end if
end if

end for
return tend

Procedure 2 LatestDeparture (tend, ncur, nnext, D, H)

hcur ← the time horizon that contains tend

tstart ← tend − dnprev,ncur,hcur

for all h ∈ {hcur − 1, . . . , 1} do
if tstart > h then

break
else

tstart ← min(tend − dnprev,ncur,h;h)
end if

end for
return tstart

(a) Starting from node 1 at time 10, the
earliest arrival time at node 2 is 16.

(b) Requiring arrival at node 2 at time 18, the
latest departure time at node 1 is 11.

Fig. 1 Example of finding the earliest arrival and latest departure time in time dependent
travels. The travel time from node 1 to node 2 is 4 if it starts within time interval [0, 11], and
is 8 within [12, 18].

Procedure 2 on the contrary, iteratively checks backwards each time horizon until
one horizon h in which a trip can be started, then the latest departure time is set
to either tend − dnprev,ncur,h, or the horizon boundary h, whichever starts first.

In each construction iteration, a node is feasible to be appended to the path
only if its earliest arrival time computed by Procedure 1 is no later than its latest
departure time computed by Procedure 2. From the set of all feasible nodes N∗,
a best node n∗ is then selected by the following greedy criterion:

n∗ ← arg max
i∈N∗

uαi

δβi
· rand(

1

γ
, 1). (10)

That is, the desirability of a node i ∈ N∗ depends on two terms: the utility value
ui, and the distance δi which is calculated as the difference between the earliest

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

207

Procedure 3 ForwardPropagation (P , ns)

tstart ← tarrns−1

for all i ∈ {s, s + 1, . . . ,m} do
tarrni

← EarliestArrival(tstart, ni−1, ni)

tstart ← tarrni
end for

Procedure 4 BackwardPropagation (P , ns)

tend ← tdepns+1

for all i ∈ {s, s− 1, . . . , 1} do
tdepni

← LatestDeparture(tend, ni, ni+1)

tend ← tdepni

end for

arrival time at i and earliest possible leaving time at the previous node. α and β
are parameters determining the impact of utility and distance, respectively. The
rand(1

γ , 1) is the noise term that generates a uniformly random number ranging

from 1
γ to 1, where γ ≥ 1 is a parameter that allows candidates of γ times worse

than the best one to be selected. If γ is set to 1, it selects deterministically the
most desirable node at each step. The greedy construction terminates when either
the visitation time budget Tmax is finished, or no more unvisited node can be
appended.

4.2 Local Search and Variable Neighborhood Descent

Two types of basic local search operators are adopted in our work, the insert
and replace operators. We also consider hybridizing the two operators within a
variable neighborhood descent framework. In order to make the feasibility check
of each operator more efficient, a starting time propagation procedure is used and
described below.

4.2.1 Starting Time Propagation

Given a path P of m nodes, P := {ni : i = 1, 2, . . . ,m}, the starting time prop-
agation concerns assigning the earliest arrival time tarri and the latest departure
time tdepi for each node ni ∈ P . It can be classified into two different procedures,
the ForwardPropagation in Procedure 3 that propagates the earliest arrival
time in the forward direction, and the BackwardPropagation in Procedure 4
that propagates the latest departure time in the backward direction. Note that
both procedures can also propagate for a partial path, starting from a certain
index ns.

The ForwardPropagation procedure iteratively takes the earliest arrival
time of the previous node to obtain the earliest arrival time of the current node by
using the EarliestArrival procedure, while the BackwardPropagation pro-
cedure iteratively takes the latest departure time of the next node to compute the
latest departure time of the current node by the LatestDeparture procedure.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

208

Procedure 5 Insert (P , N)

for all i ∈ random nodes of N do
for all j ∈ random positions of P do

tarri ← EarliestArrival(tarrnj
, nj , i)

tdepi ← LatestDeparture(tdepnj+1
, i, nj+1)

if tarri ≤ tdepi then
insert i into path P at position j
N ← N \ {i}
ForwardPropagation(P, j + 1)
BackwardPropagation(P, j − 1)
break

end if
end for

end for

4.2.2 Local Search Operators: Insert and Replace

The random first improvement strategy is applied for the insert operator, as
outlined in Procedure 5. Each random unvisited node i ∈ N is tried to be inserted
between random position j and j + 1 in the path P . The earliest arrival time of
node i is computed based on the earliest arrival time at node j, and the latest
departure time of node i is computed based on the latest arrival time of node
j + 1. If the node i can arrive earlier than its latest departure time, it is inserted
at position j, and earliest arrival time of the nodes after j will be updated using
ForwardPropagation and the latest departure time of the nodes before j will
be updated using BackwardPropagation.

Similarly, the replace operator also uses a random first improvement strategy.
An unvisited node i is considered better than node nj at position j of the path
P , either when its utility value is strictly better, or in the case of equal utility,
the difference between its earliest arrival time and latest departure time is strictly
larger. In such case, the two nodes are exchanged, and the starting time of the
rest of the nodes are updated by propagation.

4.2.3 Variable Neighborhood Descent

The basic idea of Variable Neighborhood Descent (VND) [14] is to apply a set of
local search operators iteratively, such that the final solution obtained is locally
optimal with respect to all local search operators (subject to iteration order).
In such a way, variable neighborhoods, such as insert and replace operators in
Section 4.2.2, can be hybridized. Note that VND starts with a complete solution
and returns a modified solution, hence itself can also be regarded as a local search
operator.

4.3 Iterated Local Search

Iterated local search (ILS) [13] is a simple yet effective, general-purpose meta-
heuristic. It starts with an initial solution and a local search, and then iterate
the three components of ILS: perturbation, local search, and acceptance criterion.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

209

Procedure 6 Perturbation (P , N)

randomly remove s nodes from P
tabu the removed nodes for one local search iteration
ForwardPropagation(P, 1)
BackwardPropagation(P, |P |)

Procedure 7 AcceptanceBasic (P , P gb, P rb, Imax)

if Incumbent P is better than restart best P rb then
P rb ← P
if Incumbent P is better than global best P gb then

P gb ← P
end if

else
P ← P rb

if consecutive non-improved iteration count exceeds maximum Imax then
Restart by a greedy construction followed by a variable neighborhood descent

end if
end if

Here, the initial solution is constructed by the greedy method in Section 4.1, the
variable neighborhood descent in Section 4.2.3 is adopted as the subsidiary lo-
cal search procedure. In the Perturbation procedure outlined in Procedure 6,
s random nodes are removed from the incumbent path P . Note that a node can
be removed only if the earliest arrival time at the next node is not delayed. This
is usually not an issue in a Euclidean-distance graph, however, it may not hold
if the travel time on an edge is time dependent due to traffic conditions as in
some benchmark instances mentioned in Section 5.1. s is a parameter reflecting
the perturbation strength. A high value of s may result in slow convergence, while
a smaller value of perturbation strength may quickly lead to a good solution at
the beginning but is more likely to be trapped in a deep local optimum. These
s removed nodes are tabued for one local search iteration, so that they cannot
be immediately inserted or replaced back to the incumbent path, allowing more
diversification.

We have considered two versions of the iterated local search in this work, a
basic version named Basic ILS and a modified version named Adaptive ILS. Their
main difference lies in the acceptance criterion, or more precisely, in how to handle
algorithm stagnation. The stagnation is referred to when the maximum number of
non-improved iterations Imax is reached. In Basic ILS, the algorithm is restarted
by a greedy construction and variable neighborhood descent, as detailed in Proce-
dure 7. Adaptive ILS in Procedure 8 first increments the perturbation strength s,
and resets the iteration counter to zero, until the maximum perturbation strength
smax is reached, then restarts the search. However, since Adaptive ILS allows more
non-improved iterations before restart, if it is trapped in an uninteresting re-
gion, many iterations will be wasted. To this end, we developed a probabilistic
intensification mechanism. For each unsuccessful iteration, with an intensification
probability pin, the best-so-far solution, instead of the restart best solution, will
be copied into the incumbent.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

210

Procedure 8 AcceptanceAdaptive (P , P gb, P rb, pin, Imax, smax)

if Incumbent P is better than restart best P rb then
P rb ← P
Set perturbation strength to minimum s← smin

if Incumbent P is better than global best P gb then
P gb ← P

end if
else

if rand(0, 1) < pin then
P ← P gb // Intensify by copying the global best solution to incumbent

else
P ← P rb

end if
if consecutive non-improved iteration count exceeds maximum Imax then

Increment perturbation strength s← s + 1
if s > smax then

Restart by a greedy construction followed by a variable neighborhood descent
end if

end if
end if

5 Computational Results

The comprehensive computational results including experimental setup will be
described below.

5.1 Instance Setup

Three classes of time dependent orienteering problem (TDOP) instances are con-
sidered in this study:

– Benchmark. The benchmark instances are adopted from [22]. These instances
were initially developed by [2]. The number of nodes in these instances varies
from 21 to 102. These instances were further adapted by Verbeek et al. [25]
by varying travel time at different time horizons. Each instance has a time
span from 7 am to 9 pm. These 14 hours were divided into four different time
horizons: 7 am to 9 am, 9 am to 5 pm, 5 pm to 7 pm, and 7 pm to 9 pm, since the
travel time on each edge may depend on the traffic load at different period of the
day. In order to use our time-expanded model for these benchmark instances,
the original travel time is discretized by a unit of µ = 1, 5, 15, 30 minutes, which
corresponds to a total number of time steps Tmax = 840, 168, 56, 28. In order
to guarantee the feasibility, the discretization of a travel time d is by rounding
up after divided by the time unit, dd/µe. The larger the time unit, the less
the number of time steps, and thus, easier for the time-expanded model to be
solved.

– Random. The second class of instances is randomly generated with varying val-
ues of the parameters: number of nodes n and time budget Tmax. Each time
step is considered a time horizon. The utility score for each node is generated
randomly between 1 to 9. The start and end nodes are allocated with zero
utility scores.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

211

Table 2 Characteristics of problem instances and their optimal or best-known solution com-
puted by CPLEX with the mathematical program model. The instance characteristics include
number of nodes |N |, number of discrete time steps Tmax, and number of time horizons k.

Class Name |N | Tmax k
CPLEX Result

Optimal Time

Benchmark TDOP1-{1, 5, 15, 30} 32 {840, 168, 56, 28} 4 220‡ 18.47 mins
TDOP2-{1, 5, 15, 30} 21 {840, 168, 56, 28} 4 355‡ 55.69 secs
TDOP3-{1, 5, 15, 30} 33 {840, 168, 56, 28} 4 590‡ 1.88 hours
TDOP4-{1, 5, 15, 30} 100 {840, 168, 56, 28} 4 623‡* >24 hours
TDOP5-{1, 5, 15, 30} 66 {840, 168, 56, 28} 4 850‡ 13.11 hours
TDOP6-{1, 5, 15, 30} 64 {840, 168, 56, 28} 4 768‡ 21.23 hours
TDOP7-{1, 5, 15, 30} 102 {840, 168, 56, 28} 4 690‡* >24 hours

Random Rand10× 10 10 10 10 20 0.17 secs
Rand10× 20 10 20 20 41 0.47 secs
Rand10× 30 10 30 30 46 2.06 secs
Rand10× 40 10 40 40 37 5.60 secs
Rand20× 10 20 10 10 42 1.20 secs
Rand20× 20 20 20 20 80 2.14 mins
Rand20× 30 20 30 30 84 10.73 mins
Rand20× 40 20 40 40 107 14.10 mins
Rand30× 10 30 10 10 47 1.94 secs
Rand30× 20 30 20 20 103 3.49 mins
Rand30× 30 30 30 30 151* >24 hours
Rand30× 40 30 40 40 143* >24 hours
Rand40× 10 40 10 10 63 10.13 secs
Rand40× 20 40 20 20 145 26.26 mins
Rand40× 30 40 30 30 176* >24 hours
Rand40× 40 40 40 40 217* >24 hours

Real world Real1 17 36 9 195 15.3 mins
Real2 40 42 42 208* >24 hours

‡ optimal or best known solution for discrete time unit 30.
* best known solution obtained after 24 hours

– Real world. Two real-world instances are obtained from two of the most pop-
ular theme parks in Asia. Each node represents an attraction, the utility vector
of each attraction is derived from user preferences data, and the travel time
from one attraction to another includes the traveling time (by shuttle or on
foot), and service time at an attraction, and the waiting time that varies over
time.

The details of instance characteristics can be referred to in Table 2.

5.2 Computational Results of Mathematical Model

The mathematical programming model in Section 3 is solved by commercial solver
CPLEX 10.2 on a computing server with multi-core Intel Xeon CPU ES-2667 at
2.90 GHz with 256GB RAM running Microsoft Server 2008 R2 Enterprise. Up to
24 threads are used per run.

The last two columns of Table 2 summarizes the optimal solution and compu-
tation time obtained by CPLEX for each instance. The computational scalability
of the problem is best illustrated in the Random class of instances. Although most

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

212

instances can be solved to optimality, the computation time explodes quickly as
the number of nodes and number of time steps increase. Instances with more than
30 nodes and 30 time steps cannot be solved to provable optimality within 24
hours. It takes minutes of computation time to compute an optimal route for in-
stances from 20 nodes and 20 time steps. In the instance class Benchmark, CPLEX
is only applied to instances discretized by time unit 30 minutes, resulting in 28
time steps in 14 hours.1 Note that since the number of time horizons k is reduced
to 4, the computational time required is also reduced noticeably. Here, instances
with up to 66 nodes and 28 time steps can be solved to provable optimality within
24 hours. However, the computation time required is very long: It takes over 1
hour to solve instances from 33 nodes. Concerning the two real world theme
park instances, the smaller one Real1 with 17 nodes and 36 time steps is solved
to optimum in around 15 minutes, while the larger one Real2 cannot be solved to
provable optimality within 24 hours.

Although most of the instances considered can be solved optimally by CPLEX,
the computation time is unpractically long, usually minutes to hours for a realis-
tic problem size. However, our target application is a time-critical problem: each
instance is generated for each visitor on the fly based on their personal preference
and available time, and then the tour guidance system is expected to compute
a good solution within an acceptable time, i.e., maximum one second. Besides,
the coarse time discretization required by the mathematical model also reduces
the accuracy of travel time input. Therefore, the mathematical programming may
not be an ideal approach for this application, however, the optimal or best known
solution computed in this section can be a good reference in assessing the quality
of our metaheuristic approaches in the next section.

1 For instances with smaller discretization time units such as 15, 5, and 1 minutes, most of
the instances cannot be solved to optimality within 24 hours.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

213

Table 3 The computational results of the four metaheuristics: greedy, variable neighborhood descent (VND), basic iterated local search (Basic ILS),
and adaptive iterated local search (Adaptive ILS). Each metaheristic is run 30 trials on each instance, and best, mean, and worst performance of each
30 runs are listed below. Percentage deviation from optimal or best-known solution is listed, where available in Table 2, or else the objective value is
listed. Statistically significantly best results are marked in bold face.

Instance
Greedy VND Basic ILS Adaptive ILS

Best Mean Worst Best Mean Worst Best Mean Worst Best Mean Worst

TDOP1-1 280 273.8 270 280 280 280 285 284.3 280 285 284.8 280
TDOP1-5 270 264.7 260 280 273.8 270 280 280 280 280 280 280
TDOP1-15 245 238.7 235 260 251.8 245 260 257.5 255 260 260 260
TDOP1-30 2.27% 4.02% 6.82% 0.00% 1.29% 4.55% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP2-1 450 437.7 430 450 450 450 450 450 450 450 450 450
TDOP2-5 430 422.0 415 440 430.7 430 440 440 440 440 440 440
TDOP2-15 385 376.3 375 395 395 395 395 395 395 395 395 395
TDOP2-30 0.00% 2.96% 5.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP3-1 760 744.3 740 770 762.7 750 780 778.3 770 780 777.7 770
TDOP3-5 730 725.7 720 740 731 730 750 742.3 730 750 744.3 730
TDOP3-15 660 647.7 640 670 660.7 650 670 665 660 670 663 660
TDOP3-30 0.00% 0.90% 3.39% 0.00% 0.06% 1.69% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP4-1 1014 980.2 964 1032 1003.3 989 1056 1032.2 1012 1085 1048.5 1015
TDOP4-5 935 910.9 891 956 927.2 909 964 942 921 989 953.9 925
TDOP4-15 791 777.1 761 824 791 776 831 800.8 771 842 812.7 783
TDOP4-30 2.25% 4.03% 5.78% 3.21% 4.20% 5.14% 1.93% 4.56% 5.94% 1.61% 3.55% 6.10%

TDOP5-1 1495 1458.2 1410 1495 1468.7 1425 1505 1488.8 1460 1505 1497.3 1465
TDOP5-5 1260 1233.8 1195 1260 1238.2 1200 1260 1244.7 1220 1260 1246.8 1215
TDOP5-15 865 851.7 835 870 854 845 870 859.3 845 870 865 850
TDOP5-30 0.59% 1.78% 2.94% 0.59% 1.47% 3.53% 0.00% 0.69% 1.76% 0.00% 0.24% 1.18%

TDOP6-1 1326 1303.4 1290 1326 1316.4 1302 1338 1328.8 1320 1344 1337.6 1332
TDOP6-5 1224 1186.4 1158 1236 1198.4 1176 1242 1221 1206 1254 1237.0 1212
TDOP6-15 1182 1153.2 1134 1206 1180.2 1164 1236 1211 1194 1254 1233.6 1206
TDOP6-30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TDOP7-1 1182 1164.6 1152 1232 1211.6 1192 1285 1260.1 1236 1318 1283.2 1253
TDOP7-5 1084 1065.2 1050 1113 1093.6 1078 1182 1140 1116 1195 1159.1 1134
TDOP7-15 960 940.9 920 1000 982.7 967 1026 1005.8 980 1046 1019.8 983
TDOP7-30 1.30% 1.82% 2.46% 0.58% 1.42% 2.03% 0.87% 1.46% 1.59% 0.58% 1.14% 1.59%

Rand10 × 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 20 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 30 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand10 × 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 10 7.14% 7.14% 7.14% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 20 0.00% 0.80% 1.27% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 30 0.00% 0.16% 1.19% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand20 × 40 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand30 × 10 6.38% 6.38% 6.38% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand30 × 20 3.88% 3.88% 3.88% 0.00% 1.62% 1.94% 0.00% 0.45% 0.97% 0.00% 0.58% 1.94%
Rand30 × 30 3.29% 4.30% 4.61% 1.32% 2.11% 3.29% 0.00% 1.64% 2.63% 0.00%* 1.36% 2.63%
Rand30 × 40 0.00% 0.40% 0.70% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand40 × 10 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Rand40 × 20 0.00% 0.62% 0.69% 0.00% 0.67% 0.69% 0.00% 0.74% 1.38% 0.00% 0.83% 2.07%

Rand40 × 30 0.56% 1.98% 3.95% 0.56% 1.53% 2.26% 0.56% 1.54% 2.82% 0.00%‡ 1.21% 2.26%
Rand40 × 40 2.30% 2.69% 3.23% 0.46% 1.03% 1.38% 0.46% 0.89% 1.38% 0.00% 0.68% 1.38%

Real1 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Real2 0.96% 1.54% 1.92% 0.00% 0.19% 0.48% 0.00% 0.18% 0.48% 0.00% 0.14% 0.48%

* New best known solution found: 152. ‡ New best known solution found: 177.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

214

5.3 Computational Results of Metaheuristics

The metaheuristics introduced in Section 4 were implemented in Java, compiled
by JDK 7, and run on a MacBook Air with 1.7GHz Intel Core i7 and 8GB memory.
Only single thread is used for each metaheuristic run.

Four metaheuristics are considered here: a restart greedy append construc-
tion heuristic (Greedy), a restart variable neighborhood descent (VND), a basic
version of iterated local search with restart (Basic ILS), and a modified iterated lo-
cal search with adaptive perturbation size and probabilistically intensified restart
(Adaptive ILS). The following parameter settings are adopted for these algorithms.
For greedy construction, the weight of utility and distance is set to α = β = 1
following most of the existing work on orienteering problem; the noise factor γ is
set to 1 in the first run to make it deterministic, and set to 5 in all the following
runs. For Basic ILS, the perturbation strength s is set to 3, and the maximum
non-improved iteration Imax is set to 10. For Adaptive ILS, Imax is also set to
10, and the minimum perturbation strength smin is set to 3, and the maximum
smax = d|P |/4e, i.e. the roundup of one fourth of the incumbent path size; the
intensification probability pin is set to 0.05.

Each metaheuristic is allowed a maximum runtime of one second, and is per-
formed 30 independent runs on each instance. The best, mean and worst per-
formance of 30 runs are recorded in Table 3. For each instance, the significantly
best performing metaheuristics by the Wilcoxon’s signed rank test at 0.05 level is
marked in bold face. As is clearly shown, Adaptive ILS is the significantly best
performing algorithms for all benchmark instances and real world instances. Espe-
cially in the largest benchmark instances TDOP4 and TDOP7, Adaptive ILS is
usually over 1% better than the Basic ILS, and around 2 to 5% better than VND
and greedy. It remains the significantly best performing algorithm for all but one
random instances, where it was slightly but statistically significantly outperformed
by greedy and VND. Basic ILS as runner-up significantly outperforms VND, which
in turn performs significantly better than greedy.

Comparing the metaheuristic approaches with the mathematical program-
ming approach, regardless of only one second computation time, Adaptive ILS
is able to improve the best known solutions of random instances Rand30× 30 and
Rand40 × 30 that are computed by CPLEX 10.2.0 solver in 24 hours. The best
run of Adaptive ILS has found the optimum of all random instances, real world
instances, and the benchmark instances up to size 66. It misses the optimum of
the largest instances TDOP4-30 and TDOP7-30 composed of 100 nodes, leaving
a gap of 0.6 to 1.6 % at its best run, or 1.1 to 3.6% at its average. One second
is probably too short for instances of such size. Considering mean performance,
for instance size under 30, Adaptive ILS finds the optimal solution in each of the
30 runs; the average deviation from the optimum is less than 1.4% for the ran-
dom instances up to size 40, 0.14% for the real world instances, and 0.24% for the
benchmark instances up to size 66.

Another important advantage of the metaheuristic approaches over the time-
expanded mathematical model is that, it does not require a time discretization,
and thus can use the travel time of arbitrary accuracy. Since the travel time is
discretized by rounding up to guarantee feasibility, it compromises the quality of
the obtained solution. Comparing the result of benchmark instances with time
unit of 1 minute in Table 3 to optimal result with time unit 30 minutes in Ta-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

215

ble 2, the solution quality loss is from over 20% as on instance TDOP2 with size
21, to around 45% on instance TDOP5 with size 66. A finer time discretization
than 30 minutes suffers the time-expanded mathematical model, however, using
a coarser discretization at the expense of solution quality also demeans the orig-
inal motivation of using mathematical model, which is to guarantee optimality.
The metaheuristic approaches explored in this work, especially the Adaptive ILS,
appear to be practical and promising for our application problem.

6 Conclusion

This paper presents a general form of the Time-Dependent Orienteering Problem
(TDOP). We formulated this problem by an integer linear programming (ILP)
model based on time-expanded graph. We further adopted two real-world instances
from two most popular theme parks in Asia, together with modified benchmark
instances, and randomly generated instances to study the scalability. The com-
putational difficulty turns out to explode quickly for a commercial ILP solver as
problem size increases.

As the underlying application problem is time critical, the development of
a good metaheuristic is essential. Several heuristics are developed. From experi-
mental results, we showed that our proposed approach, iterated local search with
adaptive perturbation size and probabilistic intensified restart, appears to be fast
and effective: within one second’s computation time, it manages to find the optimal
solution for most of the instances considered. It even improves for two instances
the best known solutions computed by CPLEX for over 24 hours.

An interesting idea to extend our current ILS is to consider a hierarchical iter-
ated local search approach [10], as well as using automatic algorithm configuration
tool to determine the algorithm setting. It will be also interesting to compare with
some state-of-the-art approaches such as ant colony systems [25]. From math-
ematical programming point of view, it would be interesting to consider further
Branch-and-Cut techniques as in [4]. In the application aspect, our future research
includes extracting more instances from our real world theme park tour guidance
data, and extending the applicability of our approach to other types of real-world
variants including time-dependent utility score, and the time-dependent team ori-
enteering problem.

Acknowledgements This research is supported by the Singapore National Research Founda-
tion under its International Research Centre @ Singapore Funding Initiative and administered
by the IDM Programme Office, Media Development Authority (MDA). Zhi Yuan acknowledges
support by BMBF Verbundprojekt E-Motion (grant number 05M13GBA).

References

1. Abbaspour, R.A., Samadzadegan, F.: Time-dependent personal tour planning and schedul-
ing in metropolises. Expert Systems with Applications 38(10), 12,439–12,452 (2011)

2. Chao, I.M., Golden, B.L., Wasil, E.A.: Theory and methodology - the team orienteering
problem. European Journal of Operational Research 88(3), 464–474 (1996)

3. Feillet, D., Dejax, P., Gendreau, M.: Traveling salesman problems with profits. Trans-
portation Science 39(2), 188–205 (2005)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

216

4. Fischetti, M., Salazar, J.J., Toth, P.: Solving the orienteering problem through branch-
and-cut. INFORMS Journal on Computing 10, 133–148 (1998)

5. Fomin, F.V., Lingas, A.: Approximation algorithms for time-dependent orienteering. In-
formation Processing Letters 83, 57–62 (2002)

6. Garcia, A., Vansteenwegen, P., Arbelaitz, O., Souffriau, W., Linaza, M.T.: Integrating
public transportation in personalised electronic tourist guides. Computers and Operations
Research 40(3), 758–774 (2013)

7. Gendreau, M., Laporte, G., Semet, F.: A tabu search heuristic for the undirected selective
travelling salesman problem. European Journal of Operational Research 106(2-3), 539–545
(1998)

8. Golden, B., Levy, L., Vohra, R.: The orienteering problem. Naval Research Logistics 34(3),
307–318 (1987)

9. Golden, B., Wang, Q., Liu, L.: A multifaceted heuristic for the orienteering problem. Naval
Research Logistics 35(3), 359–366 (1988)

10. Hussin, M.S., Stützle, T.: Hierarchical iterated local search for the quadratic assignment
problem. In: M. Blesa, et al. (eds.) Proceeding of Hybrid Metaheuristics (HM 2009),
Lecture Notes in Computer Science, vol. 5818, pp. 115–129. Springer (2009)

11. Laporte, G., Martello, S.: The selective travelling salesman problem. Discrete Applied
Mathematics 26(2-3), 193–207 (1990)

12. Li, J.: Model and algorithm for time-dependent team orienteering problem. In: S. Lin,
X. Huang (eds.) Communications in Computer and Information Science, Communications
in Computer and Information Science, vol. 175, pp. 1–7 (2011)

13. Lourenço, H., Martin, O., Stützle, T.: Iterated local search. In: Handbook of metaheuris-
tics, pp. 320–353. Springer (2003)

14. Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations
Research 24(11), 1097–1100 (1997)

15. Righini, G., Salani, M.: Decremental state space relaxation strategies and initialization
heuristics for solving the orienteering problem with time windows with dynamic program-
ming. Computers and Operations Research 36(4), 1191–1203 (2009)

16. Souffriau, W., Vansteenwegen, P., Berghe, G., Oudheusden, D.V.: Automated parameteri-
sation of a metaheuristic for the orienteering problem. In: C. Cotta, M. Sevaux, K. Sörensen
(eds.) Adaptive and multilevel metaheuristics, Studies in Computational Intelligence, vol.
136, pp. 255–269 (2008)

17. Souffriau, W., Vansteenwegen, P., Vertommen, J., Berghe, G.V., Oudheusden, D.V.: A
personalised tourist trip design algorithm for mobile tourist guides. Applied Artificial
Intelligence 22(10), 964–985 (2008)

18. Tang, H., Miller-Hooks, E.: A tabu search heuristic for the team orienteering problem.
Computer and Operations Research 32(6), 1379–1407 (2005)

19. Tasgetiren, M.: A genetic algorithm with an adaptive penalty function for the orienteering
problem. Journal of Economic and Social Research 4(2), 1–26 (2001)

20. Thomadsen, T., Stidsen, T.: The quadratic selective travelling salesman problem. In-
formatics and mathematical modelling technical report IMM-Technical Report-2003-17,
Technical University of Denmark (2003)

21. Tsiligirides, T.: Heuristic methods applied to orienteering. Journal of the Operational
Research Society 35(9), 797–809 (1984)

22. Vansteenwegen, P.: TDOP Format http://www.mech.kuleuven.be/en/cib/op/#section-20
(2013)

23. Vansteenwegen, P., Souffriau, W., Berghe, G.V., van Oudheusden, D.: Iterated local search
for the team orienteering problem with time windows. Computers and Operations Research
36(12), 3281–3290 (2009)

24. Vansteenwegen, P., Souffriau, W., Oudheusden, D.V.: The orienteering problem: A survey.
European Journal of Operational Research 209(1), 1–10 (2011)

25. Verbeeck, C., Sörensen, K., Aghezzaf, E.H., Vansteenwegen, P.: A fast solution method
for the time-dependent orienteering problem. European Journal of Operational Research
236(2), 419–432 (2014)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

217

Directed Selection using Reinforcement Learning for
the Examination Timetabling Problem

Ryan Hamilton-Bryce · Paul McMullan ·
Barry McCollum

Abstract Traditional heuristic approaches to the Examination Timetabling
Problem normally utilize a stochastic method during Optimization for the
selection of the next examination to be considered for timetabling within
the neighbourhood search process. This paper presents a technique whereby
the stochastic method has been augmented with information from a weighted
list gathered during the initial adaptive construction phase, with the purpose
of intelligently directing examination selection. In addition, a Reinforcement
Learning technique has been adapted to identify the most effective portions
of the weighted list in terms of facilitating the greatest potential for over-
all solution improvement. The technique is tested against the 2007 Interna-
tional Timetabling Competition datasets with solutions generated within a
time frame specified by the competition organizers. The results generated are
better than those of the competition winner in seven of the twelve examina-
tions, while being competitive for the remaining five examinations. This pa-
per also shows experimentally how using reinforcement learning has improved
upon our previous technique.

1 Introduction

The challenge of producing acceptable solutions for timetabling problems such
as Course and Examination timetabling involves a combination of practical
and research based approaches [1]. Due to the complexity of the underlying
problems and the potential time requirement in providing acceptable solu-
tions to these problems through the use of discrete methods, over this last few
decades research has focused on the use of search based heuristic techniques.
A number of review papers on the subject have been published [2], [3]. As

School of EEECS, Queen’s University of Belfast, BT7 1NN, Northern Ireland
E-mail: {rhamiltonbryce01, p.p.mcmullan, b.mccollum}@qub.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

218

with Course timetabling, progress in research within the area of examina-
tion timetabling has been facilitated by the availability of benchmark data
sets [4], [5]. Results generated using a wide range of techniques have been re-
ported, with varying levels of success based on both generality of the solver and
the time taken to solve [2]. A successful technique can be viewed as one which
can produce feasible and workable solutions to a range of differing problems
for a given problem domain within a practical timescale.

An examination scheduling track, based on the post-enrolment examina-
tion timetabling problem was introduced in the second International Timetabling
Competition (ITC2007) [4]. This track introduced a number of real world
datasets, drawn from anonymised data from several institutions worldwide.
New result sets continue to be validated using the competition’s online vali-
dation service despite the competition closing almost five years ago. The next
timetabling competition to be announced will further develop the problem
definition, to further extend the real world aspects of research in this area and
to encourage innovation with the development of new problem solvers [6].

Solving the examination timetabling problem generally takes the form of an
initial construction phase to produce a feasible solution, and an improvement
phase which employ a number different search techniques to find high qual-
ity solutions when given specific objectives [7]. It has been observed that for
certain construction techniques if construction is continued beyond the point
at which a feasible solution has been acquired it is often possible to acquire a
better quality for solution on which the improvement phase can operate [8].

Traditionally heuristic based approaches to timetabling problems have uti-
lized a stochastic method for selection of the examination within a neighbour-
hood search process [9], [10], [11]. This allows for a rapid selection of examina-
tions for the optimization process. It has been shown through experimentation
that a link exists between the phases of construction and optimization [7]. It
is possible to exploit this link to allow for a useful transfer of information
between the phases

Directed Selection Optimization (DSO) exploits co-operation between the
phases of construction and optimization. Information gathered and used, in
the form of a weighted list, during the construction phase is used to influence
and direct examination selection within the subsequent improvement phase.
In the improvement phase the weighted list is split into portions, and using
reinforcement learning techniques, the portions which show the greatest poten-
tial for improvement are preferentially used to influence examination selection.
Highest Soft Constraint Optimization (HSCO) is a new optimization heuristic,
where examination selection is directed by a weighted list, the values of which
are calculated based on an examinations individual soft constraint penalty.
Optimization occurs in order from the examination with the highest to lowest
penalty.

The remainder of the paper is as follows: Section 2 briefly describes the
examination timetabling problem. Section 3 describes the Squeaky Wheel con-
structor, Directed Selection Optimizer and the Highest Soft Constraint Cost
Optimizer. Section 4 describes the experimental environment and time pa-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

219

rameters used during experimentation. Section 5 presents and discusses the
results and finally section 6 concludes the paper with a brief discussion on the
effectiveness of the technique and potential future research areas

2 The Examination Timetabling Problem

Examination timetabling is a subset of the general timetabling problem, and
has been proven to be NP-hard [12]. Examination timetabling involves allo-
cating a set of events (exams), into a number of available resources (timeslots
and rooms), subject to a series of constraints. Primarily, there are two types of
constraints; hard and soft. Hard constraints must be satisfied for a timetable
to be considered feasible, for example an exam cannot be scheduled in a room
that is too small for the size of the exam, or a student must not have two
exams at the same time. Soft constraints on the other hand represent desir-
able preferences, which are not required to be satisfied for the timetable to
be considered feasible, but may affect the fitness or quality of the resultant
solution. For example, while it may not be preferable for a student to have
two exams in one day, a timetable can still be considered feasible if this does
occur. The main goal when solving this problem is to minimize the number of
soft constraint violations, while at the same time maintaining a feasible solu-
tion. As it is possible to assign a numeric value to the quality of a timetable
based on how well it satisfies the various constraints, it is possible to directly
compare two timetables, where the timetable with the lower overall penalty is
considered the more acceptable solution.

Examination timetabling, unlike Course Timetabling, is overwhelmingly
considered to be a post-enrolment problem. Student enrolment data is gen-
erally known at the time of scheduling, allowing for an accurate use of the
available resources during the examination period.

The requirements for real-world examination timetabling problems are of-
ten unique for each individual institution, with the type and mix of hard and
soft constraint options reflecting the preferences of the institution in ques-
tion. However it is possible to identify a common set of both hard and soft
constraints for benchmark and research use.

Carter, et al. introduced a set of 13 benchmark examination datasets in
1996 [5], drawn from three Canadian high schools, five Canadian universi-
ties, one American university, one British university and one university in
Saudi Arabia. These datasets have been widely tested and used in examina-
tion timetabling research [2]. These datasets were supplemented by a series of
new datasets, drawn from anonymised data provided by several institutions
worldwide, for the 2007 International Timetabling Competition (ITC2007).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

220

Exams Students Periods Rooms Conflict Density Period Hard Constraints Room Hard Constraints

Exam 1 607 7891 54 7 5.05% 12 0
Exam 2 870 12743 40 49 1.17% 12 2
Exam 3 934 16439 36 48 2.62% 170 15
Exam 4 273 5045 21 1 15.00% 40 0
Exam 5 1018 9253 42 3 0.87% 27 0
Exam 6 242 7909 16 8 6.16% 23 0
Exam 7 1096 14676 80 15 1.93% 28 0
Exam 8 598 7718 80 8 4.55% 20 1
Exam 9 169 655 25 3 7.84% 10 0
Exam 10 214 1577 32 48 4.97% 58 0
Exam 11 934 16439 26 40 2.62% 170 15
Exam 12 78 1653 12 50 18.45% 9 7

Table 1 ITC 2007 Dataset Information

Table 1 lists the main characteristics for each of the examination datasets
provided by the organizers of ITC2007. The conflict density is a measure of
the number of examinations that are in conflict due to student enrolment,
defining how tightly the problem is constrained by student module choice. It
is initially observed that the conflict density for most of the datasets is quite
low, which is reflective of the amount of choice available to students within a
modern curriculum, with a large variation in course or subject choices between
each student. The measure of problem size, based on the number of exams
and students, varies across the datasets. The largest exam dataset could be
argued to be either Exam 3/Exam 11 or Exam 7 and the smallest to be either
Exam 9 or Exam 12. The amount of periods and rooms available will also
have a measurable effect on the difficulty of constructing a feasible solution.
Exam 3 and Exam 11 are almost identical, however Exam 11 has a much
smaller set of period resources available. The differences between Exam 3 and
Exam 11 reflect a ”real-world” situation where an examination session has been
shortened to minimize space and staff costs, while keeping all other existing
constraints where possible.

Recent attempts to solve the examination timetabling problem continue to
involve a variety of different techniques. Genetic Algorithms [13] are modelled
on Darwins theory of evolution. Once an initial population has been con-
structed, it is refined over a series of iterations, with an evaluation function
calculating the fitness of each individual within the population. Late Accep-
tance Hyper-heuristics were introduced by Burke and Bykov [14]. Tradition-
ally, the approach in hyper-heuristics was to compare the current solution with
the solution immediately preceding within the neighbourhood search process.
In late acceptance, the current solution is compared with what was the cur-
rent solution a number of iterations previously. Late acceptance techniques are
able to produce competitive results in a short timeframe. Reinforcement Learn-
ing [15] techniques are used to influence heuristic selection for hyper-heuristics.
A memory log of heuristic actions is kept during execution, with successful ac-
tions being rewarded and unsuccessful actions being punished. With this log,
successful actions are chosen more often and unsuccessful actions are chosen
less often across the search space. Both long term [15] and short term [16]
memories have been explored in this technique. Tabu Search [17], [18] is a
local search based technique. Unlike other such techniques, it maintains a list

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

221

of solutions that have recently been visited, which is used to prevent the op-
timizer from repeatedly considering similar neighbourhoods, helping to avoid
local optima. Hill Climbing is the simplest local search algorithm, introduced
by Appleby in 1961 [19]. In Hill Climbing a candidate solution is only accepted
if it has a better or equivalent fitness to the current one. Hill Climbing aims to
converge quickly, but often has a final solution of relatively poor quality as it
tends to get trapped in local optima. Simulated Annealing was introduced as
a general optimization technique by Kirkpatrick, et al in 1983 [20]. Simulated
Annealing is broadly similar to hill-climbing, however the technique is able to
accept worse solutions through the use of a probability function and decreasing
temperature parameter. Great Deluge was introduced by Dueck [21] in 1990
as a faster alternative to Simulated annealing. Great Deluge uses a bound-
ary condition, rather than a probability function for the acceptance of worse
solutions. In Great Deluge the boundary is initially set slightly higher than
the initial solution, and is reduced gradually throughout the improvement pro-
cess. The Extended Great Deluge was introduced by McMullan [22] for Course
Timetabling, and later for Examination Timetabling [23]. The Extended Great
Deluge algorithm adds a reheat mechanic similar to that employed in Simu-
lated Annealing, where after a period of non-improvement the Great Deluge
algorithm would self-terminate, the Extended Great Deluge employs a reheat
function to widen the boundary condition to allow for the further acceptance
of worse solutions in an attempt to escape local optima. Traditional problem
solvers have primarily been implemented as single threaded applications. Mod-
ern desktop and server hardware are highly optimized for parallel workloads,
and previously implemented solvers no longer take full advantage of the avail-
able hardware when executed on these machines. Ant Algorithms, introduced
by Dorigo [10] and implemented for the examination timetabling problem by
Eley [24], were among the first parallel implementations to solve the problem.
Each ant works concurrently and independently to build a complete, or partial
solution starting from an initial state defined by problem dependent criteria.
The Scatter Search meta-heuristic has recently been implemented to execute
in a parallel and distributed manner [25] over a series of independent servers.

3 Directed Examination Selection

Directed Selection, introduced in[26], is extended here to encompass a three
phase process, building upon elements used in the Extended Great Deluge
(EGD) algorithm introduced by McMullan [22]. The first phase is a Squeaky
Wheel (adaptive) constructor, which is used to construct a series of initial
timetables. Once construction has completed the best timetable and the weighted
list used during construction is passed into the Directed Selection Optimiza-
tion (DSO) phase. DSO utilizes the weighted list to influence the selection
of the examination for optimization. After a number of non-improving reheat
actions, the current best timetable is passed to the Highest Soft Constraint

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

222

Cost Optimization phase. When complete, the timetable is returned to the
DSO phase while there is remaining execution time.

Start timer;
Read examination file;
Build clash information;
Squeaky Wheel Construction;
while time remaining do

Directed Selection Optimization;
Highest Soft Constraint Optimization;

end
Output results;

Algorithm 1: Sequence of Execution

3.1 Squeaky Wheel Construction

Squeaky Wheel (adaptive) construction [27] is an iterative construction pro-
cess, building an initial schedule by placing one exam at a time, in the order
determined by a weighted sequence. There are a number of different methods
for determining the initial order of the weighted list, the technique presented
here calculates the initial ordering based on examination size and the number
of conflicts. Each exam is assigned to the first available time and room com-
bination, where possible, ensuring that a feasible solution is maintained while
minimizing soft constraint violations. If an exam cannot be scheduled in the
current iteration, it is left unscheduled and the constructor moves onto the
next exam. When an exam is scheduled a weighting based upon its current
penalty, as defined by the various soft constraint violations, is added to the
stored weighting in the weighted list. If an exam cannot be scheduled a suitably
large weighting is used instead. Once an attempt has been made to schedule
all exams, the weighted list is re-sorted and subsequently those exams with
the highest weighted value (or most difficult exams) are first to be scheduled
on the next iteration or ”run” of the constructor. The weightings held in the
list evolve over the duration of the entire construction process.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

223

Read in the problem file into memory and build conflict and suitability matrices;
Calculate an initial weighting based on pre-defined criteria;
while stopping criteria not met do

foreach exam ei in weightedList do
for all suitable timeslots ti of ei do

if CanSchedule(ei, ti) then
best penalty and store best (bestti);

end

end
if multipleBest found then

Schedule(ei, randomBestti) and store associated weighting in
weightedList;

end
else if bestTi found then

Schedule (ei, bestti) and store associated weighting in weightedList;
end
else

Leave exam unscheduled and add large weighting in weightedList;
end

end
Sort(weightedList);

end

Algorithm 2: Squeaky-wheel (Adaptive) construction

3.2 Directed Selection Optimization

Directed Selection Optimization (DSO) is a new technique introduced by
Hamilton-Bryce, McMullan and McCollum [26]. It is based on the premise
that there exists a link where useful information can be passed from an adap-
tive based construction phase to an EGD based optimization phase [7]. It
was shown in [26] that information which is traditionally discarded during the
construction phase can be fed in to the optimization phase to influence and
direct the selection of examinations for the neighbourhood search process. In
Directed Examination Selection, the traditionally random selection of exam-
inations is augmented with a portion of the weighted list generated during
construction. After an initial learning period, reinforcement learning is used
to influence examination selection to the portion(s) of the weighted list which
show the greatest amount of improvement.

For example, the weighted list can be split into quarters. After the initial
learning period the reinforcement learning list has the values (1, 4, 10, 7) for
the first, second, third, and fourth quarters respectively, where 0 represents no
improvement, and higher values represent greater amounts of improvement.
While the highest value represents the potential for the greatest amount of
improvement, it should not be used exclusively. Correspondingly while the
lowest value represents the least potential for improvement, it should not be
excluded from use. Therefore an element of chance should be introduced by
simulating dice rolls, with the highest improving portion having approximately
a 50% chance of being used, with each next portion of the weighted list having

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

224

a lesser chance. Finally if no portion of the weighted list has been selected then
a number of random examinations equal to the portion size of the weighted list
are selected. Through experimentation it was found that sorting the reinforce-
ment learning list approximately every ten seconds provided good performance
while also ensuring that the values in the list do not become ’stale’ as the im-
provement process continues. As in [26], for performance reasons the weighted
list is sorted during a reheat action. It is possible to sort the reinforcement
learning list more often than the weighted list, due to the relative size differ-
ences between the lists. During initial experimentation it was found that it is
possible to over-influence the selection of examinations to the detriment of the
optimization process. This is prevented by applying a simulated ’die roll’ to
determine whether to use specific portions of the weighted list, or default to
selecting examinations at random.

Sort Reinforcement Learning List (rlList);
if rnd.Next (1,6) >= 3 then

Use best portion of weightedList;
else if rnd.Next (1, 6) >= 4 then

Use next best portion of weightedList;
else if rnd.Next (1,6) ¿= 5 then

Use next best portion of weightedList;
else if rnd.Next (1,6) == 6 then

Use next best portion of weightedList;
else

Select random exams for optimization;
end

Algorithm 3: Influencing Examination Selection

Once examination selection has occurred, the remainder of the optimiza-
tion process is similar to the EGD algorithm. On each iteration, one of two
neighbourhood heuristics is selected; either move or swap, and an attempt is
made to apply the chosen heuristic to the selected examination list. In the new
technique, boundary acceptance has been replaced with Late Acceptance Cri-
teria. Late Acceptance Criteria was introduced by Burke and Bykov [28] [14],
wherein a candidate solution is compared for acceptance against the current
solution a number of iterations previously. This can be implemented as a simple
queue structure of a predefined size, wherein the current solution is compared
against the head value. At each iteration the head value is removed, if the
candidate solution is accepted its cost is inserted onto the end of the queue,
and if the candidate solution is rejected the last accepted cost is inserted onto
the end of the queue. At the beginning of the optimization process the entire
queue is initialised to the value of the initial cost function of the timetable
undergoing optimization. The reheat mechanic from the EGD algorithm has
been retained, to allow the algorithm an attempt to escape from local optimum
conditions. Finally as with the EGD algorithm, the process will self-terminate

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

225

when a lack of improvement has been observed for a specified number of re-
heats of the late acceptance list.

Set the initial solution s using a construction heuristic;
Calculate initial cost function f(s); Initialize Late Acceptance list (laList);
while stopping criteria not met do

Select portion of weightedList (optList) to use based on Reinforcement Learning
criteria or a random exam;
Select neighbourhood Heuristic S*;
for all exams in optList do

Apply S* on exam;
Calculate f(s*);
if f(s*) <= f(s) or f(s*) <= laList.FirstItem then

Accept s = s*;
Add new f(s) to laList;
Update Reinforcement Learning Criteria with success;

else
Add existing f(s) to laList;
Update Reinforcement Learning Criteria with fail;

end
if no improvement in given time T then

Increase all values in laList by 10%;

end

Algorithm 4: Directed Selection Optimization (DSO)

3.3 Highest Soft Constraint Optimization

Highest Soft Constraint Optimization (HSCO) is a new optimization heuristic
introduced here influenced by the Highest Cost construction heuristic intro-
duced by Pillay and Banzhaf [29] [13]. The Highest Cost construction heuris-
tic calculates the soft constraint cost of scheduling an examination given the
current state of the timetable and the examination with the highest cost is
scheduled first. In HSCO, the soft constraint penalty for each examination in
the timetable is calculated. An attempt is then made to optimize the timetable
in order from the examination with the highest soft constraint cost. As with
the previous optimization phase, HSCO has been implemented with Late Ac-
ceptance criteria for boundary acceptance. During initial experimentation it
was found that the neighbourhood swap heuristic used during the DSO phase
resulted in degraded performance when used in the HSCO phase as it resulted
in an examination being revisited multiple times during the search process. As
such the HSCO phase contains only a neighbourhood move heuristic.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

226

Set the initial solution s using a construction heuristic;
Improve the initial solution s using DSO;
Calculate cost function f(s);
Initialize Late Acceptance list (laList);
while stopping criteria not met do

for all exams in timetable do
Calculate soft constraint penalty on individual exam basis;
Store penalty in scList;

end
Sort scList by penalty;
for all exams in scList do

Apply neighborhood move on exam;
Calculate f(s*);
if f(s*) <= f(s) or f(s*) <= laList.FirstItem then

Accept s = s*;
Add new f(s) to laList;

else
Restore last best s;
Add existing f(s) to laList;

end

end

end

Algorithm 5: Highest Soft Constraint Optimization (HSCO)

4 Experimental Environment

The algorithm was implemented and tested on a PC with an Intel Xeon E5-
1603 2.8GHz processor, 8GB RAM and Windows 7. The program was coded in
C# targeting the .NET Framework 4.5. For each problem set, the program was
executed for ten iterations, with a 240 second time limit per iteration deter-
mined by a benchmarking application released by the competition organizers.
During initial experimentation it was found that allowing adaptive construc-
tion to execute for approximately 10% of the total execution time provided
the best results with the new code.

5 Results and Analysis

The random seed used for generation of the results below has been recorded
to ensure repeatability of the experiments. Initial experimentation identified
that splitting the weighted list into sixths provided a greater improvement than
any larger split, as well as good performance overall for the new optimization
phases.

As with the EGD, the chosen neighbourhood search heuristics have been
kept deliberately simple. While more complex heuristics can identify the opti-
mal move, under previous experimentation these were found to have the effect
of directing the search too intensively, resulting in more frequent local opti-
mum situations [7]. The use of relatively simple search heuristics ensures that

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

227

the process is not protracted by time consuming explorations of the search
space. For reference, SD is the Standard Deviation.

Exam 1 Exam 2 Exam 3 Exam 4

EGD DS EGD DS EGD DS EGD DS

Worst 5865 5405 495 430 10909 10813 24405 22464
Best 5377 5186 435 405 10236 9399 19171 19031
Average 5598.5 5302.1 454.6 418.1 10444.4 10036.6 20241 20531.3
SD 198.9630 71.5766 17.9580 8.9747 201.5403 496.6016 1516.1996 1241.7174

Table 2a Results for Exams 1 to 4 using ITC 2007 time limit

Exam 5 Exam 6 Exam 7 Exam 8

EGD DS EGD DS EGD DS EGD DS

Worst 3349 3337 26465 26575 4688 4219 8669 7704
Best 3090 3117 25940 26055 4475 3997 8050 7303
Average 3199.7 3236.8 26240 26253.5 4567.8 4115.7 8353.5 7555.1
SD 75.1059 75.6333 157.9557 166.9340 60.1956 69.6867 177.7734 135.4035

Table 2b Results for Exams 5 to 8 using ITC 2007 time limit

Exam 9 Exam 10 Exam 11 Exam 12

EGD DS EGD DS EGD DS EGD DS

Worst 1185 1124 15805 15940 132483 34773 5871 5564
Best 1049 1048 14636 14789 31080 30311 5311 5369
Average 1113.6 1089.8 15332.2 15167.9 68217.8 31415.1 5596.9 5464.4
SD 41.6445 24.0361 344.1898 413.5965 39829.9124 1339.0058 151.0875 63.9083

Table 2c Results for Exams 9 to 12 using ITC 2007 time limit

Tables 2a, 2b and 2c compare the new Directed Selection technique against
the Extended Great Deluge algorithm. The new technique is able to produce
better results than the EGD algorithm in nine of the twelve datasets. For
Exams 1, 2, 8, 9, 11 and 12 the new Directed Selection (DS) technique is
also able to produce more consistent results, as measured by the standard
deviation, than those generated with the EGD algorithm.

Exams 4, 5 and 6 are the only instances where the original EGD algorithm
outperforms DS. These specific instances have the lowest number of room and
time combinations, and as such there is relatively small freedom of movement
during the optimization process. This affects both the DSO and HSCO phases
due to the nature of the neighbourhood heuristics involved. Due to the smaller
freedom of movement, and the more focused examination of the search space,
fewer improvements are identified. EGD is not affected as much due to its

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

228

exclusive use of stochastic selection, resulting in a greater examination of the
whole search space.

Directed Selection Other Techniques

Best Average
Müller

ITC 2007 [30]
Adaptive Linear
Combination [31]

Graph
Colouring [9]

Multistage
Algorithmic [32]

Exam 1 5186 5302.1 4370 5231 6234 5814
Exam 2 405 418.1 400 433 395 1062
Exam 3 9399 10036.6 10049 9265 13002 14179
Exam 4 19031 20531.3 18141 17787 17940 20207
Exam 5 3117 3236.8 2988 3083 3900 3986
Exam 6 26055 26253.5 26585 26060 27000 27755
Exam 7 3997 4115.7 4213 10712 6214 6885
Exam 8 7303 7555.1 7742 12713 8552 10449
Exam 9 1048 1089.8 1030 1111 N/A N/A
Exam 10 14789 15167.9 16682 14825 N/A N/A
Exam 11 30311 31415.1 34129 28891 N/A N/A
Exam 12 5369 5464.4 5535 6181 N/A N/A

Table 3 Comparison of best results and other techniques that keep competition time limits

Table 3 compares the new Directed Selection technique against those of
Müller and other recently published research that utilizes the competition
rules for time limits. Due to the prior unavailability of the hidden competition
datasets, comparison results are not widely available for research that has been
published post competition. While Müller’s four phased technique continues
to show its strength by producing the lowest penalties of all the approaches
listed in four of the twelve datasets, Directed Selection is able to produce lower
penalties for five of the twelve datasets. When compared to other post com-
petition techniques, Directed Selection is able to produce significantly lower
penalties for six of the eight public datasets.

Directed Selection Other Techniques

Best Average
Extended

Great Deluge [23]
Grammatical Evolution

Hyper-heuristic [33]
Pursuit of Better Results
Using Grid Resources [34]

Distributed
Scatter Search [25]

Exam 1 5186 5302.1 4633 4362 4699 4128
Exam 2 405 418.1 405 380 385 380
Exam 3 9399 10036.6 9064 8991 8500 7769
Exam 4 19031 20531.3 15663 15094 14879 13103
Exam 5 3117 3236.8 3042 2912 2795 2513
Exam 6 26055 26253.5 25880 25735 25410 25330
Exam 7 3997 4115.7 4037 4025 3884 3537
Exam 8 7303 7555.1 7461 7452 7440 7087
Exam 9 1048 1089.8 1071 N/A N/A 913
Exam 10 14789 15167.9 14374 N/A N/A 13053
Exam 11 30311 31415.1 29180 N/A N/A 24369
Exam 12 5369 5464.4 5693 N/A N/A 5095

Table 4 Comparison of best results and other techniques that do not use ITC 2007 time
limits

Table 4 compares the new Directed Selection technique against those of
recently published research that do not utilize the competition rules for time
limits. While the technique understandably is out preformed across all of the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

229

data sets due to the significantly shorter time limit used, the results produced
remain competitive. It is worth noting that the difference between the best
recorded penalties and the technique presented here is small when considering
the difference in execution time; 4 hours for Distributed Scatter Search and
240 seconds for Directed Selection.

6 Conclusion

This paper presents a new optimization technique which can successfully utilize
information gathered during adaptive construction to direct and influence the
selection of examinations used in the neighbourhood search process, augment-
ing the traditional stochastic selection method, as well as a new optimization
heuristic inspired by the Highest Cost construction heuristic. These techniques
have successfully been used for solving the Examination Timetabling Problem
as described in the second International Timetabling Competition, ITC 2007.
The combined technique presented has not been tailored specifically for solv-
ing this problem, and could be adapted for solving other problem areas. In
addition to testing against other benchmark datasets, the effectiveness of the
technique to solve other timetabling and scheduling problems will be investi-
gated in future work.

Traditional scheduling techniques have primarily been implemented as sin-
gle threaded applications. Over the past five years, there has been a significant
increase in the availability of multi-core processors, and it is now common for
modern desktop and laptop computers to contain processors which have mul-
tiple physical cores and are highly optimized for parallel processing. Due to
this hardware shift, traditional schedulers no longer take full advantage of the
underlying hardware. Future work will look into exploiting parallelism inher-
ent in modern computing. While the Directed Selection technique presented
here does not extend itself easily to traditional parallelism, this capability of
modern processors can be exploited in other ways. Work is currently involved
in identifying how multiple threads or processes working independently on a
single problem, while also sharing useful information about the nature of the
underlying problem, can be exploited to further improve upon the optimization
process.

References

1. B. McCollum, “A perspective on bridging the gap between theory and practice in
university timetabling,” Practice and Theory of Automated Timetabling VI, vol. 3867,
pp. 3–23, 2007.

2. R. Qu, E. K. Burke, B. McCollum, L. T. G. Merlot, and S. Y. Lee, “A survey of search
methodologies and automated system development for examination timetabling,”
Journal of Scheduling, vol. 12, no. 1, pp. 55–89, Oct. 2008.

3. S. Kristiansen and T. R. Stidsen, “A Comprehensive Study of Educational Timetabling
- a Survey,” Department of Management Engineering, Technical University of
Denmark, no. November, 2013.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

230

4. B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J. Parkes, L. D.
Gaspero, R. Qu, and E. K. Burke, “Setting the Research Agenda in Automated
Timetabling: The Second International Timetabling Competition,” INFORMS Journal
on Computing, vol. 22, no. 1, pp. 120–130, May 2009.

5. M. W. Carter, G. Laporte, and S. Y. Lee, “Examination Timetabling : Algorithmic
Strategies and Applications,” The Journal of the Operational Research Society, vol. 47,
no. 3, pp. 373–383, 1996.

6. B. McCollum, P. Mcmullan, T. Müller, and A. J. Parkes, “Next Steps for the Examina-
tion Timetabling Format and Competition,” Proceedings of PATAT 2012, pp. 418–420,
2012.

7. E. K. Burke, G. Kendall, B. McCollum, and P. Mcmullan, “Constructive
versus improvement heuristics: an investigation of examination timetabling,” 3rd
Multidisciplinary International Scheduling Conference: Theory and Applications, pp.
28–31, 2007.

8. E. Burke and J. Newall, “Solving Examination Timetabling Problems through
Adaption of Heuristic Orderings,” Annals of Operations Research, vol. 129, no. 1-4,
pp. 107–134, Jul. 2004.

9. N. R. Sabar, M. Ayob, R. Qu, and G. Kendall, “A graph coloring constructive
hyper-heuristic for examination timetabling problems,” Applied Intelligence, vol. 37,
no. 1, pp. 1–11, Aug. 2011.

10. M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant Algorithms for Discrete
Optimization,” Artificial Life, vol. 5, no. 2, pp. 137–172, Apr. 1999.

11. J. H. Obit, D. Ouelhadj, D. Landa-Silva, and R. Alfred, “An Evolutionary
Non-Linear Great Deluge Approach for Solving Course Timetabling Problems,” IJCSI
International Journal of Computer Science Issues, vol. 9, no. 4, pp. 1–13, 2012.

12. T. B. Cooper and J. H. Kingston, “The Complexity of Timetable Construction Prob-
lems,” Lecture Notes in Computer Science, vol. 1153, pp. 281–295, 1996.

13. N. Pillay and W. Banzhaf, “An informed genetic algorithm for the examination
timetabling problem,” Applied Soft Computing, vol. 10, no. 2, pp. 457–467, Mar. 2010.

14. E. K. Burke and Y. Bykov, “A late acceptance strategy in hill-climbing for exam
timetabling problems,” PATAT 2008 Conference, Montreal, Canada, 2008.

15. E. Özcan, M. Misir, G. Ochoa, and E. K. Burke, “A Reinforcement Learning -
Great-Deluge Hyper-Heuristic for Examination Timetabling,” International Journal of
Applied Metaheuristic Computing, vol. 1, no. 1, pp. 39–59, Jan. 2010.

16. R. Bai, J. Blazewicz, E. K. Burke, G. Kendall, and B. McCollum, “A simulated
annealing hyper-heuristic methodology for flexible decision support,” 4OR, vol. 10,
no. 1, pp. 43–66, Nov. 2011.

17. E. Ikonomovska, I. Chorbev, D. Gjorgjevik, and D. Mihajlov, “The Adaptive Tabu
Search and Its Application to the Quadratic Assignment Problem,” in 9th International
Multiconference Information Society 2006, M. Bohanec, M. Gams, V. Rajkovič,
T. Urbančič, M. Bernik, D. Mladenić, M. Grobelnik, M. Heričko, U. Kordeš, O. Markič,
J. Musek, M. Osredkar, I. Kononenko, and B. Novak Škarja, Eds., 2006, pp. 26–29.

18. S. Abdullah and H. Turabieh, “On the use of multi neighbourhood structures within
a Tabu-based memetic approach to university timetabling problems,” Information
Sciences, vol. 191, pp. 146–168, May 2012.

19. J. S. Appleby, D. V. Blake, and E. A. Newman, “Techniques for producing school
timetables on a computer and their application to other scheduling problems,” The
Computer Journal, 1961.

20. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing.”
Science (New York, N.Y.), vol. 220, no. 4598, pp. 671–80, May 1983.

21. G. Dueck and T. Scheuer, “Threshold accepting: A general purpose optimization
algorithm appearing superior to simulated annealing,” Journal of Computational
Physics, vol. 90, no. 1, pp. 161–175, Sep. 1990.

22. P. Mcmullan, “An extended implementation of the great deluge algorithm for course
timetabling,” Computational ScienceICCS 2007, vol. 4487, pp. 538–545, 2007.

23. B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and S. Abdullah, “An extended
great deluge approach to the examination timetabling problem,” Proceedings of the 4th
Multidisciplinary International Conference on Scheduling: Theory and Applications,
no. August, pp. 424–434, 2009.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

231

24. M. Eley, “Ant algorithms for the exam timetabling problem,” Practice and Theory of
Automated Timetabling VI, vol. 3867, pp. 167–180, 2006.

25. C. Gogos, G. Goulas, P. Alefragis, V. Kolonias, and E. Housos, “Distributed scatter
search for the examination timetabling problem,” in Proceedings of PATAT 2010, 2010,
pp. 211–223.

26. R. Hamilton-Bryce, P. McMullan, and B. McCollum, “Directing selection within an
extended great deluge optimization algorithm,” Multidisciplinary International Con-
ference on Scheduling : Theory and Applications (MISTA 2013), 2013.

27. D. P. Clements and D. E. Joslin, “Squeaky Wheel Optimization,” Journal Of Artificial
Intelligence Research, vol. 10, pp. 353–373, May 1999.

28. E. Ozcan, Y. Bykov, M. Birben, and E. K. Burke, “Examination timetabling using late
acceptance hyper-heuristics,” in 2009 IEEE Congress on Evolutionary Computation.
IEEE, May 2009, pp. 997–1004.

29. N. Pillay and W. Banzhaf, “A study of heuristic combinations for hyper-heuristic
systems for the uncapacitated examination timetabling problem,” European Journal of
Operational Research, vol. 197, no. 2, pp. 482–491, Sep. 2009.

30. T. Müller, “ITC2007 solver description: a hybrid approach,” Annals of Operations
Research, vol. 172, no. 1, pp. 429–446, Oct. 2009.

31. S. Abdul Rahman, A. Bargiela, E. K. Burke, E. Özcan, B. McCollum, and
P. McMullan, “Adaptive linear combination of heuristic orderings in constructing
examination timetables,” European Journal of Operational Research, vol. 232, no. 2,
pp. 287–297, Jan. 2014.

32. C. Gogos, P. Alefragis, and E. Housos, “An improved multi-staged algorithmic process
for the solution of the examination timetabling problem,” Annals of Operations
Research, vol. 194, no. 1, pp. 203–221, Feb. 2010.

33. N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, “Grammatical Evolution
Hyper-heuristic for Combinatorial Optimization problems,” IEEE Transactions on
Evolutionary Computation, no. October, pp. 1–22, 2013.

34. C. Gogos, G. Goulas, P. Alefragis, and E. Housos, “Pursuit of better results for the
examination timetabling problem using grid resources,” in 2009 IEEE Symposium on
Computational Intelligence in Scheduling. IEEE, Mar. 2009, pp. 48–53.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

232

A Multi-Phase Hybrid Metaheuristics Approach for
the Exam Timetabling

Ali Hmer and Malek Mouhoub

Department of Computer Science
University of Regina

Regina, Canada
{hmer200a,mouhoubm}@cs.uregina.ca

Abstract. We propose a Multi-Phase Hybrid Metaheuristics approach for
solving the Exam Timetabling Problem (ETP). This approach includes a
pre-processing phase, a construction phase and an enhancement phase.
The pre-processing phase involves two stages: the propagation of order-
ing constraints and implicit constraints discovery stages. The construc-
tion phase uses a variant of the Tabu search with conflicts dictionary. The
enhancement phase includes Hill Climbing (HC), Simulated Annealing
(SA) and our updated version of the extended ”Great Deluge” algorithm.
In order to evaluate the performance of the different phases of our pro-
posed approach, we conducted several experiments on instances taken
from the ITC 2007 benchmarking datasets. The results are very promising
and competitive with the well known ETP solvers.

Keywords: Timetabling, Constraint Optimization, Metaheuristics.

1 Introduction

The examination timetabling [1, 2], is an annual or semi-annual problem for ed-
ucational institutions. Due to its complexity and practicality, it is extensively
studied by researchers in operational research and artificial intelligence. Many
approaches have been proposed and discussed for solving the problem [1–7]
using one or a combination of some of the following methods: graph-based, se-
quential techniques, clustering-based techniques, constraint-based techniques,
metaheuristics, hyper-heuristics, multi-criteria techniques, and case-based rea-
soning techniques. In this paper we propose a Multi-Phase Hybrid Metaheuris-
tics approach for solving the Exam Timetabling Problem (ETP). This approach
consists of the preprocessing, construction and enhancement stages; and in-
cludes Tabu Search, Hill Climbing, Simulated Annealing and a modified ver-
sion of Extended Great Deluge algorithms [8, 3] using metaheuristics techniques.
The preprocessing phase is needed to prepare the work for the remaining two
stages. During this phase, exams are sorted following the most constrained
variables first heuristic [9] and implicit constraints are discovered using a form
of transitive closure. During the construction stage a complete feasible solution

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

233

is found using a variant of Tabu search along with conflicts dictionary to reduce
cycling. In the enhancement phase a chosen metaheuristic is used. Once a solu-
tion can no longer be improved or reaches an idle state, another metaheuristic
kicks in and used. The following metaheuristics are considered: Hill Climbing
(HC) [10, 11], Simulated Annealing (SA) [12] and our updated version of the
extended ”Great Deluge” algorithm [8] which improves on the one proposed
in [3].

In order to evaluate the performance of the different phases of our proposed
approach we conducted several experiments on instances taken from the ITC
2007 benchmarking datasets [13]. The results are very promising and compet-
itive with the well known ETP solvers. The rest of the paper is structured as
follows. In the next section we will introduce the problem we are tackling. Sec-
tion 3 presents our proposed solving approach. Experimental tests evaluating
our solving method are then reported in Section 4. Finally, concluding remarks
and future works are listed in Section 5.

2 Problem Description

2.1 Problem Formulation

Following the common formulations to the exam timetabling [14, 15] we model
this problem as a constraint problem including the following.

Variable. Each exam is modeled as a problem variable defined over a domain
of all possible assignments to that exam. An assignment is composed of a
time period and a room.

Room Constraint. Exams are constrained by rooms seating capacity.
Student Constraint. This constraint prevents a student from being scheduled

for more than one exam during a given time period.
Order constraint. This constraint is about exam ordering and precedence be-

tween two or more exams.
Same Duration Constraint. This constraint is about two or more exams that

should/can (hard/soft) take place in the same time slot.
Different Duration Constraint. This constraint is about two or more exams

that should/can (hard/soft) take place in different time slots.
Same Room Constraint. This constraint is about two or more exams that should/can

(hard/soft) take place in the same room.
Different Room Constraint. This constraint is about two or more exams that

should/can (hard/soft) take place in different rooms.

2.2 Penalty Function

The penalty function is a problem dependent generic function to calculate the
total cost/value of a given solution. Each soft constraint involves a single or
multiple resources and violating it has its own penalty value that should be set
in the problem description. The total penalty value of any solution is the sum of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

234

penalties of all violated soft constraints in the whole exam problem. Penalties
correspond to violating soft constraints including the following.

1. Two exams in a row.
2. Two exams in the same day.
3. Mixed durations where two or more exams are taking place in the same

room but have different durations.
4. Room penalty where using certain rooms implies specific penalty to dis-

courage scheduling exam to them.
5. Period penalty where assigning exam to certain periods implies specific

penalty.

3 Proposed Solving Approach

Our proposed solving approach consists of the following three main phases. A
pre-processing phase followed by a construction and an enhancement phases.

3.1 Pre-processing phase

The difficulty of any exam timetabling depends on three factors; the number of
students that enroll in it, direct student conflicts in that exam and its schedul-
ing priority constraint, if any, among all exams scheduling. Following the idea
of most constrained variables first [9], exams with most scheduling difficulty
are scheduled first. The reason for this is that if scheduled late, they would
most likely increase the potential of the un-assignment process of other exams
that violate some constraints which eventually causes a backtracking. The pre-
processing phase consists of following two stages.

1. Exam timetabling problem collections ordering.
2. The discovery of un-specified (implicit) hard constraints.

In the following we provide the details for each stage.

3.1.1 Problem collections ordering

In this stage a process takes place for the different collections that the exam
problem consists of. These collections are exams, rooms, periods and students.
Exams and students are usually large collections and pre-ordering those leads
to a better performance and efficient results during search. In [16, 17] two of the
well-known common techniques have been proposed to describe the ordering
of exams based on difficulty criteria preceding their assignment to time slots.
Our approach is slightly different from these techniques. It depends on a dif-
ferent concept revolving around our knowledge that large exam timetabling
problems contain large exams, students and resources collections, and enhanc-
ing the way that we retrieve and lookup any element in these collections is a
key in any efficient search algorithm. Indeed, the time complexity of looking

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

235

up or retrieving an element from unsorted large collection is O(n) whereas the
time complexity of the same process in a sorted collection is O(log n).

Our approach of collections ordering pre-processing stage involves the cre-
ation of four ordered collections at the time of building problem variables,
values and facts collections based on the efficient Microsoft .NET framework
which implements the quicksort algorithm. It is worth mentioning that quick-
sort makes O(n log n) comparisons in average to sort n items. Prior to our de-
cision on whether to perform this stage or not, we thought of two issues; the
time needed to build large sorted collections and the time required to lookup
or retrieve any element in these collections. After examining the different types
of collections that Microsoft .NET framework provides, we made the decision
to use Sorted Generic Lists for all variables, values and constraints collections.
There are two reasons for that. First, we only need to build them once at the
beginning of the problem modeling and hence we produce them in a sorted
manner. This is the only time we spent to sort them. They also do not consume
a lot of memory as other types of collections. In fact, they are the least memory
consuming collection. The second reason is that after building any of the prob-
lem collections, we only need to do lookups which a generic list is good at and
one of the fastest collections for that matter and its time complexity is O(log n).
Table 1 shows the time complexity for adding an element and for looking up or
retrieving an element from both unordered and ordered collections. Although,
we include the cost of removing an element as in all large collections, as we
only build any collection once and lookup or retrieve afterward and there is no
need for removals. In the case of collections that need items removals we use
hash sets as the cost of removing an item is considerably small.

Table 1. Time Complexity for Ordered and Unordered Collections

Adding elt Lookup/Retrieval Removing elt
Unordered Collection O(1) O(n) O(n)

Ordered Collection O(n) O(log n) O(n)

3.1.2 Discovery of implicit hard constraints

In this stage we have developed a technique to discover all hard constraints
that were not explicitly defined in the problem. In any large COP problem that
contains a large collection of variables, values and constraints, there is always
the possibility of missing some of the hard constraints that depend on some of
the declared ones. Our approach is to provide a pre-processing stage that dis-
covers these unspecified constraints and add them to the problem constraints
collection. In fact our goal is to add other constraints that should be known
before assigning a value to a variable which in essence might eliminate some
of the variables domain values and hence preventing a backtracking process,
which would occur later on, if these additional constraints were not specified.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

236

The exam timetabling problem usually contains the following three types of
exam based constraints [14, 15].

Exam Ordering. Two or more exams scheduling should appear in a particular
order. For example: exam 1 should take place after exam 2.

Exam Coincidence. Two or more exams should take place at the same time.
Exam Exclusion. Two or more exams should take place at different times.

This pre-processing stage is based on creating three full graphs for each type
of these constraints where nodes represent the exams and edges are the hard
constraints between exams. Then by traversing each graph, we try to discover
same or different type of constraints between other exams in the same graph.
The following are the four steps we use to achieve such discovery.

1. Propagating ordering constraints that belong to concurrent exams. For ex-
ample, if a coincidence constraint declares that exam 1 must take place at
the same time as exam 2 and another ordering constraint states that exam
2 must take place after exam 3. In this case, we need to add a new ordering
constraint stating that exam 1 must take place after exam 3.

2. Propagating ordering constraints by transitive closure. For example, if exam
1 must be scheduled after exam 2 and exam 2 must be scheduled after exam
3 then this implies adding a new ordering constraint which states that exam
1 must be scheduled after exam 3.

3. Propagating coincidence and exclusion constraints. For example, if there is
a coincidence constraint stating that exam 1 must take place in the same pe-
riod as exam 2 and another distinct constraint stating that exam 2 must
take place in a different period than exam 3 then a new exclusion constraint
must be added to state that exam 1 and exam 3 must take place in different
periods.

4. Propagating the largest exam period of the same exam set to all other exams.
This happens when all exams are involved in the same coincidence con-
straint. For example, if there is a coincidence constraint involving three ex-
ams, exam 1, exam 2, and exam3, with a respective periods of 3 hours, 2 and
half hours and 2 hours. Then all three exams anticipated periods should be
updated to be equal to the largest (3 hours). It should be mentioned that
any penalty cost that involves periods, when calculated, uses the original
period and not the updated one.

3.2 Construction phase

In the construction phase a complete feasible solution is found using Tabu
search metaheuristic along with conflicts dictionary to reduce cycling. Con-
flicts dictionary essentially is a dictionary data structure based consisting of
a key and value and is used for its performance capability. Each entry in the
conflicts dictionary represents a count for the number of conflicts that an as-
signment causes during search. In future search iterations, the entry with the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

237

highest counts are avoided and regarded as tabu. Utilizing Tabu search meta-
heuristics with conflicts dictionary can be further detailed as follows. As the
search is only considered by variable and value selection criteria, the algorithm
initially tries to find those variables that are most problematic to assign. Usu-
ally, a variable is randomly selected from unassigned variables that have the
smallest domain size and less number of hard constraints. It then attempts to
select the best value to assign to the selected variable using conflicts dictio-
nary. A best value is one where its assignment improves the overall value of
the solution. Also, any value that violates a fewer number of hard constraints is
considered. In other words, when assigning a value to a given variable, the al-
gorithm is looking to minimize the number of conflicting variables that need to
be unassigned in order to reach or keep a solution feasible after assignment. A
value is selected randomly if there is more than one value with such conditions.
Soft constraints violations are totally ignored in this phase as they might affect
the algorithm performance when searching for complete feasible solutions.

3.3 Enhancement phase

In the enhancement phase, a combination of three metaheuristics is employed
and we can select just one, two or three out of theses metaheuristics. What-
ever a metaheuristic is used, a local optimum is found. Once a solution can no
longer be improved or reaches an idle state, another metaheuristic technique
kicks in and is used. In our algorithm we used three of the well-known meta-
heuristics. These are Hill Climbing (HC) [10, 11], Simulated Annealing (SA) [12]
and our Modified Extended Great Deluge (MEGD). MEGD is altered to allow
some alternations of the bound that is imposed on the overall solution value.
The search ends after a predetermined time limit has been reached. The best
solution found within that limit is returned. Our MEGD is based on the Ex-
tended Great Deluge (EGD) [8] method which in turn is based on the original
Great Deluge (GD). GD was introduced by Dueck [18] as a cure to SA require-
ment to find a cooling schedule for a particular instance of a given problem. GD
algorithm starts with a ”water level” equal to the initial solution value, and a
preconfigured rate usually named ”tolerance rate” to decrease that water level.
The predetermined rate is the only parameter for this algorithm and this is one
of this algorithm’s advantages. GD accepts worsening solutions if the penalty
cost is less than the water level. This latter is decreased by the pre-determined
rate set for every iteration. Due to the advantage of using less parameters, GD
has been used in several other implementations of metaheuristics.

The Extended Great Deluge (EGD) [8] has a construction phase followed
by an improvement phase. The construction phase is applied using the exist-
ing adaptive ordering heuristic search method [19]. This latter ordering uses
a weighted order list of the examinations which is to be scheduled based on
soft constraints as well as the ”difficulty to schedule” constraint. Once an exam
is scheduled, its weight is increased based on the localized penalties it came
across. The unscheduled examinations are given a considerably larger increase,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

238

based on a formulation that is based on the maximum general penalty encoun-
tered from [19]. The improvement phase starts when feasibility is achieved in
the construction phase and tries to provide an improved solution. Unlike EGD,
our approach is only concerned with the enhancement phase and it only tries
to improve the overall value of the current feasible complete solution. Our ap-
proach is different from EGD as follows.

1. In the original GD, the tolerance value starts with the initial solution’s value
and decreases by a preconfigured rate. It tries to range within all neigh-
bours of the current solution in each iteration. However, in our approach,
tolerance rate ranges between values that are percentage of the current
solution value; one above and one below. In our approach, we use two
preconfigured values, namely tolerance lower bound and tolerance upper
bound. Tolerance upper bound is a preconfigured value that defaults to
(108%)iteridle of the initial solution. iteridle is a counter that starts with 1
and is incremented by 1 each time the tolerance rate is reset. Tolerance
lower bound is also a preconfigured value that defaults to 92% of the ini-
tial solution. The tolerance decay rate is a predetermined rate that defaults
to 99.99995%. At the beginning a tolerance rate t is assigned to a value of
the initial solution. It is decreased by tolerance decay rate in each iteration.
Likewise, in every iteration, a new neighbour is selected and tested against
the current t and the best solution value. If it is better than either one of
them, the current solution becomes the best solution and t is decayed by
tolerance rate.

2. The second difference occurs at the time of taking the decision to reset the
tolerance value t. Tolerance value t is reset as follows. t reaches the toler-
ance lower bound which as we discussed is equal to 92% (or predetermined
value) of the best solution so far. We can as well reset t based on the last n
(defaulted to 40) solutions if they happen to be consistent and carry the
same value. This means that we are stuck in a local optimum and there is
no need to complete the full cycle and reach the lower bound. Rather, we
decrease the current tolerance decay rate by half the rate and restart.

Figure 1 presents the pseudo code of MEGD.
Neighbourhood selection variation is by far the most influential technique

that affects rapid local search. Using more than one neighbourhood within a
search provides a very effective technique of escaping from a local optimum. It
is notable that if the current solution is in a local optimum in one neighbour-
hood, it might escape the local optimum, if assigned a different neighbourhood
and can consequently be more improved using a good feasible approach. In
exam timetabling, the neighbourhoods used in local search techniques largely
involve moving some exams from their current time slot and/or rooms to a new
time slot and/or rooms. Based on that, our implementation (corresponding to
the function selectNeighbour() in Figure 1) uses the following seven neigh-
bourhoods.

1. Exam Duration Move: selects a single exam randomly and move it to a dif-
ferent feasible time slot randomly.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

239

Fig. 1. Procedure Modified Extended Great Deluge (MEGD).

2. Exam Duration Swap Move: selects two exams randomly and swaps their
assigned time slots.

3. Non Conflicting Assignment Move: selects an exam randomly and assigns
it to a non-conflicting assignment (time slot and room) randomly.

4. Room Move: selects a single exam randomly and moves it to a different
feasible room randomly.

5. Room Swap Move: selects two exams randomly and swaps their assigned
rooms.

6. Exam Swap Move: selects two exams randomly and swaps their assign-
ments (i.e. time slots and rooms).

7. Random Move: selects an exam randomly and assigns a new assignment
to it randomly. The assignment consists of a room and time slot and might
cause conflicts.

4 Experimentation

This section reports the experiments conducted on the well-known benchmark-
ing datasets of the International Timetabling Competition (ITC 2007) [13]. This
benchmarking datasets consists of 12 basic real world examination time tabling
problems obtained from different anonymous universities around the world.
The detailed properties of the 12 benchmark instances are summarized in Table
2.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

240

Table 2. ITC 2007 Exam Track Benchmarking Datasets.

Instance # of students # of # of Period & Room Constraints # of
students exams rooms Hard Constraints density time slots

1 7,891 607 7 12 5.04% 54
2 12,743 870 49 14 1.17% 40
3 16,439 934 48 184 2.62% 36
4 5,045 273 1 40 14.94% 21
5 9,253 1,018 3 27 0.87% 42
6 7,909 242 8 23 6.13% 16
7 14,676 1,096 15 28 1.93% 80
8 7,718 598 8 21 4.54% 80
9 655 169 3 10 7.79% 25
10 1,577 214 48 58 4.95% 32
11 16,439 934 40 185 2.62% 26
12 1,653 78 50 16 18.21% 12

As we will see, our proposed approach is successful in competing with
benchmarking results published in literature so far. We measure the general
behaviour and performance of our implementation in the two different phases
to solve the exam timetabling problem; construction phase and enhancement
phases. We also compare our approach to the well known exam timetabling
problem solvers. All the experiments are performed on an PC Intel Core 2-Duo
2.4 GHz processor with 8 GB of RAM.

4.1 Construction Phase Testing and Analysis

Our construction approach is based on Tabu Search with Dictionary Conflicts.
We set our goal to get a complete feasible solution as fast as possible so that the
enhancement phase can kick in and improve the overall solution value gradu-
ally. In order to measure the performance of Tabu with CD, we tested it against
standard Tabu search and in both cases preprocessing phase is done prior to
constructing complete solution. As known, standard Tabu algorithm prevents
cycling by using a tabu list, which determines the forbidden moves. This list
stores the most recently accepted moves. The inverses of the moves in the list
are forbidden. Our approach differs in that we sum all the accumulated num-
ber of conflicts that a move caused rather than just moves which are considered
as forbidden. We also implemented ”Iteration Distance” which excludes entries
that are far away from the current iteration based on configured setting for it-
eration distance. For the purpose of the construction phase testing, we selected
dataset 4 as it has a high conflict density (14.94%) along with high number of
students and exams which makes it as one of the toughest problem to solve in
our benchmarking datasets.

During the process of building a complete feasible solution, we record solu-
tion value in every iteration along with its time. This testing is only concerned

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

241

with the construction phase and so we set our testing to run for 10 times for
each method of the selected dataset. Then we select the trial with the best so-
lution value from the ten trials. We represent each point in the graph with the
corresponding penalty cost monitored after every iteration along with its time.
The last penalty cost is the cost of the first complete feasible solution and that
is where the construction phases stops.

Figure 2 illustrates the full snapshot of the best trial for standard TS on
dataset 1 while figure 3 shows the same pattern for TS with CD. Among 10
trials, using best run’s solution value, although standard TS shows better com-
plete solution (6041), it took 8.03 seconds and 1081 iterations to get it while TS
with CD with 6803, took 4.21 and 672 iterations. Also, standard TS algorithm
shows relatively higher number of fluctuations between lower penalty cost and
higher ones where TS with CD seems to have gradually been building the com-
plete solution with a minimum number of instability.

However, dataset 4 has shown a different pattern. Dataset 4 is one of the
most constrained problems. The top chart of Figure 4 illustrates the full snap-
shot of the best trial for standard TS on dataset 4 while the bottom chart shows
the same pattern for TS with CD. The top chart articulates how standard TS
struggled with finding the less penalty cost solutions in contrary to TS with CD
(bottom chart). Standard TS spent a total of 28.54 seconds (3281 iterations) to
find a best complete solution, amongst 10 trials, with a penalty cost of 31133
while TS with CD took only 2.03 seconds (567 iterations) to find one with a
penalty of 27633. That is a performance improvement of around 1400% with
solution value improvement of 112%.

Fig. 2. Dataset 1 Construction Phase using Standard TS.

Dataset 5 is the least constrained problem with only 0.87% but with rel-
atively high number of students and exams (9253 students and 1018 exams)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

242

Fig. 3. Dataset 1 Construction Phase using TS with CD.

which leads us to think that it should be one of the easiest problems to solve. We
can see that in the lack of any fluctuations between worse and better solutions
in the graphs for the datasets in figure 5. Nonetheless, TS with CD algorithm
performs slightly better than standard TS even though the problem itself tends
to be easy to solve. In ten trials, standard TS obtained 6530, as a best solution
value, in 2.58 seconds (1020 iterations) while TS with CD achieved 5030, as a
best solution value, in 2.21 seconds (1050 iterations).

4.2 Enhancement Phase Testing and Analysis

We compare 4 methods labeled method 1, method 2, method 3 and method 4
and respectively corresponding to HC+SA, SA, EGD and our MEGD. All these
methods use Tabu Search with Dictionary Conflicts in the construction phase.
In addition, only methods 2, 3 and 4 have a preprocessing phase.

Figures 6, 7 and 8 shows the enhancement phase best solution distribution
history for four methods against iteration in datasets 1, 6 and 8. From these fig-
ures, we can clearly notice that without preprocessing the first method tends to
improve solutions values within a relatively short time and keeps improving
almost very slowly. Another visible notice is that method 1 seems to use less
number of iterations which suggests that it employs these iterations cycles ei-
ther in backtracking or accessing non efficient collections. Method 2 which also
uses SA starts enhancing a complete solution very early but then ends with
slightly outperforming method 1. On the other hand, the last two methods, us-
ing GD flavours with preprocessing in place, spend some time to find the first
improving solution after the first complete solution which also tends to be of,
relatively, worse value than methods 1 and 2. This is due to the nature of great
deluge algorithm which only accepts an improving solution. Also, a bad solu-
tion is accepted if its quality is less than (for the case of a minimization problem)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

243

Fig. 4. Performance of the construction phase on dataset 4 with Tabu and Tabu together
with conflicts dictionary.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

244

Fig. 5. Dataset 5 using Standard TS (top chart) and TS with CD (bottom chart).

or equal to an upper bound or ”level” in which during the search process, the
”level” is iteratively updated by a constant decreasing rate. It also means that,
with the preprocessing phase in place, there will be more features. This means
that there are more effort to satisfy more constraints but also gaining better per-
formance when looking up the different collections in particular area as well
as a more careful exploration. For the inclusion of preprocessing phase, our
proposed search algorithm diversification of search to gather the whole search
space proved the importance of finding the global minimum quickly. We also
note that MEGD performs slightly better than EGD in 8 out of 12 of the datasets.
Figure 6 illustrates that methods 3 and 4 were close in terms of results in achiev-
ing the best solution. This is also the case for method 1 and 2 although method 2
outperformed to some extent method 1. Method 3 reached a best solution value

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

245

of 4185. The same pattern also appears in figures 7 and 8 where they show re-
sults for dataset 6 and dataset 8 where method 4 is marginally the winner in
finding the best solution.

Generally, the algorithms might behave differently due to the different mea-
surements enforced during the search process. However, the difference between
SA, GD, EGD and MEGD algorithms lies in the acceptance criteria functional-
ity that would make a difference on the limited solving time that was imposed
on our benchmarking datasets. This might not be the case if we have relatively
longer times for several hours or days as all these algorithms are based on the
stochastic local search and there will always be the possibility of achieving good
results.

Fig. 6. Performance on dataset 1 of the enhancement phase.

4.3 Comparative Tests Results

On the basis of results obtained by both construction and enhancement phases,
we decided to compare our four methods to the five well known ET solvers.
Each of the datasets used in our testing phase has a previously discovered best
known solution announced by ITC 2007. The five known solvers are the follow-
ing finalists of the examination track of the competition.

1. Müller [20] implemented a constraint-based solver, which constructs a com-
plete solution, followed by a hill climbing and a great deluge approach for
improving the solution.

2. Gogos et al. [21] used a Greedy Randomized Adaptive Search Procedure,
followed by simulated annealing, and integer programming.

3. Atsuta et al. [22] developed a constraint satisfaction solver combined with
Tabu search and iterated local search.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

246

Fig. 7. Performance on dataset 6 of the enhancement phase.

4. De Smet [23] has his own solver, namely Drools Solver, which is a combi-
nation of Tabu search and the JBoss Drools rules engine used for the evalu-
ation.

5. Finally, Pillay [24] used a heuristic method that is inspired by cell biology.

During experiment runs, we managed to achieve an outstanding 98% suc-
cess in reaching complete feasible solution on all instances in all attempts. The
remaining 2% were only in dataset 4 and 12.

For each method trials we performed 11 individual runs on each of the 12
competition instances, using the time limit specified by the competition bench-
marking program as our stopping criteria, which equated to 362 seconds. The
same timeout value on each machine is used for all of the 12 datasets. In all
cases, we logged out all best solution values history along with times and iter-
ations where these best solution values are discovered.

The settings of the algorithms have remained the same throughout the ex-
periment for the purpose of going in line with ITC 2007 rules. One of our ob-
jectives in testing phase is to represent different algorithm variations that are
composed of different algorithms and compare them to the performance of ITC
2007 results. The expectation was also set for the results to be reasonably com-
parable if not better than ITC 2007 exam track results.

Table 3 reports the comparative results including the best solution value
(lowest penalty cost) and average of best solution values for each variant. When
searching without preprocessing, performance degrades relatively to when us-
ing preprocessing phase. Only the first method did not use preprocessing and
if we look first at the performance of its algorithms in comparison to ITC 2007

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

247

Fig. 8. Performance on dataset 8 of the enhancement phase.

results we will notice that it comes in the second place in 10 out of 12. This is
the case for all datasets except datasets 10 and 12. TS with CD + HC+ SA with
no preprocessing is the worst algorithm variant in our testing and it comes in
the second place in most datasets in comparison to ITC 2007 results.

The other three algorithms variants performed better. Only when we used
GD algorithm extensions (EGD and MEGD), we started to see results that over-
take ITC 2007 results. Our approach gets 8 out of 12 datasets as best results.
These results are split between EGD and MEGD evenly with 4 best results each.

In order to obtain a fair comparison, it is worth noticing that the perfor-
mance loss is on average about 7% between SA with preprocessing and MEGD
with preprocessing, whereas it is about 10% if the preprocessing phase is not
implemented with SA. Moreover, one can also notice that the gap between the
two methods becomes smaller with higher conflicts density problems, and that
the behavior of the methods with pre-processing phase implemented is more
stable with respect to SA with no preprocessing phase. All in all, EGD and
MEGD performed much better than SA with preprocessing phase not to men-
tion SA with no preprocessing. Finally, all of our methods performed well in
comparison to ITC 2007 results in best solution values and in best average val-
ues.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

248

Table 3. Comparative results.

5 Conclusion and Future Work

We presented our proposed approach to solve exam timetabling problem using
four different metaheuristics search methods; tabu search, hill climbing, sim-
ulated annealing, and different flavours of great deluge. We also introduced a
pre-processing phase to enhance the overall search process. A Tabu metaheuris-
tic search method with conflict dictionary is proposed as a construction phase
to achieve a partial or complete initial feasible solution. The tabu list does not
contain operators or moves that are problem specific. It only needs to store the
conflicted moves along with the accumulated number of conflicts it caused.

A modified extended great deluge heuristic search method is used during
search to eliminate some of the time wasted in local optimum based on certain
conditions. The selected heuristics perform in sequence to produce a good solu-
tion for the current state of the problem. The whole hybrid heuristics approach
is configurable and able to manage and control its heuristics without having a
domain pre-knowledge of the exam timetabling problem.

In the near future we will investigate advanced variables ordering heuris-
tics [9] as weill as evolutionary techniques using a parallel architecture [25, 26].
We will also intend to explore path consistency algorithms [27] to discover tem-
poral constraints in the preprocessing phase.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

249

References

1. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search methodolo-
gies and automated system development for examination timetabling. Journal of
Scheduling 12(1) (2009) 55–90

2. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2)
(2009) 86–127

3. McCollum, B., McMullan, P., Parkes, A., Burke, E., Abdullah, S.: An extended great
deluge approach to the examination timetabling problem. MISTA 2009, Multidisci-
plinary International Scheduling Conference: Theory and Applications (2009) 20–69

4. Gogos, C., Alefragis, P., Housos, E.: An improved multi-staged algorithmic pro-
cess for the solution of the examination timetabling problem. Annals of Operations
Research 194(1) (2012) 203–221

5. Abdullah, S., Turabieh, H.: On the use of multi neighbourhood structures within
a tabu-based memetic approach to university timetabling problems. Information
Sciences 191(0) (2012) 146 – 168 Data Mining for Software Trustworthiness.

6. Sabar, N., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-
heuristic for examination timetabling problems. Applied Intelligence 37(1) (2012)
1–11

7. Sabar, N., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic
for combinatorial optimization problems. Evolutionary Computation, IEEE Trans-
actions on 17(6) (Dec 2013) 840–861

8. McCollum, B., McMullan, P., Parkes, A.J., Burke, E., Abdullah, S.: An extended great
deluge approach to the examination timetabling problem. in MISTA 2009, Multi-
disciplinary International Scheduling Conference: Theory and Applications, Dublin
(2010) 20–69

9. Mouhoub, M., Jashmi, B.J.: Heuristic techniques for variable and value ordering in
csps. [29] 457–464

10. Kendall, G., Hussin, N.M.: A tabu search hyper-heuristic approach to the examina-
tion timetabling problem at the mara university of technology. Practice and Theory
of Automated Timetabling 3616 (2005) 270–293

11. L. T. G. Merlot, N. Boland, B.D.H., Stuckey, P.J.: A hybrid algorithm for the exam-
ination timetabling problem. Practice and Theory of Automated Timetabling 2740
(2003) 207–231

12. Dowsland, K.A.: Simulate annealing. Modern heuristics techniques for combinato-
rial problems, ch. 2 (1995) 20–69

13. McCollum, B., McMullan, P.: The second international timetabling competition: Ex-
amination timetabling track. University of Nottingham, Queens University, Not-
ingham, Belfast, Technical Report: QUB/IEEE/Tech/ITC2007/Exam/v4.0/17 2007
(2009)

14. E.K. Burke, J.N., Weare, R.: A memetic algorithm for university exam timetabling.
Practice and Theory of Automated Timetabling 1153 (1996) 241–250

15. Chan, C.K., Gooi, H.B., Lim, M.H.: Co-evolutionary algorithm approach to a univer-
sity timetable system. in The 2002 congress on evolutionary computation, Honolulu
2 (2002) 19461951

16. E. K Burke, B. MacCathy, S.P., Qu: Knowledge discovery in a hyperheuristic for
course timetabling using case-based reasoning. Practice and theory of automated
timetabling (PATAT’02) (2002)

17. M. W. Carter, G.L., Lee, S.Y.: Examination timetabling: algorithmic strategies and
applications. Journal of the Operational Research Society 47 (1996) 373–383

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

250

18. Dueck, G.: New optimisation heuristics for the great deluge algorithm and the
record-torecord travel. Journal of Computational Physics 104 (1993) 86–92

19. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through adap-
tion of heuristic orderings. Annals of Operations Research 129(1-4) (2004) 107–134

20. Müller, T.: Itc2007 solver description: A hybrid approach. in Proceedings of the 7th
international conference on the practice and theory of automated timetabling (2008)

21. E. Gogos, C.A., Housos, P.: Multi-staged algorithmic process for the solution of the
examination timetabling problem. Practice and theory of automated timetabling
(PATAT), 2008 (2008)

22. T. Atsuta, M.N., Ibaraki: An approach using a general csp solver. Technical report
(2008)

23. Smet, G.D.: ITC2007 examination track: Practice and theory of automated
timetabling. Technical report (2008)

24. Pillay, N.: A developmental approach to the examination timetabling problem. Tech-
nical report (2008)

25. Abbasian, R., Mouhoub, M.: An efficient hierarchical parallel genetic algorithm for
graph coloring problem. [29] 521–528

26. Abbasian, R., Mouhoub, M.: A hierarchical parallel genetic approach for the graph
coloring problem. Applied Intelligence 39(3) (2013) 510–528

27. Mouhoub, M.: Analysis of Approximation Algorithms for Maximal Temporal Con-
straint Satisfaction Problems. In: The 2001 International Conference on Artificial
Intelligence (IC-AI’2001), Las Vegas (2001) 165–171

28. Mouhoub, M.: Dynamic Path Consistency for Interval-based Temporal Reasoning.
In: 21st International Conference on Artificial Intelligence and Applications(AIA
’2003), ACTA Press (2003) 393–398

29. Krasnogor, N., Lanzi, P.L., eds.: 13th Annual Genetic and Evolutionary Computa-
tion Conference, GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011. In
Krasnogor, N., Lanzi, P.L., eds.: GECCO, ACM (2011)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

251

A Criteria Transformation Approach to Timetabling
based on Non-Linear Parameter Optimization

Christian John · Dietmar Tutsch ·
Reinhard Möller · Thomas Lepich ·
Bernard Beitz

Abstract This paper presents a concept for timetabling based on a parameter
optimization system for approximative numerical calculation of some parame-
ter combination under soft and hard constraints. The concept uses a non-linear
parameter optimization method with an iterative variation of parameters. The
paper focuses on the transformation process to migrate problem-domain spe-
cific criteria into optimization-compatible objects suitable for a standardized
parameter optimization procedure. A framework for use in other problem do-
mains is presented. The method is applicable to a wide range of timetabling
problems due to its dynamically parametrized restrictions. Timetabling is in-
tegrated in educational context in various university and scholastic scopes.

Keywords Timetabling · Non-Linear Parameter · Optimization

1 Introduction

Timetabling is used in a vast variety of applications, such as in examina-
tion, curricula and courses, scheduling and assigning rooms or in general time
management applications. This paper describes a new concept for deriving
algorithmic criteria from generalized timetabling ”stories”, the set of fuzzily
given conditions and constraints of a timetabling task, in order to calculate
appropriate time slots under complex conditions. The general idea is to use a

Christian John
Bergische Universität Wuppertal
Faculty E Rainer-Gruenter-Strasse 21
D-42119 Wuppertal
Building FC, Room 2.07
Tel.: +49-202-4391186
Fax: +49-202-4391944
E-mail: chjohn@uni-wuppertal.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

252

probabilistic, iterative algorithm avoiding the well-known issues and problems
of commonly used timetabling algorithms. Thus, the transformation of gen-
eral problem-describing ”criteria” to ”parameters”, ”constraints”, and ”condi-
tions” in terms of optimization is in our special focus. Today’s timetabling solu-
tions are mostly based on ”syntactic”, ”statistic”, or ”structural” approaches.
There are several disadvantages like preprocessing tasks, stochastic methods
with deterministic tasks, fuzziness, clipping, exhaustive search, etc. [1–5]. Our
concept is to avoid most of these disadvantages and to develop a more general
and extensible solution for timetabling. The conceptual idea is based on a non-
linear parameter optimization method, as considered by many authors before,
consisting of an objective or target function, restrictions and constraints, and
a set of parameters describing the problem domain [6–14].

In addition to existing approaches of this kind, our focus is on conveniently
pre-processing the conditions and constraints.

2 Foundation

While typical combinatorial problems can easily be described in form of spoken
or written text, their solution depends on the qualified extraction of the cri-
teria governing the problem. Thinking of well-known optimization algorithms,
we have to provide parameters, boundary conditions, constraints and an ap-
propriate evaluator to be used as target or objective function. To glue these
two sides together, we have to translate some informal criteria description into
a syntactically correct formal expression with scalar parameters and explicit
boundary conditions such as restrictions and constraints. These expressions
can then be used to iteratively find a best-fitting solution - to achieve a goal,
meaning to minimize or maximize the evaluation function based on some set
of parameters while taking the boundary conditions into account [15,16].

Here the problem arises to transform problem-specific criteria descendent
from some real-life problem domain into terms of optimization. Regarding the
problem-specific criteria as issues or dimensions in an n-dimensional euclidean
space, we have to find an isomorphic transformation of the form:

Π ≈ Ω

with Π being the domain-specific problem space and Ω being the optimization
search space.

Fig. 1 shows this bijective transformation with the problem space criteria
Cj and the search space parameters Pi and restrictions Rj−i.

This transformation mirrors the need for numerical solution of a non-linear
system of equations. Several specialized approaches can be found to solve
specific optimization problems (Fig. 2). The most general and non-limiting
approach is to think of optimization in terms of non-linear parameter opti-
mization.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

253

Fig. 1 Bijective criteria transformation

Fig. 2 Optimization problem classes (corresponding to [16])

Non-linear parameter optimization works by an iterative variation of pa-
rameters [16–19]. The variation may follow a stochastic and/or deterministic
approach and normally comprises some sort of step-width control. While a
parameter combination describes the problem domain of the specific given
problem, the target function is expressed as f(parameters) and gives an esti-
mation value for the grade of optimum fitting and thus the approach of the
solution in question. Boundary conditions act as constraints that limit the
valid parameter combinations. The optimum may be described as a minimum
or maximum of the target function [20–22].

In general, parameter optimization in terms of a target function can be
expressed as

X = {x ∈ Ω|∀x′ ∈ Ω : f(x) ≥ f(x′)|f : Ω → R,≥∈ {<,>}}

with
Ω the search space
≥∈ {<,>} the comparative relation
X ⊆ Ω the set of global optima

where x is the n-dimensional set of scalar parameters with values fitting
into the n-dimensional search space Ω and X is the best-fitting parameter set
as the result of the optimization. We are free in the decision to choose the
minimum or maximum approach for optimization, here we have chosen the
minimum approach.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

254

The iterative variation of parameters can be done in a stochastic or a de-
terministic manner or a mix of both. Deterministic parameter variation tries
to find the best way towards the optimum in search by taking target func-
tion differentiations into account, while for stochastic parameter variation the
need for a continuously differentiable target function does not arise. Typical
representations for deterministic optimization are any forms of gradient proce-
dures, whereas several stochastic procedures have been developed in the past,
the evolutionary procedure being one of the most prominent ones.

The decision for deterministic or stochastic procedures in general or for
some gradient procedure or evolutionary procedure in detail will have some
impact on the overall performance of the optimization, but the main concepts
are the same in both cases, so the decision for one of these algorhithms does
not infringe the general timetabling procedure described below.

3 Timetabling as a Multi-Criteria Story

Encountering a real-life timetabling problem we are normally confronted with
a diffuse informal description of conditions and goals to be met with the solu-
tion. We call this the ”timetabling story”. The first solution step is the need
for semantically understanding the story details, rather than an algorithmic
question. The meaning of understanding the timetabling story is to identify
the events, limitations, desires and the time line. Then we transform these
characteristic parts into formal definitions of prarameters, restrictions, con-
straints, the target function and the definition area. Some parts (see Fig. 3)
have to be configured before the optimization is started.

Fig. 3 Timetabling story transformation

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

255

Giving a definition of the term timetabling, we think of timetabling as some
kind of time management for events, determining ideal time slot combinations
or structured schedule based on a time line and restricted to a time interval.
A timetable consists of distinct time slots, each having a start and end time,
often denoted as ”arrival” and ”departure”, and they need to be arranged
or combined on the time line. The timeline is given as a one-dimensional
definition region of time, restricted by a distinct start and end timestamp.
Unfortunately the given time space is perforated by unavailable periods, e.g.
weekends, holidays and night times. The remaining free time spaces then can
be filled with the time slots.

While these aspects are concerning the timeline as a whole, more criteria
have to be derived from the story, concerning inner relations and dependencies
between time slots. Time slots may have a prescribed order, some or all time
slots must not overlap, distance preferences may occur as well as daytime
preferences.

Additionally, in almost all cases we have to ensure that all time slots find
accommodation in the timeline because time slots must not be skipped.

In this paper, our goal is to create a generalized approach to all of these
timetabling issues - or at least to a vast majority of them. Looking at the
timetabling tasks in a more abstract way, we can name a number of general
principles that can be found in all of the above-mentioned conditions:

– definition of time line, start and end time
– definition of blocked time spans
– recognition of free time spans
– observing relations, distances and dependencies
– observing allowed or forbidden overlapping
– observing orders and preferences.

These principles lead to the generalized criteria:

– time and duration
– relations and grouping
– delay and distance
– order and preferences
– overlapping

Other criteria may arise as well. Thus timetabling can be described as a multi-
criteria problem. While some standard approach might think of criteria in
terms of unilateral, bilateral and multilateral event relations, our solution
handles these criteria classes (and any other criteria) in a unified manner.
Even real-world knowledge may be integrated into this approach by defining
customized optimization conditions.

Our generalized timetabling solution is based on a non-linear parameter
optimization procedure (as described above), while the different criteria are
implemented as sets of parameters and restrictions.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

256

Fig. 4 shows the schematic user-interface for the ”configuration” part in
Fig. 3 where arbitary criteria may be added and parametrized by selecting pre-
defined criteria classes from a given criteria catalogue and assigning appropiate
values.

Fig. 4 Schematic User-Interface for Configuration and value assignment

Fig. 5 shows an example of a specific dynamically configured non-linear
parameter optimization application with a combination of several different cri-
teria principles, a target function, a set of restrictions and parameters. Thus
the concept yields the following advantages: a dynamic selection of criteria,
parametrizable constraint values, reusable restrictions, and enabling or dis-
abling of conditions. As a result, we obtain a highly reconfigurable general
solution system.

While this is the conceptual approach, the question arises, how to imple-
ment the named timetabling principles in a real-life dynamically configurable
software application, allowing for adding any principle known and upcoming.

Fig. 5 Dynamically configured non-linear parameter optimization

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

257

4 Dynamic Multi-Criteria Transformation in OOP

After describing the conceptual structure of our problem domain the imple-
mentation starts with the technical realization in form of a three-layer OOP
system (see Fig. 6).

In the top-down approach for analyzing the timetabling problem domain
described above we have generalized typical timetabling questions, including
event relations and real-world knowledge, into abstract criteria. The Object-
Oriented Programming (OOP) design principle is the best-fitting paradigm
to implement generalizable problem structures with concrete algorithm im-
plementations. Following the standard OOP nomenclature, object classes are
ruled by interfaces to encapsulate implementation details and realize inheri-
tance and polymorphy.

We use OOP with classes and interfaces to implement the basic non-linear
parameter optimization [16,21] as our general problem solver and we provide
interfaces to embed concrete parameters, restrictions, constraints, and target
functions to meet the above-mentioned timetabling requirements.

Following this flexible and expandable design, we have structured our so-
lution into a three-layer scheme, of which the first two layers contain the
predefined parts of the software solution, while the third layer is the place
for the implementation details of the particular problem (which, in our case,
is the timetabling problem). This expandable layer has to be implemented
individually with program code to match the problem’s requirements.

4.1 First layer: Optimization

This is the basic layer forming the general foundation for our solution: the op-
timization layer. It generalizes the non-linear parameter optimization, defining
the interfaces IOptimizer (for the optimizing algorithm as such) and a suitable
IVariator (implementing the parameter variations and step-width control).
The IOptimizer interface in particular is the hook for the real optimization al-
gorithm’s implementation. In general, we can differentiate between stochastic
and deterministic optimization algorithms. In our implementation, a simple
gradient program represents the deterministic algorithm class, where we de-
cided to use a simple evolution program as representation of a stochastic algo-
rithm. The variators have been developed accordingly. The optimizers in this
basic layer may be used ”as-is” by the concrete optimization task, but more
sophisticated optimizers could be hooked in if estimated necessary, promising
possible performance gains.

4.2 Second layer: Interface

The second layer is situated between the optimization and the real-life task.
It defines the interfaces for linking the other layers together. The interface

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

258

layer provides several pre-conditions for the real-life task implementation to
be fulfilled.

– IParameter : As described above, parameter optimization is equivalent to
finding the best-fitting parameter combination according to a given eval-
uation or target function. The IParameter interface defines the abstract
concepts for optimization parameters to be integrated into an optimization
procedure.

– IConstraint : A constraint works as a boundary condition, hard-restricting
parameter values to represent a valid solution by ensuring parameters to
be contained in a valid range of values. Parameters violating a constraint
must not be used in further calculations, they will be rejected and a new
parameter variation will be triggered.

– IRestriction: A restriction is similar to a constraint, but it is a weak con-
straint: it is allowed to be violated, but violation will be punished with
bad target values. Ideally, a restriction is implemented in a way such that
violating the restriction will force the optimization converge against the
optimum or at least against better values, expressed in parameter combi-
nations. It will not enforce a new parameter set. Complying the restriction
is a positive quality statement for the result - a valid and potentially better
parameter combination.

– ITarget : This is the target function, evaluating and rating the current pa-
rameter combination. The target is the central place for defining the opti-
mization goal. It is important to state that for deterministic algorithms the
target function must be continuously differentiable, at least locally, i. e. it
must be possible to calculate a numeric differentiation for the current pa-
rameter combination. Non-deterministic and stochastic algorithms do not
rely on this precondition of differentiability.

– ITask : This is the overall container defining the concrete problem and
binding the other parts together.

4.3 Third layer: Real-life task

This layer is the concrete implementation of all problem-specific parameters,
constraints, restrictions as well as the target function (see Fig. 7). To build up
a new problem we first define a Task and identify and implement the following
details:

– The target function as implementation of ITarget
– Identify the problem’s parameters and implement as set of IParameter,

while initializing with estimated start parameter values
– Identify the constraints and implement as IConstraint subclasses
– Identify the restrictions and their penalty behavior, implemented as set of

IRestriction

Now we can start the calculation. The optimization will begin with the
start parameter set and iteratively vary the parameters and rate the current

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

259

result by evaluating the target function. The calculation will stop as soon as
some termination condition is met. Using the evolutionary procedure [22], ter-
mination may simply be defined in terms of iteration steps, thus increasing
the number of steps can give the chance for better results while deteriorating
the runtime needed. In a more general approach, optimization procedures may
have more sophisticated termination conditions in form of convergence crite-
ria, promising more effective termination conditions. In this case, convergence
has to be defined in the context of the problem domain. For deterministic
optimization procedures, the target function’s differentiability can help find-
ing convergence criteria while running the risk of being stuck in some local
optimum. For non-deterministic and stochastic procedures, the local optimum
problem is reduced, but convergence criteria must be defined in some supple-
mentary way.

Fig. 6 Full three layer scheme

The whole three-layer scheme is outlined in Fig. 6, showing the OOP trans-
formation of the dynamic multi-criteria timetabling algorithm.

4.4 Multi-Criteria Framework

We have seen that for solving a concrete task using this generalized OOP and
optimization approach at least some programming is involved, implement-
ing the scheme’s interfaces appropriately. To facilitate this we have created a
framework outlined below (see Fig. 7).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

260

Fig. 7 Class Model

5 Scaling Effects in Transformation

Transforming the n-dimensional problem domain criteria into an optimization-
based numerical solution, the problem of different parameter dimensions in
terms of measure arises. In general, we can distinguish parameters in the di-
mensions

– time and date
– order and relation
– length and angle
– force, mass and weight
– color and brightness
– elasticity
– temperature
– and potentially many other dimensions.

Especially for timetabling, the time and order dimensions will become im-
portant. Both types of parameters have different definition ranges and cannot
be handled equally without normalization. It is clear that those parameters
must be submitted to normalization using their specific definition range. As
a result, all normalized parameters may be treated equivalently in variation
during optimization. We apply normalization in a strictly local manner, such
that the IParameters internally encapsulate their true values while parameter
variations apply normalized variation steps to them.

While IConstraints, if violated, decline our parameter set as a whole, IRe-
strictions provide a calculated penalty value representing the grade of non-
compliance of the corresponding condition. A simple restriction may calculate
its penalty value using a linear function. The linear function’s slope can be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

261

used as a weight factor for restrictions with different significance. More sophis-
ticated penalty functions may be formulated as exponential functions.

As a result, we have to observe that

– parameters have to be normalized according their definition range
– restrictions have to be provided with an appropriate rating factor.

6 Example: Examination Planning at BUW

Paradigmatically, we show the conceptual approach to probabilistic timetabling
for our institute at BUW Bergische Universität Wuppertal.

In the examination period we set our exams time slots, taking into consid-
eration all constraints and relations between exams.

First we have to define a start-time constraint and an end-time constraint
reflecting the examination period as a whole. Then we add more constraints:

– No exam should be written on a weekend - a WeekendConstraint arises
– Furthermore no exam should be written in an inconvenient time, for ex-

ample in the night or too early in the morning - a NightConstraint
– Holidays are inconvenient as well as exam date - giving a HolidayConstraint

The constraints’ goal is to find valid exam dates - our parameter set - in the
resulting free time slots. Fig. 8 shows the constraints for the given timeline,
limited to the constraints declared. Zooming into the timeline focusses a section
of the timeline, in this example it is a typical week. Further zooming leads
into the monday section. Obviously, applying all constraints gives a valid time
span between 8:00 AM and 4:00 PM. In this idle time period on monday the
algorithm might place five exams belonging to three different exam groups and
thus partially overlapping. As we only consider the constraints at this point,
the exam time slot distribution shown is valid, but not yet necessarily optimal.
Further optimization steps will variate the time slot positions in the gaps of
idle times, until eventually the optimum distribution is found.

7 OOP Transformation Framework

The OOP transformation implies the identification of the parameters describ-
ing this example task, the constraints and restrictions to be applied and the
target function definition.

Running the optimization procedure, it will hopefully give a solution in
form of the best-fitting parameter combination for our target function after n
iterations. Here it would be a parameter set of ti for the start of each time span.
The number n of iterations needed to find the solution depends on several
conditions: the arbitrary distribution of the exams start points, the kind of
step-width control, the local-vs.-global optimum bias, and the selected fitting
tolerance of the target function (the latter is equivalent to the algorithm’s
termination condition).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

262

Fig. 8 Overwiew of the timeline constraints and free time spans

The number n of iterations can be estimated as being far lower than the
steps we would need for an exhaustive search or any Monte-Carlo approach,
but we can expect performance loss in comparison to conventional, direct
timetabling algorithms. The performance loss will be compensated by the abil-
ity to dynamically parametrize and alter the set of constraints and restrictions.

8 Constraints and Restrictions

According to the previous examination timetabling example we limit the time-
line by the period’s start and end time defining these limits as two constraints:
a startConstraint for the start or departure and an endConstraint for the end
or arrival. The idea of constraints is to describe general conditions for a prob-
lem forcibly limiting the allowed parameter values. In this case, we have two
boundary constraints because the time region has two limiting sides. E.g., the
left side constraint checks the current parameter t against the region limit on
the left side (see implementation: Listing 1). The result of these tests mark the
actual given parameters to be valid or invalid. In case of invalid parameters
the optimization procedure will trigger a new parameter variation, after which
the parameters will again be submitted to constraint checks. In case of valid

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

263

parameters the target function will be evaluated using the current parameter
set.

public class StartConstraint implements IConstraint

{

public boolean isParametersValid(ParamSet params)

{

for (IParameter : params)

if (p.value < startTime)

return false;

return true;

}

}

Listing 1 Start constraint

While we understand constraints to be mandatory limitations for the prob-
lem’s parameters, we describe restrictions to be weak constraints. Violating a
restriction results in a bad target function value due to calculated penalty
values from the restriction. In the context of our example the condition ”two
exams have to be a distance of seven days apart” would be a restriction (see
implementation: Listing 2).

public class DistanceRestriction extends TimeRestriction

{

private double dist;

private int i1;

private int i2;

private double factor = 1.0;

public DistanceRestriction(double factor , double dist ,

int i1, int i2)

{

super(factor);

this.dist = dist;

this.i1 = i1;

this.i2 = i2;

}

public double calcPenalty(ParamSet params)

{

double t1 = params.get(i1).value;

double t2 = params.get(i2).value;

double delta = Math.abs(t1-t2);

if (delta >= dist)

return 0.0;

return factor * (dist - delta);

}

}

Listing 2 Restriction for distance check

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

264

9 Target Function

Regarding the requirements described so far, our target function must fulfill
two goals:

1. penalty values must lead back into the allowed time slots
2. when all restrictions are fulfilled, the time-span distribution must be sub-

mitted to a rating function, so that the optimization can converge towards
the desired ideal distribution.

While goal (1) is handled by the restriction’s penalty function values, fulfill-
ment of goal (2) depends on programming the rating. The actual rating is
formulated in terms of ”distribute all time spans equally”, ”prefer gathering
the time spans at the beginning of the period” or any other goal for the specific
problem given.

While the start conditions

– set of start parameters
– start step width of the variation (i.e. search radius)

are crucial for a converging algorithm, the target function must reflect the
optimization goal by rating the current parameter values according to the
selected goal.

10 Dynamic configuration

The perception we have experienced by working with the timetabling is that
a principal solution appears to be generalizable but specific timetabling tasks
need specific ways of solution in detail. So we decided to provide a dynamically
configurable solution process to represent the solution details.

Fig. 8 shows a configurable timetabling task and appropriate target func-
tion with optional settings for management of constraints and restrictions; we
can turn on and off constraints and restrictions as needed, and in case of a
missing condition, we can simply define a new constraint and/or restriction.

According to Fig. 9, adding a holiday would result in adding a new time-
locking constraint for this day. As an example for a completely new condition
we could introduce the idea of two time spans requiring to be in a defined
order. In this case we implement a new IRestriction class and insert it into
the timetabling task.

Applying the described procedure to real-life timetabling problems, short-
term occurrences (e.g. teacher’s illness) are omitted because they are not pre-
dictable.

11 Implementation

The software has been implemented in Java using the Eclipse RCP frame-
work. The RCP framework and its plug-in mechanism allow to conveniently

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

265

Fig. 9 Dynamic configuration of algorithm

expand the software for adapting to the current specific problem domain by
implementing the basic framework interfaces. The core optimization algorithm
is implemented as a basic plug-in (OSGi bundle) using the well-known evolu-
tionary procedure. For performance enhancement purposes other optimization
procedures may be implemented as well, no matter if following the stochastic
or the deterministic approach. Any constraints, restrictions and target func-
tions can be realized as additional plug-ins, thus making the whole package
very flexible and expandable for other optimization domains.

12 Real-Life Applications

The main aspect for this work descended from the need for examination plan-
ning. Different kinds of exam constraints and exam restrictions lead to a non-
linear parameter optimization approach. Before we built up this system, the
planning was performed manually and with rather high error rate. The idea
arose to create an automatic exam planning system and avoiding error rates.

We used the optimized exam dates for an extended application for room
management. This includes a room list together with the room seat capacities
and assigns exams to rooms, taking into consideration the expected numbers
of participants.

After calculating the exam dates and appropriate rooms we provided this
informations for another project: We developed an application for helping stu-
dents and visitors navigating through and locating at the Wuppertal University
Campus. Our students will use their smartphone and its integrated camera to
take a picture from their current environment, and a server-based application
will identify their position and locate them on the campus. Together with the
timetabling information, students and exam candidates can be guided to their
target exam rooms using smartphones and web browsers. This procedure is an
extension of our eCampus project [eCampus] [23].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

266

13 Conclusion

A new, flexible and configurable framework for transforming timetabling crite-
ria stories was presented, using standardized condition classes for an iterative
approach via non-linear parameter optimization. The concepts for transform-
ing the different timetabling criteria into objects to be applied in an optimiza-
tion procedure were shown and a simple framework for creating optimization-
oriented subclasses and end-user applications has been presented. Scaling ef-
fects for parameters and restrictions have been discussed. The method uses
constraints and restrictions to integrate arbitrary boundary conditions to rep-
resent timetabling specifics for a wide range of applications. An example
demonstrated the basic ideas behind the transformation method and discussed
some oncoming problems and their solutions.

References

1. Tomáš Müller, Real-life Examination Timetabling, in MISTA 2013 - Proceedings of the
6th Multidisciplinary International Scheduling Conference, 2013.

2. Tomáš Müller, H. Rudová, Real-life Curriculum-based Timetabling In PATAT 2012 -
Proceedings of the 9th international conference on the Practice And Theory of Automated
Timetabling, 2012.

3. Rui Li, Michael T.M. Emmerich et al.: Mixed Integer Evolution Strategies for Parameter
Optimization. MIT 2013.

4. Alberto Colorni , Marco Dorigo , Vittorio Maniezzo, A Genetic Algorithm To Solve The
Timetable Problem, Computational Optimization and Applications Journal, 2013

5. Tanguy Lapègue, Damien Prot, Odile Bellenguez-Morineau, A Tour Scheduling Problem
with Fixed Jobs: use of Constraint Programming, Practice and Theory of Automated
Timetabling, 2012.

6. Moritz Mühlenthaler, Rolf Wanka, Fairness in Academic Course Timetabling, Practice
and Theory of Automated Timetabling, 2012.

7. Gilles Pesant, A Constraint Programming Approach to the Traveling Tournament
Problem with Predefined Venues, Timetabling, Practice and Theory of Automated
Timetabling, 2012.

8. Benny Raphael, Ian F. C. Smith, Engineering Informatics: Fundamentals of Computer-
Aided Engineering, Second Edition, John Wiley and Sons, 2013

9. Wil Michiels, Emile Aarts,Jan Korst, Theoretical Aspects of Local Search, Springer 2007
10. Francesca Rossi; Peter Van Beek; Toby Walsh, Handbook of constraint programming.

Elsevier 2006
11. Burke E.K., Landa Silva J.D., Soubeiga E., Multi-objective Hyper-heuristic Approaches

for Space Allocation and Timetabling, In Meta-heuristics: Progress as Real Problem
Solvers, Selected Papers from the 5th Metaheuristics International Conference (MIC 2003),
pp 129-158, 2005

12. Kalyanmoy Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley
Paperback 2009

13. Kaisa Miettinen, Nonlinear Multiobjective Optimization, Springer 2012
14. Matthias Ehrgott, Multicriteria Optimization, Springer 2010
15. Christian John, Reinhard Möller, A Probabilistic Approach to Pattern-Matching Based

on a Dynamic Rule-Driven System, 2013 IEEE GHTCE, Shenzhen 18.11.2013
16. Christos H. Papadimitriou, Kenneth Steiglitz, Combinatorial Optimization - Algorithms

and Complexity. 1998 Dover, New Jersey
17. Jörn Schmidt, Christina Klüver, Jürgen Klüver: Programmierung naturanaloger Ver-

fahren. Vieweg+Teubner. Wiesbaden 2010.
18. Juraj Hromkovic. Randomisierte Algorithmen. Teubner. Wiesbaden 2004.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

267

19. Rolf Wanka. Approximationsalgorithmen. Teubner. Wiesbaden 2006.
20. Christian John, Thomas Lepich, Bernhard Beitz, Reinhard Möller, Dietmar Tutsch, A

Probabilistic Approach to Pattern-Matching Based on Non-Linear Parameter Optimiza-
tion, 2014 IEEE WCCAIS ICCIS, Sousse 17.02.2014

21. Walter Alt, Nichtlineare Optimierung, 2011, Vieweg+Teubner Verlag, Wiesbaden
22. Karsten Weicker: Evolutionre Algorithmen.Vieweg, Berlin 2007.
23. http://www.gds.uni-wuppertal.de/gds/service/veranstaltungen/projekt-icampus.html

(2013-07-02,15:00)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

268

KHE14: An Algorithm for High School Timetabling

Jeffrey H. Kingston

Abstract This paper presents work in progress on KHE14, an algorithm for
high school timetabling. Most of KHE14’s components have been published
previously, so are described only briefly. A few components, notably many of
the augment functions called by the ejection chain algorithm, are new, so are
described in detail. The paper includes experiments on the standard XHSTT-
2013 data set, performed in February 2014.

Keywords High school timetabling · Ejection chains

1 Introduction

High school timetabling is one of the three major timetabling problems found
in academic institutions, along with university course timetabling and exam-
ination timetabling. Automated methods for its solution have been studied
from the early days of computers [19] to the present day [15].

An XML format called XHSTT was introduced recently to represent real
instances and solutions of the high school problem [8,16]. XHSTT was used in
the Third International Timetabling Competition [18], the first competition
to include high school timetabling. An XHSTT data set called XHSTT-2013
is currently being promoted as a benchmarking standard [17]. It contains 24
instances from real high schools in 11 countries around the world.

This paper presents work in progress on KHE14, an algorithm for high
school timetabling, with experiments on XHSTT-2013 made in February 2014.

KHE14 is built on the author’s KHE high school timetabling platform [12],
and distributed with it. It has many parts, developed by the author in a series
of papers over the last ten years [6,7,9–11]. All this cannot be repeated here.
So although this paper describes KHE14 completely, it does so only at a high

J. Kingston
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

269

level. Details are explained only when they are new and significant; otherwise
they are just mentioned, with a reference to the papers just cited, or to the
KHE documentation [12], which has full details. The main innovations are in
Sect. 7, where new repairs for several kinds of defects are given.

Sect. 2 gives a brief specification of the problem. Sects. 3–7 present the
components of KHE14, with experiments related to the components. Sect. 8
brings the components together into the full KHE14 algorithm and contains
experiments that evaluate it generally.

All experiments use the XHSTT-2013 data set [16], as downloaded on
4 February 2014, and were performed on the author’s desktop machine, an
Intel i5 quad-core running Linux. Individual solutions were produced single
threaded; multiple solutions for one instance were produced in parallel. The
DK-HG-12 instance is not tested, because it is not realistic; it has 411 demand
defects (Sect. 4) before solving starts (connected with resources Student539
and R36, for example). Instances NK-KP-05 and NK-KP-09 are not tested
because their run times are inconveniently long at present. KHE14 does solve
these instances, but it takes approximately one hour on each.

2 Problem specification

This paper uses the XHSTT specification of the high school timetabling prob-
lem. XHSTT instances contain four parts: the cycle, which is the chronological
sequence of times that may be assigned to events; resources, which are enti-
ties that attend events (teachers, rooms, students, or classes, where classes
are groups of students who mostly attend the same events); events, which are
meetings, each of fixed duration (number of times), and containing any num-
ber of event resources, each specifying one resource that attends the event;
and constraints, which specify conditions that solutions should satisfy, and
the penalty costs to impose when they don’t.

XHSTT currently offers 16 constraint types (Table 1). Whatever its type,
each constraint may be marked required, in which case it is called a required
or hard constraint, and its cost (a non-negative integer) contributes to a total
called the infeasibility value in XHSTT, and the hard cost here. Otherwise the
constraint is called non-required or soft, and its cost contributes to a different
total called the objective value in XHSTT and the soft cost here.

A solver assigns starting times to events, except for preassigned events
(events whose starting time is given by the instance), trying to minimize first
hard cost and then soft cost. It may also be required to split events of long
duration into smaller events, called sub-events in XHSTT and meets in KHE
and in this paper. And it may be required to assign resources to unpreassigned
event resources: often rooms, occasionally teachers, never (in practice) students
or classes. A full specification appears online [8]; further details are given as
needed throughout this paper.

Table 2 gives some idea of the instances of the XHSTT-2013 data set. They
vary greatly in difficulty, in ways that such a table cannot fully capture.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

270

Table 1 The 16 constraints, with informal definitions, grouped by what they apply to.

Event constraints
Split Events constraint Split event into limited number of meets
Distribute Split Events constraint Split event into meets of limited durations
Assign Time constraint Assign time to event
Prefer Times constraint Assign time from given set
Spread Events constraint Spread events evenly through the cycle
Link Events constraint Assign same time to several events
Order Events constraint Assign times in chronological order

Event resource constraints
Assign Resource constraint Assign resource to event resource
Prefer Resources constraint Assign resource from given set
Avoid Split Assignments constraint Assign same resource to several event resources

Resource constraints
Avoid Clashes constraint Avoid clashes involving resource
Avoid Unavailable Times constraint Make resource free at given times
Limit Idle Times constraint Limit resource’s idle times
Cluster Busy Times constraint Limit resource’s busy days
Limit Busy Times constraint Limit resource’s busy times each day
Limit Workload constraint Limit resource’s total workload

Table 2 The number of times, teachers, rooms, classes (groups of students), individual
students, and events in the instances of XHSTT-2013. There are 24 instances altogether.

Instance Times Teachers Rooms Classes Students Events

AU-BG-98 40 56 45 30 387
AU-SA-96 60 43 36 20 296
AU-TE-99 30 37 26 13 308
BR-SA-00 25 14 6 63
BR-SM-00 25 23 12 127
BR-SN-00 25 30 14 140
DK-FG-12 50 90 68 279 1120
DK-HG-12 50 100 70 523 1471
DK-VG-09 60 46 52 163 928
ES-SS-08 35 66 4 21 225
FI-MP-06 35 25 25 14 280
FI-PB-98 40 46 34 31 387
FI-WP-06 35 18 13 10 172
GR-H1-97 35 29 66 372
GR-P3-10 35 29 84 178
GR-PA-08 35 19 12 262
IT-I4-96 36 61 38 748
KS-PR-11 62 101 63 809
NL-KP-03 38 75 41 18 453 1156
NL-KP-05 37 78 42 26 498 1235
NL-KP-09 38 93 53 48 1166
UK-SP-06 25 68 67 67 1227
ZA-LW-09 148 19 2 16 185
ZA-WD-09 42 40 30 278

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

271

3 Timetabling structures

KHE evaluates constraints continuously as the solution changes during solving,
using efficient incremental methods, and makes the resulting costs available to
solvers, which use them to guide the solve as usual. If requested, KHE can also
add structures to the solution which ensure that violations of some constraints
cannot occur, and it can add other structures which encourage regularity:
patterns of assignment that make timetables more uniform. Regularity has no
direct effect on cost, but it may make good solutions easier to find [11].

KHE14’s first, structural phase, is mainly devoted to adding the structures
explained in this section. These are all optional as far as the KHE platform is
concerned; KHE14 chooses to use them, but other algorithms need not.

KHE14 does not use any information that could be called metadata. For
example, sets of times may be identified in XHSTT as days, but KHE14 does
not use that information. Nor does it treat student resources (say) differently
merely because they are called students. Instead, it examines which resources
are preassigned, which sets of times and resources appear in constraints, and
so on, taking its cues from the structure alone.

Many elements of the instance influence KHE14’s structures: avoid clashes
constraints (constraining events which share a preassigned resource to be dis-
joint in time), time preassignments, link events constraints, split events and
distribute split events constraints, spread events constraints (influencing how
many meets events split into), prefer times constraints, prefer resources con-
straints, and avoid split assignments constraints. These are taken in decreasing
cost order; each either influences the structures, or is ignored if inconsistent
with previous elements. The KHE documentation [12] explains in detail how
they affect the result and how they interact. It would take too long to repeat
that here. Instead, the following explains the structures that emerge.

Courses are sets of events during which the same students meet the same
teacher to study the same subject. Spread events constraints may be present
to encourage a course’s meets to spread evenly through the cycle, and avoid
split assignments constraints may be present to encourage those meets to be
assigned the same teacher (if not preassigned) or room.

XHSTT offers a spectrum of ways to define courses. At one extreme, the
exact set of events required is given. For example, if a Mathematics course
needs to occur five times per week in events of durations 2, 1, 1, 1, and 1,
then five events with these durations would be given, along with split events
constraints which ensure that each event produces one meet. At the other
extreme, a single event of the total duration required is given, along with split
events and distribute split events constraints which say how that total may
be split into meets. In the Mathematics example, a single event of duration 6
would be given, along with constraints saying that meets of duration 1 or 2
are required. This handles a situation frequently found in real instances, where
the total duration is fixed, but how it is to be split up is more flexible.

The structural phase splits events into meets whose durations depend on
the parts of the instance listed above, and groups the meets into sets that KHE

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

272

calls nodes. One node contains the meets of one course, at least to begin with.
The structural phase creates nodes heuristically, as follows. Meets derived
from the same event go into the same node. When two events contain the
same preassigned resources and are connected by a spread events or avoid
split assignments constraint, they are taken to belong to the same course, so
their meets also go into the same node. Grouping meets into nodes does not
constrain their assignments, but it acts as a hint to solvers that the meets
should be assigned times together, and opens the door to various methods of
promoting regularity, which work with nodes, not meets.

Link events constraints, specifying that certain events should be assigned
the same times, give rise to a different structure. KHE allows one meet to be
assigned to another instead of to a time, meaning that any time assigned to the
other meet is in fact assigned to both. The structural phase makes assignments
of meets to other meets which ensure that link events constraints cannot be
violated. Meets assigned to other meets are not included in nodes, which (by
convention) tells solvers that their assignments should not be changed.

Assigning one meet to another supports hierarchical timetabling, in which
a timetable for a few meets is built and later incorporated into a larger one.
This promotes regularity, so the structural phase spends time searching for
useful hierarchical structures, as described in [6,7].

Each meet contains a set of times called its domain. Only times from its
domain may be assigned to a meet. KHE14 chooses domains based on prefer
times constraints. The duration of a meet also affects its domain: a meet of
duration 2 cannot be assigned the last time in the cycle as its starting time,
and so on. KHE represents domains both as bit sets, for efficient assignability
testing, and as lists of times, for efficient iteration over all legal assignments.

A meet contains one task for each event resource in the event that it is
derived from. Each task is a demand for one resource at each of the times the
meet is running, either preassigned (the usual case for student and class tasks)
or not (the usual case for room tasks). Unpreassigned tasks specify the type of
resource required (teacher, room, etc.), and there are usually prefer resources
constraints which encourage the solution to assign a specific kind of resource,
such as a Mathematics teacher or a Science laboratory.

Each task contains a set of resources called its domain. Only resources from
its domain may be assigned to a task. KHE14 chooses domains based on prefer
resources constraints.

Avoid split assignments constraints, which specify that certain tasks should
be assigned the same resources, are handled structurally by KHE14. One of
the tasks is chosen to be the leader task, and the others are assigned it instead
of a resource, meaning that whatever resource is assigned to the leader task is
to be considered as assigned to them too.

The XHSTT specification says that hard constraint violations, while per-
mitted, should be few in good solutions, but that soft constraint violations
are normal and to be expected [8]. So additional structures must be used with
caution, especially when derived from soft constraints. KHE14 uses an heuris-
tic strategy: it includes them at first, but removes them towards the end, so

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

273

Table 3 Encouraging regularity between forms: -RF and +RF denote without it and with
it. KHE14 uses +RF. In all tables in this paper, columns headed C: contain solution costs.
Hard costs appear to the left of the decimal point; soft costs appear as five-digit integers to
the right of the point. The minimum costs in each row are highlighted. Columns headed T:
contain run times in seconds. All tables and graphs (including captions) were generated by
KHE and incorporated unchanged. They can be regenerated by any user of KHE.

Instance C:-RF C:+RF T:-RF T:+RF
AU-BG-98 9.00583 12.00491 17.1 25.4
AU-SA-96 4.00015 16.00014 35.1 72.2
AU-TE-99 1.00158 4.00124 0.8 3.4
BR-SA-00 1.00090 1.00057 0.7 0.8
BR-SM-00 30.00123 29.00093 4.4 6.3
BR-SN-00 5.00249 4.00243 1.6 2.8
DK-FG-12 0.02370 0.02248 94.0 180.9
DK-HG-12
DK-VG-09 12.03206 12.03349 393.9 368.4
ES-SS-08 0.02367 0.01362 4.4 15.6
FI-MP-06 0.00118 3.00132 1.5 8.0
FI-PB-98 0.00051 6.00039 1.7 6.3
FI-WP-06 0.00086 0.00078 1.7 1.3
GR-H1-97 0.00000 0.00000 0.5 5.9
GR-P3-10 4.00078 2.00088 16.6 22.7
GR-PA-08 0.00029 0.00040 2.4 6.9
IT-I4-96 0.00602 0.00494 4.6 8.1
KS-PR-11 0.00160 0.00150 10.7 77.1
NL-KP-03 0.03825 0.04774 86.4 193.1
NL-KP-05
NL-KP-09
UK-SP-06 0.00196 0.00102 14.0 29.5
ZA-LW-09 29.00000 26.00000 16.9 18.9
ZA-WD-09 5.00000 9.00000 6.3 24.2
Average 4.00681 5.00660 34.0 51.3

that later repair operations are not limited by them. The original constraints
are not forgotten: even when violations are allowed, they are still penalized.

The author has used a structural phase like the one described here for
many years [6,7]. KHE14’s version, described briefly here and fully in the KHE
documentation [12], is more robust than its predecessors: it resolves conflicting
requirements using priorities as explained above, and it takes full account of
all interactions between requirements.

Testing the effectiveness of adding structures that encourage regularity is
complicated by the fact that there are several kinds of regularity and several
ways to encourage it [11], not all of which can be disabled at present. Table 3
investigates regularity between forms. For example, if the classes of the Year
11 form attend English for 6 times per week in meets of durations 2, 1, 1, 1,
and 1, and the classes of the Year 12 form attend Mathematics for 6 times
per week in meets of the same durations, then encouraging regularity between
forms encourages these two courses (or others with the same meet durations)
to be simultaneous. The results show no clear advantage in cost, and a clear
disadvantage in running time. It is too soon to abandon regularity between
forms, but the evidence of Table 3 is tending against it.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

274

4 The global tixel matching

A timetabling problem is a market in which resources are demanded by events
and supplied to them. The unit of supply is one resource at one time, called a
supply tixel. The term ‘tixel’ has been coined by the author by analogy with
the ‘pixel’, one cell of a graphical display.

Each event demands a number of tixels of certain types. For example, a
typical event called 7A-English, in which class 7A studies English for 6 times
per cycle, demands 18 tixels: six tixels of class resource 7A, six tixels of teachers
qualified to teach English, and six of ordinary classrooms. This event is said
to contain 18 demand tixels.

The market is represented by an unweighted bipartite graph. Each demand
tixel is a node; each supply tixel is a node. An edge joins demand tixel d to
supply tixel s when s may be assigned to d. For example, a demand tixel de-
manding class resource 7A would be connected to the supply tixels for resource
7A (one for each time in the cycle). A demand tixel demanding an English
teacher would be connected to each supply tixel of each English teacher.

Each demand tixel requires only one supply tixel. Each supply tixel can be
assigned to only one demand tixel, otherwise there would be a timetable clash.
Accordingly, a set of assignments is a matching in this graph: a set of edges
such that no two edges share an endpoint. There is an efficient algorithm for
finding a maximum matching (one with as many edges as possible) [14].

There may be many maximum matchings, but they all fail to assign supply
tixels to the same number of demand tixels, and since that number is the
important thing, it is convenient to pretend that there is just one maximum
matching. The author calls it the global tixel matching. The important number
is a lower bound on the number of unassigned demand tixels in any solution,
given the decisions already made. The matching defines an assignment which
maximises the number of tixels assigned, but it is not useable directly, because
it violates many constraints.

When a meet is assigned, the sets of edges connected to its demand tixels
(their domains) shrink. For example, the six tixels demanding resource 7A in
the meets of event 7A-English are initially connected to all the supply tixels
for 7A (one for each time of the cycle), but after times are assigned, each
becomes associated with a particular time, and is connected to just the supply
tixel for 7A at that time. Tixel domains also change when the domain of a
meet or task is changed. KHE keeps them up to date automatically.

Use of the global tixel matching is optional. KHE14 installs it during its
structural phase and retains it until the end. It uses it in two ways. First, while
times are being assigned, each unmatched demand tixel adds hard cost 1 to
the total cost, guiding the solver away from assignments that would lead to
problems later. For example, assigning 6 Science meets to some time, demand-
ing 6 Science laboratories then, will be penalized if there are only 5 Science
laboratories, even though no room assignments are made. Second, while re-
sources are being assigned, only assignments that do not increase the number
of unmatched demand tixels are permitted (until the end, when a last-ditch

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

275

attempt is made to assign any remaining unassigned tasks). The rationale is
that unmatched demand tixels lead inevitably to defects, and if their number
is allowed to increase, there is little hope of reducing it again.

Additional demand tixels are added based on hard unavailable times, limit
busy times, and limit workload constraints. For example, if teacher Smith is
limited to at most 7 busy times out of the 8 times on Monday, then one demand
tixel demanding Smith at a Monday time is added. This section is adapted
from [10], which contains much more detail: how these additional tixels are
defined, how to implement the matching efficiently, and so on.

5 Polymorphic ejection chains

Like most timetabling solvers, KHE14 first constructs, then repairs. Most of
the repair work is done by ejection chains. An ejection chain is a sequence
of one or more repair operations (also called repairs), which are often simple
operations such as moves and swaps. The first repair removes one defect (a
specific fault in the solution) but may introduce another; the next repair re-
moves that defect but may introduce another; and so on. A key point is that
the defects that appear as a chain grows are not known to have resisted attack
before. It might be possible to repair one of them without introducing another,
bringing the chain to a successful end.

Ejection chains are not new. They are the augmenting paths of matching
algorithms, and they occur naturally to anyone who tries to repair a timetable
by hand. They were brought into focus and named by Glover [3], in work on
the travelling salesman problem. In timetabling, they have been applied to
nurse rostering [2], resource assignment [10], and time repair [4,5,11].

A key insight of [11] is that ejection chains are naturally polymorphic: each
defect along one chain can have a different type from the others, calling for a
correspondingly different type of repair. Thus, any number of types of defects,
and any number of types of repairs, can be handled together. In KHE, there is
one defect type for each constraint type, representing one specific point in the
solution where a constraint of that type is not satisfied, plus one defect type
representing one specific unmatched demand tixel in the global tixel matching.

An ejection chain algorithm uses a set of functions, one for each kind
of defect, called augment functions since they are based on the function for
finding an augmenting path in bipartite matching [14]. An augment function
is passed a specific defect of the type it handles, and it tries a set of alternative
repairs on it. Each repair removes the defect, but may create new defects. If no
significant new defects appear, the augment function terminates successfully,
having reduced the solution cost. If one significant new defect appears (one
whose removal would reduce the solution cost below its value when the chain
began; it may cost more than the previous defect), it makes a recursive call
to the appropriate augment function for that defect in an attempt to remove
it. In this way a chain of coordinated repairs is built up. If the recursive call
does not succeed in improving the solution, or was not attempted because two

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

276

Table 4 Effectiveness of variants of KHE14’s ejection chain algorithm. Each pair of char-
acters represents one complete restart of the algorithm: a digit denotes a maximum chain
length (u means unlimited); + denotes allowing entities to be revisited along one chain, and
- denotes not allowing it. KHE14 uses 1+,u-. Other details as previously.

Instance C:u- C:1+,u- C:1+,2+,u- T:u- T:1+,u- T:1+,2+,u-
AU-BG-98 9.00571 12.00491 8.00500 22.6 25.4 24.4
AU-SA-96 14.00024 16.00014 17.00027 81.1 72.6 76.2
AU-TE-99 2.00130 4.00124 2.00090 3.9 3.5 3.1
BR-SA-00 1.00072 1.00057 1.00054 1.0 0.8 1.5
BR-SM-00 25.00135 29.00093 27.00135 10.1 6.4 10.8
BR-SN-00 4.00252 4.00243 5.00246 3.7 2.9 2.0
DK-FG-12 0.02390 0.02248 0.02347 160.8 180.2 302.9
DK-HG-12
DK-VG-09 12.03206 12.03349 12.03498 544.1 375.8 756.8
ES-SS-08 1.02081 0.01362 1.02639 17.1 16.0 43.1
FI-MP-06 4.00120 3.00132 3.00117 12.8 7.8 9.0
FI-PB-98 5.00051 6.00039 4.00056 5.5 6.3 4.7
FI-WP-06 0.00049 0.00078 0.00079 1.5 1.3 1.2
GR-H1-97 0.00000 0.00000 0.00000 6.2 5.9 5.9
GR-P3-10 2.00047 2.00088 0.00009 37.5 22.6 12.4
GR-PA-08 0.00035 0.00040 0.00040 6.2 7.2 6.9
IT-I4-96 1.01111 0.00494 0.00512 7.8 8.1 8.0
KS-PR-11 0.00130 0.00150 0.00135 77.6 77.0 78.2
NL-KP-03 0.03707 0.04774 0.04547 232.2 197.8 226.2
NL-KP-05
NL-KP-09
UK-SP-06 2.00144 0.00102 0.00182 46.8 30.0 34.9
ZA-LW-09 25.00000 26.00000 26.00000 18.1 20.2 18.7
ZA-WD-09 11.00000 9.00000 9.00000 26.5 24.0 18.9
Average 5.00678 5.00660 5.00724 63.0 52.0 78.4

or more significant new defects appeared, the augment function undoes the
repair and continues with alternative repairs. It could try to remove a whole
set of new defects, but that would rarely succeed in practice.

The main loop of the algorithm repeatedly iterates over the defects of the
solution, or over a subset of them that it is expedient to target, and calls the
appropriate augment function on each. It terminates when one complete pass
over all defects yields no reduction in solution cost.

KHE offers two methods for preventing the tree of repairs searched by an
augment function from growing to exponential size: either the length of the
chains is limited to at most some fixed constant, or else it is unlimited, but
entities visited while searching for one chain are marked, and revisiting them
is prohibited, limiting the size of one search to the size of the solution.

Table 4 investigates these options for limiting the search. KHE14’s choice
has the lowest average cost and run time, but there is no clear signal.

Entities are marked in a way that prevents repairs on other chains, or
further along the same chain, from targeting that entity, while allowing any
number of alternative repairs of the entity to be tried where it is marked. Only
the first entity changed by each repair is marked. Other entities changed by it
are neither checked for being marked nor marked. This is important, since one

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

277

0 10 20 30 40
0

1000

2000

3000

4000

Chain length

Fig. 1 For each chain length, the number of successful chains of that length found during
time repair, over all tested instances of XHSTT-2013. There were 6322 successful chains
altogether, and their average length was 3.5. All successful chains of length greater than 39
are shown as having length 39. The longest successful chain had length 140.

0 10 20 30 40
0

10

20

30

40

50

Chain length

Fig. 2 For each chain length, the number of successful chains of that length found during
resource repair, over all tested instances of XHSTT-2013. There were 321 successful chains
altogether, and their average length was 11.5. All successful chains of length greater than
39 are shown as having length 39. The longest successful chain had length 105.

of them is likely to be targeted next. As long as at least one entity is marked
by each repair, the size of the search will be limited as desired.

KHE14 makes two kinds of calls to the ejection chain algorithm: time repair
calls, which repair time assignments, and resource repair calls, which repair
resource assignments. Fig. 1 shows how long successful time repair chains are,
and Fig. 2 does the same for resource repair. Most are short, but some are
long. The average length of resource repair chains is surprisingly high. It was
shown in [11] that chain lengths tend to increase as the algorithm progresses.

The text of this section is adapted from [11], which also explains how
ejection chains are implemented in KHE. The user writes one augment function
for each defect type, which iterates over the alternative repairs, applying and
unapplying each in turn. KHE supplies the main loop, chaining together of
individual repairs, testing for success, and dynamic dispatch by defect type.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

278

6 Repair operations

A repair operation, or just repair, is a change to the solution made in the hope
of removing a specific defect. This section presents the repairs used by KHE14’s
ejection chain algorithms. A detailed description of two unusual repairs is given
first, followed by a brief description of the full set. Sect. 7 explains how they
are used to repair the various kinds of defects.

Node swaps. A node is a set of meets, grouped together because they make
up one course (Sect. 3). Suppose two nodes have meets of the same durations
(one of duration 2 and four of duration 1, say). A node swap swaps the starting
times of corresponding meets in those nodes.

Pairs of swappable nodes are common, since it simplifies planning if many
courses have equal duration, and courses of equal duration often split into
meets of equal durations. Nodes are only swapped when they have the same
preassigned resources, so swapping avoids introducing clashes involving those
resources. Swapping nodes has some advantages over swapping meets: it pre-
serves regularity, and tends not to create new spread events defects.

Kempe meet moves. These begin with the move of a meet from its current
time t1 to some other time t2. If that causes clashes between preassigned
resources at t2, the other meets involved in the clashes are moved to t1, any
clashes produced by those moves cause more meets to be moved to t2, and so
on until there are no new clashes and no more moves.

When a Kempe meet move succeeds, the result is usually a simple move or
swap. Having a single operation which could turn out to be either is convenient,
since it allows a solver to try moving a problem meet to each time t2, whether
the affected resources are free then or not.

Node swaps and Kempe meet moves are implemented more generally than
described here, including support for hierarchical timetabling and preserving
regularity. Kempe meet moves can swap meets of different durations when
they are adjacent in time. A full description appears in [11], except for one
recent improvement, in how regularity is preserved [12].

Turning now to the full list of repair operations, let a variable be a meet
or a task, considered as an entity requiring a time or resource to be assigned
to it. An assignment is a change to a variable from unassigned to assigned. A
move is a change to a variable from one assignment to a different assignment.
An unassignment is a change to a variable from assigned to unassigned.

When the change is an assignment or move, the new value of the variable
is likely to create conflicts (timetable clashes) with other variables. There are
at least four ways to handle these conflicts. The basic way is to do nothing,
leaving it to the ejection chain algorithm to notice the resulting defects and try
to repair them. The ejecting way is to unassign conflicting variables. This will
be better than the basic way if it produces a single defect (an assign time or
assign resource defect) rather than several defects whose common cause may
not be clear to the ejection chain algorithm. The swap way, applicable only
to moves, is to move the conflicting variables in the opposite direction. The

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

279

Kempe way, also applicable only to moves, is to continue swapping back and
forth to remove conflicts, as explained above for Kempe meet moves.

Ignoring unassignment, which seems to be not useful alone, this makes
six operations altogether: basic assignment, ejecting assignment, basic move,
ejecting move, swap, and Kempe move. Applying them to meets and tasks
gives twelve operations. KHE14 uses most of them, plus two operations which
are sets of these ones treated as a unit: node swaps and ejecting task-set moves,
which are sets of ejecting task moves to a common resource.

An ejecting move is a Kempe move that ends early, as soon as the variables
to be moved in the opposite direction are unassigned. It often makes sense to
first try a Kempe move, then fall back on an ejecting move; this is similar to
trying a particular reassignment of the unassigned variables first. The term
Kempe/ejecting move refers to a sequence of one or two repairs, first a Kempe
move, then an optional ejecting move with the same parameters. The ejecting
move is omitted when the Kempe move (successful or not) does not try to move
anything back in the opposite direction, since the two repairs are identical then.

Kempe meet moves are useful because instances often contain preassigned
class resources which are busy for all or most of the cycle. Moving a meet
containing such a resource practically forces another meet to move the other
way, so it makes sense to get on and do it. Kempe task moves are less useful
because they apply to unpreassigned resources, such as teachers and rooms,
which are less constrained. Ejecting moves seem more appropriate for them.

Table 5 investigates various combinations of Kempe, ejecting, and basic
meet moves. The results here are clear: Kempe meet moves are helpful, and
the Kempe/ejecting combination is better than the Kempe/basic alternative
when run time is included in the comparison.

These repair operations are not original to this paper. The author has used
node swaps and Kempe meet moves before [11], and ejecting task moves [10],
but not ejecting meet moves.

7 Repairing defects

This section explains how the ejection chain algorithm repairs defects using
the repair operations of Sect. 6. For each kind of defect, this section defines a
set of repairs. The augment function for that kind of defect applies the first of
these repairs, calls a KHE function to test for success and recurse, then either
returns ‘success’ immediately or unapplies that repair and tries the next, and
so on, returning ‘no success’ when all repairs are tried without success.

KHE has objects called monitors, each monitoring one point of application
of one constraint, or one demand tixel in the global tixel matching. Each mon-
itor contains a cost. When some part of the solution changes, KHE notifies the
monitors affected by that part, and they revise their evaluation and perhaps
change their cost. Any cost changes are reported and cause the overall solution
cost to change. For example, when a time is assigned to a meet, any affected

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

280

Table 5 Kempe, ejecting, and basic moves during time assignment. Where the main text
states that Kempe meet moves are tried, K means to try them and X means to omit them.
Where it states that ejecting meet moves are tried, E means to try them and B means to
try basic meet moves instead. KHE14 uses KE. Other details as previously.

Instance C:KE C:KB C:XE C:XB T:KE T:KB T:XE T:XB
AU-BG-98 12.00491 19.00390 11.00490 19.00473 26.5 39.5 18.8 41.9
AU-SA-96 16.00014 4.00013 25.00106 34.00060 73.9 417.6 52.3 112.2
AU-TE-99 4.00124 9.00133 8.00172 11.00153 3.5 10.1 4.0 3.3
BR-SA-00 1.00057 3.00075 1.00081 6.00066 0.8 0.6 1.3 0.3
BR-SM-00 29.00093 28.00093 32.00120 26.00084 6.4 1.5 4.8 1.2
BR-SN-00 4.00243 7.00258 10.00267 11.00231 2.8 1.8 4.5 0.8
DK-FG-12 0.02248 0.01893 0.02359 0.02565 192.9 370.0 122.5 88.1
DK-HG-12
DK-VG-09 12.03349 12.03077 12.03424 14.03683 384.5 698.4 297.6 133.8
ES-SS-08 0.01362 0.02662 0.01771 0.04053 15.8 30.4 13.0 15.0
FI-MP-06 3.00132 1.00123 2.00107 6.00120 7.5 9.7 8.3 8.1
FI-PB-98 6.00039 2.00173 7.00022 6.00144 6.3 9.9 7.4 5.9
FI-WP-06 0.00078 1.00069 0.00036 3.00102 1.2 3.4 2.8 1.6
GR-H1-97 0.00000 0.00000 2.00000 2.00000 5.9 5.9 6.2 6.0
GR-P3-10 2.00088 0.00074 12.00150 1.00105 22.7 9.0 59.2 7.0
GR-PA-08 0.00040 0.00035 0.00043 2.00111 5.7 6.4 8.1 5.5
IT-I4-96 0.00494 1.00711 0.00605 0.00651 8.4 7.6 8.0 5.9
KS-PR-11 0.00150 0.00294 0.00149 2.01257 77.6 82.1 79.6 80.2
NL-KP-03 0.04774 0.04111 0.03340 0.04635 205.5 922.5 327.0 161.8
NL-KP-05
NL-KP-09
UK-SP-06 0.00102 2.00084 5.00324 12.00608 28.9 146.5 176.7 28.7
ZA-LW-09 26.00000 30.00000 29.00000 31.00000 18.0 13.7 18.2 15.1
ZA-WD-09 9.00000 11.00000 9.00001 17.00000 23.6 34.9 88.0 10.9
Average 5.00660 6.00679 7.00646 9.00909 53.3 134.4 62.3 34.9

assign time and prefer times monitors are notified, and they change their cost
accordingly. Concretely, a defect is a monitor whose cost is non-zero.

Monitors may be grouped: joined into sets treated as single monitors whose
cost is the sum of the individual costs. KHE14’s grouped monitors have the
same kind and monitor the same thing in reality (examples appear below), and
are repaired by repairing any one member of the group. Monitors may also be
detached: fixed to cost 0 regardless of their true cost. Grouping and detaching
are used to prevent the algorithm from being confused by apparently distinct
defects which really point to the same problem. Such defects could cause a
chain to end when there is a worthwhile repair to continue with.

(One application of ejection chains to timetabling [4] found a way to exploit
a coarser grouping than any used here: it groups all defects related to one
resource. The elements of such a group may have different types, so it does
not make sense to perform repairs specific to any one type. Instead, all moves
of a meet to which the resource is assigned to a time when the resource is free
are tried. From those moves which introduce at most one new conflict, the 20
best are selected and used as the set of repairs for the group.)

As mentioned earlier, there are two categories of calls on the ejection chain
repair function: time repair calls, which repair the assignments of times to

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

281

meets, and resource repair calls, which repair the assignments of resources
to tasks. Each category has its own augment functions, and its own way of
grouping and detaching monitors. Both categories are defined below.

Demand defects. These are cases of unmatched demand tixels in the global
tixel matching (Sect. 4), usually indicating that the demand for some set of
resources at some time exceeds their supply then. The defect is not really the
one unmatched tixel, but rather the whole set of demand tixels that contribute
to the excess demand. Given the nondeterminism of the global tixel matching,
any one of these could be reported as the defect. Repair operations use KHE
functions to visit them all, and, in effect, repair the set, not the individual.

During time repair, demand monitors lying within tasks of the same meet
are grouped, so that multiple demand defects that can be repaired by moving
that meet are perceived as a single defect. Defects are handled by trying all
repairs that move any of the meets contributing to the excess demand away
from the problem time. Kempe/ejecting meet moves are tried first, then node
swaps between nodes with similar preassigned resources. For example, 6 Sci-
ence meets running simultaneously when there are only 5 Science laboratories
will generate one demand defect which will cause repairs to be tried that move
any of the 6 meets away from the problem time. Simple clashes also produce
demand defects, and are repaired in the same way.

Demand monitors derived from the same avoid unavailable times, limit
busy times, or workload limit monitor are grouped. If any of these are involved
in a demand defect (if they contribute to the excess demand), then the repairs
just given are not well targeted, because they could move a contributing meet
to a different time within the times whose limit has been exceeded, or swap a
meet back into those times. So different repairs are tried in that case: ejecting
meet moves that move any of the contributing meets away from the times
whose limit has been exceeded. For example, if teacher Smith is preassigned
to tasks which give him 8 busy times on Monday when he is limited to 7, the
demand monitor derived from this limit will contribute to the excess demand,
causing ejecting moves to be tried that move meets preassigned to Smith away
from Monday. Similarly, a demand monitor derived from an avoid unavailable
times monitor will cause ejecting moves away from the unavailable times.

During resource repair, demand defects are handled differently. They do
not contribute to the cost of the solution, and they are not repaired. Instead,
ejection chains which increase their number are not applied (except right at
the end, when a last-ditch attempt is made to assign any remaining unassigned
tasks). The reason for this is as follows.

At the start of each call to the resource repair ejection chain algorithm,
the number of demand defects is equal to what it was at the end of time
assignment. This is because no resource assignments are accepted which in-
crease this number, and resource assignments which decrease it are impossible,
since a resource assignment reduces the domains of demand nodes, reducing
the choice of matchings. (If resource repairs changed meet assignments, that
could reduce the number of demand defects; but it is not likely to, because
similar changes were tried during time repair, at a point when fewer resources

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

282

were assigned so more choices were open.) Repair of demand defects is not at-
tempted, then, because it is doomed to failure. This also explains why chains
which increase the number of demand defects are not applied: such an increase
would be almost impossible to reverse later. This argument is from [10].

Split events defects and distribute split events defects. These are cases of
events split into too few or too many meets, or into meets whose durations are
not wanted. Event splitting is handled by the structural phase (Sect. 3), and
these defects are ignored during time and resource repair.

Assign time defects. These are cases of meets not assigned a time. There are
usually none when time repair begins, because the initial time assignment usu-
ally assigns a time to every meet; but ejecting meet moves create them. They
are handled during time repair only, by trying all ejecting meet assignments
to times in the meet’s domain. Kempe meet moves are not possible (there is
no original time). Assign time monitors whose events are joined by link events
constraints handled structurally are grouped; they monitor the same thing.

It is important to assign a time to every meet, so assign time defects are
also treated during time repair like demand defects are treated during resource
repair: ejection chains may unassign meets temporarily as they go, but no chain
is applied which, in the end, increases the total cost of assign time defects.

Prefer times defects. These are cases of meets assigned unwanted times:
for example, a Physics meet that prefers a morning time but is assigned
an afternoon time. They are handled during time repair only, by trying all
Kempe/ejecting meet moves of the meet to a preferred time. Prefer times mon-
itors whose events are joined by link events constraints handled structurally
are grouped when they request the same times.

Spread events defects. These are cases where the meets of a course are
spread unevenly through the cycle. For example, two might occur on Monday,
and none on Thursday. They are handled during time repair only, by trying
all Kempe/ejecting meet moves which remove the defect (in the example, all
moves of a Monday meet to a Thursday time). Spread events monitors whose
events are joined by link events constraints handled structurally are grouped.

Link events defects. These are cases where events which should occur at the
same time do not. Like event splitting, event linking is handled structurally
(Sect. 3), and these defects are ignored during time and resource repair.

Order events defects. These are cases where events should appear in a
particular time order, but they don’t. KHE14 ignores these defects, because
there are no order events constraints in the XHSTT-2013 data set. However,
it is easy to find repairs that remove them, so there will be no problem in
handling them in future. Order events monitors whose events are joined by
link events constraints handled structurally are grouped.

Assign resource defects. These are cases where a task is not assigned a
resource. They are handled during resource repair, by trying all ejecting task
assignments to resources in the task’s domain. Assign resource monitors whose
tasks are joined by avoid split assignments constraints handled structurally are
grouped while those structures are present.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

283

Prefer resources defects. These are cases where a task is assigned a resource
it does not prefer: for example, the room task of a Science meet assigned an
ordinary classroom instead of a Science laboratory. They are handled during
resource repair, by trying all ejecting task moves to the preferred resources.
Kempe task moves are possible, but (as discussed above) they seem unlikely to
be useful and have not been tried. Prefer resources monitors whose tasks are
joined by avoid split assignments constraints handled structurally are grouped
while those structures remain in place, if they request the same resources.

Avoid split assignments defects. These are cases where tasks are assigned
different resources, when they want the same resource. For example, a Music
event split into five meets, four taught by Smith and one taught by Brown, is
an avoid split assignments defect, also called a split assignment.

Structures which prohibit split assignments are present for most of KHE14,
but near the end they are removed and split assignments are constructed
(they are usually better than nothing). These split assignments are repaired
by taking each pair of resources assigned to the tasks, finding the subset of the
tasks assigned those resources, and trying each ejecting task-set move of that
subset to a resource from the domain of one of them. These are the smallest
repairs capable of reducing cost, which is prudent, given the difficulty.

A promising alternative kind of repair, not yet implemented, is to pick one
of the resources currently assigned to some of the tasks, whose workload limit
permits it to be assigned to all of them, and try to move the meets of the
other tasks to times when that resource is free. Previous phases would need
to ensure that split assignments were concentrated in meets that demand few
resources, making them more likely to be movable.

Avoid clashes defects. These are cases where a resource attends two meets
at the same time. During time repair, avoid clashes monitors are detached:
demand monitors do their job and more. During resource repair, they are
handled by trying all ejecting task moves of the clashing tasks to resources in
their domains. There is no confusion with demand defects, because of the way
that demand monitors are handled during resource repair (see above).

Avoid clashes monitors for resources of the same type are grouped when
they are derived from the same constraint, all the event resources of their type
are preassigned, and the resources are preassigned to the same events, so follow
the same timetable. The saving can be significant: in the NL-KP-03 instance,
for example, there are 453 resources representing individual students, but only
297 groups, or 285 when link events constraints are taken into account.

Avoid unavailable times defects. These are cases where a resource attends a
meet at a time when it is unavailable. An avoid unavailable times constraint is
the same as a limit busy times constraint whose set of times is the unavailable
times, and whose Maximum attribute is 0. So these defects are handled as
described below for limit busy times defects, including grouping.

Limit idle times defects. These are cases where a resource’s timetable con-
tains an idle time: a time when the resource is not busy (attending an event),
but is busy earlier that day and later. During time repair, they are handled by
taking each meet assigned to the resource which occurs at the beginning or end

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

284

of one of its days, and trying each ejecting move of it to a time that reduces the
number of idle times and does not cause clashes. A move to any non-clashing
time between the first and last busy times on any day is acceptable. If the meet
is adjacent to an idle time, then moving it far away will remove that idle time,
so it may also be moved to just before the first busy time of any day, and just
after the last busy time of any day, provided that first or last busy time is not
one when the meet itself is currently running. Limit idle times monitors are
grouped in the same way as avoid clashes monitors. During resource repair,
limit idle times defects are ignored; repairing them then is future work.

Cluster busy times defects. These are cases where a resource is busy on too
few or too many days. During time repair, if the problem is too few days, then
all ejecting moves are tried which move a meet from a day in which it is not
the only meet to a day in which it is. If the problem is too many days, then
ejection chains struggle, because cost is reduced only when a day becomes
completely free, which may require several meet moves. The present repair
tries all ejecting moves of meets which are alone in their day to days when
other meets are present. Some defects can be repaired in this way, but many
cannot; they are future work, as are repairs during resource repair. Cluster
busy times monitors are grouped in the same way as avoid clashes monitors.

Limit busy times defects. These are cases where a resource is overloaded or
underloaded during some set of times, typically one day. For example, teacher
Jones might expect to be busy for only at most 7 of the 8 times on any day;
anything more is a limit busy times defect.

Break each limit busy times monitor into two monitors, one monitoring
underloads and the other overloads. During time repair, overload monitors
that give rise to demand monitors that do all their work are detached. Other
overload monitors and all underload monitors are not. They are handled by
trying all ejecting meet moves of one of the resource’s meets from inside the
set of times to outside it, or vice versa, depending on whether the defect is an
overload or an underload.

During resource repair, all these monitors are attached. There is no con-
fusion with demand monitors, as explained above for avoid clashes defects.
Overloads are handled by trying all ejecting task moves which unassign the
resource from any meet running during the set of times. Underloads are ig-
nored; repairing them during resource repair is future work. Limit busy times
monitors are grouped in the same way as avoid clashes monitors.

Limit workload defects. These are similar to limit busy times defects whose
times are the whole cycle, and are handled in the same way, including grouping.

Repairs targeted at specific defects are rare in the timetabling literature.
About half of the above is previous work [10,11] and half is new. Disentangling
new from old would be tedious, but this paper is the first to tackle anything
approaching a complete set of defect types with polymorphic ejection chains.

Which augment functions are most effective? Finding a good measure of
effectiveness is not easy. For example, virtually any defect can be removed if
enough mayhem is visited on its surroundings, so success in removing defects,
taken in isolation, is a poor measure. One simple approach, not claimed to be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

285

Table 6 Effectiveness of time augment functions. For each time augment function, the
number of calls to the function, the number of successful calls, and the ratio of the two as
a percentage, over all tested instances of XHSTT-2013. Only non-zero rows are shown.

Augment function Total Successful Percent
Assign time 3770681 12890 0.3
Spread events 440720 3723 0.8
Ordinary demand 177379 797 0.4
Workload demand 8439 63 0.7
Avoid unavailable 48428 367 0.8
Limit idle 847642 3447 0.4
Cluster busy 253699 333 0.1
Limit busy 652935 737 0.1

Table 7 Effectiveness of resource augment functions. For each resource augment function,
the number of calls to the function, the number of successful calls, and the ratio of the two
as a percentage, over all tested instances of XHSTT-2013. Only non-zero rows are shown.

Augment function Total Successful Percent
Assign resource 500023 2032 0.4
Avoid splits 6946 182 2.6
Avoid clashes 94 0 0.0
Limit busy 24523 133 0.5
Limit workload 170855 1343 0.8

perfect, is to say that a call on an augment function is effective when it returns
true, meaning that it lies on a chain that improved the solution, and ineffective
when it returns false. The ratio of effective to effective plus ineffective calls,
expressed as a percentage, measures the effectiveness of the function.

Table 6 presents the number of calls on each time repair augment function
used by KHE14 when solving XHSTT-2013, and their effectiveness, measured
as just described. Table 7 does the same for resource repair. Interpretation is
problematical, but it seems, for example, that the time repair functions for
cluster busy times and limit busy times defects are relatively ineffective.

Which repairs are most effective? Again, finding a good measure is not
easy. For example, on any given defect one kind must be tried first, and this
gives it more opportunities to both succeed and fail than the others. Again, a
simple approach is used: the successful calls on a given augment function are
attributed to the repairs that caused the successes.

Table 8 is like Table 6 except that it contains one row for each kind of
repair of each kind of time defect, measured in this way. Some of the results
are quite interesting: the tiny number of successful node swaps, for example.
The corresponding results for resource repairs are omitted, since each resource
repair augment function tries just one kind of repair operation.

8 The algorithm

This section describes the KHE14 algorithm at a high level. An implementation
is available online (function KheGeneralSolve2014 of [12]).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

286

Table 8 Effectiveness of time repair operations. For each time augment function and repair
operation, the number of calls on that repair operation made by that augment function, the
number of successful calls, and the ratio of the two as a percentage, over all tested instances
of XHSTT-2013. Only non-zero rows are shown.

Augment function : Repair operation Total Successful Percent
Assign time : Basic meet assignment 3 3 100.0
Assign time : Ejecting meet assignment 3770675 12884 0.3
Assign time : Basic meet move 3 3 100.0
Spread events : Basic meet move 1 0 0.0
Spread events : Ejecting meet move 254101 249 0.1
Spread events : Kempe meet move 186618 3474 1.9
Ordinary demand : Basic meet move 27 2 7.4
Ordinary demand : Ejecting meet move 121656 64 0.1
Ordinary demand : Kempe meet move 54942 726 1.3
Ordinary demand : Node swap 754 5 0.7
Workload demand : Ejecting meet move 8439 63 0.7
Avoid unavailable : Ejecting meet move 48428 367 0.8
Limit idle : Ejecting meet move 847642 3447 0.4
Cluster busy : Ejecting meet move 253699 333 0.1
Limit busy : Ejecting meet move 652935 737 0.1

KHE14 proceeds in phases (major steps). First comes the structural phase.
It constructs an initial solution with no time or resource assignments, converts
resource preassignments (in the instance) into resource assignments (in the
solution), adds additional structure as described in Sect. 3, and adds the global
tixel matching as described in Sect. 4.

Next comes the time assignment phase, which assigns a time to each meet.
It has been described fully elsewhere [6,7,11]; here is an overview. For each
resource to which a hard avoid clashes constraint applies it builds one layer, the
set of all nodes containing meets preassigned that resource. After discarding
layers that are redundant because they are subsets of other layers, and sorting
so that (heuristically) the most difficult layers come first, it assigns times to the
meets of each layer in turn. The algorithm for assigning times to the meets
of one layer is heuristic and complex. It tries for regularity with previously
assigned layers, and exploits the fact that the meets of one layer should not
overlap in time, by maintaining a minimum-cost matching of meets to times.

A node may lie in several layers, if its meets contain several preassigned
resources. Such a node is handled with the first layer it lies in, and the result
is not changed when assigning subsequent layers. So when a layer’s turn comes
to be assigned, all its nodes may be already assigned. Such layers are skipped.

After each unskipped layer is assigned, an ejection chain repair (Sect. 5)
is applied. Its main loop is targeted at the defects of the layer just assigned,
but its recursive calls may spread into earlier layers. After all layers have been
assigned and repaired, another ejection chain repair is carried out, targeted
at the entire time assignment. Then the structures which enforce regularity in
time are removed and yet another ejection chain time repair is run.

Next come the resource assignment phases, one for each type of resource
(teacher, room, etc.). These phases are sorted heuristically so that the most

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

287

Table 9 Effectiveness of KHE14 and KHE14x8. Details as previously. Different solutions
to one instance vary in run time, so finding eight solutions on a quad-core machine often
takes more than twice as long as finding one.

Instance C:KHE14 C:KHE14x8 T:KHE14 T:KHE14x8
AU-BG-98 12.00491 4.00524 24.9 43.8
AU-SA-96 16.00014 6.00006 72.2 172.3
AU-TE-99 4.00124 2.00140 3.6 7.6
BR-SA-00 1.00057 1.00051 0.8 1.9
BR-SM-00 29.00093 22.00129 6.4 15.2
BR-SN-00 4.00243 4.00243 2.9 6.7
DK-FG-12 0.02248 0.02046 175.5 404.0
DK-HG-12
DK-VG-09 12.03349 12.03257 373.1 919.4
ES-SS-08 0.01362 0.01287 14.8 31.1
FI-MP-06 3.00132 0.00125 7.7 16.4
FI-PB-98 6.00039 1.00024 6.1 12.9
FI-WP-06 0.00078 0.00041 1.2 5.4
GR-H1-97 0.00000 0.00000 6.2 13.2
GR-P3-10 2.00088 0.00006 22.8 51.8
GR-PA-08 0.00040 0.00021 7.2 19.5
IT-I4-96 0.00494 0.00197 7.9 20.1
KS-PR-11 0.00150 0.00116 76.4 173.3
NL-KP-03 0.04774 0.03919 190.4 698.7
NL-KP-05
NL-KP-09
UK-SP-06 0.00102 0.00056 30.3 88.2
ZA-LW-09 26.00000 16.00000 21.7 34.5
ZA-WD-09 9.00000 6.00000 25.0 50.1
Average 5.00660 3.00580 51.3 132.7

difficult come first. In practice, teachers are assigned first (if needed), then
rooms; students and classes are not assigned, since they are all preassigned,
and so were assigned during the structural phase.

Each resource assignment phase has three parts. In the first part, which
in practice assigns most tasks, violations of avoid split assignments and prefer
resources constraints are prohibited structurally, and assignments that increase
the number of demand defects (Sect. 4) are rejected. A resource assignment
algorithm is called that tries to assign a resource to each unpreassigned task
of the current type. If there are avoid split assignments constraints, a resource
packing algorithm which follows a bin packing paradigm is used. Otherwise
a constructive heuristic is used, more effectively than usual because of the
guidance provided by the global tixel matching. These algorithms are described
in detail in [10], where resource packing was found to be the best of three
plausible resource assignment algorithms for teacher assignment. This first
part ends with a call on the ejection chain resource repair algorithm, targeted
at the event resource and resource defects of the current type.

The second part of the phase is only carried out for those types of resources
whose event resources are subject to avoid split assignments constraints. It
removes structures that prevent split assignments, finds split assignments for
unassigned tasks (using a construction heuristic specialized for them), and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

288

Table 10 Event defects in the solutions produced by KHE14x8. Each column shows the
number of defects of one kind of event constraint. A dash indicates that the instance contains
no constraints of that type. The columns appear in the same order as the rows of Table 1.

Instance SS DS AT PT SE LE OE
AU-BG-98 0 0 0 0 30 0 -
AU-SA-96 0 0 0 0 6 0 -
AU-TE-99 0 0 0 - 8 0 -
BR-SA-00 0 0 0 0 0 - -
BR-SM-00 0 0 4 0 2 - -
BR-SN-00 0 0 0 0 0 - -
DK-FG-12 - - 0 - 41 0 -
DK-HG-12
DK-VG-09 - - 0 - 81 0 -
ES-SS-08 0 - 0 - 88 - -
FI-MP-06 0 - 0 0 0 - -
FI-PB-98 0 - 0 0 1 - -
FI-WP-06 0 - 0 - 0 - -
GR-H1-97 - - 0 - 0 0 -
GR-P3-10 0 - 0 0 0 0 -
GR-PA-08 - - 0 - 5 0 -
IT-I4-96 0 - 0 0 0 - -
KS-PR-11 0 0 0 0 0 - -
NL-KP-03 0 - 0 0 0 0 -
NL-KP-05
NL-KP-09
UK-SP-06 - - 0 - 0 0 -
ZA-LW-09 0 - 3 0 - 0 -
ZA-WD-09 - - 1 0 0 0 -
Total 0 0 8 0 262 0

calls ejection chain repair again. Then it tries two VLSN search algorithms
[1,13] which sometimes find small improvements. One rearranges the resource
assignments within a given set of times using min-cost flow, the other unassigns
and optimally reassigns pairs of resources [9]. The details are in [12] as usual;
they are omitted here because these algorithms are peripheral to the main
thrust of this paper, which is already overlong.

The third part is a last-ditch attempt to assign as many of the remaining
unassigned tasks as possible. It removes all structural prohibitions, removes
the prohibition on increasing the number of unmatched demand tixels, and
calls the ejection chain repair algorithm a third time.

The final cleanup phase carries out some minor tidying up. Whenever two
meets derived from the same event have ended up adjacent in time, this phase
merges them into one when that is possible and reduces cost. It also unassigns
tasks and meets when that reduces cost.

Table 9 shows the overall performance of KHE14 and its variant KHE14x8,
which runs KHE14 8 times in parallel and keeps a best solution. Random
numbers are not used; instead, each run is given a different diversifier (a small
fixed integer). It is used in several places, to vary the starting point of list
traversals, and to break ties. For example, ejection chain algorithms sort their
initial defects by decreasing cost; the diversifier influences the order of defects

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

289

Table 11 Event resource and resource defects produced by KHE14x8. Details as previously.

Instance AR PR AS AC AU LI CB LB LW
AU-BG-98 2 0 42 2 0 - - 18 0
AU-SA-96 1 0 0 3 0 - - 0 0
AU-TE-99 0 0 12 2 0 - - 1 0
BR-SA-00 - - - 1 0 8 2 - -
BR-SM-00 - - - 11 1 8 11 - -
BR-SN-00 - - - 4 0 16 16 - -
DK-FG-12 0 0 - 0 0 56 113 64 -
DK-HG-12
DK-VG-09 0 0 - 2 - 52 47 32 -
ES-SS-08 0 0 - 0 5 - 0 0 -
FI-MP-06 - - - 0 10 20 - 6 -
FI-PB-98 - - - 0 0 12 - 0 -
FI-WP-06 - - - 0 - 13 - 8 -
GR-H1-97 - - - 0 0 - - - -
GR-P3-10 - - - 0 0 0 - 3 -
GR-PA-08 - - - 0 0 7 - 0 -
IT-I4-96 - - - 0 6 31 1 2 -
KS-PR-11 - - - 0 0 54 - 0 -
NL-KP-03 0 0 - 0 7 334 15 51 -
NL-KP-05
NL-KP-09
UK-SP-06 0 - - 0 0 25 - - -
ZA-LW-09 - - - 1 - - - - -
ZA-WD-09 - - - 3 0 - - - -
Total 3 0 54 29 29 636 205 185 0

of equal cost. These solutions are available from the KHE web page [12]. An
analysis of the remaining defects appears in Tables 10 and 11.

9 Conclusion

No overall conclusion can be drawn yet: KHE14 is the author’s first solver to
address such a wide range of constraint types; it is work in progress and has not
reached its full potential; and solutions to XHSTT-2013 made by other solvers
were not available at the time of writing. Individual solutions are available,
but comparing with them ignores an essential requirement of a good solver,
namely robustness over many instances, so is deliberately not done here.

The author is currently exploring ideas for improvements in all phases of
KHE14. Recently, he modified the structural phase to restrict meet domains
to discourage cluster busy times defects. This produced a solution to instance
NL-KP-03 with 9 cluster busy times defects and cost 0.02804, much better
than the 15 and 0.04774 reported in the tables. The algorithm that assigns
times to the meets of one layer was designed without regard to cluster busy
times and limit idle times constraints, so it needs revision. That should make
solving the Dutch instances run faster, since at present they are overwhelming
the time repair algorithm with hundreds of limit idle times defects.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

290

References

1. R. Ahuja, Ö. Ergun, James B. Orlin, and A. Punnen, A survey of very large-scale neigh-
bourhood search techniques, Discrete Applied Mathematics, 123, 75–102 (2002)

2. Kathryn A. Dowsland, Nurse scheduling with tabu search and strategic oscillation, Eu-
ropean Journal of Operational Research, 106, 393–407 (1998)

3. Fred Glover, Ejection chains, reference structures and alternating path methods for trav-
eling salesman problems, Discrete Applied Mathematics, 65, 223–253 (1996)

4. Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar, A case study for
timetabling in a Dutch secondary school, Practice and Theory of Automated Timetabling
VI (Springer Lecture Notes in Computer Science 3867), 267–279, (2007)

5. Myoung-Jae Kim and Tae-Choong Chung, Development of automatic course timetabler
for university, Proceedings of the 2nd International Conference on the Practice and Theory
of Automated Timetabling (PATAT’97), 182–186 (1997)

6. Jeffrey H. Kingston, A tiling algorithm for high school timetabling, Practice and Theory
of Automated Timetabling V (Springer Lecture Notes in Computer Science 3616), 208–225
(2005)

7. Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Au-
tomated Timetabling VI (Springer Lecture Notes in Computer Science 3867), 294–307
(2007)

8. Jeffrey H. Kingston, The HSEval High School Timetable Evaluator, URL
http://www.it.usyd.edu.au/~jeff/hseval.cgi (2010)

9. Jeffrey H. Kingston, Timetable construction: the algorithms and complexity perspective,
Annals of Operations Research, DOI 10.1007/s10479-012-1160-z (2012)

10. Jeffrey H. Kingston, Resource assignment in high school timetabling, Annals of Opera-
tions Research, 194, 241–254 (2012)

11. Jeffrey H. Kingston, Repairing high school timetables with polymorphic ejection chains,
Annals of Operations Research, DOI 10.1007/s10479-013-1504-3

12. Jeffrey H. Kingston, KHE web site, http://www.it.usyd.edu.au/~jeff/khe (2014)
13. Carol Meyers and James B. Orlin, Very large-scale neighbourhood search techniques
in timetabling problems Practice and Theory of Automated Timetabling VI (Springer
Lecture Notes in Computer Science 3867), 24–39 (2007)

14. Christos. H. Papadimitriou and Kenneth Steiglitz, Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall (1982)

15. Nelishia Pillay, An overview of school timetabling research, PATAT10 (Eighth interna-
tional conference on the Practice and Theory of Automated Timetabling, Belfast, August
2010), 321–335 (2010)

16. Samad Ahmadi, Sophia Daskalaki, Jeffrey H. Kingston, Jari Kyngäs, Cimmo Nurmi,
Gerhard Post, David Ranson, and Henri Ruizenaar, An XML format for benchmarks in
high school timetabling, Annals of Operations Research, 194, 385–397 (2012)

17. Gerhard Post, XHSTT web site, http://www.utwente.nl/ctit/hstt/ (2011)
18. Gerhard Post, Luca Di Gaspero, Jeffrey H. Kingston, Barry McCollum, and Andrea
Schaerf, The Third International Timetabling Competition, PATAT 2012 (Ninth interna-
tional conference on the Practice and Theory of Automated Timetabling, Son, Norway,
August 2012), 479–484 (2012)

19. G. Schmidt and T. Ströhlein, Timetable construction—an annotated bibliography, The
Computer Journal, 23, 307–316, (1980)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

291

Komarudin · Marie-Anne Guerry · Pieter Smet ·
Tim De Feyter · Greet Vanden Berghe

Abstract A fair allocation of workload to people is crucial for securing job satis-
faction. Researchers have introduced numerous objectives and algorithms to rep-
resent and improve fairness in personnel rostering problems. These approaches
should not ignore the roster quality that is influenced by personnel rostering con-
straints, such as maximum working times, minimum rest times, etc. The present
paper proposes a new fairness objective and an effective two-phase heuristic for
optimizing rosters, taking into consideration the established personnel rostering
constraints and the fairness. The new fairness objective is based on a lexicographic
rule that offers a beneficial trade-off between roster quality and fairness. The new
heuristic is tested on real world data and the results show that fair rosters can be
obtained without significantly decreasing the roster quality.

Keywords Personnel rostering · roster quality · fairness · two-phase heuristic ·
lexicographic evaluation

1 Introduction

Personnel rostering aims to produce a timetable for personnel that satisfies the
coverage requirements in a predefined time period. Furthermore, the generated
timetable should meet a variety of contractual and personal constraints. Generally,
each constraint is specified with a certain weight, denoting its penalty value when
violated. The individual penalty refers to the sum of penalties that can be associ-
ated with one member of personnel. The objective of the problem is to improve the

Komarudin · Marie-Anne Guerry
Vrije Universiteit Brussel, Department of Business Technology and Operations
E-mail: {komarudin, maguerry}@vub.ac.be

Tim De Feyter
KU Leuven, Department of Business Management Research
E-mail: tim.defeyter@kuleuven.be

Pieter Smet · Greet Vanden Berghe
KU Leuven, Department of Computer Science, CODeS
E-mail: {pieter.smet,greet.vandenberghe}@cs.kuleuven.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

292

A two-phase heuristic and a lexicographic rule for
improving fairness in personnel rostering

roster quality by minimizing the total penalty (see e.g. Smet et al (2013)). This
kind of personnel rostering problem arises in several domains, including health
care, transportation, and security (Ernst et al, 2004).

In addition to the roster quality, Stolletz and Brunner (2012) advocate to also
consider fairness of work assignment. Fairness can be seen as the degree to which
individual penalties are balanced over all employees. An unfair roster is likely to
result in larger differences in e.g. workload among employees, which could induce
job dissatisfaction (Larrabee et al, 2003). It is thus important that a solution has
both a high roster quality and a high fairness.

Several approaches have been proposed to improve fairness of personnel rosters.
Bard and Purnomo (2005) consider fairness by specifying an upper limit on the
individual penalty for each employee, determined by the individual penalty that
he/she collected in the previous planning period. This approach does not actually
balance work assignments over all employees in a certain period. Rather it allows to
compensate for a low quality roster (i.e. low individual penalty) from the previous
planning period.

Chiaramonte and Chiaramonte (2008) represent fairness by a ratio that is
based on the standard deviation of the individual penalties. Similarly, Stolletz
and Brunner (2012) use the range (the difference between the maximum and the
minimum) of the individual penalties to balance the number of working times and
work assignments over all employees. Several other objectives have been defined
for improving both the roster quality and the fairness. Smet et al (2012b) compare
three objectives: (1) the maximum individual penalty, (2) the absolute deviation
of the individual penalties, and (3) the range of the individual penalties. Martin
et al (2013) in addition introduce the sum of squared penalties.

The objectives defined by Smet et al (2012b) are generalizations of Chiara-
monte and Chiaramonte (2008)’s and Stolletz and Brunner (2012)’s objectives,
which can be used to improve fairness over different rostering periods. They are
not restricted to specific constraints only, but they can be used to balance penalties
for all types of constraints associated with an individual employee. They provide
a general way to extend the established personnel rostering models with a fair-
ness aspect. Furthermore they have the advantage that they preserve the value of
weights that represent the degree of importance of the rostering constraints.

All previous studies consider fairness by aggregating the individual penalties.
In contrast, the current paper introduces a new objective that employs a differ-
ent methodology. The new objective is represented by a vector of all individual
penalties. It facilitates high fairness through beneficial penalty trade-off between
employees. Moreover, the new objective does not strive to level the individual
penalties over all employees, since this is not always appropriate due to the het-
erogeneous nature of a workforce in terms of contractual and personal constraints
(Komarudin et al, 2013).

In Section 2, we describe the personnel rostering problem in general and discuss
examination criteria of the roster quality and the fairness. Martin et al (2013)
compared different objectives in an optimization algorithm using Jain’s fairness
index (Jain et al, 1984). This index may not suitable since it depends on the
magnitude of individual penalties. We show that if the difference between two
individual penalties is kept the same, the index is likely to improve as the individual
penalties increase. A good Jain’s index value is thus not always the result of a fair
roster, but it can also be caused by high individual penalties.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

293

Therefore, similar to Bard and Purnomo (2005), we suggest to use three exam-
ination criteria that provide quantitative information for comparing rosters: (1)
the total penalty, (2) the standard deviation of the individual penalties, and (3)
the maximum individual penalty. These criteria provide a comprehensive assess-
ment of a roster since they examine the roster quality, the fairness, and the most
unattractive individual rosters. We will use these examination criteria to compare
the different objectives.

In Section 3, we discuss several local search moves that are used for solving
a personnel rostering problem with a fairness objective. These local search moves
were introduced by Smet et al (2012b) and used by Martin et al (2013). When
optimizing fairness, such moves may hinder the exploration for finding high quality
rosters, since the use of a fairness objective may ignore a local search move that
improves the roster quality but does not improve the fairness. For example, when
the maximum individual penalty is used as the objective, a local search move that
does not decrease the maximum individual penalty is likely to be rejected.

In order to deal with the contradictory objectives, we propose a two-phase
heuristic. The first phase ignores the fairness and uses only the total penalty as the
objective of the heuristic. In the second phase, one of the fairness objectives is used
in order to obtain balanced work assignments. This approach allows the heuristic
to reach high quality rosters in the search space before considering fairness.

In Section 4, we describe and analyze a series of computational experiments in
order to investigate the effectiveness of the two-phase heuristic compared to the
one-phase heuristic. Moreover, the roster quality and the fairness resulting from
the experiments with different objectives are compared. The heuristics are applied
to the personnel rostering model of Bilgin et al (2012) and they are evaluated on
data from six hospital wards (Smet et al, 2012a).

Finally, the conclusion and suggestions for further research are discussed in
Section 5.

2 The personnel rostering model and three examination criteria

The personnel rostering model is based on the work by Smet et al (2012a). A
number of objectives that can be used for improving fairness are presented. We
also discuss the limitations of the objectives and then propose a new objective
that has several advantages. Furthermore, we explain three examination criteria
for assessing the roster quality and the fairness.

2.1 The personnel rostering model

The personnel rostering problem has been formulated in several models (Ernst
et al, 2004), which vary in formulation of the objective and the rostering con-
straints. This paper considers the model of Smet et al (2012a) which is formulated
in a general way such that it can take into account a large set of rostering con-
straints. Due to this flexibility in modeling, it has been implemented in several
Belgian hospitals.

The personnel rostering problem is defined as the problem of assigning person-
nel to shifts, subject to hard and soft constraints. The hard constraints define the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

294

feasibility of a solution while the soft constraints determine the quality of a solu-
tion. The hard and soft constraints of Smet et al (2012a)’s model are summarized
in Table 1. A weight is associated with each soft constraint, denoting its penalty
value for a violation. The objective of the problem is to satisfy all hard constraints
and to minimize the total penalty.

Table 1 Hard and soft constraints of Smet et al (2012a)’s personnel rostering model

Hard constraints Soft constraints
Single assignment per day Coverage requirements
Assignment of defined requirements only Training requirements
No overlapping assignments Collaboration restriction
Assignment requires specific skill type Rest time between two consecutive assignments
Fixed assignments Skill type priorties

Absence requests
Counter restrictions on assignments
Specific series pattern assignment

Smet et al (2012a) divide rostering constraints in two categories: the horizon-
tal constraints and the vertical constraints. A horizontal constraint corresponds to
a specific employee. Satisfaction of a horizontal constraint solely depends on the
employee’s roster and not on other employees. Meanwhile, a vertical constraint
is defined according to general characteristics that apply to a group of employ-
ees. Satisfaction of a vertical constraint is subject to the shift assignments of the
employees in the group. For example, satisfaction of a training requirement con-
straint depends on the shift assignments of the trainer and the trainee. In Table 1,
the first three soft constraints (coverage requirements, training requirements and
collaboration restriction) are vertical constraints, while the other soft constraints
are horizontal constraints.

Assume the personnel is indexed i = 1 . . . n, the individual penalty PH,i is
the sum of penalties from the horizontal constraints of employee i. The vertical
penalty PV is the sum of penalties from the vertical constraints. The calculation of
PV and PH,i follows the formulation of Smet et al (2012a). When we only consider
the roster quality, the objective of the personnel rostering problem is to minimize
the total penalty PWS (defined in Eq. 1) while obeying all hard constraints.

minimize PWS ;

with PWS = PV +
∑n

i=1 PH,i;

(1)

2.2 The fairness objectives

Eq. 1 only optimizes the roster quality but does not pay attention to improving
fairness. In the literature, four alternative objectives have been presented to take
into account the roster quality as well as the fairness (Smet et al, 2012b; Martin
et al, 2013). They are:

1. The vertical and the maximum individual penalty PMax (Eq. 2),

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

295

2. The total penalty and the absolute deviation of the individual penalties PDev

(Eq. 3),
3. The total penalty and the range of individual penalties PError (Eq. 4), and
4. The sum of squared penalties PSS (Eq. 5).

PMax = PV + n. max
i∈{1..n}

PH,i; (2)

PDev = PWS +

n∑
i=1

|PH,i −
1

n

n∑
i=1

PH,i|; (3)

PError = PWS + n.(max
i∈{1..n}

PH,i − min
i∈{1..n}

PH,i); (4)

PSS =

√√√√(PV)2 +

n∑
i=1

(PH,i)2; (5)

Objective functions 2-5 target improvements both in terms of roster quality
and fairness. Minimizing PMax expresses minimization of the worst individual
penalty. In this way, the other individual penalties cannot be higher than the
worst one. Minimizing PDev implies improving the roster quality and minimizing
the individual penalty differences among employees. On the other hand, PError

improves fairness by decreasing the difference between individual penalties among
employees. The quadratic expression in PSS prevents one individual penalty to be
too high compared to other.

It should be noted that objective PSS modifies the surface of the solution space
of the original objective PWS to a large extent, due to the quadratic operation.
This effect is noteworthy since the relative importance of the constraints changes.
Martin et al (2013), therefore, introduced weights for PV and PH,i to reformulate
PSS . Many trial-and-error experiments may be needed to find appropriate weights
that can restore the importance degrees of the constraints. The surface of the
solution space also changes for PMax, PDev and PError. However, the effect will
not be as large as it is for PSS , since in the former objectives, the weights of the
constraints are preserved. That is, Pv and PH,i are included instead of (Pv)2 and
(PH,i)

2.

In order to provide a more accurate representation of the fairness, we intro-
duce a new objective: PLexi. This objective is similar to the decomposition fair-
ness model for course timetabling problems proposed by Mühlenthaler and Wanka
(2013). PLexi is defined as a permutation of all individual penalties, sorted in a
non-increasing order (represented in Eq. 6).

PLexi = (P ′
H,1, P

′
H,2, .., P

′
H,n) s.t. P ′

H,1 ≥ P ′
H,2 ≥ ... ≥ P ′

H,n (6)

For PLexi, fairness can then be defined as follows.

Definition 1 Roster p is considered to be more fair than roster q if PLexi(p)<L PLexi(q),
i.e. PLexi(p) is lexicographically smaller than PLexi(q).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

296

In other words, we say that roster p is more fair than roster q if the first non-zero
component of the vector PLexi(p)− PLexi(q) is negative.

The objective PLexi offers several advantages. Similar to the use of PMax, the
use of PLexi minimizes the maximum individual penalty. In fact, the individual
penalty of each employee is minimized when PLexi is used since all individual
penalties are represented. This is realized by minimizing the next maximum indi-
vidual penalty in stages over all employees. The individual penalty for all employee
is minimized step by step, starting with the employee having the maximum penalty
up to the employee having the minimum penalty. This behavior differs from the
behavior of PDev that tries to minimize the individual penalty differences.

Minimizing PLexi involves a trade-off mechanism that has an intuitive mean-
ing. A trade-off between two employees is said to be beneficial if it results in a
situation that is better for both employees. For example, moving workload from
employee i to employee j is beneficial if max{PH,i, PH,j} becomes smaller. That
is, two employees can help to alleviate of each other’s workload as long as the
maximum of their individual penalties decreases. In addition, the objective PLexi

does not favor negative trade-off. This is in contrast with PDev or PError that
can favor to increase an individual penalty without decreasing other individual
penalties.

The main disadvantage of PLexi is that it is only suitable for rostering problems
without vertical soft constraints, since PV is not considered in Eq. 6. If there are
vertical soft constraints, PLexi could be used by adding a new hard constraint
to the model which specifies an upper bound on the vertical penalty PV . A less
restrictive approach would be to incorporate PV in PLexi, as is shown in Eqs. 7-8.
Eq. 7 combines the objectives PWS and PLexi and prioritizes the former against
the latter. Eq. 8 combines the objectives PWS and PLexi and tries to find a good
balance between the roster quality and the fairness.

PModLexi1 = (PWS , P ′
H,1, P

′
H,2, .., P

′
H,n) s.t. P ′

H,1 ≥ P ′
H,2 ≥ ... ≥ P ′

H,n (7)

PModLexi2 = (P ′
H,1 + PWS , P ′

H,2 + PWS , .., P ′
H,n + PWS)

s.t. P ′
H,1 ≥ P ′

H,2 ≥ ... ≥ P ′
H,n

(8)

PLexi should be applied with care. Objective PLexi in a rostering problem
with vertical hard constraints can produce a higher total penalty than the objective
PWS . When optimizing PLexi, a beneficial trade-off may increase the total penalty
PWS .

2.3 Criteria to compare the roster quality and the fairness

The objectives PMax, PDev, PError, and PSS integrate the roster quality and the
fairness in their respective way. Comparing the qualities of several rosters based
on these objectives can produce biased results. Furthermore, the objectives PLexi,
PModLexi1, PModLexi2 can be used to obtain the order of the fairness of two or
more rosters. However, it cannot provide quantitative differences in roster quality.
Similar to Bard and Purnomo (2005), we suggest to calculate three examination
criteria that can be used for comparing the quality of two or more rosters:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

297

1. The total penalty PWS

2. The standard deviation of the individual penalties σ(PH)
3. The maximum individual penalty PH,max = max

i∈{1..n}
PH,i

with PH = {PH,1, ..., PH,n}.
The first examination criterion corresponds to the roster quality, the second one

represents the fairness, and the third relates to the most unattractive individual
rosters.

Contrary to Martin et al (2013), we do not recommend Jain’s index to compare
the quality of rosters based on the following consideration. Let J(p) be Jain’s
index of roster p, and let the individual roster quality of employee i in roster p be
PH,i(p). J(p) can be calculated as shown in Eq. 9. When the difference between
individual penalties decreases, Jain’s index increases. Therefore, a high value of
J(p) indicates high fairness. The maximum value of J(p) is one, which indicates
that all employees receive the same individual penalty.

J(p) =
(
∑n

i=1 PH,i(p))
2

n.
∑n

i=1(PH,i(p))2
(9)

Unfortunately, Jain’s index can also be improved by increasing the individ-
ual penalties while keeping the differences fixed, as stated in Proposition 1. The
proposition compares two rosters that have individual penalties differing by the
same amount d > 0. In this situation, both rosters have the same value of σ(PH).
However, the roster with the higher total penalty has a better Jain’s index. There-
fore, a high value of Jain’s index may not always refer to high fairness since it may
also be the result of an increase of the individual penalties. Jain’s index is still
suitable when the total horizontal penalty is fixed, or when the objective is to be
maximized.

Proposition 1 Suppose there are two rosters p and q. If J(p) < 1 and PH,i(q) =
PH,i(p) + d, ∀i ∈ {1, .., n}, d > 0, then J(q) > J(p).

Proof Substituting PH,i(q) = PH,i(p) + d into Eq. 9, results in

J(q) =
(
∑n

i=1 PH,i(p))
2 +M

n.
∑n

i=1(PH,i(p))2 +M

with M = 2nd
∑n

i=1 PH,i(p) + n2d2. Since d > 0 and J(p) < 1, then J(q) >
J(p). ut

3 The algorithm

We implemented a tabu search algorithm for solving the rostering problems. Tabu
search is a well known local search heuristic that has a mechanism to prevent
the search from returning to already visited solutions. Algorithm 1 outlines the
procedure. The algorithm starts from a random feasible solution, which is improved
by exploring neighborhoods through local search moves. The local search moves
used for the current personnel rostering problem are Bilgin et al (2012):

– Make or delete an assignment of an employee at a specific day

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

298

– Change a shift assignment of an employee at a specific day
– Change a skill assignment of an employee at a specific day
– Swap shift assignments of two employees at a specific day

The algorithm accepts the best neighboring solution that improves upon the
best solution obtained so far. If there is no such solution, it accepts the best
neighboring solution that results from a non-tabu move. A local search move is
considered non-tabu if it does not match with any element in the tabu list. The
tabu list keeps record of the characteristics of the recently executed moves. Specifi-
cally, it keeps track of the task assignments that have been changed by performing
a move. In each record, four variables are maintained: the day index, the employee
index, the skill assignment, and the shift assignment. In case a local search move
involves two employees, two records are saved in the tabu list.

A greedy local search is applied to every new best solution found in order to
intensify the search.

1 Input: Tabu search parameters, initial solution n0;
2 Best solution := initial solution;
3 Current solution := initial solution;
4 while stopping condition not met do
5 Generate k neighboring solutions from the current solution;
6 if A new best solution found then
7 Improve the new best solution through greedy local search;
8 Update best solution and current solution;
9 Update tabu list;

10 end
11 else if Non-tabu solution(s) found then
12 Update current solution with best non-tabu solution;
13 Update tabu list;

14 end

15 end
16 Output: best solution;

Algorithm 1: The tabu search algorithm

The local search moves from Bilgin et al (2012) may not be suitable for mini-
mizing PMax. The value of the objective PMax can be decreased by decreasing PV

and/or PH,max. In this way, local search moves that do not decrease PV or PH,max

are not useful in the search. Meanwhile, improving individual rosters that do not
correspond to PH,max can be beneficial at later iterations when these individual
rosters become the worst ones.

For minimizing PDev, the local search moves from Bilgin et al (2012) are also
not always effective. Consider a situation where PH,i = PH,j , ∀i, j ∈ {1..n}. In this
situation, the roster can be improved by decreasing PV . Decreasing one or two
individual penalties (assume that n > 4) can only make PDev increase since the
absolute deviation increases more than the gained improvement. This situation
can indicate the search is trapped in a local optimum. In other words, a local
search move that makes an individual penalty to deviate largely from the average
is usually not beneficial for improving PDev. Similarly, a heuristic minimizing
PError can face the same issue.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

299

Considering that the local search moves may not be effective to minimize
PMax, PDev and PError, we propose a two-phase approach. The first phase op-
timizes objective PWS while the second phase uses one of the fairness objectives.
The first phase is intended to obtain a roster with few constraint violations. The
second phase aims to improve the fairness. In order to show the advantage of a
two-phase heuristic, we tested the different algorithmic configurations shown in
Table 2.

Table 2 Overview of algorithms

Heuristic method Type Objective function

MinWS (base method) one-phase PWS

OP-MinMax one-phase PMax

OP-MinDev one-phase PDev

OP-MinError one-phase PError

OP-MinSS one-phase PSS

OP-MinModLexi1 one-phase PModLexi1

OP-MinModLexi2 one-phase PModLexi2

TP-MinMax two-phase first phase PWS , second phase PMax

TP-MinDev two-phase first phase PWS , second phase PDev

TP-MinError two-phase first phase PWS , second phase PError

TP-MinSS two-phase first phase PWS , second phase PSS

TP-MinModLexi1 two-phase first phase PWS , second phase PModLexi1

TP-MinModLexi2 two-phase first phase PWS , second phase PModLexi2

4 Experimental results

4.1 Experimental setup

The algorithms are evaluated using instances based on data from six wards (Smet
et al, 2012a). Table 3 provides an overview of the instance characteristics. Note
that we simplified the problem by omitting the continuity constraints that consider
assignments before and after the rostering period.

Table 3 Instance characteristics of Smet et al (2012a)

No Ward Abbr. No of skill
types

No of shift
types

No of em-
ployees

No of days

1 Emergency Em 4 27 27 28
2 Geriatrics Gr 2 9 21 28
3 Meal Preparations MP 2 9 32 31
4 Psychiatry Ps 3 14 19 31
5 Reception Re 4 19 19 42
6 Palliative Care PC 4 23 27 91

The tabu search algorithm was parametrized with a tabu list length of 1000
and a maximum neighborhood size of 1000. If a new best solution is found, 1000
greedy local search iterations are executed. A time limit of 600 seconds is imposed.
It should be noted that the computation time for each phase in the two-phase

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

300

heuristic, is half of the maximum computation time. For each problem instance,
five repeated runs were executed. The algorithm was coded in C++ and the ex-
periments were performed on a PC with a 2.7 GHz Intel processor operating on
Windows 7.

In the following sections, two experiments are analyzed. Section 4.2 discusses
the results for the base experiment, while Section 4.3 presents results for the slack
experiment.

4.2 Base experiment

The first experiment evaluates the effectiveness of the two-phase approach and the
one-phase approach. The instances are solved using one of the heuristic methods
from Table 2. First, we compare the resulting objective values obtained with the
two approaches. Then, the resulting rosters are compared in terms of the three
examination criteria discussed in Section 2.3.

The objective values obtained with the one-phase approach (OP) and two-
phase approach (TP) are shown in Figures 1-2. The horizontal axis corresponds
to different heuristic methods. The objective values are obtained by evaluating
the final rosters produced by each heuristic method according to the respective
fairness objective. The vertical axis in Figure 1 is a ratio obtained by dividing
the objective value by the minimum one for each problem instance. This allows
to collect several problem instances that have different magnitudes of the weight
values into one figure. In Figure 2, the vertical axis represents an index that is
obtained as follows. For each problem instance, the vectors PLexi of the rosters
are sorted using<L (lexicographic sorting). Then, the index represents the position
of a roster in the sorted list.

When comparing MinWS with the heuristic methods with a fairness objective,
the latter generally perform better. Figure 1 shows that the medians of the ratios
obtained with MinWS are always higher than those obtained with the heuristic
fairness methods. Figure 2 shows that the median of the index obtained using
TP-MinModLexi1 is slightly higher than the one obtained with MinWS. Both
methods try to optimize the objective PWS , which is the first criterion when
lexicographically sorting the results. TP-MinModLexi1 has the advantage that the
range of the results is significantly smaller than the range obtained with MinWS.

The results show that the two-phase heuristics always perform better than
the one-phase heuristics, when optimizing PMax, PDev, PError, PModLexi1 and
PModLexi2. There is no difference between the one-phase and two-phase heuristics
when applying PSS .

Now, we compare the performance of the heuristics from Table 2 using the three
examination criteria discussed in Section 2.3. Computational results are presented
in Tables 4-6. The values of PWS , PH,max and σ(PH) are the averages over five
runs. The last two rows of each table summarize the performance of each heuristic.
with 5% gap denotes the number of instances for which the heuristic obtained
results within 5% from the best result. Results that differ no more than 5% from
the best of all heuristics are indicated in bold. The average ratio represents the
average difference between the best obtained PWS , PH,max, σ(PH) and the results
obtained with heuristics with a fairness objective.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

301

Fig. 1 Comparison of heuristics (a) MinWS, OP-MinMax and TP-MinMax, (b) MinWS,
OP-MinDev and TP-MinDev, (c) MinWS, OP-MinError and TP-MinError, (d) MinWS, OP-
MinSS and TP-MinSS

Fig. 2 Comparison of heuristics (a) MinWS, OP-MinModLexi1 and TP-MinModLexi1, (b)
MinWS, OP-MinModLexi2 and TP-MinModLexi2

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

302

With respect to PWS , the heuristics MinWS, TP-MinDev, TP-MinError, TP-
MinModLexi1 and TP-MinModLexi2 all produce good results; i.e. four out of six
instances within 5% of the best. This is to be expected, since their objectives
all contain PWS . PMax only considers the total vertical penalty and the worst
individual penalty. Improving PMax can be achieved by moving (if possible) the
vertical penalty to the non-worst individual penalty. This explains the results of
TP-MinMax, which deviate largely from the results of MinWS. The objective used
in TP-MinSS is different from PWS because of the quadratic operation. Regarding
PH,max and σ(PH), most two-phase heuristics with fairness objectives achieve
better results than MinWS.

In general, the one-phase heuristics with fairness objectives perform worse than
MinWS for all three examination criteria. In Section 3, we argued that the use
of fairness objectives can result in ineffective search. PMax and PError guide the
search mainly based on the local search moves that reduce the maximum individual
penalty. PDev has the disadvantage that it does not accept an improvement of one
or two individual penalties that largely deviate from the average of all individual
penalties.

Except for TP-MinSS, the two-phase heuristic generally performs better than
the one-phase heuristic on the three examination criteria, as can be noted by their
lower average ratio values. Among the two-phase methods, TP-MinSS produces
the worst results for all three examination criteria, because, as mentioned in Sec-
tion 2.2, the objective surface of the solution space can be quite different.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

303

T
a
b
le

4
C

o
m

p
a
ri

so
n

o
f
P

W
S

re
su

lt
s

o
b

ta
in

ed
b
y

d
iff

er
en

t
h

eu
ri

st
ic

s

In
st

a
n

ce
M

in
W

S
M

in
M

a
x

H
eu

.
M

in
D

ev
H

eu
.

M
in

E
rr

o
r

H
eu

.
M

in
S

S
H

eu
.

M
in

M
o
d

L
ex

i1
H

eu
.

M
in

M
o
d

L
ex

i2
H

eu
.

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

E
m

1
1
,6

8
3

3
0
6
%

1
1
2
%

1
3
0
%

9
9
%

1
1
2
%

1
0
1
%

2
2
0
%

2
2
9
%

1
5
1
%

1
0
0
%

1
3
8
%

1
0
0
%

G
r

1
3
,0

5
1

1
4
5
%

1
4
6
%

1
1
9
%

1
1
5
%

1
2
8
%

1
2
4
%

1
1
1
%

1
0
8
%

1
0
7
%

1
0
2
%

1
1
0
%

1
0
5
%

M
P

2
2
,7

2
4

1
6
3
%

1
7
1
%

1
0
0
%

1
0
0
%

1
0
2
%

1
0
2
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

P
s

9
,4

3
2

2
3
9
%

1
0
1
%

1
7
7
%

9
7
%

1
6
8
%

1
4
2
%

2
0
2
%

2
0
4
%

9
1
%

9
1
%

1
0
9
%

9
4
%

R
e

2
8
,2

3
8

1
5
6
%

1
3
2
%

1
0
8
%

1
0
0
%

1
0
0
%

1
0
0
%

1
1
0
%

1
0
2
%

1
0
8
%

1
0
1
%

1
0
8
%

1
0
1
%

P
C

1
4
7
,7

1
0

2
4
3
%

1
2
3
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
1
%

1
0
2
%

1
0
7
%

1
0
0
%

1
0
4
%

1
0
0
%

#
w

it
h

5
%

g
a
p

6
0

0
2

4
3

4
2

3
2

6
2

6
A

v
er

a
g
e

ra
ti

o
1
0
0
%

2
0
9
%

1
3
1
%

1
2
2
%

1
0
2
%

1
1
8
%

1
1
1
%

1
4
1
%

1
4
1
%

1
1
1
%

9
9
%

1
1
2
%

1
0
0
%

T
a
b
le

5
C

o
m

p
a
ri

so
n

o
f
P
H

,m
a
x

re
su

lt
s

o
b

ta
in

ed
b
y

d
iff

er
en

t
h

eu
ri

st
ic

s

In
st

a
n

ce
M

in
W

S
M

in
M

a
x

H
eu

.
M

in
D

ev
H

eu
.

M
in

E
rr

o
r

H
eu

.
M

in
S

S
H

eu
.

M
in

M
o
d

L
ex

i1
H

eu
.

M
in

M
o
d

L
ex

i2
H

eu
.

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

E
m

3
2
6

4
1
4
%

6
8
%

2
4
7
%

6
8
%

3
6
3
%

7
1
%

3
6
2
%

3
7
0
%

2
5
5
%

6
9
%

2
2
2
%

7
9
%

G
r

2
,4

2
9

3
1
%

3
2
%

4
7
%

4
8
%

3
4
%

2
6
%

6
1
%

5
5
%

8
5
%

8
6
%

5
5
%

6
1
%

M
P

3
,8

2
7

5
7
%

5
7
%

5
8
%

5
8
%

5
7
%

5
7
%

5
8
%

5
8
%

7
3
%

6
6
%

5
8
%

5
8
%

P
s

4
0
0

2
6
0
%

1
0
0
%

3
7
0
%

1
0
0
%

4
1
0
%

1
0
0
%

2
8
5
%

2
8
1
%

1
0
0
%

1
0
0
%

2
8
2
%

1
0
0
%

R
e

1
,5

2
0

1
0
4
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

P
C

2
4
,3

2
0

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
0
%

#
w

it
h

5
%

g
a
p

6
3

5
3

5
3

6
3

3
3

4
3

4
A

v
er

a
g
e

ra
ti

o
1
0
0
%

1
6
1
%

7
6
%

1
5
4
%

7
9
%

1
7
7
%

7
6
%

1
6
1
%

1
6
1
%

1
1
9
%

8
7
%

1
3
6
%

8
3
%

T
a
b
le

6
C

o
m

p
a
ri

so
n

o
f
σ

(P
H

)
re

su
lt

s
o
b

ta
in

ed
b
y

d
iff

er
en

t
h

eu
ri

st
ic

s

In
st

a
n

ce
M

in
W

S
M

in
M

a
x

H
eu

.
M

in
D

ev
H

eu
.

M
in

E
rr

o
r

H
eu

.
M

in
S

S
H

eu
.

M
in

M
o
d

L
ex

i1
H

eu
.

M
in

M
o
d

L
ex

i2
H

eu
.

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

O
P

T
P

E
m

7
2

4
4
8
%

8
3
%

2
6
4
%

7
4
%

3
2
9
%

9
0
%

2
9
6
%

3
2
1
%

3
3
6
%

8
3
%

2
6
6
%

8
3
%

G
r

7
2
0

3
6
%

3
7
%

3
4
%

3
5
%

4
2
%

3
1
%

5
1
%

5
1
%

7
9
%

7
6
%

5
9
%

6
1
%

M
P

8
2
5

6
9
%

6
8
%

3
8
%

3
8
%

6
5
%

6
8
%

3
8
%

3
8
%

5
1
%

4
5
%

3
8
%

3
8
%

P
s

1
4
0

1
4
9
%

1
0
5
%

2
6
9
%

9
9
%

2
1
7
%

5
4
%

1
4
2
%

1
5
0
%

9
2
%

9
2
%

2
1
7
%

9
8
%

R
e

4
9
6

9
2
%

1
0
2
%

9
8
%

1
0
0
%

1
0
0
%

1
0
0
%

1
0
3
%

1
0
9
%

9
7
%

1
0
0
%

9
5
%

9
9
%

P
C

5
,2

8
3

1
2
7
%

1
0
7
%

8
3
%

8
3
%

1
0
2
%

1
0
2
%

8
2
%

8
2
%

8
8
%

8
8
%

8
8
%

8
8
%

#
w

it
h

5
%

g
a
p

6
1

0
2

3
0

2
2

2
0

0
2

1
A

v
er

a
g
e

ra
ti

o
1
0
0
%

1
5
3
%

8
4
%

1
3
1
%

7
2
%

1
4
3
%

7
4
%

1
1
9
%

1
2
5
%

1
2
4
%

8
1
%

1
2
7
%

7
8
%

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

304

Overall, TP-MinDev and TP-MinError are shown to perform best as they
can balance PWS , PH,max and σ(PH). TP-MinDev results in an increase of 2
percentage points over MinWS for PWS , but it manages to reduce PH,max and
σ(PH) with 21 and 28 percentage points, respectively. TP-MinError results in
an increase of 11 percentage points over MinWS for PWS , while PH,max and
σ(PH) improve with 24 and 26 percentage points, respectively. However, it should
be noted that for some instances, the results of TP-MinDev and TP-MinError
differ largely from the results of MinWS. TP-MinDev produces a PWS value 15
percentage points higher than MinWS for the Geriatrics ward, and TP-MinError
produces PWS 42 percentage points higher than MinWS for the Psychiatry ward.

TP-MinModLexi1 and TP-MinModLexi2 present a more balanced result, i.e.
these methods are capable of producing both rosters with few violations and high
fairness. For PWS , the values are comparable to those produced by MinWS, how-
ever, for PH,max and σ(PH), the lexicographic heuristics produce significantly
lower values. TP-MinModLexi1 improves 13 and 19 percentage points on PH,max

and σ(PH), while TP-MinModLexi2 improves 17 and 22 percentage points on
PH,max and σ(PH).

4.3 Slack experiment

The second experiment compares the fairness resulting from the two-phase heuris-
tic methods with different objectives. First, the algorithms are modified such that
they behave similar to goal programming, i.e. the value of the objective PWS

obtained in the first phase is added as a hard constraint to the model for the
second phase. This new constraint ensures that new solutions in the second phase
are only accepted if their total penalty PWS is less than or equal to the value
obtained in the first phase, allowing some level of slack β. Three values for β are
considered: 0%, 5%, and 10%. In the second phase, one of the following objectives
is optimized: PMax, PDev, PError, PSS or PLexi. Algorithm 1 is still used in
both phases. Note that in the experiments, the first phase is only run once (for
each problem instance, each replication) such that the second phase always starts
from the same initial solution.

Table 7 shows that the final total penalty PWS for the two-phase heuristic
is indeed always within (100 + β)% of MinWS. TP-MinDev and TP-Minerror
seemingly do not make much use of the allowed slack as their PWS values are
close to 100%. TP-MinLexi on the other hand, takes much more advantage of the
allowed slack.

In general, the results show that the additional slack can help the heuristics
to improve fairness. An increase of PWS is usually accompanied by a decrease of
PH,max and σ(PH). This behavior is true for all the two-phase heuristics except
for the heuristics with objective PSS .

Figures 3-5 show the heuristics ordered by fairness. Similar with Figure 2, the
order index in Figures 3-5 is obtained by lexicographically sorting (<L) the vectors
PLexi. The results show that TP-MinLexi generally produces vectors PLexi that
are lexicographically smaller than the ones produced by other heuristics. This
shows that TP-MinLexi minimizes the penalty of each employee by allowing a
positive trade-off among them, which is a significant advantage and makes this
heuristic suitable for practical applications.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

305

Fig. 3 Comparison of two-phase heuristics with 0% slack

Fig. 4 Comparison of two-phase heuristics with 5% slack

Fig. 5 Comparison of two-phase heuristics with 10% slack

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

306

Table 7 Comparison of PWS , PH,max and σ(PH) results obtained by two-phase heuristics
and the slack approach

Index Slack MinWS TP-
MinMax

TP-
MinDev

TP-
MinError

TP-
MinSS

TP-
MinLexi

PWS 0% 100.0% 99.9% 99.0% 99.3% 99.6% 99.7%
5% 100.0% 102.8% 99.3% 100.2% 102.4% 104.4%

10% 100.0% 105.4% 100.9% 100.9% 103.5% 108.6%
PH,max 0% 100.0% 87.5% 87.3% 85.0% 98.6% 85.1%

5% 100.0% 83.5% 86.2% 81.0% 118.7% 83.5%
10% 100.0% 78.4% 82.8% 77.5% 121.8% 76.3%

σ(PH) 0% 100.0% 92.8% 79.4% 89.3% 88.4% 80.2%
5% 100.0% 91.7% 75.9% 86.5% 107.6% 77.5%

10% 100.0% 88.5% 74.2% 86.0% 117.6% 74.8%

5 Conclusion and future research

The present paper introduced methodologies to improve fairness in personnel ros-
tering. First, a new lexicographic objective was described. Second, a two-phase
heuristic approach, which makes use of the lexicographic evaluation, was presented.
Finally, an extension of the two-phase approach was introduced which allows for
some slack on the total penalty in order to enable fairness improvements in the
second phase.

Computational experiments have been analyzed to identify the effectiveness of
the new contributions. Three examination criteria from the academic literature
were used to asses the roster quality and the fairness. The computational results
showed that fair rosters can be produced, without significantly decreasing the
roster quality.

This research can be extended in several ways. We argued that the existing
local search moves may not be effective for optimizing the objectives representing
fairness. A chain of local search moves as described by Burke et al (2013), may be
beneficial. An algorithm that directly optimizes the three examination criteria in
an aggregated manner can be investigated. Possible directions may be to consider
a multi-objective approach or several iterative phases.

References

Bard JF, Purnomo HW (2005) Preference scheduling for nurses using column
generation. European Journal of Operational Research 164(2):510–534

Bilgin B, De Causmaecker P, Rossie B, Vanden Berghe G (2012) Local search
neighbourhoods for dealing with a novel nurse rostering model. Annals of Op-
erations Research 194(1):33–57

Burke EK, Curtois T, Qu R, Vanden Berghe G (2013) A time predefined variable
depth search for nurse rostering. INFORMS Journal on Computing 25(3):411–
419

Chiaramonte MV, Chiaramonte LM (2008) An agent-based nurse rostering sys-
tem under minimal staffing conditions. International Journal of Production Eco-
nomics 114(2):697–713

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

307

Ernst AT, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and ros-
tering: A review of applications, methods and models. European Journal of
Operational Research 153(1):3–27

Jain R, Chiu D, Hawe W (1984) A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer systems. Tech. Rep. DEC-
TR-301, Digital Equipment Corporation

Komarudin, Guerry M, De Feyter T, Vanden Berghe G (2013) The roster quality
staffing problem - a methodology for improving the roster quality by modifying
the personnel structure. European Journal Of Operational Research 230:551–
562

Larrabee JH, Janney MA, Ostrow CL, Withrow ML, Hobbs Jr GR, Burant C
(2003) Predicting registered nurse job satisfaction and intent to leave. Journal
of Nursing Administration 33(5):271–283

Martin S, Ouelhadj D, Smet P, Vanden Berghe G, Özcan E (2013) Cooperative
search for fair nurse rosters. Expert Systems with Applications 40:6674–6683

Mühlenthaler M, Wanka R (2013) A decomposition of the max-min fair
curriculum-based course timetabling problem : The impact of solving subprob-
lems to optimality. In: Multidisciplinary International Sceduling Conference
(MISTA) 2013

Smet P, Bilgin B, De Causmaecker P, Vanden Berghe G (2012a) Modelling and
evaluation issues in nurse rostering. Annals of Operations Research pp 1–24

Smet P, Martin S, Ouelhadj D, Özcan E, Vanden Berghe G (2012b) Investigation
of fairness measures for nurse rostering. In: the International Conference on the
Practice and Theory of Timetabling (PATAT 2012)

Smet P, De Causmaecker P, Bilgin B, Vanden Berghe G (2013) Nurse Roster-
ing: A Complex Example of Personnel Scheduling with Perspectives. Studies in
Computational Intelligence 505:129–153

Stolletz R, Brunner JO (2012) Fair optimization of fortnightly physician schedules
with flexible shifts. European Journal of Operational Research 219(3):622–629

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

308

Scheduling the Australian Football League
Using the PEAST Algorithm
Jari Kyngäs

1
, Kimmo Nurmi

1
, Nico Kyngäs1,George Lilley

2
, Thea Salter

3

1 Satakunta University of Applied Sciences, Tiedepuisto 3, 28600 Pori, Finland

2
 Box Hill Senior Secondary College, 19 Dunloe Avenue, Mont Albert North 3129, Australia

3
 AFL HOUSE, 140 Harbour Esplanade, Docklands VIC 3008, Melbourne VIC 3001, Australia

Abstract. Generating a schedule for a professional sports league is an extremely demanding

task. Good schedules have many benefits for the league, such as higher incomes, lower costs and

more interesting and fairer seasons. This paper presents the 3-phase process needed to schedule the

Australian Football League. The building of the schedule is very challenging and often requires

computational intelligence to generate an acceptable schedule. There are a multitude of

stakeholders with varying requests (and often requests vary significantly year on year). We used

the PEAST (Population, Ejection, Annealing, Shuffling, Tabu) algorithm to schedule the 2013

season. The comparison showed that there are alternative solutions available that are comparable

to the current scheduling outcome.

Keywords: Sports scheduling, Real-world scheduling, PEAST algorithm.

1 Introduction

Professional sports leagues have become big businesses. At the same time, the quality of the

schedules has become increasingly important; the schedule has a direct impact on revenue for all

involved parties. For instance, the number of spectators in the stadiums and the traveling costs for

the teams are influenced by the schedule, and TV networks that pay for broadcasting rights want

the most attractive games to be scheduled at commercially interesting times. Furthermore, a good

schedule makes a season more interesting for the media and the fans, and fairer for the teams.

Nurmi et al. (2010) report a growing number of cases in which academic researchers have been

able to close a scheduling contract with a professional sports league owner. Excellent overviews of

sports scheduling can be found in Easton et al. (2004) and Rasmussen, Trick (2008). An extensive

bibliography can be found in Knust (2012) and an annotated bibliography in Kendall et al. (2010).

In a sports tournament, n teams play against each other over a period of time according to a

given timetable. The teams belong to a league, which organizes games or matches between the

teams. Each game consists of an ordered pair of teams, denoted (i, j) or i-j, where team i plays at

home - that is, uses its own venue (stadium) for a game - and team j plays away. Games are

scheduled in rounds, which are played on given days. A schedule consists of games assigned to

rounds. A schedule is compact if it uses the minimum number of rounds required to schedule all

the games; otherwise it is relaxed. If a team plays two home or two away games in two

consecutive rounds, it is said to have a break. In general, for reasons of fairness, breaks are to be

avoided. However, a team can prefer to have two or more consecutive away games if its stadium is

located far from the opponent’s venues, and the venues of these opponents are close to each other.

A series of consecutive away games is called an away tour.

In a round robin tournament each team plays against every other team a fixed number of times.

Most sports leagues play a double round robin tournament, where the teams meet once at home

and once away. A mirrored double round robin tournament is a tournament where every team

plays against every other team once in the first n – 1 rounds, followed by the same games with

reversed venues in the last n – 1 rounds.

Sports scheduling involves three main problems. First, the easiest problem to solve is to find a

schedule with the minimum number of breaks. De Werra (1981) has presented an efficient

algorithm to compute a minimum break schedule for a single round robin tournament. If n is even,

it is always possible to construct a schedule with n – 2 breaks.

Second, the problem of finding a schedule that minimizes the travel distances is called the

Traveling Tournament Problem (TTP) (Easton et al., 2001). In TTP, the teams do not return home

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

309

after each away game but instead travel from one away game to the next. However, excessively

long away trips as well as home stands should be avoided.

Third, most professional sports leagues introduce many additional requirements in addition to

minimizing breaks and travel distances. We call the problem of finding a schedule that satisfies

given constraints (Nurmi et al., 2010) the Constrained Sports Scheduling Problem (CSSP). The

goal is to find a feasible solution that is the most acceptable for the sports league owner - that is, a

solution that has no hard constraint violations and that minimizes the weighted sum of the soft

constraint violations. Scheduling the Australian Football League is an example of a CSSP.

Australian Rules football (officially Australian football) was invented in Melbourne, Australia.

It has been played since 1858, when the first match between Melbourne Grammar School and

Scotch College took place (Blainey, 2010). Originally it was invented to keep the cricketers fit

during the winter time. The game has been played in some kind of league format since 1877. Some

sources claim that the early history of Australian Rules football is more or less obscure, but the

modern-day rules are well known (Sydney University, 2014)(OnlyMelbourne, 2014).

The game is most popular in Australia but is played practically all over the world. In all

southern states of Australia it is the most popular of all sports. When measured by attendance, it is

by far the most popular sport in Australia. The spectator average per match for the season 2013

was 33,500. The most popular matches in the regular season have more than 80,000 spectators.

Australian Rules football is a very physical game. What makes it different from other physical

sports is the fact that the use of padding is not mandatory. Some players (ruckmen) wear shin and

thigh pads, but in general, pads are rarely worn. This causes quite a lot of small injuries to thighs,

hamstrings and calf muscles. The relatively high injury rates in the sport are taken into

consideration by playing only once a week. There must be a minimum six-day break between the

matches. This gives the players a chance to recover from minor injuries.

Section 2 presents the 3-phase process needed to schedule the Australian Football League. The

section introduces the requirements, requests and other constraints the format implies. In Section 3

we describe the PEAST algorithm that has been used to schedule professional sports leagues.

Section 4 reports the computational results for the 2013 season.

2 The Schedule

The Australian Football League (hereafter, AFL) has 18 teams: Adelaide Crows and Port

Adelaide (Southern Australia), Brisbane Lions and Gold Coast Suns (Queensland), Fremantle and

West Coast Eagles (Western Australia), Greater Western Sydney Giants and Sydney Swans

(Sydney, New South Wales) and Carlton, Collingwood, Essendon, Geelong Cats, Hawthorn,

Melbourne, North Melbourne, Richmond, St Kilda and Western Bulldogs (Victoria region).

AFL is trying to expand the game throughout the country and even to New Zealand. Therefore,

some of the matches are played in cities and stadiums that do not have a permanent home team.

Such cities are Darwin (Northern Australia), Hobart and Launceston (Tasmania), Cairns (Northern

Queensland) and Wellington (New Zealand).

Australia is a big country, which causes extensive travel loads for the teams, especially for the

teams from Queensland and Western Australia. The Victoria teams travel the least, about 12,000-

20,000 kilometers each season, while the teams from Western Australia have to travel about

70,000 kilometers per season. Unfortunately, not much can be done to reduce the total travelling

distance since no away tours (two or more consecutive away games) can be arranged due to a

regular match being scheduled in each city per week.

The schedule for AFL in 2013 had a complicated structure. It consisted of each team playing

against every other team once - i.e., a single round robin. In addition, each team had to play 5

additional matches. This adds up to 22 matches, 11 home and 11 away matches, for each team.

The combination of a single round robin and the additional matches makes the schedule different

from most of the other professional sports league schedules. The schedule consists of 23 rounds,

and each team has one bye during rounds 11-13. There are 20 rounds of 9 matches and 3 rounds of

6 matches.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

310

Building the schedule is a process comprising three phases. First, the host teams of the single

round robin tournament and the five additional matches are decided. The second phase includes

building the actual schedule. The schedule is built based on rounds – not the actual match days. In

most cases the matches of a round are played on Friday, Saturday and Sunday. In the last phase the

exact weekdays and venues of the matches are decided. These decisions are mostly constrained by

various broadcasting and venue requirements.

2.1 Phase 1: Deciding the Host Teams

In the first phase the host teams of the single round robin tournament and the five additional

matches are decided. The league authorities defined 12 selection rules, which we converted to

constraints. Ten of the rules were strict and two had some flexibility in them. In the sports

scheduling literature, a strict rule is defined as a hard constraint and a flexible rule is defined as a

soft constraint.

The basic selection of the matches in the single round robin is subject to the following

constraints: (H denotes a hard constraint and S denotes a soft constraint)

H1. All teams have to play a minimum of 5 matches in Victoria.

H2. Victorian teams should travel outside Victoria a minimum of 5 times.

H3. Each team must have at least one home match against Collingwood or Essendon.

H4. Each team has to travel to Western Australia at least once. If a team travels to

Western Australia twice, there must be at least six rounds between the visits (this is a

constraint of phase two).

H5. All clubs have to play at least one match at the MCG stadium.

The selection for the remaining 5 matches for each team is as follows:

H6. “Blockbuster” matches must be included. These are the matches between the big six

teams from Victoria – Carlton, Collingwood, Essendon, Geelong Cats, Hawthorn

and Richmond. These are fixed by the league authorities (there are some exceptions,

for instance Collingwood and Richmond did not play against each other twice in

2013).

H7. Matches between local rivals (Adelaide Crows and Port Adelaide, Brisbane Lions

and Gold Coast Suns, Fremantle and West Coast Eagles, Greater Western Sydney

Giants and Sydney Swans) should be respected.

H8. The top four teams from 2012 can have only one meeting with the bottom four teams

from 2012, with the exception of Sydney rivals.

S1. The top eight teams should play the top eight teams twice, a minimum of three times.

S2. The bottom ten teams should play the bottom ten teams twice, a minimum of three

times.

H9. The bottom two teams from 2012 should not meet the top eight teams from 2012

twice (Sydney rivals are an exception).

H10. No team that travelled in round 23 in 2012 is to travel in round 23 this year.

According to the league authorities, the travel load is the second most important thing to

consider. Therefore, we added two restrictions (as hard constraints):

H11. All teams should travel 2-3 times to either Western Australia or Queensland. This

constraint somewhat equalizes the travel load between the teams (of course, only

those teams not from Western Australia or Queensland). Without this restriction,

some teams might visit Western Australia once and Queensland not at all, while

some other teams might make a maximum number of visits to these areas (two visits

to both areas).

H12. The local rivals’ travel loads should be as equal in length as possible. We recognized

that in previous years’ schedules there were big differences in the local rivals’ travel

loads.

2.2 Phase 2: Building the Schedule

The second phase consists of actually building the schedule. A basic round consists of 9

matches, of which 1 is played on Friday, 5 are played on Saturday and 3 are played on Sunday. In

rounds 11-13, each team has one bye (i.e. there are 6 matches in these rounds) and the distribution

of matches is 1 match on Friday, 3 matches on Saturday and 2 matches on Sunday. Moreover, in

rounds 1, 7 and 10, one Sunday match is actually played on Monday.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

311

Anzac Day (25 April) is also special because no matter which weekday it happens to be, at least

one match is played. The match played is between Essendon and Collingwood. As mentioned

earlier, there should be a six-day break between the matches, but Anzac Day is an exception. All

the teams playing on Anzac Day must be prepared to play either their preceding or following

match with a shorter break. Of course, the schedule should be made in such a way that it places

these teams’ preceding and following matches as far away from Anzac Day as possible.

There are nine different constraints that must be used to describe the problem framework. Only

one of the constraints is a soft constraint. We follow Nurmi et al. (2010) in the specification of the

constraints:

C01. There are exactly 23 rounds available for the tournament.

C02. Nine matches can be assigned to rounds 1-10 and 14-23, and 6 matches to rounds 11-

13.

C07. There should be at least 0 and at most 1 home matches for four different pairs of

teams. The pairs are Adelaide Crows and Port Adelaide, Brisbane Lions and Gold

Coast Suns, Fremantle and West Coast Eagles, Greater Western Sydney Giants and

Sydney Swans. What this means is that these pairs of teams can never play at home

in the same round.

C10. There are 42 pre-assigned matches (this number can vary year on year).

C13. Teams cannot have more than 3 consecutive home matches.

C14. Teams cannot have more than 3 consecutive away matches.

C19. There must be at least 6 rounds between two matches with the same opponents (soft

constraint).

C24. If two teams play against each other twice, the second match cannot be played before

round 11.

C25. If two teams play against each other only once, this match cannot be played after

round 22.

In addition, we had to add 6 constraints that were not included in Nurmi et al. (2010). Three of

these constraints are hard constraints. We prefix these constraints with the letter X to separate

them from the phase one constraints:

XH1. Geelong cats must play only 4 home matches before round 10 (only valid for 2013).

XH2. There should be a minimum of 6 days break between each match.

XH3. There should be no overlapping broadcasting slots.

XS1. There must be at least 6 rounds between visits to WA / Qld.

XS2. Friday matches should mostly be played in the Etihad or MCG stadiums.

XS3. The total number of breaks should be minimized.

XS4. Venue contractual requirements. There has to be a predefined number of matches

played at each stadium.

2.3 Phase 3: Deciding the Weekdays and Venues

In the last phase the exact weekdays and venues of the matches are decided. These decisions are

mostly constrained by various broadcasting and venue requirements. All of the matches are

broadcast on television. Foxtel is an Australian pay television company that produce and broadcast

five matches a week (in a standard round) – three on Saturday and two on Sunday. The Seven

Network broadcasts the remaining four matches (in a standard round) on a free-to-air network. It is

important that the broadcasts do not overlap on Saturday or Sunday in Western Australia, Southern

Australia, Queensland and New South Wales. This is applicable to the Adelaide and Port Adelaide

teams, the Fremantle and West Coast Eagles teams, the Brisbane Lions and Gold Coast Suns

teams, and also to the Sydney Swans and GWS Giants teams. This is manageable because there

are at least 3 days on which to play, and subsequently there are also varying timeslots to schedule

within each day so they can be scheduled on the same day in a different timeslot (eg. afternoon and

night).

Two stadiums, Etihad and MCG, host almost half of all the matches (93/198). There are 10

teams that play home matches at these stadiums. Two of these teams play the majority of their

home matches at Etihad Stadium and the remaining eight play a varying number of home matches

at both stadiums. Of the latter, two of these teams have to play a minimum number of away

matches at Etihad Stadium. We cannot be specific about the number of matches each team should

play in these stadiums due to confidentiality. These stadiums should mostly be used for Friday

matches.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

312

At first sight, the two stadiums might seem to cause an optimization problem. However, this is

not the case. Because of the local rivals, there are always 4 matches played in stadiums other than

Etihad and MCG (local rivals can never play at home in the same round). This leaves a maximum

of five matches to be played at Etihad, MCG and/or Simonds Stadium.

3 The Solution Method

This section describes the PEAST algorithm, which was used to solve all of the three phases of

the schedule. The usefulness of an algorithm depends on several criteria. The two most important

ones are the quality of the generated solutions and the algorithmic power. Other important criteria

include flexibility, extensibility and learning capabilities. A successful heuristic most likely uses

mixed local search and population-based methods. A local search method is defined by:

1) A neighborhood structure, which is a mechanism to obtain a new set of neighbor
solutions by applying a small perturbation to a given solution.

2) A method of moving from one solution to another.

3) The parameters of the method.

The PEAST algorithm obtains a new neighbor solution by applying the GHCM operator. It

explores promising areas in the search space by extending the basic hill-climbing step to generate a

sequence of moves in one step, leading from one solution to another. The operator is based on

ideas similar to the Lin-Kernighan procedures (Lin and Kernighan, 1973) and ejection chains

(Glover, 1992). It moves an object, o1, from its old position, p1, to a new position, p2, and then

moves another object, o2, from position p2 to a new position, p3, and so on, ending up with a

sequence of moves. A detailed discussion of the GHCM operator can be found in Kyngäs et al.

(2012).

Figure 1: The pseudo-code of the PEAST algorithm.

The algorithm avoids staying stuck (i.e., the objective function value does not improve for some

predefined number of generations) in the same areas of the search space using tabu search and the

refined simulated annealing method. A tabu list (Glover et al., 1985) is used to prevent reverse

order moves in a single application of the GHCM operator. The simulated annealing refinement is

used to decide whether or not to commit to a sequence of moves in the GHCM operator. This

refinement is different from the standard simulated annealing (Kirkpatrick et al., 1983). It is used

in a three-fold manner: 1) when choosing an object to be moved, 2) when choosing the destination

of the object, and 3) when the sequence of moves is cut short (a worsening move is made, and it

Input the population size n, the iteration limit t, the cloning interval c,

 the shuffling interval s and the ADAGEN update interval a

Generate a random initial population of schedules Si for i = 1, …, n
Set best_S = null and iteration = 1

WHILE iteration ≤ t

 k = 1
 WHILE k ≤ n

 (explore promising areas in the search space)

 Apply GHCM to schedule Sk to get a new schedule

 IF Cost(Sk) < Cost(best_S) THEN Set best_S = Sk

 k = k + 1

 END REPEAT

 (avoid staying stuck in the promising search areas too long)

 Update the simulated annealing framework
 IF iteration ≡ 0 (mod c) THEN

 (favor the best schedule, i.e. use elitism)

 Replace the worst schedule with the best one

 IF iteration ≡ 0 (mod s) THEN

 (escape from the local optimum)

 Apply shuffling operators

 IF iteration ≡ 0 (mod a) THEN

 Update the ADAGEN framework

 iteration = iteration + 1

END WHILE

Output best_S

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

313

worsens the solution more than the previous worsening move did). A detailed discussion of the

tabu search and simulated annealing refinement can be found in Kyngäs et al. (2012).

The pseudo-code of the algorithm is given in Figure 1. The algorithm uses a population of

solutions that enables it to explore a wide range of promising areas in the search space. In every c

iteration, the least fit schedule is replaced with a clone of the fittest individual. This operation is

completely irrespective of the globally fittest schedule (best_S in Figure 1) found by that time in

the search process.

The PEAST algorithm applies a number of shuffling operators to perturb a solution into a

potentially worse solution in order to escape from local optima. The operators are called according

to a rule. The idea of shuffling is the same as in hyper-heuristics (Burke et al., 2013) but the other

way around. Hyper-heuristic is a mechanism that chooses a heuristic from a set of simple

heuristics, applies it to the current solution to get a better solution, then chooses another heuristic

and applies it, and continues this iterative cycle until the termination criterion is satisfied. We

introduce a number of simple heuristics that are used to worsen the current solution instead of

improving it. Examples of shuffling operators can be found in Kyngäs et al. (2012).

The PEAST algorithm is used to solve multi-objective optimization problems - i.e., problems

where multiple objective functions have to be optimized simultaneously. The objective functions

usually compete in such a way that improving one objective function value most likely improves

the other objective function values. The PEAST algorithm uses the adaptive genetic penalty

method (ADAGEN) (Nurmi, 1998) to solve the multi-objective problems. A traditional penalty

method assigns positive weights (penalties) to the soft constraints and sums the violation scores to

the hard constraint values to get a single value to be optimized. The ADAGEN method assigns

dynamic weights to the hard constraints based on the search trajectory and the constant weights

assigned to the soft constraints. The soft constraints are assigned fixed weights according to their

significance. The significance is given by the problem owner (end-user).

The PEAST algorithm uses random initial solutions. In our extensive test runs we have found

no evidence that a sophisticated initial solution improves results. On the contrary, random initial

solutions tend to yield superior or at least as good results (Kyngäs et al., 2012).

The PEAST algorithm has been used to solve several types of real-world scheduling problems

and is in industrial use. The first version of the algorithm was used to solve school timetabling

problems (Nurmi, 1998). The later versions of the algorithm have been used to solve sports

scheduling problems (see, e.g., Kyngäs et al., (2014) and Kyngäs and Nurmi (2009)) and

workforce scheduling problems (see, e.g., Kyngäs et al. (2012) and Kyngäs et al. (2013)).

Furthermore, we have used the algorithm to solve several artificial and benchmark problems,

including school timetabling (Post et al., 2012), balanced incomplete block design(Nurmi et al.,

2011), single round robin tournaments with balanced home-away assignments and pre-

assignments (Nurmi et al., 2011), days-off scheduling (Nurmi and Kyngäs, 2011) and constraint

minimum break problems (Nurmi et al., 2010).

The industrial use of the PEAST algorithm, as well our experiences in solving different

benchmark problems, can be summarized as follows:

1) The crucial components of the algorithm are random initial solutions, making moves in
sequences (the GHCM operator) and using a population of solutions.

2) Either the simulated annealing refinement or shuffling operators should be used. Both
should be used in real-world instances to ensure good quality solutions.

3) A tabu list improves the efficiency of the GHCM operator.

4) The initial object in a move sequence should be chosen using tournament selection.

Even though the best parameter values vary depending on the problem and the instance, our

extensive test runs over several years have shown that the following values can safely be used in

different real-world problems and instances:

 The population size is 10.

 The cloning interval is 500.

 The shuffling interval is 5,000.

 The maximum length of the move sequence in the GHCM operator is 10.

 The size of the tournament selection is 7.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

314

 The length of the tabu list is 10 (equals the length of the move sequence).

 In the simulated annealing framework we stop the cooling at some predefined
temperature. Therefore, after a certain number of iterations, m, we continue to accept an
increase in the cost function with some constant probability. We choose m equal to t /2,
where t is the maximum number of iterations and p is equal to 0.0001.

We are aware of the fact that we have used many different heuristic methods in the PEAST

algorithm. The acronym PEAST stems from the methods used: Population, Ejection, Annealing,

Shuffling and Tabu. One might think that the outcome is nothing more than a collection of old

ideas. However, to the best of our knowledge, the heart of the algorithm, the GHCM operator, is

one of a kind. The same applies to our implementation of the shuffling operators, simulated

annealing and penalty method.

We can steadily note that the PEAST algorithm realizes the criteria given at the beginning of

the section. Our industrial partners from different lines of business have stated that the algorithm

constantly produces good-quality solutions in acceptable time.

4 Computational Results

We compared our schedule to the running schedule for the 2013 season. Table 1 summarizes

the comparison. The optimization model was created in cooperation with one of the league

authorities. However, the running schedule was not generated using exactly the same model. For

example, the topics H11 and H12 may not have been in effect in the model behind the running

schedule. We still believe the comparison is fair enough. The comparison shows that in our view

our solution is better than the running schedule. Our solution is at least as good as the running

schedule on every topic.

The biggest differences are highlighted. The most significant difference is the sum of

differences of the total traveling of Non-Victorian teams (H12). We are not sure whether this was

optimized in the running schedule, but we think it should have been. Balancing the traveling

distance of local teams most certainly increases overall satisfaction. The second most significant

difference is that the top 8 teams should play against each other a minimum of three times (S1).

We chose to use a more difficult constraint in our model - that is, “exactly three times” - because

we think it would be unfair if a team had to meet the top eight teams more than three times. We

were able to find such a tightened solution. Note also that our solution has clearly fewer breaks.

5 Conclusions and Future Work

The format of the AFL fixture was something we had not run into before. One of the most

interesting features is that it includes only a single round robin with 18 teams. In addition, each

team has 5 extra matches, which increases the total number of matches played during the season to

22. The 5 extra matches are selected in a way that balances the fixtures between the teams.

The traveling is a big issue for the teams. The traveling distance is from 12,000 kilometers up to

70,000 kilometers per season per team. These are big numbers considering only 11 away matches

are played during the season.

We showed that the PEAST algorithm is capable of finding good solutions to the AFL fixture.

It was quite easy to apply the algorithm to handle all the three phases needed to generate the

schedule. One thing to do in the future could be to merge these two phases.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

315

Table 1: Comparison between the running schedule and our schedule. The topics are ordered as

follows: phase one, phase two and miscellaneous.
Topic Running schedule Our schedule

All clubs to play a minimum of five matches in Victoria (H1) 5-7 6-7

Victoria teams travel maximum of six times (H2) ok ok

Minimum one home match against Essendon or Collingwood

for each club (H3)
ok ok

Each team should visit Perth once (H4) ok ok

All teams to play at least one match at MCG (H5) ok ok

Blockbuster matches (H6) ok ok

Local derbies (H7) ok ok

Top 4 teams not to play against bottom 4 teams twice (H8) Western Bulldogs vs.

Adelaide
ok

No top 8 team (other than Syd v GWS x 2) to play either Gold

Coast Suns or GWS Giants twice (H9)
ok ok

Round 23 – alternate travel between non-Vic teams (H10) ok ok

Each team should visit Queensland once (H11) no visit for 4 teams ok

Total visits to Perth and Queensland between 2-3 (H11) 2 teams once
2 teams four times

ok

The sum of differences of the total traveling of non-Victoria

teams (H12)
9474 632

Top 8 teams to play against each other twice a minimum of
three times (S1)

Once 2 times
Once 4 times

Once 5 times

ok

Bottom 10 teams to play bottom 10 teams twice a minimum of
three times (S2)

ok

ok

Non-fixed (not pre-assigned) matches played outside regular

slots (C01)
1 time 0 times

One bye per team in rounds 11-13 (C02) ok ok

20 rounds of nine matches and 3 rounds of six matches (C02) ok ok

Number of 3-breaks at home (C13) 2 2

Number of 3-breaks away (C14) 3 0

Local rivals never playing home in same round (C07) ok ok

Pre-assigned matches (C10) ok ok

Must be a minimum of six weeks between playing a team for

the first and second time (C19)
ok ok

No teams to play for the second time until after round 10

(C24)
ok ok

All teams must play each other once by round 22 (C25) ok ok

No home matches for Geelong Cats at Simonds Stadium until

Round 10 (XH1).
ok ok

Back-to-back Perth minimum of 6 rounds gap (XS1) 3 times 5 rounds gap 1 time 5 rounds gap

Back-to-back Queensland minimum of 6 rounds gap (XS1) 1 time 2 rounds gap
1 time 5 rounds gap

2 times 4 rounds gap

Minimum six-day break between each match, with exceptions

for Anzac Day (XH2)
ok ok

Never play in the same or overlapping timeslot, so that all
local matches can be broadcast on free-to-air in each market

(XH3)

ok ok

Number of Friday matches at MCG or Etihad (XS2) 15 17

Total number of breaks (XS3) 94 74

Venue contractual requirements (XS4) ok ok

Total traveling of Gold Coast and Brisbane Lions (appr. using

Google Maps kilometers)

GC 18,347

BL 21,614

GC 18,347

BL 18,347

Total traveling of Adelaide and Port Adelaide PA 11,176

A 13,126

PA 11,776

A 11,850

Total traveling of West Coast Eagles and Fremantle WCE 33,601

F 34,801

WCE 34,101

F 34,101

Total traveling of Sydney Swans and GWS SS 12,243

GWS 15,300

GWS 12,243

SS 12,800

Total traveling of Victoria teams 6,718-10,992 6,711-10,987

Total traveling of non-Victoria teams 160,208 153,558

Total traveling of Victoria teams 82,917 86,607

Minimum of 45 matches in MCG ok ok

Minimum of 46 or 48 matches in Etihad ok ok

Other contractual matches ok ok

No day or twilight matches at TIO Stadium ok ok

No Sunday early or Saturday afternoon matches at Patersons
Stadium

ok ok

Key Features 1-17 ok ok

Number of breaks for one team 8 (four times)

7 (once)
6 (four times)

8 (once)

7 (once)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

316

References

G. Blainey, “A Game of Our Own – The Origins of Australian Football”, Black Inc., 2010, pp.

7.

E,K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa E. Özcan and R. Qu, “Hyper-

heuristics: a survey of the state of the art”, in Journal of the Operational Research Society 64,

2003, pp. 1695–1724.

K. Easton, G. Nemhauser, and M. Trick “The traveling tournament problem: description and

benchmarks” in Proc of the 7th. International Conference on Principles and Practice of Constraint

Programming, Paphos, pp. 580–584, 2001.

K. Easton, G. Nemhauser and M. Trick, “Sports scheduling”, in Handbook of Scheduling,

edited by Leung, Florida, USA: CRC Press, pp 52.1-52.19, 2004.

F. Glover, C. McMillan and B. Novick, “Interactive Decision Software and Computer Graphics

for Architectural and Space Palnning”, Annals of Operations Research 5, 1985, pp. 557-573.

F. Glover, “New ejection chain and alternating path methods for traveling salesman problems”,

in Computer Science and Operations Research: New Developments in Their Interfaces, edited by

Sharda, Balci and Zenios, Elsevier, 1992, pp. 449–509.

G. Kendall, S. Knust, C.C. Ribeiro and S. Urrutia, “Scheduling in Sports: An annotated

bibliography”, Computers and Operations Research 37, pp. 1-19, 2010.

S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, “Optimization by Simulated Annealing”,

Science 220, 1983, pp. 671-680.

S. Knust, “Sports Scheduling Bibliography”, [Online], Available:

http://www.inf.uos.de/knust/sportssched/sportlit_class/, (Last update 12.05.2014).

J. Kyngäs and K. Nurmi, “Scheduling the Finnish 1st Division Ice Hockey League”, in Proc of

the 22nd Florida Artificial Intelligence Research Society Conference, Florida, USA, 2009.

N. Kyngäs, D. Goossens, K. Nurmi and J. Kyngäs, “Optimizing the Unlimited Shift Generation

Problem”, Applications of Evolutionary Computation, Lecture Notes in Computer Science, Vol.

7248, Springer, USA 2012.

N. Kyngäs, K. Nurmi and J. Kyngäs, “The Workforce Optimization Process Using the PEAST

algorithm”, Lecture Notes in Engineering and Computer Science: Proc. of The International

MultiConference of Engineers and Computer Scientists, Hong Kong, 2013.

N. Kyngäs, K. Nurmi and J. Kyngäs, “Scheduling the Highly Constrained Finnish Major Ice

Hockey League”, Lecture Notes in Engineering and Computer Science: Proc. of The International

MultiConference of Engineers and Computer Scientists, Hong Kong, 2014. (accepted)

S. Lin and B.W. Kernighan, “An effective heuristic for the traveling salesman problem”,

Operations Research 21, 1973, pp. 498–516.

K. Nurmi, “Genetic Algorithms for Timetabling and Traveling Salesman Problems”, Ph.D.

dissertation, Dept. of Applied Math., University of Turku, Finland, 1998. Available:

http://www.bit.spt.fi/cimmo.nurmi/

K. Nurmi, D. Goossens, T. Bartsch, F. Bonomo, D. Briskorn, G. Duran, J. Kyngäs, J. Marenco,

CC. Ribeiro, FCR. Spieksma, S. Urrutia and R. Wolf-Yadlin, “A Framework for Scheduling

Professional Sports Leagues”, in Ao, Sio-Iong (ed.): IAENG Transactions on Engineering

Technologies Volume 5, Springer, USA, 2010.

K. Nurmi, D. Goossens and J. Kyngäs, “Scheduling a triple round robin tournament for the

Finnish national ice hockey league for players under 20”, in Proc of the IEEE Symposium on

Computational Intelligence in Scheduling, Paris, France, 2011.

K. Nurmi and J. Kyngäs, “Days-off Scheduling for a Bus Transportation Staff”, International

Journal of Innovative Computing and Applications Vol. 3(1), Inderscience, UK, 2011.

OnlyMelbourne, “History of Australian Football”, [Online], Available:

http://www.onlymelbourne.com.au/melbourne_details.php?id=1543#.Ur6LMrRbHnY (Accessed

20.1.2014).

G. Post, J.H. Kingston, S. Ahmadi, S. Daskalaki, C. Gogos, J. Kyngas, K. Nurmi, N. Musliu, N.

Pillay, H. Santos and A. Schaerf, “XHSTT: an XML archive for high school timetabling problems

in different countries”, Annals of Operations Research, Springer, USA, 2012.

P. Rasmussen and M. Trick, “Round robin scheduling - A survey”, European Journal of

Operational Research 188, pp. 617-636, 2008.

Sydney University, Australian National Football Club, “The Origin of Australian Rules”,

[Online], Available: http://www.suanfc.com/suanfc/recent-history/the-origin-of-australian-rules

(Accessed 20.1.2014)

D. de Werra, “Scheduling in sports”, in Studies on graphs and discrete programming, edited by

Amsterdam and Hansen, pp. 381-395, 1981.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

317

Diversity-Oriented Bi-Objective Hyper-heuristics for
Patrol Scheduling

Mustafa Mısır · Hoong Chuin Lau

Abstract The patrol scheduling problem is concerned with assigning security
teams to different stations for distinct time intervals while respecting a limited
number of contractual constraints. The objective is to minimise the total dis-
tance travelled while maximising the coverage of the stations with respect to
their security requirement levels. This paper introduces a hyper-heuristic strat-
egy focusing on generating diverse solutions for a bi-objective patrol scheduling
problem. While a variety of hyper-heuristics have been applied to a large suite
of problem domains usually in the form of single-objective optimisation, we
suggest an alternative approach for solving the patrol scheduling problem with
two objectives. An adaptive weighted-sum method with a variety of weight
schedules is used instead of a traditional static weighted-sum technique. The
idea is to reach more diverse solutions for different objectives. The empirical
analysis performed on the Singapore train network dataset demonstrate the
effectiveness of our approach.

Keywords Hyper-heuristics · Bi-objective Optimisation · Patrol Scheduling

1 Introduction

In this paper, we consider the Patrol Scheduling Problem (PSP) on a train
network as studied in [10]. Hyper-heuristics have been previously used to solve
similar type of problems as the security personnel routing and rostering prob-
lem [14]. The objective of those problems is to assign a number of security
personnel to the sites where security is needed while respecting the contrac-
tual constraints of the personnel. Besides this rostering aspect of the problem,

M. Mısır, H. C. Lau
Living Analytics Research Centre, School of Information Systems, Singapore Management
University
Tel.: +65-6808-5227
E-mail: mustafamisir@smu.edu.sg, hclau@smu.edu.sg

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

318

routing is also critical due to travelling between different sites. Related to this
problem, the home care scheduling problem [15] which was solved by hyper-
heuristics, also involves routing and rostering characteristics. The goal is to
assign a group of carers to assist the people who need help at their homes. The
PSP presented in this paper is a bi-objective optimisation problem for assign-
ing a number of security teams to the train stations during a day. The first
objective is to minimise the total travelling time spent by the security teams.
The latter objective represents the coverage of the stations with respect to the
stations’ security requirements related to the station size and the passenger
density. A hyper-heuristic framework is proposed to solve this problem.

Hyper-heuristics [2] are high-level search and optimisation techniques for
managing a given set of heuristics or automatically generating heuristics. The
primary reason behind studying hyper-heuristics is their problem-independent
nature which separates the problem domain and the algorithm design compo-
nents. This characteristic is achieved by performing search at a higher level, i.e.
heuristic level, instead of a problem level. As a consequence, hyper-heuristics
promise a high level of generality for solving different kinds of problems under
varying search-related challenges. Hence, in principal, a hyper-heuristic can be
applied to any target problem with no additional effort. This brings a unique
advantage to hyper-heuristics in comparison to most of the existing search and
optimisation methods.

Hyper-heuristic designs are generally divided into two types: selection hyper-
heuristics and generation hyper-heuristics. The first type operates on a suite
of existing low-level heuristics that are implemented to solve a given problem.
The latter type aims at automatically building problem-specific heuristics, par-
ticularly via genetic programming [3,1] and hybridisation. This paper is con-
cerned with selection hyper-heuristics. A traditional selection hyper-heuristic
is composed of a heuristic selection method and a move acceptance criterion.
The selection method tries to choose the best heuristics at each decision step.
The acceptance part is required to evaluate the performance of these chosen
heuristics for deciding whether to accept or reject the solutions generated by
the heuristics.

Majority of existing hyper-heuristics aim at solving single-objective opti-
misation problems even though these problems could be multi-objective in
nature. The usual methodology to solve these multi-objective problems is to
consider them as single-objective optimisation problems by defining a weighted
sum of the objectives. Although this idea is reasonable to quickly deliver solu-
tions, it is likely to suffer from missing good solutions. Besides that, it is hard
to assign appropriate weights to the objectives since they are usually different
in metrics and their precise importance is unobvious. In this respect, a plau-
sible solution strategy would be to deliver a number of solutions forming a set
call pareto front [7]. A pareto front refers to a group of solutions that are non-
dominated considering all the objectives. Non-dominance of solutions mean
that none of these solutions are better in terms of all the objectives. Besides
the quality of the solutions with respect to each objective separately, it is crit-
ical to maintain some level of diversity to have a good pareto front. Providing

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

319

high diversity gives a high variety of solutions that can meet different needs.
In order to furnish such diverse solutions in a weighted-sum setting, a hyper-
heuristic framework with a number of weight adaptation schemes is proposed.
The experimental results on the PSP show the diversity performance of the
proposed approach.

The paper continues as follows. Section 2 defines the problem. Section 3
explains the hyper-heuristic approaches used to solve the problem. A detailed
experimental analysis is provided in Section 4. Section 5 finalises the paper
with a discussion and possible future research.

2 The Patrol Scheduling Problem

The Patrol Scheduling Problem (PSP) studied here is about addressing the
security personnel requirements of a train network composed a group of sta-
tions. Each train station needs a number of security teams that should be
present during different time periods. A PSP solution provides assignments of
the available security teams to the stations. The goal is to generate solutions
requiring short travels between a set of stations while providing better security
by taking the stations’ risks into account. The PSP with the first objective
aiming to minimise the travelling distance was studied in [10]. A real-world
dataset on the Singapore MRT network was used for the experiments. It was
shown in CPLEX failed to find a solution for this particular instance within
a reasonable amount of computation time. The problem was then solved by
considering each line as a separate problem. The PSP with the both objectives
was approached in [11], where an exact model was introduced.

Besides optimising the aforementioned objectives, a feasible PSP solution
should satisfy the following constraints:

– Each team can visit only one station during each time period
– Each station should be visited at least for a number of minimum visits

requested
– Each station should not be visited more than a number of maximum visits

requested
– Each station cannot be visited more than a single team during each time

period
– Stations visited by each team should be reachable from one station to the

next
– Break periods of each team should be respected

The PSP objectives are considered in the basic weighted-sum form as gen-
eralised in Equation 1. In the equation, wi refers to the weight for the objec-
tive oi. However, it is well known that the weighted sum approach suffers the
challenge to determine reasonable weights for the objectives. From the search
landscape perspective, changing the weights can result in a fitness function
converting a hard landscape to an easy one, or vice versa. It is hence a chal-
lenging task to determine what the weights should be in order to have a easy-
to-search landscape for a particular algorithm. Moreover, when different parts

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

320

of a landscape are separately analysed, it is even likely to see that different
weights can be useful for different parts. Our proposed strategy aims at easily
accessing distinct search regions which result in high solution diversity with
better solution quality.

n∑
i

wi × oi where

n∑
i

wi = 1 (1)

3 A Diversity-Oriented Hyper-heuristic Framework

We apply multi-objective selection hyper-heuristics for solving the bi-objective
PSP. In the literature, a limited number of hyper-heuristics were introduced for
the multi-objective optimisation, where each objective is separately considered.
TSRoulWheel [4] was introduced as a selection hyper-heuristic that learns the
right heuristics for optimising each objective. A genetic-programming based
hyper-heuristic was proposed for automatically generating heuristics to solve
the bounded-diameter minimum spanning tree problem in [9]. A population-
based Markov chain hyper-heuristic incorporating reinforcement learning was
proposed in [13]. Another population-based multi-objective hyper-heuristic
was studied to solve the 2D guillotine strip packing and 2D cutting stock
problems in [6]. A multi-objective version of a hyper-heuristic with choice
function was proposed in [12].

HYPER-HEURISTIC

Objective Weight Adaptation

0 1 2
0

1

2

0 1 2
0

1

2

0 1 2
0

1

2

b b b b

d
o
m
a
in

b
a
rr
ie
r

weight adaptation schedules

b b bb b
b

b bb
b
b
b

b

solution space

h
eu
ri
st
ic

sp
a
ce

⊗
⊗

⊗

b
b

b

o
b
je
ct
iv
e
va
lu
es

Fig. 1 A multi-objective single-point search hyper-heuristic framework

Unlike the existing hyper-heuristic methods, we introduce a hyper-heuristic
framework targeting at solution diversity for multi-objective optimisation. Fig-
ure 1 illustrates our proposed framework. The framework is based on single-
point search selection hyper-heuristics which manages a set of given low-level
heuristics to deliver quick and high quality solutions while manipulating a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

321

Algorithm 1: A multi-objective hyper-heuristic framework

1 Solution initialisation: S ← Sinit

2 Check solution quality: Q = eval(S) where Q = {v, o1, o2, ..., on} and

f(S) =
∑n

j
wj × oj + v

v: violation, oj : solution quality wrt. objective j, wj : weight for the objective j
3 while !stoppingCriteria() do
4 Choose a LLHi

5 Generate a new solution: S′ ← LLHi(S)
6 Evaluate S′: Q′ = eval(S′) and f(S′)
78 if accept(f(S), f(S’)) then
9 S ← S′

10 updateParetoFront(S)

end
11 updateWeights(W)

end

single solution. We incorporate the idea of adaptive weights when a multi-
objective optimisation problem is to be solved. For the weight adaptation,
it is required to have one or more functions that provide update schedules.
Updating weights actually refer to changing the focus of a search. In other
words, if the weight of a particular objective is higher than other objectives,
the solutions found by an algorithm are likely to be better for this objective.
Thus, changing weights means changing the search direction of an algorithm.
For this process, three basic functions are used. In the bi-objective case, the
first function is Linear that sets the weight of the first objective to 1 and
the weight of the second objective is set to 0. The weights linearly changes
in the other direction over time. In the final phase of search, the first weight
becomes 0 while the second objective is set to 1. The second function, i.e.
sin180, simply updates the weights between 1-0-1 considering the spent time
for the 180 degrees of the Sine function. Hence, the objective focus starts from
the first objective, gradually moves to the second objective and comes back to
the first objective. The inverse case, i.e. cos180, applies the Cosine function
for updating the weights. Of course, updating weights at each iteration may
result in moving around a very small search region. That way, each update is
performed at each 1/50 time of the whole search process. Algorithm 1 explains
the steps of the complete framework in details.

For applying this framework, the simple random heuristic selection mecha-
nism [5] is combined with the great deluge move acceptance criterion [8] using
exponential diversification scheme. The selection method randomly chooses a
heuristic at each iteration. The acceptance criterion accepts better or equal
quality solutions and accepts worsening solutions w.r.t. the initial solution and
time. Algorithm 2 explains the acceptance procedure.

For initialisation, solutions are randomly constructed while taking some of
the constraints into account in order to deliver (near-)feasible solutions. In par-
ticular, station consecutiveness, break times and team availability information
were considered.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

322

Algorithm 2: Great deluge move acceptance

1 if f(S′) ≤ f(S) then
2 S ← S′

3 else if f(S′) ≤ f(Sinitial)× (tremaining/ttotal)
2 then

4 S ← S′

end

7 low-level heuristics are implemented to solve the PSP. These heuristics
are detailed as follows:

– LLH 1: Change a randomly selected visit with another station
– LLH 2: Shift left visits from a randomly selected team and add a randomly

selected visit instead of last shifted visit while removing the first visit
– LLH 3: Shift right visits from a randomly selected team and add a ran-

domly selected visit instead of first shifted visit while removing the last
visit

– LLH 4: Change a randomly selected visit causing per station minimum
visit violation

– LLH 5: Change a randomly selected visit causing per station maximum
visit violation

– LLH 6: Swap two visits between two randomly selected team
– LLH 7: Swap two visits for a randomly selected team

4 Computational Results

The experiments are performed on an Intel i5 1.7 GHz PC with 4 GB of
memory. Each test is repeated for 10 times due to the stochastic nature of
the hyper-heuristics. Different execution time limits are used for the PSP in-
stances retrieved from the Singapore MRT network as shown in Figure 2. Table
1 presents these instances. Each of these instances is spread across 20 time pe-
riods. The first 4 instances represent separate lines. The EW+NS instance is
a combination of two lines and EW+NS+NE is composed of three lines as
stated in their instance names. The last instance, i.e. ALL, refers to the com-
plete train network involving all the aforementioned lines. 1 minute is set as
the running time for the first two instances. The execution time increases to
10 minutes for the next two instances and 30 minutes for the two subsequent
instances. The proposed approach is run for 1 hour on the ALL instance.

Table 2 provides the best objective values found on each objective. The
results indicate that there is no single weight adaptation scheme that will de-
liver the best performance. This is consistent with the underlying idea behind
hyper-heuristics where there is no single heuristic that always work well. In
this respect, a selection method for the update scheme or a learning method
to actually adapt the update scheme might be an effective way to resolve this
issue. The other way is to run all the update functions to deliver a pareto front
together, which refers to the method called Combined.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

323

Table 1 The patrol scheduling problem instances where the total number of periods is 20
(Per station: minimum number of visits = 1, maximum number of visits=2)

Instance #Teams #Stations
NE 3 16
CC 3 16
NS 5 25
EW 6 31

EW+NS 9 53
EW+NS+NE 12 67

ALL 14 79

Fig. 2 The Singapore MRT network

Table 2 Best objective values achieved for the total distance travelled and the coverage of
the stations w.r.t. their security team requirements (Distance|Coverage)

Instance Linear Cos180 Sin180 Combined
NE 15|367 15|325 15|361 15|367
CC 15|281 15|257 15|277 15|281
NS 25|947 25|955 25|954 25|955
EW 30|1009 30|1027 30|942 30|1027

EW+NS 47|1309 47|1379 47|1369 47|1379
EW+NS+NE 70|1893 71|1943 70|1958 70|1958

ALL 85|1693 80|1724 74|1685 74|1724

Figure 3 indicates the number of times when each station is visited in the
pareto solutions. The solutions reveal that a few stations are frequently visited
on certain time periods. For instance, the Raffles Place station that is used
by both the NS and EW lines, is visited 9 times during the time period 13 as
the highest frequently visited station on a single time period. It is additionally

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

324

Station

T
im

e
P

er
io

d

10 20 30 40 50 60 70

2

4

6

8

10

12

14

16

18

20
0

1

2

3

4

5

6

7

8

9

Fig. 3 Visit frequency of the stations on different time periods based on 16 pareto solutions
found

0 10 20 30 40 50 60 70 80
5

6

7

8

9

10

11

Station

D

iff
er

en
t T

im
e

P
er

io
ds

Fig. 4 Number of different time periods for each station visit based on 16 pareto solutions
found

visited 7 times on the time period 2 and 6 times on the time period 3. However,
it is still possible to visit this particular station during 9 different time periods
due to the solution diversity provided by the proposed strategy. Among all
the stations, each station is visited at least 4 times considering the highest

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

325

visit frequency time periods like the City Hall station. The Serangoon station
which is a common station between the CC and NE lines, is visited during
11 different time periods, thus it can be considered the most flexible station
in terms of visiting time. Figure 4 shows clearer details about the number
of different time periods where each station visited. The results indicate that
diversity is achieved at the time period level by generating different patrol
schedules.

Figure 5 presents the pareto fronts found after using each objective weigh-
ing schedules and the one using all methods as black-box, i.e. Combined. The
results show that the linear schedule provides high diversity on both objec-
tives while the solutions are relatively low quality compared to both the cos180
and sin180 schedules. Since the cos180 schedule aims to minimise the distance
objective more, the solution quality in terms of this objective is better than
the rest. However, this approach provides diversity on the other objective.
Inversely, sin180 is able to deliver better solutions in terms of the coverage
objective and higher diversity for the distance objective. In the Combined ver-
sion, the pareto is composed of the solutions found both by using cos180 and
sin180.

50 100 150 200 250 300 350 400 450

6

6.2

6.4

6.6

6.8

7

7.2
x 10

−4

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

Fig. 5 Pareto fronts determined by different objective weighting schedules on the ALL
instance

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

326

Figure 6 shows the pareto solutions returned for the remaining instances.
The linear strategy delivers the best performance both on the NE and CC
instances. Although sin180 has a higher effect on the combined pareto front
of the NS instance, the combined pareto front consists of the solutions from
all these weight schedule schemes. For the EW instance, the final pareto front
blends the linear and cos180 solutions. All these three methods contribute to
the pareto front of the EW+NS instance while the linear and sin180 schedules
provide pareto solutions on the EW+NS+NE instance. As discussed on the
numerical results, these pareto fronts indicate that there is no single weight
adaptation strategy for high level solution diversity as well as a better pareto
front. Thus, combining different weight adaptation schemes in a black-box
form, i.e. Combined, is an effective way to overcome this issue. However, this
doesn’t necessarily mean that there is no a single mathematical function that
can deliver similar or better pareto fronts.

5 Conclusion

This paper studies the problem of generating diverse schedules for the bi-
objective patrol scheduling problem. We propose an approach for incorporat-
ing objective weight schedules or adaptation schemes that change over time
as a single-point search selection hyper-heuristic framework. The idea is to
change the objective focus by updating the objectives’ weights while solving a
given problem instance. The weight updating process is handled by incorpo-
rating basic mathematical functions. Besides independently using these func-
tions, a combined approach is additionally proposed to deliver a better overall
performance. Experimentally, we evaluated the performance in terms of solu-
tion diversity among the resulting pareto solutions. We performed empirical
analysis on a real-world dataset for the Singapore rail network, and our re-
sults indicated that the weights are extremely critical for diversity. Among the
tested weight update schemes, there is no a single scheme which always works
well. Thus, choosing the right scheme can be considered another interesting
selection problem for hyper-heuristics research. However, we showed that the
combined strategy using the strengths of multiple update schemes addressed
this issue reasonably well.

Our future research will be about incorporating better weight update schemes
using different functions, not just for patrol scheduling, or potentially for any
multi-objective optimization problem where solution diversity is the key con-
cern. The test domains will also be extended to those with more than two
objectives to evaluate the generality of our approach. Finally, a distributed
version of this approach will be devised to take advantage of using multiple
machines.

Acknowledgements This research is supported by the Singapore National Research Foun-
dation under its International Research Centre @ Singapore Funding Initiative and admin-
istered by the IDM Programme Office, Media Development Authority (MDA).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

327

15 20 25 30 35

2.8

3

3.2

3.4

3.6

3.8
x 10

−3

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

15 20 25 30 35
3.5

4

4.5

5

5.5

6

6.5

7
x 10

−3

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

25 30 35 40 45 50 55 60 65
1

1.1

1.2

1.3

1.4
x 10

−3

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

30 40 50 60 70 80 90
0.95

1

1.05

1.1

1.15

1.2
x 10

−3

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

40 60 80 100 120 140 160 180
6.5

7

7.5

8

8.5

9

9.5

10
x 10

−4

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

50 100 150 200 250 300 350

5.2

5.4

5.6

5.8

6

6.2

6.4
x 10

−4

Distance

1/
C

ov
er

ag
e

Linear
Cos180
Sin180
Combined

Fig. 6 Pareto fronts determined by different objective weighting schedules on the NE, CC,
NS, EW, EW+NS and EW+NS+NE instances (from left to right, top to bottom)

References

1. Bader-El-Den, M., Poli, R., Fatima, S.: Evolving timetabling heuristics using a
grammar-based genetic programming hyper-heuristic framework. Memetic Computing
1(3), 205–219 (2009)

2. Burke, E., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.: Hyper-
heuristics: A survey of the state of the art. Journal of the Operational Research Society

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

328

695–1724 (2013)
3. Burke, E., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: Exploring

hyper-heuristic methodologies with genetic programming. Collaborative Computational
Intelligence. Springer (2009)

4. Burke, E., Silva, J.L., Soubeiga, E.: chap. Multi-objective Hyper-heuristic Approaches
for Space Allocation and Timetabling, pp. 129–158. Springer (2005)

5. Cowling, P., Kendall, G., Soubeiga, E.: A hyperheuristic approach to scheduling a sales
summit. In: Selected papers from the 3rd International Conference on Practice and
Theory of Automated Timetabling (PATAT’00), pp. 176–190. Springer-Verlag, London,
UK (2001)

6. de Armas, J., Miranda, G., León, C.: Hyperheuristic encoding scheme for multi-objective
guillotine cutting problems. In: Proceedings of the 13th annual conference on Genetic
and evolutionary computation, pp. 1683–1690. ACM (2011)

7. Deb, K., et al.: Multi-objective optimization using evolutionary algorithms, vol. 2012.
John Wiley & Sons Chichester (2001)

8. Dueck, G.: New optimization heuristics: The great deluge algorithm and the record-to-
record travel. Journal of Computational Physics 104(1), 86–92 (1993)

9. Kumar, R., Bal, B.K., Rockett, P.I.: Multiobjective genetic programming approach to
evolving heuristics for the bounded diameter minimum spanning tree problem. In:
Proceedings of the 11th Annual conference on Genetic and Evolutionary Computation
(GECCO’09), pp. 309–316. ACM (2009)

10. Lau, H.C., Gunawan, A.: The patrol scheduling problem. In: Proceedings of the
9th International Conference on the Practice and Theory of Automated Timetabling
(PATAT’12). Son, Norway (2012)

11. Lau, H.C., Yuan, Z., Gunawan, A.: Patrol scheduling in urban rail network. Annals of
Operations Research (In press)

12. Maashi, M., Özcan, E., Kendall, G.: A multi-objective hyper-heuristic based on choice
function. Expert Systems with Applications (to appear)

13. McClymont, K., Keedwell, E.: Markov chain hyper-heuristic (MCHH): an online se-
lective hyper-heuristic for multi-objective continuous problems. In: Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11), pp.
2003–2010 (2011)

14. Mısır, M., Smet, P., Verbeeck, K., Vanden Berghe, G.: Security personnel routing and
rostering: a hyper-heuristic approach. In: Proceedings of the 3rd International Confer-
ence on Applied Operational Research (ICAOR’11), LNMS, vol. 3, pp. 193–205. Istan-
bul, Turkey (2011)

15. Mısır, M., Verbeeck, K., De Causmaecker, P., Vanden Berghe, G.: Hyper-heuristics with
a dynamic heuristic set for the home care scheduling problem. In: Proceedings of the
IEEE Congress on Evolutionary Computation (CEC’10), pp. 2875–2882. Barcelona,
Spain (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

329

The Connectedness of Clash-free Timetables

Moritz Mühlenthaler · Rolf Wanka

Abstract We investigate the connectedness of clash-free timetables with respect to the
Kempe-exchange operation. This investigation is related to the connectedness of the search
space of timetabling problem instances, which is a desirable property, for example for two-
step algorithms using the Kempe-exchange during the optimization step. The theoretical
framework for our investigations is based on the study of reconfiguration graphs, which
model the search space of timetabling problems. We contribute to this framework by in-
cluding period availability requirements in the analysis and we derive improved conditions
for the connectedness of clash-free timetables in this setting. We further show that the di-
ameter of the reconfiguration graphs increases only linearly due to the period availability
requirements. We apply the theoretical insights to establish the connectedness of clash-free
timetables for a number of benchmark instances.

1 Introduction

According to the classification of heuristic optimization algorithms for timetabling prob-
lems in [17], many approaches in the literature fall in the category of two-step optimization
algorithms. The general procedure is the following: In the first step, the underlying search
problem is solved and the resulting feasible solution is used as a starting point for the second
step, during which the optimization is performed. In the second step only feasible solutions
are considered. A recent example of a state-of-the-art two-step approach is [19], numerous
other examples can be found in [17]. During the optimization step, feasible timetables are
modified using Kempe-exchanges or similar operations that preserve their feasibility. It is
natural to ask whether any feasible timetable, in particular an optimal one, can be reached
from an initial feasible timetable. We give a partial answer to this question by investigating
conditions that establish the connectedness of the search space of clash-free timetables.

A timetable is clash-free, if no two conflicting events are scheduled simultaneously. In
our analysis, we model the structure of the search space of clash-free timetables in terms

Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.

Moritz Mühlenthaler, Rolf Wanka
Department of Computer Science, University of Erlangen-Nuremberg, Germany
E-mail: {moritz.muehlenthaler,rolf.wanka}@cs.fau.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

330

of reconfiguration graphs. Such graphs have been studied in the context of reconfigura-
tion problems. Given an instance I of a combinatorial search problem, the correspond-
ing reconfiguration problem asks whether one feasible solution to I can be transformed
into another feasible solution in a step-by-step manner by making local changes, such that
each intermediate solution is also feasible. Reconfiguration variants of classical combina-
torial problems have been studied for example in [4, 13, 14, 15]. The heart of the matter
of timetabling problems in the academic context is the vertex coloring problem: A clash-
free timetable corresponds to a proper coloring of the event conflict graph, see e.g. [9]. The
connectedness of the (proper) vertex colorings of a graph has been investigated for example
in [5, 8, 2]. The local change applied to a coloring in these works is an elementary recol-
oring, which changes the color of an individual node of the graph. In [16], Las Vergas and
Meyniel establish conditions for the connectedness of vertex colorings using on a more gen-
eral local change, the Kempe-exchange. The Kempe-exchange is a popular operation used
by algorithms for timetabling problems for exploring the search space, including many of
the two-step algorithms cited above. Therefore, their results can be applied in the timetabling
context. Clash-freeness is typically necessary but not sufficient for a timetable to be feasible.

In many timetabling problem formulations (see e.g. [7, 27, 6]) a set of available time
periods is given for each event, and all events are required to be placed strictly in their
available time periods. We extend the techniques from [16] to derive conditions for the con-
nectedness of clash-free timetables that satisfy period availability requirements. We further
show that the diameter of the corresponding reconfiguration graphs increases only linearly
(in the number of events) due to the period availability requirements. Our evaluation indi-
cates the connectedness of clash-free timetables for a number of benchmark instance sets,
with and without period availability requirements.

The remainder of this work is organized as follows: In Section 2 we provide the basic
formalisms required for our analysis of the connectedness of clash-free timetables presented
in Section 3. In Section 4 we investigate the connectedness of the clash-free timetables for
number of standard benchmarking instance sets.

2 Background

2.1 The University Timetabling Problem

The University Timetabling Problem (UTP) formalizes in terms of a search problem the task
of creating a course or examination schedule at a university.

Definition 1 (University Timetabling Problem (UTP))
INSTANCE:

– a set of events E = {e1, . . . ,en}
– a set of rooms R = {r1, . . . ,r`}
– a set of time periods P = {p1, . . . , pk}
– a graph G = (E,L) with nodes E and edges L⊆ {{u,v} | u,v ∈ E}

The graph G is referred to as the conflict graph. Two events are called conflicting if they
are adjacent in G. The set P×R contains the resources. A timetable τ is an assignment
τ : E → P×R. Two events e,e′ are overlapping, if e 6= e′ and τ(e) = τ(e′). A timetable is
called overlap-free if no two events overlap. Two events e,e′ are clashing in τ , if they are
conflicting and they are assigned to the same period. A timetable is feasible, if it is clash-free

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

331

and overlap-free.
TASK: Find a feasible timetable.

The UTP as defined above is equivalent to the problem given in [9, Section 3.4]. The
clash-freeness requirement and its relation to the vertex coloring problem is the heart of the
matter of timetabling problems in the academic context, see generally [9, 26]. Other kinds of
requirements such as availability requirements and precedence requirements often occur in
practice, see e.g. [7, 27], and in the benchmarking problem models, see e.g. [6, 12, 22]. Later,
we will consider the UTP above with additional period availability requirements. These
requirements mandate that only specific periods can be assigned to an event. We formalize
period availability requirements in terms of an availability function α , which determines for
each event the set of available periods:

α : E→P(P) .

An important subproblem of the UTP is the room assignment problem. Given a period
p ∈ P, then events E ′ ⊆ E admit a room assignment, if there is an assignment ρ : E ′ → R
such that (p,ρ(e)) is available for each e ∈ E ′.

2.2 Vertex Coloring

A graph G = (V (G),E(G)), for short G = (V,E), consists of a set of vertices V and a set of
edges E ⊆ {{u,v} | u,v ∈ V}. Unless stated otherwise, we assume that graphs are loopless
and finite. We denote by u v that the vertices u and v are adjacent, i.e., {u,v} ∈ E. The
graph G[U] denotes the subgraph of G induced by the vertices U ⊆ V (G). G is a mapping
c : V → {1, . . . ,k} that assigns one of the colors {1, . . . ,k} to each vertex of G. A coloring
is called proper, if no two adjacent nodes have the same color. Unless stated otherwise, we
will use the term coloring as a shorthand for proper coloring. The vertex coloring problem
asks, whether a graph admits a k-coloring. A k-coloring c of G decomposes the vertices of G
into k independent sets called color classes. A color class a∈ {1, . . . ,k} contains all vertices
of color a. We denote by G(a,b) the bipartite subgraph induced by the color classes a and
b. A connected component in G(a,b) is referred to as Kempe-component.

Given a set L(v) (called list) of available colors for each v ∈ V , a list coloring c : V →⋃
v∈V L(v) of G is a coloring of G such that c(v) ∈ L(v) for each v ∈V . Graph coloring is a

special case of list coloring, where all colors are available for each node. By using a standard
technique, see e.g. [9, Proposition 3.2], list coloring can be reduced to vertex coloring: Let
the colors be labeled 1, . . . ,k, where k = |

⋃
v∈V L(v)|. Now, let the graph G′ be a copy of G

to which we add a clique C on k (new) nodes v1, . . . ,vk. For each v ∈V (G), we add an edge
v vi to G′, whenever i /∈ L(v). Clearly, G′ admits a k-coloring if and only if G admits a
list coloring. The problem of deciding if a given UTP instance admits a clash-free timetable
that satisfies period availability requirements is equivalent to deciding if the conflict graph
admits a list coloring, where the L(e) = α(e) for each event e.

2.3 The Vertex Coloring Reconfiguration Problem

Reconfiguration problems formalize the question, if a solution to a problem instance can
be transformed into another solution in a step-by-step manner by some reconfiguration op-
eration, such that each intermediate solution is feasible [14]. Reconfiguration variants of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

332

1

2

1

3

2

3

3

2

3

1

2

1

Fig. 1: The (Kempe-)3-coloring graph of the graph K2. Solid edges correspond to elementary
recolorings. Dashed edges correspond to Kempe-exchanges that are not equivalent to an
elementary recoloring.

the vertex coloring problem have been studied for example in [5, 2, 23, 3]. In this context,
elementary recolorings and Kempe-exchanges have been considered as reconfiguration op-
erations. Given a coloring c of a graph G, an elementary recoloring changes the color of
a single vertex of G. Two k-colorings c1 and c2 of G are adjacent, c1 ∼E c2, if there is an
elementary recoloring that transforms c1 into c2. The Kempe-exchange is a generalization of
the elementary recoloring operation. Given two colors a and b, a Kempe-exchange switches
the colors of a Kempe-component, i.e., a connected component in G(a,b). The result of this
operation is a new coloring, such that, within the Kempe-component, all vertices of the of
color a are assigned to color b and vice versa. Two colorings c1 and c2 of G are adjacent
with respect to the Kempe-exchange, c1 ∼K c2, if there is a Kempe-exchange that transforms
c1 into c2. Each of the two adjacency relations ∼E and ∼K gives rise to a graph structure on
the set of k-colorings of G.

Definition 2 ((Kempe-)k-coloring graph) For a graph G = (V,E) and k ∈ N let

V := {c : V →{1, . . . ,k} | c is a k-coloring of G}
EE := {{c1,c2} | c1,c2 ∈ V and c1 ∼E c2}
EK := {{c1,c2} | c1,c2 ∈ V and c1 ∼K c2} .

Then the k-coloring graph is the graph Ck(G) = (V ,EE). The Kempe-k-coloring graph is
the graph Kk(G) = (V ,EK).

Figure 1 shows C3(K2) and K3(K2), where K2 is the graph consisting of two vertices
connected by an edge. The diameter and the connectedness of (Kempe-)k-coloring graphs
have been investigated in [23, 2, 3]. The analysis of the UTP search space will follow this
line of research. A graph G is called k-degenerate, if its vertices can be ordered such that
each vertex has at most k neighbors preceding it. The smallest k for which G admits such
an ordering is the degeneracy deg(G). A witness vertex ordering of the degeneracy deg(G)
can be found by repeatedly removing vertices of minimal degree [21, 28]. Equivalently, the
degeneracy is the largest minimum degree of any subgraph. Let S(G) be the set of permu-
tations of the vertices of G and let pred(v,σ) denote the number of neighbors of the vertex
v∈V (G) that precede v in the ordering σ ∈ S(G). In formal terms, the two characterizations

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

333

Algorithm 1: KEMPERECONFIGURATION

input : graph G, labeling v1, . . . ,vn of the vertices, k-colorings c1, c2 of G
output: list of Kempe-exchanges transforming c1 into c2
data : array c of length n storing the current color of each vertex, list K of Kempe-exchanges

K ←− empty list;
for i←− 1 to n:

c[i]←− c1(vi)

for i←− 1 to n:
H←− G[v1, . . . ,vi];
/* Kempe-exchange κ = (a,b,u), where a,b are colors and u ∈V (H) */
for κ = (a,b,u) ∈ K:

without loss of generality c[i] 6= a;
1 if c[i] = b and vi has exactly one neighbor of color a in H:

c[i]←− a;

2 else if c[i] = b and vi has at least two neighbors of color a in H:
choose color b′ 6= b, which is not used by any neighbor of vi in H;
insert Kempe-exchange (b,b′,vi) right before κ in K;
c[i]←− b′;

3 append Kempe-exchange (c2(vi),c[i],vi) to K;

return K;

of deg(G) can be stated as follows:

deg(G) := max
H⊆G

min
v∈V (H)

{dH(v)}= min
σ∈S(G)

max
v∈V (G)

pred(v,σ) , (1)

where dH(v) denotes the degree of v in H. The degeneracy of a graph is an upper bound on
its chromatic number. Furthermore, the degeneracy has been used to establish the connect-
edness of Kempe-k-coloring graphs:

Theorem 1 ([16, Proposition 2.1]) For any graph G, the Kempe-k-coloring graph Kk(G)
is connected if k > deg(G). ut

The proofs given in [16, 23] are essentially an analysis of the algorithm KEMPERE-
CONFIGURATION shown in Algorithm 1. This algorithm transforms a source coloring c1
into a destination coloring c2 by a sequence of Kempe-exchanges, provided that a sufficient
number of colors is available. The vertices are processed one-by-one according to the given
labelling. The general idea is to prevent the current vertex from interfering with the Kempe-
exchanges dealing with the previously processed vertices.

3 The Connectedness of Clash-free Timetables

In the following, let G be the conflict graph G of a UTP instance I with periods {1, . . . , p}
and let α be the period availability function. Further, let G′ be the graph derived from G
by the reduction from list coloring to vertex coloring from Section 2.2. In our analysis, we
consider timetables that differ only with respect to how rooms are assigned as equivalent.
Each p-coloring of G corresponds to an equivalence class of clash-free timetables. Thus,
the adjacency relation ∼K on the p-colorings of G induces an adjacency relation on the
clash-free timetables and therefore, Kp(G) models the search space of clash-free timetables

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

334

connected by Kempe-exchanges. If Kp(G) is connected, then a two-step algorithm that uses
Kempe-exchanges in order to explore the search space can reach an optimal solution from
any starting point. If not, then the algorithm may fail to find an optimal solution due to the
structure of the search space.

In most applications, clash-freeness is not the only requirement a timetable needs to sat-
isfy. Additional types of requirements such as period availability requirements, room avail-
ability requirements, and overlap-freeness requirements restrict the set of feasible timeta-
bles, and, as a consequence, an equivalence class corresponding to a coloring may be empty.
Let C be the set of colorings of G that correspond to non-empty equivalence classes of
timetables. Then the search space of I is connected if Kp(G)[C] is connected. In particu-
lar, for the additional requirements above, the corresponding reconfiguration graphs are the
subgraphs of Kp(G) induced by the following sets of nodes:

1. period availability requirements:

Cπ = {c ∈V (Kp(G)) | ∀v ∈V (G) : c(v) is available for event v}

2. overlap freeness and room availability requirements:

Cρ = {c ∈V (Kp(G)) | ∀i ∈ P : color class i admits a room assignment}

Conditions establishing the connectedness of Kp(G) result directly from Theorem 1.

Corollary 1 The search space of clash-free timetables is connected if p > deg(G). ut

Regarding overlap freeness and room availability requirements, to the best of our knowl-
edge, the properties of the corresponding reconfiguration graphs have not been studied so
far. The bounded vertex k-coloring problem with bound b ∈ N is the problem of coloring a
graph with k colors such that each color is used at most b times. The bounded vertex color-
ing problem has been studied for example by Lucarelli [20], and Baker and Coffmann [1]
in the setting of unit-time task scheduling on multiple processors and by de Werra in the
timetabling context [10]. If overlap freeness is required and no particular room availabil-
ity requirements are present, then the graph KP(G)[Cρ] is the reconfiguration graph of a
bounded vertex coloring instance. The reconfiguration variant of the bounded vertex color-
ing problem seems to be an interesting problem which deserves further investigation. The
situation gets more involved if room availability requirements are present. Checking if the k
events in a color class admit a room assignment is equivalent to checking if a bipartite graph
admits a matching of cardinality k.

We will now focus on structural properties of Kp(G)[Cπ]. First, we show that Kp(G)[Cπ]
is connected if and only if Kp(G′) is connected. The main obstacle is that there is no Kempe-
exchange on Kp(G)[Cπ] corresponding to a Kempe-exchange on G′ involving any of the
nodes v1, . . . ,vp. We construct a graph K, which is a copy of Kp(G)[Cπ] with a self loop
added to each node. Additionally, we add to K an edge between two colorings u,v ∈V (K),
if there are two colors i and j such that u can be transformed into v by swapping the colors
in all except a single connected component of G(i, j). These additional edges are merely
shortcuts for several individual Kempe-exchanges. Therefore, Kp(G)[Cπ] is connected if
and only if K is connected. Figure 2 shows the various graphs under consideration for a
list-coloring instance consisting of a graph G = ({u,v},{u v}) and color lists L(u) = {1}
and L(v) = {2}. The nodes 1 and 2 of G′ were added by the reduction from list to graph
coloring.

Lemma 1 There is a graph homomorphism f : Kp(G′)→ K.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

335

u v

G
L(u) = {1}
L(v) = {2}

u v

v1 v2

G′

1 2

K

1 2

1 2

2 1

2 1

K2(G′)

list coloring to
graph coloring graph homo-

morphism f

Fig. 2: Relations between the graphs G, G′, K and Kp(G′). The choice of G and the avail-
able colors determines the other graphs as described in the text. The existence of the graph
homomorphism f is established by Lemma 1.

Proof We construct the mapping f : V (Kp(G′))→ V (K). Let c ∈ V (Kp(G′)). First, we
swap the colors of the p color classes such that vi has color i for each i ∈ {1, . . . , p}. This
can be achieved by applying a sequence of Kempe-exchanges to the coloring c: For each
color j ∈ {1, . . . , p}, if the current color of v j is i 6= j we swap the colors in G′(i, j). One
Kempe-exchange is required for each Kempe-component of G′(i, j). Let c′ be the resulting
coloring. Except for the vertices v1, . . . ,vp and their incident edges, G′ is just a copy of G.
Now, pick f (c) = c̃, where c̃ is equivalent to c′ restricted to the vertices V (G) ⊂ V (G′).
Clearly, c̃ is a coloring of G. Due to the construction of G′, c̃ satisfies the list coloring
requirements for G, i.e., for each v ∈V (G) we have c(v) ∈ α(v). Therefore, c̃ ∈V (K).

We show that the mapping f is a graph homomorphism as required. Let c, d be colorings
of G′ such that c d in Kp(G′). Further, let κ be a witness of c∼K d. There are two cases
to consider:

1. The Kempe-exchange κ does not involve any of the nodes v1, . . . ,vp. Then f renames
the color classes of the colorings c and d if required and there is a Kempe-exchange
corresponding to κ that establishes f (c) f (d) in K.

2. The Kempe-exchange κ involves two nodes u,v ∈ {v1, . . . ,vp}. We need to consider
following two subcases. If G′(c(u),c(v)) is connected then f (c) = f (d) and therefore,
f (c) f (d), since each node of K has a self-loop. Otherwise, f (c) and f (d) differ with
respect to the color classes a(u) and c(v). We show that f (c) and f (d) are connected
by a sequence of Kempe-exchanges that swaps the colors in all except a single Kempe-
component of G′(c(u),c(v)) and thus f (c) f (d) by the construction of K above. To
obtain f (b), we first apply κ to c on G′ and then apply f to the resulting coloring.
The Kempe-exchange κ swaps the colors of the connected component of G′(c(u),c(v))
containing u and v, and then f swaps the colors in G′(c(u),c(v)). As a result, f (d) can be
obtained from f (c) by swapping the colors in G′(c(u),d(v)) except the one containing
u and v in the preimage f−1(V (G(c(u),d(v)))).

In summary, for all c,d ∈V (Kp(G′)) : c c implies f (c) f (d). ut

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

336

The graph homomorphism f induces the equivalence relation ∼ f on V (Kp(G′)): for
a,b ∈V (Kp(G′)) : a∼ f b if f (a) = f (b).

Theorem 2 Kp(G)[Cπ] is connected if and only if Kp(G′) is connected.

Proof We noted above that Kp(G)[Cπ] is connected if and only if K is connected. Let
f : Kp(G′)→ K be the graph homomorphism from Lemma 1.
“Only if” part: Let Kp(G′) be connected. Then K is connected since there is a graph ho-
momorphism Kp(G′)→ K, and graph homomorphisms preserve connectedness. Therefore,
Kp(G)[Cπ] is connected.
“If” part: Let Kp(G)[Cπ] be connected. Then K is connected. Due to the first isomorphism
theorem, K ∼= Kp(G′)/∼ f and thus, Kp(G′)/∼ f is also connected. Any two colorings u, v of
G′ such that u∼ f v are connected by Kempe-exchanges since one can be obtained from the
other by permuting the colors of the color classes. ut

For general graphs, not much is known about the diameter of their corresponding Kempe-
k-coloring graphs. Using the graph homomorphism from Lemma 1, we show that the reduc-
tion from list to graph coloring increases the (possibly unknown) diameter only moderately:

Theorem 3 diam(Kp(G)[Cπ])≤ b |V (G)|−1
2 c ·diam(Kp(G′)).

Proof For any adjacent nodes c,d ∈ Kp(G′), we count how many Kempe-exchanges are
required to get from f (c) to f (d) in Kp(G)[Cπ]. Let κ be the Kempe-exchange that is
a witness of c d, and let i and j be the involved color classes. If c ∼ f d then, in the
worst case, all except one connected component of G(i, j) need to be switched to get from
c to d for the reasons stated in cases 1 and 2 in the proof of Lemma 1. There are at most
b(|V (G)| − 1)/2c components and at most one Kempe-exchange is required for each of
them. If c 6∼ f d then there is a single Kempe-exchange on G that establishes f (c) f (d).
Thus, a shortest path of maximum length t in Kp(G′) corresponds to a path of length at
most t · b(|V (G)|−1)/2c in Kp(G)[Cπ]. ut

Given two colorings c and c′ of G′, the algorithm KEMPERECONFIGURATION trans-
forms c into c′ as long as there is a sufficient number of colors available. However, G′

contains Kp as a subgraph therefore deg(G′) ≥ p. According to Theorem 1, at least p+ 1
colors are needed by KEMPERECONFIGURATION and therefore Theorem 1 is not useful
for proving the connectedness of clash-free timetables in the presence of period availabil-
ity requirements. To overcome the limitations of Theorem 1, we fix the colors of the clique
vertices v1, . . . ,vp of G′. As a consequence, if we exclude the clique from the recoloring pro-
cess, the number of colors required by KEMPERECONFIGURATION is no longer dominated
by the clique.

We will first consider the general case, where the colors of some vertices F ⊆ V (G)
are assumed to be fixed. We denote by F =V (G)\F be the remaining vertices. Further, let
S′ ⊂ S(G) be the vertex orderings satisfying

∀u,v ∈ F ,w ∈ F : u < v∧u v∧ v w⇒ w < v . (2)

That is, if v is a successor of u and they are adjacent, then all neighbors of v in F must
precede v. Figure 3 shows two examples of vertex orderings of the graph u v w. For
F = {w}, ordering 3a satisfies the condition in Eq. 2 and 3b does not. We will prove next
that KEMPERECONFIGURATION does not change the color of any vertex in F if the vertices

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

337

u < w < v

(a) Ordering compatible with Eq. (2)

u < v < w

(b) Ordering incompatible with Eq. (2)

Fig. 3: Two vertex orderings of the graph u v w, F = {w}.

V (G) are processed according to an ordering in S′. In order to bound the number of colors
required for our analysis, we introduce the following generalization of the degeneracy of a
graph:

Definition 3 (Subdegeneracy) Let G be a graph and let F ⊆ V (G). The subdegeneracy
subdeg(F,G) of G relative to F is defined as:

subdeg(F,G) = min
σ∈S′

max
v∈V (G)\F

pred(v,σ)

Note that subdeg(F,G) = deg(G) if F is empty. If F is not empty then subdeg(F,G) ≤
deg(G). Intuitively, we are looking for a vertex ordering in S′ that minimmizes the maximum
number of adjacent predecessors of any vertex, however, the number of predecessors of any
vertex in F is irrelevant.

Theorem 4 Let c, c′ be k-colorings of G that agree on F. Then KEMPERECONFIGURATION

returns a sequence of Kempe-exchanges such that

1. all intermediate colorings also agree on F, and
2. no more than subdeg(F,G)+1 colors are required.

Proof We first show that the colors of the vertices F are not changed by KEMPERECON-
FIGURATION. Assume for a contradiction that in some intermediate coloring a vertex w ∈ F
has a color different from c(w). Then w has been recolored because a neighbor u of w
preceding it in σ received color c(w). There are two possible reasons: Either u was recolored
to c(w) because c′(u) = c(w), but then c′(w) 6= c(w), a contradiction. If this is not the case,
then u was recolored in case 1 or 2 of KEMPERECONFIGURATION, because of a neighbor v
preceding it. But this is a contradiction to σ ∈ S′.

We now show that subdeg(F,G) + 1 colors are sufficient. Since the vertices in F are
never recolored, we consider only the vertices F . An unused color may be picked for a vertex
v ∈ F in case 2 of Algorithm 1. For each v ∈ F , there are at most subdeg(F,G) neighbors
of v preceding it, and there are at most subdeg(F,G)−1 colors different from the color of v
present among these vertices. Thus, there is at least one other color available for v. ut

We propose a heuristic approach to finding a witness vertex ordering of subdeg(F,G).
Let S̃ ⊆ S′ be the vertex orderings such that the vertices F precede all other vertices. Recall
that for any graph G a witness vertex ordering of the degeneracy deg(G) can be found by
repeatedly removing vertices of minimal degree. In a similar fashion, we can determine an
optimal solution to:

λ (F,G) := min
σ∈S̃

max
v∈F

pred(v,σ)

Moreover, λ (F,G) is equivalently characterized by a max-min expression and the min-max
expression above, analogous to the characterizations of the degeneracy shown in Eq. (1):

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

338

Algorithm 2: VERTEXELIMINATION

input : graph G, vertices F ⊆V (G)
output: ordering v1, . . . ,v|F | of the vertices F =V (G)\F

G|D|←− G ;
for i←− |F | downto 1 do

choose vi from argminv∈F{δ (v,Gi)} ;
Gi−1←− Gi− vi.

return v1, . . . ,v|F |;

Theorem 5 For any graph G and F ⊆V (G),

λ (F,G) = min
σ∈S̃

max
v∈V (G)\F

pred(v,σ) = max
G[F]⊆H⊆G

min
v∈V (H)\F

{dH(v)} .

Furthermore, VERTEXELIMINATION produces a witness vertex ordering for the min-max
expression.

Proof The proof is based on the remark on the optimality of VERTEXELIMINATION in [21].
Let `= |F | and for an ordering v1, . . . ,v` of F let Gi = G[F ∪{v1, . . . ,v`}]. Further, let

δ̂ := max
G[F]⊆H⊆G

min
v∈V (H)\F

{d(v,H)} .

Intuitively, δ̂ is analogous to the degeneracy of G, but the vertices F are irrelevant. If an
ordering σ = v1, . . . ,v` of F is an output of VERTEXELIMINATION then

max
1≤i≤`

pred(vi,σ) = max
1≤i≤`

{d(vi,Gi)}

= max
1≤i≤`

min
v∈V (Gi)\F

{d(v,Gi)} ≤ δ̂ .

The graphs Gi coincide with those in Algorithm 2.
Now let H∗ be a graph such that G[F]⊆ H∗ ⊆ G and

min
v∈V (H∗)\F

{d(v,H)}= δ̂ .

Let v1, . . . ,v` be any ordering of F and let i be the smallest index such that H∗ ⊆ Gi. Then
vi must be a vertex of H∗ and d(vi,Gi) ≥ δ̂ . Therefore, for any ordering v1, . . . ,v` of F ,
max1≤ j≤`{d(v j,G j)} ≥ δ̂ , with equality if the vertex ordering is an output of VERTEX-
ELIMINATION. ut

Certainly, the optimality of VERTEXELIMINATION is only established with respect to
the subset S̃ ⊆ S′. The vertex ordering obtained from the algorithm can potentially be im-
proved by the following post-processing step: Let v1, . . . ,v|F | be an output of VERTEX-
ELIMINATION and let k be the largest number such that v1, . . . ,vk are independent. Then
the vertices v1, . . . ,vk can be moved before the vertices F in the ordering without violating
condition (2). The resulting ordering σ ′ ∈ S′ is not in S̃ and can thus not be generated by
VERTEXELIMINATION. There is a potential advantage because the construction guarantees
that maxv∈F pred(v,σ ′)≤maxv∈F pred(v,σ).

In summary, the heuristic for computing a vertex ordering σ ∈ S′(G) such that the value
maxv∈F pred(v,σ) is close to subdeg(F,G) performs the following two steps:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

339

1. Run VERTEXELIMINATION to generate an ordering v1, . . . ,v|F | of the vertices F .
2. Let k ∈ N be the largest number such that v1, . . . ,vk are independent in G. Move the

vertices v1, . . . ,vk before the vertices F in the ordering.

We apply this heuristic to prove the connectedness of the clash-free timetables that sat-
isfy the availability constraint for a number of benchmark instances. First, we use the re-
duction from list to graph coloring described above to construct from a conflict graph G the
graph G′, which contains a clique v1, . . . ,vp. Then we choose F ⊆ V (G′) to include every
vertex with p−1 neighbors in {v1, . . . ,vp}, that is

F = {v ∈V (G′) | |Γ (v)∩{v1, . . . ,vp}|= p−1} . (3)

Now we can apply the heuristic to obtain an orderign σ ∈ S′ and thus an upper bound
subdeg′(F,G′) = maxv∈V (G′)\F pred(v,σ) ≥ subdeg(F,G′). If p ≥ subdeg′(F,G′) + 1 then
Theorem 4 implies that the clash-free timetables are connected.

4 Results

We use the theory developed in the previous section to establish the connectedness of clash-
free timetables for a range of UTP benchmark instances. By Theorem 1, reconfiguration
graphs of clash-free timetables are connected if p > deg(G) and by Theorem 4, the recon-
figuration graphs of the clash-free timetables that satisfy availability requirements are con-
nected if p > subdeg(F,G′) for a suitably chosen C ⊆V (G′). We use the heuristic from the
previous section to determine a bound subdeg′(F,G′)≥ subdeg(F,G′). The set F of “fixed”
vertices is chosen as shown in Eq. (3).

Table 1 indicates the connectedness of the clash-free timetables according to theorems 1
and 4 for instances from the CB-CTT, PE-CTT benchmark sets, as well as instances from the
University of Erlangen-Nürnberg. All instances can be obtained from the SaTT group web-
site at the University of Udine [11]. The instances comp01,. . . ,comp21 are from the CB-CTT
track of the International Timetabling Competition 2007 (ITC2007) competition. The in-
stances ITC2 i01,. . . ,ITC2 i24 are from the PE-CTT track of the same competition. The
erlangen instances are large real-world instances from the engineering department of the
University of Erlangen-Nürnberg. The toy instance is a small example instance from the
website [11]. For each instance we give the number of periods p, the degeneracy of the con-
flict graph deg(G), and the bound subdeg′(F,G′)≥ subdeg(F,G′). Table entries in bold face
indicate that the corresponding value deg(G) or subdeg′(F,G′) certifies the connectedness
of the clash-free timetables.

According to the data in Table 1 the clash-free timetables for all CB-CTT and erlangen

instances are connected, while the conditions imposed by Theorem 1 are not satisfied for any
of the PE-CTT instances. For eight CB-CTT instances, the upper bound on subdeg(F,G′)
is sufficient to show that the reconfiguration graphs are connected in the presence of avail-
ability constraints. The situation is quite different for the PE-CTT instances, since neither
deg(G) nor subdeg′(C,G′) is sufficient to show the connectedness of the reconfiguration
graphs, better bounds on subdeg(F,G′) are of no use here since subdeg(F,G′) ≥ deg(G).
Therefore, new techniques are needed for proving the connectedness (or disconnectedness)
of the reconfiguration graphs for these instances.

In Tables 2 and 3, the degeneracy values of the corresponding conflict graphs are given
for the Lewis/Paechter [18] and the Metaheuristic Network [24] instance sets. On these

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

340

Table 1: For each instance from the CB-CTT, PE-CTT, and Erlangen instance sets, we give
the number p of periods, deg(G′) and an upper bound subdeg′(C,G′) ≥ subdeg(F,G′) pro-
duced by the heuristic. All instances are available from the website [11].

instance p deg(G) subdeg′(C,G′) instance p deg(G) subdeg′(C,G′)

comp01 30 23 24 ITC2 i01 45 91 109
comp02 25 23 30 ITC2 i02 45 99 119
comp03 25 22 27 ITC2 i03 45 73 92
comp04 25 17 25 ITC2 i04 45 78 100
comp05 36 26 43 ITC2 i05 45 81 99
comp06 25 17 28 ITC2 i06 45 80 100
comp07 25 20 24 ITC2 i07 45 80 106
comp08 25 20 24 ITC2 i08 45 69 97
comp09 25 22 25 ITC2 i09 45 89 108
comp10 25 18 27 ITC2 i10 45 97 116
comp11 45 27 27 ITC2 i11 45 75 93
comp12 36 22 40 ITC2 i12 45 91 109
comp13 25 17 22 ITC2 i13 45 87 106
comp14 25 17 23 ITC2 i14 45 87 107
comp15 25 22 27 ITC2 i15 45 79 106
comp16 25 18 25 ITC2 i16 45 55 83
comp17 25 17 25 ITC2 i17 45 50 71
comp18 36 14 32 ITC2 i18 45 91 112
comp19 25 23 27 ITC2 i19 45 101 120
comp20 25 19 23 ITC2 i20 45 73 92
comp21 25 23 28 ITC2 i21 45 72 90
erl.2011-2 30 22 32 ITC2 i22 45 98 118
erl.2012-1 30 14 31 ITC2 i23 45 117 128
erl.2012-2 30 20 32 ITC2 i24 45 77 97
erl.2013-1 30 16 30 toy 20 10 11

instances, each period is available for each event. Values in bold face indicate the connect-
edness of clash-free timetables is established by Theorem 1.

Finally, we will show that for the instance toy, the proposed heuristic yields a vertex
ordering that is a witness for subdeg(F,G′). Let G be the conflict graph for this instance and
let G′ be the graph that results from the reduction from list to graph coloring. In the CB-CTT
formulation, the events are grouped into courses and for each course, events of the course are
a clique in G and G′. Similarly, if two courses are in conflict, then the events of both courses
are a clique in G and G′. If certain periods are unavailable for a course, then the events of
the course and the periods are a clique in G′. In the toy instance, there are four courses
which consist of 16 events in total. Figure 4 shows a succinct representation of an optimal
vertex ordering of the graph G′. Each node of the shown graph is a clique, as noted below
the nodes, and the cliques are ordered from left to right. Two nodes of the shown graph are
connected if all nodes of the corresponding cliques are connected. The nodes T , A, S and G
correspond to the courses labeled SceCosC, ArcTec, TecCos and Geotec, respectively. The
node P1 represents to the periods marked unavailable for course ArcTec and the node P2
represents the periods unavailable for SceCosC. Any two conflicting courses are connected.
Let C =V (P1)∪V (P2).

Let σ ∈ S(G′) such that the cliques are arranged in the order P1,P2,T,A,S,G with some
arbitrary choice of the relative ordering of the vertices within each clique. This ordering is a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

341

Table 2: The connectedness of the clash-free timetables for the Lewis/Paechter in-
stances [18]. For each instance we give the degeneracy deg(G) of the conflict graph G.
Values in bold face indicate the connectedness of clash-free timetables is established by
Theorem 1.

instance deg(G) instance deg(G) instance deg(G)

small 1 54 med 1 59 big 1 60
small 2 41 med 2 67 big 2 68
small 3 98 med 3 67 big 3 64
small 4 69 med 4 69 big 4 80
small 5 84 med 5 87 big 5 75
small 6 24 med 6 101 big 6 93
small 7 68 med 7 120 big 7 111
small 8 84 med 8 98 big 8 82
small 9 124 med 9 121 big 9 77
small 10 136 med 10 64 big 10 77
small 11 34 med 11 97 big 11 76
small 12 22 med 12 78 big 12 76
small 13 146 med 13 105 big 13 84
small 14 100 med 14 92 big 14 74
small 15 79 med 15 101 big 15 127
small 16 118 med 16 145 big 16 115
small 17 120 med 17 126 big 17 184
small 18 60 med 18 188 big 18 131
small 19 141 med 19 173 big 19 159
small 20 28 med 20 153 big 20 144

Table 3: The connectedness of the clash-free timetables for the Metaheuristic Network in-
stances [24]. For each instance we give the degeneracy deg(G) of the conflict graph G.
Values in bold face indicate the connectedness of clash-free timetables is established by
Theorem 1.

instance deg(G) instance deg(G) instance deg(G)

easy01 15 medium01 49 hard01 68
easy02 19 medium02 53 hard02 67
easy03 13 medium03 52
easy04 12 medium04 51
easy05 20 medium05 47

P1

K4

P2

K4

T

K5

A

K3

S

K3

G

K5

Fig. 4: Succinct representation of an optimal vertex ordering of the graph G′ obtained from
the conflict graph of the instance toy by the reduction to graph coloring. All nodes represent
cliques as denoted below the nodes.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

342

possible output of the algorithm VERTEXELIMINATION. From

max
v∈V (G′)\C

pred(v,σ) = 11 ,

we can conclude that subdeg(F,G′)≤ 11.

Proposition 1 For the instance toy, subdeg(F,G′) = 11.

Proof Let σ be an ordering of V (G′) and V ′ ⊆V (G′)\C. The maximum number of prede-
cessors adjacent to any vertex of V ′ in G′ is denoted by

p(V ′,σ) = max
v∈V ′

pred(v,σ) .

Note that for a clique K ∈ {T,A,S,G}, the value p(K,σ) is determined by the last vertex of
K in σ . Thus, the value of p(K,σ) depends only on the relative order of the last vertices of
the cliques {T,A,S,G} in σ . Let S̃ be the vertex orderings of G′ such the vertices C precede
all other vertices of G′ and let Ŝ be the total orderings of {T,A,S,G}. For each ordering
σ ′ ∈ Ŝ we can pick an ordering `(σ ′) of G′ that is compatible with σ ′ in the sense that the
relative ordering of the last vertices of the cliques is in accordance with σ ′. We have,

subdeg(F,G′) = min
σ∈S̃

max
K∈{T,A,S,G}

p(K,σ) = min
σ ′∈Ŝ

max
K∈{T,A,S,G}

p(K, `(σ ′)) .

For any ordering σ ′ ∈ Ŝ such that G< T , we have p(T, `(σ ′))≥ 13, because the last vertex of
T has at least 13 adjacent predecessors in G′. Thus, we only need to consider orderings such
that G > T . Furthermore, since no vertex of G is adjacent to any vertex of A or S, changing
the relative order of A and G or S and G does not change the number of adjacent predeces-
sors. Hence, we can assume G is a maximum in any ordering of interest. We enumerate the
values of p(K, `(σ ′)) all for K ∈ {T,A,S,G} for the 6 permutations of {T,A,S}:

clique ordering σ ′ ∈ Ŝ p(T, `(σ ′)) p(A, `(σ ′)) p(S, `(σ ′)) p(G, `(σ ′))

T,A,S,G 8 11 10 9
T,S,A,G 8 14 7 9
A,T,S,G 11 6 10 9
S,T,A,G 11 11 2 9
A,S,T,G 14 6 5 9
S,A,T,G 14 9 2 9

Thus,

subdeg(F,G′) = min
σ ′∈Ŝ

max
K∈{T,A,S,G}

p(K, `(σ ′)) = 11

We can conclude that the proposed heuristic produces a witness of subdeg(F,G′) = 11
on the instance toy.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

343

5 Conclusions

We investigated the connectedness of clash-free timetables with respect to the Kempe-
exchange operation. This investigation is related to the connectedness of the search space of
timetabling problem instances, which is a desirable property, for example for two-step al-
gorithms using the Kempe-exchange during the optimization step. We include period avail-
ability requirements in our analysis and derive improved conditions for the connectedness
of clash-free timetables in this setting. We further show that the diameter of the reconfigu-
ration graphs increases only linearly due to the period availability requirements. Our results
indicate the connectedness of the clash-free timetables for a number of benchmark instances.

For future research, other properties of feasible timetables such as overlap-freeness may
be considered as well. Furthermore, two kinds of possible improvements may be considered
with respect to establishing the connectedness of clash-free timetables in the presence of
period availability requirements: Both, a better analysis of Algorithm 1 and a better heuris-
tic approach (or exact algorithm) for determining the subdegeneracy may lead to a lower
number of periods required to certify the connectedness of clash-free timetables.

References

1. Brenda S. Baker and Edward G. Coffman, Jr. Mutual exclusion scheduling. Theoretical
Computer Science, 162(2):225–243, 1996. doi:10.1016/0304-3975(96)00031-X.

2. Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma.
On the diameter of reconfiguration graphs for vertex colourings. Electronic Notes in
Discrete Mathematics, 38:161–166, 2011. doi:10.1016/j.endm.2011.09.028.

3. Marthe Bonamy, Matthew Johnson, Ioannis Lignos, Viresh Patel, and Daniël Paulusma.
Reconfiguration graphs for vertex colourings of chordal and chordal bipartite graphs.
Journal of Combinatorial Optimization, 247(1):1–12, 2014. doi:10.1007/s10878-012-
9490-y.

4. Paul Bonsma. The complexity of rerouting shortest paths. In Proc. 37th Int. Symp.
on Mathematical Foundations of Computer Science (MFCS), pages 222–233, 2012.
doi:10.1007/978-3-642-32589-2 22.

5. Paul Bonsma and Luis Cereceda. Finding paths between graph colourings: PSPACE-
completeness and superpolynomial distances. Theoretical Computer Science, 410:
5215–5226, 2009. doi:10.1016/j.tcs.2009.08.023.

6. Alex Bonutti, Fabio De Cesco, Luca Di Gaspero, and Andrea Schaerf. Benchmarking
curriculum-based course timetabling: Formulations, data formats, instances, validation,
and results. Annals of Operations Research, 194(1):59–70, 2012. doi:10.1007/s10479-
010-0707-0.

7. Michael W. Carter. A comprehensive course timetabling and student scheduling system
at the University of Waterloo. In Selected Papers from the Third International Con-
ference on Practice and Theory of Automated Timetabling III (PATAT), pages 64–82,
2001. doi:10.1007/3-540-44629-X 5.

8. Luis Cereceda, Jan van den Heuvel, and Matthew Johnson. Connectedness of
the graph of vertex-colourings. Discrete Mathematics, 308(5–6):913 – 919, 2008.
doi:10.1016/j.disc.2007.07.028.

9. Dominique de Werra. An introduction to timetabling. European Journal of Operational
Research, 19(2):151–162, 1985. doi:10.1016/0377-2217(85)90167-5.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

344

http://dx.doi.org/10.1016/0304-3975(96)00031-X
http://dx.doi.org/10.1016/j.endm.2011.09.028
http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1007/s10878-012-9490-y
http://dx.doi.org/10.1007/978-3-642-32589-2_22
http://dx.doi.org/10.1016/j.tcs.2009.08.023
http://dx.doi.org/10.1007/s10479-010-0707-0
http://dx.doi.org/10.1007/s10479-010-0707-0
http://dx.doi.org/10.1007/3-540-44629-X_5
http://dx.doi.org/10.1016/j.disc.2007.07.028
http://dx.doi.org/10.1016/0377-2217(85)90167-5

10. Dominique de Werra. Restricted coloring models for timetabling. Discrete Mathemat-
ics, 165–166:161–170, 1997. doi:10.1016/S0012-365X(96)00208-7.

11. Luca Di Gaspero and Andrea Schaerf. Curriculum-based course timetabling web-site.
http://satt.diegm.uniud.it/ctt/. Accessed September, 2013.

12. Luca Di Gaspero, Barry McCollum, and Andrea Schaerf. The second international
timetabling competition (ITC-2007): Curriculum-based Course Timetabling (Track
3). In Proceedings of the 1st International Workshop on Scheduling, a Schedul-
ing Competition (SSC), 2007. URL http://pst.istc.cnr.it/RCRA07/articoli/

P08-digaspero-etal-RCRA07.pdf.
13. Parikshit Gopalan, Phokion G. Kolaitis, Elitza Maneva, and Christos H. Papadimitriou.

The connectivity of Boolean satisfiability: Computational and structural dichotomies.
SIAM Journal on Computing, 38(6):2330–2355, 2009. doi:10.1137/07070440X.

14. Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou,
Martha Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfig-
uration problems. Theoretical Computer Science, 412(12–14):1054–1065, 2011.
doi:10.1016/j.tcs.2010.12.005.

15. Marcin Kamiński, Paul Medvedev, and Martin Milanič. Shortest paths between shortest
paths and independent sets. In Proc. 21st Int. W’shop. on Combinatorial Algorithms
(IWOCA), pages 56–67, 2011. doi:10.1007/978-3-642-19222-7 7.

16. Michel Las Vergnas and Henri Meyniel. Kempe classes and the Hadwiger conjecture.
Journal of Combinatorial Theory, Series B, 31(1):95–104, 1981. doi:10.1016/S0095-
8956(81)80014-7.

17. Rhydian Lewis. Metaheuristics for University Course Timetabling. PhD thesis, Napier
University, Edinburgh, Scotland, 2006.

18. Rhydian Lewis and Ben Paechter. New “harder” instances for the univer-
sity course timetabling problem. http://www.soc.napier.ac.uk/~benp/centre/

timetabling/harderinstances.htm. Accessed September, 2013.
19. Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for course timetabling.

European Journal of Operational Research, 200(1):235–244, 2010.
doi:10.1016/j.ejor.2008.12.007.

20. Giorgio Lucarelli. Scheduling in Computer and Communication Systems and Gener-
alized Graph Coloring Problems. PhD thesis, Athens University of Economics and
Business, 2009.

21. David W. Matula. A min-max theorem for graphs with application to graph coloring.
SIAM Review, 10(4):467–490, 1968. doi:10.1137/1010115.

22. Barry McCollum, Paul McMullan, Edmund K. Burke, and Rong Parkes, Andrew
J.and Qu. The second International Timetabling Competition: Examination timetabling
track. Technical Report QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University,
Belfast, Sep 2007. Available from http://www.cs.qub.ac.uk/itc2007/.

23. Bojan Mohar. Kempe equivalence of colorings. In Adrian Bondy, Jean Fonlupt,
Jean-Luc Fouquet, Jean-Claude Fournier, and Jorge L. Ramı́rez Alfonsı́n, editors,
Graph Theory in Paris, Trends in Mathematics, pages 287–297. Birkhäuser, 2007.
doi:10.1007/978-3-7643-7400-6 22.

24. Olivia Rossi-Doria, Michael Sampels, Mauro Birattari, Marco Chiarandini, Marco
Dorigo, Luca M. Gambardella, Joshua Knowles, Max Manfrin, Monaldo Mastrolilli,
Ben Paechter, Luis Paquete, and Thomas Stützle. Supporting material for the pa-
per [25]. http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.htm. Ac-
cessed February, 2014.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

345

http://dx.doi.org/10.1016/S0012-365X(96)00208-7
http://satt.diegm.uniud.it/ctt/
http://pst.istc.cnr.it/RCRA07/articoli/P08-digaspero-etal-RCRA07.pdf
http://pst.istc.cnr.it/RCRA07/articoli/P08-digaspero-etal-RCRA07.pdf
http://dx.doi.org/10.1137/07070440X
http://dx.doi.org/10.1016/j.tcs.2010.12.005
http://dx.doi.org/10.1007/978-3-642-19222-7_7
http://dx.doi.org/10.1016/S0095-8956(81)80014-7
http://dx.doi.org/10.1016/S0095-8956(81)80014-7
http://www.soc.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm
http://www.soc.napier.ac.uk/~benp/centre/timetabling/harderinstances.htm
http://dx.doi.org/10.1016/j.ejor.2008.12.007
http://dx.doi.org/10.1137/1010115
http://www.cs.qub.ac.uk/itc2007/
http://dx.doi.org/10.1007/978-3-7643-7400-6_22
http://iridia.ulb.ac.be/supp/IridiaSupp2002-001/index.htm

25. Olivia Rossi-Doria, Michael Sampels, Mauro Birattari, Marco Chiarandini, Marco
Dorigo, Luca M. Gambardella, Joshua Knowles, Max Manfrin, Monaldo Mastrolilli,
Ben Paechter, Luis Paquete, and Thomas Stützle. A comparison of the performance
of different metaheuristics on the timetabling problem. In Edmund Burke and Patrick
Causmaecker, editors, Practice and Theory of Automated Timetabling IV, volume 2740
of Lecture Notes in Computer Science, pages 329–351. Springer Berlin Heidelberg,
2003. doi:10.1007/978-3-540-45157-0 22.

26. Andrea Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13
(2):87–127, 1999. doi:10.1023/A:1006576209967.

27. Katja Schimmelpfeng and Stefan Helber. Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum, 29(4):783–803, 2007.
doi:10.1007/s00291-006-0074-z.

28. George Szekeres and Herbert S. Wilf. An inequality for the chromatic number of
a graph. Journal of Combinatorial Theory, 4(1):1–3, 1968. doi:10.1016/S0021-
9800(68)80081-X.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

346

http://dx.doi.org/10.1007/978-3-540-45157-0_22
http://dx.doi.org/10.1023/A:1006576209967
http://dx.doi.org/10.1007/s00291-006-0074-z
http://dx.doi.org/10.1016/S0021-9800(68)80081-X
http://dx.doi.org/10.1016/S0021-9800(68)80081-X

FlexMatch - A Matching Algorithm with linear
Time and Space Complexity

Nina Nöth · Peter Wilke

Abstract FlexMatch, a new matching algorithm with linear time and space
complexity is introduced.

FlexMatch is based on a self organizing cell structure yielding next neigh-
bour candidates for optimized matching.Results obtained when applying the
FlexMatch algorithm on a real world problem are presented.

Keywords Matching Algorithm · Linear Time and Space Complexity · Self
Organizing Cell Structure

1 Introduction

Our research group also acts as competence centre at our university regarding
multi-criteria optimization problems. Recently we have been approached to
implement a matching portal for students looking for hands-on training outside
our faculty labs. The duration and extent depend on the degree and subject. As
the metropolitan region of Nuremberg and especially the City of Erlangen is a
national centre for medical engineering and technology numerous companies,
ranging from very small business to major players, are offering this type of
off-campus training.

The matching problem consists of a facts based part and a political com-
ponent. Of course all companies would prefer to hire the best students, and
of course most students would prefer a major company. But from a regional

Nina Noeth
E-mail: Nina.Noeth@Studium.Informatik.Uni-Erlangen.DE

Peter Wilke
University of Erlangen-Nuernberg
Computer Science Department
Multi Criteria Optimisation Group
Snail-mail: Martensstrasse 3, 91058 Erlangen, Germany
E-mail: Peter.Wilke@FAU.DE

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

347

developer’s view students should get familiar with small but highly special-
ized companies even though they might not be widely known. And from an
university’s point of view all these training opportunities should be offered to
all students.

2 The Problem

The problem to be solved consists of matching students with companies’ train-
ing offers, where their constraints reflect the student’s resp. companies’ require-
ments.

It should be obvious that this optimization problems has contradictory
constraints.

The initial situation consists of supply (companies’ offers) and demand
(students’ requirements) which are both entered in a form with several cat-
egories. The values entered are either single numerical values, ranges or bi-
nary/boolean values.

In the context of this paper the concrete nature of the constraints or data
is of no interest. It is sufficient to regard the data as a multidimensional vector
and to presume the existence of a cost function to evaluate the current solution.

The solution should reflect the policy that students should be introduced
to all kinds of companies and that companies should be offered students of all
performance levels. But of course the individual requirements on both sides
are the most significant matching criteria.

The solution consist of one company for each student and one student for
each training opportunity offered. If this matching doesn’t lead to a acceptance
each party can request additional suggestions.

3 The FlexMap- and FlexMatch-Algorithms

On the top level abstraction layer solving the problem is divided into the
following steps:

1. Building two separate ring structures: one connecting requirements and the
other connecting requirements and offers having a preferable small distance
to each other,

2. Matching the requirements and offer by using the resulting neighbourhood
relation of the ring structures.

3. Improving the single matches by looking for better partners in a deeper
neighbourhood.

3.1 FlexMap

FlexMap [Fritzke and Wilke(1991)] is a self-organizing neural network, which
is linear in its time and space complexity. Problems similar to the Travelling

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

348

Salesman Problem can be solved using the growing ring structure yielding
the round-trip we’re looking for. I.e. the FlexMap algorithm connects each
city with it’s next – with respect to the length of the Hamiltonian cycle –
neighbours, inducing some kind of a topology order on the nodes.

The basic idea is a growing cell structure. The initial structure consists
of three cells. Repeated insertion and distribution steps extends the structure
until all cells can be matched with its corresponding node, e.g. the city (Fig.
2). A node (e.g. a city) is chosen randomly and it next neighbour edge is
calculated, a new cell is inserted in the middle of that edge and the cells are
moved towards the chosen node (Fig. 1).

Table 1 shows the O(n)-version of the FlexMap algorithms in detail, fol-
lowed by it’s structogram.

Fig. 1: Example of a distribution step: inserting a bmu in the neighbouring edge and moving
three cells towards the node C . [Fritzke and Wilke(1991)]

Fig. 2: Local search for the best matching unit: the previous bmu is shown as shaded circle
and the local neighbours (here up to degree 4) as white circles. [Fritzke and Wilke(1991)]

Some remarks regarding it’s complexity:

Step 1 kneighbour is a constant, so the neighbourhood search can be done in
constant time O(1).

Step 2 A cell becomes a member of the set of high error cells when is often
becomes the bmu and therefore its error variable is increased quite often. As

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

349

4 Nina Nöth, Peter Wilke

there are only ndistribution steps, so the search can be performed in constant
time O(n). Obviously we can’t guarantee to find the global maximum but
most likely a cell with a high error value.

Step 3 All bookkeeping and pinning operations can be performed in constant
time O(1).

Steps 1 -3 The loop is performed n-times, all steps require only constant time,
therefore the time complexity is linear to n, i.e. O(n). The required space
consists of memory space for the nodes and the cells. The maximum number
of cells is equal to the number of nodes, i.e. O(2∗n) = O(n), which is linear
in n too.

Step Action

Init Start with a ring structure consisting of three cells at randomly chosen posi-
tions.
Initialize all error variables with 0.0.

Step 1 Perform a constant number ndistribution of distribution steps.
Update the error variable of the bmu (best matching unit) after every step.
Keep a reference from each cell to the cell, which was most recently its bmu.
When the cell is chosen again the search of its bmu is restricted to its last bmu
and its neighbourhood up to kneighbour in each direction.
kneighbour is a constant

Step 2 Find the edge eworst in the set of high error cells connecting two cells v1 and
v2, such that the edgeerror

err(eworst) := err(v1) + err(v2)

is a maximum for all edges in the ring structure.
Insert a new cell cnew in the centre of eworst .
Initialize the error variable of the new cell with

err(cnew) :=
1

3
err(v1)

1

3
err(v2)

Adjust the error variables of v1 and v2 such that the total error of v1, v2 and
cnew stays constant:

err(v1) :=
2

3
err(v1) +

2

3
err(v2)

Step 3 If a cell has been bmu to a node threshold times the cell is pinned to that node
and removed from the set of free cells.
When every node has an associated cell, a solution is found.
Otherwise continue with Step 1

Table 1: The O(n) version of Flexmap [Fritzke and Wilke(1991)]

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

350

3.2 FlexMap Description

global variables:
unripe { MatchingObject -List, set of all elements, which

should be part of the ring structure to be gener-
ated}

firstCell { Cell -variable}
tmp { MatchingObject -variable}

constants:
D CONS=50

{ int -variable, specifying the number of distribu-
tion steps}

N CONS=20

{ int -variable, specifying the number of neighbours,
that should be examined while looking for a better
bmu}

E BMU=0.05

{ double -variable}
initialize three random Cells

firstCell ← one of the Cells

unripe is not empty

i ← 0

i < D CONS

tmp ← random object of unripe

tmp has already a bmu?

true false

search bmu for tmp by re-
searching the N CONS next
and previous neighbours of
the current bmu of tmp

search the bmu in the whole
structure of Cells

∅

update the error of the new bmu by adding the distance
between bmu and tmp

update the position of the bmu and its two direct neigh-
bours by moving them to the direction of tmp by the
fraction E BMU of the distance from each to tmp

put the new bmu of tmp a list of the last used bmus

has the new bmu of tmp a final object

true false

bmu counter of
tmp ← 0

was the current bmu of tmp

the bmu for D CONS

times
true false

set tmp to the final ob-
ject of its bmu

remove tmp from unripe

∅
∅

find the edge with the largest error in the set of the D CONS

th last visited bmus

insert a new Cell in the middle of the two vertices v1 and v2
of the worst edge

the error of the new Cell ← (error((v1) + error(v2))*(1/3)

the error of v1 ← error(v1)*(2/3)

the error of v2 ← error(v1)*(2/3)

step over the Cell structure in one direction and take out all final
MatchingObject . Put them into a double linked list in the order of
removing them from the Cell structure

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

351

After the FlexMap algorithm is applied to the original matching problem
we have two circular structures. One req linking the requirements and the
other all linking all requirements and offers in a ring.

3.3 FlexMatch

The next step is to calculate the matching. Again we apply a growing cell
structure algorithm, this time it’s called FlexMatch[Nth(2014)].

Table 2 shows the O(n)-version of the FlexMatch algorithms in detail,
followed by it’s structogram. The structogram does not include step 5.

Step Action

Step 1 Step over the circular structure all linking all objects.
Take out all requirements having an offer as direct neighbour in the structure.
and insert the pair of requirement and offer into a linked list requested .
If one requirement has two direct neighboured offers take the one with the
smaller distance.

Step 2 Step through the requested list and research if there are better offers for re-
quirements.
Take a pair of the list and check if the current offer of the requirement has an
offer with smaller distance to the requirement in its direct neighbourhood.
If this is the case swap the current offer with the better one.

Step 3 Extract the requirement of the first pair of the requested list as left restricting
object and the requirement of the next pair in the list as right restricting
object.
Use only linking requirements to navigate through the list.
Take the next requirement of the requirement list of the left restricting object.

Step 4 Test whether the euclidean distance to the offer of the left or of the right
restricting object is smaller to the current requirement.
Put the pair of the researched requirement and the smaller offer in a linked
list of pairs matchingList .
Take the next element of the current requirement of the requirement list.
If this element is the right restricting object set the left restricting object to
the right one and for the left one take the next element of the requested list.
Continue with step 3.
Otherwise continue with step 4.
Go to step 5 when all elements of the requirement list have be processed.

Step 5 Take the structure req and choose one requirement tmp (is linked in both ring
structures) .
Research if the nbetter

1 neighbours of tmp in both direction include a offer
having a smaller distance to tmp then the current offer of tmp.
If there is a better one exchange it with the current one of tmp.
Take the next requirement of the structure req and repeat step 5 until you get
to the first choosen requirement of step 5.

Table 2: The FlexMatch

1 In the current implementation nbetter hast the value 20.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

352

3.4 FlexMatch Description

local variables:
requirement

{ MatchingObject -List}
all { MatchingObject -List}
matchingList

{ MatchingPair -List}
requested

{ MatchingObject -List}
tmp { MatchingObject }

i ← 0

i < sizeof(all)

i ← i + 1

tmp is a requirement element?

true false

tmp has a offer element as direct
neighbour?

true false

set the offer neighbour with
the smaller distance to tmp

to the offer of tmp

put tmp into requested

∅

∅

tmp ← i -th element of all

i ← 0

i < sizeof(requested)

tmp ← i -th element of requested

has previous or next element of tmp a offer with a
smaller distance to tmp

true false

put the better offer to the offer
of tmp and put them into the
matchingList

put tmp and its offer into the
matchingList

i ← i + 1

i ← 0

tmp ← the first element of requirement

requirement is not empty

a ← i -th element of requested

b ← i+1 -th element of requested

the offer of a has a smaller distance to tmp

true false

put the offer of a to the offer of tmp and put
them into the matchingList

put the offer of b

to the offer of tmp

and put them into the
matchingList

∅

remove tmp from requirement

tmp ← the next element of tmp in requirement

i ← i + 1

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

353

4 Difference to other matching algorithms

The most significant differences between the FlexMatch-Algorithm and non
approximative matching algorithms is the cardinality of mapping and the run-
time behaviour. The Gale-Shapley-Algorithm(GSA) [Gusfield and Irving(1989)]
allows only a 1:1-mapping. This means every element of the entry set gets
matched to one other element. The FlexMatch allows a 1:n-mapping. One ele-
ment of the offering set can be proposed to one or more elements of the request-
ing set. The aim of algorithms like the GSA or the Hungarian Algorithm (HA)
is the common weal. The FlexMatch however tries to find a solution having the
priority of the individual satisfation for every element of the requesting set. The
runtime complexity of the GSA is in O(n2) [Gusfield and Irving(1989), page 8]
and of the HA it is O(n3) [James Munkres(1957)]. Some approximative match-
ing algorithms[Vinkemeier and Hougardy(2005)] [Duan and Pettie(2010)] have
a linear or nearly linear runtime, but they also do not permit 1:n mappings in
their solutions.

5 Results

System

– CPU: Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz
– Memory: 4GiB
– Compiler: Java version 1.7.0 25
– Runtime environment: OpenJDK Runtime Environment (IcedTea 2.3.10)

(7u25-2.3.10-1ubuntu0.12.10.2)
– VM: OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

The test data sets were generated randomly. The single elements of a test
set belong to two subsets having the same size. One is the set of requirements
and one is the set of offers. The test sets have three different characteristics:

Randomness All elements of both sets are randomly distributed in a defined
area

Independency The sets of the requirements and the offers have no overlapping
area.

Overlapping The elements of the requirements lie inside the area of elements
of the offers.

Fig. 3 shows how the characteristics of the sets would look like in the two
dimensional space. The varying problem sizes were 100, 300, 500, 700, 1000,
3000, 4000, 5000, 6000, 8000 and 10000. For each size and characteristic 25
sets were generated. So there are 10*25*3 = 750 test sets. The FlexMatch was
run five times for every set.

Fig. 4 shows the different runtime behaviour of the FlexMatch and of the
brute force algorithm testing a element of a subset with all elements of the
other subset. The computation of the runtime was done by taking the average

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

354

Fig. 3: Characteristics of the sets

Fig. 4: Runtime behaviour

execution time per test set. The bottom line is that the FlexMatch algorithm
shows a linear complexity and outperforms the brute force algorithm when the
problem size exceeds the break even point at approx. 5000 elements.

Fig. 5 shows that most tests have a relative error smaller than 20%. The
relative error = (sumFM

sumOpt −1)∗100% was computed by summing up the distance

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

355

between all matched pairs being found by the brute force algorithm (sumOpt)
and the FlexMatch (sumFM).

Fig. 5: Error statistics

Fig. 6 shows quintessential how the cell ring structure over all elements
of the two sets generated by the FlexMap based part of the FlexMatch could
behave in a two dimensional space with a problem size of 20. Fig. 7 and 8
represent the ring structures req linking all requirements and all linking all
requirements and offers. Fig. 9 Shows the suggested matching pairs as a result
of using the neighbourhood relation of the two ring structures.

6 Summary and outlook

In this paper we have shown how a matching algorithm with linear time and
space complexity using a self organising map is designed and implemented.
The matching algorithm yields results of sufficient quality but some artefacts
have to be investigated as their costs are beyond the statistical expectations.

Currently we are running experiments using different data sets, initial sit-
uations and problem size and would like to improve the results and runtime
behaviour further more.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

356

Fig. 6: Cell-Structure

Fig. 7: Requirements and offers linked in a structure

The next steps would be the deployment of the software in the web-based
matching portal and analysis of the real world problem behaviour.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

357

Fig. 8: Requirements linked in a structure

Fig. 9: Linked matchingpairs

References

[Duan and Pettie(2010)] Duan R, Pettie S (2010) Approximating maximum weight match-
ing in near-linear time. In: Proceedings 51st IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp 673–682

[Fritzke and Wilke(1991)] Fritzke B, Wilke P (1991) FLEXMAP - A neural network with
linear time and space complexity forthe travelling salesman problem. In: Proceedings
IJCNN Int. Joint Conf. Neural Networks, Singapore

[Gusfield and Irving(1989)] Gusfield D, Irving RW (1989) The stable marriage problem:
Structure and algorithms. Foundations of computing, MIT Press, Cambridge and Mass

[James Munkres(1957)] James Munkres (1957) Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and Applied Mathematics
5(1):32–38

[Noeth(2014)] Noeth N (2014) Optimierte Vergabe von Praktikumsplaetzen
[Vinkemeier and Hougardy(2005)] Vinkemeier DED, Hougardy S (2005) A linear-time ap-

proximation algorithm for weighted matchings in graphs. ACM TRANSACTIONS ON
ALGORITHMS 1(1):107–122

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

358

Improvement by Combination

How to increase the Performance of Optimisation Algorithms
by combining them

Johannes Ostler · Peter Wilke

Abstract Working with different optimisation algorithms leads to the obser-
vation that different types of solutions are generated, disclosing their different
nature, their pros and cons. We investigated the question whether or not the
combination of optimisation algorithms yield even better results than each of
its constituents or will their drawbacks make things even worse.

Keywords Optimisation Algorithms · Combination of Algorithms ·
Performance Improvement

1 Introduction

Two runs of random based optimisation algorithms lead to different solutions,
especially if different optimisation algorithms are used [Wilke and Ostler(2008)].There
are different approaches to escape local minima like slow cooling in Simulated
Annealing or jump to a worse solution like in Walk Dow Jump Up.We want
to combine the good performance of neighbourhood based algorithms and the
advantage of genetic operators.

Johannes Ostler
E-mail: Johannes.Ostler@informatik.uni-erlangen.de

Peter Wilke
University of Erlangen-Nuernberg
Computer Science Department
Multi Criteria Optimisation Group
Martensstrasse 3, 91058 Erlangen, Germany
E-mail: Peter.Wilke@fau.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

359

2 Basic Algorithms

2.1 Algorithms

The basic algorithms are plain vanilla implementations of Genetic Algorithm[Goldberg(2013)],
Simulated Annealing[Kirkpatrick et al(1983)Kirkpatrick, Gelatt, and Vecchi,Preiss(1998)],
Late Acceptance [Burke and Bykov(2008)] and Walk Down Jump Up [Wilke and Killer(2010)].
The used plain vanilla genetic algorithm implementation is corresponding to
[Ho Pham L. Huy Anh and Nam(2011)].

All the basic algorithms are implemented for solving different timetabling
problems defined in the REC model[Ostler and Wilke(2010)] of the EATTS
[Gröbner et al(2003)Gröbner, Wilke, and Büttcher].

So the algorithms in the stand alone version are used for solving the prob-
lems. Several runs of the algorithms on the same problem data base provide
the reference values for the combined algorithms.

For the reference runs we used a population with 10 or 20 individuals. The
mutation rate was between 20 and 40 percent and between 0.5 and 5 percent
of the not fixed resource lists of the mutated individuals were changed. The
champion (i.e. the best individual) was excluded from mutation. The next
generation consisted of the best and 5 or 10 other individuals. 40 % good
individuals, which means cost better than average costs, and 60% random
based individuals. To fill the population two point cross over was used. So 4
or rather 9 individuals were be created in every iteration

2.2 Data Base

2.2.1 University Exercise Group Planning

The Exercise Group Planning Problem assigns students to a list of exercise
groups. The constraints are the limitation of the group size, the first and second
choice selections made by the students and their wish to share the group with
the best friends.

2.2.2 GAT 2011 courses at a university

Our university organises a girl-and-technology week each year to attract more
female students to technical subjects. In this scenario the tutors and time slots
for the events are fixed while students (not classes) have to be assigned to the
project of their choice, details given in table 1. Each student has a list of 4
preferred courses and can declare friends with whom she wants to share the
same courses.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

360

Table 1 Statistics of example problems

University Exercise Group Planning
Events: 25
Courses 25
Students 798

possible solutions

(
798
25

)
GAT 2011 example

Events: 229
TimeSlots: 57
Subjects: 52
Girls: 170

possible solutions 101313

3 Combining Algorithms

Preceding research [Wilke and Ostler(2008)] shows, that different random based
runs mostly lead to different results, especially if different algorithms were
used. Combining these different solutions by a Crossover operator could be a
useful way for escaping local minima.

The essential idea is to combine the run of the Genetic Algorithm with
other optimisation algorithms. For example Simulated Annealing can be used
in the optimisation step or Walk Down Jump Up to generate decent individuals
for the start population. The algorithms used in the optimisation step will
optimise the solution by using random based decisions. And the Crossover
operation over the different solutions will provide new solutions that are not
in the neighbourhood of a local minimum.

Fig. 1 Genetic Algorithm - modified implementation

For the test runs we used the same parameters as for the plain vanilla
version. The interesting modification was an additional modification step. We
optimised the new generation by short runs of different optimisation algo-
rithms. We used Late Acceptance, Walk Down Jump Up, Simulated Anneal-
ing and Hill Climbing. In the optimisation step for every individual will be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

361

selected one of these algorithms by random. The runs ends after 2 seconds or
100000 iterations. The computation of a modified Genetic Algorithm runs 200
iterations.

The algorithm offers a good speed up when running the optimisation steps
parallel. Because there are only synchronisation points needed after running
the optimisation steps.

4 Results

4.1 Test Environment

The tests were running for every configuration 5 times. The best and worst case
were dropped and the average value of the remaining results was computed.
The combined algorithm was running in sequential mode. The speed up of
running the optimisation steps parallel would distort the results.

4.2 Chart Types

4.2.1 Population Comparison Chart - PCC

The Population Comparison Chart PCC shows the quality change of some
individuals and the best solution during the optimisation process. The vertical
axis shows the costs, the horizontal axis the iteration. The costs are computed
before the cancel criterion were checked meaning after the cross over or the
optimisation step. For better scaling the first 10 iterations are dropped. If an
individual dies it will be replaced by a child born in the cross over process.
This chart provides a good look on changes of the different individuals of a
genetic algorithm.

4.2.2 Genetic Step Chart - GSC

The Genetic Step Chart plots the population average costs after one specific
step of the genetic algorithm in relation to the iteration. The vertical axis
shows the costs, the horizontal axis the iteration. The specific steps are shown
in table 2.

Table 2 Genetic Step Chart - GSC

mutate the average costs after mutation
select the average costs after selecting individuals (reduced population size)
cross over: the average costs after cross over individuals (recovered population size)
optimise the average costs after optimisation step
best the costs of the best individual at the end of the iteration

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

362

The GSC shows the costs changes of the population after the single steps
of the iteration. Some steps increase the costs like mutation, other will bring
them down like the optimisation or selection.

4.2.3 Algorithm Comparison Chart - ACC

The Algorithm Comparison Chart ACC shows the comparison between dif-
ferent optimisation algorithms. For comparison issues a standardised base is
need. The iteration counter is not suitable, because the computation time is
quite different between one iteration of different algorithms. The only useful
base for comparison seems to be execution time. But execution time depends
also on external influences. So the tests must run several times and the average
must be computed while dropping best and worst solution.

The ACC shows the best cost value on the vertical axis corresponding to
the time value on the horizontal axis. For better scaling the costs axis the first
seconds are dropped. The ACC contains one line per executed algorithm. With
ACC different runs of the same algorithm with different parameter setting can
also be compared.

4.3 Test and Results

4.3.1 Results EGP Problem

First we run the combined algorithm with a high mutation rate of 5 or 3
percent and the best individual was not mutated. The effect was that the
best individual was improved by the different runs of optimisation algorithms,
but there was no ”genetic effect”, which means that the other individuals
which were mutated after every step have no chance to get best individual.
So a sequential run of different optimisation algorithms on the best individual
would have the same effects.

After setting the mutation rate to a half percent the results were different.
The Population Comparison Chart 2 shows that after some iterations the best
individual is reset by another individual. For better clearness we select two
individuals and the best cost line. If the best cost line is shown in red colour
a not selected individual is the best.

The Genetic Step Chart shows that the average cost increases after mu-
tation step between 10 and 15 percent. Then the selection of some individual
decrease the average costs a little bit. But the crossover operator increases the
costs between 20 and 50 percent. The optimisation step decreases the costs
so that the costs after optimisation are lower than after the mutation step.
The most important insight by looking on the GSC is that the average costs
decreases.

The Algorithm Comparing Chart shows the comparison of Walk Down
Jump Up, Simulated Annealing and Late Acceptance and the combined ge-
netic algorithm in comparison. After 320 seconds Simulated Annealing offers

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

363

Fig. 2 EGP Problem
Population Comparison Chart Genetic Step Chart

the best solution, but after 1500 seconds the best individual of the combined
algorithm is better. Simulated Annealing stagnates at this time, the combined
is still improving. Late Acceptance offers a good solution after 2240 seconds
but is also stagnating after this.

So after 3200 seconds the combined algorithm leads to the best solution
with 16639 penalty points the results are following (table 3):

4.3.2 GAT Problem

The Algorithm Comparison Chart for the Girls and Techniques Problem shows
the problem of neighbourhood bases algorithms: stagnation in local minima.
This time ranking of the reference algorithm is inverted. Walk Down Jump
Up leads to the best result. But this solution has with 7237 over the double
costs of the combined algorithm, which solution has 3519 penalty points.

Table 3 Comparing Results EGP and GAT Problem

Algorithms

Late Acceptance
Simulated Annealing
Walk Down Jump Up

EGP problem
Costs Diff to Combined

17334 +4.2 %
18808 +13.0 %
20676 +24.2 %

GAT Problem
Costs Diff to Combined

7237 +106 %
7507 +113 %
10795 +207 %

5 Summary

So over all the combined algorithm could be a good alternative to neighbour-
hood search based algorithms. Like other genetic algorithms the usage of main
storage for n individuals is n times higher than the usage of neighbourhood
search based algorithms.

But if enough time and storage could be spend the combined algorithm
should lead to good solutions. If a multi core or distributed hardware can be
used there is good speed up while running the optimisation step parallel.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

364

EGP GAT 2011

Fig. 3 Algorithm Comparison Chart of the Problems

6 Outlook

The setting of the parameters, especially of the mutation rate has big influence
to the performance of the algorithm. So an automated parameter setting could
be helpful. Especially the adaptation of run time and selection probability
of the neighbourhood based algorithms corresponding to their average cost
improvement could have positive effects to runtime and solution quality.

References

[Burke and Bykov(2008)] Burke EK, Bykov Y (2008) A late acceptance strategy in hill-
climbing for exam timetabling problems. In: Proceeding of the 7th international con-
ference on the Practice and Theory of Automated Timetabling, Patat2008, URL
http://w1.cirrelt.ca/∼ patat2008/PATAT 7 PROCEEDINGS/Papers/Post-WD2a.pdf

[Goldberg(2013)] Goldberg DE (2013) Genetic Algorithms. Pearson Education, URL
http://books.google.de/books?id=6gzS07Sv9hoC

[Gröbner et al(2003)Gröbner, Wilke, and Büttcher] Gröbner M, Wilke P, Büttcher
S (2003) A standard framework for timetabling problems. In: Practice and
Theory of AutomatedTimetabling IV, Springer Berlin / Heidelberg, Lecture
Notes in Computer Science, vol 2740, pp 24–38, DOI 10.1007/b11828, URL
http://www.springerlink.com/content/2mj0rwlpbp5uvh1v/

[Ho Pham L. Huy Anh and Nam(2011)] Ho Pham L Huy Anh KKA, Nam NT (2011)
Modeling identification of the nonlinear robot arm system using miso narx
fuzzy model and genetic algorithm. In: Robot Arms, InTech, pp 1–10, URL
http://http://openaccessbooks.org/book/robot-arms

[Kirkpatrick et al(1983)Kirkpatrick, Gelatt, and Vecchi] Kirkpatrick S, Gelatt CD, Vecchi
MP (1983) Optimization by simulated annealing. Science 220:671 – 680

[Ostler and Wilke(2010)] Ostler J, Wilke P (2010) The erlangen advanced timetabling
system (eatts) unified xml file format for the specification of timetabling systems.
In: Proceedings of the 8th International Conference on the Practice and Theory of
Automated Timetabling, Patat2010 - Queens University Belfast, pp 447–464, URL
http://www.cs.qub.ac.uk/∼ b.mccollum/patat10/Proceedings patat10.pdf

[Preiss(1998)] Preiss BR (1998) Data Structures and Algorithms with Object-Oriented De-
sign Patterns in Java, http://www.brpreiss.com/books/opus5/html/page474.html, chap
Simulated Annealing, p 474

[Wilke and Killer(2010)] Wilke P, Killer H (2010) Walk down jump up - a new
hybrid algorithm for time tabling problems. In: Proceedings of the 8th In-
ternational Conference on the Practice and Theory of Automated Timetabling,
Patat2010 - Queens University Belfast, pp 440–446, URL http://www.cs.qub.ac.uk/∼
b.mccollum/patat10/Proceedings patat10.pdf

[Wilke and Ostler(2008)] Wilke P, Ostler J (2008) Solving the School Time Tabling
Problem Using Tabu Search, Simulated Annealing, Genetic and Branch & Bound
Algorithms. In: Burke E, Gendreau M (eds) PATAT ’08 Proceedings of the 7th
International Conference on the Practice and Theory of Automated Timetabling,
URL http://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2008/Wilke08-
STS.pdf

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

365

Integer Programming for Minimal Perturbation Problems
in University Course Timetabling

Antony E. Phillips · Cameron G. Walker ·
Matthias Ehrgott · David M. Ryan

Abstract In this paper we present a general integer programming-based approach
for the minimal perturbation problem in university course timetabling. This prob-
lem arises when an existing timetable contains hard constraint violations, or infea-
sibilities, which need to be resolved. The objective is to resolve these infeasibilities
while minimising the disruption or perturbation to the remainder of the timetable.
This situation commonly occurs in practical timetabling, for example when there
are unexpected changes to course enrolments or available rooms.

Our method attempts to resolve each infeasibility in the smallest neighbour-
hood possible, and utilises the exactness of integer programming. Operating within
a neighbourhood of minimal size keeps the computations fast, and does not permit
large movements of course events, which cause widespread disruption to timetable
structure. We demonstrate the application of this method using an example based
on real data from the University of Auckland.

Keywords University Course Timetabling · Integer Programming · Decision
Support Systems

1 Introduction

University course timetabling is a well-known problem in which a time period and a
room are determined for each course event (e.g. a lecture). This may be conducted
prior to the start of enrolment, or after enrolment data is known. The former case
is referred to as curriculum-based timetabling, because time clashes between courses
are determined by sets of courses known as curricula. The latter case is referred to

This research has been partially supported by the European Union Seventh Framework
Programme (FP7-PEOPLE-2009-IRSES) under grant agreement #246647 and by the New
Zealand Government as part of the OptALI project.

A. E. Phillips, C. G. Walker, D. M. Ryan
Department of Engineering Science, The University of Auckland
E-mail: antony.phillips@auckland.ac.nz

M. Ehrgott
Department of Management Science, Lancaster University

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

366

as enrolment-based timetabling because clashes can be determined and weighted by
known enrolments for each course.

In a practical setting, both of these problems are applicable to some extent
(Kingston, 2013a). The timetable is typically constructed significantly prior to
the start of enrolments, and it will commonly need to be modified as enrolments
take place. During each of these phases, the situation can arise where an existing
timetable becomes infeasible due to changes in the underlying data. The mini-
mal perturbation problem addresses how to modify an existing timetable so that
feasibility is found with a minimal amount of perturbation (or disruption) to the
structure of the timetable.

The minimal perturbation problem is first comprehensively addressed in the
context of general dynamic scheduling (El Sakkout, Richards, and Wallace, 1998;
El Sakkout and Wallace, 2000). El Sakkout and Wallace (2000) propose an algo-
rithm based on constraint programming techniques, which leverages the efficiency
of linear programming to solve part of the problem.

Barták, Müller, and Rudová (2004) are the first to study minimal perturba-
tion problems in the context of university course timetabling, using a constraint
satisfaction heuristic combined with a branch-and-bound process. The authors
continue this work with a local search-based metaheuristic, known as “iterative
forward search”, which improves performance significantly (Müller, Rudová, and
Barták, 2005). Finally, Rudová, Müller, and Murray (2011) present a summary
of this approach as part of a broader course timetabling process, which is imple-
mented at Purdue University, USA. This includes detailed results on the iterative
forward search algorithm as applied to minimal perturbation problems, and is
described in a practical setting.

Kingston (2013b) addresses a similar problem in the context of high school
timetabling, proposing an ejection chain heuristic method.

In this paper we present a new general method for solving minimal pertur-
bation problems which arise in practical timetabling. Around each infeasibility,
we define a small neighbourhood of events, time periods, and rooms, which we are
willing to perturb. Within this neighbourhood we solve an integer programme
which attempts to resolve the infeasibility with minimal disruption to existing
timetable structure. Utilising the exactness of integer programming, we will only
expand the size or scope of the neighbourhood when we have certainty that the
current neighbourhood is insufficient to resolve the infeasibility. This process aims
to ensure the computational tractability of each integer programme. Limiting the
neighbourhood size is also desirable because it prevents large movements of course
events, which are seen as disruptive to the timetable structure.

We demonstrate the application of this method using an example based on real
data from the University of Auckland. The expanding neighbourhood methodology
has been successfully demonstrated in other real-world applications (Rezanova and
Ryan, 2010).

2 Minimal Perturbation Problems in University Course Timetabling

A complete solution to the university course timetabling problem is a timetable
which specifies a time period and room for every course event. The solution can

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

367

be considered feasible if it does not include any violated hard constraints, or infea-

sibilities. Quality measures, or soft constraints, are desirable features of a feasible
solution which may also be considered. For a coverage of commonly used hard
and soft constraints we refer to the benchmarking paper by Bonutti, De Cesco,
Di Gaspero, and Schaerf (2012).

University course timetabling is widely accepted to be a dynamic problem in
practice, where data may continually change throughout construction and im-
plementation of a timetable (McCollum, 2007; Kingston, 2013a). For complex
timetabling at large universities, we broadly discuss how minimal perturbation
problems can arise in each stage of the timetabling process. We draw on our own
experiences at the University of Auckland, which bears many similarities to other
large universities considered in the timetabling literature.

The early construction phase of timetabling occurs when most of the data
has been gathered, and construction of a timetable is starting. Most time or room
assignments are considered tentative, and may be changed relatively freely. At this
stage, almost any changes to the data are possible e.g. new or removed courses,
changes to staff employment status, room availabilities etc. Some infeasibilities
may not need to be resolved until the data is more complete.

The late construction phase occurs when the timetable is close to being fi-
nalised for publication. This stage is the most similar to the curriculum-based
timetabling problem addressed in the literature. At the University of Auckland,
time assignments are determined in close collaboration with faculties, to satisfy
their specific and complex requirements. In this case, changing the time period for
an event would be disruptive, whereas the room assignment may be more freely
perturbed. Major changes to the data are less likely at this stage, and all infea-
sibilities should be resolved. We note that infeasibilities may also arise due to
the method of constructing a timetable, rather than solely due to changes in the
data. For example, if faculties choose their own time-assignments independently
(often “rolled-forward” from the previous year with changes), this can produce a
timetable for which there is no feasible room assignment.

The enrolment phase of timetabling begins once the timetable is published, and
students have started to select courses. At this stage, the most common changes to
the data involve adjusting the expected course enrolments to actual course enrol-
ments, which may cause some room assignments to be no longer suitable. In this
phase, it can be disruptive to change either the time period or the room assignment
for an event. However, the former is likely to be particularly disruptive, as students
and staff may have external obligations affecting their personal timetable. We note
that in the case of the University of Auckland, because of legal requirements it
is not possible to have any excess or overflow of students in a room. Although
not all events will be attended by every enrolled student (e.g. sickness, retention,
recorded lectures), the first events of a semester are typically well attended.

In practice, the specific timing and cause of an infeasibility can significantly
affect the choice of which perturbations we are willing to perform. The algorithm
we present in this paper was motivated by two particular practical situations.
The first arises in the late construction phase of timetabling, where faculties have
approved a high quality time assignment for all their events, but we require pertur-
bation in order for a feasible room assignment to exist. Secondly, we address the
ubiquitous problem in the enrolment phase of timetabling, where unpredictable
course enrolments have caused existing room assignments to become unsuitable.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

368

3 Room Assignment

This section gives a brief overview of our room assignment algorithm. As men-
tioned in Section 2, many minimal perturbation problems in the construction
phase and particularly the enrolment phase of timetabling, involve an infeasible
room assignment. Although the room assignment algorithm is not the focus of
this paper, attempting to solve a room assignment for an infeasible timetable will
reveal important information about the nature of the infeasibilities. For a detailed
coverage of the room assignment process, we refer to Phillips, Waterer, Ehrgott,
and Ryan (2014).

The relationship between the room assignment and timetable perturbation
process is shown in Figure 1. Each rectangular box corresponds to solving an
integer programme to maximise the room assignment quality with respect to a
particular objective. We maximise each objective sequentially, and fix its value
in subsequent iterations, known as lexicographic optimisation (Ehrgott, 2005). A
lexicographic approach implies a strict precedence of the importance of quality
measures, which is appropriate in this case.

Firstly we would like to maximise the number of events which are assigned to
a feasible room, or event hours. Due to the exactness of integer programming, if we
do not find a room for all events, we can be certain that no such complete room
assignment exists. This means we will need to perform a timetable perturbation
in order to find a feasible room assignment.

However, we would first like to improve the value of other objectives. We next
maximise the seated student hours which aims to assign larger events to a room,
in preference to smaller events. This means the unassigned events will be of the
smallest size possible. Thirdly, we maximise the seat utilisation where events are
placed in rooms which “fit” well, i.e. most of the seats are occupied. This means
that any rooms which are left unused (in each time period) will be the largest
possible. Finally we maximise the building preference which favours holding events
in rooms which are geographically close to the associated teaching department.

The resulting partial room assignment provides us with essential information.
Firstly, it shows which time periods contain unassigned events (infeasibilities), and
therefore require solving the minimal perturbation problem. Secondly, the partial
room assignment contains information which helps to focus our neighbourhood
search to restore feasibility (see Section 4.4).

4 Minimal Perturbation

4.1 Expanding Neighbourhood Algorithm

Solving the minimal perturbation problem requires assigning both a time period
and a room for each event, rather than handling these problems separately. How-
ever, building a model with variables indexed over all events, time periods and
rooms could easily result in millions of variables (Burke, Mareček, Parkes, and
Rudová, 2008), which would be intractable. As a result, we would like to build
a model which resolves each infeasibility in as small a neighbourhood as possible.
The neighbourhood around an infeasibility is defined by a restricted set of events
which can be moved, and subsets of time periods and rooms to which events can

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

369

Starting
Timetable

Event Hours

Are all
events

assigned?

Seated Student
Hours

Seat Utilisation

Building
Preference

Timetable
Perturbation

Building
Preference

Course Room
Stability

Spare Seat
Robustness

no yes

Fig. 1 University of Auckland Timetabling Process 2010

be moved. All events outside this neighbourhood are fixed. Based on information
from the partial room assignment, the specific composition of a neighbourhood is
heavily customised to the nature of the infeasibility.

In many universities, it is common for rooms to be utilised in approximately
50% of available time periods (Beyrouthy, Burke, Landa-Silva, McCollum, McMul-
lan, and Parkes, 2007). Therefore, it is very likely that a feasible timetable will
exist where all events are held in a suitable time period and room. Furthermore,
whether the infeasibility arises from rolling forward an old timetable with changes,
or if there are unexpected post-enrolment changes, it is likely that the infeasible
timetable will be “close” to feasibility, i.e. only a small number of events will need
to change time period or room.

We will initially generate a very small neighbourhood, where we are only willing
to move events of a similar size to our unassigned event(s), and only to/from the
time periods one hour before and after their current time (for example). Within this
neighbourhood we solve an integer programme (IP) to reassign all neighbourhood
events in the least disruptive way that removes the infeasibility. If this is not
possible, we will expand the scope of the neighbourhood, and solve again until the
infeasibility can be resolved. Although several iterations of this process may be
required, each IP model will be relatively small due to the optimistic methodology
of starting with a small neighbourhood. Because we use an exact algorithm to
attempt resolving the infeasibility, we know with certainty whether a feasible re-
assignment exists in this neighbourhood or not. This is an advantage over using a

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

370

heuristic method, where it can be difficult to determine whether a given problem
is infeasible or whether this heuristic is unable to find a solution.

When we need to expand the neighbourhood, this is done in a similar way to
how the starting neighbourhood is constructed, in the sense that the expansion
rules will prioritise adding the most promising variables or options first. Once we
have found a feasible timetable and room assignment within this neighbourhood,
we can apply this solution to the timetable, and proceed to resolve any other
infeasibilities. This algorithm is presented as Algorithm 1.

Algorithm 1 Expanding Neighbourhood Algorithm

for all Infeasible Time Periods do
N ← GenerateInitialNeighbourhood()
searching ← True
while searching do

IP ← BuildNeighbourhoodIP(N)
IP .Solve()
if IP is Feasible then

T imetable.Update()
searching ← False

else
N .Expand()

end if
end while

end for

Finally, it is worth recalling that we are not only looking for a feasible so-
lution; we are also aiming to minimise the timetable disruption. Although the
latter is our objective function within the neighbourhood, in some cases a feasible
timetable and room assignment can be found within a given neighbourhood, but
only through significant disruption to the underlying timetable. In this case, it
may be possible to expand the neighbourhood further, and find a solution with a
lower disruption. This is desirable, if it is computationally feasible to explore the
larger neighbourhood size.

4.2 Event-based Neighbourhood IP

Within a given neighbourhood, we solve an integer programme to attempt to find
a feasible and low disruption assignment of events to time periods and rooms. As
mentioned in Section 4.1, significant attention is paid to the scope of the neigh-
bourhood, in terms of which (re)assignments we will consider. All sets defining a
neighbourhood are listed in Table 1, where variables are generated over the sets E,
Te and Ret. Many of the complex constraints relating to either the time or room
assignments (e.g. clashes between courses, staff requirements etc.), are implicitly
represented by the variable generation.

Control over the neighbourhood sets offers significant modelling power. In par-
ticular, for many courses it is required that a maximum of one event is held per
day. If a fixed event (i.e. a ‘non-neighbourhood’ event) from a course c is held on
day d, then time periods on this day will be excluded from Te for any other events
of this course e ∈ Ec. Similarly, a curriculum is a group of courses which cannot be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

371

held in the same time period (as they are taken by a common group of students). If
an event from curriculum curr is fixed in a time period within the neighbourhood,
then no events from courses in this curriculum can be moved to this time period.
If we are solving a problem in the enrolment phase of timetabling, the curricula
can be determined by actual student enrolments. It is important that no enrolled
student has a timetable which becomes infeasible after the minimal perturbation
problem is solved.

Timetable elements which span multiple consecutive time periods (e.g. two-
hour lectures) are generalised as sets of events known as long events. If a long event
lies only partially in the neighbourhood, it is not permitted to be moved to ensure
the time stability. In many situations, it is also required to ensure room stability
across all time periods of a long event. In this case, if the long event is partially
in the neighbourhood and already has a room, it is excluded. If it is partially in
the neighbourhood but does not have a room assigned, the neighbourhood must
expand to include the full long event. In our model we have assumed that both
time and room stability are required.

E events in neighbourhood Te time periods suitable for event e
C courses T time periods in neighbourhood
CU curricula D days of neighbourhood time peri-

ods
Ec events of course c Td time periods on day d
Ecurr events of courses in curriculum

curr
Ret rooms suitable for event e and

available in time period t
EF events which are single-period or

the first of a long event
Etr events suitable for assignment to

time period t and room r

Table 1 Notation for Neighbourhood Sets

Using the notation defined in Table 1, we present an integer programming for-
mulation of an event-based neighbourhood perturbation model. In this formulation,
the binary variables xetr are indexed by suitable event-time-room assignments.
Specifically, let the variable xetr take the value 1 if event e ∈ E is to be held at
time t ∈ Te in room r ∈ Ret. For a given weighting of penalties, vetr, an optimal
assignment of events to time periods and rooms can be determined by solving the
following integer programme (1)–(7). The formulation is considered event-based
because the penalty for reassigning an event is independent of the other neighbour-
hood events from the same course. The disruption penalties for an event can vary
depending on the number of time periods it moves, whether the room changes,
and how this relates to any fixed events from this course. With sufficient available
data, precise penalties can be specified for each disruption.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

372

minimise
∑
e∈E

∑
t∈Te

∑
r∈Ret

vetr ∗ xetr (1)

subject to:
∑

e∈Etr

xetr ≤ 1 t ∈ T, r ∈ Rt (2)

∑
t∈Te

∑
r∈Ret

xetr = 1 e ∈ E (3)

∑
e∈

(Ec∩EF)

∑
t∈

(Te∩Td)

∑
r∈Ret

xetr ≤ 1 c ∈ C, d ∈ D (4)

∑
e∈Ecurr

∑
r∈Ret

xetr ≤ 1 curr ∈ CU, t ∈ T (5)

xetr − x(e−1)(t−1)r = 0 e ∈ (E \ EF), t ∈ Te, r ∈ Ret (6)

xetr ∈ {0, 1} e ∈ E, t ∈ Te, r ∈ Ret (7)

The objective function (1) minimises the total timetable disruption between
the proposed timetable solution, and the initial (infeasible) timetable.

Constraints (2) ensure that each room in each time period is occupied by a
maximum of one event, while constraints (3) ensure that all events are assigned
to exactly one room in one time period. Constraints (4) ensure that two events
from the same course cannot move to any time period on the same day. Because
long events are represented as more than one individual event e ∈ E, only the first
event e in any long event is included in each constraint. Constraints (5) ensure
that two events from the same curriculum cannot move to the same time period.
Lastly, constraints (6) enforce the strict time stability and room stability on the
events of a long event.

If room stability is not required for a long event (i.e. it is acceptable to change
rooms between the individual event-hours), constraints (6) can be altered such
that each constraint is summed over all suitable rooms, rather than applied as one
constraint per room.

4.3 Course-based Neighbourhood IP

Although the event-based formulation is versatile in terms of representing penal-
ties, it is not able to model time stability for a course. This is a common quality
measure where it is considered desirable to schedule all weekly events from a course
at the same time of day. To build upon the simpler event-based formulation (1)–
(7), we define the following: Cstab is the set of courses which desire time stability,
H is the set of hours from all neighbourhood time periods, ce is the course with
which event e is associated, and ht is the hour of the day for time period t. Let
the variable ych take the value 1 if any event of course c is held in hour h in the
timetable.

For a given weighting of time stability penalties, wch, we can solve the following
course-based integer programme.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

373

minimise (1) +
∑
c∈C

∑
h∈H

wch ∗ ych (8)

subject to: (2)–(7)

xetr − yceht
≤ 0 e ∈ E, t ∈ Te, r ∈ Ret (9)

ych ∈ {0, 1} c ∈ Cstab, h ∈ H (10)

The additional term in the objective function (8) penalises each course for each
unique hour of the day it uses for any of its events. Constraints (9) appropriately
tie the values of the ych variables to the xetr variables.

This formulation requires a different starting neighbourhood and set of expan-
sion rules to the event-based model. Because entire courses are required to move
together, the initial neighbourhood should not focus around a single infeasible time
period, but rather all weekly infeasible time periods for an hour of the day.

4.4 Limiting the Neighbourhood

As mentioned in Section 4.1, it is desirable to keep the neighbourhood as small
as possible, as determined by the sizes of the sets in Table 1. This necessitates a
selective definition of the neighbourhood at each stage of expansion to include the
most promising variables (i.e. event-time-room allocations) in the model.

The initial definition and expansion rules for a neighbourhood are guided by
the existing partial room assignment, which can offer substantial insight into the
specific cause of the infeasibility. By maximising the seated student hours, we ensure
that any unassigned events will be as small as possible. Therefore, if we observe
that large events remain unassigned, we can infer that the associated time periods
are in shortage of large rooms. As a result, when expanding the neighbourhood
we know to focus on events which currently occupy large rooms, and ideally we
can expand into time periods with vacant large rooms. Without maximising the
seated student hours, unassigned large events could be due to a general lack of
rooms of any size.

The room assignment process also maximises the seat utilisation, where it is
favourable to assign events to rooms which are closely matched in size. This op-
timisation is important, particularly for time periods which do not contain an
unassigned event themselves, but are adjacent or near to time periods with unas-
signed events. In the case of a full room assignment for a particular time period,
the previous maximisations (of event hours and seated student hours) will permit
assigning small events in larger rooms than necessary, as long as it is still possible
to assign all events. Maximising the seat utilisation has two useful outcomes for the
neighbourhood search. Firstly, where possible, it will leave larger rooms vacant as
they are more flexible. Secondly, by assigning events into closely fitting rooms, the
neighbourhood expansion can delay incorporating an event and room assignment
which “fit” well, since the room is already well utilised. The last quality measure
in the room assignment is the building preference, which can also be useful when
prioritising which event-to-room assignments should enter the neighbourhood first.

Finally, we note that for some practical situations, infeasibilities may be caused
by a shortage of a particular type of room (e.g. computer laboratories) or room

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

374

attribute (e.g. piano, fume cupboard), rather than a specific size of room. In this
situation, the neighbourhood definition will include rooms from other time periods
with this specific feature, even if they are presently occupied by a closely fitting
event. The room assignment process may even be altered to include a quality
measure which favours assigning events with specific room requirements. This
helps identify which room features are in shortage, and is analogous to maximising
seated student hours to identify the critical room sizes.

5 Practical Example

To demonstrate our algorithm, we consider a scenario based on the University of
Auckland’s timetabling data from Semester 2 in 2010. The University of Auckland
timetable features 2131 events, 72 rooms, and 50 weekly time periods (8am to
6pm, from Monday to Friday). Like many universities, the average room is utilised
in approximately 60% of time periods. However, the utilisation is above 80% in
“peak” time periods, which are typically between 10am and 3pm. The utilisation
of the largest rooms is also above average, due to a long-term increase in student
enrolments.

Computational experiments are run using Gurobi 5.0 running on 32-bit Ubuntu
12.04, with a quad-core 3.33GHz processor (Intel i5-660).

5.1 Over-enrolment Example

In this example, we analyse the problem of unexpectedly high enrolment numbers
in the enrolment phase of timetabling. We assume that the revised enrolment
numbers are received prior to the start of semester, but clearly after the timetable
is originally constructed. As a result, it is considered disruptive to make changes
to the time at which events are held, although changing room assignments is more
acceptable. Specific penalties are given for each of the approaches in Sections 5.2
and 5.3.

The example scenario is given in Table 2, where the enrolment numbers for an
introductory sociology and law course are substantially larger than expected. The
courses have two and three events respectively, in the time periods listed. These
are the type of courses which are likely to have an unpredictable enrolment, as they
are available to new-entrant students and may be taken as electives by students
from many academic programmes. In cases when enrolments are only marginally
larger than expected, ideally the existing rooms will still be suitable. The room
assignment process (Figure 1) maximises the spare seat robustness objective, for
this purpose.

Course Name Time Periods Planned Enrolment Revised Enrolment

SOCIO 100 Mon 12pm, Thu 2pm 320 500

LAW 121G Mon 12pm, Wed 12pm,
Fri 12pm

269 500

Table 2 Scenario changes to course enrolments

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

375

Initially, the state of having five events (from two courses) with no assigned
room is identified as the infeasibility in the timetable. In order to resolve this infea-
sibility, we will first re-solve the room assignment for this timetable, as explained
in Section 3. This will only change the room assignment for a very small number
of events, which are held in the same time periods as the infeasibilities. If there are
suitable vacant rooms in these time periods, or if it is possible to re-assign other
events to “free up” such rooms, we will have a feasible room assignment without
needing to perturb the time assignments at all. For this problem, maximising the
event hours proves it is not possible to leave fewer than five events unassigned,
without perturbing the timetable. This is because the events are held in highly
congested time periods where all large rooms are presently occupied. However,
by maximising the seated student hours, we are able to change our partial room
assignment so that the five unassigned events are those which have the smallest
number of students. The five events which remain unassigned are given in Table
3, where it can be seen that three of the events from the “SOCIO 100” and “LAW
121G” courses have been replaced by smaller events from other courses.

Time Period Course Name Enrolment

Mon 12pm SOCIO 100 500
Mon 12pm THEOL 101 490
Wed 12pm LAW 121G 500
Thu 2pm POLIT 113 347
Fri 12pm BIOSCI 203 360

Table 3 Events without a room after room assignment

5.2 Event-based Perturbation

We first attempt to solve the problem of unassigned events (Table 3) using an
event-based IP formulation (1)–(7) within the expanding neighbourhood algorithm
(Algorithm 1). Around each of the four time periods, we initialise a neighbour-
hood to include similar sized events in one time period before and after. If this
is insufficient to resolve the infeasibility, we expand the neighbourhood to include
events from two time periods before and after. We set a simple penalty (for each
event) of one unit for each hour moved and two units for each day moved from
the original time period. There is a very small penalty for moving rooms within
the same time period, so that this can occur, but only when necessary.

The solution to this problem is given in Table 4, where events are relocated
to nearby time periods as shown, for a total penalty of 7. The events for “SO-
CIO100”, “LAW121G” and “POLIT113” are able to move to other time periods
with suitable vacant rooms in their respective neighbourhoods. The events for
“THEOL101” and “BIOSCI203” are able to stay in their time periods and move
into the rooms vacated by “ECON151G” and “PSYCH204” respectively. This ma-
noeuvre commonly occurs in solutions to these problems, where one event changes
time periods to free its room for another event. This is because each event has a
unique set of time periods to which it can move, as determined by curricula and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

376

other requirements. Some events inevitably have a greater flexibility or a different
set of suitable time periods.

Monday Tuesday Wednesday Thursday Friday

10am

11am

12pm
SOCIO100
THEOL101 LAW121G POLIT113
ECON151G

1pm

2pm
BIOSCI203
PSYCH204

3pm

Table 4 Event-based solution

Solving the 6 IPs required for this problem was very rapid, as they all featured
less than 500 binary variables, and terminated optimally in less than one second.

5.3 Course-based Perturbation

Because many faculties appreciate time stability for their courses, we also demon-
strate the course-based IP formulation (1)–(10). In the previous solution (Table 4),
perturbations to the events from several courses (e.g. “ECON151G”, “LAW121G”,
and “POLIT113”) incurred an unmeasured disruption to time stability. For the
course-based model we use a different starting neighbourhood which includes all
time periods at this same time of day across the week. This neighbourhood then
expands to include all time periods one hour before and after. Because the first
expansion causes the neighbourhood to include a total of 15 time periods, it is
important to be selective about which events are included in each time period. To
keep the model size manageable, we only include large events and rooms.

The solution to this problem is given in Table 5, where events are relocated to
nearby time periods as shown for a total event-based penalty of 8. This is a greater
penalty than in the event-based solution, however we are now able to resolve the
infeasibility with no penalty incurred from disruption to the time stability.

Solving the 3 IPs required for this problem was again rapid, although there
were up to 5000 binary variables in the largest case. However, due to the near-
naturally integer property of these models, they still terminated optimally in less
than one second.

6 Conclusion and Future Work

We have proposed a general integer programming-based approach for minimal
perturbation problems which arise in practical university course timetabling. This

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

377

Monday Tuesday Wednesday Thursday Friday

10am

11am

12pm
SOCIO100 LAW121G
THEOL101 LAW121G POLIT113
ECON151G ECON151G

1pm

2pm
BIOSCI203

3pm

Table 5 Course-based solution

approach is versatile, as there are substantial possibilities for customisation in
the way the neighbourhoods are constructed and expanded. We have shown an
example application of this process on real data from the University of Auckland.

An interesting extension to the proposed formulations would be the incorpora-
tion of multi-objective optimisation techniques, where additional quality measures
are considered explicitly rather than implicitly in terms of disruption. This also
leads to the question of whether it is possible (and desirable) to disrupt a given fea-
sible timetable in order to improve the room assignment. Finally, we would like to
consider equity and fairness across faculties and courses when making timetabling
perturbations.

References

Barták R, Müller T, Rudová H (2004) A new approach to modeling and solving
minimal perturbation problems. In: Apt KR, Fages F, Rossi F, Szeredi P, Vncza
J (eds) Recent Advances in Constraints, Lecture Notes in Computer Science,
vol 3010, Springer Berlin, pp 233–249

Beyrouthy C, Burke EK, Landa-Silva D, McCollum B, McMullan P, Parkes AJ
(2007) Towards improving the utilization of university teaching space. Journal
of the Operational Research Society 60(1):130–143

Bonutti A, De Cesco F, Di Gaspero L, Schaerf A (2012) Benchmarking curriculum-
based course timetabling: formulations, data formats, instances, validation, vi-
sualization, and results. Annals of Operations Research 194(1):59–70

Burke EK, Mareček J, Parkes AJ, Rudová H (2008) Uses and abuses of MIP
in course timetabling. Poster at the workshop on mixed integer program-
ming, MIP2007, Montréal, 2008, available online at http://cs.nott.ac.uk/jxm/

timetabling/mip2007-poster.pdf

Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer Berlin
El Sakkout H, Wallace M (2000) Probe backtrack search for minimal perturbation

in dynamic scheduling. Constraints 5(4):359–388

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

378

El Sakkout H, Richards T, Wallace M (1998) Minimal perturbation in dynamic
scheduling. In: Prade H (ed) Proceedings of the 13th European Conference on
Artifical Intelligence, ECAI-98

Kingston JH (2013a) Educational timetabling. In: Uyar AS, Ozcan E, Urquhart
N (eds) Automated Scheduling and Planning, Studies in Computational Intelli-
gence, vol 505, Springer Berlin, pp 91–108

Kingston JH (2013b) Repairing high school timetables with polymorphic ejection
chains. Annals of Operations Research pp 1–16

McCollum B (2007) A perspective on bridging the gap between theory and practice
in university timetabling. In: Burke EK, Rudová H (eds) Practice and Theory
of Automated Timetabling VI, Lecture Notes in Computer Science, vol 3867,
Springer Berlin, pp 3–23

Müller T, Rudová H, Barták R (2005) Minimal perturbation problem in course
timetabling. In: Burke EK, Trick M (eds) Practice and Theory of Automated
Timetabling V, Lecture Notes in Computer Science, vol 3616, Springer Berlin,
pp 126–146

Phillips A, Waterer H, Ehrgott M, Ryan DM (2014) Integer programming methods
for large scale practical classroom assignment problems. Submitted to Comput-
ers & Operations Research

Rezanova NJ, Ryan DM (2010) The train driver recovery problem - a set parti-
tioning based model and solution method. Computers & Operations Research
37(5):845–856

Rudová H, Müller T, Murray K (2011) Complex university course timetabling.
Journal of Scheduling 14(2):187–207

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

379

A Study of the Practical and Tutorial
Scheduling Problem
Nelishia Pillay
School of Mathematics, Statistics and Computer Science, University of KwaZulu-
Natal
+27 33 2605644

pillayn32@ukzn.ac.za

 Abstract: The practical and tutorial allocation problem is a problem encountered at tertiary

institutions and essentially involves the allocation of students to practical or tutorial groups for the

different courses the student is enrolled in. Practical and tutorial scheduling for first year courses is

becoming more and more challenging as the number of permissible course combinations and

student numbers increase at tertiary institutions, and while this has previously been done manually

and independently for each course, this is no longer feasible. The paper firstly presents a formal

definition of the practical and tutorial scheduling problem. Low-level construction heuristics for

this domain are defined and a heuristic approach for solving this problem is proposed. A tool

namely, PRATS, incorporating this approach is described. The performance of PRATS on six

sets of real-world data is discussed. The paper also reports on a hyper-heuristic implemented to

automatically generate low-level construction heuristics and compares the performance of the

generated heuristics to the human intuitive heuristics used.

Keywords: educational timetabling, construction heuristics, practical and tutorial

scheduling, hyper-heuristic

1. Introduction

Educational timetabling essentially encompasses university course timetabling

(McCollum et al. 2008), university examination timetabling (Qu et al. 2009) and

school timetabling (Pillay 2013). Initially, the practical and tutorial scheduling

problem formed part of the university course timetabling problem, with a period

or afternoon session set aside for the practical or tutorial for a course. However,

with time one session was found not to be sufficient for certain courses and

practical and tutorial allocations were done separately from course timetabling for

these courses, with more than one session scheduled for certain courses and

students choosing the session that would suit them best. These selections were

done manually and usually independently for the different courses. As the

number of permissible course combinations, students and hence practical/tutorial

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

380

sessions per course has increased at first year level, this is no longer feasible. As

with the other types of educational timetabling which were initial done manually,

as the complexity of these problems grew manual timetable construction was no

longer an option and methods for automating the process were sought, this is now

true of practical and tutorial allocations as well. The paper presents a description

of the problem and a heuristic approach to solve this problem. Low-level

construction heuristics are derived based on human intuition and evaluated for this

purpose. A hyper-heuristic was implemented to automatically derive low-level

construction heuristics for the domain and the evolved heuristics are compared to

the human intuitive heuristics used to solve the problem. The proposed approach

was used to solve this problem for the College of Agriculture, Engineering and

Science at the University of KwaZulu-Natal. The performance of the heuristics on

six sets of data corresponding to three semesters is presented and discussed.

The following section defines the practical and tutorial scheduling problem.

Section 2 describes the heuristic approach proposed to solve the problem and the

tool PRATS developed for use by administrators for practical and tutorial

allocation. The genetic programming system implemented to evolve heuristics is

explained in section 3. Section 4 discusses the performance of the heuristic

approach and the evolved heuristics on the six real-world data sets. A summary of

the findings of the study and future work is outlined in section 5.

2. The Practical and Tutorial Scheduling Problem
(PTSP)

Science courses offered by the College of Agriculture, Science and Engineering

have a three hour weekly practical or tutorial. Subjects such as Chemistry,

Physics and Computer Science have a practical and courses like Mathematics and

Statistics a tutorial. While the other educational timetabling problems, namely,

school, university course and examination timetabling aims at scheduling events

in timetable periods and venues, the practical and tutorial scheduling problem

involves the allocation of practical/tutorial periods to each of the courses a

student is registered for.

The practical/tutorial scheduling problem can be considered to be a version of

the student sectioning problem (Muller et al., 2007; Muller et al., 2010; Murray et

al., 2007) with the following differences:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

381

• All students are pre-registered.

• The problem does not include the scheduling of lectures for students. This is

done by the university administration using the block system and cannot be

changed. The lectures are generally scheduled during the morning until lunch

time and practicals and tutorials in the afternoon commencing at 14:10 (with

one practical/tutorial timetable session in the morning at 09:35).

• Student preferences are not taken into consideration but rather department

preferences. The department for each course specifies a set of practical/tutorial

sessions for the course and students are allocated into the sessions so as to

prevent clashes.

• Once the allocations to practicals/tutorials are made this can only be changed

if the curriculum of the student changes resulting in a clash.

The student sectioning problem has essentially been solved by allocating

students according to priorities, based on their preferences, and performing

intelligent backtracking to resolve clashes (Muller et al. 2010). The research

presented in this paper focuses on the derivation of heuristics for construction of

solutions to this problem, both human intuitive and automatically generated.

The allocations for PTSP need to be made so as to ensure that:

• All courses for each student must be allocated a practical or tutorial period.

• The capacities for each practical/tutorial period must not be exceeded.

• Each student must not be scheduled to attend more than one practical in the

same period, i.e. there must be no clashes.

• Grouping requirements - Students registered for certain degrees must attend

practicals/tutorials in the same session for one or more courses. For example,

all Engineering students must attend Physics on a Monday afternoon and

Chemistry on a Tuesday afternoon.

Each year is comprised of two semesters and a practicial/tutorial schedule has

to be created for each semester. The College has two campuses, with each

campus requiring a different schedule. Each problem instance is defined in terms

of:

• The courses offered by the College, practicals/tutorial sessions for each course

and the capacity for each session. An example is illustrated in Table 1.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

382

• The grouping requirements specifying the degrees and the session allocations

for each course. Table 2 provides an example of this data, e.g. all Geological

Sciences students (BSGLS) must have a Chemistry practical on a Tuesday,

Geography on a Wednesday, a Mathematics tutorial on a Thursday and

Geology on a Friday.

• Student registrations - Student number, degree, College (some schools in the

College offer services courses for degrees offered by other Colleges) and

courses for which each student is registered.

The following section proposes a method for solving the PTSP.
Table 1. Example of Course Details

Course Mon Tues Wed Wed(am) Thurs Fri

BIOL101 186 186 186 186

BIOL103 187

BIOL195 192

CHEM110 96 192 192 192 192 120

CHEM195 72

COMP100 250

GEOG110 184

GEOL101 90 51 90

MATH130 408 378

MATH140 72

MATH150 350 750 350

MATH195 60

PHYS110 159

PHYS131 240 320 320

PHYS139 42

PHYS195 25

STAT130 350 350 350

3. Solving the PTSP

This section firstly presents the low-level heuristics and method used to solve the

practical and tutorial scheduling problem. This is followed by a description of the

tool developed, employing the method outlined in section 3.1.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

383

Table 2. Example of Group Requirements

Degree Mon Tues Wed Wed(am) Thurs Fri
 B-MDSC PHYS131 BIOL101 CHEM110 MATH150
 BMDSCP PHYS131 BIOL101 CHEM110 MATH150
 BOPT PHYS139 MATH150 CHEM110 BIOL103
 B-PHAR PHYS131 MATH150 CHEM110 BIOL103
 B-PHYS PHYS131 BIOL103
 BS-ENS PHYS131 CHEM110 GEOL101 MATH150
 BSGLS CHEM110 GEOG110 MATH150 PHYS131 GEOL101
 BSCF GEOL101
 BSCA GEOL101
 BSLES GEOL101
 BSAPC GEOL101
 BSBLS GEOL101
 BSCMB GEOL101

3.1 Heuristic Approach for Solving the PTSP

Low-level construction heuristics have proven to be effective in creating solutions

to educational timetabling problems. These heuristics have essentially been used

to order events, e.g. examinations, lessons, in order of difficulty to schedule. For

example in the domain of examination timetabling graph colouring heuristics,

e.g. largest degree, largest weighted degree, largest enrollment , largest colour

degree and saturation degree (Carter et al., 1996) have been used. Usually, one

heuristic is used to order examinations for scheduling. For example, the largest

degree heuristic is the number of clashes that an examination can be involved in

and a higher value indicates a more difficult exam to schedule. In some instances

the low-level heuristic is used to create an initial solution which is further

improved using optimization methods such as variable neighbourhood search,

tabu search and evolutionary algorithms (Qu et al. 2009). In Carter et al. (1996) a

low-level heuristic is used to create an initial timetable which is improved using

backtracking. These graph colouring heuristics are also used for university course

timetabling. Similar heuristics are used for timetable construction for the domain

of school timetabling (Pillay, 2013). Given the crucial role that low-level

construction heuristics have played in educational timetabling it was felt that the

first step to solving the PTSP would be to define low-level construction heuristics

for this domain.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

384

The problem essentially involves assigning practical and tutorial sessions for

each student. For this domain it was decided to view this as the student being the

entity to assign and thus heuristics for assessing the difficulty of scheduling each

student was investigated. This was defined in terms of the practicals/tutorials that

had to be scheduled for the student. Two heuristics were defined for ordering

students for practical/tutorial allocation:

• Allocation degree - the number of allocations for the student, e.g. if the

student is registered for three courses that require practical/tutorial allocations

the allocation degree will be 3. Priority is given to students with a higher

allocation degree. It is anticipated that students requiring more allocations

will be more difficult to schedule as there is a greater chance of clashes.

• Total opts - This heuristic is the sum of the options for each practical/tutorial

that needs to be scheduled for the student. The reasoning behind this is that the

less options there are available the more difficult it will be to schedule the

practicals/tutorials for the student.

These heuristics are static and remain constant throughout the allocation

process. These are calculated for each student at the beginning of the allocation

process. In addition to heuristics for choosing which student to perform

allocations for first, a low-level heuristic, namely option degree, for selecting

which practical/tutorial to schedule first was also defined. This heuristic is the

number of options, i.e. sessions, for each practical/tutorial. Practicals/tutorials

with fewer options are given priority to be scheduled. The final low-level heuristic

defined is to choose the session to schedule the practical in. The session with the

higher capacity amongst the feasible sessions, i.e. sessions with sufficient capacity

that do not result in clashes, is chosen. Both these heuristics are dynamic and need

to be updated during the allocation process as allocations will change the number

of options and capacities. Table 3 provides a summary of the low-level heuristics.
Table 3. Low-level Heuristic Summary

Category Heuristics Type

Student allocation

heuristics

• Allocation degree

• Total opts

Static

Course heuristics • Option degree Dynamic

Session heuristics • Capacity degree Dynamic

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

385

The allocation process begins by sorting the students according to one of the

student allocation heuristics. The allocation for each student starts with sorting the

practicals/tutorials to be scheduled according to the option degree. A period is

assigned to the practical/tutorial with the lowest option degree using the capacity

degree heuristic. If the degree the student is registered for and practical/tutorial is

one of the group requirements, the specified session is allocated. The allocated

practical/tutorial is removed and the list to be scheduled resorted according to the

option degree as the value of the option degree may change in some cases as a

result of the allocation. If a period cannot be found as a result of insufficient

capacity or if the allocation will result in a clash, the allocation is not made and

the number of unallocated practicals/tutorials is incremented. A list of clashes and

insufficient capacities for the different courses is maintained and reported together

with the number of unallocated practicals/tutorials at the end of the allocation

process. The following section describes the tool developed to be used by

administrators for practical/tutorial allocation. The algorithm is illustrated in

Figure 1.

3.2 PRATS (Practical and Tutorial Scheduler)

The importance of working with administrators that will be using the system and

bridging the gap between research and practice is emphasized in McCollum

(2007). Thus, the tool implementing the method describe in section 3.1 for

practical/tutorial allocation was developed in consultation with the College

Director: College Professional Services and the College Academic Services. Prior

to the implementation of PRATS the practical/tutorial allocation for first year was

done manually. The schedule was stored in an Excel spreadsheet which was given

to administrators to update in cases where students wished to change allocations

as a result of any changes in curriculum for the particular student.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

386

The spreadsheet contained:

• The courses and capacities for each practical/session given the current

allocations.

• Practical and tutorial allocations for the students registered for first year

Science modules in the College.

• Formulae linking the student allocations and capacities for each

practical/tutorial session so that any de-allocation/reallocation of

practicals/tutorials for a particular student results in the capacity for the

session/s involved being automatically updated.

It was requested that the software developed should solve the practical and

tutorial allocation problem and output a spreadsheet with the same format as the

that of the spreadsheet schedule that was previously created manually. The tool

begin

 for 1 to no_of_students

 Sort practicals/tutorials to be allocated

 while(there are practicals/tutorials to allocate)

 if the practical/tutorial is part of a group requirement

 allocate specified session

 else

 sort the feasible sessions for allocation

 schedule the practical/tutorial in the session with the maximum capacity

 if a session cannot be found for the practical/tutorial

 increment the number of unallocated practicals/tutorials

 update the insufficient capacities/clashes list

 endif

 endif

 endwhile

endfor

 Report the number of unallocated practicals/tutorials

 Report insufficient capacities

 Report clashes

end

Figure 1. Practical/tutorial allocation algorithm

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

387

PRATS was developed for this purpose. Input to for each problem instance

includes:

• A spreadsheet of all student registrations for first year Science courses in

the College (DMI file).

• A spreadsheet listing all first year Science courses offered by the College

and the practical/tutorial sessions for each course and corresponding

capacities.

• The spreadsheet listing the group requirements for specific degrees

(Groups file).

Figure 2 illustrates a PRATS session. The user is required to load the input

files and choose the option to create a schedule, specifying the file the schedule

must be stored in.

Figure 2. Example of a PRATS session

PRATS produces an Excel spreadsheet file with the following tabs:

• The first tab lists the courses, practical/tutorial sessions and capacities as well

as the allocations for all students and includes formulae linking student

allocations and student capacities.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

388

• The second tab lists all the courses and additional capacity needed for courses

where the number of students registered exceeds the total capacity of all

sessions for the course practical/tutorial.

• The third tab list the clashes that cannot be resolved due to a student being

registered for two courses that have the same practical/tutorial session with no

other options, and the number of students with this clash. An example is

illustrated in Table 4. This usually results when students are registered for

incorrect combinations. Another reason for this is that the combination was

not anticipated, in which case the practical/tutorial for one of the sessions may

have to be rescheduled. The subsequent tabs in the spreadsheet list the

students for each clash so that they can be contacted and informed. An

example is illustrated in Table 5.
Table 4: Example of Spreadsheet Tab Listing Courses with Practical/Tutorial Clashes

Clash First Course Second Course Period No. of Students
Clash1 MATH196 COMP102 Thurs 1
Clash2 STAT140 COMP106 Wed(am) 3
Clash3 PHYS120 BIMI120 Wed 5
Clash4 MATH144 MATH130 Fri 4
Clash5 ENVS120 BIMI120 Wed 18

Table 5: Example of Student Data for a Clash

Student Number Surname Name Degree
212500323 Mhlongo Slungile Sunshine BSCA
213510964 Wanda Ayanda BSAPC
212540361 Mvelase Bonokwakhe Sthembiso BSCA

The following section describes the performance of PRATS on six sets of data for

the College of Agriculture, Engineering and Science.

4. PRATS Performance

During the development phase of PRATS it was tested on data for the first

semester of 2013 for which manual schedules had been created. Details of the data

sets are listed in Table 6.
Table 6: Data Sets for Semester 1 2013

Data Set No. of Courses No. of Sessions No. of Students No. of Group

Requirements

PMB_S1_2013 18 6 1223 0

WSTVL_S1_2013 17 6 2771 28

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

389

It was found that the application of each of the student allocation heuristics

separately was not effective. The concept of primary and second heuristics used in

Pillay et al. (2009) was introduced in this study. The students to be allocated are

firstly sorted for scheduling using the primary heuristic. In the case of ties a

secondary heuristic is applied to the tied students to determine the ordering. The

combination of the allocation degree as the primary heuristic and total opts as a

secondary heuristic was found to be the most effective.

PRATS allocated all practicals/tutorials for all students within the specified

capacities for PMB_S1_2013. A clash between two courses, namely Nutrition

and Geography with two students registered for this combination was reported.

This combination is not permitted as generally Dietetics students register for

Nutrition and Geography does not form part of the programme. All student

practical/tutorials were also scheduled for WSTVL_S1_2013. The capacity for

BIOL103 was exceeded by 1, however it was found that the student in question

was registered for both BIOL101 (which was the module required for the

programme the student was registered for) and BIOL103. The student was

advised to deregister from BIOL103. Three clashes were reported by PRATS.

The combinations causing the clashes were not permitted and the students

notified.

PRATS was used to schedule the first year practicals/tutorials for the second

semester of 2013. The details of both problem instances are listed in Table 7.
Table 7: Data Sets for Semester 2 2013

Data Set No. of Courses No. of Sessions No. of Students No. of Group

Requirements

PMB_S2_2013 22 6 1483 5

WSTVL_S2_2013 20 6 2939 9

PRATS performed all the required allocations for PMB_S2_2013 within the

specified capacities. Two clashes resulting from illegal combinations was

reported. PRATS was not able to allocate the practicals/tutorials for all students

for WSTVL_S2_2013. Further investigation revealed that the practical/tutorials

not scheduled were those that had only one session option. As students with the

highest number of allocations required were given priority for scheduling, this

resulted in those students with courses having just one session for the

practical/tutorial being scheduled later in the allocation process at which stage

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

390

there was insufficient capacity for these allocations. This resulted in the

introduction of a third student allocation heuristic, namely, the one-option

heuristic which gives students with at least one course with one practical/tutorial

session priority for allocation. The combination of one-opt as the primary

heuristic and allocation degree as the secondary heuristic resulted in all

practicals/tutorials being scheduled. Four clashes resulting from students

registering for illegal combinations were reported and the students notified.

PRATS was also used to generate schedules for the first semester of 2014. The

data sets for both campuses are presented in Table 8.
Table 8: Data Sets for Semester 1 2014

Data Set No. of Courses No. of Sessions No. of Students No. of Group

Requirements

PMB_S1_2014 13 6 1436 1

WSTVL_S1_2014 12 6 3548 14

Both the heuristic combinations, i.e. allocation degree as a primary heuristic

and total opts as the secondary heuristic and one-option as a primary heuristic and

allocation degree as a secondary heuristic are able to allocate all practicals and

tutorials for all students. For PMB_S1_2014 one illegal course combination was

found and the student notified while there were no clashes for WSTVL_S1_2014.

The runtime of the heuristic approach employed by PRATS is on average a

second for all problem instances. Given that this study has revealed that the most

appropriate combination of student allocation heuristics used is problem

dependent, the option of automating the generation of the student allocation

heuristic to use was investigated. This essentially involves implementing a hyper-

heuristic for the generation of low-level construction heuristics (Burke et al.

2013). As the best heuristic to use is problem dependent, the generated heuristic

is disposable. From previous work done in this domain, it is evident that genetic

programming has chiefly been employed for the induction of construction low-

level heuristics (Burke et al. 2009; Burke et al. 2013). A genetic programming

hyper-heuristic was implemented and tested on the six problem instances. The

following section describes the hyper-heuristic and discusses its performance on

the six data sets.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

391

5. Generative Constructive Hyper-Heuristic

This section describes the hyper-heuristic used to evolve low-level construction

heuristics for the practical and tutorial scheduling problem. Section 5.1 describes

the genetic programming system implemented and section 5.2 discusses the

performance of the hyper-heuristic in solving the PTSP.

 5.1 Genetic Programming Hyper-Heuristic

The hyper-heuristic employs genetic programming to evolve low-level

construction heuristics. Genetic programming is an evolutionary algorithm that

explores a program space to identify a program which when executed will

produce an optimal or near optimal solution (Koza 1992). The generational

genetic programming algorithm illustrated in Figure 3 was implemented.

Each element of the population is a parse tree representing a low-level

construction heuristic. Each parse tree is comprised of elements from the function

the terminal sets. The function includes the following operators:

• Arithmetic operators: +, -, *, /. The division operator is protected division

which returns a value of 1 if the denominator is zero.

• The if operator which performs the standard if-then-else function and has an

arity of 3.

• Arithmetic logical operators: <, >, <=, >=, ==, !=. These operators perform the

standard arithmetic logical operations. These operators can only be included

in the subtree representing the first child of the if operator as this is the branch

of the tree representing the condition that must be met.

The terminal set is comprised of the low-level student allocation heuristics

defined in section 3.1:

• a - Represents the allocation degree heuristic.

Create initial population

Repeat

 Evaluate the population

 Select parents

 Apply genetic operators to parents

Until the termination criteria are met

Figure 3. Genetic programming algorithm

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

392

• b - Represents the one-option heuristic.

• c - Represents the total opts heuristic.

Figure 4 illustrates examples of population elements. Each element is created

by firstly choosing an element from the function set to ensure that trivial trees are

not created. The tree is constructed using the grow method (Koza 1992) which

involves the random selection of elements from the function and terminal set until

the maximum specified depth is reached at which point only elements from the

terminal set are chosen.

Each individual is evaluated by using the individual to create a schedule. This

achieved by applying the heuristic to each student producing a numerical

value/heuristic which represents the difficulty of scheduling the

practicals/tutorials for that student. The students are sorted in descending order

according to the heuristic and the allocations for each student performed in order.

The fitness of an individual is the number of unallocated practicals and tutorials in

the created schedule.

Tournament selection (Koza 1992) is used to choose parents for regeneration.

This selection method essentially involves randomly selecting t elements of the

population and returning the fittest individual as a parent. Selection is with

replacement so an individual can be chosen as a parent more than once.

The standard mutation and crossover operators (Koza 1992) are used for

regeneration. The mutation operator replaces a randomly selected subtree in the

copy of the parent with a newly created subtree. Crossover randomly selects a

subtree in each of two parents and the subtrees are swapped to create two

offspring.

c

/

*

b

a

/ -

if

a > b -

b c b c

Figure 4. Examples of parse trees representing low-level construction heuristics

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

393

Performance of the hyper-heuristic on the six data sets is discussed in the

following section.

5.2 Hyper-Heuristic Performance

The parameter values used are listed in Table 9. These values were determined

empirically.
Table 9. Parameter values

Parameter Values

Population size 50

Maximum tree depth 4

Tournament size 4

Crossover % 50%

Mutation % 50%

Mutation depth 3

Due to the stochastic nature of genetic programming ten runs were performed

for each problem. The average runtime for the hyper-heuristic is five seconds. All

runs performed were successful at producing schedules with all practicals and

tutorials for all students allocated, within the specified capacities, for the six

problem instances. Furthermore, heuristics producing the optimal schedule were

found in the initial population and further optimization was not needed. The

heuristics evolved for each seed were different and there did not appear to be any

similarities between the evolved heuristics producing optimal solutions. This will

be researched further as part of future work.

6. Conclusion and Future Work

This paper introduces the practical and tutorial scheduling problem and a heuristic

approach to solve this problem. Five low-level construction heuristics have been

defined for this problem based on human intuition and categorized as student

allocation heuristics, course heuristics and session heuristics. The study revealed

that it was necessary to combine the student allocation heuristics as primary and

secondary heuristics in order to find a solution to the problem. The heuristic

approach was incorporated into a tool PRATS which was able to find feasible

solutions to six real-world problem instances. It was also found that different

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

394

student allocation heuristic combinations may be needed to find solutions to

different problems. This led to the implementation of a hyper-heuristic to

automatically generate a student allocation heuristic. This approach appeared to be

effective, finding solutions to all six problems. Future work will investigate

further examination of the generated heuristics to identify possible patterns or

similarities in the functions. In addition to this the reusability of the optimal

heuristics generated will also be investigated.

Acknowledgements. This work is based on the research supported in part by the National

Research Foundation of South Africa for the Grant CSUR13091742778. Any opinion, finding and

conclusion or recommendation expressed in this material is that of the author(s) and the NRF does

not accept any liability in this regard.

7. References

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. &Woodard, J. (2009) Exploring Hyper-

Heuristic Methodologies with Genetic Programming. Computational Intelligence, 6, 177-201.

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. & Qu, R. (2013) Hyper-Heuristics: A

Survey of the State of the Art. Journal of the Operational Research Society, 1-30.

Carter MW, Laporte G, Lee SY (1996) Examination Timetabling: Algorithmic Strategies and

Applications. Journal of the Operational Research Society, 47(3), 373-383.

Koza. J.R. (1992) Genetic Programming I : On the Programming of Computers by Means of

Natural Selection, MIT Press.

McCollum, B. (2007) A Perspective on Bridging the Gap between Research and Practice in

University Timetabling. Practice and Theory of Automated Timetabling VI (eds. E.K.Burke

and H.Rudova), Lecture Notes in Computer Science Volume 3867, Springer 2007, pp 3-23.

McCollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., DiGapsero, L., Parkes, A.J.,

Qu, R . & Burke, E.K. (2008). Setting the research agenda in automated timetabling: The

second international timetabling competition. INFORMS Journal of Computing, 22(1), 120–

130.

Muller, T. & Murray, K. (2010) Comprehensive Approach to Student Sectioning. Annals of

Operational Research, 181, 249-269.

Muller, T., Murray, K. & Schluttenhofer, S. (2007) University Course Timetabling and Student

Sectioning System. In Proceedings of the International Conference on Automated Planning

and Scheduling, pp. 1-4.

Murray, K. & Muller, T. (2007) Real-Time Student Sectioning. In Proceedings of the 3rd

Multidisciplinary International Scheduling: Theory and Applications, pp. 1-3.

Pillay, N. & Banzhaf, W. (2009) A Study of Heuristic Combinations for Hyper-Heuristic Systems

for the Uncapacitated Examination Timetabling Problem. European Journal of Operational

Research, 197, 482-491.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

395

Pillay, N. (2013) A Survey of School Timetabling. Annals of Operations Research, February

2013, DOI: 10.1007/s10479-013-1321-8.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G. & Lee, S.Y. (2009) A Survey off Search

Methodologies and Automated System Development for Examination Timetabling. Journal of

Scheduling, 12(1), 55–89.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

396

Hybrid Local Search for The Multi-Mode
Resource-Constrained Multi-Project Scheduling
Problem

Abstract In this work we present a multi-neighborhood, parallel local search
approach for the Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem (MMRCMPSP). The search in multiple neighborhoods is conducted
in parallel with dynamic load balancing among processors. Our solver works
with an indirect solution representation and navigates through space of the
feasible solutions by combining heuristics and mathematical programming. A
perturbation procedure which alters a subset of job modes and still keeps
the solution feasible is introduced. Very encouraging results were obtained,
improving several best known solutions published at the MISTA Challenge.

Keywords Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem · Scheduling · Local Search

1 Introduction

A Project Scheduling Problem (PSP), in its general form, consists in scheduling
the processing times of jobs (or activities) contained in a project. These jobs
are interrelated by precedence constraints, that is, a job may require another
job to be finished before its start. This class of problems models many situa-
tions of practical interest in engineering and management sciences in general.

Santos, H.G.
Computer Science Department, Federal University of Ouro Preto, Brazil
E-mail: haroldo@iceb.ufop.br

Soares, J.A.
Department of Computing and Information Systems, Federal University of Ouro Preto,
Brazil
E-mail: janniele@decsi.ufop.br

Toffolo, T.A.M.
Computer Science Department, Federal University of Ouro Preto, Brazil
E-mail: tulio@toffolo.com.br

Haroldo Gambini Santos · Janniele
Soares · Tùlio Toffolo

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

397

One well known application of the PSP is the area of Construction Scheduling
[4]. For a broad review of this area we refer the reader to [5, 8, 10, 13, 14] and
[2].

Recently, with the objective of bridging the gap between theory and prac-
tice, the MISTA 2013 [1] challenge was organized. In this challenge, a general-
ization of the PSP with resource constraints which takes into account several
aspects of real world applications was considered: The Multi-Mode Resource-
Constrained Multi-Project Scheduling Problem (MMRCMPSP). Several in-
stances with different characteristics and sizes were proposed. Competing meth-
ods were evaluated in a controlled experimental environment. We participated
as part of the GOAL team, which proposed an Integer Programming based
approach for the MMRCMPSP. Our team was ranked third in this competi-
tion.

In this paper we explore the hybridization of Integer Programming and
local search heuristics, incorporating some of the best characteristics of our
method with some of the efficient local search procedures proposed by other
teams.

The paper is organized as follows: Section 2 presents the MMRCMPSP;
Section 3 introduces our algorithm and finally, Sections 4 and 5 present, re-
spectively, conclusions and future works.

2 The Multi-Mode Resource-Constrained Multi-Project Scheduling
Problem

The MMRCMPSP is stated as follows: a set P of projects, each project p ∈
P consisting of a set Jp = {1, . . . , |Jp|} of non-preemptive jobs, has to be
scheduled. Each project p has also a release time, that is, a time when its jobs
processing may be started. The start and end of a project are delimited by
dummy jobs 0 and |Jp|+ 1, respectively the first and last jobs of each project.

To schedule a project means to determine the starting time of all of its jobs,
subject to the precedence constraints among them and also their resource con-
sumption in face of the available resources. Jobs may consume local resources
– exclusive resources of a project – and global resources – resources shared
among all projects. These resources can be either renewable – with capacity
fixed per time unit during the project duration – or non-renewable – with
capacity fixed per project duration. Each job may be executed in one or more
execution modes, each requiring a specific amount of resources consumption
and resulting in different durations for a job completion. Note that dummy
jobs do not have any resource consumption and their duration is always zero.

A lower bound on a project earliest finish time is the critical path duration.
The Critical Path Method [12] is a tool for general project management that
represents the precedence constraints as a network, where each job is a node
and arcs connect jobs to its successors and predecessors, and calculates the
earliest and latest start and finish times for each job such that the project
is not delayed, while observing the precedence constraints. The critical path

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

398

itself is the sequence of related jobs that cannot be delayed without delaying
the whole project, denoted by a path between the two dummy jobs in the
network. Thus, the critical path duration is the sum of these jobs durations.
To compute a valid critical path based bound for a MMRCMPSP instance one
can set job durations to the minimum among all possible execution modes.

Once a project is scheduled, its makespan is defined as the difference be-
tween the project finish and release times, and the project delay, is defined as
the difference between the critical path based bound and the actual project
duration.

In order to measure the quality of the solutions submitted to the MISTA
challenge, an objective function with two components was proposed: to mini-
mize the total project delay (TPD) and the total makespan (TMS). The TPD
is defined as the sum of all projects delays, and the TMS is defined as the time
required to finish all projects, i.e., the difference between the maximum finish
time of a project and the minimum release time of a project. TPD is the main
objective, while TMS is a tie-breaker.

3 The Proposed Algorithm : Overall Working

One fundamental characteristic of our method is that it always navigates in the
feasible search space of solutions. To accomplish this we employ an indirect
solution representation abstracting starting times of tasks: valid topological
orderings are decoded by a constructive algorithm which allocates each task
in the sequence as soon as possible, this approach was also used by [3, 6].

The selection of an initial set of valid execution modes for tasks is also
computationally challenging: [3, 6] relax this constraint and move it to the
objective function. In our approach, the definition of an initial set of modes is
carried out by the solution of a binary programming model.

Thus, our solution representation consists in an ordered pair (π,M) where
π is valid topological sorting of J and M is a valid set of modes. Since the latter
is much harder to determine, the next subsection will describe our approach
for this part.

Subsequently, local search is performed in a Variable Neighborhood De-
scent [7] fashion, iterated with a perturbation of modes. One novel feature
of our algorithm is a controlled perturbation in the set of modes, which also
involves a binary programming model.

3.1 Initial Feasible Solution

The initial set of selected modes must respect resources constraints. Since the
selection of processing modes also determines the duration of tasks, one greedy
strategy is to prioritize the selection of fast processing modes. Considering this
latter criterion, it is important to observe that it does not guarantees a smaller
TPD, since renewable resources constraints can increase the starting times of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

399

tasks. Considering non-renewable resources, a greedy strategy can have worse
consequences: many combinations of modes may not respect the usage of these
resources.

The binary program to select this initial set of modes considers: J jobs with
respective processing times pjm and N non renewable resources. Each job has a
set Mj of possible modes and the non-renewable resource n consumption of job
j in modem is denoted as rjmn. Thus, the following binary program is solved to
select which mode m job j will be allocated, considering its respective decision
variables xjm and resource availability qn for each non renewable resource:

min. :∑
j∈J

pjm.xjm (1)

s.t. :∑
j∈J

∑
m∈Mj

rjmnxjm ≤ qn ∀n ∈ N (2)

xjm ∈ {0, 1} ∀j ∈ J,m ∈Mj (3)

Which corresponds to the NP-Hard problem of the 0-1 multidimensional
knapsack problem. Fortunately, modern integer programming solvers [9, 11]
consistently solve this problem to the optimality considering all instances of
the competition, always in a fraction of a second.

3.2 Neighborhoods

In this section we present the neighborhoods used in our search methods. Most
of them were proposed or were inspired by the works which won the first two
places of the MISTA 2013 challenge [3, 6].

These neighborhoods can be classified in two types: the ones which change
modes and the ones which change sequence. The search only operates in the
feasible search space: neighbors which disrespect non-renewable resources con-
straints are ignored and neighbors which disrespect processing dependencies
are repaired using a topological order constructed using the invalid order to
define priorities.

3.2.1 Change One Mode (COM)

This first neighborhood is based on [3, 6], and receives as a parameter a vector
of modes initially allocated to jobs. Since we concentrate in the feasible search
space this is a quite restricted neighborhood, since many single mode changes
do not produce feasible solutions.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

400

3.2.2 Change Two Modes (CTM)

Similar to the movement change one mode, but explores changes on pairs of
modes. This is a significantly larger neighborhood since it has a quadratic
size with respect to its input and because valid two mode changes are more
common.

3.2.3 Change Three Modes (CTRM)

We observed that an unrestricted search considering all valid change mode
triples would be too expensive. At the same time, jobs which are closer in the
dependency graph tend to be much more sensible to changes in the mode of
their neighbors than changes in modes of distant jobs. So we restricted the
involved jobs j1, j2 an j3 to be consecutive in the dependency graph: (j1 →
j2 → j3).

3.2.4 Change Four Modes (CFM)

Just like three mode change this neighborhood restricts neighbors by imposing
the same dependency relationships in the dependency graph.

3.2.5 Invert Subsequence (INV)

This movement is based on [6], and receives as a parameters a sequence of jobs
and an integer k that determines the size of the subsequences to be inverted.
For each position i of the sequence the next k − 1 jobs are included in a
subsequence and inverted.

Figure 1 shows an example of this movement using subsequence with size
k = 4 and starting position 2.

s'=INV(s,2,4)

s 2 3 5 8 14 10 7 12 9

s' 2 14 8 5 3 10 7 12 9

Fig. 1 Invert Subsequence

3.2.6 Shift Jobs (SJ)

This movement was proposed by [3], and is responsible for systematically mov-
ing forward or backward a job in the sequence in k neighbor positions. The
method receives as a parameter a sequence of jobs and a parameter k that
determines the maximum distance which job j can be displaced.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

401

Figure 2 shows an example of this movement, shifting the job allocated at
position 4 3 positions ahead.

s'=SJ(s,4,3)

s 2 3 5 8 14 10 7 12 9

s' 2 3 5 14 10 7 8 12 9

Fig. 2 Shift Jobs

3.2.7 Swap Jobs (SWJ)

In this neighborhood, which it was based on [3, 6], two jobs in the sequence
are swapped. This method receives as a parameter a sequence of jobs and a
parameter k which restricts the maximum distance between the two jobs to
be swapped.

Figure 3 shows an example of this movement, swapping the job at position
5 with the job currently occupying position 5.

s'=SWJ(s,3,5)

s 2 3 5 8 14 10 7 12 9

s' 2 3 14 8 5 10 7 12 9

Fig. 3 Swap Jobs

3.2.8 Compact Project (CP)

This movement is based on the proposal of [3] and tries to accelerate the
completion time of a project by shifting tasks of other projects which appear
in the mid the project sequence for later processing. The objective is to shrink
the later portion of the project.

In our implementation a parameter perc ∈ (0, 1] determines percentage of
tasks which will be compressed. These tasks are selected starting from the end
of project, i.e: perc = 0.5 means that the second half of the tasks in the project
sequence will be compressed.

Figure 4 shows an example of this movement, compacting 100% the jobs
of project p1, which is shown in gray.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

402

s'=CP(s,1,1)

s 2 3 5 8 14 10 7 12 9

s' 2 3 5 14 10 9 8 7 12

Fig. 4 Compact projects

3.2.9 Shift Project (SP)

This movement is based on the proposed by [3] and is similar to the shift
jobs, but moves forward or backward all jobs of a project p on k positions.
The movement receives as parameters a maximum shifting distance k and a
parameter p which determines the involved.

Figure 5 shows an example of this movement to the project p1 (shown in
gray) and k = −2.

s'=SP(s,1,2)

s 1 4 3 2 9 7 5 8 6

s' 1 2 4 7 5 3 9 8 6

Fig. 5 Shift a project

3.2.10 Swap Two Projects (SWP)

This movement it is based on the proposals of [3, 6], and is similar to the idea
of swapping jobs, but now the swap happens between two projects.

Considering the swap of two projects, p1 and p2, a new subsequence is
generated as follows: firstly, one identifies the starting position sp of the project
which finishes earlier.

In a vector R are stored all jobs before sp that do not belong to projects
p1 or p2. In a vector D are stored all jobs after sp that do not belong to any
of these projects too.

The reconstruction of the sequence is made by allocating all jobs of the
vector R. Subsequently, all jobs that belong to the project that finished later,
followed by all jobs that belong to the project that finished earlier and finally
all the jobs of the vector D.

Figure 6 shows an example of this movement, swapping the projects p1,
dark gray, and p2, in light gray.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

403

s'=SWP(s,1,2)

s 5 3 9 6 13 1 7 2 25

s' 5 3 6 2 9 13 1 7 25

Fig. 6 Swap two projects

3.3 Perturbation

As observed by [6], in the MMRCMPSP, changes in the mode set appear to
have a much more profound effect than changes in the sequence. We developed
a perturbation strategy where only a controlled number of modes is randomly
changed, keeping the resulting mode set feasible. In our method, a parameter
%MC determines the percentage of jobs which will have their modes changed
at each application of the perturbation procedure.

This procedures solves exactly the same problem as in subsection 3.1, but
with a different objective function. The main idea is to change the mode of
some jobs while trying to minimize the collateral effect induced by the satisfac-
tion of the non-renewable resources constraints. More specifically, the model
allows any other task to have its mode changed too, but tries to minimize
these cases. As input this method receives the current mode mj of each job
and a boolean value cj indicating if one wants to perturb the current solution
by changing this job mode. Coefficients pjm of the binary programming model
are substituted as follows:

pjm =

M if cj is true and m is the current mode of job j

or if cj is false and m is not the current mode of j

ε otherwise

Where M represents a sufficiently large constant (500 in our experiments)
and ε a small one (1 in our experiments). Small random changes with value
r ∈ {1, . . . , 10} are also introduced in pjm to further randomize the procedure.

The perturbation procedure is applied after a complete search on all pre-
viously presented neighborhoods is conducted and no improved solution was
found.

3.4 Paralell Search

Many neighbors presented before contain a large number of solutions. One par-
allelization strategy would be an static neighborhood decomposition, where a
fixed portion of the neighborhood is sent to a processor. This strategy can
introduce a severe imbalance of load among processors, since the computing

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

404

time to to evaluate different solutions varies significantly, depending on sev-
eral steps in the decoding of each solution. Thus, we opted for a dynamic load
balancing strategy: a pool of neighbors to be evaluated is build and differ-
ent thread continually request new neighbors to be evaluated until a better
solution is found or all neighbors have been processed.

4 Computational Experiments

All algorithms were coded in C++ and the binary programming models were
solved by CPLEX 12.6. The code was compiled with GCC 4.7.1 using flag
-O3. All tests ran on a computer with an Intel Core i7 processor1 and 24 Gb
of RAM, running OpenSUSE Linux 12.1.

The developed method ran in parallel using 4 threads. Parameter values
were obtained after some preliminary empirical evaluation and are presented
on Table 1. These parameters correspond respectively the limits used in Neigh-
borhoods Invert Subsequence (INV), Shift Jobs (SJ), Swap Jobs (SWJ), Shift
Project (SP),the percentage of Compact Project (CP) and the percentage of
mode changes (MC) at each perturbation.

Table 1 Parameters used for tests

Local Search Parameters
INV SJ SWJ SP %CP %MC

3 2 2 5 0.5 0.02

The results of the instance set A, used on the first stage of the competition,
were announced during the qualification phase. Results of the instances of the
set B and X, on the second and third phase of the competition, were announced
during the conference.

Table 2 shows the best results found by the proposed approach, as well the
mean and standard deviation, after 10 runs within 300 seconds of runtime.
Instances that were better or equal to the results reported in the MISTA 2013
Challenge site are emphasized.

5 Conclusions and Future Works

In this work we presented a hybrid search method which combines a multi-
neighborhood parallel local search with mathematical programming. Pertur-
bation is executed in a controlled way, so that the search method always jumps
from one feasible solution to another.

1 the same of the MISTA 2013 Challenge

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

405

Table 2 Best and average results after 10 runs of the algorithm sided with best results
from MISTA

Inst.
Best Average Std.Dev. MISTA ≤ MISTA?

TPD TMS TPD TMS TPD TMS TPD TMS
A-1 1 23 1 23 0 0 1 23 equal
A-2 2 41 2 41 0 0 2 41 equal
A-3 0 50 0 50 0 0 0 50 equal
A-4 65 42 65 42 0 0 65 42 equal
A-5 157 107 164 109 4 2 153 105
A-6 153 98 161 102 5 3 147 96
A-7 620 205 630 204 8 4 596 196
A-8 300 160 323 161 6 2 302 155 yes
A-9 221 130 227 133 8 3 223 119 yes
A-10 926 324 950 327 18 3 969 314 yes
B-1 294 118 298 121 4 2 349 127 yes
B-2 474 177 482 179 9 2 434 160
B-3 573 215 595 218 16 2 545 210
B-4 1304 290 1333 291 19 5 1274 289
B-5 851 256 873 262 13 4 820 254
B-6 977 237 1035 244 31 4 912 227
B-7 817 237 838 239 18 4 792 228
B-8 3275 570 3361 576 74 6 3176 533
B-9 4633 812 4782 825 93 11 4192 746
B-10 3208 465 3284 470 40 4 3249 456 yes
X-1 408 147 417 149 6 2 392 142
X-2 370 169 381 170 9 2 349 163
X-3 346 199 354 199 5 3 324 192
X-4 954 216 991 216 26 3 955 213 yes
X-5 1858 390 1883 393 24 4 1768 374
X-6 779 249 810 254 22 5 719 232
X-7 890 237 893 242 3 4 861 237
X-8 1310 301 1369 306 41 5 1233 283
X-9 3529 689 3642 703 64 7 3268 643
X-10 1671 395 1719 404 27 7 1600 381

There are several points in or algorithm which could be improved. Firstly,
our implementation does not considers yet many optimizations described by
competing teams of the MISTA Challenge in the serial schedule generation,
this would speed up the entire algorithm. Secondly, the perturbation procedure
could be improved to consider the history of the search process. As in some
implementations of tabu search, the diversification process could consider some
form of long term memory.

Nevertheless, the current implementation already outperformed our previ-
ous implementation which relied more on integer programming, showing the
the combination of local search with some of our already proposed search
methods can be very beneficial.

Acknowledgements The authors thank CNPq and FAPEMIG for supporting this re-
search.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

406

References

1. Wauters, T. Kinable, J. Smet, P. Vancroonenburg, W. Berghe, G.V. and
Verstichel, J. : MISTA - Multidisciplinary International Scheduling Con-
ference (2013). URL http://www.schedulingconference.org/

2. Artigues, C., Demassey, S., Néron, E.: Resource-Constrained Project
Scheduling: Models, Algorithms, Extensions and Applications. Scientific
and Technical Publisher. Wiley (2013)

3. Asta, S., Karapetyan, D., Kheiri, A., Ozcan, E., Parkes, A.J.: Combining
Monte-Carlo and Hyper-heuristic methods for the Multi-mode Resource-
constrained Multi-project Scheduling Problem, technical report. Tech.
rep., University of Nottingham, School of Computer Science (2014)

4. Callahan, M.T., Quackenbush, D.G., Rowings, J.E.: Construction Project
Scheduling. McGraw-Hill (1992)

5. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research
Handbook. Kluwer Academic Publishers, Leuven Belgium (2002)

6. Geiger, M.J.: Iterated Variable Neighborhood Search for the resource con-
strained multi-mode multi-project scheduling problem. In: Proceedings of
the 6th Multidisciplinary International Scheduling Conference (MISTA)
(2013)

7. Hansen, P., Mladenović, N.: Variable Neighborhood Search. Computers
and Operations Research 24(11), 1097–1100 (1997)

8. Hartmann, S.: A self-adapting genetic algorithm for project scheduling
under resource constraints. Naval Research Logistics pp. 433–448 (2002)

9. Johnson, E., Nemhauser, G., Savelsbergh, W.: Progress in Linear
Programming-Based Algorithms for Integer Programming: An Exposition.
INFORMS Journal on Computing 12 (2000)

10. Józefowska, J., Weglarz, J.: Perspectives in modern project scheduling.
International series in operations research & management science. Springer
(2006)

11. Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W.,
Reinelt, G., Rinaldi, G., Wolsey, L.: 50 Years of Integer Programming
1958-2008. Springer (2010)

12. Kelley Jr, J.E., Walker, M.R.: Critical-path planning and scheduling. In:
Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-
ACM Computer Conference, IRE-AIEE-ACM ’59 (Eastern), pp. 160–173.
ACM, New York, NY, USA (1959). DOI 10.1145/1460299.1460318

13. Klein, R.: Scheduling of Resource-Constrained Projects. Operations re-
search/computer science interfaces series. Kluwer Academic (2000)

14. Weglarz, J.: Project Scheduling: Recent Models, Algorithms, and Appli-
cations. International series in operations research & management science.
Kluwer (1999)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

407

http://www.schedulingconference.org/

Polynomially solvable formulations for a class of
nurse rostering problems

Pieter Smet · Peter Brucker ? · Patrick
De Causmaecker · Greet Vanden Berghe

Abstract Identifying underlying structures in combinatorial optimisation prob-
lems leads to a better understanding of a problem and, consequently, to ef-
ficient solution methodologies. The present paper introduces a new network
flow formulation for a large class of nurse rostering problems. By solving an
integer minimum cost flow problem in a carefully constructed network, nurses’
shift schedules can be constructed in polynomial time. The performance of the
new formulation is compared with a state of the art algorithm on a benchmark
dataset. Computational experiments show that the new formulation performs
better in terms of computation time, while still solving the problem to optimal-
ity. By identifying inherent combinatorial structures which can be efficiently
exploited, insight is gained into the problem’s complexity, thereby laying the
foundations for a theory of nurse rostering.

Keywords Nurse rostering · Network flows · Mathematical programming

? Peter Brucker sadly passed away on July 24, 2013. His coauthors dedicate their
contribution in this paper to his memory.

P. Smet and G. Vanden Berghe
KU Leuven, Department of Computer Science, CODeS & iMinds - ITEC
Gebroeders De Smetstraat 1, 9000 Gent, Belgium
Tel.: +32 92658704
E-mail: {pieter.smet, greet.vandenberghe}@cs.kuleuven.be

P. De Causmaecker
KU Leuven, Department of Computer Science, CODeS & iMinds - ITEC
Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
Tel.: +32 92658704
E-mail: patrick.decausmaecker@kuleuven-kortrijk.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

408

1 Introduction

Scheduling nurses is a critical process in health care due to the high costs
associated with these scarce resources. Nearly sixty years of research has been
devoted to solving different variants of this problem, resulting in an equally
large variety of solution techniques (Burke et al, 2004; Van den Bergh et al,
2013). Many nurse rostering problems addressed in the literature are complex
in nature, dealing with a large variety of organisational and legal constraints
(Brucker et al, 2010; Smet et al, 2013). Complex search algorithms have been
proposed for dealing with such problems (Burke and Curtois, 2014; Valouxis
et al, 2012). However, attention has also been paid to more straightforward,
simplified variants of the problem which make abstraction of a large part of the
operational complexity arising in practice. Studying the underlying structure
of such problems can lead to valuable insights, resulting in improved method-
ologies for both simplified and complex nurse rostering problems. We revisit
problems presented in the literature, and investigate whether they exhibit a
combinatorial structure that can be efficiently exploited.

An example of such a combinatorial structure which has been given at-
tention in personnel scheduling research is the use of network flow techniques
(Ahuja et al, 1993). A common application of network flows is found in col-
umn generation approaches for personnel rostering, where the pricing problem
is often modeled as a resource constrained shortest path problem (Jaumard
et al, 1998). Networks have also been described to address more general prob-
lems: to calculate the size of a workforce (Koop, 1988), to reconstruct nurse
rosters from a schedule with disruptions (Moz and Pato, 2004) or to allocate
shift types to a fixed days-on roster (Dowsland and Thompson, 2000). Brucker
et al (2011) discuss networks for various (sub)problems related to personnel
scheduling. Millar and Kiragu (1998) present a mathematical model with an
underlying network structure to represent both a cyclic and non-cyclic nurse
scheduling problem. Constraints regarding staffing demands and weekends are
modelled as side constraints external to the network.

These network flow formulations make a strong abstraction of reality by
e.g. assuming equal staffing requirements on all days or full staff availability,
considering single shift scenarios and ignoring skill requirements. Furthermore,
the number of contractual workforce constraints included in these formulations
is typically limited to e.g. only restricting certain shift successions or only
limiting the maximum number of consecutive assignments. The present paper
fills the existing void by presenting a network flow model incorporating various
practical and important nurse rostering constraints. Since there are no side
constraints, the underlying structure of network flow problems is kept intact.
Thereby, a solution methodology is established for efficiently solving a large
class of nurse rostering problems.

The paper is organised as follows. Section 2 presents a detailed classification
scheme for nurse rostering problems. Section 3 introduces a new network flow
formulation for nurse rostering, along with several extensions. A computational

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

409

evaluation of the new formulation is presented in Section 4. Finally, Section 5
concludes the paper and identifies areas for future research.

2 A classification scheme for nurse rostering problems

De Causmaecker and Vanden Berghe (2011) present an α|β|γ classification
scheme for practical nurse rostering problems (Table 1). The presented nota-
tion allows a wide variety of problem characteristics to be described. In this
section, we introduce an extension to this classification scheme which allows
detailed elements of nurse rostering problems to be described.

Personnel constraints Skill interactions

α Personnel environment

A Availability 2, 3, ... Fixed number
S Sequences N Variable number
B Balance I Individual skill definitions
C Chaperoning
Coverage constraints Shift type

β Work characteristics
R Range 2, 3, ... Fixed number
T Time intervals N Variable number
V Fluctuating O Overlapping
Objective Mode

γ Optimisation objective

P Personnel constraints M Multi-objective
L Coverage constraints
X Number of personnel
R Robustness
G General

Table 1 Classification of nurse rostering problems (De Causmaecker and Vanden Berghe,
2011).

α: Personnel environment

The scheme of De Causmaecker and Vanden Berghe (2011) describes time-
related (horizontal) constraints by α : A and α : S for counters and series,
respectively. We present the following extensions to these constraint categories:

– A ∈ {a, a, a, a, s, s, s, s} Type of counter constraint. When A = a there
is a constraint on the number of days worked, and when A = s there is a
constraint on the number of assignments of a particular shift type. The lines
above and under each entry indicate the type of threshold. For example,
a means that an exact number of days needs to be worked, a means that
only an upper bound is specified, a refers to only a lower bound, finally, a
means that a range is defined.

– S ∈ {as, as, as, as, cs, cs, cs, cs, ss} Type of series constraint. When S = as
there is a constraint on the number of consecutive days worked, when
S = ss there is a constraint on particular shift successions, and when
S = cs there is constraint on the number of consecutive assignments of a
particular shift type. The threshold for this type of constraint is defined as
in category α : A.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

410

β: Work characteristics

To detail the type of coverage constraint in a nurse rostering problem, the
category β : R is extended with the following elements:

– R ∈
{
d, d, d, d

}
Type of coverage constraint. The threshold for this type of

constraint corresponds to the threshold definition in category α : A.

γ: Optimisation objective

Several objectives can be described in the γ category. We present an extension
to the category γ : P to differentiate between different types of personnel
related objectives:

– P ∈ {
∑
wc,

∑
px} Objective function. P =

∑
wc denotes a weighted sum

of soft constraint violations. When P =
∑
px, the employee preferences

are optimised.

While most common time-related constraints for nurse rostering are presented
in the extended classification scheme, the use of the α|β|γ notation presents a
flexible framework allowing for future extensions.

3 Network flow models for nurse rostering

3.1 Problem description

The scheduling period T is a set of t days T = {1, ..., t}. There is a set S of s
shift types S = {1, ..., s}. On each day j and for each shift type k, arbitrary
minimum and maximum staffing demands 0 ≤ dljk ≤ dujk are specified. The
workforce N is a heterogeneous set of n nurses N = {1, ..., n}. Each nurse i
has to work exactly ai days in T . Finally, each nurse i has a preference for
working shift type k on day j, expressed as an inversely proportional integer
cost cijk.

Let P denote the problem of assigning shifts to nurses such that the staffing
requirements are satisfied. Each nurse must work exactly the number of spec-
ified days and can be assigned to at most one shift per day. The objective is
to minimise the costs cijk.

P can be formulated as an integer linear program (ILP) with one set of
decision variables

xijk =

{
1 if nurse i works shift k on day j
0 otherwise

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

411

P : min
∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk (1)

s.t.
∑
k∈S

xijk ≤ 1 ∀ i ∈ N, j ∈ T (2)

dljk ≤
∑
i∈N

xijk ≤ dujk ∀ j ∈ T, k ∈ S (3)∑
j∈T

∑
k∈S

xijk = ai ∀ i ∈ N (4)

xijk ∈ {0, 1} ∀ i ∈ N, j ∈ T, k ∈ S (5)

The objective function 1 minimises the sum of costs incurred by the shift
assignments. Constraints 2 ensure that at most one shift is assigned per day,
per nurse. Constraints 3 model the minimum and maximum staffing demands.
Constraints 4 restrict the number of days each nurse should work in the plan-
ning period. Finally, constraints 5 bound the decision variables.

Following the extended α|β|γ notation presented in Section 2, the class of
problems we address is in A(a)NI |R(d)VN |P(

∑
px).

3.2 Network flow formulation

Problem P can be reformulated as an integer minimum cost network flow
problem in a directed network G = (V,E), with V the set of nodes and E the
set of arcs. The set V consists of four subsets of nodes.

Shift nodes For each day j ∈ T and each shift type k ∈ S, a node is created
representing the demand on day j for shift type k.

Time nodes For each nurse i ∈ N and each day j ∈ T , a node is created
representing a day on which a nurse can work.

Nurse nodes For each nurse i ∈ N , one node is created.
Other nodes There is one source node s and one sink node f .

Figure 1 shows the structure of the network G. Each shift node has one
incoming arc from the source node. Its outgoing arcs are directed towards the
time nodes corresponding to the day for which the shift node is defined. Each
nurse node only has incoming arcs from time nodes associated with the nurse.
Finally, each nurse node has one outgoing arc to the sink node.

Lemma 1 The number of nodes in G is equal to t(s+ n) + n+ 2.

Proof The network contains ts shift nodes, nt time nodes, n nurse nodes and
two other nodes. ut

Lemma 2 The number of arcs in G is equal to t(s+ n(s+ 1)) + n.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

412

s f

Shift nodes Time nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1 x = ai

cijk

dl
jk ≤ x ≤ du

jk 0 ≤ x ≤ 1

Fig. 1 Network G for problem P. x denotes the flow through an arc.

Proof There are ts arcs going from the source node to the shift nodes. Each
shift node has n arcs to time nodes. There are ts shift nodes, so in total tsn
arcs go from shift nodes to time nodes. Each time node has one outgoing arc
to a nurse node. With nt time nodes, nt arcs exist between the time nodes
and the nurse nodes. Finally, there are n arcs between the nurse nodes and
the sink node. ut

Flow costs are only defined on the arcs between the shift nodes and the
time nodes, representing the cost cijk of assigning a nurse i to shift type k on
day j. All nodes, except the source and sink nodes, are transshipment nodes.
The supply in the source node is

∑
i∈N ai, corresponding to the total number

of days the nurses can work according to their contracts. The supply in the
sink node is equal to

∑
i∈N −ai.

Lower and upper bounds on the capacity of the arcs are appropriately de-
fined to correctly represent problem P. The arcs between the source node and
the shift nodes have a lower (upper) bound equal to the minimum (maximum)
staffing demand. Arcs between the nurse nodes and sink node have a lower
and upper bound equal to the required number of days worked. All other arcs
require a flow of either 0 or 1.

Theorem 1 An optimal integer minimum cost flow in the network G corre-
sponds to an optimal solution for problem P.

Proof Due to the construction of network G, a minimum cost solution respect-
ing the capacity and demand constraints can be converted to a solution for
problem P. A flow on an arc between a time node defined for nurse i, day j
and a nurse node defined for nurse i, corresponds to a working day for nurse i.
By forcing a flow of ai in the arc between the nurse node i and the sink node,
nurse i will work exactly ai days. Shift assignments are determined by flows
in the arcs between the shift nodes and the time nodes. A flow from the shift
node associated with day j, shift k to the time node associated with day j,
nurse i, corresponds to nurse i working shift k on day j, thereby incurring cost
cijk. The flow conservation constraints ensure that at least dljk, and at most
dujk units of flow will be divided among the arcs leaving the associated shift
node, thereby fulfilling the staffing demands. Since there is an upper bound
of one on the arcs between the shift nodes and time nodes, a nurse cannot be
assigned more than one shift per day. ut

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

413

3.3 Extensions

Several elements can be added to the definition of problem P, which can also
be included in the network formulation.

3.3.1 Unavailabilities

A shift unavailability prevents the assignment of shift type k on day j. A set
of shift unavailabilities S̄ij ⊆ S can be defined, containing the shifts for which
nurse i is unavailable on day j. This is enforced by adding constraints (6) in
the ILP model. ∑

k∈S̄ij

xijk = 0, ∀ i ∈ N, j ∈ T (6)

Shift unavailabilities can be modeled in network G by setting the capacity
upper bound to zero on the arcs going from the shift node associated with
each shift in S̄ij to the corresponding time nodes.

This type of unavailability can also be used to include qualification re-
quirements for particular shifts. For example, when one head nurse is required
during the day shift, a dedicated head nurse-day shift can be created. The ca-
pacity upper bound on the arcs going from the associated shift nodes should be
zero, except for the arcs to the time nodes defined for the actual head nurses.

A day unavailability forbids the assignment of any shift on day j. Again, for
each nurse i, a set of day unavailabilities T̄i ⊆ T can be defined. Constraints
(7) model these unavailabilities in the ILP model.∑

k∈S

xijk = 0, ∀ i ∈ N, j ∈ T̄i (7)

In the networkG, day unavailabilities are enforced by changing the capacity
upper bound to zero on the arcs going from the relevant time nodes to the
corresponding nurse nodes.

3.3.2 Hard preferences

Hard preferences, either for working days or for particular shifts, can be mod-
eled in a similar way as the unavailabilities. An assignment of shift k on day
j for nurse i can be fixed by adding constraint (8) to the ILP model.

xijk = 1 (8)

For a fixed day-on assignment on day j to nurse i, constraint (9) should
be added to the ILP model. ∑

k∈S

xijk = 1 (9)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

414

In network G, instead of setting the capacity upper bound on selected arcs
to zero, the capacity lower bound is set to one, thereby forcing a flow through
the arcs and consequently ensuring a working day or shift.

3.3.3 Daily employment cost

There exist cases in which a cost ci is incurred for each day nurse i works in
the planning period. The objective function in the ILP includes an additional
term to represent these costs (expression (10)).∑

i∈N

∑
j∈T

∑
k∈S

cijkxijk +
∑
i∈N

∑
j∈T

ci
∑
k∈S

xijk (10)

This extension can be modeled in network G by adding a flow cost equal
to ci on the arcs from the nurse nodes to the sink node. Since each unit of
flow through these arcs represents one day of labour, a flow cost corresponds
to the cost ci.

3.3.4 Ranged constraint

Problem P requires nurse i to work exactly ai days. This constraint can be
relaxed such that nurse i works between ali and aui days. In the ILP, constraints
(4) are replaced by constraints (11).

ali ≤
∑
j∈T

∑
k∈S

xijk ≤ aui , ∀ i ∈ N (11)

This relaxation is included in the network flow model by transforming the
network G to a circulation network G′ by adding one arc from the sink node
to the source node. There is no cost associated with this arc, and the capacity
is only bounded below by zero. All nodes become transshipment nodes. Ac-
cording to Theorem 1, an integer minimum flow in G′ again corresponds to an
optimal solution for problem P with constraints (11).

3.3.5 Weighted constraint

Consider the modification of problem P such that for each nurse i ∈ N only
an upper bound ai on the number of days worked is imposed, which can be
violated at the cost of a penalty wi per additional day worked. This is modelled
by replacing constraints (4) with constraints (12) in the ILP.∑

j∈T

∑
k∈S

xijk ≤ ai + pi,∀ i ∈ N (12)

The variable pi represents the number of days nurse i works over the allowed
maximum. Violations of this constraint are minimised by optimising objective
function (13).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

415

∑
i∈N

∑
j∈T

∑
k∈S

cijkxijk +
∑
i∈N

wipi (13)

In the network flow formulation, one additional transshipment node is cre-
ated for each nurse: a constraint node. Each of these new nodes is connected
with the nurse node of the corresponding nurse, and the sink node. Both arcs
have positive infinite capacity. By adding a flow cost equal to wi on the arcs
between the nurse nodes and the constraint nodes, the penalty for additional
days worked is counted. Figure 2 shows the modified network.

s f

Shift nodes Time nodes

<j,k> <i,j> i

j = 1,...,t k = 1,...,s i = 1,...,n j = 1,...,t i = 1,...,n

Nurse nodes

..
..

..
..

..
..

0 ≤ x ≤ 1

x ≤ ai

cijk

0 ≤ x ≤ 1

Constraint nodes

i

i = 1,...,n

x ≥ 0 x ≥ 0

wi

..
..

dl
jk ≤ x ≤ du

jk

Fig. 2 Network G for problem P with weighted constraint violation. x denotes the flow
through an arc.

To construct a solution for this extended problem description, the network
G depicted in Figure 2 is first transformed to a circulation network G′, such
that all nodes become transshipment nodes. According to Theorem 1, an inte-
ger minimum flow in G′ again corresponds to an optimal solution for problem
P with the weighted constraint.

4 Computational analysis

4.1 Applying the network flow model

The effectiveness of the new network flow formulation is evaluated by analysing
a series of computational experiments on the NSPLib benchmark dataset (Van-
houcke and Maenhout, 2007). The dataset consists of different constraint sets
that can be combined with any of the 29,160 problem instances. By omitting
the constraint on forbidden shift sequences from the NPSLib problem descrip-
tion, a subset of instances (case 1 constraint set for the 7-day instances, and
case 9 for the 28-day instances) corresponds to problem P.

As in problem P, an assignment cost cijk is defined for each nurse, shift,
day combination. Since NSPLib uses a dummy shift k′ to represent a day-off,
costs of working shifts are scaled relative to the cost of the dummy shift. Let
cijk′ be the preference cost of nurse i for a day-off on day j. To correctly
incorporate the use of the dummy shift in the network G, the original costs
cijk are transformed to modified costs c′ijk by applying equation 14.

c′ijk = cijk − cijk′ ∀i ∈ N, j ∈ T, k ∈ S (14)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

416

It is clear that a problem instance with costs c′ijk has the same optimal
assignments as a problem with costs cijk since the relative differences in pref-
erence remain the same. The only difference is that c′ijk can be less than zero,
which in general does not influence (optimal) choices made by algorithms.
Since after applying equation 14, the costs associated with days-off are zero,
their assignment can be omitted from any shift assignment model. The costs
associated with the other shifts will determine whether a particular shift type
assignment is preferable to a day-off.

4.2 Performance evaluation

We first present a comparison in terms of size for both the ILP formulation and
the network flow formulation (NF). Table 2 shows, for the different instances
in NSPLib, the number of variables and constraints in the ILP model and the
number of nodes and arcs in the network G.

ILP NF
Days Nurses Variables Constraints Nodes Arcs

7

25 700 228 230 928
50 1400 428 430 1828
75 2100 628 630 2728

100 2800 828 830 3628

28
30 3360 982 984 4342
60 6720 1852 1854 8572

Table 2 Size comparison of ILP and network flow models.

We performed a series of experiments with the ILP formulation and net-
work flow formulation to solve instances from NSPLib. The experiments were
carried out on an Intel Core i5 CPU at 2.5GHz with 4GB RAM operating on
Windows 7, using a single thread. All algorithms were coded in C++. IBM
ILOG CPLEX 12.5 was used to solve the ILP formulation. The network flow
formulation was solved with the network simplex algorithm in LEMON 1.3.

Table 3 compares the solution costs and computation times in seconds
for the ILP formulation (ILP) and the network flow formulation (NF). These
values are averages over all instances, grouped per number of days and number
of nurses.

Both the ILP and network flow formulations obtain optimal solutions for
all instances, while requiring very little computation time. The reported cal-
culation times are plotted in Figure 3 as functions of problem size, determined
by the number of days and nurses. For both approaches, the trend shows that
an increasing problem size, and thus an increasing number of variables, con-
straints or network dimensions, leads to longer calculation times. However,
for the network flow formulation, the required calculation time is up to a
magnitude lower than for the ILP formulation, thereby demonstrating the ad-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

417

ILP NF
Days Nurses Avg. cost Time(s) Avg. cost Time(s)

7

25 245.41 0.0206 245.41 0.0014
50 489.77 0.0324 489.77 0.0031
75 740.11 0.0447 740.11 0.0062

100 1191.19 0.0579 1191.19 0.0102

28
30 1422.32 0.0685 1422.32 0.0134
60 2915.64 0.1406 2915.64 0.0406

Table 3 Comparison of the ILP and network flow formulations.

vantage of exploiting the problem’s underlying combinatorial structure with
well known efficient algorithms.

0.001

0.010

0.100

1.000

7x25 7x50 7x75 7x100 28x30 28x60

C
al

cu
la

ti
o

n
 t

im
e

 (
s)

Number of days x number of nurses

ILP NF

Fig. 3 Required calculation times in function of problem size.

5 Conclusions and future work

By reformulating nurse rostering problems as integer minimum cost flow prob-
lems, we identified a class of problems in A(a)NI |R(d)VN |P(

∑
px) that can

be solved in polynomial time. Within this problem class, several variants are
introduced which can be modeled by making minor modifications to the pre-
sented flow network, while still preserving its combinatorial structure. The
contribution lies in this new formulation by which a large class of problems
can be solved in polynomial time.

Computational experiments demonstrated the effectiveness of the new for-
mulation on a benchmark dataset from the literature. Compared to solving
an ILP formulation with a state of the art mathematical solver, a network
simplex algorithm required almost ten times less computation time for solving
the integer minimum cost flow problem in the presented flow network.

The challenge of identifying efficiently exploitable combinatorial structures
for more complex problems, incorporating other practical constraints, remains

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

418

an important research area. Such results lead to establishing a theory of per-
sonnel scheduling which is severely lacking in the academic community. Un-
derstanding various problems’ structure and complexity supports the study of
more complex nurse rostering problems arising in practice.

References

Ahuja RK, Magnanti TL, Orlin JB (1993) Network Flows: Theory, Algorithms,
and Applications. Prentice Hall

Brucker P, Burke EK, Curtois T, Qu R, Vanden Berghe G (2010) Adaptive
construction of nurse schedules: A shift sequence based approach. Journal
of Heuristics 16(4):559–573

Brucker P, Qu R, Burke EK (2011) Personnel scheduling: Models and com-
plexity. European Journal of Operational Research 210(3):467 – 473

Burke EK, Curtois T (2014) New approaches to nurse rostering benchmark
instances. European Journal of Operational Research 237(1):71 – 81

Burke EK, De Causmaecker P, Vanden Berghe G, Van Landeghem H (2004)
The state of the art of nurse rostering. Journal of Scheduling 7(6):441–499

De Causmaecker P, Vanden Berghe G (2011) A categorisation of nurse roster-
ing problems. Journal of Scheduling 14(1):3–16

Dowsland K, Thompson J (2000) Solving a nurse scheduling problem with
knapsacks, networks and tabu search. Journal of the Operational Research
Society pp 825–833

Jaumard B, Semet F, Vovor T (1998) A generalized linear programming model
for nurse scheduling. European Journal of Operational Research 107(1):1 –
18

Koop GJ (1988) Multiple shift workforce lower bounds. Management Science
34(10):1221–1230

Millar HH, Kiragu M (1998) Cyclic and non-cyclic scheduling of 12 h shift
nurses by network programming. European Journal of Operational Research
104(3):582 – 592

Moz M, Pato M (2004) Solving the problem of rerostering nurse schedules with
hard constraints: New multicommodity flow models. Annals of Operations
Research 128:179–197

Smet P, De Causmaecker P, Bilgin B, Vanden Berghe G (2013) Nurse rostering:
A complex example of personnel scheduling with perspectives. In: Uyar AS,
Ozcan E, Urquhart N (eds) Automated Scheduling and Planning, Studies in
Computational Intelligence, vol 505, Springer Berlin Heidelberg, pp 129–153

Valouxis C, Gogos C, Goulas G, Alefragis P, Housos E (2012) A systematic
two phase approach for the nurse rostering problem. European Journal of
Operational Research 219(2):425 – 433

Van den Bergh J, Beliën J, De Bruecker P, Demeulemeester E, De Boeck
L (2013) Personnel scheduling: A literature review. European Journal of
Operational Research 226(3):367 – 385

Vanhoucke M, Maenhout B (2007) NSPLib - a tool to evaluate (meta-) heuris-
tic procedures. In: Brailsford S, Harper P (eds) Operational research for
health policy: making better decisions, proceedings of the 31st meeting of
the European working group on operational research applied to health ser-
vices, pp 151–165

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

419

Branch-and-Price and Improved Bounds to the Traveling
Umpire Problem

Túlio A. M. Toffolo · Sam Van Malderen ·
Tony Wauters · Greet Vanden Berghe

Abstract The present paper proposes a branch-and-price approach to the Traveling
Umpire Problem (TUP). In this hard combinatorial optimization problem, umpires
(or referees) have to be assigned to games in a double round robin tournament. The
objective is to obtain a solution with minimum total travel distance over all umpires,
while respecting several hard constraints. Dantzig-Wolfe decomposition is applied to
an existing Integer Programming formulation to be used in a branch-and-price frame-
work. The pricing problems are solved using a specialized branch-and-bound algo-
rithm, which applies multiple pruning techniques. Two branching strategies (best-first
and depth-first) were employed and result in many improved lower bounds compared
to the previous best known. In addition, five new best solutions were found and four
instances with 16 teams were proven to be infeasible.

Keywords Traveling Umpire Problem · Branch and Price · Column Generation ·
Decomposition Strategies · Integer Programming

1 Introduction

The Traveling Umpire Problem (TUP) is a sports timetabling problem that considers
the assignment of n umpires (or referees) to games in a double round robin tourna-
ment (e.g. a baseball championship). The tournament schedule is given as input with
4n − 2 rounds (or slots), where the 2n teams play twice against each other; once in
their home venue and once away. The objective is to minimize the total travel dis-
tance of all umpires. In order to obtain a fair assignment, several hard constraints are
imposed:

a) every game in the tournament is officiated by exactly one umpire.

Túlio A. M. Toffolo
1,2 · Sam Van Malderen

1 · Tony Wauters
1 · Greet Vanden Berghe

1

1 KU Leuven, Department of Computer Science, CODeS & iMinds-ITEC
2 Federal University of Ouro Preto - Brazil, Department of Computing
Emails: tulio.toffolo@kuleuven.be, sam.vanmalderen@cs.kuleuven.be, tony.wauters@cs.kuleuven.be and
greet.vandenberghe@cs.kuleuven.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

420

b) every umpire must work in every round.
c) every umpire should visit the home of every team at least once.
d) no umpire is in the same venue more than once in any q1 = n − d1 consecutive

rounds.
e) no umpire officiates a game with the same team more than once in any q2 =
bn
2 c − d2 consecutive rounds (this constraint is similar to the previous one, but

also takes the ‘away team’ into consideration).

The values d1 and d2 range from 0 to n and 0 to bn2 c, respectively.
The Traveling Umpire Problem (TUP) was first introduced by Trick and Yildiz

(2007). Their work was extended by Trick and Yildiz (2011), where a Benders cuts
guided large neighborhood search is proposed. These papers also provide an Integer
Programming (IP) and Constraint Programming (CP) formulation for the problem. A
greedy matching heuristic and a simulated annealing approach with a two-exchange
neighbourhood are described by Trick et al (2012). Trick and Yildiz (2012) present
a Genetic Algorithm (GA) with a locally optimized crossover procedure. A stronger
IP formulation and a relax-and-fix heuristic are proposed in (de Oliveira et al, 2013),
which improve both lower and upper bounds. Wauters et al (2014) present an en-
hanced iterative deepening search with leaf node improvements (IDLI), an iterated
local search (ILS) and a new decomposition based lower bound methodology. Many
improved solutions and lower bounds were found.

In this work, we present a branch-and-price approach to the TUP. By applying the
Dantzig-Wolfe decomposition on an existing formulation of the problem, we obtain a
Restricted Master Problem (RMP) and pricing subproblems. The RMP is a set parti-
tion problem, and its relaxation can be solved by linear programming algorithms such
as Simplex. The pricing subproblems are solved by a specialized branch-and-bound.
The branch-and-price can be seen as a branch-and-bound employing a column gen-
eration scheme to solve the relaxation in each node. We considered two branching
and node selection strategies, one for improving the lower bounds and another for
obtaining feasible solutions.

The following section presents the formulation introduced by de Oliveira et al
(2013) for the TUP. Section 3 details the reformulation of the original model. The
strategies considered in the branch-and-price framework are discussed in Section
4. Section 5 presents computational experiments considering both lower and upper
bounds and, finally, Section 6 summarizes the conclusions and proposes future work.

2 Integer Programming Formulation for the TUP Problem

The first formulation for the TUP was proposed by Trick and Yildiz (2007). This
formulation was then improved by de Oliveira et al (2013). We apply the Dantzig-
Wolfe decomposition on the latter model. Following, we present this formulation. For
that, consider the following input data:

U : set of umpires, such that U = {1, ..., n};
T : set of teams, such that T = {1, ..., 2n};
R : set of rounds, such that R = {1, ..., 4n− 2};

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

421

H(r) : set of teams i hosting a game in round r;
δ(i) : set of rounds r ∈ R in which the team i is hosting a game;

A(i, r) : function that returns the team playing against team i in round r;
dij : distance between the home of teams i and j;

CV (r) : set of rounds {r, . . . , r + q1 − 1} ∈ R defined for r ∈ {1, . . . , |R| −
q1 − 1};

CT (r) : set of rounds {r, . . . , r + q2 − 1} ∈ R defined for r ∈ {1, . . . , |R| −
q2 − 1};

The decision variables are:

xijru =

{
1 if umpire u is assigned to venue i in round r and to j in round r + 1

0 otherwise

The formulation is presented by constraints (1)-(9).

min
∑
i∈T

∑
j∈T

∑
r∈R

∑
u∈U

dijxijru (1)

s.t.
∑
u∈U

∑
j∈T

x(i, j, r, u) = 1 ∀i ∈ T, r ∈ δ(i) (2)

∑
i∈H(r)

∑
j∈T

x(i, j, r, u) = 1 ∀r ∈ R, u ∈ U (3)

∑
r∈δ(i)

∑
j∈T

x(i, j, r, u) ≥ 1 ∀i ∈ T, u ∈ U (4)

∑
c∈CV (r):
c∈δ(i)

∑
j∈T

x(i, j, c, u) ≤ 1
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − q1 − 1

(5)

∑
c∈CT (r)

∑
j∈T

x(i, j, c, u) +
∑
k∈T :

A(k,c)=i

x(k, j, c, u)

 ≤ 1
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − q2 − 1

(6)

∑
j∈T

x(i, j, r, u) = 0
∀i ∈ T, u ∈ U,
r ∈ R\δ(i) (7)

∑
j∈T

xjiru −
∑
j∈T

xij(r+1)u = 0
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − 1

(8)

xijru ∈ {0, 1}
∀i ∈ T, j ∈ T, r ∈ R,
u ∈ U (9)

where

x(i, j, r, u) =

{
xijru if r = 1

xji(r−1)u otherwise

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

422

Constraints (2) and (3) ascertain that every game can be officiated by only one
umpire and that every umpire may officiate only one game per round, respectively.
Constraints (4) state that every umpire should visit every team at least once during
the season. Constraints (5) and (6) specify that every umpire must wait q1−1 days to
revisit the same home location and that every umpire must wait q2 − 1 days to revisit
the same team, respectively. Constraints (7) enforce that an umpire can only travel
to the home location of a team if that team hosts a game in that certain round. If an
umpire is at the location of a team in round r, the umpire must leave from the same
location in round r+1 as specified by constraints (8). Finally, the objective function,
given by equation (1), is to minimize the total travel distances of the umpires.

3 Dantzig-Wolfe Reformulation

In order to obtain stronger bounds, we reformulate the model presented in the pre-
vious section by applying the Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960). The original problem is decomposed into a master problem and n pricing
problems, one for each umpire.

Figure 1 shows the structure of the linear program (LP) of a TUP instance con-
sidering the formulation presented in Section 2. This figure presents the coefficient
matrix of the original LP (left image) and the same LP after sorting the rows and
columns by umpire (right image). The dots indicate non-zero coefficients in the con-
straint matrix. The required block structure for the Dantzig-Wolfe decomposition is
easily identified in the right image (sorted model). In this image, each square block
forms a pricing problem containing the constraints and variables corresponding to a
single umpire.

In formulation (1)-(9), constraints (3)-(9) are umpire-oriented and form the pric-
ing problems. The remaining constraints, given by equation (2), are the coupling (or
linking) constraints. These constraints correspond to the wide block at the bottom of
the sorted LP in Figure 1.

The pricing problem can be stated as the problem of finding the optimal schedule
for one umpire with the consideration of dual costs.

The master problem is a set partition problem, whose formulation is given by
equations (10)-(13). In this formulation, Ω is the set of columns (possible schedules
for the umpires), Ωu represents the subset of Ω containing all columns of umpire
u ∈ U , ds is the cost (travel distance) of column s ∈ Ω, λs is a binary variable that
indicates whether the column s ∈ Ω is selected or not and, finally, airs is a binary
coefficient denoting whether the umpire is assigned to game hosted by team i ∈ T in
round r ∈ R in column s ∈ Ω. Constraints (11) guarantee that only one column is
chosen per umpire while constraints (12) are the coupling constraints inherited from
the original problem (2), and ensure that each game in each round is officiated by
exactly one umpire.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

423

Fig. 1 Representation of the applied decomposition

min
∑
u∈U

∑
s∈Ωu

dsλs (10)

s.t.
∑
s∈Ωu

λs = 1 ∀u ∈ U (11)

∑
u∈U

∑
s∈Ωu

airsλs = 1 ∀i ∈ T, ∀r ∈ R (12)

λs ∈ {0, 1} ∀u ∈ U, ∀s ∈ Ωu (13)

The column generation approach (Lübbecke and Desrosiers, 2005; Vanderbeck
and Wolsey, 2010) is solved iteratively. The linear relaxation of the master problem
is solved first. In every iterations, the pricing problems are solved to obtain reduced
cost columns. A reduced cost column for umpire u is a column s ∈ Ωu for which
vu +

∑
i∈T

∑
r∈R airswir > ds, where vu and wir represent the dual variables

corresponding to constraints (11) and (12), respectively. If such columns are found,
they are added to the master problem, which is subsequently re-solved. The algorithm
continues until no reduced cost columns exists, in which case the relaxation of the
reduced master problem is solved.

3.1 Symmetry breaking

In order to speed up the pricing solver, we preallocate the games assigned to the um-
pires in the first round. This reduces symmetry (Yildiz, 2008) in the original problem,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

424

as otherwise the umpires would have similar coefficients in the constraint matrix. Pre-
allocation can be easily achieved by adding constraints (14) to the formulation (1)-(9).
In these constraints, we use the notationHk(r) to represent the home team of the k-th
game of round r, with the games in lexicographical order.

∑
j∈T

xij1u = 1 ∀u ∈ U, i = Hu(1) (14)

Constraints (14) are umpire-oriented and can be included in the pricing problems
of the column generation scheme. Adding these constraints results in a reduction of
the pricing problem size by one round.

3.2 Specialized pricing problem solver

A branch-and-bound pricing solver is used to generate a predefined maximum num-
ber c of reduced cost columns. Starting in the first round, the algorithm assigns games
to the umpire, round after round until the last round. An assigment of a game to an
umpire in a round is feasible if (i) the umpire did not visit the same location in the
previous q1 − 1 rounds and (ii) the umpire did not officiate any of the teams during
the previous q2 − 1 rounds. Whenever multiple games can be assigned in a round,
the algorithm chooses the assignment incurring the smallest increase in the travel
distance.

Figure 2 shows an example of the branch-and-bound procedure for an 8-team
(4-umpire) problem instance. The table inside the figure shows the considered game
schedule (opponents matrix). The example considers the pricing for the first umpire
using parameter values q1 = 4 and q2 = 2. As detailed in section 3.1, the assignment
in the first round is fixed.

The umpire can neither officiate game [5,3] nor game [1,6] in the second
round due to constraint e (presented in section 1), since a game played by teams 1
and 5 has already been officiated by the umpire during the first round. Moreover, the
umpire cannot officiate game [1,6] due to constraint d, since the home location
of team 1 has already been visited in the previous round. The only possibilities left
in round two are game [2,8] and game [4,7]. The branch-and-bound prefers
to assign the umpire to game [2,8] because the travel distance between the home
location of teams one and two is smaller than the distance between the home locations
of teams one and four.

If no valid assignment can be found in a certain round, the procedure returns to
the previous round and chooses the game with the second smallest travel distance.
This procedure continues until a valid assignment has been found in the last round.
If the resulting solution does not violate constraint c, it is feasible and serves as an
upper bound for pruning when exploring the rest of the search tree.

We implemented several extensions to improve the performance of the branch-
and-bound algorithm. In section 3.2.1, we explain these pruning strategies.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

425

[1, 5]

[1, 6] [2, 8] [5, 3]

d&e

[4, 7]

e
745 929

[1, 4] [2, 7] [3, 8] [5, 6]

1090

[6, 1] [8, 2] [3, 7] [5, 4]

1190 1020

[8, 1] [7, 2] [3, 4] [6, 5]

664 257

[7, 1] [2, 3] [4, 6] [8, 5]

253 315

d&e

d e

e d

e d&e

ee

Round 2

Round 1

Round 3

Round 4

Round 5

Round 6

 1 [1 5] [6 2] [7 3] [4 8]
 2 [1 6] [2 8] [5 3] [4 7]
 3 [1 4] [2 7] [3 8] [5 6]
 4 [6 1] [8 2] [3 7] [5 4]
 5 [8 1] [7 2] [3 4] [6 5]
 6 [7 1] [2 3] [4 6] [8 5]
 7 [1 8] [2 6] [4 3] [7 5]
 8 [1 7] [2 4] [3 6] [5 8]
 9 [4 1] [3 2] [5 7] [6 8]
10 [2 1] [6 3] [4 5] [8 7]
11 [3 1] [2 5] [8 4] [7 6]
12 [1 2] [3 5] [7 4] [8 6]
13 [1 3] [5 2] [6 4] [8 7]
14 [5 1] [4 2] [8 3] [6 7]

Round Game [Home Away]

OPPONENTS MATRIX

Fig. 2 Specialized branch-and-bound example for a 8-team (4-umpire) problem instance.

3.2.1 Pruning the search tree

Multiple strategies exist to prune unfavorable parts of the search tree. First of all,
the branch-and-bound algorithm prunes the parts of the search tree where no optimal
solution can reside based on the lower and upper bound on the travel distance. Once
the branch-and-bound algorithm has obtained a feasible solution, it can be used as an
upper bound on the minimum travel distance of the umpire.

For each game in every round, a shortest path exists to any of the games in the
last round. The shortest path serves as a lower bound for the branch-and-bound pro-
cedure.When trying to assign a game in a round, the algorithm evaluates whether
the current travel distance together with the lower bound exceeds the currently best
known upper bound. If so, the branch-and-bound need not consider that assignment
anymore, since it will not improve the current upper bound.

It is impossible to evaluate constraint c before a complete path has been gen-
erated for the umpire. Nevertheless, a second pruning strategy is possible. If in a
certain round, the number of unvisited home locations exceeds the remaining number
of rounds, it is impossible to obtain a solution satisfying constraint c, given the as-
signments in the previous rounds. The branch-and- bound algorithm should therefore
return to a previous round and explore other assigments.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

426

4 Branch-and-Price

Section 3 presented the column generation scheme. Since this algorithm only solves
the LP-relaxed version of the problem, it may be necessary to branch on the vari-
ables to find an integer solution. In that case, we apply branch-and-price (Barnhart
et al, 1998; Vanderbeck, 2000), which is a variant of branch-and-bound where the
relaxation is solved by column generation in each node of the search tree.

The branch-and-price algorithm branches on the variables xijru from the original
formulation. Since the branching tree is too large, we consider two different strategies
for branching, each one pursuing a different goal. The first branching strategy aims at
providing good lower bounds by conducting a best-first search (BFS) in the branching
tree. The second strategy executes depth-first search (DFS) and focuses on finding
integral solutions.

In each iteration, the BFS strategy selects variables for branching based on the
following criterion: variables with the most fractional value of the earliest available
round are selected first. Fixing variables of the earliest available round impacts the
performance of the pricing solver considerably. The specialized branch-and-bound
constructs the solution from the first to the last round, in lexicographical order. Hence,
if a variable of the last round were selected first, processing time may be wasted
searching in infeasible subtrees. Since the fixation of a variable renders several sub-
trees infeasible, it is better to detect the infeasibility as soon as possible during the
branching process. If this strategy were not used, the detection of infeasible subtrees
would be delayed, consuming a considerable amount of processing time.

The DFS strategy aims to obtain feasible solutions as soon as possible. Therefore,
in each node the variable with least fractional value of the earliest possible round is
selected to be branched first. By doing so in a depth-first search manner, the fixations
are directed to iteratively build a feasible solution using the information provided by
the column generation.

5 Computational Experiments

The approach applies SCIP/GCG (Achterberg, 2009). This open source framework
provides a well structured platform for developing branch-and-price algorithms. The
branching scheme, node rules and pricing solver were coded in Java, using Java Na-
tive Interface to exchange information between Java and C. CPLEX was used to solve
the linear relaxation of the Restricted Master Problem.

The experiments were executed on a Intel(R) Xeon(R) CPU E5-2650 @ 2.60GHz
computer with 128Gb of RAM memory running Linux Mint 16. CPLEX version 12.6
and Java Virtual Machine 1.7 were used.

The benchmark set used within the experiments is available online 1, together
with the currently best known solution values in literature. We also consider the most
recent bounds found by Wauters et al (2014) for comparison. Further information
about the instances can be found in (Trick et al, 2012).

1 http://mat.gsia.cmu.edu/TUP/, last accessed June 8, 2014

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

427

http://mat.gsia.cmu.edu/TUP/

The discussion of experiments focuses on two evaluations. First we consider the
dual bounds obtained by the BFS branching scheme in the branch-and-price. After-
wards we present the feasible solutions obtained by the DFS branching strategy. In
both situations, we compare our results with the best known in the literature.

5.1 BFS Strategy

The results of the branch-and-price with the BFS strategy are presented in Table 1.
This table shows the lower bound (LB0) obtained with the column generation (in the
root node), the best lower bound obtained (LB) and the best lower bound found in
the literature. The table also shows the time in which the lower bound was found
by the branch-and-price algorithm. The last column presents the gap between the
best known bound and the obtained bound. The cells marked with ~ indicate some
improvement over the best known bound. Considering the imposed time limit of 3
hours, no feasible solutions were found for any of the instances with more than 10
teams with the BFS strategy. We omitted the results for the small instances, as they
can be easily solved to optimality in few seconds.

Table 1 shows that the column generation approach already improves 8 best
known lower bounds. By applying the branch-and-price with BFS, 15 other instances
have their best known dual bound improved. This result corroborates the expected
strong bound from column generation.

Table 1 also shows the influence of the pricing solver on the total processing
time of the column generation approach. Consider, for example, the difference in
time required for solving the column generation in the root bound (given by column
LB0) for instances ‘16A-7,2’ and ‘16A-7,3’. Column generation for instance ‘16A-
7,2’ required much more computation time than for ‘16-A-7,3’. This is mainly due to
the value q2 = 2 in the first instance, which is less constrained than the second one,
with q2 = 3. Small values of q2 negatively impact the performance of our specialized
branch-and-bound, since it provides fewer pruning opportunities.

5.2 DFS Strategy

The results of the branch-and-price with the DFS strategy are presented in Table 2.
This table shows the value of the first feasible solution found (UB0), the best solution
found by the branch-and-price (UB) and the best solution in the literature. The table
also shows the total runtime to find the solutions with the branch-and-price and the
gap between the best known solution and the obtained solution. The experiments
were restricted to 3 hours of processing time. As in Table 1, cells marked with ~
indicate some improvement over the best known solution. It is important to note that
the bounds for these instances have been updated repeatedly over the years. Best
bounds were hard to trace.

Table 2 shows that the DFS strategy provides feasible solutions in a small amount
of time for most instances. Even considering the total available runtime, the branch-
and-price was able to improve five upper bounds. For 7 instances, the branch-and-
price was not able to produce feasible solutions within the time limit.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

428

Table 1 Experiments with the BFS strategy in branch-and-price

Inst. q1, q2
Bounds Time (seconds) LB* gap(%)LB0 LB LB0 LB

14 7, 3 156439.3 157812.8 42.1 10500.0 159797 1.24
14 6, 3 154439.9 155570.4 40.8 10560.0 156551 0.63
14 5, 3 152941.3 ~ 153759.6 50.3 10740.0 153066 -0.45
14A 7, 3 149992.7 151243.5 40.7 10740.0 153199 1.28
14A 6, 3 148168.7 149285.4 45.5 10680.0 150998 1.13
14A 5, 3 147097.5 147966.4 47.8 10620.0 148299 0.22
14B 7, 3 149767.0 ~ 151165.8 43.5 10620.0 151059 -0.07
14B 6, 3 148243.9 149208.6 49.6 10620.0 149267 0.04
14B 5, 3 146846.2 ~ 147638.3 55.7 10800.0 147534 -0.07
14C 7, 3 148613.2 150101.6 44.6 10380.0 151581 0.98
14C 6, 3 146774.6 147820.0 47.7 10320.0 148728 0.61
14C 5, 3 145794.4 146622.1 49.5 10620.0 146764 0.10
16 8, 4 184187.6 ~ 193457.1 172.0 10260.0 185939 -3.89
16 8, 2 ~ 155045.2 ~ 155045.2 7092.0 7092.0 151481 -2.82
16 7, 3 158257.4 ~ 158586.0 10500.0 10500.0 158480 -0.07
16 7, 2 ~ 148341.8 ~ 148341.8 10102.0 10102.0 147138 -0.81
16A 8, 4 ~ 198969.7 ~ 200648.5 172.0 10260.0 185119 -11.28
16A 8, 2 ~ 166575.5 ~ 166624.1 5403.0 10410.0 162788 -2.77
16A 7, 3 170575.1 172420.1 371.0 10560.0 172964 0.31
16A 7, 2 161571.2 161571.2 7476.0 7476.0 161640 0.04
16B 8, 4 207505.4 ~ 209346.5 202.0 10440.0 208418 -4.55
16B 8, 2 ~ 169363.4 ~ 170092.6 5162.0 10162.0 167768 -1.37
16B 7, 3 170632.5 172058.0 880.0 10560.0 173023 0.56
16B 7, 2 163539.7 163649.6 9021.2 11298.3 164012 0.29
16C 8, 4 ~ 200682.6 ~ 205643.8 234.0 10380.0 188561 -8.31
16C 8, 2 ~ 168783.6 ~ 168783.6 7380.0 7380.0 166001 -1.77
16C 7, 3 171216.0 ~ 171767.6 449.0 10740.0 171377 -0.23
16C 7, 2 ~ 163850.8 ~ 163850.8 10578.0 10578.0 163305 -0.33

Considering that the developed approach tends to perform better on more con-
strained instances, one would probably expect better results for the very constrained
‘16-8,4’, ‘16A-8,4’, ‘16B-8,4’ and ‘16C-8,4’ instances. The branch-and-price was
not able to find any feasible solution after several hours of processing time. This
result, coupled with the fact that there are no known solution for these instances, mo-
tivated us to investigate the strong indication that they may be infeasible. In the next
section we discuss over the infeasibility of these instances.

5.3 A note on the feasibility of TUP instances

It was already shown that TUP instances with q1 > n and q2 > bn2 c are infeasible
(Yildiz, 2008). Instance ‘12-6,3’ was also proven infeasible. This instance belongs
to the special class of TUP instances with constraint values q1 = n and q2 = bn2 c,
further denoted as TUP0

0, referring to TUPd1

d2
with d1 = 0 and d2 = 0. Other in-

stances from TUP0
0 with n ≤ 7 were shown to contain at least one feasible solution.

No feasible solution was found for TUP0
0 instances with n > 7.

An adapted version of the branch-and-bound procedure presented in Section 3.2,
considering all umpires simultaneously, enables proving that instance ‘16-8,4’, be-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

429

Table 2 Experiments with the DFS strategy in branch-and-price

Inst. q1, q2
Bounds Time (seconds) UB* gap(%)UB0 UB UB0 UB

6 3, 1 14077 14077 2.0 2.0 14077 0.00
6A 3, 1 16918 15457 1.3 1.8 15457 0.00
6B 3, 1 16716 16716 2.2 2.2 16716 0.00
6C 3, 1 14396 14396 1.8 1.8 14396 0.00
10 5, 2 49154 48942 7.6 8.1 48942 0.00
10A 5, 2 46551 46551 7.6 7.6 46551 0.00
10B 5, 2 45609 45609 5.7 5.7 45609 0.00
10C 5, 2 43149 43149 6.9 6.9 43149 0.00
14 7, 3 174373 166942 84.0 546.6 164440 1.50
14 6, 3 163488 159808 88.7 2462.4 159505 1.67
14 5, 3 156406 ~ 155392 99.9 1214.8 155439 -0.03
14A 7, 3 172737 160856 91.4 7500.1 158760 1.30
14A 6, 3 160599 154637 89.7 2813.5 153216 0.92
14A 5, 3 157249 150386 933.6 4110.2 149331 0.07
14B 7, 3 170180 162677 88.3 1560.1 157884 2.95
14B 6, 3 164212 155817 94.0 5662.4 152740 1.97
14B 5, 3 154425 149866 100.8 1579.2 149621 0.16
14C 7, 3 173962 159815 87.2 6071.9 154913 3.07
14C 6, 3 155918 152696 93.2 6877.4 150858 1.20
14C 5, 3 155218 ~ 149482 108.6 9218.9 149662 -0.12
16 8, 4 - - - - - -
16 8, 2 162720 161999 6612.6 9918.9 160705 0.80
16 7, 3 176576 170293 950.8 7799.8 168860 0.84
16 7, 2 - - - - 153978 -
16A 8, 4 - - - - - -
16A 8, 2 175796 ~ 171882 7065.8 8016.7 172966 -0.63
16A 7, 3 190715 187686 1020.5 2979.9 179960 4.12
16A 7, 2 165931 165766 9562.6 9759.0 164620 0.69
16B 8, 4 - - - - - -
16B 8, 2 189564 ~ 180728 9283.3 10717.5 180888 -0.09
16B 7, 3 192188 186429 1176.3 1378.1 181565 2.61
16B 7, 2 - - - - 170194 -
16C 8, 4 - - - - - -
16C 8, 2 191461 ~ 179939 8949.0 9285.8 180221 -0.16
16C 7, 3 191859 187310 822.4 2234.5 184181 1.67
16C 7, 2 - - - - 169184 -

longing to TUP0
0, has no feasible solution. At the same time, instance ‘16A-8,4’,

instance ‘16B-8,4’ and instance ‘16C-8,4’ are proven to be infeasible since their op-
ponents matrix is equal to that of ‘16-8,4’. Table 3 summarizes the feasibility of the
instances from TUP0

0 up to n = 10. The table reports for each instance, the feasibil-
ity, the number of nodes and time (in milliseconds) needed by the branch-and-bound
to prove (in)feasibility. The feasibility of instances from TUP0

0 with n > 8 remains
unknown after 48 hours of running time of the branch-and-bound algorithm.

6 Conclusions and future work

This work introduced a branch-and-price approach to the Traveling Umpire Problem,
devoting attention to both computation of strong dual bounds and production of good

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

430

Table 3 Feasibility of instances from TUP0
0 up to n = 10, and the number of nodes and time (ms)

needed to prove (in)feasiblity.

Inst. q1, q2 Feasibility Nodes Time(ms)
4 2,1 feasible 12 1
6 3,1 feasible 35 2
8 4,2 feasible 1, 129 5
10 5,2 feasible 27, 179 63
12 6,3 infeasible 901, 228 309
14 7,3 feasible 172, 552 77
16 8,4 infeasible 35, 696× 106 3h
18 9,4 unknown - 48h
20 10,5 unknown - 48h

feasible solutions. We presented a pricing solver and branching rules, optimized to
speed up the resolution of the pricing problem.

We were able to improve several lower bounds. In addition, five improved solu-
tions have been obtained. We also employed a modified version of the pricing solver
to prove infeasibility of some instances. Tight runtime limits are sufficient for the
branch-and-price to generate competitive feasible solutions for the most constrained
problem instances.

As suggestions for future work, we point at the development of heuristics that
use the information from the column generation approach to produce good solutions.
In addition, other branching rules and approaches to speed up the resolution of the
pricing problem may yield further improvements.

7 Acknowledgements

Work supported by the Belgian Science Policy Office (BELSPO) in the Interuniver-
sity Attraction Pole COMEX (http://comex.ulb.ac.be).

References

Achterberg T (2009) Scip: Solving constraint integer programs. Mathematical Pro-
gramming Computation 1(1):1–41

Barnhart C, Johnson EL, Nemhauser GL, Savelsbergh MWP, Vance PH (1998)
Branch-and-price: column generation for solving huge integer programs. Opera-
tions Research 46:316–329

Dantzig GB, Wolfe P (1960) Decomposition principle for linear programs. Opera-
tions Research 8(1):101–111

Lübbecke ME, Desrosiers J (2005) Selected Topics in Column Generation. Opera-
tions Research 53(6):1007–1023

de Oliveira L, de Souza CC, Yunes T (2013) Improved bounds for the traveling um-
pire problem: A stronger formulation and a relax-and-fix heuristic. European Jour-
nal of Operational Research In press

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

431

Trick MA, Yildiz H (2007) Bender’s cuts guided large neighborhood search for the
traveling umpire problem. In: Van Hentenryck P, Wolsey L (eds) Integration of
AI and OR Techniques in Constraint Programming for Combinatorial Optimiza-
tion Problems, no. 4510 in Lecture Notes in Computer Science, Springer Berlin
Heidelberg, pp 332–345

Trick MA, Yildiz H (2011) Benders’ cuts guided large neighborhood search for the
traveling umpire problem. Naval Research Logistics (NRL) 58(8):771 – 781

Trick MA, Yildiz H (2012) Locally optimized crossover for the traveling umpire
problem. European Journal of Operational Research 216(2):286 – 292

Trick MA, Yildiz H, Yunes T (2012) Scheduling major league baseball umpires and
the traveling umpire problem. Interfaces 42:232 – 244

Vanderbeck F (2000) On dantzig-wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm. Operations Research
48(1):111–128

Vanderbeck F, Wolsey L (2010) Reformulation and decomposition of integer pro-
grams. In: Jünger M, Liebling TM, Naddef D, Nemhauser GL, Pulleyblank WR,
Reinelt G, Rinaldi G, Wolsey LA (eds) 50 Years of Integer Programming 1958-
2008, Springer Berlin Heidelberg, pp 431–502

Wauters T, Malderen SV, Vanden Berghe G (2014) Decomposition and local search
based methods for the traveling umpire problem. European Journal of Operational
Research

Yildiz H (2008) Methodologies and applications for scheduling, routing & related
problems. PhD thesis, Carnegie Mellon University

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

432

Extended Abstracts

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

433

A self-generating memetic algorithm for examination
timetabling

Cevriye Altıntaş · Shahriar Asta ·
Ender Özcan · Tuncay Yiğit

1 Introduction

Timetabling problems encompasses educational timetabling, nurse rostering,
transportation timetabling and so on. The educational timetabling is one of the
most widely studied timetabling problems including high school timetabling,
university course and examination timetabling. In this study, we focus on the
examination timetabling problem, which is one of the most important and
repetitive administrative activities that occur in the educational institutions.
In the last ten years or so, many methodologies have been developed to solve
the examination timetabling problem. An examination timetabling problem
consists of the designation of a set of exams to a given set of timeslots subject to
various practical constraints. The generated timetable must satisfy all the hard
constraints of a problem is called a feasible timetable. The hard constraints can
not be violated. Soft constraints represent preferences that can be violated,
but in many cases solution approaches attempt to reduce the number of such
violations as much as they can to improve the quality of a generated timetable
further. More on examination timetabling can be found in Qu et al. 2009
[13]. This study presents a self-generating multimeme algorithm for solving
an examination timetabling problem at Suleyman Demirel University (SDU).
Unlike previous multimeme algorithms, each meme in the proposed algorithm
encodes a score as a performance indicator of the associated operator. Those
scores are then used in the process of choosing operators to create/modify

C.Altıntaş and T.Yiğit
Suleyman Demirel University, Department of Computer Engineering
Tel.: +90-246-211 1378
Fax: +90-246-211 1378
E-mail: cevriyealtintas,tuncayyigit@sdu.edu.tr

S. Asta and E. Özcan
University of Nottingham, School of Computer Science
Jubilee Campus, Nottingham NG8 1BB UK
E-mail: sba,exo@cs.nott.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

434

new candidate solutions, self-adaptively. The results obtained on some SDU
and ITC2007 problem instances indicate that the proposed approach performs
reasonably well.

2 Problem Definition

Suleyman Demirel University (SDU), located in Turkey also deals with the
examination timetabling issue a couple of times in a year. This problem is
not that different than the examination timetabling problems faced by the
other educational institutions across the world. Recently, the second Interna-
tional Timetabling Competition (ITC 2007) was organised [8] with the goal
of providing a set of real world problem instances and determining the state-
of-the-art for educational timetabling. One of the competition tracks was on
examination timetabling and the instances used at the competition turned
into a benchmark. SDU examination timetabling problem is formulated in the
same way as in the ITC2007. The SDU problems instances used in this study
will be publicly provided extending the ITC2007 benchmark instances. The
properties of each SDU instance is summarised in Table 1. SDU instances do
not have any room hard constraints.

Table 1 The characteristics of the SDU examination timetabling problem instances, where
HC indicates the number of hard constraints and Density is the conflict density in percentage.

Problem Density Students Exams Rooms Periods Period HC

SDU01 3.24 10953 212 17 50 142
SDU02 5.08 11012 236 26 61 123
SDU03 1.37 24867 430 29 80 317
SDU04 12.60 8028 166 18 59 61
SDU05 3.59 12091 269 33 46 173

3 Proposed Approach

A generic Memetic Algorithm is an evolutionary algorithm which makes heavy
use of hill climbing as introduced by Moscato in [9]. The main components of an
MA are mutation, crossover and hill climbing. In this study, we describe a novel
“Self-Generating Multimeme Algorithm” (SGMA) that manages 6 mutation,
2 crossover and 2 hill climbing operators. The initial population is formed
using multiple constructive heuristics with the goal of generating feasible initial
solutions. The main feature of the proposed algorithm is that each meme
encodes a score as a performance indicator of the associated operator. During
the evolutionary process, when it is time to apply an operator of certain type,
e.g., mutation, one of the operators is selected and employed randomly using
roulette wheel selection based on the scores of operators of that type.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

435

Table 2 Best result obtained from SGMA for each SDU instance.

Problem SDU01 SDU02 SDU03 SDU04 SDU05
Score 760 5880 210 20000 30

4 Experimental Results

The performance of a self-generating multimeme algorithm for the examina-
tion timetabling problem is investigated on a subset of ITC2007 and SDU
instances. Each experiment is repeated 10 times and a run is terminated after
325 seconds complying with the ITC2007 competition rules. We have used a
2 Core Duo 3.16 GHz (2 GB RAM) machine during our experiments. Fea-
sible solutions are obtained for all problem instances used during the exper-
iments. Table 2 provides the best results obtained by SGMA over 10 runs
for the SDU instances. Similarly, Table 3 presents a comparison between our
approach and some selected previously proposed approaches on six ITC2007
benchmark instances based on the best result that each approach achieves.
SGMA performs reasonably well in the overall. It is not the best approach,
but it performs potentially better than some other memetic approaches [11].
We will be implementing different types of memetic algorithms and testing
them on all ITC2007 and SDU instances as future work.

References

1. Abdul-Rahman, S., Bargiela, A., Burke, E.K., Özcan, E., McCollum, B.: Linear Com-
bination of Heuristic Orderings in Constructing Examination Timetables. European
Journal of Operational Research, 232(2), 287–297 (2014)

2. Atsuta, M., Nonobe, K., Ibaraki, T.: Itc2007 track 1: An approach using general csp
solver. http://www.cs.qub.ac.uk/itc2007

3. De Smet, G.: Itc2007 - examination track. In: Practice and Theory of Automated
Timetabling (PATAT 2008), Montreal, 19-22, August (2008)

4. Demeester, P., Bilgin, B., De Causmaecker, P., Vanden Berghe, G.: A hyperheuristic
approach to examination timetabling problems:benchmarks and a new problem from
practice. Journal of Scheduling, 15(1), 83–103 (2012)

5. Gogos, C., Alefragis, P., Housos, E.: A multi-staged algorithmic process for the solu-
tion of the examination timetabling problem. In: Practice and Theory of Automated
Timetabling (PATAT 2008), Montreal, pp. 19–22, August (2008)

6. Gogos, C., Alefragis, P., Housos, E.: An improved multi-staged algorithmic process for
the solution of the examination timetabling problem. Annals of Operation Research 3,
1–3, (2010)

7. McCollum, B., McMullan, P., Parkes, A.J., Burke, E.K., Abdullah, S.: An extended
great deluge approach to the examination timetabling problem. In: The 4th Multidisci-
plinary International Conference on Scheduling: Theory and Applications (MISTA09),
Dublin, (2009)

8. McCollum, B., McMullan, P., Parkes, A.J., Burke, E.K., Qu, R.: A new model for
automated examination timetabling. Annals of Operations Research 194(1), 291–315
(2012)

9. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms, Caltech Concurrent Computation Program Report 826,
California Institute of Technology (1989)

10. Müller, T.: Itc2007 solver description: A hybrid approach. Annals of Operations Re-
search 172(1), 429–446 (2009)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

436

Table 3 Performance comparison of our approach to the previously proposed approaches
based on the best results (scores) obtained in 10 runs over the ITC2007 benchmark instances.

Exam 1 Exam 2 Exam 3

Ranking Approach Score Approach Score Approach Score

1st Müller[10] 4370 Gogos[6] 385 Gogos[6] 8996
2nd McCollum[7] 4633 Müller[10] 400 McCollum[7] 9064
3rd Gogos[6] 4775 McCollum[7] 405 Müller[10] 10049
4th SGMA 5626 Demeester[4] 515 Gogos[5] 13771
5th Gogos[5] 5905 SGMA 616 Pillay[12] 15917
6th Demeester[4] 6060 De Smet[3] 623 Atsuta[2] 17669
7th De Smet[3] 6670 Gogos[5] 1008 Rahman[1] 19098
8th Atsuta[2] 8006 Pillay[12] 2886 SGMA 19617
9th Rahman[1] 11060 Rahman[1] 3133 Demeester[4] 23580
10th Pillay[12] 12035 Atsuta[2] 3470 De Smet[3] x

Exam 4 Exam 5 Exam 6

Ranking Approach Score Approach Score Approach Score

1st McCollum[7] 15663 Gogos[6] 2929 Gogos[6] 25740
2nd Gogos[6] 16204 Müller[10] 2988 McCollum[7] 25880
3rd Müller[10] 18141 McCollum[7] 3042 Müller[10] 26585
4th Gogos[5] 18674 De Smet[3] 3847 Demeester[4] 27605
5th Rahman[1] 20830 Gogos[5] 4139 Gogos[5] 27640
6th Atsuta[2] 22559 Atsuta[2] 4638 De Smet[3] 27815
7th Pillay[12] 23582 Demeester[4] 4855 Rahman[1] 28330
8th SGMA 30010 SGMA 5002 Atsuta[2] 29155
9th Demeester[4] x Pillay[12] 6860 Pillay[12] 32250
10th De Smet[3] x Rahman[1] 7975 SGMA 33085

11. Özcan, E., Asta, S. and Altintas, C.: Memetic algorithms for cross-domain heuristic
search. In: The 13th Annual Workshop on Computational Intelligence (UKCI), pp.
175–182 (2013).

12. Pillay, N.: A developmental approach to the examination timetabling problem. In:
Practice and Theory of Automated Timetabling (PATAT 2008), Montreal, pp. 19–22,
August (2008)

13. Qu, R., Burke, E.K., McCollum, B., Merlot, L., Lee, S.: A survey of search methodologies
and automated system development for examination timetabling. Journal of Scheduling
12(1), 55–89 (2009)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

437

Exam timetabling at Université de Technologie de
Compiègne: a memetic approach

Taha Arbaoui · Jean-Paul Boufflet · Kewei
Hu · Aziz Moukrim

1 Introduction and problem description

The exam timetabling problem at Université de Technologie de Compiègne (UTC)
has some of the usual hard and soft constraints introduced in the second Interna-
tional Timetabling Competition ITC2007. For the sake of simplicity, we use the same
terminology for these constraints in the sequel. The other constraints, however, fall
into the scope of some of the potential extension of the ITC2007 problem (McCollum
et al. 2012).

A timetable is considered as feasible by the practitioner if all exams are assigned
to a room and a period while respecting the hard constraints. The quality of the
solution is measured using soft constraints. Despite the allowance of scheduling exams
in overlapping periods, examination rooms which are spread on different sites cannot
be used twice at two overlapping periods. Moreover, rooms have a list of allowed
periods.

Contrary to the ITC2007 problem, splitting exams between rooms is permitted.
Thus, there are two types of exams: splittable exams and non-splittable exams. Each
exam disposes of a list of allowed rooms and periods. As a result, for an exam to
be assigned to room r and period p, they should both be allowed for the exam and
room r must be available in the same period as well.

The hard constraints are the following:

– A student cannot sit two exams at the same period or at two overlapping periods.
– An exam must be assigned to a unique period.
– A non-splittable exam must be assigned to a unique room.
– The duration of the exam must be less than or equal to the duration of the period

in which it is assigned.

Taha Arbaoui (B) · Jean-Paul Boufflet · Kewei Hu · Aziz Moukrim
Université de Technologie de Compiègne
Laboratoire Heudiasyc, UMR 7253 CNRS 60205 Compiègne, France
E-mail: taha.arbaoui@hds.utc.fr

jean-paul.boufflet@hds.utc.fr
kewei.hu@etu.utc.fr
aziz.moukrim@hds.utc.fr

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

438

Instance nE nS nP nR Conflict density

S2011 141 2322 32 8 0.30
F2011 119 2388 24 9 0.32
S2012 142 2412 36 9 0.31
F2012 117 2296 26 8 0.30

S2011noTC 122 1988 32 8 0.34
F2011noTC 102 2089 24 8 0.33
S2012noTC 123 2057 36 8 0.35
F2012noTC 100 2098 26 8 0.32

Table 1 Characteristics of UTC instances

– The capacity of any room should not be exceeded at any period.
– The sum of the parts of a splittable exam should be equal to the total number

of enrolled students.
– A room can be used only at one period of a set of overlapping periods.
– Each exam should be assigned only once.

A solution is considered to be feasible when all the hard constraints are satisfied.
On the other hand, when a soft constraint is not satisfied, a penalty is applied. The
soft constraints used to measure the quality of the solution differ from one institution
to another. A quick look at the ITC2007 benchmark shows that the Front Load
penalty is not as important as the penalty for the Two In a Row, Two In a Day and
Period Spread. However, this is not the case in our university. Due to the limited
time given to professors after the exams to mark them, the practitioner informed us
the most important penalty to minimize is the Front Load penalty (minimize the
number of big exams planned at the end of the examination session). The following
definitions describe briefly the soft constraints used by the practitioner:

Two In a Row: Examinations of a student allocated back to back in the same day
should be avoided.

Two In a Day: Examinations of student scheduled in the same day but not back
to back should be avoided.

Front Load: Large-size exams should be assigned before a certain period.

Note that ITC2007 differs in both the hard and the soft constraints. Our problem
does not consider all the soft constraints used in the ITC2007 problem (e.g. Room
and Period penalty). On the other part, ITC2007 lacks some of the hard constraints
considered in our problem. For example, the overlapping periods and splitting the
exams do not exist in ITC2007.

Table 1 presents the characteristics of four instances relative to four semesters in
UTC. Column instance reports the labels where “S” stands for the spring semester
and “F” stands for the fall semester. In UTC, the curriculum is split into two parts.
The first part, called “Tronc Commun” (TC), is done in the first two years. The
second part is a three-year specialization, at the end of which the student holds an
engineering degree. Exams associated to the courses in TC usually constitutes a set
of large exams. To measure the impact of these large exams, we studied another type
of instances that does not contain the “TC” exams.

Columns nE , nS , nP , nR and Conflict density show for each instance the number
of exams, the number of students, the number of periods, the number of rooms and
the density of conflict graph, respectively.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

439

2 The memetic algorithm

Evolutionary algorithms, such as Genetic Algorithms (Corne et al. 1994) and Memetic
algorithms (Burke et al. 1996), have proved to be effective approaches to tackle exam
timetabling problems (Qu et al. 2009). A memetic algorithm (MA) can be viewed as
a genetic algorithm in which the key feature is the coupling of the global optimization
and local optimization. The global optimization is managed by the crossover pro-
cedure while the local optimization is performed using the local search as mutation
operators. We proposed a memetic algorithm to solve our problem.

Exams are labelled by integers and a chromosome is a permutation of these
integers. A decoding procedure is needed to transform this indirect encoding into a
solution. We used the First Fit Decoding (FFD) procedure, inspired from the Bin
Packing first fit heuristic (Johnson 1974): exams in the permutation are taken in
turn and assigned to the first period and room that respect the hard constraints.
The decoding procedure does not always lead to a feasible solution. When it is the
case, a Repairing Method (RM) is performed until a feasible solution is reached. The
chromosome is then updated to the new permutation. The cost of a chromosome is
assessed while decoding.

The population is initialized by generating fifty chromosomes at random. Five
chromosomes are improved using a rapid destruction-construction local search. The
idea is to remove randomly a number of exams, and to reinsert them using the
following Best Insertion (BI) strategy: allocate an exam to the period and the room
that minimize the penalty of the soft constraints.

We applied the Linear Order Crossover (LOX) (Dahal et al. 2007) on parents se-
lected using the following Binary Tournament strategy: two couples of chromosomes
are selected at random. The best of the first couple is the first parent and the best
of the second couple is the second parent. LOX then randomly selects one of the
parents and defines two indices on its permutation. Exams between the two indices
are then given to the child and the rest of child is completed from the remaining
parent.

The child is mutated with a certain probability. We used three different local
searches as mutation operators. The operators are chosen at random. If an operator
fails to improve the solution, one of the remaining operators is then applied. The
mutation is stopped when none of the operators improves the chromosome.

The mutation operators used are Hill-Climbing (HC), Exam Swap (SWAP) and
Light Destruction/Construction (LDC). A conflict graph in which nodes are ex-
ams and edges represent incompatibilities between exams is used for Light Destruc-
tion/Construction. We briefly describe the mutation operators as follows:

HC: a random order of exams is considered. Next, exams are removed one after
another in the defined order, and then inserted back in the solution using BI.

SWAP: two periods are randomly selected. The exams assigned to these periods are
swapped. The new solution is accepted iff all the hard constraints are respected
and the quality of the solution is improved.

LDC: a random exam is removed from the solution. Some of its adjacents in the
conflict graph are also removed. These exams are then shuffled and reinserted
using BI. If some exams are left unscheduled, the last best permutation of the
current chromosome is restored and LDC is reapplied.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

440

Instance MA Previous approach noTC

P2011 5462 10926 3896
A2011 3400 7501 2020
P2012 3450 12008 2586
A2012 3241 9266 1671

Table 2 Results obtained by MA. “noTC” presents the results of MA when the exams of
“Tronc Commun” are removed.

The population is updated by replacing an existing chromosome having the same
quality of the solution or by replacing the worst chromosome of the population if the
new chromosome is better.

3 Preliminary results

Table 2 presents the preliminary results obtained using the memetic algorithm. Re-
sults show that MA improved the quality of solutions compared to the previous
approach used by the practitioner. The cost of the solutions has been more than
halved.

In order to help the practitioner determine the exams involved in most of the
solution penalty, we removed the exams of the core curriculum (TC) to measure
their impact. The results show that “TC” exams highly contribute to the cost of the
solutions on the different instances. This allows us to investigate a two-stage approach
aiming at giving more priority to “TC” exams in the planning. In fact, they share
students with many other exams which leads to a bigger conflict in the examination
session. Taking these exams in priority will effectively lead to high-quality solutions.

References

Edmund K. Burke, James P Newall, and Rupert F Weare. A memetic algorithm for university
exam timetabling. In Lecture notes in computer science: Practice and Theory of Auto-
mated Timetabling I: selected papers from the 1st international conference, volume 1153,
pages 241–250. Springer, 1996.

Dave Corne, Peter Ross, and Hsiao-Lan Fang. Evolutionary timetabling: Practice, prospects
and work in progress. In UK planning and Scheduling SIG Workshop, 1994.

Keshav P. Dahal, Kay Chen Tan, and Peter I. Cowling, editors. Evolutionary Scheduling,
volume 49 of Studies in Computational Intelligence. Springer, 2007.

David S. Johnson. Approximation algorithms for combinatorial problems. Journal of Computer
and System Sciences, 9(3):256 – 278, 1974.

Barry McCollum, Paul McMullan, Andrew Parkes, Edmund K. Burke, and Rong Qu. A New
Model for Automated Examination Timetabling. Annals of Operations Research, 194:
291–315, 2012.

Rong Qu, Edmund Burke, Barry McCollum, Liam T. G. Merlot, and S. Y. Lee. A Survey of
Search Methodologies and Automated System Development for Examination Timetabling.
Journal of Scheduling, 12(1):55–89, 2009.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

441

A Tensor-based Approach to Nurse Rostering

Shahriar Asta · Ender Özcan

1 Introduction

Hyper-heuristics are high level improvement search methodologies exploring
space of heuristics [4]. According to [5], hyper-heuristics can be categorized in
many ways. A hyper-heuristic either selects from a set of available low level
heuristics or generates new heuristics from components of existing low level
heuristics to solve a problem, leading to a distinction between selection and
generation hyper-heuristics, respectively. Also, depending on the availability of
feedback from the search process, hyper-heuristics can be categorized as learn-
ing and non-learning methods. The learning hyper-heuristics can further be
categorized into online and offline methodologies. The online hyper-heuristics
learn while solving a problem whereas the offline hyper-heuristics process col-
lected data gathered from training instances prior to solving the problem.

Nurse rostering is a highly constrained scheduling problem which was
proven to be NP-hard (Karp, 1972) in its simplified form. Solving a nurse
rostering problem requires assignment of shifts to a set of nurses so that 1)
the minimum staff requirements are fulfilled and 2) the nurses’ contracts are
respected [3]. The problem can be represented as a constraint optimisation
problem using 5-tuples: (i) set of nurses, (ii) set of days (periods) including
the relevant bits from the previous and upcoming schedule, (iii) set of shift
types, (iv) set of skill types and (v) constraints.

In this study, a novel selection hyper-heuristic approach is employed to
tackle the nurse rostering problem. The proposed framework is a single point
based search algorithm which fits best in the online learning selection hyper-
heuristic category, even if it is slightly different than the other online learning

S. Asta, E. Özcan
ASAP Research Group
School of Computer Science
University of Nottingham
NG8 1BB, Nottingham, UK
E-mail: sba,exo@cs.nott.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

442

selection hyper-heuristics. A selection hyper-heuristic has two main compo-
nents: heuristic selection and move acceptance method. While the task of the
heuristic selection is to select low level heuristics based on a strategy, the
acceptance method decides whether or not the solution produced by the se-
lected heuristic shall be accepted. Over the years many heuristic selection
and move acceptance methods have been proposed. Examples of heuristics
selection strategies are Simple Random (SR) and Random Gradient (RG)[7],
Choice Function (CF) [7], Reinforcement Learning (RL) [11] and Tabu Search
(TS) [6]. Improvement Only (IO), Improvement Equal (IE), Naive Acceptance
(NA), Simulated Annealing(SA) and Late Acceptance (LA) are few examples
of move acceptance mechanisms.

In our proposed approach, the trace of a selection hyper-heuristic com-
bining random heuristic selection with a Naive Acceptance (NA) method is
represented as a 3-rd order tensor. Factorization of this tensor results in basic
factors, which are then analysed and used to partition the low level heuris-
tics into two halves. The first half of the low level heuristics are considered
to perform well with NA, while the remaining half are associated with the
Improvement Equal (IE) acceptance method. The proposed hyper-heuristic
approach then periodically switches between the two move acceptance meth-
ods mixing only the relevant low level heuristics associated with them.

2 A Novel Hyper-heuristic Approach: Tensors for Analysing the
Space of Heuristics

Tensors are multidimensional arrays. The order of a tensor is the number of
dimensions it covers. Tensor decomposition (a.k.a tensor factorization) reduces
the dimensionality of the original tensor while keeping the multi-dimensional
nature of the data. This helps with preserving the correlation between various
modes of data. As well as being somewhat immune to noise, the tensor factors
are useful for generalization purposes. The literature is rich of a range of tensor
factorization methods such as Higher Order SVD (HOSVD) [10] and Parallel
Factor (a.k.a PARAFAC or CANDECOMP or CP) [9]. These methods are
often generalization of the Singular Value Decomposition (SVD) method to
higher dimensions.

In this study, the search history of a simple random hyper-heuristic with
naive acceptance is represented as a 3-rd order tensor. The first two dimen-
sions of this tensor correspond to the current and previous heuristic indexes,
called by the underlying hyper-heuristic, while the iteration is projected to the
3rd dimension. The goal is to hybridise multiple hyper-heuristics (SR-IE and
SR-NA) and use the most suitable one depending on the randomly chosen low
level heuristic at each iterative step under a selection hyper-heuristic frame-
work. This process requires partitioning of heuristics and assigning each group
to the best hyper-heuristic. Using the CP decomposition method, the tensor
is reduced to a basic factor (frame), interpreting which reveals the pairs of
heuristics performing well together under naive acceptance. Analysing these

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

443

basic factors, scores are associated to each low level heuristic where half of the
heuristics which rank highest form a group of heuristics performing well un-
der Naive Acceptance (NA) mechanism. The remaining half form a secondary
group which are then applied together with the Improvement Equal (IE) ac-
ceptance mechanism. This online learning process is employed for a fixed time
in each run on a given problem instance. Then the second stage starts oper-
ating. The novel hyper-heuristic approach periodically switches between the
two hyper-heuristics in fixed periods and the low level heuristic sets associated
with them. Thus, a Tensor-based Hyper-heuristic (THY) emerges.

3 Empirical Results

Hyper-heuristics Flexible Framework (HyFlex) is a Java based software li-
brary for the implementation and comparison of various hyper/meta-heuristics
across different problem domains [12]. One of those problem domains is the
nurse rostering (Personnel Scheduling) implementing 12 low level heuristics of
various types: 1 mutation, 5 hill climbing, 3 ruin and re-create and 3 crossover
heuristics. Some previously proposed hyper-heuristics do not discriminate the
nature of low level heuristics while some others do take that into account in
their design. THY is of former type. Since the crossover heuristics are binary
operators requiring additional maintenance (for the second argument), for sim-
plicity, they are discarded by THY. Using the HyFlex v1.0 Java library 1, THY
is implemented for nurse rostering and tested on 8 benchmark instances 2.

Table 1 The comparison of solutions obtained by previously proposed approaches [8] to the
ones found by THY across 31 runs for some nurse rostering benchmark problem instances.
BKN denotes the best known solution.

Our Approach SS [2] VDS [1]
Problem BKN Best Avr. Time (s) Best Best
BCV-3.46.1 3280 3284 3312.23 354 3351 -
BCV-A.12.1 1294 1384 1643.90 435 1600 -
BCV-A.12.2 1875 1940 2152.03 277 2180 -
Ikegami 3d1 2 13 19.45 258 - 13
Ikegami 3d1.1 3 15 21.32 409 - 14
Ikegami 3d1.2 3 16 21.74 318 - 9
ORTEC01 270 300 338.74 390 - 465
ORTEC02 270 300 325.97 258 - 510

The best and average costs obtained by THY for each instance are pre-
sented in Table 1. The performance of THY is compared to the performance
of two previously proposed approaches; scatter search (SS) [2] and variable
depth search (VDS) [1] based on the best results achieved by each algorithm.
THY performs better than SS on the selected BCV instances. It is also better

1 http://hyflex.org/
2 http://cs.nott.ac.uk/~tec/NRP/

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

444

than VDS on the ORTEC instances. However, VDS performs slightly better
on the selected Ikegami instances. In the overall, the initial experiments show
that the tensor-based approach to nurse rostering successfully produces high
quality solutions in a reasonable amount of time.

References

1. Burke, E.K., Curtois, T.: New approaches to nurse rostering benchmark instances. Eu-
ropean Journal of Operational Research 237(1), 71 – 81 (2014)

2. Burke, E.K., Curtois, T., Qu, R., Berghe, G.V.: A scatter search methodology for the
nurse rostering problem. JORS 61(11), 1667–1679 (2010)

3. Burke, E.K., De Causmaecker, P., Berghe, G.V., Van Landeghem, H.: The state of the
art of nurse rostering. J. of Scheduling 7(6), 441–499 (2004)

4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.:
Hyper-heuristics: A survey of the state of the art. Journal of the Operational Research
Society 64(12), 1695–1724 (2013)

5. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A classi-
fication of hyper-heuristics approaches. In: M. Gendreau, J.Y. Potvin (eds.) Handbook
of Metaheuristics, International Series in Operations Research & Management Science,
vol. 57, 2nd edn., chap. 15, pp. 449–468. Springer (2010)

6. Burke, E.K., Kendall, G., Soubeiga, E.: A tabu-search hyperheuristic for timetabling
and rostering. Journal of Heuristics 9(6), 451–470 (2003)

7. Cowling, P., Kendall, G., Soubeiga, E.: A parameter-free hyperheuristic for scheduling
a sales summit. In: Proceedings of the 4th Metaheuristic International Conference, MIC
2001, pp. 127–131 (2001)

8. Curtois, T.: Published results on employee scheduling instances. http://www.cs.nott.

ac.uk/~tec/NRP/

9. Harshman, R.A.: PARAFAC: Methods of three-way factor analysis and multidimen-
sional scaling according to the principle of proportional profiles. Ph.D. thesis, University
of California, Los Angeles, CA (1976)

10. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: A multilinear singular value decomposi-
tion. SIAM J. Matrix Anal. Appl. 21(4), 1253–1278 (2000)

11. Nareyek, A.: Metaheuristics. chap. Choosing Search Heuristics by Non-stationary Re-
inforcement Learning, pp. 523–544. Kluwer Academic Publishers, Norwell, MA, USA
(2004). URL http://dl.acm.org/citation.cfm?id=982409.982435

12. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J., Walker, J., Gendreau, M.,
Kendall, G., McCollum, B., Parkes, A., Petrovic, S., Burke, E.: Hyflex: A benchmark
framework for cross-domain heuristic search. In: J.K. Hao, M. Middendorf (eds.) Eu-
ropean Conference on Evolutionary Computation in Combinatorial Optimisation, Evo-
COP ’12., LNCS, vol. 7245, pp. 136–147. Springer, Heidelberg (2012)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

445

The Effects of the Planning Horizon on Heathrow
TSAT Allocation

Jason A. D. Atkin · Geert De Maere ·
Edmund K. Burke

1 Introduction and Problem Description

London Heathrow is an extremely popular two-runway airport. The runway
forms the major throughput limitation for the departure system and thus in-
creased departure delay is always expected at busy times of the day, when the
demand exceeds the available capacity. A Collaborative Decision Making sys-
tem has been developed by NATS and Heathrow Airport Ltd (HAL) to share
information between the various partners at the airport (e.g. airlines, ground
handlers, airport staff and the NATS controllers). TSAT (Target Start-up Ap-
proval Time) allocation algorithms run within the CDM system, predicting
take-off times for aircraft and allocating appropriate times (the TSATs) at
which each aircraft will be able to push back and start its engines. The pre-
dicted take-off times are provided to Eurocontrol, contributing to airspace
capacity improvements. TSAT allocation aims to absorb at the stands some
of the delay that aircraft would otherwise experience at the runway. Even a
two minute reduction in fuel burn for all aircraft would save over £13M per
year, along with the consequent reductions in emissions.

Minimum separations must be attained between any aircraft which use
a runway. Re-sequencing can avoid larger separation requirements and im-
prove runway utilisation and delays [3,4]. Due to the unusual constraints at
Heathrow, the take-off sequencing can be very sensitive to the mix of aircraft

Jason A.D. Atkin
ASAP research group, School of Computer Science, University of Nottingham, NG81BB,
Nottingham, UK
E-mail: jason.atkin@nottingham.ac.uk

Geert De Maere
ASAP research group, School of Computer Science, University of Nottingham, NG81BB,
Nottingham, UK

Edmund K. Burke
Department of Computing and Mathematics, University of Stirling, Cottrell Building, Stir-
ling, FK94LA, UK

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

446

which are available: only one runway can be used for take-offs at any time;
downstream capacity constraints increase separations on some routes; and the
airport is running close to capacity. It has been common to release aircraft
from the stands as soon as possible, providing the maximal sequencing choice
at the runway. Stand delays must not decrease the runway throughput.

The TSAT allocation algorithms predict the take-off sequence which a good
controller would achieve at the runway and are described in [3]. Delays around
the stands can be considerable, since aircraft can block each other, and have to
be considered, resulting in a combination of two sequencing operations: once at
the runway and one at the stands [3]. Once a take-off time has been predicted
for each aircraft, an ideal pushback time is determined by considering the
estimated taxi time to reach the runway from the allocated stand, the expected
delays around the stands, and an ‘ideal’ runway hold. This ‘ideal’ runway hold
adds slack to allow for deviations from predicted taxi times and to provide a
pool of aircraft for the runway controller to choose from.

The TSAT allocation system relies upon the early provision of planned
earliest pushback times (called TOBTs, Target Off-Block Times) from airlines
in order to predict the earliest take-off time for each aircraft. As it is made
aware of more aircraft over time, better sequences may be found, fitting new
aircraft into the sequence and making small changes. It was observed in [2] that
the planning horizon has a huge effect upon the runway sequencing efficiency at
Heathrow. The aim of this research is to discover the extent to which this also
applies when sequencing is performed at the stands in order to allocate stand
holds and whether a lack of early information is likely to release inappropriate
aircraft to the runway, leading to poor sequencing, and/or increased fuel burn.

2 Experimental details and results

The same model, parameters and objectives have been used in this research
as in [4], except for the addition of a cost for larger runway delays to model
the fact that a runway controller is likely to allow aircraft which have been
waiting at the runway for a long time to take off earlier. This will be discussed
in more detail in the full paper. The primary objective of the algorithm is to
meet take-off time windows, where possible, and the secondary objective is to
achieve low delay sequences which avoid excessive inequity between aircraft.
The trade-off between these objectives was considered in [1].

Eighteen Heathrow datasets, provided by NATS, were tested, containing
105 consecutive take-offs each, from the same runway. The first five take-off
times were fixed, to provide a take-off history. An iterated simulation was per-
formed whereby the algorithm considered the aircraft it knew about, predicted
take-off times and allocated TSATs, then advanced the time by 60 seconds,
adding in new aircraft, then repeated this process. The historic pushback times
were used for the TOBTs and were provided to the system PH seconds before
TOBT, where PH is the planning horizon being investigated. TSATs were

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

447

 200

 300

 400

 500

 600

 700

 800

3
0

0

3
6

0

4
2

0

4
8

0

5
4

0

6
0

0

6
6

0

7
2

0

7
8

0

8
4

0

9
0

0

9
6

0

1
0

2
0

1
0

8
0

1
1

4
0

1
2

0
0

S
ta

ti
c

M
e

a
n

 d
e

la
y
 (

s
)

Planning horizon (s)

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5
Dataset 6
Dataset 7
Dataset 8
Dataset 9

Dataset 10
Dataset 11
Dataset 12
Dataset 13
Dataset 14
Dataset 15
Dataset 16
Dataset 17
Dataset 18

Fig. 1 Graph of mean delay (stand hold + runway delay) vs planning horizon for all 18
datasets

 200

 220

 240

 260

 280

 300

 320

 340

3
0

0

3
6

0

4
2

0

4
8

0

5
4

0

6
0

0

6
6

0

7
2

0

7
8

0

8
4

0

9
0

0

9
6

0

1
0

2
0

1
0

8
0

1
1

4
0

1
2

0
0

S
ta

ti
c

M
e

a
n

 h
o

ld
in

g
 a

re
a

 (
ru

n
w

a
y
)

h
o

ld
 (

s
)

Planning horizon (s)

Dataset 1
Dataset 2
Dataset 3
Dataset 4
Dataset 5
Dataset 6
Dataset 7
Dataset 8
Dataset 9

Dataset 10
Dataset 11
Dataset 12
Dataset 13
Dataset 14
Dataset 15
Dataset 16
Dataset 17
Dataset 18

Fig. 2 Graph of mean runway hold vs planning horizon for all 18 datasets

frozen 300 seconds before the TSAT time. No uncertainty was assumed in the
predictions.

Figure 1 shows how the mean delay (on the y axis) changes as the planning
horizon increases (from left to right) and compares it against the delay in the
static problem (on the far right, considering all aircraft simultaneously). The
delay is not greatly affected by a low planning horizon, since the system still
has the potential to change the take-off sequence once the aircraft have left

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

448

300
360

420
480

540
600

660
720

780
840

900
960

1020
1080

1140
1200

Static

Planning horizon (s)

>5 mins early
>4 mins early

>3 mins early
>2 mins early

>1 mins early
Total Early

> 4 mins late
>3 mins late

>2 mins late
>1 mins late

Total late

5

10

15

20

Fig. 3 Deviation of aircraft from ideal
TSATs, Dataset 1

300
360

420
480

540
600

660
720

780
840

900
960

1020
1080

1140
1200

Static

Planning horizon (s)

>5 mins early
>4 mins early

>3 mins early
>2 mins early

>1 mins early
Total Early

> 4 mins late
>3 mins late

>2 mins late
>1 mins late

Total late

5

10

15

20

Fig. 4 Deviation of aircraft from ideal
TSATs, Dataset 2

the stands. In contrast, the runway delay is shown in Figure 2 and is much
larger for lower planning horizons. This indicates that significant re-sequencing
is being performed after the aircraft leave the stands and that the lack of
information is leading to stand holds which would have been larger otherwise,
leading to unnecessary fuel burn.

Figures 3 and 4 show, for two datasets, the deviation of the allocated TSAT
from the ideal TSAT which would have been allocated based upon the final
take-off sequence which was achieved. The delays around the stands mean that
ideal stand holds could not be allocated to all aircraft even in the static case
(the line closest to the reader). It can be observed that the system is applying
shorter stand holds than ideal to some of the aircraft and that it is very rare
for aircraft to be released later than ideal.

This research shows that late information from airlines may adversely affect
the potential benefits of the TSAT allocation system, leading to increased
airline costs and emissions. The complete consideration of the full results, the
effects of the ideal stand hold, the time at which the TSAT is frozen, and the
function to limit excessive runway hold are left for the full paper.

References

1. Atkin, J.A.D., Burke, E.K., Greenwood, J.S.: The TSAT Allocation System at London
Heathrow: The Relationship Between Slot Compliance, Throughput and Equity. Public
Transport 2(3), 173–198 (2010)

2. Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: The Effect of the Planning
Horizon and Freezing Time on Take-off Sequencing. In: Proceedings of the 2nd Inter-
national Conference on Research in Air Transportation (ICRAT 2006), Belgrade, Serbia
and Montenegro (2006)

3. Atkin, J.A.D., Burke, E.K., Greenwood, J.S., Reeson, D.: Hybrid meta-heuristics to aid
runway scheduling at London Heathrow airport. Transportation Science 41(1), 90–106
(2007)

4. Atkin, J.A.D., De Maere, G., Burke, E.K., Greenwood, J.S.: Addressing the Pushback
Time Allocation Problem at Heathrow Airport. Transportation Science 47(4), 584–602
(2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

449

Dantzig-Wolfe decomposition of Meeting planning problems

Niels-Christian Fink Bagger · Matilda Camitz ·
Thomas Stidsen

Abstract Planning meetings of groups of persons is an activity which secretaries all
over the world performs every day. For the cases where persons should participate
in several meetings, this can actually become a hard planning problem to solve. In
this abstract we will briefly present a Branch & Price approach for a general setup. A
complete article about this approach has been submitted [1].

Keywords Meeting planning, Branch & Price

1 Introduction

Meeting planning can be a non-trivial task, if enough people are involved and if
several of the people have to participate in several meetings. In this case, the planning
problem becomes NP-hard [1].

2 Dantzig-Wolfe decomposition

The overall idea in this abstract is to apply Dantzig-Wolfe decomposition and create a
master optimization problem and a sub optimization problem, where the differences
between the different versions of meeting planning problems are ”hidden” in the sub-
problem.

The two optimization problems, for which we will apply Column Generation,
inside a Branch & Bound algorihm (i.e. Branch & Price) are now:

– A master problem which plans the meetings according to person schedules
– A sub-problem, per person, which generates new person schedules for each per-

son.

Unfortunately we are not able to present the sub-problem models in this abstract,
since these models are rather large and we have limited space here.

2.1 Master Problem

The master problem assume to have, for each person, a number of meeting plans.
Each meeting plan specify when a meeting with the person is possible, but not which
meeting. Assume that there are a number of persons e who has to participate in some
meetings g. The meetings can occur in a number of timeslots b but naturally each

Niels-Christian Fink Bagger, Camilla Camitz · Thomas Stidsen
Technical University of Denmark
E-mail: thst@dtu.dk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

450

person can at most participate in one meeting in each timeslot. The binary variable
xg,b defines if meeting g takes place in timeslot b and there is a gain αg,b > 0 by having
meeting g in time slot b. Whether a person should participate in a meeting is defined
by an incidence matrix Ae

g which is 1 if person e is part of the group g constituting
the meeting. The The master problem will attempt to select the best meeting plans
λ e,p for each person e and plan p. A meeting plan is defined by an incidence matrix
Me,p,b which is 1 if person e in plan p can have a meeting in timeslot b. The cost of a
meeting plan is β e,p < 0. The full master problem is now:

max ∑
g,b

αg,b · xg,b + ∑
e,p∈Pe

β
e,p ·λ e,p (1)

s.t. ∑
b

xg,b ≤ 1 ∀g (2)

∑
g

Ae
g · xg,b− ∑

p∈Pe

Me,p,b ·λ e,p ≤ 0 ∀e,b (3)

∑
p∈Pe

λ
e,p ≤ 1 ∀e (4)

xg,b,λ
e,p ∈ {0,1} (5)

2.2 Sub-problem

The sub-problem generates meeting plans for each person. For different types of
meeting problems, different requirements can be put here. Due to space limitations, it
is impossible to include the three different sub-problems of the test problems in this
abstract and we refer to the full article [1].

3 Tests

We test the approach on three different problems:

– Parent-teacher meetings at high-schools
– Supervisor-student meetings at high-schools
– Exam planning at high-schools

The developed Branch & Price algorithm is compared to two alternative ap-
proaches: ALNS and MIP.

ALNS (Adaptive Large Neighborhood Search) is a relatively new meta-heuristic,
see [2]. An ALNS can be considered to be a special type of hyper heuristic and ALNS
algorithms has been very successful in the area of Vehicle Routing. An ALNS has
been developed for the Parent-teacher meeting problem and the Supervisor-student
meeting problem, see [3].

MIP (Mixed Integer Programming) is a direct model of the two different prob-
lems, which is solved directly in the Gurobi solver [4].

3.1 Parent-teacher meetings

In Danish high-schools (9’th to 12’th grade), the school will typically arrange 2 meet-
ings pr. year between the student and parents, and the teachers which they wish to
meet. The objective is to minimize the time for the schedules of the students. The

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

451

overall results when testing on 100 real-world problems are shown below in Table 1.
Unfortunately, because of space restrictions we are not able to describe the details
for each of the 100 real-world problems. Statistically, the number of meetings varies
between 23 and 1187, the number of timeslots varies between 8 and 51 and the num-
ber of persons varies between 21 and 307. The largest dataset contains 779 meetings
spread over 51 timeslots for 291 persons.

Table 1 Summary of results for parent-teacher meetings. ’Best obj’ denotes the amount of instances where
the algorithm provided the best objective value (including draws). ’Best UB’ denotes the amount of in-
stances where the algorithm found the best upper bound (including draws). Columns ’Gap≤ q shows the
amount of instances for which the respective algorithm provided a gap≤ q. ’Avg. Gap to best UB’ is found
for each algorithm by finding the best available UB for each instance, calculating the gap to the solution
provided, and averaging these gaps.

Best obj Best UB Gap = 0% Gap≤ 2% Gap≤ 5% Avg. Gap to best UB
ALNS 46 - - - - 2.31%
MIP 21 19 17 23 35 9.37%
B&P 54 94 16 54 92 2.32%

3.2 Supervisor-student meetings

In the third year of high-school, the students have to write a bigger assignment, for
which they will get two supervisors in different subjects. Again the job is to plan
the meetings between the teachers and the students. The overall results after testing
on 100 real-life datasets are shown in Table 2 below. Unfortunately, because of space
restrictions we are not able to describe the details for each of the 100 real-world prob-
lems. Statistically, the number of meetings varies between 21 and 303, the number
of timeslots varies between 8 and 102 and the number of persons varies between 29
and 367. The largest dataset contains 258 meetings spread over 74 timeslots for 288
persons.

Table 2 Summary of results for supervisor-student meetings. Columns are equivalent to those in Table 1.

Best obj Best UB Gap = 0% Gap≤ 2% Gap≤ 5% Avg. Gap to best UB
ALNS 37 - - - - 1.26%
MIP 16 14 10 22 42 7.13%
B&P 68 95 23 80 97 1.15%

3.3 Exam planning

Exam planning is the problem of scheduling the exams such that no student will have
to go to two exams on the same day and that as many students as possible will have
good preparation time between the exams. Just solving the relaxed probelm using
Column Generation is so slow that full problems cannot be solved. Hence we will not
present any results here.

3.4 Conclusion

Many different time-table problems can be considerede to belong to the meeting plan-
ning problem category. The particular Dantzig-Wolfe decomposition approach works
fine on two of the test problems, but not on the last problem. We conclude that the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

452

method works well, if there are not too many persons involved and if each person has
a significant number of meetings, i.e. more than say 3.

References

1. Niels-Christian Fink Bagger et. al., ”A Mathematical Programming Approach to the Generalized Meet-
ing Planning Problem”, submitted to Computers & OR

2. Stefan Ropke and Pisinger, David, ”An adaptive large neighborhood search heuristic for the pickup
and delivery problem with time windows”, TRANSPORTATION SCIENCE, Vol. 40, No. 4, pp. 455-
472, 2006

3. Simon Kristiansen, Matias Sorensen, Michael Herold and Thomas Stidsen, ”The Consultation
Timetabling Problem at Danish High Schools”, Journal of Heuristics, Vol. 19, No. 3, pp. 465-495, 2013

4. Gurobi Optimization, Inc., ”Gurobi Optimizer Reference Manual”, 2012.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

453

Room Allocation Optimisation at the Technical
University of Denmark

Niels-Christian Fink Bagger · Jesper
Larsen · Thomas Stidsen

Keywords University Course Timetabling · Room Allocation ·Mathematical
Programming · Heuristics · Matheuristics

1 Introduction

As at many other universities the Technical University of Denmark (DTU)
faces the challenge of solving a case of the curriculum based university course
timetabling problem (CUCTT) multiple times a year. However, there are some
slight modifications to the CUCTT problem usually described in the literature.
One of the major difference is that the assignment of the courses to specific
time slots are predetermined and cannot be subject to changes. This is a
decision made by the administration since this takes away the issue of course
collisions, e.g. when two courses sharing a student are allocated at overlapping
time slots, since the students are to ensure by themselves that their courses
do not overlap. The problem was first considered in the masters’ thesis [1] and
the project here is an extension of the work done in that thesis.

2 Objectives

For each course a predetermined set of events will occur during the semester,
e.g. lectures, laboratory exercises, tutorials and so on. Each event may be al-
located to more than one room. It is allowed to allocate the events such that
the sum of the capacities of the allocated rooms does not accommodate all
the students attending the event and an objective is to minimize this number
of unallocated students. Some of the lecturers prefers to give their lectures

Niels-Christian Fink Bagger, Jesper Larsen, Thomas Stidsen
Technical University of Denmark
Tel.: +45 45 25 25 42
E-mail: nbag@dtu.dk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

454

in specific rooms. An objective is to minimise the geographical distance be-
tween the allocated rooms and the requested rooms of the events. A highly
prioritised soft constraint is that events from the same course occurring the
same day must be allocated as close to each other as possible with respect to
their geographical location and if an event is split into multiple rooms, these
must also be as close to each other as possible in the geographical sense. The
difference between this soft constraint and the Room Stability considered in
the curriculum timetabling problem of ITC2007 [2] is that in ITC2007 the
number of different rooms that a course or event is assigned to is penalised
whereas here the actual physical distance between the rooms are penalised.
As an example of the difference between the two penalties consider Fig. 1.

Aud. 1

Aud. 2

Building 2

Group

room 3

Group

room 4

Building 3

Group

room 1

Group

room 2

Building 1

Aud. 1

Aud. 2

Building 2

Group

room 3

Group

room 4

Building 3

Group

room 1

Group

room 2

Building 1

Fig. 1 Example of a course consisting of two events; a lecture followed by group exercises.
The auditorium coloured in red is the selected room for the lecture and the two group
rooms marked in blue are the selected rooms for the group exercises. The two have the same
Room Stability penalty, however the solution to the right is considered to be better than
the solution to the left since the allocated rooms are closer to each other.

3 Solution Approach

The Mixed Integer Program (MIP) formulation describing the problem is given
in Fig. 2.

The following sets and parameters are given as input to the model:

– E, R, C are sets of events, rooms and courses respectively
– C is every distinct pair of events which are from the same course and occurs

on the same day of the week
– R is every distinct pair of rooms
– χ is every distinct pair of events which are overlapping in time but not

from the same course.
– Pr is the capacity of room r ∈ R
– Fe,r is 1 if event e ∈ E is allowed to be scheduled in room r ∈ R and 0

otherwise
– Rmax

e is the maximum number of rooms that event e ∈ E is allowed to be
split into.

– The parameters αe, γe,r, ζer,r′ and ζe,e
′

r,r′ for penalising respectively, the num-
ber of unseated students of event e ∈ E, the allocation of event e ∈ E to
room r ∈ R, the allocation of event e ∈ E to both room r ∈ R and r′ ∈ R
and the allocation of events e ∈ E and e′ ∈ E to rooms r ∈ R and r′ ∈ R

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

455

The binary variable xe,r takes value 1 if event e ∈ E is scheduled in course
r ∈ R and 0 otherwise. The variable ye will take the value of the number of
students from event e ∈ E that are not seated in the solution. The variable
ter,r′ will take value 1 if event e ∈ E is scheduled in both room r ∈ R and in

room r′ ∈ R. The variable ue,e
′

r,r′ will take value 1 if event e ∈ E is scheduled
in room r ∈ R and event e′ ∈ E is scheduled in room r′ ∈ R.

min
∑
e∈E

αe · ye +
∑

e∈E,r∈R

γe,r · xe,r +
∑
e∈E,

(r,r′)∈R

ζer,r′ · t
e
r,r′ +

∑
(e,e)′∈C
(r,r′)∈R

ζe,e
′

r,r′ · u
e,e′

r,r′ (1)

s.t. xe,r ≤ Fe,r ∀e ∈ E, r ∈ R (2)∑
r∈R

xe,r ≤ Rmax
e ∀e ∈ E (3)

∑
r∈R

Pr · xe,r + ye ≥ Se ∀e ∈ E (4)

xe,r + xe′,r ≤ 1 ∀(e, e′) ∈ χ, r ∈ R (5)

xe,r + xe,r′ − ter,r′ ≥ 1 ∀e ∈ E, (r, r′) ∈ R (6)

xe,r + xe′,r′ − u
e,e′

r,r′ ≤ 1 ∀(e, e′) ∈ C, (r, r′) ∈ R (7)

xe,r ∈ B ∀e ∈ E, r ∈ R
ye ≥ 0 ∀e ∈ E
ter,r′ ≥ 0 ∀e ∈ E, (r, r′) ∈ R

ue,e
′

r,r′ ≥ 0 ∀(e, e′) ∈ C, (r, r′) ∈ R

Fig. 2 Model of the room allocation problem.

The description of the objective and the constraints follows:

(1) The weighted sum of all the soft constraints
(2) Event e ∈ E can only be scheduled into room r ∈ R if it is marked as

feasible
(3) Event e ∈ E can at most be put into Rmax

e rooms
(4) If event e ∈ E is put into rooms where the total capacity is less than the

number of students Se then ye is given a lower bound of the difference, i.e.
the number of students which are unallocated

(5) Two events, e ∈ E and e′ ∈ E, which are overlapping cannot be scheduled
in the same time slot

(6) If an event e ∈ E is allocated to both room r ∈ R and r′ ∈ R then ter,r′ is
given a lower bound of 1

(7) If event e ∈ E is allocated to room r ∈ R and event e′ ∈ E is allocated to

room r′ ∈ R then ue,e
′

r,r′ is given a lower bound of 1

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

456

3.1 Greedy Graph Colouring Constructive (Mat)Heuristic

Since the problem has similarities to graph colouring and the k–clique problem
it seems natural to implement algorithms inspired from solution approaches
to these problems. This is for instance done for the examination timetabling
problem in [4] showing good results. The idea of ordering events due to ”dif-
ficulty” is adopted.

The heuristic works by iteratively making a lexicographic order of the
unscheduled events by ”difficulties” and preferences and then picking the best
allocation for the first event in the list. The ”difficulty” of an event is based
on the hard constraints of the mathematical model that the event is part of,
i.e. how difficult it is expected to be to schedule. Since different planners have
different priorities of the preferences the heuristic will adapt the choice of the
ordering during the search. This is done by assigning a score si,j for each pair
of soft or hard constraints i and j taking an initial value of 1 indicating how
well the algorithm performs when the events are ordered lexicographically by i
before j and then updated in each iteration as a result of the performance. The
ordering of the constraints is done by the algorithm described in Algorithm 1.

Algorithm 1: OrderList
Input: An unordered list of the indces of the constraints L
Output: An ordered list O

1 Pick the first element in L, remove it from L and insert it in O
2 while L 6= ∅ do
3 Pick the first element i in L and remove it from L
4 foreach j ∈ O in the given order do
5 Pick a random number r ∈ [0, 1]

6 if r ≤ si,j
si,j+sj,i

then

7 Insert i in O right before j
8 Exit the foreach-loop

9 If i did not get inserted then insert i last in O

After the constraints have been ordered the events are put into a sorted list
in the given lexicographical order. Then the first event from the list is taken
out and allocated to a room which decreases the objective value. If such a
room cannot be found then the next event in the list is chosen. The algorithm
stops the first time an event is allocated a room and then the constraint list
is reordered for the next iteration of the heuristic.

This heuristic has also been extended into a matheuristic. The basic idea is
the same but instead of considering only one event of the time the matheuristic
chooses the first k events in the ordered list. Then the given MIP model is
solved to find the best allocation for the k events where previously allocated
events are fixed at their location and unallocated events, which are not one of
the k chosen events, are ignored.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

457

4 Results

For comparison the heuristic and the matheuristic has been implemented in
C# an tested on five real-life data sets from DTU. The model has also been
tested by a direct implementation in Gurobi[3] v. 5.5.1. The time limit has
been set to fifteen minutes and an Overview of the results can be seen in
Table 1.

H MH GRB
Name Time UB Time UB Time UB LB
DataSet1 6 4016031 91 1408853 900 1505480 1155852
DataSet2 7 7057059 109 2857753 900 3055835 1668848
DataSet3 14 3290617 153 2039970 900 1938341 1500971
DataSet4 5 8083225 90 7254350 900 6629019 5934471
DataSet5 3 4193801 64 1582210 900 1525580 1451168
Average 7 5328147 101 3028627 900 2930851 2342262

Table 1 Comparison of the heuristic (H), matheuristic (MH) and Gurobi (GRB). UB is
the obtained value, Time is the time that the algorithm spent in seconds, LB is the lower
bound.

From Table 1 it can be seen that the heuristic is outperformed by both the
matheuristic and Gurobi in terms of the obtained solution. The matheuristic
and Gurobi are very close, however the matheuristic obtains the solutions
within a much smaller amount of time and since it is a constructive heuristic it
can potentially get a better solution if some improvement step is implemented.
The use of a MIP solver inside the constructive heuristic is an easy way to
extend the heuristic and in this case improves the performance significantly.
However the project is still in a very preliminary state and other heuristics
known for performing well from the literature needs to be implemented for
comparison.

References

1. Bærentsen, R.: Optimization of room-allocation at the technical university of denmark.
Masters’ thesis, Technical University of Denmark

2. Gasparo, L.d., McCollum, B., Schaerf, A.: The second international timetabling com-
petition (itc-2007): Curriculum-based course timetabling (track 3). Tech. rep. (2007).
Http://www.cs.qub.ac.uk/itc2007/curriculmcourse/report/curriculumtechreport.pdf

3. Gurobi Optimization, Inc.: Gurobi Optimizer Reference Manual (2014). URL
http://www.gurobi.com

4. Sabar, N.R., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-heuristic
for examination timetabling problems. Applied Intelligence 37(1), 1–11 (2012)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

458

Modeling and Solving a Real-Life Multi-Skill Shift
Design Problem

Alex Bonutti · Fabio De Cesco · Nysret
Musliu · Andrea Schaerf

1 Introduction

Shift design is an important phase within the workforce management process
(see, e.g., [2]). According to labor regulations, in all industrial sectors, shifts
must include breaks for employees for both resting and eating. Therefore,
breaks must be taken into account when designing shifts, in order to be able
to meet precisely the staffing requirements and thus ensure the desired service
level. For this reason, we address the shift and break design problem, rather
than shift design only.

In this work, we propose a novel multi-skill formulation of the problem
arising from a few practical cases. In addition, we propose a new search method
based on Simulated Annealing (SA), that, differently from previous approaches
(see [3]), solves the overall problem as a single-stage procedure. The core of the
method is a composite neighborhood that includes at the same time changes
in the staffing of shifts, the shape of the shifts, and the position of the breaks.

The experimentation, which is still on going, makes use of statistically-
principled techniques for the tuning of the numerous control knobs. Indeed,
they include both the standard parameters of SA and the distributions for the
selection of the candidate moves out of the composite neighborhood.

2 Problem formulation

The problem formulation includes the following main entities:

A. Bonutti and F. De Cesco
EasyStaff s.r.l., Via Adriatica, 278 - 33030 Campoformido (UD), Italy.
E-mail: {alex,fabio}@easystaff.it
N. Musliu
DBAI, Technische Universität Wien, Austria. E-mail: musliu@dbai.tuwien.ac.at
A. Schaerf
DIEGM, University of Udine, Via delle Scienze 206, Udine, Italy. E-mail: schaerf@uniud.it

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

459

Planning Granularity: The length of the indivisible step for the planning (typ-
ically 10’ or 15’), used to divide the planning period into discrete timeslots.

Planning Horizon: Number of days of planning (typically 7 or 14). The sched-
ule is assumed cyclic, so that the shifts that cross the midnight of the last
day contribute to fulfill the requirements of the morning of the first day.

Requirements: The requirements specify for each skill, for each timeslot of
each day of the planning horizon, the number of required workers. This
number is not strict, so that overstaffing and understaffing is allowed, but
penalized in the objective function.

Shift types: Each shift belongs to a shift type, which sets several constraints
on the shape of the shift:
– Minimum and maximum length
– Minimum and maximum start time
– Granularity of the shift length (a multiple of the Planning Granularity)
– Break presence (Boolean-valued)

For shift types with break, the following additional data is included:
– Break length
– Minimum distance of the break from the beginning of the shift
– Minimum distance of the break from the end of the shift
– Minimum start time of the break
– Maximum end time of the break

In our setting, we consider only the break for the meals (that normally last
1 hour), therefore there is at most one break for each shift. Shorter breaks for
resting are not planned, but rather assumed to be taken deliberately by the
operator according to the current situation.

The problem consists in selecting a set of shifts (belonging to the given
types), and the corresponding staffing level for each skill, so as to minimize
the cost of the following objectives:

1. understaffing and overstaffing for each timeslot;
2. number of different shifts;
3. average length of shifts.

For the third objective, for each skill we average the length of the shifts
(multiplied by the number of operators) and we penalize the discrepancy with
respect to a given range (see [4] for the details).

Our current problem is an extension of the shift design problem solved in [4]
and [2]. In the current formulation employees can have different qualifications
and the workforce requirements for each skill should be fulfilled. Additionally,
the scheduling of lunch break has not been considered in [2,4].

The skills of employees have been considered in shift scheduling by several
researchers. Bhulai et al. [1] for example investigate scheduling of shifts in
multi-skill call centers by an approach that is based on a heuristic method
and an integer programming model. Quimper and Rousseau [5] investigate
modeling of the regulations for the multiple activity shift scheduling problem
by using regular and context-free languages and solved the overall problem
with Large Neighborhood Search. Generation of large number of breaks per

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

460

shifts has been also recently considered in the literature. We refer the reader
to [3] for a review of previous work on this problem.

3 Search method

We propose a simulated annealing approach that uses a neighborhood relation
that extends and adapts to the case with breaks the one proposed in [2] for
simple shift design. In details, we consider the union of the following basic
neighborhoods:

1. Shrink or enlarge a shift by one timeslot.
2. Add, remove, or transfer to another shift a worker from a shift.
3. Move the break forward or backward by one timeslot.

For neighborhoods 1 and 3, the move can be selected only if it lead to a
shift that is still compliant with its given type.

4 Current and future work

The current work involves the collection of a set of real case instances, and an
experimentation on these instances, with the following objectives:

– Define the suitable weights of the objectives in order to obtain the results
that better fit with costumers’ needs.

– Set the parameters to their best values (with the given statistical confi-
dence) of the search method to obtain good results of the available instances
and robust performances for future unforeseen instances.

Acknowledgements Nysret Musliu has been supported for this work by the Austrian
Science Fund (FWF): P24814-N23.

References

1. Sandjai Bhulai, Ger Koole, and Auke Pot. Simple methods for shift scheduling in mul-
tiskill call centers. Manufacturing & Service Operations Management, 10(3):411–420,
2008.

2. Luca Di Gaspero, Johannes Gärtner, Guy Kortsarz, Nysret Musliu, Andrea Schaerf, and
Wolfgang Slany. The minimum shift design problem. Annals of Operations Research,
155(1):79–105, 2007.

3. Luca Di Gaspero, Johannes Gärtner, Nysret Musliu, Andrea Schaerf, Werner
Schafhauser, and Wolfgang Slany. Automated shift design and break scheduling. In
Automated Scheduling and Planning, pages 109–127. Springer, 2013.

4. Nysret Musliu, Andrea Schaerf, and Wolfgang Slany. Local search for shift design. Eu-
ropean Journal of Operational Research, 153(1):51–64, 2004.

5. Claude-Guy Quimper and Louis-Martin Rousseau. A large neighbourhood search ap-
proach to the multi-activity shift scheduling problem. Journal of Heuristics, 16(3):373–
391, 2010.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

461

Airport Ground Movement: Real World Data Sets

and Approaches to Handling Uncertainty

Alexander E.I. Brownlee · Jason A.D.

Atkin · John R. Woodward · Una

Benlic · Edmund K. Burke

Keywords airport operations · ground movement · data sets · uncertainty

1 Abstract

Two related topics are considered in this presentation, both concerning the
ground movement of aircraft. The first describes the collection of data from
publicly available websites and the second discusses the issue of uncertainty
in this problem.

The airport ground movement problem [1] connects together the problems
of runway scheduling and gate allocation, which are often tackled separately
in the research literature. The overall problem involves allocating routes for
aircraft to take as they proceed along the taxiways between the runways and
the gates (stands), and timings or orders for them to take them. The aim is
to find a schedule that reduces delays, reduces the fuel burn associated with
taxiing, and is resilient to last-minute changes. This represents a challenging
problem because there are typically several pinch points where congestion is
more likely to occur, and the uncertainty inherent in aircraft landing times,
pushback times and taxi speeds means that routes need to be constantly up-
dated to reflect the current situation. In addition, any solution method must
be efficient enough that it can be executed within a couple of minutes, at most,
to accommodate incoming, changing data. Furthermore, once an aircraft has
had a route allocated and commenced its movement, it is undesirable (and

A. Brownlee, J. Woodward, U. Benlic, E. Burke
Division of Computer Science and Mathematics
University of Stirling, UK
E-mail: sbr/jrw/ube@cs.stir.ac.uk, e.k.burke@stir.ac.uk

J. Atkin
School of Computer Science
University of Nottingham, UK
E-mail: Jason.Atkin@nottingham.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

462

avoided at most airports) for a new route to be assigned. This means that any
route allocation should be robust enough to cope with uncertainties that arise
during the ground movements such as variations in taxi speed.

Innovation in this area is potentially limited by the difficulty in access-
ing real-world data sets. While some freely-available toy problems exist in the
literature, none truly reflect the inherent complexity of operations at a real
airport. Existing works have made use of data provided through partnerships
with airports, but typically this is the subject of a non-disclosure agreement.
This means that there are currently no up-to-date common datasets for re-
searchers to compare approaches on. This acts as a barrier to new researchers
entering the field, who would have to develop working relationships with air-
port staff to obtain relevant data, and we intend to resolve this problem.

This work explores several freely available sources of data related to air-
port ground movement, considering the ways in which these can be combined
to confront this challenge. Initial attempts have also been made to quantify
and address the important issue of uncertainty in taxi time estimation. The
freely available data sets include layout information derived from open street
map (OSM) (www.openstreetmap.org), which is free to use under an open
licence, and the NATS Aeronautical Information Service (www.ais.org.uk). A
tool has been developed and made available to generate layouts taken from
raw data downloaded from these sites. Some example layouts for UK airports
have also been made available. Furthermore, the work has explored the use
of live flight track information taken from the site Flight Radar 24 (FR24)
(http://www.flightradar24.com). These tracks are available for the majority
of flights at most European and US airports and are detailed enough to al-
low analysis of the real movements of aircraft at an airport. However, due to
measurement errors the recorded data appear to be precise but is not actually
accurate (for example on occasions an aircraft is recorded as travelling along a
path parallel to the actual runway rather than along it). In order to retain as
much valuable data as possible, these paths can often be “repaired” by apply-
ing a linear transformation to the recorded trajectory and forcing the path of
the data to coincide with the closest runway. To recover the most likely path,
the raw data is snapped to the taxiways, from which taxi speeds and routes
taken can be analysed. A tool has also been made available to conduct this
snapping process from raw GPS track coordinates obtained from a site such
as FR24.

Existing work [3] has quantified the uncertainty in terms of taxi time esti-
mation using existing taxi time modelling. This work has expanded upon that
by using the real flight data taken from FR24. The QPPTW algorithm (quick-
est path problem with time windows) is an existing state of the art approach
for optimising the ground movement problem [2]. This finds the shortest path
for a given aircraft given the routes which have already been allocated to other
aircraft. However, the algorithm assumes that taxi time estimates are known
exactly, which may not be the case. One approach for extending this work is
to add a buffer time (slack) to aircraft movements to allow for variations in
taxi speed. However, this impacts on the overall capacity of the airport and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

463

can add unnecessary delay to aircraft movements. An existing approach to
handling the similar problem of flow shop scheduling with uncertain (fuzzy)
processing times can be adapted to the ground movement problem. Some pre-
liminary results are presented exploring and contrasting the impact on final
taxi-times and ground movement efficiency of adding padding and applying
the fuzzy approach.

Acknowledgements This work was funded by the UK EPSRC [grant number EP/H004424/2].

References

1. Atkin, J.A.D., Burke, E.K., Ravizza, S.: The Airport Ground Movement Problem: Past
and Current Research and Future Directions. In: 4th International Conference on Re-
search in Air Transportation, pp. 131–138 (2010)

2. Ravizza, S., Atkin, J.A.D., Burke, E.K.: A more realistic approach for airport ground
movement optimisation with stand holding. Journal of Scheduling (2013). DOI
10.1007/s10951-013-0323-3.

3. Ravizza, S., Chen, J., Atkin, J.A., Stewart, P., Burke, E.K.: Aircraft taxi time prediction:
Comparisons and insights. Applied Soft Computing 14(Part C), 397 – 406 (2014). DOI
10.1016/j.asoc.2013.10.004.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

464

Scheduling Air Traffic Controllers

R.Conniss · T.Curtois · S.Petrovic ·
E.Burke

Keywords Personnel Scheduling, Rostering, Heuristics

1 Introduction

The effective rostering of Air Traffic Controllers is a complex and under re-
searched area of the personnel scheduling literature. An effective method to
produce real world rosters for controllers requires the ability to model shifts,
breaks, multiple tasks and their associated qualifications, to rotate staff through
all the tasks for which they are qualified to maintain skill levels, the require-
ment to train staff whilst continuing normal operations and an ability to re-
roster in the event of unexpected events. Examples in the literature that ex-
amine some of these components include shift scheduling [5], break planning
[2] [6] and multi skilled staff [4] [3].

We shall present an algorithm that can effectively model many of the fea-
tures of the ATC rostering problem, and produce useful real world rosters for
operational use.

R.Conniss
OMIS, NUBS, University of Nottingham, UK
E-mail: psxrc@nottingham.ac.uk

T.Curtois
ASAP Research Group, School of Computer Science, University of Nottingham, UK
E-mail: tim.curtois@nottingham.ac.uk

S.Petrovic
OMIS, NUBS, University of Nottingham, UK
E-mail: Sanja.Petrovic@nottingham.ac.uk

E.Burke
University of Stirling E-mail: e.k.burke@stir.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

465

2 Problem Description

Creating a feasible roster for controllers depends on similar hard constraints to
other classes of rostering problem. Controllers have limits on their maximum
shift length, how long they can work without a break during a given shift and
minimum time off between shifts. Although the initial focus of the research was
on RAF controllers, the working limits of civilian controllers have been used in
the model for two reasons. Firstly, military controllers are not subject to well
defined working time rules, due to the nature of military service. Secondly, the
Civil Aviation Authority publishes UK wide rules for all civilian controllers in
the Scheme for the Regulation of Air Traffic Controller’s Hours (SRATCOH)
[1].

For a controller to be assigned to a console position, or task, the controller
must hold the correct qualification to staff the task. Each controller will hold
some subset of all available qualifications and some will be fully qualified for
all tasks. Qualifications are obtained by completing on the job (OJT) training
under the supervision of an instructor. Whilst this is similar to the use and
acquisition of qualifications in other industries, such as Nurse Rostering, the
difference here is that controllers must maintain familiarity, or currency, in
all the positions for which they are qualified. Currency is measured in days
since a controller last worked in a particular position. This restriction requires
that controllers must regularly work in all relevant positions, failure to do so
results in the suspension of that qualification and leads to an enforced period
of retraining, with a final competency check, before the qualification can be
reactivated. Once a controller has worked productively in a position i.e. they
have controlled a reasonable number of aircraft, the currency value is reset to
zero. The objective function for the model is therefore to maximise the sum
of currency for all assignments of a controller to a position.

Maintaining currency for all controllers is the central goal for any useful
rostering approach. Other considerations such as minimising the cost of staffing
a shift can be ignored, as staff are salaried by rank or grade and minimum
staffing levels for each unit are determined by the relevant regulating authority.
This means that the objective of the solution is to prevent controllers from
violating currency limits, over time. This can be best achieved by forcing
controllers to vary the positions worked as often as is reasonable.

Our model divides time into 30 minute blocks, and a controller should not
work for more than 2 hours, followed by at least a 30 minute break as defined
by SRATCOH. Staff can not directly swap positions because for each change
of controller in a position a handover briefing is required, which requires that
the relieving controller must have been unassigned in the previous time block.
Although it would be valid to have controller A work for 2 hours, be relived by
controller B for 30 minutes and for A to return to their original position, this
increases the number of staff on a given shift . Ideally, B should stay in the
position and A should be assigned another task, to maintain their currency.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

466

3 Solution Approach

To produce valid rosters in reasonable time, a constructive, greedy heuristic
algorithm has been developed, to meet the above requirements. The process
begins with a set of input parameters based on controller availability, qualifi-
cations, demand for tasks and currency values. Every assignment in the model
is defined as a tuple containing values for controller, position and time (c, p, t).

The algorithm is an iterative procedure which selects the first assignment
from a sorted list of valid assignments at each step and appends this to the
solution. If the list is empty the algorithm discards the last assignment to the
solution, backtracks and restarts. The solution is a list of assignments, and it’s
index relates to the position and time slot that requires staffing i.e. solution(1)
is for position(1), time slot(1), solution(2) is for position(2), time slot(1) etc.

The list of valid assignments is first sorted by the currency value of con-
trollers, for the required position at each index of the solution, to maximise
total currency for the roster. However, this ordering alone can cause problems
in the final roster. Consider the situation where controller A is the least cur-
rent in position APP. She is assigned to APP in the first 4 time slots and
replaced by controller B in the 5th. The ordering by currency of valid assign-
ments would mean that A would be reassigned to APP in the 6th time slot,
to maximise currency. This is a poor approach, as B is not given enough time
to reset his currency and would require a larger pool of available controllers
to satisfy the staffing requirements. An additional preference rule is applied
to the list that attempts to keep a controller in a position for as long as pos-
sible, subject to break rules, and reduces the possibility of having 2 controller
changes in a position in consecutive time slots.

4 Experimental Results

A series of 240 single day rosters have so far been produced, with progres-
sively more constrained starting conditions (fewer available controllers) and
arbitrarily limited to a 60 minute time limit for a solution. Th algorithm is
written in Python 2.7 and run on a consumer grade i7 desktop PC. The fi-
nal 30 experiments with the fewest number of least qualified controllers (14
controllers to 11 positions) managed to produce valid rosters in an average
time of 26 minutes. Table 1 shows an example of the algorithm output with
controllers {A, B, ..., Z} assigned to positions {SUP, APP,, BKN SRA} for
each timeslot {1, 2, ..., 18}. The score of 3,557 is the total sum of currency for
all assignments, with a theoretical maximum value of 5,940. This upper value
could never be achieved as it would require no controller to have worked in
any position for 30 days, which is completely unrealistic.

To take controller M as an example, table 1 shows them assigned to four
different positions for the day, therefore maximising the chance that they re-
set their currency in those positions. There are several other examples of con-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

467

Table 1 Example roster: Controllers assigned to positions for given time slot. Currency
score = 3557

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SUP V V V V T T T T V V V V T T T T V V
APP S S S X X X K K K K Y Y Y Y S S S S

CWL DIR T T T O O O O X X X X K K K K Y Y Y
BKN DIR O O Y Y Y H H H H S S S S O O O O X

CWL DEPS H H H H S S S S O O O O X X X X Z Z
BKH DEPS X X Z Z Z Z Y Y Y T T Z Z Z Z H H H

ADC M M B B B B E E E E H H H H E E E E
GND Y E E E E W W W W Q Q Q Q M M M M T
PAR W W W W Q Q Q Q M M M M B B B B K K

CWL SRA Q Q Q M M M M B B B B E E V V W W W
BKN SRA B K K K K V V Z Z Z W W W W Q Q Q Q

trollers assigned to multiple positions in this roster, implying that the solution
is of sufficient quality for use.

5 Future Work

There are several obvious extensions to the model that will require further
investigation. Including training plans for new controllers is obvious next step.
Other possible areas for research include:

– Allowing for breaks of different length e.g. lunch hours.
– Encoding personal preference for tasks/shifts.
– Embedding fairness into the rosters i.e evenly distributing time assigned

to positions.
– Producing extended days rosters with overlapping shifts.
– Generalising the model for use in other industries e.g. airport security.

References

1. Authority, C.A.: Cap 670: Air traffic services safety requirements (2003)
2. Di Gaspero, L., Gärtner, J., Musliu, N.: A hybrid LS-CP solver for the

shifts and breaks design problem. Hybrid . . . pp. 46–61 (2010). URL
http://link.springer.com/chapter/10.1007/978-3-642-16054-7 4

3. Li, H., Womer, K.: Scheduling projects with multi-skilled personnel by a hybrid
MILP/CP benders decomposition algorithm. Journal of Scheduling 12(3), 281–298
(2008). DOI 10.1007/s10951-008-0079-3. URL http://link.springer.com/10.1007/s10951-
008-0079-3

4. Quimper, C.G., Rousseau, L.M.: A large neighbourhood search approach to the multi-
activity shift scheduling problem. Journal of Heuristics 16(3), 373–392 (2009). DOI
10.1007/s10732-009-9106-6. URL http://link.springer.com/10.1007/s10732-009-9106-6

5. Rekik, M., Cordeau, J., Soumis, F.: Implicit shift scheduling with multiple breaks
and work stretch duration restrictions. Journal of scheduling (2010). URL
http://link.springer.com/article/10.1007/s10951-009-0114-z

6. Widl, M., Musliu, N.: An improved memetic algorithm for break scheduling. Hybrid
Metaheuristics pp. 133–147 (2010). URL http://link.springer.com/chapter/10.1007/978-
3-642-16054-7 10

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

468

A Matheuristic Approach for the High School
Timetabling Problem

Árton P. Dorneles · Olinto C.B. Araújo ·
Luciana S. Buriol

Keywords High School Timetabling · Matheuristics · Fix-and-optimize ·
Variable Neighborhood Descent

Árton P. Dorneles · Luciana S. Buriol
Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre - Brazil
E-mail: arton.dorneles@inf.ufrgs.br
E-mail: buriol@inf.ufrgs.br

Olinto C.B. Araújo
Colégio Técnico Industrial de Santa Maria, Universidade Federal de Santa Maria, Santa
Maria - Brazil
E-mail: olinto@ctism.ufsm.br

The school timetabling is a classic optimization problem that consists of
scheduling a set of class-teacher meetings in a prefixed period of time, satis-
fying requirements of different types. Due to the combinatorial nature of this
problem, solving medium and large instances of timetabling to optimality is
a challenging task. When resources are tight, it is often difficult to find even
a feasible solution. In this study, we propose a matheuristic approach for the
high school timetabling problem that combines a fix-and-optimize heuristic
with a variable neighborhood descent method. The experimental results show
that our approach provides high quality feasible solutions in a short compu-
tational time when compared with results obtained with the mixed integer
programming solver CPLEX. In addition, we have improved best known solu-
tions of 7 out of 12 instances from the literature. Among them, three are new
optimal solutions for classical instances that have been available since 2000.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

469

FIFA Ranking and World Cup Football Groups:
Quantitative Methods for a Fairer System

Guillermo Durán · Sebastián Cea ·
Mario Guajardo · Denis Sauré and
Gonzalo Zamorano

 Abstract The team seeding and final group distributions for the final tour-
nament of the 2014 World Cup football competition have provoked serious
criticism in the international football community. Much of the discontent has
been directed at the formula underlying the FIFA ranking used to designate
the 8 seeded teams. Particularly surprising for many in the football world

First author is partly financed by project nos. ANPCyT PICT-2012-1324 (Argentina),
CONICET PIP 112-200901-00178 (Argentina), UBACyT 20020100100980 (Argentina), and
FONDECyT 1140787 (Chile), and by the Complex Engineering Systems Institute (ISCI,
Chile).

Guillermo Durán
Instituto de Cálculo and Departamento de Matemática, FCEN, UBA, Argentina; Departa-
mento de Ingenieŕıa Industrial, FCFM, Universidad de Chile, Chile.
E-mail: gduran@dm.uba.ar

Sebastián Cea
Departamento de Ingenieŕıa Industrial, FCFM, Universidad de Chile, Chile.
E-mail: seba.cea.b@gmail.com

Mario Guajardo
Department of Business and Management Science, NHH Norwegian School of Economics,
N-5045 Bergen, Norway.
E-mail: mario.guajardo@nhh.no

Denis Sauré
Departamento de Ingenieŕıa Industrial, FCFM, Universidad de Chile, Chile.
E-mail: dsaure@dii.uchile.cl

Gonzalo Zamorano
Departamento de Ingenieŕıa Industrial, FCFM, Universidad de Chile, Chile.
E-mail: gonzaloz@dii.uchile.cl

Keywords FIFA Ranking · Integer Programming · Numerical Simulations ·
World Cup Football

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

470

was that the seeds include national sides like Colombia and Switzerland while
undisputed powerhouses such as Italy and Holland were left out.

Another focus of negative comment in sports media around the world is
the heavily geographical criteria used by FIFA to determine the makeup of
the 4 ”pots” for the draw procedure that defined the composition of the team
groups. Such criteria tend to result in groups that are highly uneven, and this is
clearly reflected in the 2014 World Cup assignments. While one group contains
football powers Uruguay, Italy and England and a second group includes Spain,
Holland and Chile, others are globally much weaker such as the one lumping
third-seeded Argentina in with Bosnia, Iran and Nigeria, three countries with
relatively little football tradition.

This study has two principal goals. The first is to make a series of ad-
justments to the current FIFA ranking formula, thus producing a new ranking
that resolves the main problems in the official version. Among the more signifi-
cant deficiencies corrected are the lack of due consideration for the home-away
status of matches, the fact that a team is better off not playing friendlies
than playing them and winning, the fact that deciding a friendly by a penalty
shootout is more advantageous because neither team has anything to lose,
and the reality that a team has more to gain by defeating San Marino (the
weakest team in the ranking) at home in a World Cup or UEFA European
Championship qualification match than tying with Spain (the strongest team
in the ranking) in a friendly away game. To develop a formula more in keeping
with what football experts expect from a team ranking, a number of numerical
simulations are presented that correct key parameters accordingly.

The second goal of this article is to address the problem of generating
more equitable team groups. To this end we first calculate the ”strength” of
each national team by adjusting our proposed new FIFA ranking to take into
account its historical performance in every World Cup and continental cup
tournament. Based on this adjusted ranking we then assign the 8 seeded teams
(i.e., the 8 strongest) to pot 1 and then define the other 3 pots as follows: pot 2
contains the countries ranked 9th to 16th, pot 3 contains the countries ranked
17th to 24th and pot 4 contains the countries ranked 25th to 32th. Finally, we
design an integer linear programming model that allocates one team from each
pot to the four groups. FIFA’s geographical conditions limiting the number of
European teams to no more than 2 per group and the number from any other
continent to no more than 1 per group are included in the model as constraints.
The objective function minimizes the difference between the final strength of
the strongest and the weakest groups, the strength of a group being defined
as the sum of the individual strengths of the group’s teams. The idea is to
achieve a set of groups that are as balanced as possible. To incorporate FIFA’s
wish that the final result contain an element of randomness, that is, that it
not be derived deterministically, the N best solutions are generated (where N
is between 5 and 10) rather than just the optimal solution, and the definitive
one is then decided by a weighted draw.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

471

Predictive scheduling for optimal cloud configuration

Michael G. Epitropakis ·
Andrea Bracciali · Marco Aldinucci ·
Emily Potts · Edmund K. Burke

1 Introduction

Cloud Computing provides availability of a large amount of resources in a
seamless and tailored way to a vast public of users, following the paradigm of
computation as a utility, which, like all the more traditional utilities, comes
with an associated cost. Users can access resources through facilitated inter-
faces supported by the vast majority of service providers. However, non-trivial
Cloud Computing usually requires advanced skills to configure and manage
the computation in an optimal way. Configuration and management of the
available resources might include either selection of “optimal” parameters for
the utilized software in order to efficiently use the available resources, or se-
lection of the “optimal” hardware resources in order to minimize renting cost
and maximize efficiency.

Very relevant is the trade-off between efficiency and costs, which is also typ-
ically quite difficult to manage, because of intrinsic unpredictability of compu-
tation and the consequent lack of accurate cost models for these architectures.
Even if the unit cost of different architecture components, e.g. bandwidth, dif-
ferent classes of virtual machines and storage, is known, determining before-
hand the exact cost of running a complex parallel or distributed application
over different, possibly dynamic, configurations is currently an open problem.

Several approaches address the problem as a multi-objective optimisation
problem on (very) simplified “theoretical models” of the architecture. These
models are general and typically unrelated to the specific performances of the

Michael G. Epitropakis · Andrea Bracciali · Emily Potts · Edmund K. Burke
Computing Science and Mathematics,
University of Stirling, UK.
E-mail: {mge,abb,epo}@cs.stir.ac.uk, e.k.burke@stir.ac.uk

Marco Aldinucci
Computer Science Department,
University of Torino, Italy.
E-mail: aldinuc@di.unito.it

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

472

architecture for the specific problem at hand . For instance, in [8] different vir-
tual machines are abstracted in terms of their brute Gb-per-second theoretical
processing capability.

Another class of approaches is based on “experimental models”, which build
on top of knowledge about past executions. For instance, in [6] past executions
are clustered in classes of problems, whose optimal time and cost configuration
can be inferred from past experience. Then, mapping the problem at hand to
one of such classes gives indications about how to configure Cloud Computing
architectures for best time and cost performances.

A critical aspect of the above modelling approaches is the difficulty, i.e.
the cost ultimately, of collecting suitable information for devising accurate and
specific cost models for the problem at hand . Theoretical approaches by-pass
such costs, losing accuracy. Experimental approaches increase accuracy, but at
the cost of accumulating enough experience and hence potentially undermin-
ing the cost-optimisation goals. Furthermore, properly mapping the specific
problem under consideration to the so-far available experience base might be
difficult and introduces back a loss of accuracy.

Bridging the two approaches, we investigate the possibility of building a
model from limited experimental information on a specific problem, on top of
which we build a “theoretical” model. The model, then, reflects some specific
information about the problem at hand , hence improving domain knowledge
with respect to the theoretical approaches, but the price needed to accumulate
large experimental knowledge is waived.

On top of our model, we perform state of the art evolutionary multi-
objective optimisation to discover optimal configurations. Multi-objective op-
timization formulations have been well established and widely adapted in var-
ious fields of Software Engineering [5], such as Requirements Engineering [10],
Software Testing [3, 9] and Cloud Computing [4].

2 Combining models and experimental data for optimised cost
predictions

We focus on (simplistic) variants of the MapReduce programming model [1],
as provided by the Amazon EC2 Cloud. MapReduce is very relevant in Cloud
Computing as it provides a high-level programming interface easing the devel-
opment of efficient, scalable and robust applications and services.

We initially consider three benchmark problems, one CPU bounded, one
I/O bounded and one making a large use of bandwidth. These broad cat-
egories characterise several aspects of Cloud Computing, other choices are
possible. For each benchmark, a minimal configuration of the problem, a sin-
gle task, is executed in one instance, i.e. a virtual machine, provided by EC2.
Small, medium and large instances are available with different performances
and costs. We hence use averaged minimal tasks, i.e. uniform representatives
of tasks computational requirements, to experimentally gauge instances per-
formances on the specific problem at hand. Then, we develop a theoretical

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

473

model that gives an approximation of how performances scale up when many
tasks are executed on combinations of several instances of different kinds. The
models are based on theoretical limits of performance scaling, and may con-
sider, where appropriate, the cost of distributing data and collecting results,
again inferred from simple (simplistic) experimental measurements, the costs
associated to storage, and specific costing policies, such as pricing per tempo-
ral intervals of a given duration, and other problem- and architecture-specific
information.

On top of our model, we formulate a multi-objective optimisation to tackle
resource allocation and task scheduling. We use multi-objective optimisation
analysis to determine optimal configurations of resources (number and kind
of instances) and schedule of tasks. More precisely, we aim at minimising
both execution costs for the MapReduce execution, and its completion time
(makespan). Although, we focus on these two objectives, the formulation is
general and capable of handling more objectives, based on the optimisation
needs of the user.

In the current study, we utilise two well known evolutionary multi-objective
algorithms that have demonstrated efficient behaviour in Search-based Soft-
ware Engineering optimisation problems, namely the Non-dominated Sorting
Genetic Algorithm (NSGA-II) [2], and the Two-Archive algorithm (TAEA) [7].
NSGA-II uses a fast non-dominated sorting procedure to enhance the diver-
sity and the quality of the resulting solutions, while TAEA incorporates two
archives with different properties to save potentially good solutions. The for-
mer aims at enhancing the diversity of the solutions found, while the latter
aims at enhancing the convergence of the algorithm to the real Pareto front. In
the current setting the representation of a solution encodes both the resource
allocation and task scheduling goals, while both algorithms have been used
with their default search and parameter settings.

An extensive empirical verification of the proposed methodology has been
designed. The algorithmic part of the methodology can be enriched by devel-
oping an adaptive hyper-heuristic version of the algorithms mentioned above
to enhance their searching abilities and their performance in terms of locating
optimal and diverse solutions.

A key challenge for the proposed methodology is to enable the user to
make fast and cost/performance optimal decisions when configuring Cloud
Computing services for novel MapReduce based problems. User decisions will
be less dependent on costly and hard-to-generalise past experimental infor-
mation than the decisions based on traditional “experimental approaches”,
and a bit more informed on the problem at hand than the decisions based on
“theoretical approaches”.

Acknowledgements E.K. Burke and M.G. Epitropakis would like to thank EPSRC for
their support for this work through grant EP/J017515/1.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

474

References

1. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. In:
Proceedings of the 6th Conference on Symposium on Opearting Systems Design &
Implementation - Volume 6, OSDI’04, pp. 10–10. USENIX Association, Berkeley, CA,
USA (2004)

2. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation 6(2), 182–197
(2002)

3. Harman, M.: Making the case for morto: Multi objective regression test optimization. In:
Fourth International IEEE Conference on Software Testing, Verification and Validation,
ICST 2012, Berlin, Germany, 21-25 March, 2011, Workshop Proceedings, pp. 111–114.
IEEE Computer Society (2011)

4. Harman, M., Lakhotia, K., Singer, J., White, D.R., Yoo, S.: Cloud engineering is search
based software engineering too. Journal of Systems and Software 86(9), 2225–2241
(2013)

5. Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software engineering: Trends,
techniques and applications. ACM Computing Surveys 45(1), 11:1–11:61 (2012)

6. Lama, P., Zhou, X.: Aroma: Automated resource allocation and configuration of mapre-
duce environment in the cloud. In: Proceedings of the 9th International Conference on
Autonomic Computing, ICAC ’12, pp. 63–72. ACM, New York, NY, USA (2012)

7. Praditwong, K., Yao, X.: A new multi-objective evolutionary optimisation algorithm:
The two-archive algorithm. In: Y. Wang, Y.m. Cheung, H. Liu (eds.) Computational
Intelligence and Security, Lecture Notes in Computer Science, vol. 4456, pp. 95–104.
Springer Berlin Heidelberg (2007)

8. Tsai, J.T., Fang, J.C., Chou, J.H.: Optimized task scheduling and resource allocation
on cloud computing environment using improved differential evolution algorithm. Com-
puters & Operations Research 40(12), 3045–3055 (2013)

9. Yoo, S., Harman, M.: Regression testing minimization, selection and prioritization: A
survey. Software Testing, Verification & Reliability 22(2), 67–120 (2012)

10. Zhang, Y., Finkelstein, A., Harman, M.: Search based requirements optimisation: Ex-
isting work and challenges. In: B. Paech, C. Rolland (eds.) Requirements Engineering:
Foundation for Software Quality, Lecture Notes in Computer Science, vol. 5025, pp.
88–94. Springer Berlin Heidelberg (2008)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

475

Personalized nurse rostering through linear
programming ∗

Han Hoogeveen Tim van Weelden
Department of Information and Computing Sciences

Utrecht University
P.O. Box 80089, 3508 TB Utrecht, The Netherlands.

j.a.hoogeveen@uu.nl, timvanweelden@gmail.com

1 Introduction

Our purpose is finding good, personalized rosters for the personnel of the Cardiothoracic
Department of UMC Utrecht. The department contains several treatment rooms at dif-
ferent care levels. Taking care of the patients is done 24/7 by approximately 52 nursing
employees, each of which is available for a given number of hours, which differs per nurse.
There are four types of nurses: student nurses, basic nurses, Medium Care nurses, and
Senior nurses. The student nurses are trainees, who work mostly in the day-shift. The
basic nurses have a basic qualification only; they can work in all shifts. Next to the basic
qualification, the MC and senior nurses have an MC/senior qualification.

The day is divided in three shifts: day (early) shift, late shift, and night shift. For all
shifts in the planning period, we know the necessary number of nurses per qualification.

The nurses each have there own preferences regarding their schedule; the hospital tries
to obey these as much as possible. Rosters are created per 6-week period. Currently, this
is done by hand, since the planning system in use is not able to find reasonable rosters.
We present an ILP-based algorithm to solve this problem; it is based on the approach in
[2] that was used to solve a simpler problem without qualifications. Moreover, we present
a repair heuristic to adapt to changing nurse availability.

Our contribution. We describe an algorithm that can find near-optimal solutions for
real-life rostering problems while taking personal preferences into account. This hot topic
(in the Netherlands) has not been well-studied in the literature (see [1,2]).

∗The working paper this abstract is based can be found at
http://www.staff.science.uu.nl/ hooge109/Weelden.pdf

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

476

2 Constraints

The goal is to find a feasible roster for each employee such that there are enough nurses with
the right qualifications in each shift, and nurse preferences are satisfied as much as possible.
Having surplus employees is allowed, preferably well-spread over the day-shifts, but never
for night-shifts. Moreover, the presence of student nurses should be evenly divided over
the day-shifts.

The individual rosters have to obey several hard constraints. First of all, the number
of workshifts should equal the appointment size, but a deviation of 1 is allowed; moreover,
every employee should work at most 6 days per week. Next, the night-shifts must be
rostered in prespecified blocks. There should be at most 4 night-shifts per 6 weeks, and
after a night-shift the nurse must have at least two days off. Furthermore, a nurse must
have the same shift on Saturday and Sunday. Moreover, days off must come in blocks
of size two or more. Because of healthy rostering, a late-shift cannot be followed by a
day-shift. Finally, senior nurses are entitled to two ‘quality days’.

Furthermore, there are many soft constraints concerning individual rosters, which are
used to determine the quality of the individual rosters. In general, the number of shifts per
week should be the same each week, and the night-shifts and weekend-shifts should be well
spread over the 6-week period. Examples of personal preferences are to have a regular or
occasional day off, to have a specific shift on a day (some nurses perform self-scheduling),
to have as many/few late/night shifts as possible, to have as many days off after night-shift
as possible, and to have bounds on the number of consecutive shifts.

3 Solution approach

The basic idea (see [2]) is to formulate the problem as an ILP. For each nurse, we construct
a set of rosters; each one satisfies all hard constraints issued by both the hospital and the
nurse. In constrast to [1], we generate these up to 200.000 rosters per nurse beforehand.
For each roster we compute its cost on basis of how well it respects the personal preferences
of that nurse. The cost is then scaled to [0, 1] and the ones with cost > 0.5 are removed.

For each roster s ∈ S we introduce a binary variable xs indicating whether s is chosen.
Roster s contains information as to which nurse it belongs and which shifts it covers.
Using these variables, we formulate the constraint that each nurse gets one roster, and
that for each combination of a shift and a qualification, we meet the minimum occupancy.
We further have variables measuring shortage, surplus, and excessive surplus per shift per
qualification; these are penalized in the objective function. The objective is to minimize
the total cost of the chosen rosters plus the total shortage, surplus, and excessive surplus
penalty.

As the ILP cannot handle these large numbers of variables, we restrict ourselves to a
selection of these rosters, for which we then solve the ILP. To make this selection, we solve
the LP-relaxation through revised simplex; we put each variable that gets selected in the
revised simplex in a column pool. Furthermore, we add variables to this pool that have

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

477

small reduced cost based on the dual multipliers of the optimum solution. Moreover, we
find additional columns for the pool by applying small mutations. Finally, we let the ILP
run for this pool of rosters for 15 minutes. In the resulting solution almost all occupancy
constraints are met (sometimes one weekend night-shift needs one more nurse) with good
rosters (most of the soft preferences were fulfilled, but sometimes there was a single day
off).

We then implemented a set of heuristics for repairing roster problems, which also can
be used to resolve new requests. The philosophy behind these was to make small changes,
where each change would resolve an ‘important’ problem at the expense of creating an
‘unimportant’ problem. In this way, we can also resolve requests like people who should
cooperate regularly. Furthermore, in this way we can determine consecutive 6-weeks rosters
independently, which are then glued together.

References

[1] F. He and R. Qu (2012). A constraint programming based column generation ap-
proach to nurse rostering problems. Computers & Operations Research, 39, pp. 3331–
3343.

[2] H. Hoogeveen and E. Penninkx (2007). Finding near-optimal ros-
ters using column generation. Technical Report UU-CS-2007-002, De-
partment of Information and Computing Sciences, Utrecht University.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.81.8622&rep=rep1&type=pdf

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

478

The Impact of Reserve Duties on Personnel Roster
Robustness: An Empirical Investigation

Jonas Ingels · Broos Maenhout

Keywords Personnel scheduling · Robustness · Discrete-event simulation ·
Branch-and-price

1 Introduction

Robustness in personnel scheduling is an important aspect in organisations for
a variety of reasons, among which service level objectives, cost minimisation
[6] and an increasing focus on satisfying individual employee preferences [2].
First, every organisation wants to sustain a certain service level towards its
customers. This service level objective requires organisational flexibility to deal
with unexpected events, which can be caused by uncertainty of capacity, de-
mand and arrival [3]. Unexpected events that require roster changes are called
disruptions, with which organisations can cope through a variety of policies,
including reserve duty conversion, overtime, assignment of employees with a
day off and acceptance that customer demand cannot be fully met [10]. Re-
serve duty conversion is the conversion of a reserve duty into a working duty.
Second, personnel costs represent a large portion of the operating costs of an
organisation and even a small percentage-decrease can result in a significant

Jonas Ingels
Faculty of Economics and Business Administration, Ghent University
Tweekerkenstraat 2, 9000 Gent (Belgium)
Tel.: +32-9-264 89 81
Fax: +32-9-264 42 86
E-mail: Jonas.Ingels@Ugent.be

Broos Maenhout
Faculty of Economics and Business Administration, Ghent University
Tweekerkenstraat 2, 9000 Gent (Belgium)
Tel.: +32-9-264 98 32
Fax: +32-9-264 42 86
E-mail: Broos.Maenhout@Ugent.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

479

cost reduction [3]. However, disruptions can cause important deviations be-
tween the planned and actual costs of the personnel roster. Planned costs are
the estimated costs when the personnel roster is composed, while the actual
costs are the costs incurred during the execution of the roster. If we make
abstraction of uncertainty and variability during the construction of the per-
sonnel roster, the planned costs are minimal but this may lead to significantly
higher actual costs.
Third, the adaptations to the original personnel roster, which are required by
disruptions in order to restore feasibility, potentially lead to a lower personnel
satisfaction. This objective is an important objective in the personnel schedul-
ing literature [2,11,6] and should therefore be taken into account.
Hence, it is important for organisations to consider uncertainty, which helps
them to construct rosters that are more robust. These rosters enable organi-
sations to better achieve their desired service level objectives, cost objectives
and employee satisfaction objectives.
In this paper, we evaluate the impact of reserve duties on the robustness of
personnel rosters through discrete-event simulation and aim to derive insight
into how reserve duties help organisations construct robust rosters.

2 Problem Definition

Personnel scheduling consists of three phases [9]: the strategic, tactical and op-
erational phase. The strategic phase focuses on the long term, during which the
personnel mix is determined through hiring, firing and training. The decisions
made during this phase serve as input to the tactical phase. This medium-
term phase encompasses the construction of a personnel roster for a mid-term
period, which, in turn, serves as input to the operational phase. In this phase
allocations are made for the next 24-hour period.
Since robustness has both a proactive and a reactive component [8], we ex-
amine the relationship between the tactical and operational phase. Thus, the
goal is to construct a tactical roster that can absorb disruptions during the
operational phase. Nevertheless, a roster that fully absorbs all disruptions is
costly, which is why an efficient reactive mechanism is crucial to overcome
disruptions with as few changes to the original roster as possible. In order to
achieve this, we focus on the assignment of reserve duties during the tactical
phase and the conversion of these reserve duties during the operational phase.

2.1 Tactical phase

In the tactical phase, we assume that all input is known and deterministic.
Given the estimated daily shift requirements, we create individual personnel
schedules, which consist of a collection of 3 possible assignments: a working
duty, a reserve duty and a day off.
In order to obtain general results, this paper investigates a general personnel

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

480

scheduling problem. Therefore, the personnel information, objectives and con-
straints are all general and common in literature [4]. Our tactical model can
be classified as ASB N |RV 3|LRG [5].

2.2 Operational phase

In the operational phase, the allocations for the next 24 hours are performed.
Due to uncertainty, these allocations may differ from the original assignments
made in the tactical roster. Since our focus is to study the impact of reserve
duties on the robustness of personnel rosters, we only explore the conversion
of reserve duties into working duties to adhere to the original roster while
trying to maintain the service level at minimal cost and minimal preference
violations.

3 Methodology

Our research methodology is composed out of three different steps, which are
explained below. Figure 1 gives an overview of this methodology.

3.1 Tactical phase: Construction of the optimal personnel roster with reserve
duty assignments

The tactical roster is constructed using a branch-and-price algorithm. We test
instances with a planning period of at least 7 and at most 28 days. The number
of employees varies but is limited to 20.
The set of constraints that we consider can be classified into coverage con-
straints and time-related constraints [4]. Both these constraints include con-
straints for working duties and reserve duties.
The objectives used are related to the minimisation of assignment costs, pref-
erence violations, shortages and surpluses in working and reserve duties.

3.2 Operational phase: Simulation and adjustment of the personnel roster

In the operational phase, we use a 24-hour rolling horizon framework [1] that
consists of two iterative steps: simulation and adjustment. During the simula-
tion step, the uncertainty of demand and capacity are simulated, potentially
causing understaffing and overstaffing. In the adjustment step, we evaluate if
changes are necessary and possible through reserve duty conversion. The de-
cisions for the next 8 hours are executed and we proceed 8 hours to perform
the same steps for the following 24 hours. This process is repeated until the
last 8 hours of the tactical roster are simulated and adjusted.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

481

Ta
ct

ic
al

 p
ha

se
: C

on
st

ru
ct

io
n

of
 t

he
 o

pt
im

al

pe
rs

on
ne

l r
os

te
r

w
ith

 r
es

er
ve

 d
ut

y
as

si
gn

m
en

ts

D
ay

 1
D

ay
 1

D
ay

 1
D

ay
 1

D
ay

 1
D

ay
 1

D
ay

 2
D

ay
 2

D
ay

 2
D

ay
 2

D
ay

 2
D

ay
 2

...

D
ay

 n
D

ay
 n

D
ay

 n
D

ay
 n

D
ay

 n
D

ay
 n

S1S1
S2S2

S3S3
S1S1

S2S2
S3S3

...

S1S1
S2S2

S3S3

W
R

W
R

W
R

W
R

W
R

W
R

...

W
R

W
R

W
R

E1
1

0
0

0
0

0
1

0
0

0
0

0

...

0
1

0
0

0
0

E2
0

0
1

0
0

0
0

0
1

0
0

0
...

0
0

0
0

0
1

E3
0

0
0

1
0

0
0

0
0

0
0

0
...

1
0

0
0

0
0

E4
0

0
0

0
0

0
0

0
1

0
0

0

...

0
0

0
0

1
0

E5
0

0
0

0
1

0
0

0
0

0
0

0

...

0
0

1
0

0
0

∑
1

0
1

1
1

0
1

0
2

0
0

0

...

1
1

1
0

1
1

R
1

0
1

1
1

0
1

0
2

0
0

0

...

1
1

1
0

1
1

D
ay

 1
D

ay
 1

D
ay

 1
D

ay
 1

D
ay

 1
D

ay
 1

D
ay

 2
D

ay
 2

D
ay

 2
D

ay
 2

D
ay

 2
D

ay
 2

...

D
ay

 n
D

ay
 n

D
ay

 n
D

ay
 n

D
ay

 n
D

ay
 n

S1S1
S2S2

S3S3
S1S1

S2S2
S3S3

...

S1S1
S2S2

S3S3

W
R

W
R

W
R

W
R

W
R

W
R

...

W
R

W
R

W
R

E1
1

0
0

0
0

0
1

0
0

0
0

0

...

0
1

0
0

0
0

E2
0

0
1

0
0

0
0

0
1

0
0

0
...

0
0

0
0

0
1

E3
0

0
0

1
0

0
0

0
0

0
0

0
...

1
0

0
0

0
0

E4
0

0
0

0
0

0
0

0
1

0
0

0

...

0
0

0
0

1
0

E5
0

0
0

0
1

0
0

0
0

0
0

0

...

0
0

1
0

0
0

∑
1

0
1

1
1

0
1

0
2

0
0

0

...

1
1

1
0

1
1

R
1

0
1

1
1

0
1

0
2

0
0

0

...

1
1

1
0

1
1

..
1

2

3
m

O
pe

ra
tio

na
l p

ha
se

 (
1

-
2

-
3

-
...

-
m

):
-

Si
m

ul
at

io
n:

 u
nc

er
ta

in
ty

 o
f d

em
an

d
an

d
ca

pa
ci

ty
-A

dj
us

tm
en

t
of

 t
he

 p
er

so
nn

el
 r

os
te

r
Ev

al
ua

tio
n

A
ct

ua
l c

os
ts

 +
 p

re
fe

re
nc

e
vi

ol
at

io
ns

 P
la

nn
ed

 c
os

ts
 +

 p
re

fe
re

nc
e

vi
ol

at
io

ns

To
ta

l s
ho

rt
ag

e
in

 t
he

 fi
na

l r
os

te
r

To
ta

l s
ho

rt
ag

e
in

 t
he

 o
ri

gi
na

l r
os

te
r

To
ta

l n
um

be
r

of
 c

on
ve

rt
ed

 r
es

er
ve

 d
ut

ie
s

To
ta

l n
um

be
r

of
 a

va
ila

bl
e

re
se

rv
e

du
tie

s

Fe
ed

ba
ck

M
ea

su
re

s

Fig. 1 Methodology

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

482

3.3 Evaluation and feedback

A first important measure for robustness is based on the planned/actual costs
and preference violations.

RM1 =
Actual costs + preference violations

P lanned costs + preference violations
(1)

A second important measure is the service level the organisation can offer to
its customers and is based on the solution quality evaluation in [7]. Therefore,
we compare the shortages in the original roster to the shortages in the final
roster.

RM2 =
Total shortage in the final roster

Total shortage in the original roster
(2)

A third measure is related to the conversion of reserve duties into working
duties at the time of execution.

RM3 =
Total number of converted reserve duties

Total number of available reserve duties
(3)

These measures indicate the robustness of our original roster and we can de-
termine them for each day or even each shift. Furthermore, it is possible to
split the third measure up per employee. This indicates to what extent an em-
ployee is efficiently used. This information is then used to change the objective
function coefficients and the constraint parameter values of the related reserve
variables and reserve constraints in the tactical phase, after which the process
is repeated.

References

1. Bard, J., Purnomo, H.: Hospital-wide reactive scheduling of nurses with preference con-
siderations. IIE Transactions 37, 589–608 (2005)

2. Bard, J., Purnomo, H.: Short-term nurse scheduling in response to daily fluctuations in
supply and demand. Health Care Management Science 8, 315–324 (2005)

3. Van den Bergh, J., Beliën, J., De Bruecker, P., Demeulemeester, E., De Boeck, L.:
Personnel scheduling: A literature review. European Journal of Operational Research
226, 367–385 (2013)

4. Burke, E., De Causmaecker, P., Vanden Berghe, G., Van Landeghem, H.: The state of
the art of nurse rostering. Journal of Scheduling 7, 441–499 (2004)

5. De Causmaecker, P., Vanden Berghe, G.: A categorisation of nurse rostering problems.
Journal of Scheduling 14, 3–16 (2011)

6. Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and rostering: A
review of applications, methods and models. European Journal of Operational Research
153, 3–27 (2004)

7. Koutsopoulos, H.N., Wilson, N.H.: Operator workforce planning in the transit industry.
Transportation Research Part A: General 21(2), 127–138 (1987)

8. Maenhout, B., Vanhoucke, M.: Reconstructing nurse schedules: Computational insights
in the problem size parameters. Omega - International Journal of Management Science
41, 903–918 (2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

483

9. Maier-Rothe, C., Wolfe, H.: Cyclical scheduling and allocation of nursing staff. Socio-
Economic Planning Sciences 7, 471–487 (1973)

10. Shebalov, J., Klabjan, D.: Robust Airline Crew Pairing: Move-up Crews. Transportation
Science 40, 300–312 (2006)

11. Topaloglu, S., Selim, H.: Nurse scheduling using fuzzy modelling approach. Fuzzy Sets
and Systems 161, 1543–1563 (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

484

Lessons from Building an Automated Pre-Departure
Sequencer for Airports

Daniel Karapetyan · Andrew J. Parkes ·
Jason A.D. Atkin · Juan Castro-Gutierrez

Abstract Commercial airports are under increasing pressure to comply with
the Eurocontrol Collaborative Decision Making (CDM) initiative, to enable
overall airspace improvements. An important element of a CDM system is the
provision of automated decision support to aid the controllers to schedule the
take-off times and the associated times at which aircraft should push back from
the stands. The CDM system then aids effective operations by communicating
these scheduling decisions to other relevant parties within the airport and the
airspace. One of the major CDM components is aimed at predicting the target
take-off times; for medium-sized airports, a common choice for this is a “Pre-
Departure Sequencer” (PDS). Here we describe the design and requirements
challenges which arose during our development of a PDS system. Firstly, the
scheduling problem is highly dynamic and event driven. For example aircraft
can be delayed or runway capacity can change, and this requires a careful
separation of data ownership responsibility between the system components
and special attention to integrity constraints. Secondly, it is important to end-
users that the system be predictable and, as far as possible, and transparent in
its operation, with decisions that can be explained. These human factors, which
influenced the choice of methods for solving the problem, are also explained
in this abstract, along with the consequent decisions which were made.

Keywords Airport Operations · On-line Scheduling · Algorithm Design

1 Introduction

Each departing flight in an commercial airport typically follows the following
steps:

This work was supported in part by an EPSRC ‘Research Development Fund’ and also by
EPSRC grant EP/F033613/1

School of Computer Science, University of Nottingham
E-mail: {dxk, ajp, jaa, jpc}@cs.nott.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

485

1. The aircraft crew and other airport services report the time at which the
flight will be ready to depart, called the TOBT.

2. The airport controllers schedule the ‘off-block’ / ‘push back’ times based
upon these TOBTs and other information. The procedure is usually for a
tug to push the aircraft back from the stand, since most of the aircraft are
not capable of moving in the reverse direction without risking damage to
the stands.

3. The aircraft is pushed back and its engines are turned on.
4. The aircraft taxies towards the end of the runway where it may join a

queue of departing aircraft.
5. The aircraft taxies onto the runway, lines up and takes off.

Operations need to be coordinated, so these stages should be scheduled in
advance and the relevant timings for the key stages distributed to those people
and systems that need to know. To aid this, organisations such as Eurocontrol1,
who are responsible for the management of the airspace over Europe, have
introduced and promoted “Collaborative Decision Making” (CDM) systems
[2]. In particular, from a Eurocontrol brochure about “Airport CDM” (A-
CDM) [3], some key aims are:

“Information sharing is the first and most essential element of A-CDM
as it creates the foundation by creating a common situational awareness.
In addition, it potentially brings predictability and resource efficiency
benefits. . . . With the pre-departure sequencing function the target start-
up approval time (TSAT) can be calculated, providing an off-block se-
quence.”

Commercial airports are under increasing pressure to ensure that they have
a minimum of a “Pre-Departure Sequencer” (PDS) system deployed within the
Air Traffic Control (ATC) systems of the airport. The primary responsibility
of the PDS is to predict the basic information as to the time at which aircraft
plan take off. This time is called the “Target Take-Off Time” (TTOT), and
is usually linked to the time when the aircraft plan to start engines to move
towards the runway (“Target Start-up Approval Time”, TSAT). A key input
to the PDS is the “Target Off-Block Time” (TOBT) which is the time spec-
ified by the airline operator at which they plan to be ready to leave. This is
initially taken from published flight schedules, but can be modified due to op-
erational reasons. The PDS system, optionally with the manual intervention of
the ATC, is then responsible for taking the TOBTs together with information
about current airport conditions and capacities and producing the TSATs and
TTOTs.

Another responsibility of PDS is to comply with the Eurocontrol instruc-
tions. To manage bottlenecks in the airspace, Eurocontrol may declare a flight
regulated and issue a so-called “Calculated Take-Off Time” (CTOT), which
defines a time window for the flight departure. A CTOT window is a hard con-
straint; if the flight is not ready to depart before the end of the CTOT window,

1 https://www.eurocontrol.int/

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

486

https://www.eurocontrol.int/

a new CTOT usually has to be requested, which may cause additional delays
and associated costs. In other words, any plan which would violate a CTOT
is strongly undesirable for the airport.

For the largest airports, a more complex “Departure Management” (DMAN)
system becomes a standard choice. The fuller DMAN system being needed
when the schedules need to be optimised with consideration of additional re-
quirements such as wake-vortex separation rules, when runways cannot be used
in mixed mode but capacity must be maximised, see [1]. However, for medium-
sized airports a PDS system is a simpler, and so better, choice, especially when
it is to be the first CDM system at the airport.

In this abstract, we discuss some lessons learned from building a pre-
departure sequencer intended for a moderate size airport, that can automate
most of the airport controller operations related to pre-departure sequencing,
and can take and respect user modifications from the ATC. We believe that
some of the lessons are also relevant to other scheduling and timetabling prob-
lems. In Section 2, we briefly describe the problem, and outline our approach.
Finally, in Section 3, we report our conclusions.

2 Designing an Automated Pre-Departure Sequencer

A pre-departure sequence needs to provide TSAT values that obey constraints
such as:

– TSAT ≥ TOBT (the aircraft cannot be pushed back before it is ready);
– TSAT cannot be in the past for any flight at the stand;
– TTOT = TSAT + EXOT (where EXOT is the time needed for the aircraft

to reach the runway);
– CTOT − 5 ≤ TTOT ≤ CTOT + 10.

Below we describe the main challenges we faced while designing PDS.

Minimal Perturbation. Besides the above constraints, one of the most im-
portant aspects of the PDS is the interaction with humans, for example, with
decision makers in the ATC and ground operations. This has the immediate
consequence that the system decisions should not ‘churn’: TSAT values should
not be changed more than is needed, as constant updates lead to difficult and
inefficient operations. This is an important criterion in the algorithm design.

‘Predictability’ and ‘Explainability’ of Decisions. It was also important
that the human aspects required the PDS decisions to be predictable, repeat-
able, and potentially explainable to people that are experts in ATC, but not
experts in algorithms or search. If the PDS is stochastic, then the exact out-
come is unpredictable, which can be very disconcerting for operators and also
makes the software testing phase both onerous and complex, or impossible to
guarantee. Also, there should be the potential for decisions to be given expla-
nations that make sense to the human experts. These issues limited the choice

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

487

of algorithms that would be appropriate, for example, a standard stochastic
local search would be a last resort — as it tends to be non-repeatable, and
also very difficult to explain or justify the final decisions.

Data Ownership Issues. Another important lesson was the need to decide
as early as possible upon the division of responsibility over data between the
PDS and the main CDM database: what information was sent, which system
‘owned’ it and which had authority to make changes.

Overall, this led us to an event-driven rule-based approach; though with mul-
tiple passes through carefully designed sets of rules, and various triggers cor-
responding to circumstances such as the runway capacity changing. We do not
present the algorithm here, but it is based on splitting the runway resource
into time slots of the same lengths, which are computed from maximum num-
ber of take-offs per hour as provided by the ATC. The sequence is updated
in reaction to events such as ‘a new flight is declared’, ‘EXOT is changed’ or
‘controller reallocated a flight’. Such a system avoids unnecessary alteration
of flights and has an easy to understand behaviour. With a flexible system of
flight locks, we guarantee a certain level of predictability and transparency.

3 Conclusions

We have introduced the main issues that influenced the design of a decision
support system for automated on-line pre-departure sequencing. Such a sys-
tem can significantly improve many aspects of airport operations. Apart from
obeying the basic constraints, the system keeps the number of changes in
the pre-departure sequence to the minimum and has easily predictable and
explainable behaviour. The traditional focus of OR optimisation projects is
on the problem alone; however, one of our main lessons was that the “meta-
problem” of the human context, with the need for development of high trust
levels in the autonomous operations, had an important influence on the user
acceptability of different algorithms.

Acknowledgements We would like to thank Ultra Electronics Limited for their collabo-
ration with us in building a prototype of the automated pre-departure sequencer.

References

1. Jason A D Atkin, Geert De Maere, Edmund K Burke, and John S Greenwood. Address-
ing the pushback time allocation problem at heathrow airport. Transportation Science,
47(4):584–602, 2013.

2. EUROCONTROL. European Airport CDM: Airport Collaborative Decision Making.
Website: http://www.euro-cdm.org/ (last accessed Feb 2014).

3. EUROCONTROL and ACIEurope. A-CDM Airport Collaborative Decision Making,
2010. Brochure available at: http://www.euro-cdm.org/library/cdm_brochure.pdf.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

488

http://www.euro-cdm.org/
http://www.euro-cdm.org/library/cdm_brochure.pdf

Integrated Student Sectioning

Jeffrey H. Kingston

Abstract The assignment of students to sections has always seemed different
from the rest of timetabling. Courses demand times, teachers, and rooms,
but not students; instead, students demand courses. This paper shows how to
remove this difference and integrate student sectioning with the rest.

Keywords Timetabling · Student sectioning

1 Introduction

When demand for some course is greater than the maximum class size, the
course has to be broken into sections: copies of the course. Each student who
enrols in the course must be assigned to a section, and this is the student

sectioning problem. It arises both in universities [1,7] and high schools [2,5].
Student sectioning has always seemed different from the rest of timetabling.

Courses demand times and resources (teachers, rooms, etc.), but not students;
instead, students demand courses. This point is clarified below (Sect. 2).

One negative effect of this perceived difference is that good ideas developed
on one side of the barrier may seem to be inapplicable on the other. For exam-
ple, the author works with a data structure he calls the global tixel matching

[4]. It keeps track of whether an instance’s resources are sufficient to satisfy
the demand for resources, both overall and at specific times. is useful when
assigning teachers and rooms in high school timetabling [4], so it might be
useful for students too—but not if student assignment is genuinely different.

Another negative effect is that solvers assign students in one way, and
teachers and rooms in another, encouraging these tasks to occur in separate
phases of the solver. The literature is divided on whether to assign students
to sections first [1], or to assign times first and then timetable each student.

J. Kingston
School of Information Technologies, The University of Sydney, Australia
E-mail: jeff@it.usyd.edu.au

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

489

exo
Line

This paper breaks down the barrier by transforming student sectioning
into conventional timetabling. The author knows of no previous publication
of this transformation, but it is not likely to surprise researchers familiar with
student sectioning. This paper’s novelty lies more in its uncovering of the utility

of the transformation: it allows good ideas from conventional timetabling to be
applied to student sectioning, and it permits the whole timetable to be built
in an integrated way, bypassing the problems caused by separate phases.

2 The transformation

This section presents the transformation of student sectioning into ordinary
timetabling via an example. It will be clear that it works in general. A few
simple extensions are also presented. The transformation would be carried out
by software when preparing for solving, not by the end user.

A university has two Chemistry laboratories (rooms) for senior students. A
laboratory event occupies four hours, and may start at 9am or 2pm each week
day. This makes a total of 20 events per week (10 per week in each of the two
laboratories). Each laboratory can hold up to 20 students, giving capacity for
400 students. In fact, the university has decided to have only 17 events, the
minimum required to accommodate the 325 currently enrolled students.

A conventional representation consists entirely of 17 events of the form

Cj = 〈4 T92, 1 SenChemLab, 1 SenChemTeacher,≤ 20 SenChemStudent〉

The first item of the tuple is a demand for 4 consecutive hours beginning at
one of the elements of set T92, defined elsewhere to be the 9am and 2pm times;
the second is a demand for one laboratory from the set SenChemLab of senior
Chemistry laboratories (this set has two elements); and the third demands a
senior Chemistry teacher in the same way. The solver is required to assign an
appropriate starting time, lab, and teacher to this event. Various constraints
must be obeyed: the resources must have no clashes, be employed only when
available, and so on. These other constraints are not our focus here.

The fourth item allows up to 20 students from the set SenChemStudent to
attend. The ‘≤’ sign marks the difference from the other requests: it is a defect
if any of those are not met, but 20 students is just the maximum. Furthermore,
the same room or teacher may attend several of these events at different times;
but each student should attend exactly one. Clearly, the student assignments
are anomalous, and this is what motivates this paper.

The idea of the transformation is to create an event for each student si in
SenChemStudent in which si meets with a seat in a laboratory. A seat, quite
concretely, is a piece of furniture capable of holding only one student at any
one time. Each laboratory has 20 seats, making 40 seats altogether, and these
are the elements of set SenChemSeats. The event for student si is

Si = 〈4 T92, 1 SenChemSeat, si〉

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

490

where si indicates a preassignment of si to this event. Preassignments are
standard in timetabling. If times and seats are assigned to these 325 events,
and no seat has a timetable clash, then no laboratory will be overfull.

The original events Cj are retained in modified form:

Ej = 〈4 T92, 1 SenChemLab, 1 SenChemTeacher〉

Assignments of students and teachers might occur in all 20 possible events,
whereas the university has decided to have only 17. So three events have to
be excluded, and this is done by adding three events of the form

Rk = 〈4 T92, 1 SenChemLab, 20 SenChemSeat〉

At the times occupied by these events, one fewer laboratory and 20 fewer seats
will be available. There is nothing to force the selected seats to come from the
selected laboratory, but if they don’t, a simple reassignment after solving ends
fixes that problem. (A specific laboratory and its 20 seats could be preassigned
to one Rk, but it is not clear whether to preassign them to several Rk.)

Several extensions can be added. If students work in preassigned pairs,
then each student event could request two seats and contain two students.
The seats may not be adjacent in the same laboratory, but that is easily fixed
during the seat reassignment after solving ends. At the author’s university,
senior Chemistry students attend two laboratory events each week. This can
be handled by creating two Si events per student.

There is a problem when there is no natural low limit to the number
of events that may occur simultaneously, as is imposed by having only two
laboratories in the example. Take a junior Mathematics course broken into
20 sections of 30 students each, held in ordinary rooms which are in plentiful
supply. A pure transformation would require 600 seats, the great majority of
which are unavailable. In practice, however, it would be safe (and perhaps
desirable) to arbitrarily limit the number of events that occur simultaneously,
coming close to the Chemistry example. It may be important to do this, to
ensure that the transformed instance is not too much larger than the original.

Additional constraints, such as that each event have at least some number
of students, or that students be distributed among the events as evenly as
possible, must be imposed separately, in both the original instance and the
transformed one. Representing them in the transformed instance is a potential
problem, because the transformation fragments one event into many.

3 Solving

Conventional solvers first construct a solution and then repair it. There may
be a first phase which assigns times, and a second which assigns resources.
What would such a solver make of a transformed student sectioning instance?

If, after every event is assigned a time, the global tixel matching reports
that sufficient resources are available at all times, then resource assignment for

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

491

the transformed events is trivial and must succeed (except for unpreassigned
teachers, who may have constraints which make assignment difficult, with or
without the transformation). So the student sectioning part of the problem is
basically about constructing and repairing a time assignment which minimizes
the ‘insufficient resources’ defects reported by the global tixel matching.

If it is considered expedient to group students into initial sections before
solving [1], then this is hierarchical timetable construction [3]: placing the Si

into groups and constraining the elements of each group to be simultaneous.
Initial construction of a time assignment, with the global tixel matching as

a guide, should find a timetable which makes a reasonable starting point for
repair. Swapping a Cj with an Rk moves a section to a different time; moving
or swapping an Si moves a student to a different section. Both seem useful.
There are also some natural larger neighbourhoods, the kind used by VLSN
search [6]. An example is unassigning one student’s events, then reassigning
them using a tree search with intelligent backtracking. This has been done at
the author’s university for many years, but never published.

All this could go on at the same time as repairs are tried which improve
other aspects of the timetable, producing an integrated solve rather than a
series of separate phases. Doing it without the transformation is possible but
much clumsier, since special arrangements would then have to be made to
compute the equivalent of the current availability of seats at each time.

References

1. Michael W. Carter, A comprehensive course timetabling and student scheduling sys-
tem at the University of Waterloo, Practice and Theory of Automated Timetabling III
(Third International Conference, PATAT2000, Konstanz, Germany, August 2000, Selected
Papers), Springer Lecture Notes in Computer Science 2079, 64–81 (2001)

2. Peter de Haan, Ronald Landman, Gerhard Post, and Henri Ruizenaar, A case study for
timetabling in a Dutch secondary school, Practice and Theory of Automated Timetabling
VI (Sixth International Conference, PATAT2006, Czech Republic, August 2006, Selected
Papers), Springer Lecture Notes in Computer Science 3867, 267–279 (2007)

3. Jeffrey H. Kingston, Hierarchical timetable construction, Practice and Theory of Au-
tomated Timetabling VI (Sixth International Conference, PATAT2006, Brno, Czech Re-
public, August 2006, Selected Papers), Springer Lecture Notes in Computer Science 3867,
294–307 (2007)

4. Jeffrey H. Kingston, Resource assignment in high school timetabling, Annals of Opera-
tions Research, 194, 241–254 (2012)

5. Simon Kristiansen and Thomas R. Stidsen, Adaptive large neighborhood search for stu-
dent sectioning at Danish high schools, PATAT 2012: Ninth international conference on
the Practice and Theory of Automated Timetabling, Son, Norway (2012)

6. Carol Meyers and James B. Orlin, Very large-scale neighbourhood search techniques in
timetabling problems, Practice and Theory of Automated Timetabling VI (Sixth Inter-
national Conference, PATAT2006, Brno, Czech Republic, August 2006, Selected Papers),
Springer Lecture Notes in Computer Science 3867, 24–39 (2007)

7. Keith Murray, Tomáš Müller, and Hana Rudová, Modeling and solution of a complex
university course timetabling problem, Practice and Theory of Automated Timetabling
VI (Sixth International Conference, PATAT2006, Brno, Czech Republic, August 2006,
Selected Papers, Springer Lecture Notes in Computer Science 3867, 189–209 (2007)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

492

Large-Scale Rostering in the Airport Industry

Andreas Klinkert

We present a major research and business project aimed at developing ef-
ficient and flexible software for automated airport staff rostering. Industrial
partner is Swissport International, one of the largest ground handling compa-
nies worldwide, and pilot site for the project is Zurich Airport in Switzerland.
Swissport provides services for 224 million passengers and 4 million tons of
cargo a year, with a workforce of 55,000 personnel at 255 airports. Airport
ground handling involves a broad range of different tasks, including passenger
services like check-in, gate handling and transfer services, and ramp services
like baggage management and aircraft handling, servicing and cleaning.

The diversity of the ground handling functions at Zurich Airport, the large
number of operational duties, and the around-the-clock business hours result
in hundreds of different types of shifts to be planned every month, and an
employee base consisting of several thousand persons with numerous different
skills. Further challenges come from a dynamic, demand-driven planning policy
which does not rely on repetitive shift patterns rolled out over a long-term
horizon, and from a so-called shift-bidding approach which attributes high
importance to employee preferences regarding the individual work plans.

We start with an introduction to the business environment of the project,
and show its actual planning context which comprises other software tools
and human planning activities related to the workforce scheduling process.
We discuss the various project requirements and the challenges and goals that
shaped the project and the methods used.

Employee scheduling typically involves a number of subproblems including
demand modeling, shift design, days-off scheduling, and shift assignment. The
rostering process considered here focuses on the days-off planning and shift
assignment phase.

Zurich University of Applied Sciences (ZHAW)
Institute of Data Analysis and Process Design (IDP)
Rosenstrasse 3, P.O. Box Winterthur CH-8401 Switzerland
E-mail: andreas.klinkert@zhaw.ch

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

493

The methodology used for solving the associated complex large-scale op-
timization problems comprises a broad range of optimization techniques in-
cluding preprocessing, decomposition and relaxation approaches, large-scale
integer programming models and various heuristic procedures.

We provide insight into several aspects of the solution process, with spe-
cial focus on the analysis and preprocessing phase which turned out to be
crucial for the entire planning system. An important purpose of this phase is
to deal with feasibility issues related to incorrect or inconsistent input data.
In fact, experience shows that most of the operational instances submitted to
the planning tool are infeasible, and detecting and patching the infeasibility is
typically very difficult. Without specific hints from the software it is virtually
impossible for the human planners to discover the causes of infeasibility, and
to adjust the input data accordingly. The tools developed for this planning
phase range from simple but thorough data checking and analysis modules
to sophisticated mathematical models for bottleneck analysis, identification of
minimal infeasible constraint systems, and rapid presolving techniques.

Finally, we present computational experience with real world instances
and discuss operational impacts of the developed planning tool. The opera-
tional deployment started in 2011 in Zurich Airport and has continually been
extended since then. Bottom line benefits include faster and more robust plan-
ning processes, improved roster quality, better fairness, reduced planning ca-
pacity requirements, and as a result, substantial financial savings.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

494

Graphics Processing Unit acceleration of a memetic
algorithm for the Examination Timetabling Problem

Vasileios Kolonias · George Goulas ·
Panayiotis Alefragis · Christos Gogos ·
Efthymios Housos

Keywords GPU programming · Memetic algorithms · Examination
Timetabling

In this paper, we present experimental results from the use of Graphics Pro-
cessing Units (GPUs) as an accelerator for the solution of the uncapacitated
examination timetabling problem (uETP). To test the implementation of the
proposed algorithm we use the Toronto datasets as the benchmark set. Details
about the uETP problem, the datasets and solution methods can be found in
the survey by Qu et al. [1]. GPU implementations of genetic algorithms have
performed significant speedups in other application domains [2],[3].

In this work, we use a simple memetic algorithm as the goal of our study was
to demonstrate the acceleration possibilities of the GPUs in conjunction with
simple algorithmic implementation. We use an array of integers for the direct
representation of chromosomes where each cell represents an examination and
the corresponding value represents the time slot the examination should be
scheduled. For the local search optimization of individual candidate solutions
we selected the steepest descend algorithm although it is relative simple to
extend the implementation to use more advanced meta-heuristics.

Vasileios Kolonias · George Goulas · Efthymios Housos
University of Patras, Dept. of Electrical and Computer Engineering, Greece
Tel.: +30-2610962436
E-mail: bakoloni@ece.upatras.gr

George Goulas · Panayiotis Alefragis
Technological Educational Institute of Western Greece. Dept. of Computers & Informatics
Engineering, Greece

Christos Gogos
Technological Educational Institute of Epirus. Dept. of Accounting and Finance, Greece

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

495

As the data transfers to and from the GPU are time consuming, we exe-
cuted a performance analysis on an initial sequential implementation to de-
termine the most time consuming computational kernels. According to this
analysis, the most consuming kernel was the local search improvement of the
incumbent solutions. What is interesting is that the kernel execution for each
solution is independent and all of them can be performed in parallel by GPU
cores. To simplify the implementation, we decided to only delegate the exe-
cution of the local search improvement kernel to the GPU and perform the
rest of the steps (crossover, mutation and next generation decisions) of the
memetic algorithm on the CPU.

The cost function is a weighted sum of the absolute distance in time slots
between all examination pairs that have common students. The original weight
vector w = {−, 16, 8, 4, 2, 1} states that if there is a conflict, i.e. two exam-
inations that have common students are assigned to the same time slot, the
solution is illegal and for distances of more than 6 time slots the weight is
zero. To achieve an efficient GPU implementation of the cost evaluation we
extended the weight vector to w = {40000, 16, 8, 4, 2, 1, 0, . . . , 0}, size been the
number of the problem’s available time slots and dropped conditional state-
ments. This has as a consequence that every absolute distance has a weight
so all GPU cores can perform the same operation. This is very important for
GPUs as the existence of an ”if” statement leads to vast degradation in GPU
performance.

Another important pre-processing step was the calculation of the diagonal
conflict matrix, where for every examination i, each row Ri contains only con-
flicts with examinations with indexes j ≥ i+1. This helped reduce the memory
requirements and improved the access complexity during the evaluation phase.
The characteristics of the memetic algorithm used are:

– Tournament selection with size 6% of the population size.
– Uniform crossover operator.
– In the mutation operator two random examinations swap their time slots .
– The steepest descent algorithm for local improvement of the incumbent

solution. All chromosome genes are traversed in parallel to find the best
time slot for every examination. The process of finding the best time slot for
each examination is not independent because the cost of each examination
should be calculated with the time slots of all the other examinations fixed.
Each thread in a block calculates the cost of an examination for each slot
and the exam is moved to the time slot with the smallest cost. This process
is repeated for all examinations.

Table 1 presents the achieved speedup for different population sizes as
well as the quality results of this work and the results of another evolution-
ary technique used to solve the same problem, the informed genetic algorithm
(IGA) [4]. As the average performed speedup is between 17 and 40 times faster
compared to the CPU, there is great potential in using GPUs to solve the ETP
using memetic algorithms. Our future plans include the selection of more elab-
orate methods for local improvement of the solutions and the implementation

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

496

Dataset CPU(s) GPU(s) S CPU(s) GPU(s) S This work IGA
car-f-92 0,497 0,021 23.67 63,14 1,287 49.06 4.74 4.2
car-s-91 0,786 0,034 23.12 100,69 2,234 45.07 5.36 4.9
ear-f-83 0,090 0,004 22.50 11,504 0,241 47.73 37.04 35.9
hec-s-92 0,020 0,001 20.00 2,544 0,059 43.12 10.83 11.5
kfu-s-93 0,097 0,006 16.17 12,372 0,323 38.30 14.09 14.4
lse-f-91 0,068 0,005 13.60 8,693 0,238 36.53 11.18 10.9
rye-s-93 0,162 0,009 18.00 20,791 0,525 39.60 8.88 9.3
sta-f-83 0,015 0,001 15.00 1,933 0,064 30.20 157.06 157.8
tre-s-92 0,111 0,006 18.50 14,159 0,340 41.64 8.69 8.4
uta-s-92 0,644 0,028 23.00 82,283 1,867 44.07 3.93 3.4
ute-s-92 0,013 0,001 13.00 1,667 0,064 26.05 25.05 27.2
yor-f-83 0,077 0,004 19.25 9,881 0,226 43.72 38.2 39.3
Average
Speedup

18,82 40.43

Table 1 Achieved speedup (S) for a single generation of the steepest descend algorithm
and quality results

of all the memetic algorithm phases in the GPU. Furthermore, we would like
to solve the datasets of the International Timetabling Competition (ITC) with
the proposed method and the use of GPUs.

References

1. Qu, R. and Burke, E.K. and McCollum, B. and Merlot, L.T.G. and Lee, S.Y., A survey
of search methodologies and automated system development for examination timetabling,
Journal of Scheduling, 12, 55-89 (2009)

2. Pospichal, P. and Jaros, J. and Schwarz, J., Parallel genetic algorithm on the CUDA
architecture, Proceedings of the 2010 international conference on Applications of Evolu-
tionary Computation - Volume Part I, 442-451. Springer-Verlag, Istanbul, Turkey (2010)

3. Arora, R. and Tulshyan, R. and Deb, K., Parallelization of binary and real-coded genetic
algorithms on GPU using CUDA, 2010 IEEE Congress on Evolutionary Computation
(CEC), 1-8. Barcelona (2010)

4. Pillay, N.; Banzhaf, W., An informed genetic algorithm for the examination timetabling
problem. Appl. Soft Comput. 2010, 10, 457-467

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

497

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

498

Ì

Ì Ù Î Û ÛÙ

Ý » î Û Ü» î Ò

»® î »

»®

»®

» » î Û Ü» Ü»

ÍÛ

» î » » »

» î Û Ü»

ïå ïå ïå ïå îå îå í ì

Ì ø¬÷
¬ Ì Ì Ù ¬ î ¬¹ ¬

¬¹

½ î Ý Ý

ø å ÷

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

499

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

500

ï

î

ï î

ï î ï î

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

501

The impact of cyclic versus non-cyclic scheduling on
the project staffing cost

Broos Maenhout · Mario Vanhoucke

1 Introduction

In project scheduling assumptions are made with respect to the availability of
resources. In case resources are scarce and/or costly, the scheduling of resources
becomes increasingly important. Despite the fact that projects are typically
very labour intensive, little attention in the literature is given to the underlying
personnel scheduling problem. In the project staffing problem under study we
integrate the personnel scheduling problem and the project planning problem.
This encompasses that we have to decide on the project schedule that leads to
the optimal staffing plan by simultaneously determining the starting times of
the activities, the project duration and the best mix of resources in terms of
cost. In order to come up with a staffing plan, a baseline schedule is composed
for the regular and temporary crew members that takes into account all the
scheduling policies and practices.
In this paper we give insight in the parameters of the integrated staffing prob-
lem with personnel calendar constraints. More precisely, we investigate the
conditions (i.e. problem characteristics and parameter settings) under which
a personnel schedule can be constructed in a cyclical or non-cyclical way. In
this way, the project planner will learn about the impact of specific problem
characteristics and policies on the integrated project staffing outcome.

Broos Maenhout
Faculty of Economics and Business Administration, Ghent University, Belgium
E-mail: Broos.Maenhout@Ugent.be

Mario Vanhoucke
Faculty of Economics and Business Administration, Ghent University, Belgium
Vlerick Business School, Belgium
University College London, United Kingdom
E-mail: Mario.Vanhoucke@Ugent.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

502

2 Problem description

Project planning and personnel scheduling are two different problems that are
separately studied in the literature in various guises and formulations ([6];
[10]. The relevant literature on the integrated project staffing and personnel
scheduling problem is on the other hand limited. The problem was introduced
by [1] and [2]. In that papers the authors proposed a mathematical prob-
lem formulation for composing a cyclic personnel schedule. The objective is
to minimize the project makespan and the personnel costs. Maenhout and
Vanhoucke [7] extended their problem definition by incorporating temporary
personnel members and allowing the regular workers to work overtime. In that
paper, a dedicated solution procedure is used to come up with non-cyclical per-
sonnel schedules. Other papers on project staffing do not construct a personnel
schedule explicitly. [3] discuss an exact optimization method for a multi-skill
project scheduling problem. The problem is then to schedule the project ac-
tivities given the personnel schedule such that the scheduled personnel is able
to carry out the different project activities. [5] presents a model for the simul-
taneous scheduling and staffing of multiple projects with multiple resources.
Several other related papers involve the audit scheduling problem where tasks
have to be assigned to a set of workers that have an overall capacity for the
entire planning horizon (cfr. [4] for an overview).

In this paper, we study a strategic budgeting problem that decides on the
project staffing plan and corresponding personnel schedule for a single project.
The activity and project scheduling characteristics are defined as follows.
There is a project network that consists of a set of activities and a set of
direct precedence relations. The pre-emption of activities is not allowed. Each
activity has a deterministic duration and requires a number of resource units
per time unit. We assume that there is a prescribed maximum project dura-
tion. A project schedule is said to be feasible if it is non-preemptive and if the
project duration, precedence and resource constraints are satisfied. The activ-
ities are executed by different renewable personnel resource types, i.e. regular
personnel time units, overtime units and temporal personnel time units. The
availability of these resources, and hence, the resource constraints for each time
unit of the project horizon are determined in the personnel scheduling step.
The personnel scheduling problem is a manpower day-off scheduling problem
where the total number of regular crew members, the budget for overtime and
temporary help are determined. All personnel members are indistinguishable,
as they all possess the same skills to carry out the activities. The schedule of
the regular crew members can be conceived cyclically, where the same peri-
odic pattern of days on and days off is repeated for each crew member (e.g. a
(5,2) pattern that stipulates that the personnel has to work five days followed
by two days off)or non-cyclically, where an ’ad hoc’ schedule is constructed
for each crew member and each period. The objective of this strategic budget-
ing problem is to minimize the overall staffing cost and activity execution cost.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

503

3 Computational experiments

In this research we investigate the effect of the problem characteristics on
the staffing budget and the computational performance. The computational
experiments are performed using the branch-and-price procedure of [7]. We did
our experiments on a randomly generated dataset under a controlled design
consisting up to 30 activities. Based on these project instances, we determined
the optimal staffing budget for each project duration between the critical path
length and the project deadline. The critical path length averages 30 days and
in the optimal crew rosters there are 16 regular workers on the average.

We explore the impact of different project and personnel staffing charac-
teristics on the staffing budget and on the possibility to compose a cyclical
and/or non-cyclical personnel schedule. More precisely, for the activity and
project characteristics we analyse the impact of the serial and parallel com-
plexity indicator and the activity distribution indicator of [8,9], the impact of
release and due times and the impact of the resource profile of the activities.
Last, we examine the non-linear relationship of the staffing cost as a function
of the project duration. The number of regular personnel members shows an
inverse relationship with the planning period, i.e. as the planning period is
increased, the number of regular personnel members decreases. On the other
hand, the required CPU time shows an increasing exponential behaviour when
the planning period is extended and the degree of freedom for scheduling the
activities increases.

References

1. Alfares, H. and Bailey, J., Integrated project task and manpower scheduling, IIE Trans-
actions, 29, 711-717 (1997)

2. Alfares, H., Bailey, J. and Lin, W., Integrated project operations and personnel scheduling
with multiple labour classes, Production Planning and Control, 10, 570-578 (1999)

3. Bellenguez-Morineau, O., Methods to solve multi-skill project scheduling problem, 4OR,
6, 85-88 (2008)

4. Dodin, B. and Elimann, A., Audit scheduling with overlapping activities and sequence-
dependent setup times, European Journal of Operational Research, 97, 22-33 (1997)

5. Heimerl, C. and Kolisch, R., Scheduling and staffing multiple projects with a multi-skilled
workforce, OR Spectrum, 32, 343-368 (2010)

6. Herroelen, W., Demeulemeester, E., and De Reyck, B.,. Project scheduling - recent mod-
els, algorithms and applications, chapter A classification scheme for project scheduling
problem, pages 1-26. Kluwer Academic Publishers 1, Boston (1999)

7. Maenhout, B., and Vanhoucke, M., An integrated approach to strategic personnel budget-
ing for a single project with a homogeneous workforce, Technical report, Ghent University
(2013)

8. Vanhoucke, M., and Vandevoorde, S., A simulation and evaluation of earned value metrics
to forecast the project duration, Journal of the Operational Research Society, 58, 1361-
1374 (2007)

9. Vanhoucke, M., Measuring Time - Improving Project Performance using Earned Value
Management, International Series in Operations Research and Management Science, vol-
ume 136, Springer (2010)

10. Van den Bergh, J., Belien, J., Be Bruecker, P., Demeulemeester, E. and De Boeck, L.,
Personnel scheduling: A literature review, European Journal of Operational Research, 226,
367-385 (2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

504

Decomposition and Recomposition Strategies to Solve
Timetabling Problems

Dulce J. Magaña-Lozano · Ender Özcan ·
Santiago E. Conant-Pablos

1 Introduction

Timetabling is a crucial and often extremely time consuming task in many ed-
ucational institutions. This task is generally performed periodically (each year,
semester, quarter) for fulfilling the requirements imposed by the institution and
people involved, such as students and teachers/lecturers making efficient and ef-
fective use of the available resources. The educational timetabling problem has
been widely studied and different classifications have been proposed (see [1], [5]).
The course timetabling problem (CTTP) is a combinatorial optimisation problem
which involves assignment of a given set of meetings along with available resources
to appropriate time slots subject to a set of constraints. In general, two types of
constraints can be identified: hard and soft. The hard constraints are those that
must be satisfied under any circumstances. Timetables that do not violate hard
constraints are called feasible. On the other hand, soft constraints are those that
need to be respected as many as possible, but can still be violated if necessary,
i.e. they are desirable but not essential. These constraints are frequently used to
evaluate how good the solutions (timetables) are.

Two classes of well known solution methods in timetabling are construction
and decomposition methods (e.g. [2], [3], [6]). In this study, we investigate an
approach which decomposes a given problem into smaller subsets and then se-
quentially constructs a partial solution using the subsets recomposing them into a
complete solution. The proposed approach is tested on the Post Enrolment based
Course Timetabling problem instances of the Track 2 from the second Interna-
tional Timetabling Competition (ITC2007) for solving the hard constraints. The

Dulce J. Magaña-Lozano · Ender Özcan
ASAP Research Group, University of Nottingham, School of Computer Science
Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
{ psxdjm, ender.ozcan }@nottingham.ac.uk

Santiago E. Conant-Pablos
Tecnológico de Monterrey
Av. E. Garza Sada 2501, Monterrey, NL, 64849, Mexico
sconant@itesm.mx

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

505

main characteristic of this track is that the timetable is produced after student
enrolment on courses has taken place.

2 Experiments and Results

In this study, we formulate the post enrollment based course timetabling problem
as a Constraint Satisfaction Problem (CSP). Firstly, all meetings are ordered using
a heuristic. In our experiments, we used Largest Degree heuristic, which sorts the
meetings in decreasing order by the number of conflicts with other meetings. After
decomposing a given set of meetings into fixed size subsets, we construct a partial
and independent solution using each subset. At this stage, each subset is also in
order. The meetings in the first subset will be the events with the largest degree,
and in the last subset, the meetings with the smallest degree. Then the subsets
are recomposed sequentially towards a complete solution with a certain strategy
embedding a conflict resolution heuristic, since merging partial solutions into a
larger partial solution could cause hard constraint violations.

Each subset represents a subproblem which are solved by a backtracking algo-
rithm with forward checking. This algorithm dynamically selects the next variable
to assign using the minimum remaining values heuristic which uses the variable with
the smallest domain. To break ties, the saturation degree heuristic is used, which
chooses the variable with the maximum number of constraints over the unassigned
variables. Moreover, the least constraining value heuristic is employed to assign a
value, which reduces the size of the domain of unassigned variables at the least,
to the chosen variable. Ties are broken randomly.

An incremental recomposition strategy, similar to the one proposed in [3], is
utilised. Without changing the initial ordering of subsets and using the first sub-
set as the initial partial solution, the next subset is incrementally added into the
partial solution in hand until all subsets are covered. Each time a subset is in-
cluded in the growing partial solution, conflict resolution algorithm is invoked. An
important feature of the recomposition strategy is that it should be able to reduce
the conflicts between the variables that belong to different subsets. Hence, it em-
beds the Min-Conflict local search algorithm as a conflict resolution method while
integrating the subsets. This algorithm produces a list of variables in conflict and
randomly chooses one of them to assign a different value which generates the min-
imum number of conflicts with the other variables, namely, the one that minimizes
the number of unsatisfied hard constraints. These steps for conflict resolution are
repeated for a fixed number of times (attempts) in order to gradually reduce the
number of conflicts between the variables, and eventually find a feasible solution.

It is possible that all the events can not be scheduled in the given time with-
out breaking some hard constraints, thus some events in the timetable will not
be placed in order to ensure that no hard constraints are being violated. If there
are unplaced events, the Distance to Feasibility (DtF) measure is calculated [4] as
proposed in ITC2007. This measure represents the total number of students that
attend to each of the unplaced events, 0 means that all events were scheduled
without violations to the hard constraints. The DtF is used to measure the perfor-
mance of the algorithms. The Equation 1 shows how to calculate the DtF measure
where ei represents the event i, sei the number of students that attends to the
event i and, n the number of events.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

506

DtF =
n∑

i=0

sei [ei is unplaced] (1)

We have fixed the number of subsets for a given problem instance. An initial
set of exhaustive parameter tuning experiments were conducted to determine the
ideal number of subsets. The setting of

√
Number Events for the number of subsets

yielded the best performance over multiple runs across the instances with respect
to DtF . We repeated each experiment fixing the number of subsets to this value
thirty times for each instance. Table 1 shows the best and the average DtF over
all runs, as well as, the associated standard deviation for each instance using
the Largest Degree decomposition heuristic and the Incremental recomposition
heuristic. In all problem instances, except five of them, namely; comp-2, comp-9,
comp-10, comp-21 and comp-22, the proposed approach is capable of obtaining
feasible solutions. The approach always achieves a feasible solution across all runs
for the following five instances: comp-4, comp-8, comp-11, comp-15 and comp-17.

Table 1 Results of one of the proposed algorithm (Largest Degree heuristic with Incremental
Recomposition), where best, avr. and st.d. denotes the best, average and standard deviation of
the DtF . For each instance, the bold entry marks the best performing approach; the comparison
criteria is the average number of DtF .

Instance best avr. st.d. Instance best avr. st.d.
comp-1 0.0 701.6 447.1 comp-13 0.0 66.0 69.7
comp-2 467.0 1384.7 401.8 comp-14 0.0 114.4 68.3
comp-3 0.0 5.0 27.6 comp-15 0.0 0.0 0.0
comp-4 0.0 0.0 0.0 comp-16 0.0 2.3 12.6
comp-5 0.0 46.2 37.0 comp-17 0.0 0.0 0.0
comp-6 0.0 10.9 20.2 comp-18 0.0 3.5 19.0
comp-7 0.0 4.3 13.0 comp-19 0.0 799.9 479.8
comp-8 0.0 0.0 0.0 comp-20 0.0 4.9 18.5
comp-9 152.0 1152.3 482.7 comp-21 29.0 448.9 266.0
comp-10 816.0 1473.7 376.1 comp-22 3249.0 4759.6 491.6
comp-11 0.0 0.0 0.0 comp-23 0.0 1117.3 638.2
comp-12 0.0 14.6 44.5 comp-24 0.0 396.4 354.4

References

1. Victor A. Bardadym. Computer-aided school and university timetabling: The new wave.
In E. Burke and P. Ross, editors, Practice and Theory of Automated Timetabling, volume
1153 of Lecture Notes in Computer Science, pages 22–45. Springer Berlin Heidelberg, 1996.

2. M. W. Carter. A decomposition algorithm for practical timetabling problems. Technical
paper, Department of Industrial Engineering, University of Toronto, 1983.

3. Ender Özcan, Andrew J. Parkes, and A. Alkan. The interleaved constructive memetic algo-
rithm and its application to timetabling. Computers and Operations Research, 39(10):2310–
2322, 2012.

4. Ben Paechter. International timetabling competition. http://www.cs.qub.ac.uk/
eventmap/postenrolcourse/course_post_index_files/evaluation.htm, 2007.

5. A. Schaerf. A survey of automated timetabling. Artificial Intelligence Review, 13(2):87–127,
1999.

6. Petr Šlechta. Decomposition and parallelization of multi-resource timetabling problems.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intel-
ligence and Lecture Notes in Bioinformatics), 3616 LNCS:177 – 189, 2005.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

507

An Investigation Into the Use of Haskell for Dynamic
Programming

David McGillicuddy · Andrew J. Parkes ·
Henrik Nilsson

Abstract This paper investigates the potential benefits offered by adopting a declar-
ative approach, as embodied by modern functional languages with mature implemen-
tations, for prototyping algorithms for solving combinatorial optimisation problems.
For this class of problems there are usually many different options for the core al-
gorithms, supporting data structures and other implementation aspects. Thus tools
that allow different alternatives to be tried out quickly, focusing on the essence of the
problem, and as unencumbered as possible by implementation detail, would be very
useful. As a case study, we consider dynamic programming algorithms. These have
many uses in scheduling and timetabling: either directly, or as a component within
other methods such as column generation. Our findings suggest that off-the-shelf,
leading functional languages can indeed offer a range of compelling advantages in
this particular problem domain, while yielding a performance that is adequate for
verifying and evaluating the implemented algorithms as such.

Keywords Haskell · C · Java · Functional Programming · Dynamic Programming ·
Language Comparison

1 Introduction

Over the last few decades, the speed of computers has increased by orders of mag-
nitude, but the productivity of programmers has not kept pace. It is often far more
important to quickly produce correct and robust code than to optimise code for per-
formance. As computers continue to become more powerful this is ultimately going
to become the norm. Prototyping new heuristics and algorithms for combinatorial op-
timisation is arguably one area where speed of development of correct code is already
more important than absolute performance.

D. McGillicuddy, A. J. Parkes and H. Nilsson
School of Computer Science
University Of Nottingham
E-mail: {dxm, ajp, nhn}@cs.nott.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

508

We undertook a small case study as a preliminary investigation into whether a
declarative approach, specifically functional programming, is feasible for this do-
main and whether it can help speed up prototyping. Our basic observation is that al-
gorithms and heuristics for combinatorial optimisation at their core have clear math-
ematical specifications. Implementation, however, is often hampered by the need to
spell out a plethora of operational details. This is time-consuming, error prone, and
ultimately obscures the essence of the code. Thus if combinatorial optimisation al-
gorithms could be prototyped by, for the most part, transliterating the mathematical
specifications, and if the resulting performance were adequate for evaluation pur-
poses, much would be gained already. Additionally because the elementary, “school-
book” reasoning principle of substituting equals for equals is valid in declaratively
formulated code, applying property-based testing (where test cases are derived auto-
matically from stated correctness properties [1]), more easily exploiting multi-core
architectures, and formally proving correctness, are potentially facilitated.

For our case study, we have opted to look at a few standard dynamic programming
algorithms, specifically unbounded knapsack and longest common substring (LCS).
These have many uses and, for our purposes, are representative of a larger class of al-
gorithms in the domain of combinatorial optimisation. We have opted to use the pure,
lazy, functional language Haskell as our declarative implementation framework [4].
Using a pure language increases the contrast to the imperative languages commonly
used to implement this class of algorithms, making for a more interesting comparison,
while also allowing the specific advantages of working declaratively to be fully re-
alised. Further, Haskell is supported by mature, industrial-strength implementations,
resulting in a fairer performance comparison [6].

We would like to emphasise that our aim is not to advocate any particular func-
tional language for prototyping combinatorial optimisation algorithms. Rather, we
are interested in exploring what advantages functional notation (supported by mature
implementations) can bring today. However, it is worth noting that if these advan-
tages are judged to be compelling enough, functional language implementations can,
with relative ease, be leveraged for implementing domain-specific languages (DSL,
sometimes referred to as ‘executable specifications’). These allow domain-experts in-
terested in working declaratively to reap the benefits of the approach without having
to become seasoned functional programmers themselves [3]. One example of such
a DSL, used to define and manipulate financial contracts, was produced by Simon
Peyton Jones et al. and a derivative of it is used in industry by companies such as
Bloomberg and HSBC Private Bank [5].

We carry out the study by implementing each of the chosen algorithms (un-
bounded knapsack and LCS) in Haskell, Java, and C. The implementations are then
compared along a number of dimensions, including conciseness, modularity and per-
formance, as well as ease of debugging, reasoning and parallelising. To make the
comparisons meaningful we retain the structure the of the implementations across
languages, except where we take advantage of specific language features (such as
pointers, objects, or laziness). The implementations are further idiomatic and repre-
sentative of what a “typical” programmer might write, without non-portable micro-
optimisations. In particular, standard libraries are used throughout for data structures
and mathematical computations, with as little as possible implemented from scratch.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

509

2 An Illustrative Example

In a recent high profile case [2], a spreadsheet bug caused erroneous results from
an economical analysis to be published, possibly influencing European Union pol-
icy1. The error was caused in part by an indexing mistake that accidentally excluded
several countries from the analysis, a clear example of operational details causing
problems. As an analogy, consider summing a collection of numbers. In a declara-
tive setting the numbers (whether in the form of an array, list, stream, or otherwise)
are simply passed to a generic sum function. Indexing and element-wise operations
take place behind the scenes, completely eliminating these as possible sources of pro-
grammer error. By contrast, in most spreadsheets, the range of cells to be summed are
manually selected (e.g., “C3:C100”) which can be error-prone. Let us consider how
similar ideas might improve a combinatorial optimisation algorithm. Lack of space
precludes describing the full results of Knapsack and LCS, however, solving the un-
bounded knapsack problem involves finding the Greatest Common Divisor (gcd) of
the initial capacity and an array W of n weights. The function gcd2 is associative.
Thus to get the gcd of the n+1 numbers, first the gcd of the capacity and W0 is calcu-
lated, then the gcd of that number and W1, and so on for each Wi, reducing to a single
integer after n calls. Figure 1 shows the algorithm implemented in Java 7. Iteration
over the elements has been abstracted into a for-each loop. The accumulator variable
gcd all is initialised to capacity and then gcd’d with each weight, updating the accu-
mulator variable with the result of gcd for each Wi. The C version of the algorithm is
almost identical, except that the indices and loop ranges have to be written explicitly,
adding further operational details. The Haskell version of gcd is shown in figure 2.
Here the idiom of reducing a list by a binary function and accumulator is captured
by the function foldr1 , so called because it folds, associating to the right, over a list
with at least one element. There is thus no need for the user to specify how and when
the accumulator should be updated. Furthermore, since the definition of gcd contains
the rule ‘gcd 1 = 1’, which states that ∀x.gcd(1,x) = 1, it can be said to be short-
circuiting; i.e., if the first argument is equal to 1 then, due to lazy evaluation, the
second argument is not inspected and is ignored. Therefore gcds will automatically
stop once a 1 is encountered without any change to the loop itself. Achieving the
same optimisation in Java (or C) would require changing the code for the loop itself
by fusing it with part of the code gcd. This would break modularity, hamper reuse,
and possibly render the code less readable. In this very small example, adding a check
to see if gcd all is equal to 1 at each iteration and halting the loop if so is a trivial
change. However, had the loop or the called function been more involved, the mod-
ification would have been correspondingly harder because the code that governs the
loop might be quite divorced from the code that updates the accumulating variable.

1 www.bbc.co.uk/news/magazine-22223190
2 Which takes two strictly positive integers and returns the largest integer that divides them both.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

510

p u b l i c i n t gcds (i n t c a p a c i t y , i n t [] w e i g h t s) {
i n t g c d a l l = c a p a c i t y ;
f o r (i n t we ig h t : w e i g h t s) {

g c d a l l = gcd (g c d a l l , we ig h t) ;
}
return g c d a l l ;

}

Fig. 1: Java 7

gcds : : I n t −> [I n t] −> I n t
gcds c a p a c i t y w e i g h t s = f o l d r 1 gcd (c a p a c i t y : w e i g h t s)

Fig. 2: Haskell

3 Results and Conclusions

Our findings so far, to be detailed in the full version of the paper, suggest that func-
tional languages supported by mature implementations can indeed speed up develop-
ment by allowing implementations to stay close to specifications, taking advantage of
specific language features such as laziness, and eliminating certain classes of errors.
Furthermore, they can achieve this without incurring a performance penalty that is
unacceptable for prototypes. Our benchmark results for unbounded knapsack suggest
that the C code is not more than about five times faster than the Haskell version. There
are a wide range of languages that provide a transition path to more functional code;
first-class functions, folds and pattern-matching have been added to object-oriented
languages such as Java, C#, Scala and C++. F# and Clojure can interface seamlessly
with C# and Java respectively, and both Haskell and Rust can easily interoperate with
C. As such the authors recommend that readers familiarise themselves with these
idioms and consider using them in their OR prototypes and implementations.

Acknowledgements This work was funded in part by EPSRC grant EP/F033613/1.

References

1. Claessen, K., Hughes, J.: QuickCheck: A lightweight tool for random testing of Haskell programs.
SIGPLAN Not. 46(4), 53–64 (2011). DOI 10.1145/1988042.1988046. URL http://doi.acm.org/

10.1145/1988042.1988046
2. Herndon, T., Ash, M., Pollin, R.: Does high public debt consistently stifle economic growth? A critique

of Reinhart and Rogoff. Cambridge Journal of Economics (2013). DOI 10.1093/cje/bet075. URL
http://cje.oxfordjournals.org/content/early/2013/12/17/cje.bet075.abstract

3. Hudak, P.: Modular domain specific languages and tools. In: Proceedings of Fifth International Con-
ference on Software Reuse, pp. 134–142 (1998)

4. Jones, S.P. (ed.): Haskell 98 Language and Libraries – The Revised Report. Cambridge University
Press, Cambridge, England (2003)

5. Jones, S.P., Eber, J.M., Seward, J.: Composing contracts: an adventure in financial engineering (func-
tional pearl). ACM SIGPLAN NOTICES 35(9), 280–292 (2000)

6. Terei, D.A., Chakravarty, M.M.: An llvm backend for ghc. In: ACM Sigplan Notices, vol. 45, pp.
109–120. ACM (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

511

Fairness in Examination Timetabling:
Student Preferences and Extended Formulations

Ahmad Muklason · Andrew J. Parkes ·
Barry McCollum · Ender Özcan

Abstract Although they have been investigated for more than two decades,
university examination timetabling problems are still considered challenging
and interesting problems. In our study, we are investigating student prefer-
ences for the control of the time gaps between examinations; specifically, what
students consider to be best for them and also fair between students. To sup-
port this, we conducted a survey of student views and there were two main
findings. Firstly, students do have concerns about “fairness within a course”,
that is, fairness between students within their own course as opposed to only
between students in the entire university. Secondly, they do consider some
examinations harder than others and would prefer a larger time gap before
such hard examinations. To account for these student preferences, we intend
to extend the formulation of examination timetabling problems by modifying
the objective functions, and this paper briefly describes some options. Ulti-
mately, the aim is to automatically produce fairer examination timetables,
and to increase student satisfaction.

Keywords Optimisation · Examination Timetabling Problem · Fairness

1 Introduction

Examination timetabling is a well-known and challenging optimisation prob-
lem. In addition to requiring feasibility, the quality of an examination timetable

This work was funded in part by EPSRC grant EP/F033613/1.

Ahmad Muklason, Andrew J. Parkes, Ender Özcan
ASAP Group, School of Computer Science, University of Nottingham, Nottingham, NG8
1BB, UK
E-mail: {abm, ajp, exo}@cs.nott.ac.uk

Barry McCollum
School of Computer Science, Queen’s University, Belfast, BT7 1NN, UK.
E-mail: b.mccollum@qub.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

512

is measured by the extent of the soft constraint violations. Standard formu-
lations [2,5] have penalties for violations of various soft constraints so as to
spread out the examinations as evenly as possible in the overall time period,
and so give students more time for preparation. However, the standard ex-
amination timetabling formulations only minimise the average penalty per
student, and this can lead to unfairness in that some students receive much
higher penalties than others. Noting that poor timetables may adversely affect
academic achievement, we believed that overall student satisfaction could be
improved by discouraging unfair solutions. In our prior work [7], we extended
the formulation in order to encourage fairness among the entire student body.
(Also, for a study of fairness in course timetabling see [6]). However, the notion
of “fairness” may be quite complex; hence, to determine student preferences
we conducted a survey. This paper briefly reports the main results of the sur-
vey and also gives some progress towards associated extensions to the models
used for optimisation.

2 Students Perspectives on Fairness

Surveys of preferences in examination timetabling have been conducted before.
In [1] the survey was conducted through University registrars. A later survey [3]
was directed at students and invigilators; as might be expected, it was found
that “Students felt that the most important consideration while preparing the
timetable is to have a uniform distribution of exams over the examination
period”. However, in practice, some students will have poorer distributions
than others, and previous surveys had not covered their preferences on how
such potential unfairness should be managed. Hence, we conducted a survey to
give a deeper understanding of their preferences on the fairness and nature of
the distribution of exams. Questions included to what extent issues of fairness
matter to them, and the kinds of fairness they prefer. The results showed that
the majority of students agreed that fairness should be taken into account.
A specific question was whether the timetable should also be fair between
students in the same course as opposed to only considering between students
in the entire University, and a significant number of students agreed with
this. This is, ‘fairness within a course’ should be considered as well as fairness
among the entire student body. This is natural as the students on the same
course are their ‘competitors’ and also colleagues, and dissatisfaction may well
arise when a fellow student has much more time for revision before an exam.
Note that the notion of ‘within a course’ may be extended to ‘within a cohort’
with various different choices for cohorts. For example, a ‘cohort’ could refer
to ‘year of study’, and justified on the grounds that fairness between final
year students is more important than for first years (as the exams typically
contribute more to the final degree).

The survey also asked whether they find some exams harder than others,
and (unsurprisingly) students agreed with this. They also generally agreed that
they need more time for preparation before harder examinations. Presumably
a problem with accounting for this is the need to determine perceptions of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

513

the hardness of examinations, but, maybe it could be collected from students
opinion after taking the examinations, or by simply asking students in advance
to nominate which examinations needed more preparation time.

3 Towards an Extended Formulation

A commonly used fairness measure is the ‘Jain’s Fairness Index’ (JFI) [4].
Suppose a set C of students, has associated penalties P (C) = {pi}, with
mean value, P̄ , and variance σ2

P . Then a reasonable measure of the width, and
so fairness, is the standard ‘Relative Standard Deviation’ (RSD) defined by
RSD2 = σ2

P /P̄
2. The JFI is then a convenient non-linear function of the RSD:

J(C) =
(
1 +RSD2

)−1
=

(∑
i∈C pi

)2
|C|
∑

i∈C p
2
i

(1)

and it is (arguably) ‘intuitive’ as it lies in the range (0, 1] and a totally fair
solution (all penalties equal) has JFI=1. For a course (or cohort), Ck, the ‘fair-
ness within a course’ J(Ck) can be defined by simply limiting to the penalties
for the students within Ck. A candidate objective function to enhance fairness
within cohorts is then simply the sum of JFI values per cohort:

(maximise)
∑
k

J(Ck) (2)

As an illustration, consider the case of 2 cohorts with 2 (groups of) students
each, and with P1 and P2 giving the set of penalties for cohorts 1 and 2.
Suppose there are two candidate solutions S1 and S2 with values:

Soln P1 P2 avg(P) J(all) J1 J2 avg(J1,J2)

S1 {4,4} {2,2} 3 0.9 1.0 1.0 1.0
S2 {4,2} {4,2} 3 0.9 0.9 0.9 0.9

where J(all) is the JFI over all the students and J1 and J2 are the JFI values
for the two cohorts. The two solutions have the same overall average penalty,
avg(P), and overall JFI. However, we believe that students would prefer solu-
tion S1 as it is fairer within each cohort, and this is captured by the higher
value of J1+J2. Of course, the situation will not always be so simple. Consider,
a second example but with 3 students per cohort, and 3 solutions as follows:

Soln P1 P2 avg(P) J(all) J1 J2 avg(J1,J2)
S1 {8,8,9} {2,2,2} 5.2 0.725 0.997 1.0 0.998
S2 {8,8,2} {8,2,2} 5.0 0.735 0.818 0.667 0.742
S3 {7,7,9} {4,3,3} 5.5 0.852 0.985 0.980 0.983

S2 is the lowest overall penalty and would be the standard choice, but is not the
fairest both overall and within the cohorts. Potentially, S1 might be preferred
because it is most fair within the cohorts, or maybe S3 because it is most fair

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

514

between all the students. It suggests that there should be a trade-off between
overall total penalty, overall fairness, and fairness within cohort. Note that
alternatives to the objective function in (3) should also be considered; e.g. for
some suitable value of p, to simply minimise the sum of p’th powers of RSDs:

(minimise)
∑
k

RSDp(Ck) (3)

or maybe even use an extended version of the JFI with JFIp = (1 +RSDp)
−1

.
Details of how best to modify the formulation and solver to account for

this multi-objective problem is ongoing work. Finally, for the ‘hardness’, of
exams, we plan to simply give a difficulty index for each exam and use this in
modified definitions of penalties, e.g. so that having an exam the day before a
hard exam is more penalised that if it were before an easy exam.

4 Conclusion

It is intended that this work will contribute to the generation of examination
timetables that match student preferences and enhance their satisfaction. The
main contribution is to also account for ’fairness within a cohort of students’,
rather than only between the entire student body. Ongoing work is investigat-
ing how to modify the solvers so as to account for the extended objective func-
tions. Future work will then also study which solutions of the multi-objective
problem best match the student preferences, as well as the balance with re-
quirements of the other stakeholders such as teachers and invigilators.

References

1. Burke, E., Elliman, D., Ford, P., Weare, R.: Examination timetabling in British univer-
sities: A survey. In: Practice and Theory of Automated Timetabling, Lecture Notes in
Computer Science, vol. 1153, pp. 76–90. Springer Berlin Heidelberg (1996)

2. Carter, M.W., Laporte, G., Lee, S.Y.: Examination timetabling: Algorithmic strategies
and applications. Journal of the Operational Research Society 47(3), 373–383 (1996)

3. Cowling, P., Kendall, G., Hussin, N.M.: A survey and case study of practical examination
timetabling problems. In: Proceedings of the 4th International Conference on the Practice
and Theory of Automated Timetabling PATAT02, pp. 258–261 (2002)

4. Jain, R.K., Chiu, D.M.W., Hawe, W.R.: A quantitative measure of fairness and discrim-
ination for resource allocation in shared computer system. Tech. Rep. TR-301, Digital
Equipment Corporation (DEC) (1984)

5. McCollum, B., McMullan, P., Parkes, A.J., Burke, E.K., Qu, R.: A new model for auto-
mated examination timetabling. Annals of Operations Research 194(1), 291–315 (2012)

6. Mühlenthaler, M., Wanka, R.: Fairness in academic course timetabling. Annals of Oper-
ations Research (2014). URL http://dx.doi.org/10.1007/s10479-014-1553-2

7. Muklason, A., Parkes, A.J., McCollum, B., Özcan, E.: Initial results on fairness in ex-
amination timetabling. In: Proc. of the 6th Multidisciplinary International Conference
on Scheduling : Theory and Applications (MISTA) (2013)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

515

HyperILS: An Effective Iterated Local Search
Hyper-heuristic for Combinatorial Optimisation

Gabriela Ochoa · Edmund K. Burke

Keywords Hyper-heuristics · Iterated local search · Timetabling · Combina-
torial optimisation

1 Introduction

Two powerful ideas from search methodologies, iterated local search and hyper-
heuristics, are combined into a simple and effective framework to solve com-
binatorial optimisation problems (HyperILS). Iterated local search is a simple
but successful algorithm. It operates by iteratively alternating between apply-
ing a move operator to the incumbent solution and restarting local search from
the perturbed solution. This search principle has been rediscovered multiple
times, within different research communities and with different names [2,12].
The term iterated local search (ILS) was proposed in [11]. Hyper-heuristics [4,
6,7] are a recent trend in search methodologies motivated (at least in part)
by the goal of automating the design of heuristic methods to solve compu-
tational search problems. The aim is to develop more generally applicable
methodologies. Metaheuristics are often used as the search methodology in
a hyper-heuristic approach (i.e. a metaheuristic is used to search a space of
heuristics). Machine learning approaches can and have also been used as the
high-level strategy in hyper-heuristics such as reinforcement learning, case
based reasoning, and learning classifier systems [4]. The ILS hyper-heuristic
discussed here uses a form of reinforcement learning to adaptively select the
best operator/heuristic to apply at each iteration (in either or both the per-
turbation and improvement stages) from an available pool of operators with
different features. It differs from a standard ILS implementation which uses a

G. Ochoa and E. K. Burke
Department of Computing Science and Mathematics
University of Stirling
Stirling FK9 4LA, Scotland
E-mail: {gabriela.ochoa, e.k.burke}@cs.stir.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

516

single variation operator for each stage. The proposed approach has similari-
ties with variable neighborhood search [13], and adaptive large neighborhood
search [17]. Approaches combining local search and perturbation heuristics can
be found in both memetic algorithms [10,15] and hyper-heuristics [3,5,16,22].
A previous approach specifically incorporating adaptive operator selection to
iterated local search can be found in [21].

The next section gives more details of the proposed algorithmic framework.
Section 3 overviews recent successful applications of HyperILS, while Section
4 present some concluding remarks and suggestions for future work.

2 HyperILS

Algorithm 1 shows the high-level pseudo-code of the proposed iterated local
search hyper-heuristic (HyperILS). It differs from traditional ILS implemen-
tations in the design of the perturbation and improvement stages. Indeed,
Algorithm 1 is a template or framework rather than a specific algorithm as
there are alternative ways of designing the stages that we have renamed Hyper-
Improvement and HyperPerturbation. These alternatives, however, share two
key components. First, multiple heuristics or neighbourhood structures are
considered, instead of a single standard one, in either or both stages. These
operators need to be of different types and if possible incorporate some prob-
lem domain information in the form of ruin-recreate or large neighbourhood
heuristics [17,18]. Second, these multiple heuristics are not selected uniformly
at random or in a pre-determined order. Instead, they incorporate state-of-
the-art adaptive operator selection and reinforcement learning mechanisms.
The next section describes in more detail the adaptive mechanisms that have
been used within this algorithmic framework.

Algorithm 1 HyperILS: Iterated Local Search Hyper-heuristic.
s0 = GenerateInitialSolution
s∗ = HyperImprovement(s0)
repeat

s′ = HyperPerturbation (s∗)
s∗

′
= HyperImprovement(s′)

if f(s∗
′
) ≤ f(s∗) then

s∗ = s∗
′

end if
until time limit is reached

3 Case studies

The first implementation of HyperILS was presented in [3] using the HyFlex
framework as a benchmark for cross domain heuristic search [14]. In this im-
plementation, a perturbation operator is selected uniformly at random (from

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

517

the available pool of mutation and ruin-recreate heuristics) and applied to
the incumbent solution; followed by a greedy improvement stage (using all
the local search heuristics). The approach is extended in [5] by substituting
the uniform random selection of neighbourhoods in the perturbation stage, by
online learning strategies. Two strategies were implemented: choice function
(from the hyper-heuristics literature), and extreme value based adaptive op-
erator selection [9] (from the evolutionary computation literature), with the
latter producing better overall results. A subsequent implementation, success-
fully tested on the vehicle routing problem, incorporated a mechanism for
adaptively reordering the improvement heuristics [22]. Finally, HyperILS has
been recently applied to solve real-world instances of the Course Timetabling
[19]. The approach was found to be both general (solving different types of
instances), and effective (producing and even improving some state-of-the-art
results).

We describe below in more detail the learning mechanisms used in the
previous mentioned HyperILS implementations. Adaptive operator techniques
comprise two main stages, credit assignment and operator selection. Credit
assignment involves assigning credit or reward to an operator, based upon po-
tentially a number of factors, including their current performance, past perfor-
mance and the amount of time since it has last been called. There are a variety
of credit assignment methods, all attempting to ensure that the strongest per-
forming operator will have the largest amount of credit apportioned to them.
Once the operator merits are estimated an operator selection mechanism is
used to define the next operator which will be applied. This cycle of credit
estimation and operator selection is repeated through the search process.

Our current implementations of HyperILS [5,19,22] use extreme values for
assigning credits [8], which is based on the principle that large (but possi-
bly infrequent) credit improvements are more effective than small frequent
improvements. It rewards operators which have had a recent large positive
impact, while consistent operators yielding only small improvements receive
less reward. Rewards are updated as follows, when an operator op is selected,
it is applied to the current solution. The quality value of this new solution is
computed and the change in quality is added to a list of size W. Thereafter,
the operator reward is updated to the maximal value in the list.

Operator selection probabilities are calculated from their quality estimates
following a selection rule. These rules maintain a probability vector (pi, t)i=1,...,K

(where K denotes the number of operators), and use the operator’s raw credit
estimate to calculate probabilities. Our studies use two recent and well per-
forming selection rules, namely, Adaptive Pursuit and Dynamic Multi-Armed
Bandit. Adaptive pursuit was originally proposed for learning automata and
was adapted to operator selection in [20]. It follows a winner-takes-all strat-
egy, selecting at each step the operator with maximal reward, increasing its
selection probability, while all other operators get their probability reduced.
This method has two parameters: pmin that indicates the minimal probability
of selection for each operator, and β, the learning rate taken from (0, 1]. The
multi-armed bandit framework is commonly used in game theory for study-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

518

ing the exploration vs. exploitation dilemma. It involves N arms and a deci-
sion making-algorithm for selecting one arm at each time step with the goal
of maximising the cumulative reward gathered along time. The exploration
vs. exploitation balance is also relevant for heuristic search. Indeed, adaptive
operator selection can be formulated using multi-armed bandits with arms
corresponding to search operators [8]. Specifically, the upper confidence bound
multi-armed bandit [1] was used as it provides optimal maximisation of cu-
mulative rewards. Two considerations were required to use this framework for
adaptive operator selection. First, a scaling factor C is needed, in order to
properly balance the tradeoff between exploration and exploitation. Second,
the original setting is static, while adaptive operator selection is dynamic, i.e.,
the quality of the operators is likely to change along the different stages of the
search. The multi-armed bandit framework is thus combined with the Page-
Hinkley statistical test for detecting changes in the reward distribution, and,
upon such a detection, restarting the process [8]

4 Conclusions

HyperILS is a simple yet effective framework combining iterated local search
and selective hyper-heuristics. It allows the incorporation of state-of-the-art
ideas from reinforcement learning and adaptive operator selection. HyperILS
has been successfully applied to both cross-domain search, and solving complex
optimisation problems such as Vehicle Routing and Course Timetabling. Ap-
plications to other complex optimisation problems will be the subject of future
research. For the sake of simplicity, the current framework considers a simple
acceptance criterion (accepting all non-worsening solutions). Future work will
consider a third adaptive stage corresponding to the acceptance mechanism.

Acknowledgements This research is partly funded by the Engineering and Physical Sci-
ences Research Council (EPSRC, grant number EP/J017515).

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit
problem. Machine Learning 47(2-3), 235–256 (2002)

2. Baxter, J.: Local optima avoidance in depot location. Journal of the Operational Re-
search Society 32, 815–819 (1981)

3. Burke, E.K., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S., Vazquez-
Rodriguez, J.A., Gendreau, M.: Iterated local search vs. hyper-heuristics: Towards
general-purpose search algorithms. In: IEEE Congress on Evolutionary Computation
(CEC 2010), pp. 3073–3080. Barcelona, Spain (2010)

4. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R.:
Hyper-heuristics: a survey of the state of the art. Journal of the Operational Research
Society (JORS) 64(12), 1695–1724 (2013)

5. Burke, E.K., Gendreau, M., Ochoa, G., Walker, J.D.: Adaptive iterated local search for
cross-domain optimisation. In: Proceedings of the 13th annual conference on Genetic
and evolutionary computation, GECCO ’11, pp. 1987–1994. ACM, New York, NY, USA
(2011)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

519

6. Burke, E.K., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-
heuristics: An emerging direction in modern search technology. In: F. Glover, G. Kochen-
berger (eds.) Handbook of Metaheuristics, pp. 457–474. Kluwer (2003)

7. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Woodward, J.: Handbook of
Metaheuristics, International Series in Operations Research & Management Science,
vol. 146, chap. A Classification of Hyper-heuristic Approaches, pp. 449–468. Springer
(2010). Chapter 15

8. Fialho, A., Costa, L., Schoenauer, M., Sebag, M.: Dynamic multi-armed bandits and
extreme value-based rewards for adaptive operator selection in evolutionary algorithms.
In: Learning and Intelligent Optimization, Lecture Notes in Computer Science, vol.
5851, pp. 176–190. Springer Berlin Heidelberg (2009)

9. Fialho, A., Costa, L.D., Schoenauer, M., Sebag, M.: Extreme value based adaptive
operator selection. In: Parallel Problem Solving from Nature PPSN X, LNCS, vol.
5199, pp. 175–184. Springe (2008)

10. Krasnogor, N., Smith, J.E.: A memetic algorithm with self-adaptive local search: TSP
as a case study. In: Genetic and Evolutionary Computation Conference (GECCO 2000).
Morgan Kaufmann (2000)

11. Lourenco, H.R., Martin, O., Stutzle, T.: Iterated Local Search, pp. 321–353. Kluwer
Academic Publishers,, Norwell, MA (2002)

12. Martin, O., Otto, S.W., Felten, E.W.: Large-step Markov chains for the TSP incorpo-
rating local search heuristics. Operations Research Letters 11(4), 219–224 (1992)

13. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Operations
Research 24(11), 1097–1100 (1997)

14. Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J.A., Walker, J., Gendreau, M.,
Kendall, G., Parkes, A.J., Petrovic, S., Burke, E.K.: Hyflex: a benchmark framework
for cross-domain heuristic search. In: Proceedings of the 12th European conference on
Evolutionary Computation in Combinatorial Optimization, EvoCOP’12, Lecture Notes
in Computer Science, vol. 7245, pp. 136–147. Springer-Verlag (2012)

15. Ong, Y.S., Lim, M.H., Zhu, N., Wong, K.W.: Classification of adaptive memetic algo-
rithms: a comparative study. IEEE Transactions on Systems, Man, and Cybernetics,
Part B 36(1), 141–152 (2006)

16. Özcan, E., Bilgin, B., Korkmaz, E.E.: Hill climbers and mutational heuristics in hy-
perheuristics. In: Proceedings of the 9th International Conference on Parallel Problem
Solving from Nature (PPSN 2006), Lecture Notes in Computer Science, vol. 4193, pp.
202–211. Reykjavik, Iceland (2006)

17. Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Computers
and Operations Research 34, 2403– 2435 (2007)

18. Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking opti-
mization results using the ruin and recreate principle. Journal of Computational Physics
159(2), 139 – 171 (2000)

19. Soria-Alcaraz, J.A., Ochoa, G., Swan, J., Carpio, M., Puga, H., Burke, E.K.: Effec-
tive learning hyper-heuristics for the course timetabling problem. European Journal of
Operational Research 238(1), 77 – 86 (2014)

20. Thierens, D.: An adaptive pursuit strategy for allocating operator probabilities. In:
Proceedings of the 2005 conference on Genetic and evolutionary computation, GECCO
’05, pp. 1539–1546. ACM, New York, NY, USA (2005)

21. Thierens, D.: Adaptive operator selection for iterated local search. In: Second Inter-
national Workshop on Engineering Stochastic Local Search Algorithms (SLS 2009),
Lecture Notes in Computer Science, vol. 5752, pp. 140–144. Springer (2009)

22. Walker, J., Ochoa, G., Gendreau, M., Burke, E.: Vehicle routing and adaptive iterated
local search within the HyFlex hyper-heuristic framework. In: Y. Hamadi, M. Schoe-
nauer (eds.) Learning and Intelligent Optimization, Lecture Notes in Computer Science,
pp. 265–276. Springer Berlin Heidelberg (2012)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

520

Planning the Amusing Hengelo Festival

Gerhard Post · Martin Schoenmaker

1 Introduction

The Amusing Hengelo festival [1] is an annual musical event in which around
4000 singers participate. These singers belong to one or more of the approxi-
mate 100 choirs which usually give two performances: one on a stage outside
and one on a stage inside. This leads to the first part of the planning prob-
lem: assign the choirs to times and stages such that the requirements are met
and the preferences are respected as good as possible. The second part of the
planning problem is scheduling the volunteers that supervise the stages. This
supervision is needed to look after the equipment on the stages and to assist
when problems occur.

The planning problem gets complicated because of the interrelations be-
tween the main objects, choirs and volunteers, that we try to plan. We give a
more detailed description in the next sections.

2 Planning the choirs

2.1 Stages and Choirs

The Amusing Hengelo festival takes place on the first or second Saturday
in June. The festival on June 6, 2015 will be the tenth festival. The public
performances of the choirs between 11 AM and 5 PM form the central part of

Gerhard Post
University of Twente
Department of Applied Mathematics
The Netherlands
E-mail: g.f.post@utwente.nl

Martin Schoenmaker
Amusing Hengelo
The Netherlands

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

521

the festival. Each performance takes 30 minutes allowing 12 performances on
a stage. The stages and choirs have certain properties that have their influence
on the planning.

More specific, a stage has the following properties:

– The public opening time and closing time. These are the times between
which performances on the stage can take place.

– A location either indoor or outdoor. Most choirs give exactly one indoor
and one outdoor performance.

– A capacity, the maximum number of singers that fit on the stage.
– An equipment level, ranging from A (no equipment) to E (full electronic

equipment with piano). There are rules which higher equipped stages can
replace the lower equipped stages.

– The allowed styles. Some stages are dedicated to choirs of certain styles, for
example in the main church only religious and gospel choirs are allowed.

– A quality. Some stages are less attractive than others; it should be avoided
the choirs are planned twice on a less attractive stage.

For the planning problem a choir is described by

– The arrival time and departure time. The performances of the choir should
lie between these two times.

– The number of requested indoor and outdoor performances. The sum is at
most 2.

– A size, the registered number of singers.
– A required equipment level, ranging from A to E. The performances should

take place on stages providing the required equipment level.
– The style, like ‘pop’, ‘religious’, ‘barber shop’.

The properties ‘capacity’, ‘equipment level’ and ‘allowed styles’ of the stage
versus the properties ‘size’, ‘required equipment level’ and ‘style’ lead to a
compatibility matrix for the stage-choir pairs. It is possible to adjust this
compatibility matrix by special stage-choir relations, for example to allow a
choir of size 41 on a stage with capacity 40.

2.2 Additional requirements

The problem above gets complicated because of choir members and directors
(together called ‘musicians’) that are member of more than one choir; in the
datasets there are around 40 of these musicians. Clearly the planning should
be such that these persons are not planned double at any time. Moreover it is
required that two performances of a musician at consecutive times should be
on the same stage (‘travel time constraint’).

For the planning of the choirs we have the following requirements (H - hard,
must be respected) and requests (S - soft, respect as much as possible).

– (H) The performances can only be scheduled on stages that the compati-
bility matrix allows.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

522

– (H) The time of a performance of a choir on a stage must respect the time
windows of the choir and the stage.

– (H) The performances of a choir can not be at consecutive times, neither
at times more than three hours apart.

– (S) The number of requested indoor and outdoor performances should be
respected.

– (S) The time between two performances should be as close as possible to
the preferred time (two hours) between performances.

– (S) A stage of lower quality should be assigned to a choir at most once.
– (S) To retain the audience, stages should be planned without idle times:

once a stage has a performance, it should have performances at all the time
till the last performance.

Our main objective is to plan the number of requested performances for each
choir. Secondary we try to reach good quality choir schedules, as specified by
the soft contraints above. At the same time we try to avoid idle times for
stages.

3 Planning the volunteers

Most stages cannot be left unattended. This means that we need someone to
look after the stage, even if there is no performance. The festival has a list of
around 50 volunteers that are willing to do this. The planning of volunteers is
aligned with the performances, i.e. in blocks of 30 minutes. All blocks together
assigned to a volunteer we call a shift.

Unfortunately the planning of the volunteers is not independent of the
planning of choirs, because the volunteers are in around 20 % of the cases
member of a choir. Like the musicians in Section 2.2 we must avoid double
planning of volunteers at any time, and moreover the travel time constraint
(planned at consecutive times implies same stage) should hold. A volunteer
has the following properties that are important for the planning.

– (H) The experience. The first volunteer at a stage should be an experienced
volunteer.

– (H) The arrival time and departure time. The shift of a volunteer should
lie between these two times.

– (H) The maximum shift length. The shift assigned should not be longer
than this maximum.

– (H) The break rule. If a shift is longer than 3 hours, there should be a break
of one hour after at most 2.5 hours.

– (H) After the break the volunteer must be planned to a different stage.
– (S) If a volunteer is planned to two stages or more, preferable one of the

stages is an inside stage, and another one is an outside stage.
– (H/S) Volunteers can have preferences around stages and choirs.

The main objective here is to plan at all times the required number of volun-
teers to the stages. Secondary we try to reach good quality volunteer schedules,
as specified by the soft contraints above.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

523

4 Typology

Although the problem has some interaction it seems convenient to solve it in
two phases: planning the choirs and planning the volunteers once the choirs
are fixed. Clearly both problems belong to the area of timetabling, [5], and
we can try to categorize these two separate problems. The planning of choirs
resembles school timetabling problems, see [3]. In fact the problem could be
modeled in the XHSTT framework for high school timetabling problems, see
[4]. The requested performance are the events to schedule, and the stages are
the rooms to be used. The resources attached to an event (the choir and its
musicians) should be scheduled without clashes, and we have some preferences
on the rooms to use, and the time between the events of the same choir.

Planning the volunteers is slightly different in nature, and resemble call
center rostering, see for example [2]. The demands are volunteer requirements
for the stages, and we try to fulfill these requirements by assigning shifts to
the volunteers. What is very specific here are the extra limitations on the
availabilities of the volunteers.

5 Methods and results

For both planning problems we developed algorithms that we describe here. In
view of the interrelations between the two parts, first the choirs are planned,
and then the volunteers.

5.1 A capacity check

A check is implemented to get an a priori estimate whether the planning of
choirs is possible or not, and, if not, to give an indication why not. We construct
two networks in which a bipartite graph with arcs reflecting the (choir, stage)-
compatibility matrix is the core. We consider two networks, as we can separate
the inside and outside performances. To the bipartite graph we add a source
node and a sink node. From the source to each choir-node we add an arc with
capacity the number of requested inside, respectively, outside performances.
Similarly we add an arc from each stage-node to the sink node, with capacity
the number times the stage is open for performances. Essentially this network
forgets about the timing of the performances; a maximum flow from source
to sink is an upperbound for the maximum number of performances that can
be planned inside, respectively, outside. The upperbound found here usually
is reached by the algorithms described below.

5.2 Algorithms for planning the choirs

In the construction phase we first plan the musicians that belong to four
or more choirs. These musicians are performing 8 of the 12 times, which in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

524

combination with travel time constraint deserves special attention. In fact the
most suitable inside stage and outside stage are selected, and the choirs of the
musician are planned in two sequences (with a break) on these stages.

Once the most difficult musicians are planned (and fixed) we try to plan
the remaining performances. Since the planning of inside performances is more
tight, we first plan those, and after that all outside performances. The choirs
are sorted by difficulty and planned to the most suitable stage one by one. We
add some randomization in the order of choirs and stages, to be able to repeat
this process several times.

In the practical cases the solution is not satisfactory even after several
attempts of the construction above. For this reason we implemented several
improving algorithms. The first algorithm selects the worst planned choir that
is not tabu and finds the best time-stage combination for one of the requested
performances of the choir. Then the choir is made tabu, indicating that it will
not be considered for some time, and the search restarts.

Usually the tabu-search above will not assign all requested performances.
Therefore in the next phase, we take a complementary point of view and
consider the stages one by one, trying to improve the selected stage’s planning;
accordingly we consider the performances on the other stages fixed. For the
selected stage we try to increase the total number of planned performances
while reducing the idle times. For this we solve a matching problem in a
bipartite graph. One side of the bipartite graph consists for the choirs that
currently are planned on the stage together with the choirs that still can be
planned on this stage, because the requested number of performances is not
reached yet. On the other side of the bipartite graph are the times that this
stage is available for performances. We add an edge from the choir-node to
time-node, if the choir can be planned on the stage at this time, and add costs
to the edges reflecting choir planning costs, and our wish to reduce the idle
times of the stage. We solve the matching problem and keep on iterating over
the stages as long as improvements are found.

5.3 Algorithm for planning the volunteers

Planning the volunteers turned out to be harder than planning the choirs. We
developed several local search procedures, that unfortunately were not able to
plan all required blocks. For this reason we decided to work in two phases: in
the first phase we do local search, yielding a solution with a few percent of
unplanned blocks. In the second phase we fix the most restricted volunteers
to the shift as planned during the local search, and continue to formulate and
solve an ILP model for the remaining volunteers. A direct model (without
partial fixing) is also possible, but the time to obtain a solution with all blocks
planned takes over 10 hours of computation time, even with a commercial
solver. Fixing the easy volunteers reduces this to 10 or 15 minutes.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

525

Year Choirs Stages Volunteers
2012 114 20 51
2013 105 19 26
2014 93 18 46

Table 1 Main characterisitics of the data of 2012, 2013, and 2014

5.4 Results

We developed algorithms for both planning problems and tested them on the
planning data of 2012, 2013, and 2014. The main characteristics of the data
can be found in Table 1. It gives the number of registered choirs, number of
stages, and number of known volunteers at the time of planning; the volunteer
data in 2013 is not complete, since the planning was done by hand.

The algorithms for choir planning have been used in all these years, while
the approach for volunteers planning was tested this year. The version of 2014
revealed that the choir planning is solved very satisfactory, but for volunteer
planning more modeling is needed to describe the acceptable rosters for volun-
teers. The generated roster served as starting point for manual improvements,
and thus already saved hours of work.

References

[1] Amusing Hengelo, http://amusing-hengelo.nl/?l=en.
[2] Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research
153(1): pp. 3–27.

[3] Pillay N (2013) A survey of school timetabling research. Annals of Operations Research,
doi: 10.1007/s10479-013-1321-8.

[4] Post G, Ahmadi S, Daskalaki S, Kingston J, Kyngas J, Nurmi C, Ranson D (2012) An
XML format for benchmarks in high school timetabling. Annals of Operations Research
194(1): pp. 385–397.

[5] Schaerf A (1999) A survey of automated timetabling. Artificial Intelligence Review 13(2):
pp. 87–127.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

526

Investigation into an Evolutionary Algorithm
Hyper-Heuristic for the Nurse Rostering
Problem
Christopher Rae
Nelishia Pillay

School of Mathematics, Statistics and Computer Science
+27 33 2605644

stingrae789@gmail.com; pillayn32@ukzn.ac.za

Abstract: Nurse rostering is a well researched domain with various methods successfully applied to

solving this problem including constraint programming, integer programming, simulated

annealing, tabu search and genetic algorithms. The effectiveness of hyper-heuristics in solving

combinatorial optimization problems of this nature has been illustrated in its application to

educational timetabling and packing problems amongst others. However, there has not been much

research into the use of hyper-heuristics in solving the nurse rostering problem. In particular,

multi-point search methods, namely population based hyper-heuristics such as evolutionary

algorithm hyper-heuristics, have not been investigated for this domain. The research presented in

this paper forms part of a larger initiative aimed at researching the use of evolutionary algorithm

perturbative hyper-heuristics in solving the nurse rostering problem. The paper reports on the

application and evaluation of an evolutionary algorithm selection perturbative hyper-heuristic

(EA-SPHH) in solving the benchmark data set used for the first international nurse rostering

competition.

Keywords: hyper-heuristics, nurse rostering, evolutionary algorithm hyper-

heuristic

1. Introduction

The nurse rostering problem (NRP) is a two-dimensional timetabling problem that

deals with the assignment of nursing staff to shifts across a scheduling period

subject to certain constraints (Burke et al. 2004). The constraints are divided into

hard constraints, constraints which must be fulfilled, and soft constraints, i.e.

those that are desirable. These constraints are set by the hospital's contracts for the

staff and their own personal requests. This problem has been proven to be NP-

hard.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

527

Hyper-heuristics is a problem solving approach, that aims to have a higher

level of generality than traditional optimization methods by operating on a

heuristic space rather than a solution space (Burke et al. 2013). Hyper-heuristics

select or generate low-level heuristics. The low-level heuristics can be

constructive or perturbative. Constructive heuristics are used to construct a

solution while perturbative heuristics improve a candidate solution. This study

focuses on selection perturbative hyper-heuristics. These hyper-heuristics are

categorized as single-point or multi-point.

Previous research on hyper-heuristics for the domain of nurse rostering have

essentially been single point selection perturbative hyper-heuristics. Cowling et al.

(2002) used a choice function selection perturbative hyper-heuristic to solve 52

instances of the nurse rostering problem for a UK hospital. Burke et al. (2003)

employed a selection perturbative hyper-heuristic with a tabu list memory to the

same problem set with an improvement in performance. Bai et al. (2010) apply a

selection perturbative hyper-heuristic hybridized with a genetic algorithm to

solve the same set of problems which produced further improvement in results.

Heuristics are chosen based on dynamic performance and acceptance ratios and

simulated annealing is used for move acceptance. The hyper-heuristics

implemented by Bilgin et al. (2009) to solve the Belgian nurse rostering problem

used random heuristic selection and simulated annealing for move acceptance. In

later work Bilgin et al. (2010) extend this work by hybridizing a selection

perturbative hyper-heuristic and a greedy shuffle approach to solve problems from

the first international nurse rostering competition.

Previous research has examined the use of single point selection perturbative

hyper-heuristics in solving the nurse rostering problem. Given the success of

multi-point hyper-heuristics in other domains such as educational timetable

(Burke et al. 2013), this study investigates the use of a multi-point selection

perturbative hyper-heuristic, namely an evolutionary algorithm hyper-heuristic, in

solving this problem. This study extends the work presented in Rae et al. (2012).

2. Evolutionary Algorithm Selection Perturbative
Hyper-Heuristic (EA-SPHH)

The EA-SPHH employs the generational evolutionary algorithm depicted in

Figure 1.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

528

Create initial population

Repeat

 Evaluate individuals in the population by applying each heuristic in the individual to the

 current solution

 Set best individual’s solution as the current roster

 Select parents using tournament selection

 Apply genetic operators to selected parents and evaluate individuals in population

Until a maximum number of generations has been reached or the solution has converged

An initial population is created, this population is then refined iteratively

following a process of evaluation, selection of parents and use of genetic

operators to create offspring which form the next generation’s population. An

individual in the population is represented by a string with each character

representing a low-level perturbative heuristic. A number of heuristics were

tested and developed based on literature and it was decided to use a set of 13

swap operators. In addition to this a "blank" move is included as a means of

introducing entropy into the system. Each element of the string is randomly

chosen until a string within a maximum and minimum length is created.

The fitness measure of each element of the population is determined by using

the individual to improve a nurse roster created by random allocation of shifts to

nurses. The fitness of the individual is the sum of the hard and soft constraints

violated by the constructed roster. For each generation the best individual’s roster

replaces the initial roster. This is a form of shared memory as we are giving

information to all the individuals in the population. The system and chosen

heuristics avoid incurring hard constraint penalties. This is done by only having as

many shifts as defined by the cover requirement and only allowing nurses to have

single shift days in the roster representation. Tournament selection is used to

choose parents for regeneration which involves application of mutation and

crossover operators. This selection method returns the fittest individual of a

randomly selected number of individuals.

In each generation the population is created by applying the mutation and

crossover operators on the selected parents. The mutation operator selects a

random position in a parent string and changes the heuristic at that point to a

random heuristic from the given set to produce an offspring. The crossover

Figure 1. Generational evolutionary algorithm hyper-heuristic

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

529

operator randomly selects two points in each of the parents. The substrings at

these points are swapped to create two offspring. The fitter offspring is returned

as the result of the operation.

Multithreading was introduced into the algorithm in order to improve runtimes

and simulations were run on a multicore machine using 8 processors of the

available 128 cores per run. Table 1 lists the parameters values used by the

evolutionary algorithm which were determined empirically by performing trial

runs.
 Table 1. Parameter values

Parameter Value
Population Size 100

Initial Chromosome Length 10-25×Cover Size

Tournament size 5

Crossover percentage 70%

Mutation percentage 30%

No. of Runs 10

Maximum no. of Generations 20

4. Results and Discussion

This section discusses the performance of the of the EA-SPHH in solving the

benchmark problems of the first international timetabling competition. This

included 30 sprint instances (10 early, 10 late and 10 hidden) 15 medium

instances (5 early, 5 late and 5 hidden) and 15 long instances (5 early, 5 late and

5 hidden. EA-SPHH was able to produce optimal results for 20 of the sprint

instances. For the remaining sprint problem instances the EA-SPHH produced

solutions that differed by 1 for 4 instances, 2 for 2 instances, 3 for 1 instance, 5 for

2 instances and 6 for 1 instance. The performance of the EA-SPHH was not as

good on the medium and long instance, producing optimal solutions for 7 of the

medium instances and 4 of the long instances. The difference from the optimal

ranged from a minimum of 1 to a maximum of 36. Forty six of 60 instances were

either solved to optimality or within 5 soft constraint violations from the best

known solution. The performance of the hyper-heuristic does not compare with

the state of the art approaches, however this was not expected as this is a first

attempt at employing a multi-point search in solving this problem. The

performance of the EA-SPHH is better than the selection perturbative hyper-

heuristic hybridized with a greedy shuffle implemented by Bilgin et al. (2010) on

the sprint instances and is comparative on the medium and some of the long

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

530

instances, with the hybrid implemented by Bilgin et al. performing better on the

late variant of the long instances. The EA-SPHH was also found to perform much

better than the harmony search employed by Awadallah et al. (2011) in solving

these problems. EA-SPHH was able to match the solution found by Bilgin et al.

(2010) on long_hidden02, the solution found by Burke and Curtois (2010) for the

sprint_late04 instance and the solution found by Nonobe (2010) for the

sprint_hidden01 instance. These results were previously the best known results.

Future research will investigate means of improving the performance of the EA-

SPHH. It is anticipated that one of the reasons for the poor performance on

medium and late instances is the set of low-level heuristics used. The EA-SPHH

essentially uses swap heuristics. The heuristic set does not include ruin and

recreate or mutational and crossover heuristics as used in some of the previous

work on hyper-heuristics. Future research will investigate methods for

investigating the most effective set of heuristics to be used by the EA-SPHH.

Furthermore, too big a set of low-level heuristics will lead to a greater number of

combinations resulting in a larger search space to explore and possibly poor

success rates. In this study a total of 14 low-level heuristics were used.

5. Conclusion and Future Work

The paper is an initial attempt at employing a multi-point selection perturbative

hyper-heuristic to solve the nurse rostering problem. An evolutionary algorithm

selection perturbative hyper-heuristic was implemented and evaluated on the

benchmark set of problems used for the first international nurse rostering

competition. While the hyper-heuristic produced good results for the sprint set of

problems it did not perform as well on the medium and long instances,

particularly on the late problem type. It is hypothesized that this could possibly be

attributed to the set of low-level heuristics used and future work will investigate

methods for determining the set of low-level heuristics to use. Future work will

also investigate the use of a generative perturbative hyper-heuristic to evolve low-

level perturbative heuristics and a hybrid hyper-heuristic combining both selection

and generation perturbative hyper-heuristics to solve this problem.

Acknowledgements. This work is based on the research supported in part by the National

Research Foundation of South Africa for the Grant CSUR13091742778. Any opinion, finding and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

531

conclusion or recommendation expressed in this material is that of the author(s) and the NRF does

not accept any liability in this regard.

7. References

Awadallah, M. A., Khader, A. T., Al-Betar, M. A., & Bolaji, A. L. (2011). Nurse Scheduling

Using Harmony Search. In proceedings of the Sixth International Conference on Bio-Inspired

Computing: Theories and Applications, 58–63.

 Bai, R., Burke, E. K., Kendall, G., Li, J. & McCollum, B. (2010) A Hybrid Evolutionary

Approach to the Nurse Rostering Problem. IEEE Transactions on Evolutionary Computation,

14(4), 580–590.

Burke, E. K., & Curtois, T. (2010) An Ejection Chain Method and a Branch and Price Algorithm

Applied To The Instances Of The First International Nurse Rostering Competition. Technical

Report, School of Computer Science, University of Nottingham.

Bilgin, B., De Causmaecker, P. & Vanden Berghe, G. (2009) A Hyper-Heuristic Approach to

Belgian Nurse Rostering. In proceedings of the Multidisciplinary International Conference on

Scheduling: Theory and Applications (MISTA 2009), pp. 683-689.

Bilgin, B., Demeester, P., Misir, M., Vancroonenburg, W., Vanden Berghe, G. & Wauters, T.

(2010) A Hyper-Heuristic Combined with a Greedy Shuffle Approach to the Nurse Rostering

Problem. Online. https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/abstracts/ l3.pdf.

Burke, E. K., De Causmaecker, P., Vanden Berghe, G. & Van Landeghem, H. (2004) The State of

the Art of Nurse Rostering. Journal of Scheduling, 7(6), 441–499.

Burke, E. & Soubeiga, E. (2003) Scheduling Nurses Using a Tabu-Search Hyper-Heuristic. In

Proceedings of First Multidisciplinary International Scheduling Conference: Theory and

Applications, pp. 197-218.

Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E. & Qu, R. (2013) Hyper-Heuristics: A

Survey of the State of the Art. Journal of the Operational Research Society, 1-30.

Cowling, P., Kendall, G., Soubeiga, E. (2002) Hyperheuristics : A Robust Optimisation Method

Applied to Nurse Scheduling. Parallel Problem Solving from Nature — PPSN VII Lecture

Notes in Computer Science, 2439, 851–860.

Haspelagh, S., De Causmaecker, P., Stolevik, M., Schaerf, A. (2012) The First International

Competition on Nurse Rostering 2010. Annals of Operations Research. DOI: 10.1007/s10479-

012-1062-0.

Nonobe, K. (2010) INRC2010 : An Approach Using a General Constraint Optimization Solver.

https://www.kuleuven-kulak.be/~u0041139/nrpcompetition/abstracts/m3.pdf.

Rae, C., Pillay, N. (2012) A Preliminary Study into the Use of an Evolutionary Algorithm Hyper-

Heuristic to Solve the Nurse Rostering Problem, in Proceedings of the 4th World Congress on

Nature and Biologically Inspired Computing (NaBIC 2012), pp. 156-161.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

532

Models for the Shift Design Problem

Troels Martin Range · Richard Martin

Lusby · Jesper Larsen

Abstract Rostering and staff scheduling problems often have a predefined set of
shifts to which staff members can be allocated. These shifts are typically based
on a small set of shift types, where each shift type is characterized by the period
of the day the shift covers. The number of people assigned to a shift type reflects
to some extent the demand for staff during the period it covers. We address the
issue of whether or not we have the correct set of shift types given that we know
the required staffing levels over a single day or a set of days.

The Shift Design Problem (SDP) is the problem of identifying the set of shift
types prior to the solution of rostering or staff scheduling problems. This should be
done in such a way that the demand for staff in each period of the day is matched
as closely as possible, but with restrictions on the number of the staff used each
day as well as the number of shift types used.

The SDP is a variant of the shift scheduling problem where – among other con-
straints – the number of shift types used is upper bounded. Shift scheduling has
been considered by Dantzig (1954), where undercovering is prohibited and over-
covering is free. Aykin (1996) extends this with breaks on the shifts and Mehrotra
et al. (2000) develops a Branch-and-Price method for shift scheduling. The SDP
is solved heuristically by Di Gaspero et al. (2013).

The motivation for the problem is based on the study by Lusby et al. (2012),
who discuss a rostering problem for ground crew at airports. At an airport the
required staffing level over a day is correlated with the arrival times of incoming
flights and departure times of outgoing flights as well as the number of passen-
gers on the flights. This staffing level demand can be forecast, yielding a demand

Troels Martin Range
Department of Business and Economics, COHERE, University of Southern Denmark, Cam-
pusvej 55, 5230 Odense M, Denmark, Tel.: +45 6550 3685, E-mail: tra@sam.sdu.dk

Richard Martin Lusby
Department of Management Engineering, Technical University of Denmark, Produktionstorvet,
building 426, 2800 Kgs. Lyngby, Denmark, Tel.: +45 4525 3084, E-mail: rmlu@dtu.dk

Jesper Larsen
Department of Management Engineering, Technical University of Denmark, Produktionstorvet,
building 426, 2800 Kgs. Lyngby, Denmark, Tel.: +45 4525 3385, E-mail: jesla@dtu.dk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

533

curve for each day of the week. With the exception of holiday seasons, it can be
observed that this demand is cyclic with a periodicity of one week. Hence we limit
our attention to at most seven different demand curves. Based on these demand
curves Lusby et al. (2012) show that it is better to let the rostering determine the
number of persons used on each shift type than fixing this number prior to solving
the rostering problem. However, the authors only consider a small number of pre-
determined shift types; here we are interested in whether or not this combination
of shift types is the best combination.

Let D be the set of days. Suppose that a day is discretized into periods T =
{1, . . . , T}, each covering an interval of time, It, such that the day is partitioned by
these intervals. Associated with each day d ∈ D and each period t ∈ T is a known
required staffing level δdt ≥ 0. Additionally, a set of possible shifts S is given, and
each shift s ∈ S covers a subset of the periods Ps ⊆ T . The staff demand for any
period t ∈ T on a given day d ∈ D does not need to be strictly satisfied; however,
for each unit of under cover (over cover) a penalty cost udt (odt) is incurred.

A solution to the SDP is hence a selection of a subset of shift types S ⊆ S and
for each s ∈ S an assignment of staff nds ≥ 0 to each day d ∈ D. This selection has
to be done such that |S| ≤ K and

∑
s∈S nds ≤ N for each day d ∈ D. That is, the

number of shifts selected is no larger than a pre-specified number K, and no more
than N staff members are assigned each day. From such a solution the amount of
under cover and over cover in each period of each day can easily be determined.
The constraint on the number of shift types used makes the problem difficult as
a selection of shifts which enables a close match of the demand for one day may
not be able to match the demand of another day well.

We suggest a mixed integer linear programming (MILP) model for the problem.
The model uses two types of variables; one indicating whether or not a shift type
is used and one counting the number of persons used on a given shift. These are
coupled by big-M constraints – one for each shift type – making the resulting
LP-relaxation weak. For |D| = 1 the model can be solved to optimality using a
commercial solver, while it becomes harder as |D| increases.

We discuss two approaches to solve the problem. The first approach is a column
generation approach in which each column corresponds to a selection of shift types
(together with their respective staffing levels) for each day. The master problem
then makes a selection of the columns to match the demand on each day. The
pricing problem disregards the demand covering constraints and thereby becomes
a multidimensional cardinality constrained knapsack problem.

The MILP model exhibits a clear block angular structure where the only com-
mon constraint is the number of shift types used and each block corresponds to
assigning a staffing level to shifts on a particular day. This lends itself to Benders
decomposition where the master problem determines the set S, and the subprob-
lems determine nds for each day d ∈ D and s ∈ S. The subproblems generate
optimality cuts for the master problem.

We test and discuss our approach in relation to two airport cases. In this
discussion we will point out the limitations as well as possible extensions of our
models.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

534

References

Aykin, T. (1996). Optimal shift scheduling with multiple break windows. Management Science,
42(4):591–602.

Dantzig, G. B. (1954). A comment on edie’s ”traffic delays at toll booths”. Operations Research,
2(3):339–341.

Di Gaspero, L., Grtner, J., Musliu, N., Schaerf, A., Schafhauser, W., and Slany, W. (2013). Auto-
mated shift design and break scheduling. In Uyar, A. S., Ozcan, E., and Urquhart, N., editors,
Automated Scheduling and Planning, volume 505 of Studies in Computational Intelligence,
pages 109–127. Springer Berlin Heidelberg.

Lusby, R., Dohn, A., Range, T. M., and Larsen, J. (2012). A column generation-based heuristic for
rostering with work patterns. Journal of the Operational Research Society, 63:261–277.

Mehrotra, A., Murphy, K. E., and Trick, M. A. (2000). Optimal shift scheduling: A branch-and-price
approach. Naval Research Logistics (NRL), 47(3):185–200.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

535

Course Timetabling Using Graph Coloring
and A.I. Techniques
Jordan Rickman and Jay Yellen
Department of Mathematics and Computer Science
Rollins College
1000 Holt Ave.
Winter Park, FL, 32789 USA
jrickman@rollins.edu jyellen@rollins.edu

We present a dual-objective course-timetabling system designed to construct course schedules for

the Science Division at Rollins College. Our work builds on the system described in [Wehrer and

Yellen (2013)], which models the timetabling problem as a vertex-coloring problem in a weighted

graph. The weighted graph model allows the system to incorporate both hard and soft constraints

by assigning a 2-component weight to each edge that reflects the undesirability of assigning

various pairs of timeslots to its endpoints. An earlier version, using single-component penalty

weights, was initially developed in [Kiaer and Yellen (1992)]. The two objectives of our system

are: (1) minimize the number and severity of conflicts resulting from the schedule; and (2) create

compact schedules for students and faculty. Accordingly, the two edge-weight components are: the

conflict penalty, incurred when the endpoints are assigned overlapping timeslots (colors); and the

proximity penalty, incurred when the endpoints are assigned timeslots with a large gap between

them on the same day. The overall objective is to minimize the total penalty of the completed

graph coloring.

Wehrer and Yellen used a one-pass algorithm to color the graph. Heuristics adapted from

[Carrington, Pham, et al (2007)] were used to select the most “troublesome” uncolored vertex (a

troublesome vertex is one that is likely to create problems if its coloring is deferred), and then to

select the best color for that vertex. The process repeats until all vertices are colored. Vertex-

selection and color-selection both used linear combinations of a few “primitive” heuristics, as

introduced in [Burke, Pham, et al (2008)].

Our system uses a new algorithm that incorporates artificial intelligence techniques via a search-

tree representation. The root node is the original uncolored weighted graph, and the nodes at level

k correspond to the (partial) colorings for which k of the vertices have been colored. Each child of

a node is the result of assigning a color to an uncolored vertex (see Figure 1). The leaf nodes of the

search tree represent complete colorings, and our objective is to find a leaf node of minimum total

penalty. Our system performs a best-first search by maintaining a priority queue to determine

which nodes to expand. Each node generated is placed in the priority queue according to how

“promising” it is.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

536

Figure 1: The search tree of 3-colorings of a 4-vertex graph.

Promising nodes are those that appear likely to be the ancestors of low-cost complete colorings. A

heuristic evaluation of how promising a node is uses various properties of the partial coloring,

including its total penalty and its relation to the rest of the (uncolored) graph. The most promising

node is removed from the queue and expanded (i.e., its children are generated) in an iterative

process that ends with a complete coloring. The priority queue enables backtracking: if the

children of a node have high penalties, they will move towards the back of the queue, and the

algorithm will attempt a different branch of the tree. As the number of vertices in the graph

increases, the size of the search tree grows exponentially, making a search of the entire solution

space intractable. Therefore, we restrict the number of children generated when expanding a node

(i.e., the branching factor). We do so by adapting the vertex- and color-selection heuristics to

generate a small subset of promising children.

For the purposes of testing, we have developed software that randomly generates course-

timetabling problems using a seed problem. The procedure makes random changes to the seed

problem, via genetic techniques of mutation and recombination, resulting in a set of problems with

similar characteristics. For our seed problem, we use the set of Rollins Science Division courses

offered in Fall 2011. We evaluate the effectiveness of various branching and priority-queue

strategies by testing them on these randomly generated problems. Currently, we manually adjust

various parameters for the branching strategy and the priority queue’s heuristic evaluation

function, based on their performance on these problems. Our framework will eventually enable us

to apply machine learning to adjust these parameters.

Preliminary results on the Fall 2011 problem and 10 randomly generated problems show that even

with some simple priority functions and a small branching factor, our search-tree approach

produces timetables slightly better to those produced by the old one-pass algorithm. Table 1

compares the performance of the old one-pass algorithm to four different versions of our new

algorithm (labeled PQ1, …, PQ4). For the Fall 2011 problem, the table displays the total penalty

and its two primary components, conflict penalty and proximity penalty. For the 10 random

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

537

problems, the values are averaged over the 10 resulting timetables. As we refine our priority

function, we expect that our algorithm’s performance will continue to improve.

Table 1: Comparison of One-Pass to Priority-Queue Algorithm

Algorithm Fall 2011 Averages on 10 Random Problems

 Total
Penalty

Conflict
Penalty

Proximity
Penalty

Total
Penalty

Conflict
Penalty

Proximity
Penalty

One-Pass 7366 83 5291 16364 456 4754

PQ1 7224 100 4724 11601 278 4646

PQ2 7338 85 5213 12594 310 4654

PQ3 7322 99 4847 13974 364 4784

PQ4 7345 86 5195 12149 297 4714

Keywords Graph Coloring, Heuristics, Timetabling, Weighted Graph, Artificial

Intelligence, Genetic Algorithms, Search Algorithms

References

[Burke, Pham, et al (2008)] Burke, E.K., Pham, N., Qu, R., and Yellen, J., Linear Combinations of

Heuristics for Examination Timetabling, Annals of Operations Research, Vol. 194, No. 1 (2012)

89-109.

[Carrington, Pham, et al (2007)] Carrington, J.R., Pham, N., Qu, R., and Yellen, J., An Enhanced

Weighted Graph Model for Examination/Course Timetabling, Proceedings of 26th Workshop of

the UK Planning and Scheduling (2007) 9-15.

[Kiaer and Yellen (1992)] Kiaer, L., and Yellen, J., Weighted Graphs and University Timetabling,

Computers and Operations Research Vol. 19, No. 1 (1992), 59-67.

[Wehrer and Yellen (2013)] Wehrer, A., and Yellen, J., The Design and Implementation of an

Interactive Course-Timetabling System, Annals of Operations Research, May 2013.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

538

Set Partitioning Methods for Robust Scheduling: an
Application to Operating Theatres Optimisation

Elizabeth Rowse · Paul Harper · Rhyd
Lewis · Jonathan Thompson

Robust optimisation techniques and simulation models have been used with
column generation methods within the framework of a set partitioning prob-
lem for the construction of a weekly operating theatre timetable, the Master
Surgery Schedule (MSS). The model takes into account the preferences of sur-
gical specialties for weekly theatre sessions, the stochastic nature of surgical
demand and the availability of beds on wards for post-operative recovery.

Operating theatres are very expensive and resource-intensive facilities within
modern hospitals; the efficiency of which has a significant impact on patient
throughput and the patient experience. Operating theatres experience high
demand and can also be seen as a driver of demand on wards and other de-
partments in a hospital as surgical patients will often require other services
during post-operative recovery.

Hospitals in the UK are increasingly facing the problem of a large propor-
tion of elective operations being cancelled due to the unavailability of beds on
hospital wards for post-operative recovery. The availability of post-operative
beds is critical to the scheduling of surgical procedures and the throughput of
patients in a hospital. The utilisation of the operating theatre schedule and the
impact that it has on the demand for beds on hospital wards is investigated
in order to better understand this important relationship. The insights gained
from this relationship will aid the construction of a robust operating theatre
schedule.

A large teaching hospital in Wales, UK, in which over 25,000 surgical op-
erations are performed annually, is used as a case study. Around 18

A large amount of work has been published in both Operational Research
and medical journals on the challenging problem of constructing a weekly
MSS timetable which assigns surgical specialties to operating theatre sessions
whilst taking account a range of restrictions on resources. These resources can
be surgeons, skilled nurses, specialist theatre equipment and the operating

Cardiff University, UK
E-mail: {rowseel, harper, lewisr9, thompsonjm1}@cardiff.ac.uk

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

539

theatres themselves. Other aspects to consider while constructing the MSS
are the stochastic nature of the demand from hospital waiting lists and that of
different surgical procedures; this includes both the occurrence of emergency
patients and the duration of the procedures. The process of creating a theatre
schedule can therefore be quite arduous and time-consuming, as often there
is no systematic approach employed in hospitals that exploits Operational
Research techniques.

The work to be presented includes the constraints of post-operative re-
source requirements, primarily beds on hospital wards, when constructing a
practicable and efficient MSS. A set partitioning based optimisation model
is used to assign specialties to operating theatres to construct a MSS, and a
novel extension to the formulation is used to incorporate constraints on the
demand for beds. Simulation of the resulting MSS is then performed in order
to measure how robust the MSS is when different aspects of the uncertainty
is realised.

A robust optimisation approach to the construction of the MSS is then
developed and compared with the results from the nominal formulation in
terms of the MSS satisfying the post-operative bed constraints. Initial results
are presented to highlight the potential of these approaches to constructing
the MSS.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

540

Master State Examination Timetabling

Hana Rudová · Jǐŕı Rousek · Radoslav
Štefánik

1 Problem Statement

Master state exams take place at the Faculty of Informatics two times a year.
Timetabling of the Master state exams consists of two main tasks: commissions
with three examiners are created and each student is assigned to a time slot
and to a commission. There is only one student assigned to each commission
at any time. Master state exams typically take a week, there are about four
commissions a day and about eight students for one commission. The timetable
of each commission is defined by a sequence of their students split by a lunch
break. Each student has his/her own supervisor and referee who may also serve
as examiners. Certainly all teachers (examiners, supervisors and referees) must
be available at the scheduled time of the exam. A fair assignment of examiners
to commissions with respect to the number of their assigned commissions is
necessary.

This base problem is very close to the Bachelor state examination time-
tabling we have described in [Kochaniková and Rudová(2013)]. The main dif-
ference lies in a stronger emphasis on fields of study. Each student has given
its field of study and each examiner is associated with an appropriateness fac-
tor for each field of study (0–6 corresponding to required, strongly preferred,
preferred, neutral, discouraged, strongly discouraged and prohibited). The pri-
mary goal of timetabling is the assignment of students to commissions with
a good appropriateness factor. Actually we minimize the function

∑
s∈students

∑
e∈commission(s)

w(e, f)2

H. Rudová · J. Rousek · R. Štefánik
Faculty of Informatics, Masaryk University
Botanická 68a, Brno, Czech Republic
E-mail: hanka@fi.muni.cz

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

541

where w(e, f) is a function giving the appropriateness factor of the examiner e
for the field of study f . The sum of squares is applied to discourage the use of
higher values of appropriateness factor and allow for its fairer distribution.

There are two other optimization criteria related with the supervisors and
reviewers. Since some of them may be the members of commissions, it is de-
sirable to minimize the number of students with supervisor or reviewer not
being the member of his/her assigned commission. Second, we want to create
sequences of students for each supervisor and/or referee such that they may
appear at the state exams in the minimal number of these sequences.

2 Solution Approaches

The first author of this paper has been solving this problem manually with the
help of the supportive graphical user interface [Petr(2007)] for six semesters.
We have been developing two different approaches to solve the described prob-
lem. The first approach is based on the CPSolver which was applied in the
International Timetabling Competition 2007 (ITC2007) where it was among
finalists for all three tracks and it won two of them [Müller(2009)]. Our con-
straint model is defined with the help of hard constraints which must be sat-
isfied and with the help of soft constraints to handle the optimization criteria
described. The current search procedure is similar to the search in the solvers
for the competition problems: The iterative forward search is applied to con-
struct the solution where commissions with their students are created one by
one, subsequent local search iteratively improves the solution.

The second approach constructively creates commissions based on the num-
ber of students and on the properties of particular fields of study and the ap-
propriateness factor of the examiners. In the next step, students are assigned to
commissions by another constructive approach with the help of various order-
ing heuristics based on the appropriateness factor or the number of students
for examiners (being their supervisors or referees). Subsequent local search
swaps students using simulated annealing. Students with the worst evaluation
given by the weighted sum of optimization criteria are exchanged with other
students (in the same commission or in a commission where their supervisor
or their reviewer is the examiner, etc.). Also commission members can be ex-
changed, added or removed while keeping their fair allocation. Random local
changes removing parts of the solution are also applied to escape from local
minimum.

3 Conclusion

Both approaches were applied to solve experimental problems of three semes-
ters. The base problem described here is rather complicated by various excep-
tions and additional constraints which must be handled in the real life. The
second approach based on the local search was applied in practice to solve the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

542

Spring 2014 problem since it was able to handle all features of the real-life
problem. Still manual modifications of the generated solution were necessary
to remove some troublesome hard constraint violations. Both automated ap-
proaches as well as manual solutions violate some of the hard constraints.
Further study of problem characteristics and problem definition will be di-
rected to provide a proper constraint model and data definition such that the
generated solution could be easily applied in practice. The ultimate goal of
this work is an application of one of the solvers to the real-life problem solved
each semester.

Acknowledgements This work is supported by the Grant Agency of Czech Republic under
the contract P202/12/0306.

References

[Kochaniková and Rudová(2013)] Kochaniková B, Rudová H (2013) Student scheduling for
bachelor state examinations. In: Proceedings of the 6th Multidisciplinary International
Scheduling Conference – MISTA 2013, pp 762–766

[Müller(2009)] Müller T (2009) ITC2007 solver description: a hybrid approach. Annals of
Operations Research 127:429–446

[Petr(2007)] Petr R (2007) Small computer aided system for defences for final thesis and
exams (in Czech). Bachelor Thesis, Masaryk University, Faculty of Informatics

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

543

N. R. Sabar • G. Kendall

The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih Selangor,

Malaysia.

E-mail: {Nasser.Sabar, Graham.Kendall}@nottingham.edu.my

M. Ayob

Data Mining and Optimization Research Group (DMO), Centre for Artificial Intelligent

Technology (CAIT), Universiti Kebangsaan Malaysia, 43600 UKM Bangi Selangor, Malaysia.

E-mail: masri@ftsm.ukm.my.

An Exponential Monte-Carlo Local Search Algorithm for the Berth

Allocation Problem

Nasser R. Sabar • Masri Ayob • Graham Kendall

1. Introduction

Over the years, the demand for maritime transportation has rapidly increased [1], [2]. This

usually leads to an increasing in competition among different ports in providing efficient

services. Port managers face significant challenges in efficiently utilizing the given resources

to provide a cost-effective service [1]. Among many optimization and decision making

problems in the port management system, the berth allocation problem (BAP) is considered as

one of the most challenging and it has a critical role in the ports effectiveness and

competitiveness. The BAP seeks an allocation for a given set of vessels berthing positions and

berthing times. The main objective of the BAP is to minimize the total waiting time for all

vessels in a port [2].

BAP is known to be an NP-hard optimization problem [1], [2], [3]. Thus, due to the

exponential growth of the computational time as instance increases, exact methods are usually

only applicable for the small-sized instances; despite being able offer optimal solutions if

given enough computational resource [3]. Consequently, meta-heuristic algorithms are widely

adopted by the researchers to deal with BAP, as they can often return a good quality solution

within a reasonable computational time. Examples of meta-heuristic algorithms are: tabu

search [2], clustering search [4] and particle swarm optimization [5]. In this work, we propose

an Exponential Monte-Carlo with Counter (EMCQ) local search algorithm for the BAP.

EMCQ is a variant of simulated annealing, that accepts worse solutions in order to escape from

local optima using a non-monotonic acceptance criterion [6], [7]. In addition, to enhance the

effectiveness of the proposed EMCQ, we utilize multi-neighborhood operators to effectively

explore the search space and also deal with different instance characteristics. The proposed

algorithm has been tested on BAP benchmark instances that were used by other researchers

and compared with the best known results in the scientific literature [2].

2. Problem description

The BAP has been categorized into two types, based on the berth type and the vessels arrival

time [1]. The berth is called a discrete berth if the quay is divided into a set of sections (berths)

and a continuous berth if the quay is not divided. The vessel’s arrival time is dynamic if the

vessels can arrive at any time over the planning horizon, and static if all vessels have arrived at

the port before the berth planning starts. In this work, we deal with the BAP that has discrete

berths and dynamic arrival times [1]. Given a set of berths and a set of vessels, each vessel is

associated with an arrival time, priority and a handling time. Some vessels can be assigned to

any berths while other can only be assigned to a subset of berths. The handling time of a vessel

is different from one berth to another.

More formally, assign for each vessel a berth and a berthing time on the selected berth while

ensuring that each vessel is assigned to exactly one berth and there is no more than one vessel

assigned to the same berth at the same time. The overall goal (objective function) is to

minimize the total waiting time of all vessels which is calculated as follows [2], [3], [4]:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

544

min k k k

i i i i iji n k m
j n

v T a t x

 (1)

where

- n : number of vessels

- m : number of berths

- vi : the priority of vessel i

- T
k
i : the berting time of a vessel i at berth k.

- ai : the arrival time of vessel i.

- ti
k
: the handling time of vessel i at berth k.

- xij
k
: descion variable, xij

k
=

1 if vessel j is serviced by berth k after the vessel i.

3. The proposed algorithm

We propose a local search algorithm for the BAP that follows the general framework of most

local search algorithms. That is, generates an initial solution and try to improve it. In the

following subsections, we describe the initial solution generation method and the proposed

improvement algorithm.

3.1 Initial solution generation method

The initial solution is generated in a random manner. For each vessel, determine the number of

the available and feasible berths. Next, randomly assign vessel to a berth from the determined

set of berths. If the selected berth for the current vessel is empty, the berthing time of this

vessel is the same as the vessel arrival time. If selected berth has some vessels, add the current

vessel, sort the assigned vessels based on their arrival time and assign to each one a berthing

time based on the current vessels order. This process is repeated until all vessels have been

allocated. Calculate the quality (objective function) of the generated initial solution using

Equation (1).

3.2 The improvement algorithm

In this work, we utilize the Exponential Monte-Carlo with counter (EMCQ) local search

algorithm to further improves the generated initial solution [6], [8]. The EMCQ search strategy

is similar to simulated annealing [6], which also accepts worse solutions in order to escape

from a local optima but utilizes a different mechanism. EMCQ starts with an initial solution

and iteratively modifies it, seeking for a better solution, for a certain number of iterations. The

initial solution is modified to generate a neighborhood solution using a neighborhood operator.

Then, the quality of the neighborhood solution is calculated using Equation (1) and compared

with the initial one. If the quality of the neighborhood solution is better than the initial

solution, it will replace the initial solution. Otherwise, the solution might be accepted based on

EMCQ acceptance criterion. In EMCQ, the probability of accepting worse solution is

calculated as follows: p= e
-Θ/λ

where Θ=δ*t, λ=q, δ is the difference between the objective

values of the initial and neighborhood solutions, t is an iteration counter, and q is a control

parameter that represents consecutive non-improving iterations. The q parameter controls the

acceptance of worse solutions which controls the diversification and intensification process. In

this work, the initial value of q is set to 1 (q=1) and it will be increased by one (q=q+1) after a

certain number of a consecutive non-improving iterations [9], [10]. Once a worse solution is

accepted, q will be reset to 1. In EMCQ, the probability of accepting a worse solution

decreases as the number of iterations t, increases. However, if there is no improvement for a

certain number of consecutive iterations, then the probability of accepting a worse solution will

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

545

increase according to the quality of the generated neighborhood solution, q and t. The pseudo-

code of the EMCQ is presented in Figure 1 [6], [11].

To improve the effectiveness of the EMCQ in dealing with various instances and also to cope

with search landscape changes, we utilize three different neighbourhood operators; where at

each iteration of EMCQ a random neighbourhood operator is selected. The utilized

neighbourhood operators for the BAP are:

- Nop1: select one vessel at random and move it to the least cost berth (least handling
time).

- Nop2: randomly select two vessels and swap their berths if feasible.

- Nop3: select the highest cost vessel and move it to another feasible berth.

Generate initial solution, Sol;

Calculate the objective function for Sol, f(Sol);

Set best solution, Solbest← Sol; f (Solbest) ← f (Sol);

Set maximum consecutive number of non-improvement, Max_no-improvement;

Set no-improvement counter ← 0;

Set q = 1; current iteration counter, t = 0, Max_no_iteration;

 Do while (t < Max_no_iteration)

Generate a neighborhood solution, Sol*

Calculate the objective function of neighborhood solution, f(Sol*);

if (f (Sol*) < f(Sol)) // better solution in term of the objective value

Sol ← Sol*;

f(Sol) ← f (Sol*);

q = 1;

no-improvement = 0;

if (f (Sol*) < f (Solbest)) // update the best solution

Solbest← Sol*;

f (Solbest)← f (Sol*);

 end if

 else // accept worse solutions based on the acceptance probability

Calculate δ = f(Sol*)-f(Sol);

Generate a random number RandNum in [0,1];

if (RandNum ≤ e-δ*t/q)

Sol ← Sol*;

f (Sol)← f (Sol*);

q = 1;

no-improvement = 0;

 else

no-improvement++;

if (no-improvement = Max_no-improvement)

q++;

no-improvement = 0;

end else

 t++;

end while;

Return the best solution, Solbest and f(Solbest)

Figure 1. The pseudo-code of the EMCQ

3.3 Experiments and results

EMCQ was tested on BAP benchmark instances that have been introduced in [2] and widely

used by other researchers. The benchmark has 30 different instances (denoted as i1 to i30);

each instance contains 30 vessels and 13 berths. We run EMCQ 31 times for each instance.

The EMCQ parameters were set based on a preliminary test as follows: t=1, q=1,

Max_no_iteration =1,000,000 and Max_no-improvement =1,000. The results obtained by

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

546

EMCQ (out of 31 runs) and the current state of the art algorithms reported in the literature are

presented in Table 1. For each algorithm, we report, for each instance, the best obtained results

(best objective value) and the computational time (seconds). In the table, the third column

(Opt.) represents the optimal value for each instance [3] and last row represents the average

(Avg.). The best results obtained are shown in bold. In this work, we compare the effectiveness

of EMCQ with the following algorithms that have obtained the best known results as

represented in the scientific literature:

- Generalized set partition programming (GSPP) [3].

- Tabu search (TS) algorithm [2].

- Column generation (CG) algorithm [12].

- Clustering search (CS) [4].

- Particle swarm optimization (PSO) [5].

The results in Table 1 illustrates that, EMCQ obtained the optimal values for all tested

instances, i.e., the best results of the EMCQ are the same as those produced by the GSPP as

well as CS and PSO on all tested instances. EMCQ outperforms TS on 18 and CG on 4

instances, while producing the same results as TS and CG on 18 and 24 out of 30 instances,

respectively. Considering the computational time, EMCQ outperforms other algorithms on all

tested instances (see Table 1) and the average computational time of EMCQ is relatively small

(3.82, see last row in Table 1). Overall, the EMCQ has a fewer parameters that need to be

tuned in advance compared to other algorithms which indicates that EMCQ is an effective and

efficient algorithm for the BAP.

Table 1 The results of EMCQ compared to the state of the art methods

Inst.
EMCQ GSPP TS CG CS PSO

Best Time Opt. Time Best Best Time Best Time Best Time

i01 1409 6.11 1409 17.92 1415 1409 74.61 1409 12.47 1409 11.11

i02 1261 5.2 1261 15.77 1263 1261 60.75 1261 12.59 1261 7.89

i03 1129 4.3 1129 13.54 1139 1129 135.45 1129 12.64 1129 7.48

i04 1302 6.03 1302 14.48 1303 1302 110.17 1302 12.59 1302 6.03

i05 1207 3.11 1207 17.21 1208 1207 124.7 1207 12.68 1207 5.84

i06 1261 4.32 1261 13.85 1262 1261 78.34 1261 12.56 1261 7.67

i07 1279 3.07 1279 14.6 1279 1279 114.2 1279 12.63 1279 7.5

i08 1299 4.65 1299 14.21 1299 1299 57.06 1299 12.57 1299 9.94

i09 1444 2.72 1444 16.51 1444 1444 96.47 1444 12.58 1444 4.25

i10 1213 2.01 1213 14.16 1213 1213 99.41 1213 12.61 1213 5.2

i11 1368 4.11 1368 14.13 1378 1369 99.34 1368 12.58 1368 10.52

i12 1325 6.52 1325 15.6 1325 1325 80.69 1325 12.56 1325 12.92

i13 1360 6.53 1360 13.87 1360 1360 89.94 1360 12.61 1360 11.97

i14 1233 3.47 1233 15.6 1233 1233 73.95 1233 12.67 1233 7.11

i15 1295 2.96 1295 13.52 1295 1295 74.19 1295 13.8 1295 8.3

i16 1364 4.11 1364 13.68 1375 1365 170.36 1364 14.46 1364 8.48

i17 1283 2.13 1283 13.37 1283 1283 46.58 1283 13.73 1283 5.66

i18 1345 3.18 1345 13.51 1346 1345 84.02 1345 12.72 1345 8.02

i19 1367 4.06 1367 14.59 1370 1367 123.19 1367 13.39 1367 11.42

i20 1328 5.13 1328 16.64 1328 1328 82.3 1328 12.82 1328 12.28

i21 1341 3.06 1341 13.37 1346 1341 108.08 1341 12.68 1341 7.11

i22 1326 3.82 1326 15.24 1332 1326 105.38 1326 12.62 1326 7.94

i23 1266 3.08 1266 13.65 1266 1266 43.72 1266 12.62 1266 7.25

i24 1260 1.98 1260 15.58 1261 1260 78.91 1260 12.64 1260 5.67

i25 1376 3.07 1376 15.8 1379 1376 96.58 1376 12.62 1376 7.13

i26 1318 3.08 1318 15.38 1330 1318 101.11 1318 12.62 1318 7.44

i27 1261 2.06 1261 15.52 1261 1261 82.86 1261 12.64 1261 6.16

i28 1359 4.84 1359 16.22 1365 1360 52.91 1359 12.71 1359 11.52

i29 1280 3.07 1280 15.3 1282 1280 203.36 1280 12.62 1280 8.11

i30 1344 2.86 1344 16.52 1351 1344 71.02 1344 12.58 1344 7.13

Avg 1306.8 3.82 1306.8 14.98 1309.7 1306.9 93.99 1306.8 12.79 1306.8 8.17

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

547

4. Conclusion

In this work, we have proposed an Exponential Monte-Carlo with Counter (EMCQ) local

search algorithm for the berth allocation problem. The proposed algorithm starts with an initial

solution and iteratively improves it for a certain number of iterations. At each iteration, EMCQ

uses a neighborhood operator to generate a neighborhood solution. Improving neighborhood

solutions are always accepted, while worse solutions are adaptively accepted based on the

quality of the incumbent solution, the search time and the number of consecutive non-

improving iterations. To improve the effectiveness of the proposed EMCQ, we utilized three

different neighbourhood operators to deal with a different instance characteristics. The

proposed algorithm has been tested on berth allocation problem benchmark instances that have

been used by other researchers in the literature. Results demonstrated that the proposed

algorithm is very promising and can be used to produce good quality solutions compared to

state of art methods.

References

[1] C. Bierwirth and F. Meisel, "A survey of berth allocation and quay crane scheduling

problems in container terminals," European Journal of Operational Research, vol. 202,

pp. 615-627, 2010.

[2] J.-F. Cordeau, G. Laporte, P. Legato, and L. Moccia, "Models and tabu search heuristics

for the berth-allocation problem," Transportation science, vol. 39, pp. 526-538, 2005.

[3] K. Buhrkal, S. Zuglian, S. Ropke, J. Larsen, and R. Lusby, "Models for the discrete berth

allocation problem: a computational comparison," Transportation Research Part E:

Logistics and Transportation Review, vol. 47, pp. 461-473, 2011.

[4] R. M. de Oliveira, G. R. Mauri, and L. A. Nogueira Lorena, "Clustering Search for the

Berth Allocation Problem," Expert Systems with Applications, vol. 39, pp. 5499-5505,

2012.

[5] C.-J. Ting, K.-C. Wu, and H. Chou, "Particle swarm optimization algorithm for the berth

allocation problem," Expert Systems with Applications, vol. 41, pp. 1543-1550, 2014.

[6] M. Ayob and G. Kendall, "A monte carlo hyper-heuristic to optimise component

placement sequencing for multi head placement machine," in Proceedings of the

international conference on intelligent technologies, InTech, 2003, pp. 132-141.

[7] N. R. Sabar, M. Ayob, and G. Kendall, "Tabu exponential Monte-Carlo with counter

heuristic for examination timetabling," in Computational Intelligence in Scheduling, 2009.

CI-Sched '09. IEEE Symposium on, 2009, pp. 90-94.

[8] N. R. Sabar and M. Ayob, "Solving Examination Timetabling Problems using Exponential

Monte-Carlo with Counter Heuristics," in Proceeding of the 2008 first conference on Data

Mining and Optimization (DMO’08). 3-4 Dec, Universiti Kebangsann Malaysia, pp.16-

20., 2008.

[9] N. R. Sabar, M. Ayob, G. Kendall, and R. Qu, "A honey-bee mating optimization

algorithm for educational timetabling problems," European Journal of Operational

Research, vol. 216, pp. 533-543, 2/1/ 2012.

[10] N. R. Sabar, M. Ayob, and G. Kendall, "Solving examination timetabling problems using

honey-bee mating optimization (ETP-HBMO)," Proceedings of the 4th Multidisciplinary

International Scheduling Conference: Theory and Applications (MISTA 2009), Dublin,

Ireland, pp. 399-408, 2009.

[11] S. Abdullah, N. R. Sabar, M. Z. Ahmad Nazri, and M. Ayob, "An Exponential Monte-

Carlo algorithm for feature selection problems," Computers & Industrial Engineering, vol.

67, pp. 160-167, 1// 2014.

[12] G. R. Mauri, A. C. Oliveira, and L. A. N. Lorena, "A hybrid column generation approach

for the berth allocation problem," in Evolutionary Computation in Combinatorial

Optimization, ed: Springer, 2008, pp. 110-122.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

548

Timetabling in Higher Education: Considering
the Combinations of Classes Taken by
Students

Carlos A. Sánchez

1

Keywords: Higher education, timetabling, association rules, data mining,

analytics, market basket analysis, graphs, network analysis

1 Introduction

This work is part of a project that aims to develop an analytics based

architecture and methodologies to support the design and implementation of

collaborative timetabling systems in higher education. As part of the larger

project, this contribution will report on methodologies and algorithms that are

being developed to enable the exhaustive identification of combinations of

courses that students take from the offered class schedule and combinations of

interest that are frequently not possible due to schedule conflicts. This article

discusses the architectural components that identify the course offerings that limit

the enrollment options for students based on data on schedules and enrollments

from recent previous terms.

An aspect that has not been considered in detail in the higher education

timetabling literature, relates to the inefficiencies embedded in the constraints that

are specified and passed to optimization algorithms. A common approach to

timetabling in higher education is to take the requirements and constrains as a

given, and then to use optimization algorithms to search for optimal solutions that

meet those requirements and constraints. The problem is that optimization

algorithms are neither designed nor intended to identify and solve inefficiencies

embedded in constraints passed to them.

With the previous ideas in mind, the goal of this work is to help scheduling

authorities gain a better understanding of enrollment patterns, identify the

schedule offerings that frequently limit the enrollment options for students, and

determine the sections that need to be offered that are free of schedule conflicts.

The ideas proposed in this work do not require a detailed knowledge about the

programs offered at the institution and provide information on courses that are

good candidates for section offerings that should be free of schedule conflicts.

This information would be intended to help scheduling authorities to produce

School of Information Sciences, University of Pittsburgh

Pittsburgh, PA, 15260, USA
carlosal@pitt.edu

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

549

class schedules that better reflect the needs and interest of the students, the

institution, and when applicable specify better informed constraints to be passed

to timetabling algorithms.

This initiative is in alignment with the identified need to offer students

maximum flexibility of choice when selecting courses to take (McCollum, 2007),

to improve on measurability and reproducibility of solutions to timetabling

problems (Schaerf & Di Gaspero, 2007), to consider the inefficiencies embedded

in the input constraints that are provided to the sophisticated optimization

algorithms that the research community has developed, and to leverage the

existing corpus of knowledge in the field and at the institutional levels (De

Causmaecker & Berghe, 2012).

There are initial advances on the referred directions that based on detailed

knowledge of an institution’s academic programs account for schedule conflicts

(Zeising & Jablonski, 2012); that use that knowledge to help transform the

curriculum model into the enrollment model (Müller & Rudová, 2012); and that

survey faculty on courses that they consider should be offered in non-conflicting

schedules (Wehrer & Yellen, 2013).

2 Proposed Approach

Large universities normally have in the order of tens of thousands of

students registered in hundreds of programs across schools and departments that

offer from hundreds to thousands of sections per term, frequently with multiple

sections of the same course offered at different schedules. A common approach to

enrollments in U.S. universities is for academic units (i.e. schools and

departments) to prepare and offer their class schedules in an independent fashion

with little or no coordination across units. Students then enroll in the offered

sections across academic units considering the requirements of their programs of

study, interests and offerings in the schedule of classes. Students are frequently

enrolled in multiple majors and do not advance in curriculum-like synchronization

with their peers.

If we are to explicitly consider the enrollment patterns across courses and

schools in support of better informed timetabling activities, then it is necessary to:

First, identify all the unique frequent combination of courses that students take or

are able to take per term as well as those combinations that have not been possible

due to schedule conflicts but that could be of interest. This is done using

enrollment data from recent previous terms. Second, identify the course or

combinations of courses of interest per term, which are those with section

offerings that limit the enrollment options for students. Third, enable analyses of

data across terms to identify which offerings appear to be limiting the enrollment

options over several terms. Fourth, develop components to support an interactive

interface that enables scheduling authorities to explore and visualize enrollment

patterns and if required work on a collaborative fashion to produce better class

schedules.

The exhaustive identification of unique course combinations that students

take during a term is performed by modeling the problem as an association rules

analysis (Agrawal, Imieliński, & Swami, 1993; Agrawal & Srikant, 1994; Krajca,

Outrata, & Vychodil, 2011; Srikant, Vu, & Agrawal, 1997). As summary, a

transaction is defined as the group of courses that an individual student takes

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

550

during a term (e.g. MATH 0200, ENGLISH 0220 and ECONOMICS 0100 where

the label refers to the academic subject and the number to the catalog/level of the

course). Each course is an item in the transaction and the group of courses in the

transaction is a course set. Having the data modeled in the described form enables

the direct use of association rules algorithms implemented in multiple software

packages.

Among others, the output of the association rules analysis indicates how

many students enrolled in each course set. As an illustration, one course set could

be MATH 0200, ENGLISH 0220 and ECONOMICS 0100 with 100 students. In

the next step it is then necessary to identify if 100 students enrolled in that

particular course set because no more students were interested (i.e. there is

capacity left) or because an enrollment limit was reached due to schedule conflicts

or number of seats offered. Those are course sets of interest as they include

courses with sections that potentially limit the enrollment options for students. To

identify them, it is necessary to analyze the data set at the level of individual

sections and schedules.

A backtracking algorithm and methodologies are proposed to identify the

course sets of interest considering actual enrollments, enrollment limits and

schedules at the level of individual sections on each course set. A de-normalized

relational schema is proposed to support the operations of the referred algorithm,

longitudinal analyses of historical enrollment data. Other architectural

components that will facilitate a collaborative approach to timetabling will be

discussed in a separate article.

Prototypes of the referred relational schema and algorithm have been

developed and are being tested and refined using actual undergraduate enrollment

data from five recent fall terms at the University of Pittsburgh (Pitt) main campus.

This campus enrolls approximately 19,000 undergraduate students in 11 of its 17

academic units; they take about 90,000 seats in 3,000 sections each term.

Approximately 80% of the students enroll in three or more different subjects

across different departments and schools with 56% taking classes in four or five

subjects. The processing of enrollment data for five recent fall terms renders data

sets with an average of 45,000 closed course sets per term. The reason for the

relatively large number of closed course sets is that the association rules

algorithms consider the course sets that students take and subsets that are

frequent.

As illustration, Table 1 below shows a sample of seven course sets

obtained using preliminary results from the components referred above on Pitt’s

undergraduate enrollments during a recent fall term. The results enable the

identification of four course sets of interest in the sample group that appear to be

limiting the enrollment options for students. Students enroll in sections of their

preference as available in the offered schedule. After the enrollment period is

closed, two of the course sets have subjects with sections that reached or exceeded

the enrollment capacity offered and two of them have schedule conflicts that limit

further enrollments in the course set.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

551

Enrolled

in Set

Seats Left

in Set
Interest

ARTSC_CHEM_0960, ARTSC_MATH_0220, ENGR_ENGR_0081 243 0 Oversubscribed: ENGR 0081

ARTSC_CHEM_0960, ARTSC_MATH_0220, ENGR_ENGR_0011 241 26

ARTSC_ECON_0100, ARTSC_ENGCMP_0200, ARTSC_MATH_0120, CBA_BUS_0010 59 8

ARTSC_ECON_0100, ARTSC_ENGCMP_0200, ARTSC_MUSIC_0711 12 0 Oversubscribed: MUSIC 0711

ARTSC_ITAL_0001, ARTSC_MATH_0120, CBA_BUS_0010 9 8

ENGR_CHE_0100, ENGR_CHE_0101, ENGR_ENGR_0020 6 0 Conflict: ENGR 0020

CBA_BUSACC_0040, CBA_BUSHRM_1050, CBA_BUSMKT_1441 4 0 Conflict: CBA_BUSACC_0040

Notes:

Course set labels indicate a course School, Subject Code and Catalog Number

ARTSC The Kenneth Dietrich School of Arts and Sciences

CBA College of Business Administration

ENGR The Swanson School of Engineering

BUS… Business (ACC: Accounting; HRM: Human Resources Management; MKT: Marketing)

ENGR… Engineering (CHE: Chemical Eng)

CHEM Chemistry ITAL Italian

ECON Economics MATH Mathematics

ENGCMP English Composition MUSIC Music

Sample Course Sets

Table 1: Sample of course sets from actual undergraduate enrollments during a recent fall term at

the University of Pittsburgh

Table 2 below illustrates the details on schedules and enrollments on all

sections for one of the course sets listed in Table 1 (ENGR_CHE_0100,

ENGR_CHE_0101, ENGR_ENGR_0020) after the enrollment period has ended.

Even though there were seats left in sections of each of the courses, it appears that

it was ultimately a schedule conflict that prevented more than six students from

enrolling in this course set during the analyzed term.

Course

#
School

Subject

Code

Catalog

#
Class # Days

Start

Time

Stop

Time

Enrollment

CAP
Enrolled

Seats

Left

Seats Left

Catalog

1 ENGR ENGR 0020 14327 M W 16:00 17:15 70 71 -1 10

1 ENGR ENGR 0020 14443 T H 9:30 10:45 70 70 0 10

1 ENGR ENGR 0020 14566 T H 9:30 10:45 70 59 11 10

2 ENGR CHE 0100 14484 M W F 8:00 9:50 65 56 9 18

2 ENGR CHE 0100 23971 M W F 8:00 9:50 65 56 9 18

3 ENGR CHE 0101 14485 H 8:00 9:50 65 53 12 25

3 ENGR CHE 0101 23963 T 8:00 9:50 65 52 13 25

Table 2: Schedules and enrollments on individual sections offered in a selected

course set

Currently, work is advancing on: First, algorithm improvements to reduce

processing time. Second, there is ongoing development of analyses and metrics

across several terms (i.e. longitudinal analyses) to provide better and more

informative identification of course sets of interest. That is, those course sets that

appear to limit enrollments across multiple terms. Third, components are being

extended to enable the identification of negative association rules. This entails the

identification of n-tuples of courses that cannot be taken together due to schedule

conflicts. Those n-tuples do not show up in the association rules analysis as

students cannot take those course sets. Fourth, development of a graph/network

based visualization to facilitate understanding of enrollment patterns and

identification of courses that would benefit from collaborative scheduling efforts.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

552

References

Agrawal, R., Imieliński, T., & Swami, A. (1993). Mining association rules

between sets of items in large databases. Paper presented at the ACM

SIGMOD Record.

Agrawal, R., & Srikant, R. (1994). Fast algorithms for mining association rules.

Paper presented at the Proc. 20th Int. Conf. Very Large Data Bases,

VLDB.

De Causmaecker, P., & Berghe, G. V. (2012). Towards a reference model for

timetabling and rostering. Annals of Operations Research, 194(1), 167-

176.

Krajca, P., Outrata, J., & Vychodil, V. (2011). Using frequent closed itemsets for

data dimensionality reduction. Paper presented at the Data Mining

(ICDM), 2011 IEEE 11th International Conference on.

McCollum, B. (2007). A perspective on bridging the gap between theory and

practice in university timetabling Practice and Theory of Automated

Timetabling VI (pp. 3-23): Springer.

Müller, T., & Rudová, H. (2012). Real-life curriculum-based timetabling. Paper

presented at the Dag Kjenstad, Atle Riise, Tomas Eric Nordlander, Barry

McCollum and Edmund Burke. Proccedings of the 9th International

Conference on the Practice and Theory of Automated Timetabling. Son,

Norway: SINTEF.

Schaerf, A., & Di Gaspero, L. (2007). Measurability and reproducibility in

university timetabling research: discussion and proposals Practice and

Theory of Automated Timetabling VI (pp. 40-49): Springer.

Srikant, R., Vu, Q., & Agrawal, R. (1997). Mining association rules with item

constraints. Paper presented at the KDD.

Wehrer, A., & Yellen, J. (2013). The design and implementation of an interactive

course-timetabling system. Annals of Operations Research, 1-19.

Zeising, M., & Jablonski, S. (2012). A Generic Approach to Interactive University

Timetabling. Paper presented at the ACHI 2012, The Fifth International

Conference on Advances in Computer-Human Interactions.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

553

The second International Nurse Rostering
Competition

Sara Ceschia · Nguyen Thi Thanh
Dang · Patrick De Causmaecker ·
Stefaan Haspeslagh · Andrea Schaerf

Abstract Announcement of the second international nurse rostering compe-
tition.

Keywords Nurse Rostering · Competition

1 Introduction

Nurse rostering is a very important problem in healthcare management. Early
papers date from the seventies, but especially in the last decade, it has drawn
significant attention, see [3,4] for a review of literature and a classification.

The First International Nurse Rostering Competition (INRC-I) [7] was
run in 2010. The competition welcomed 15 submissions in three categories
(sprint, medium and long tracks). Since then, several groups also took this
formulation and the corresponding instances as a challenge [1,2,5,6,8,9] and

Work supported by the Belgian Science Policy Office (BELSPO) in the Interuniversity At-
traction Pole COMEX. (http://comex.ulb.ac.be)

Sara Ceschia, Andrea Schaerf
Dipartimento di Ingegneria Elettrica, Gestionale e Meccanica
Università di Udine, via delle Scienze 206, 33100, Udine, Italy
Tel: +39 0432 55 8280, fax: +39 0432 55 8251
E-mail: {sara.ceschia,schaerf}@uniud.it

Nguyen Thi Thanh Dang, Patrick De Causmaecker
KU Leuven, Department of Computerscience, CODeS & iMinds-ITEC, KULAK, E. Sabbe-
laan 53, 8500 Kortrijk, Belgium
Tel.: +32 56 24 60 02, Fax: +32 (0) 56 246052,
E-mail: {nguyenthithanh.dang, patrick.decausmaecker}@kuleuven-kulak.be

Stefaan Haspeslagh
Technologie en informatica - VHTI, Doorniksesteenweg 145, 8500 Kortrijk, Belgium
Tel: 056 26 41 20, fax: 056 21 98 67,
E-mail: stefaan.haspeslagh@vives.be

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

554

produced remarkable results. Optimal solutions as well as new best solutions
have also been found and reported [2,8,9].

The problem considered for INRC-I was the assignment of nurses to shifts in
a fixed planning horizon, subject to a large number of hard and soft constraint
types.

For the Second International Nurse Rostering Competition (INRC-II), we
propose a smaller set of constraint types, but within a multi-stage formulation
of the problem. That is, the solvers of the participants are requested to deal
with a sequence of cases, referring to consecutive weeks of a longer planning
horizon (4 or 8 weeks).

The search method designed by the participants has to be able to solve
a single stage of the problem corresponding to one week. Some information,
called history, is carried out between consecutive weeks, and the one coming
from the previous week has to be taken into account by the solver. The history
includes border data, such as the last worked shift of each nurse, and counters
for cumulative data, such as total worked night shifts. Counters’ value has
to be checked against global thresholds, but only at the end of the planning
period.

The organizers provide a simple command-line simulation/validation soft-
ware to be used to evaluate the quality of the solver. The simulator invokes
the participant’s solver for each stage iteratively, then updating the history
after each single execution. The provided validator concatenates the solutions
for all weeks, and evaluates them all together, along with the cumulative data
coming from the final history.

The solver should take into account the following separate input sources:

Scenario: Information that is global to all weeks of the entire planning horizon,
such as nurse contracts and shift types.

Week data: Specific data of the single week, like daily coverage requirements
and nurse preferences for specific days.

History: Information that must be passed from a week to the other, in order
to compute constraint violations properly. It includes border information
and global counters.

The solver must deliver an output file, based on which, the simulator com-
putes the new history file, to be passed back to the solver for the solution of
the next week.

The rules and early instances of INRC-II will be made available at the day
of the presentation. The competition will be run during the fall of 2014 till
summer of 2015 and its results will be presented at MISTA 2015 in Prague.
Winners will be awarded a financial prize, as well as free conference fees.

References

1. Mohammed A Awadallah, Ahamad Tajudin Khader, Mohammed Azmi Al-Betar, and
Asaju La’aro Bolaji. Nurse rostering using modified harmony search algorithm. In
Swarm, Evolutionary, and Memetic Computing, pages 27–37. Springer, 2011.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

555

2. Edmund K Burke and Tim Curtois. New approaches to nurse rostering benchmark
instances. European Journal of Operational Research, 2014.

3. Edmund K Burke, Patrick De Causmaecker, Greet Vanden Berghe, and Hendrik Van Lan-
deghem. The state of the art of nurse rostering. Journal of scheduling, 7(6):441–499,
2004.

4. Patrick De Causmaecker and Greet Vanden Berghe. A categorisation of nurse rostering
problems. Journal of Scheduling, 14(1):3–16, 2011.

5. Federico Della Croce and Fabio Salassa. A variable neighborhood search based matheuris-
tic for nurse rostering problems. Annals of Operations Research, pages 1–15, 2010.

6. Martin Josef Geiger. Personnel rostering by means of variable neighborhood search. In
Operations Research Proceedings 2010, pages 219–224. Springer, 2011.

7. Stefaan Haspeslagh, Patrick De Causmaecker, Andrea Schaerf, and Martin Stølevik. The
first international nurse rostering competition 2010. Annals of Operations Research,
pages 1–16, 2012. Online first.

8. HG Santos, TAM Toffolo, S Ribas, and RAM Gomes. Integer programming techniques
for the nurse rostering problem. In Proceedings of the 9th International Conference on
the Practice and Theory of Automated Timetabling (PATAT-2012), pages 256–283, 2012.

9. Ioannis P Solos, Ioannis X Tassopoulos, and Grigorios N Beligiannis. A generic two-phase
stochastic variable neighborhood approach for effectively solving the nurse rostering prob-
lem. Algorithms, 6(2):278–308, 2013.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

556

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

557

Ð Ò

È

Ê

² î Ò

Ê

² î Ò

Ð Ò

Í

Í æã Ð

²

Ê æã ² øÍ÷
È ² Ê

Í

²

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

558

øØå Í÷ Ø Í

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

559

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

560

Online Scheduling System for Server Based
Personnel Rostering Applications

Přemysl Š̊ucha · István Módos · Roman
Václav́ık · Jan Smejkal · Zdeněk
Hanzálek

Keywords Scheduling · Distributed Computing · Grid Computing · Machine
Learning · Personnel Rostering

1 Introduction

In the recent time many software applications have web based character. It
means that the computer of the user is used as a terminal while the applica-
tion is running on a server. Nevertheless, the server may be a bottleneck of
the application from the performance point of view. All data manipulations
and all computations are processed there and if the server is overloaded it
usually causes slow reactions of the application measured by response time
of the server. Moreover, if the server process non-trivial requests like solving
a combinatorial problem, e.g. personnel rostering [1], the performance of the
server is significantly worse. In this case the incoming requests must be care-
fully scheduled in order to efficiently exploit available computational resources
and to minimize the system response time.

In this paper we consider a server based personnel rostering application
where many users send their requests at the same time. To solve the requests
the server uses a heterogeneous grid, i.e. a collection of computer resources such
that each one has different speed. A single request of a user is called task which
has to be mapped and solved on a computer resource. Tasks are instances
of combinatorial optimization like personnel rostering, personnel rerostering
etc. The tasks are usually solved by anytime algorithms. It means that if the
algorithm is interrupted earlier (but not before the minimal execution time)
the solution is a valid solution to the problem, however its quality in terms of

P. Š̊ucha (B) · I. Módos · R. Václav́ık · J. Smejkal · Z. Hanzálek
Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague, Prague, Czech Republic
E-mail: suchap@fel.cvut.cz

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

561

the objective function value is lower. This is an important aspect which allows
deteriorating quality of solutions in a defined range when the server side is
overloaded. The aim of a scheduling system that schedules the incoming tasks
on a heterogeneous grid is to balance average response time of the server and
average quality of solutions.

There are already many papers dealing with task mapping on grids [5].
However, to the best of our knowledge there is no work dealing with heteroge-
neous grids taking into account properties of anytime algorithms. As a related
paper can be considered e.g. [2] where the authors describe an algorithm for
task mapping on GPU resources while considering the trade-off between the
quality of solutions and execution time. However, their approach requires spe-
cially designed anytime algorithms where the scheduler is able to control the
execution path of the algorithms. It also requires quite frequent communica-
tion between the scheduling algorithm and the computer resources. A related
domain is scheduling of imprecise computation tasks [4] where a task consists
of two subtasks: a mandatory subtask and an optional subtask. Each task
must be completed before its deadline while its mandatory subtask must be
completed and the optional part may be left unfinished. The objective is to
minimize a penalty proportional to the lengths of unfinished parts of all tasks.
In contrast to our work, where duration of the tasks for given quality is not
known, their penalty function is given a priori.

As stated above, the existing approaches cannot be efficient for scheduling
of anytime algorithms that solve combinatorial problems. The problem is that
the execution time of a task for the given solution quality is not known a priori.
That means the incorrectly estimated execution time may cause deterioration
of response time of the system. Therefore we propose a scheduling system for
online scheduling of tasks having character of anytime algorithm executed on
a heterogeneous grid. Based on the task features the scheduling algorithm is
able to estimate the execution time of tasks. Moreover, a controller in the
scheduling system is able to balance the average solution quality in order to
achieve reasonable trade-off between the average response time and the average
quality of solutions.

2 Scheduling System Design

Our design of the scheduling system is outlined in Figure 1. External applica-
tions, controlled by users, generate input tasks TIi (rrti is requested response
time for task TIi). These tasks are sent into the task list through the esti-
mator which defines estimated execution time pi(qt) = max(aie

biqt ,meti) of
TIi where qt is demanded quality in time t and meti is the minimal execu-
tion time of task TIi. The scheduler then selects tasks from the task list and
allocates them to the resources with respect to pi(qt) and speed coefficient
sr of each resource r [3]. The actual task allocation is executed through the
resource manager which passes the task data (TIi) and its assigned time for
execution (pisr) to the particular resource r. Resources may be arbitrary com-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

562

ExternalbApplication

SchedulingbSystem

Scheduler

Controller

schedule,b
art

qt

MetabEstimator
DB

Est1

TIi

ai,bbi

TIi,brrti TOi

Resource
manager

TIi,bpi

TOi,bZi

Resource1

Resource2

Resourcem

TIi,bpi

TOi,bZi

Zi

Est2 Estk

Grid

Fig. 1 Scheduling System Design

puters/CPU cores which executes the particular rostering algorithm. When
the resource finishes processing the allocated task, it sends the solution (TOi)
together with computing progress (Zi - progress of the objective function value
over time) to the scheduling system. The solution is then sent to the corre-
sponding external application and Zi is stored in the estimator database for
the online re-learning purposes.

The importance of the controller is to dynamically control the average
response time (art) of the system through the qt. This quality is dependent
on the number of tasks to be processed and the amount of available resources.

3 Preliminary Results

For the preliminary experiments we consider STF+MCT (shortest task first +
minimal completion time) scheduler, bisection controller [3] and six computer
resources.

The behavior of the scheduling system with bisection controller and with-
out controller on the same data is illustrated in Figure 2 and 3 respectively.
The first subgraph in those figures shows the number of waiting tasks over
time, the second one displays the average lateness, i.e. how many times the
due date of tasks is exceeded, over time and finally the third subgraph indicates
the quality set by the controller over time.

A comparison of Figure 2 and 3 shows significant improvement of the av-
erage response time of the system with the controller and the estimator. More
experimental results and comparisons will be shown at the conference.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

563

0 50000 100000 150000 200000 250000
Time [ms]

0

5

10

15

20

25

30

35
N

u
m

b
e
r

o
f

w
a
it

in
g
 t

a
sk

s

0 50000 100000 150000 200000 250000
Time [ms]

50
0

50
100
150
200
250
300
350

A
v
e
ra

g
e

la
te

n
e
ss

0 50000 100000 150000 200000 250000
Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
a
lit

y

Fig. 2 The behavior of the scheduling system with bisection controller

0 50000 100000 150000 200000 250000
Time [ms]

0

5

10

15

20

25

30

35

N
u
m

b
e
r

o
f

w
a
it

in
g
 t

a
sk

s

0 50000 100000 150000 200000 250000
Time [ms]

50
0

50
100
150
200
250
300
350

A
v
e
ra

g
e

la
te

n
e
ss

0 50000 100000 150000 200000 250000
Time [ms]

0.0

0.2

0.4

0.6

0.8

1.0

Q
u
a
lit

y

Fig. 3 The behavior of the scheduling system without controller (=constant quality)

References

1. E. K. Burke, P. De Causmaecker, G. Vanden Berghe and H. Van Landeghem, The State
of the Art of Nurse Rostering, Journal of Scheduling, 7, 441-499 (2004)

2. R. Mangharam and A. A. Saba, Anytime Algorithms for GPU Architectures, IEEE 32nd
Real-Time Systems Symposium, 47-56 (2011)

3. I. Módos, P. Š̊ucha, R. Václav́ık, J. Smejkal and Z. Hanzálek, Server Based Rostering
Application, Czech Technical University in Prague, Internal technical report (2014)

4. G. Wan and J. Y.-T. Leung and M. L. Pinedo, Scheduling imprecise computation tasks
on uniform processors, Information Processing Letters, 104, 45-52 (2007)

5. F. Xhafa and A. Abraham, Computational models and heuristic methods for Grid
scheduling problems, Future Generation Computer Systems, 26, 608-621 (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

564

Optimal Duty Rostering for Toll Enforcement
Inspectors

Elmar Swarat · Guillaume Sagnol ·
Thomas Schlechte

Abstract This abstract presents an Integer Programming based approach on
optimal inspector rostering for the toll enforcement on German motorways.

Keywords Duty Rostering · Large Scale Integer Programming · Multi-
Commodity Flow Problem

Mathematics Subject Classification (2000) 90B20 · 90C06

1 Abstract

We address the problem of planning optimal toll inspector tours on German
motorways. Since 2005 a distance-based toll for all commercial trucks weight-
ing 12 tonnes or above is set up on German motorways. A major part of the
enforcement is conducted by tours of inspector teams on the toll network.
Important enforcement goals are to take the spatial and temporal traffic dis-
tribution into account and to cover the complete network by unpredictable
controls. Therefore, one task is to plan daily tours for the inspectors. In ad-
diton, a crew must be assigned to each tour, while each duty of a crew has
to fit in a monthly (duty) roster. A feasible roster has to comply with a lot
of different rules. Hence, a major challenge of our model is to optimize the
rosters of the inspectors. This is the main focus of our presentation.

In other applications, e.g., in the railway or airline industry, the rostering is
part of a multi-stage planning process. In particular, in duty scheduling tasks,
e.g., timetabled trips, are covered by duties or pairings and afterwards rosters

This work was funded by the Federal Office for Goods Transport (BAG).

Elmar Swarat · Guillaume Sagnol · Thomas Schlechte
Zuse Institute Berlin, Takustr. 7, D-14195 Berlin
Tel.: +49-30-84185244
Fax: +49-30-84185269
E-mail: swarat@zib.de

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

565

are computed that cover all duties or pairings. In our setting a sequential plan-
ning of tours and crews is not appropriate according to the spatial distribution
of the inspectors. Therefore, an integrated model of tour planning and duty
rostering must be considered. We called this problem Toll Enforcement Prob-
lem (TEP). In [1] a case study presents the benefits of using our approach for
the toll enforcement. Here, we extend our previous publications by a deeper
look on the modeling and solving issues of the rostering part and by com-
putational results that stem from production operation. The method can be
transferred to other inspection or monitoring problems, where the availability
of crews is an important issue for the planning problem.

Our approach is similar to the model, that Cappanera and Gallo [2] used to
solve an airline crew rostering problem. Our model extends their approach in
the respect that no activity has to be covered but there are coupling constraints
that connect duties with tours. The base of our model is a directed graph D =
(V,A). The nodes v ∈ V correspond to potential duties, that are defined as a
triple v = (d, b, e) of a day d, start time b, and end time e. Arcs a = (v1, v2) ∈ A
connect two duties v1 ∈ V and v2 ∈ V , if v2 is a feasible subsequent duty of
v1 according to legal rules. In addition, there are two nodes s und t indicating
the beginning and end of the roster. Arcs a = (s, vi) connect s with all nodes
vi that might be the first duty of a roster. Analogously, arcs (vi, t) connect
potential last duties with t. Hence, a feasible duty roster corresponds to a s-t-
path in D. We will discuss in detail, how several requirements can be modeled
by this graph construction, like minimum rest times, days of leave or pre-
assigned duties. The idea is to model as many constraints as possible as local
decisions in our graph model.

The objective for the roster optimization is to minimize some artificial costs
associated with unintended sequences of duties. Therefore, for each a ∈ A
artificial costs ca ≥ 0 are defined which have a non-zero value, if the current
sequence of duties corresponds to rotations, i.e., changes in the duty starting
time on two subsequent days. It is particularly known for rotations, where the
following duty starts earlier, that they alter the human biorythms and affect
the sleep. We model this optimization problem by a multi-commodity flow
problem in D. For each inspector m ∈ M we introduce binary flow variables
xm
a ∈ {0, 1} ∀a ∈ A. This results in the following Integer Program (IP):

min
∑
m∈M

∑
a∈A

cax
m
a (1)∑

v

xm
s,v = 1, ∀m ∈M, (2)∑

k

xm
v,k −

∑
u

xm
u,v = 0, ∀v ∈ V,m ∈M, (3)

Rx ≤ r, (4)

xm
a ∈ {0, 1}, ∀a ∈ A,m ∈M. (5)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

566

The objective function (1) minimizes the cost of the rosters. Constraints (2)
and (3) represent the flow value and the flow conservation for the inspectors.
Constraints (4) model additional requirements for feasible roster paths in D
that we describe hereafter. In (5) the integrality constraints of the flow vari-
ables are given.

Each path consumes units of limited resources on its sequence arcs. In (4)
this is coded by the matrix R and the limitation by the right hand side r.
The resources deal with those requirements that can not be modeled locally
in the graph. One example are horizontal rules. They involve single paths,
like the working time consumption or limits on unsocial working hours. Other
resources belong to global rules that involve all rosters. One example are duty
mix constraints that limit the percentage of duties of a specified type, like
weekend-duties. We will discuss some of these resources and their impact on
the solvability of the TEP. Another important aspect will be the influence of
input parameters on the size of D.

Furthermore, computational results from real-world instances complete our
presentation. To solve the IP, we use the CPLEX solver by IBM. On a 8-core
Intel Xeon workstation almost all instances occuring in daily operation can
be solved either to optimality or with a small gap of at most 5%. One reason
for the good performance is the quality of the lower bound produced by the
linear relaxation. For most instances the gap between the initial lower bound
and the optimal solution is distinctly lower than 10%. Since there are different
control areas in Germany with different sizes and settings, some instances
could be solved to optimality within 10 minutes while other require even more
than two hours to find a feasible solution. We conclude that this approach
is a successful example for the use of mathematical optimization techniques
in real-world, since our method is implemented at the enforcement agency in
Germany and part of the planning process for the enforcement.

References

1. Ralf Borndörfer and Guillaume Sagnol and Elmar Swarat, A Case Study on Optimiz-
ing Toll Enforcements on Motorways, 3rd Student Conference on Operational Research,
OpenAccess Series in Informatics (OASIcs), 22, 1–10 (2012)

2. P. Cappanera and G. Gallo, A Multicommodity Flow Approach to the Crew Rostering
Problem, Operations Research, 52 (4), 583–596 (2004)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

567

Meta-heuristic algorithm for binary dynamic optimisation

problems and its relevancy to timetabling
Ayad Mashaan Turky

1,2
, Salwani Abdullah

1
 and Nasser R. Sabar

3

1
Data Mining and Optimisation Research Group,

Centre for Artificial Intelligence Technology,

Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
2
Faculty of Information & Communication Technologies,

Swinburne University of Technology, Victoria 3122, Australia.
3
The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih Selangor,

Malaysia.

ayadalrashid@gmail.com, salwani@ukm.edu.my, Nasser.Sabar@nottingham.edu.my

1. Introduction

Many real world problems are dynamic in the sense that changes occur during the optimisation

process.These problems are more convincing in real world applications than the static ones. This

is due to the fact that most of the real world applications are dynamic as the problems differ in

the changes that occur in the optimisation environment or the size of the problem increases from

time to time [1, 2]. This phenomenon can be illustrated by the following example of a delivery

company having to render a service to a set of customers where usually, the number of customers

to be served changes on the service schedule due to the length of the contract period.

Furthermore, the service that is demanded from the customer could also vary over time. This sort

of situation could be considered to be a dynamic problem because the parameters would only be

revealed during the delivery process where the number of customers or the demand of the

product may increase or decrease.

Much effort has been made to solve dynamic optimisation problems over the recent decade [3].

In solving this problem, a solution method that is able to keep track of the changes is much

needed. In addition the solution method should be adaptable in line with the current changes. In

contrast to static optimisation problems (where the aim is to find the global optima), the goal of

dynamic optimisation problems is to find not only the global optima but also to keep track of

changes that usually occur during the optimisation process.

Generally, one could easily remark that the success of these algorithms is due to the incorporated

mechanism that manages to maintain the population diversity when dealing with the changes [4].

Even though at present, there are a number of population-based methods applied on dynamic

optimisation problems, there is still plenty of room for further research work, since the nature of

this problem usually requires an efficient and effective algorithm that would quickly respond to

changes.

Harmony search algorithm has been used to successfully solve a number of static optimization

problems [5-8]. In this work, we investigate the applicability of the harmony search algorithm in

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

568

mailto:salwani@ukm.edu.my

tackling binary dynamic optimisation problems where four standard binary test functions are

used. Based on the performance obtained, the proposed approach will later be employed on

dynamic combinatorial optimisation problems such as dynamic vehicle routing problems and

dynamic job shop scheduling problems.

2. Solution Approach

In this section, we present our proposed Harmony Search Algorithm (HSA) for solving binary

dynamic optimisation problems. In this work, different mechanisms have been used to maintain

the population diversity and their hybridisation with the HSA. This is referred to as Hybrid

Harmony Search. HSA is one of the recent stochastic population-based meta-heuristic

optimisation algorithms proposed by Geem et al. [9]. HSA has five steps as depicted in Fig. 1.

Start

Step 1

Initialise the algorithm parameters

Step 2

Initialise and evaluate the Harmony Memory (HM)

Step 3: Improvision

With probability HMCR:

 Select a new value for a decision variable from HM

With probability 1-PAR:

 Do nothing

With probability PAR:

 Choose a neighbouring value

With probability 1- HMCR:

 Randomly select a new value of decision variable from [0,1]

Step 4

New harmony vector is

better than the existing

harmony vectors in the

HM?

Update

HM

Step 5
Satisfied?

Yes

No

Return the best solution

Yes

End

No

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

569

Figure1: Steps in HSA

In Step 1, parameters of HSA (as in Table 1) are initialised. Harmony Memory (HM) is

initialised and evaluated in Step 2. Step 3 is an improvisation process where Harmony Memory

Consideration Rate (HMCR) parameter is used during the improvisation process in order to

determine whether the value of a decision variable of a new harmony will be selected from the

HM or will it be generated at random from the possible range that takes a value between [0, 1].

The probability of randomly selecting the decision variable value from the possible range is

given as 1-HMCR. Pitch Adjusting Rate (PAR) parameter is used to decide either the values of

decision variables (that have been selected from the HM) will be modified or maintained. PAR

takes a value between [0, 1]. In Step 4, the HM will be updated and if the termination criterion is

satisfied then the process will be terminated (Step 5).

In order to cope with the dynamic changes, harmony search algorithm needs to keep track of the

changes during the search process. This is needed because the changes in the problem may

change the current local optima into global optima and vice versa [1]. In addition, it is also

shown in the literature that the developed algorithms for stationary problems cannot be directly

used to solve dynamic problems [1, 10].

Therefore, to handle this problem, the HSA has been hybridised with three population diversity

mechanisms, (i) HSA with random immigrant, HSA-I, (ii) HSA with memory mechanism, HSA-

M, and (iii) HSA with memory based immigrant mechanism, HSA-MI.

 HSA-I: First mechanism where HSA is hybridised with random immigrant. In this

approach, at each of the generation a subset of solutions is generated at random and is

used to replace the worst solutions in the HM. In this paper, the number of solutions are

fixed to be replaced at every iteration as rs=HMS*0.2 where rs represents the number of

replaced solutions.

 HSA-M: Second mechanism where HSA is hybridised with a memory mechanism. In

this approach, a subset of best solutions is kept and will be re-inserted in the HM once

changes are detected.

 HSA-MI: In the third mechanism where HSA is hybridised with a random immigrant

and a memory based mechanism in order to maintain the diversity of HM.

3. Results and Discussions

The performance of the proposed approaches is verified on four well-known binary dynamic

optimisation test functions i.e. OneMax, Plateau, Royal Road, and Deceptive. The parameter

values of HSA which is based on our preliminary tests are presented in Table 1.

Table 1 HSA parameter values

Parameters Description Tested range Suggested value

HMS Harmony memory size HMS= 1 to 100 10-200 100

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

570

HMCR Harmony memory consideration rate... 0 < HMCR < 1 0.1-0.99 0.6

RCR Random consideration rate - RCR=1-HMCR

PAR Pitch adjustment rate 0 < PAR < 1 0.1-0.99 0.3

NI Number of improvisations or iterations - 500000 function evaluations

Our hybridisation approaches are compared against the well-known methods in the literature. The

algorithms in comparison are presented in Table 2.

Table 2 Acronyms of compared methods
Symbol References

1 MIGA [6]

2 MEGA [7]

3 AHMA [1]

4 MRIGA [6]

In order to measure the performance of our proposed algorithm the overall offline performance

(the best-of-generation fitness) is calculated over 30 runs (with different initial solutions and

seeds) based maximisation of Eq. 1.

 (1)

where G is the total number of generations, N is the total number of runs and FBOGij is the best of

generation fitness of generation i of run j. Our results as well as other methods in comparison are

presented in Table 3.

Table 3: Comparison of Results
Function

name

HSA-I HSA-M HSA-MI %

Deviation

MIGA MEGA AHMA MRIGA

OneMax 91.67 90.42 96.01 ** 94.0 79.3 95.89 80.8

Plateau 72.21 68.41 84.91 ** - - 62.88 -

Royal Road 64.76 63.96 66.19 ** - - 52.52 -

Deceptive 76.39 73.11 85.97 ** 71.1 83.1 85.75 68.6

 ‘-’: no results are reported. ‘**’: our algorithm is better than others.

As shown the in Table 3, HSA-MI outperforms other methods in all test functions (presented in

bold), in which we believe this is due to the idea of of hybridising a random immigrant and a

memory based mechanism in order to maintain the harmony memory (population) diversity.

4. Dynamic Optimisation Problems and Its Relevancy to

Timetabling Problems

Dynamic optimisation problems however, present a greater challenge to the research community

since the problem parameters are either revealed or change during the course of the on-going

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

571

optimization [4]. These problems are more convincing in real world applications than the static

ones. This is due to the fact that most of the real world applications are dynamic, as the problems

in the sense that the environment is subjected to changes or the size of the problem increases

from time to time [11].

Timetabling problems have been frequently studied because of their wide range of applications

such as school timetabling, transport scheduling, job shop scheduling, vehicle routing, and

patient admission scheduling problems. In timetabling problems, two main difficulties are

encountered: (i) often over-constrained and optimisation criteria are hard to define; (ii)

intrinsically dynamic where activities, resources or constraints are sometimes unknown or can

often change at the last moment [12].

The relevancy between dynamic optimisation problems with timetabling problems can be

expressed through examples on:

 School timetabling: the dynamic part of the schedule is more related to logistic needs and

unexpected events such as link with timetabling of other years in terms sharing common

resources and, inside and outside teachers availability [12].

 Train scheduling: the information such as train arrival times, train lengths, train speeds are

available before solving the problem in the static scheduling environment. However, in

dynamic scheduling environment (which mimics the real-world problem), the information of

only arrived trains is considered known, then the schedule of the new train and the trains

currently in the network should be generated, given no information of later trains [13].

 Job shop scheduling: most manufacturing systems operate in dynamic environment where

unexpected disruptions occur during the manufacturing process such as machine

breakdowns, material shortage, random job releases, and job cancellations and due date and

time processing changes. The disruption will produce uncertainty in the sequence of

operation, i.e. the time taken to repair the broken machine [14].

 Dynamic vehicle routing: dynamic scenarios have become more common in vehicle routing.

The most common source of dynamism in vehicle routing is the online arrival of customer

requests (demand for goods and services) during the operation, dynamic travel and service

time and vehicle availability, and breakdown of vehicles. These source of dynamism caused

schedulers to update the generated timetable [15, 16].

 Patient admission scheduling: it concerns in assigning patients to bed in a hospital. In order

to tailor real scenario, several real-world features, such as the presence of emergency

patients, uncertainty in the length of stay, and the possibility of delayed admissions are

included [17].

The above examples show the important on tackling dynamic optimisation problems since most

of the real world problems are dynamic in nature. These disruptions or random occurrences lead

timetable officers to develop a new schedule from scratch or reschedule the existing schedule in

order to cater the changes.

5. Conclusion and Future Work

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

572

The overall goal of the work presented in this paper is to investigate the performance of the

hybrid harmony search algorithm in maintaining the population diversity in addressing binary

dynamic optimisation problems. In this work, three kinds of population diversity mechanisms are

presented i.e. the random immigrant, memory mechanism, and memory based immigrant

mechanism. Initial experiments show that the harmony search with memory based immigrant

mechanism outperforms two hybrid approaches presented here, and also managed to obtain

better offline performance in comparison to other available approaches in the literature. For

future work, the proposed method will be investigated on other dynamic combinatorial

optimization problems such as dynamic vehicle routing and dynamic job shop scheduling

problems.

References

[1] H. Wang, D. Wang, and S. Yang, "A memetic algorithm with adaptive hill climbing strategy for dynamic

optimization problems," Soft Computing, vol. 13, pp. 763-780, 2009.

[2] E.-G. Talbi, "A taxonomy of hybrid metaheuristics," Journal of heuristics, vol. 8, pp. 541-564, 2002.

[3] S. Yang, Y. S. Ong, and Y. Jin, Evolutionary computation in dynamic and uncertain environments vol. 14:

Springer, 2007.

[4] S. Yang, "Non-stationary problem optimization using the primal-dual genetic algorithm," in The 2003

Congress on Evolutionary Computation. CEC'03. , 2003, pp. 2246-2253.

[5] M. Hadwan, M. Ayob, N. R. Sabar, and R. Qu, "A harmony search algorithm for nurse rostering

problems," Information Sciences, vol. 233, pp. 126-140, 2013.

[6] A. M. Turky and S. Abdullah, "A multi-population harmony search algorithm with external archive for

dynamic optimization problems," Information Sciences, vol. 272, pp. 84-95, 2014.

[7] N. R. Sabar and G. Kendall, "Using Harmony Search with Multiple Pitch Adjustment Operators for the

Portfolio Selection Problem.," 2014 IEEE Congress on Evolutionary Computation (IEEE CEC 2014), 6-11

July 2014, Beijing, China., 2014.

[8] A. M. Turky, S. Abdullah, and N. R. Sabar, "A Hybrid Harmony Search Algorithm for Solving Dynamic

Optimisation Problems.," The International Conference on Computational Science-ICCS, 10-12 June 2014,

Cairns, Australia., 2014.

[9] Z. W. Geem, J. H. Kim, and G. Loganathan, "A new heuristic optimization algorithm: harmony search,"

Simulation, vol. 76, pp. 60-68, 2001.

[10] S. Yang, "Genetic algorithms with memory-and elitism-based immigrants in dynamic environments,"

Evolutionary Computation, vol. 16, pp. 385-416, 2008.

[11] J. Branke and H. Schmeck, "Designing evolutionary algorithms for dynamic optimization problems," in

Advances in evolutionary computing, ed: Springer, 2003, pp. 239-262.

[12] H. Cambazard, F. Demazeau, N. Jussien, and P. David, "Interactively solving school timetabling problems

using extensions of constraint programming," in Practice and Theory of Automated Timetabling V, ed:

Springer, 2005, pp. 190-207.

[13] J. Rodriguez, "A constraint programming model for real-time train scheduling at junctions," Transportation

Research Part B: Methodological, vol. 41, pp. 231-245, 2007.

[14] G. Chryssolouris and V. Subramaniam, "Dynamic scheduling of manufacturing job shops using genetic

algorithms," Journal of Intelligent Manufacturing, vol. 12, pp. 281-293, 2001.

[15] A. Haghani and S. Jung, "A dynamic vehicle routing problem with time-dependent travel times,"

Computers & operations research, vol. 32, pp. 2959-2986, 2005.

[16] H. N. Psaraftis, "Dynamic vehicle routing: Status and prospects," annals of Operations Research, vol. 61,

pp. 143-164, 1995.

[17] S. Ceschia and A. Schaerf, "Modeling and solving the dynamic patient admission scheduling problem

under uncertainty," Artificial intelligence in medicine, vol. 56, pp. 199-205, 2012.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

573

From sales data to workforce schedules

Forecasting, workload modeling, shift scheduling and shift
rostering

Egbert van der Veen

Abstract We discuss a commercially implemented workforce scheduling ap-
proach by going through a real-life application in retail stores. This approach
takes as input historical 15-minute sales data and translates this into opti-
mized workforce schedules by going through a number of steps. The approach
starts by forecasting future sales from the historical sales. After that, the
forecasted sales data is translated into staffing requirements, expressing the
number of persons that need to be scheduled in each 15 minute time slot of
a specified horizon. This is then input to generate a set of shifts that covers
these staffing requirements, and finally a workforce schedule is generated by
assigning employees to these shifts.

Keywords Forecasting · Workload modeling · Shift scheduling · Shift
rostering

1 Context

In supermarkets, the work that has to be performed is mainly driven by gro-
cery sales. Products can be sold only if the cash desks are staffed, and if shelves
are stocked at the right moment and time. To make sure the right person is
available at the right time, we have developed a scheduling approach that uses
historical sales data as input and converts this to optimized workforce sched-
ules. Our scheduling approach consists of multiple stages, which we describe
in the next section.

E. van der Veen
ORTEC, Houtsingel 5, 2719 EA, Zoetermeer, the Netherlands
Tel.: +31886783265
E-mail: Egbert.vanderVeen@ortec.com

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

574

2 Approach

Our approach consists of five stages: forecasting, workload modeling, capacity
planning, shift scheduling and shift rostering. The capacity planning step is an
optional step in this approach and can thus be skipped. Comparable decom-
positions are found in Burke et al (2004), Ernst et al (2004) and Thompson
(1997).

1. Forecasting First, we sum the 15-minute historical sales to daily totals.
From the day totals future day total sales are forecasted. To convert the fore-
casted day totals to 15-minute sales data, we use ‘day patterns’ that specify
how sales are distributed throughout the day. The motivation for this decom-
position is that sales patterns throughout the day may differ substantially,
whereas day totals tend to be more stable, thereby allowing for more accurate
day totals forecasts. Forecasts are calculated using various forecasting algo-
rithms that are combined in a regression model. The forecasting algorithms
we use are, among others, Holt-Winters and Exponential Smoothening, see,
e.g., Gelper et al (2010).

2. Workload modeling This stage determines the staffing requirements, which
express the number of people that should be staffed on a certain activity in
a specific 15-minute time slot. Using productivity figures, sales forecasts are
translated into staffing requirements. For example, if 500 euros is forecasted
for some 15-minute time slot, and the productivity at the cash desk is 250
euros per cashier per 15 minutes, then 2 cashiers have to be staffed.

Depending on the level of detail, various forecasts can be calculated to de-
termine staffing requirements for various activities. For example, to determine
the number of cashiers, a forecast on the total sales is applicable, but to de-
termine the number of people stocking the dairy products, a forecast for the
dairy sales should be available.

3. Capacity planning From the staffing requirements, a mid-term capacity
plan can be made, describing target working hours per employee per week. This
is useful, since in practice one week may be busier than the other. Therefore, it
makes sense to let people work more hours in one week than in the other. This
makes it possible to do more with the same people, since in slow weeks there
is less over-capacity and in busy weeks there is less under-capacity, reducing
the need to hire (expensive) subcontractors. Using lower and upper bounds on
the working hours of individual employees combined with absence information
of employees, working hour targets are determined per week per employee,
such that the workforce capacity is distributed optimally over the weeks. The
modeling details are found in Van der Veen et al (2012). Note that in our
approach, the capacity planning step is optional and can be skipped.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

575

4. Shift scheduling After staffing requirements have been determined, shifts
are scheduled. Shift scheduling is subject to constraints on, e.g., shift lengths,
shift starting times, shift ending times, break rules, and allowed activity com-
binations. Using staffing requirements and shift generation rules as input, a
set of shifts is determined, such that the staffing requirements are covered ef-
ficiently, hard constraints are respected and violations of soft constraints are
minimized. The set of shifts is optimized by a metaheuristic framework that
combines various re-start heuristics with variable neighborhood search.

5. Shift rostering After shift scheduling is complete, employees have to be as-
signed to the shifts. Shift rostering is subject to labor legislation constraints on,
e.g., allowed sequences and combinations of shifts. Moreover, unavailability of
employees, employees preferences and working hour targets (as determined in
the capacity planning step) are considered in shift rostering. Our shift rostering
algorithm aims to assign all shifts to employees, while minimizing violations
of soft constraints. Of course, hard constraints, such as labor legislation, may
not be violated by the algorithm.

In short, this algorithm employs a hybrid heuristic ordering method to
construct multiple initial shift schedules, which are improved by a genetic
algorithm. Next, the best schedule found by the genetic algorithm is improved
using a variable neighborhood search. Mathematical details of this algorithm
are found in Burke et al (2008) and Post and Veltman (2004).

3 Conclusions

We have designed a process that creates demand driven workforce schedules
using historical sales data. Hereby, the aim is to have people available if needed
and when needed. The next steps in our research and implementation are to
analyze the effects on cost reduction, profit increases, and service level im-
provements. Moreover, there are interesting future research questions such as
combining the shift scheduling and rostering steps, and assessing the feasibility
of our approach for other industries.

References

Burke EK, de Causmaecker P, vanden Berghe G, van Landeghem H (2004)
The state of the art of nurse rostering. Journal of Scheduling 7(6):441–499

Burke EK, Curtois T, Post G, Qu R, Veltman B (2008) A hybrid heuristic
ordering and variable neighbourhood search for the nurse rostering problem.
European Journal of Operational Research 188(2):330–341

Ernst A, Jiang H, Krishnamoorthy M, Sier D (2004) Staff scheduling and
rostering: A review of applications, methods and models. European Journal
of Operational Research 153(1):3–27

Gelper S, Fried R, Croux C (2010) Robust forecasting with exponential and
holt-winters smoothing. Journal of Forecasting 29(3):285–300

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

576

Post G, Veltman B (2004) Harmonious personnel scheduling. In: Proceedings
of the 5th international conference on the Practice and Theory of Automated
Timetabling, pp 557–559

Thompson GM (1997) Labor staffing and scheduling models for controlling
service levels. Naval Research Logistics (NRL) 44(8):719–740

Van der Veen E, Hans EW, Veltman B, Berrevoets LM, Berden HJ (2012)
Cost-efficient staffing under annualized hours. Tech. Rep. 1995, Enschede,
the Netherlands, URL http://doc.utwente.nl/84363/

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

577

System

Demonstrations

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

578

Do it yourself (DIY) optimisation
approach to practical timetabling

Yuri Bykov, Sanja Petrovic, Christos Braziotis

Nottingham University Business School

Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, UK

yuri.bykov, sanja.petrovic, christos.braziotis@nottingham.ac.uk

This abstract describes our work in progress towards facilitating a greater uptake

of metaheuristic optimisation algorithms in practice. Many researchers and

practitioners have recognised that there is still a considerable gap between theory

and practice in metaheuristic optimisation. Although this gap exists in many

application areas, the educational timetabling is the field where it was clearly

formulated (see McCollum 2007).

One of the causes of this gap is the inflexibility of the existent timetabling

applications, i.e. they cannot enfold the high variety of real-world requirements

and restrictions necessary for a good timetable. A survey by Burke et al. (1996)

revealed that students and administrative preferences vary greatly among

universities. This means that a computer-aided timetabling system developed in

one educational institution is unsuitable for another one. Therefore, a common

solution here is to order made-to-measure timetabling systems separately tailored

for each particular university. This becomes very expensive, time-consuming and

inflexible approach, especially when some alterations have to be included into

existing systems. As an alternative to that, some universities develop in-house

timetabling systems. However, this solution requires a capacity for programming

skills by timetabling department staff.

In this study we propose a third variant, which constitutes a middle ground

between the above-mentioned extremes. It can be viewed as DIY (do it yourself)

optimisation approach because it is more flexible than the first approach but

requires fewer user’s skills than the second one. The main idea of the approach is

based on the two following observations.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

579

Our first observation is that almost in every timetabling (as well as scheduling,

rostering, etc.) research paper we can find a formal definition of a problem as a set

of formulas. For example, the well-known Carter’s formulation of the Exam

Timetabling Problem where objective function refers to the proximity of exams

(see Carter et al. 1996) is expressed in a mathematical model as follows (taken

from Burke et al. 2004):

minimize:

1

1 1

N

i

N

ij

jiij ttproximityc

where:

otherwise

ttif
ttproximity ji

tt

ji

ji

0

512
5

subject to clash-free requirement: 0
1

1 1

N

i

N

ij

jiij ttclashc

where:

otherwise

ttif
ttclash

ji

ji
0

1

In these formulas N is the number of exams, cij are the elements of NxN conflict

matrix, which indicate the numbers of students sitting exams i and j together and ti

is the timeslot of i
th

 exam. However, in most cases such formulas are given for

reference only and are not used explicitly in the supplementary software

(experimental or end-user ones). They just formally describe the rules, which are

implemented in the form of an algorithm, which de-facto represents a more

complex procedure than just few formulas. Our second observation is that in other

areas there exists software that explicitly operates with formulas for different

purposes, such as Matlab for mathematical operations, CPLEX for integer

programming or Microsoft Excel for tabbed calculations. By combining these two

observations we came up with an idea of the explicit use of mathematical

formulas in metaheuristic optimisation as well. It should be noted that the generic

idea of embedding a CPLEX-like functionality for increasing the flexibility of

metaheuristics is rather straightforward and was circulated in private

communications throughout the research community. Therefore, the novelty of

our particular contribution to that idea is its effective practical implementation.

To implement this idea in practice a compiler-like intelligent engine was

developed, which recognises mathematical notations for the cost function and

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

580

constraints, verifies them and then prepares them for the use within metaheuristic

search algorithm. The formulas can be entered in a quite transparent machine-

readable form, which follows common rules used in existing systems (e.g. MS

Excel). The detailed description of the rules can be downloaded together with our

software. For example, the formulas for the cost function presented above can be

entered as follows:

cost : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*proximity)]

proximity : when[(1<=absdt) and (absdt<=5),pow(2,5-absdt),0]

absdt : abs[t(i)-t(j)]

The corresponding constraints can have the following form:

constraint : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)]

clash : when[t(i)=t(j),1,0]

As a result, the user needs just to write five formulas to solve a timetabling

problem with Carter’s cost/constraint. Moreover, the user is free to change them

or enter completely new ones according to his/her own requirements. If, for

example, additionally to the clash-free requirement we need to schedule exam #1

before exam #2 and the number of timeslots should not be more than 15, then the

constraint definition could be re-written as:

constraint : clash_free and [t(1)<t(2)] and (max[i,1,n,t(i)]<=15)

clash_free : sum[i,1,n-1,sum(j,i+1,n,c(i,j)*clash)]

clash : when[t(i)=t(j),1,0]

Our engine recognises virtually any type of cost and constraints, which can be

expressed by formulas. This way of cost/constraints specification is much simpler

than in-house programming, while at the same time is much more flexible than the

ordering of made-to-measure software.

In our particular implementation the engine represents a run-time library, which

can be embedded into any optimisation algorithm, not necessary only for

timetabling problems. In each case, the engine should be adjusted to the particular

problem and solution representations. In the above example (uncapacitated exam

timetabling problem), the compiler recognises variables n and c as the elements of

the problem statement and variable t as the element of solution. However, if one

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

581

would like to solve the capacitated problem, the engine should be adjusted in

order to recognise the room-related variables.

In order to demonstrate the simplicity and flexibility of the proposed approach and

to prove that it is workable we have embedded the prototype cost/constraints

compiler into our Vehicle Routing Problem (VRP) solver (the choice of a problem

was motivated by a good visual characteristics of VRP solutions, but we

anticipate the variant for Exam Timetabling to be ready soon). Figure 1 illustrates

a built-in formula editor where the user can enter or change his/her formulas.

After pressing the button “Compile the code” the system produces error checks

and if no errors are found, incorporates these formulas to the search procedure. In

this example, the cost formula represents an amount of CO2 emissions, but

certainly, the user can enter here an unlimited number of possible cost functions.

Fig 1. The cost/constraints entered as formulas

We expect that the variation of the cost/constraints definition could affect the

performance of a core optimization technique: therefore the solver offers to

choose the preferable one among 6 available metaheuristics: Hill-Climbing,

Simulated Annealing, Tabu Search, Great Deluge Algorithm, Late Acceptance

Hill-Climbing and Step Counting Hill Climbing (the details of the last two ones

can be found in (Burke and Bykov 2008) and (Bykov and Petrovic 2013)). Also

the user can select appropriate algorithmic parameters, initialization,

restarting/reheating strategies as well as the type of moves (neighborhood

operators).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

582

The prototype solver can be downloaded from:

http://www.yuribykov.com/MHsolver/. It works in MS Windows with a minimum

hardware configuration and does not require an installation procedure.

In order to test the practical effectiveness of the proposed approach, we used our

solver as a part of the coursework for the undergraduate module Management

Science for Business Decisions at the Nottingham University Business School.

This served as a pilot study to assess the usability of our approach in solving the

given VRP problems and it involved 10 students without programming skills and

with different mathematical background. Among other tasks the students were

asked to solve the variants with known and unknown formulas for

cost/constraints. The results revealed that all students were able to transform the

known formulas to the machine-readable form and enter them into the system.

However, some students were not able to solve a more complex task where the

formulas are not given but cost/constraints are specified in a textual description.

Here 6 out of the 10 students were able to derive a correct formula. These

preliminary results suggest that a particular level of mathematical skill/experience

is required for the successful use of our approach. Thus, we see the development

of a proper training methodology as an important direction of increasing the

practical value of our approach.

References:

Burke, E.K., D. Elliman, P. Ford, R. Weare. 1996. Examination timetabling in British universities:

a survey. Practice and Theory of Automated Timetabling, Springer Lecture Notes in Computer

Science 1153, 76-90.

Burke, E.K., Y. Bykov, J. Newall, S. Petrovic. 2004. A time-predefined local search approach to

exam timetabling problems. IIE Transactions 36, 509-528.

Burke, E.K., Y. Bykov. 2008. A late acceptance strategy in hill-climbing for exam timetabling

problems. Proceedings of the 7
th

 International Conference on the Practice and Theory of

Automated Timetabling PATAT 2008, Montreal, Canada, August 2008.

Bykov, Y., S. Petrovic. 2013. An initial study of a novel Step Counting Hill Climbing heuristic

applied to timetabling problems. Proceedings of the 6
th

 Multidisciplinary International Scheduling

Conference MISTA 2013, Gent, Belgium, August 2013.

Carter, M.W., G. Laporte, S. Lee. 1996. Examination timetabling: algorithmic strategies and

applications. Journal of the Operational Research Society 47, 373-383.

McCollum, B. 2007. A perspective on bridging the gap between theory and practice in university

timetabling. Practice and Theory of Automated Timetabling VI, Springer Lecture Notes in

Computer Science 3867, 3-23.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

583

http://www.yuribykov.com/MHsolver/

Meeting Rural Transport Needs through

Demand Responsive Transport Scheduling

(Bwcabus)

Clark, Owen

University of South Wales

+44 (0)1443 654047

Owen.clark@southwales.ac.uk

Dr Olden, Andrew

University of South Wales

+44 (0)1443 483613

Drew.Olden@southwales.ac.uk

Keywords: Timetabling in Transport, Demand Responsive Transport, Complex

Evolving Systems, Heuristics, Artificial Intelligence, Simulated Annealing.

Introduction

The following system demonstration presents an approach to demand responsive

transport (DRT) that has been developed and is currently being used in the real

world environment of West Wales. The system has been developed by the

University of South Wales in conjunction with the local government organisations

covering the test area, namely Carmarthenshire and Ceredigion County Councils.

Other project partners include the Welsh national public transport information

organisation Traveline Cymru and bus operators. The demonstration will

introduce Bwcabus as a case study, describe the scheduling system and identify

the system challenges associated with managing passenger demand and

expectations.

What is Bwcabus?

The traditional models of public transport delivery (based on fixed timetables and

routes) can fail to meet the needs of passengers in rural areas because services can

be too infrequent and inflexible. It is suggested that Demand Responsive

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

584

mailto:Owen.clark@southwales.ac.uk
mailto:Drew.Olden@southwales.ac.uk

Transport (DRT) can be used to address social exclusion and rural accessibility by

providing a more flexible and customer responsive service.

Bwcabus is a DRT service covering rural Carmarthenshire and Ceredigion. The

service commenced in August 2009 funded by the Welsh Government, the

European Convergence Fund and Carmarthenshire and Ceredigion County

Councils.

DRT are services that provide transport on demand, scheduled to pick up and drop

off passengers in accordance with their needs. Bwcabus is therefore a ‘hybrid’,

falling somewhere between a conventional timetabled bus service and a taxi

(Gerrard, 1974). A DRT timetable is not fixed and will vary each day. This form

of ‘dynamic’ scheduling allows passengers greater flexibility to book journeys at

the times (or close to the times) they require.

Bwcabus is integrated with strategic public transport services, providing

connections at designated hubs. Communications technologies are deployed to

maximise the efficiency of the service and ensure connections are guaranteed.

Therefore Bwcabus facilitates a large number of journey options between the

fixed and demand responsive services. A similar scenario is presented in Hall et.

al. (2009).

The System

At the heart of the Bwcabus operation is the scheduling system. The complete

system includes journey scheduling, booking management and public transport

information import and management.

The scheduling system is based upon the selection of either combinetrics or

Simulated Annealing (Baugh et. al, 1998; Uchimura et al 2002) depending on the

number of unique locations visited on a trip. Where a limited number of locations

(less than five) are visited it has been demonstrated the optimal methodology is

the use of combinetrics, that is to say the generation of every single journey

permutation. At larger numbers of locations Simulated Annealing becomes

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

585

optimal. The simulated annealing parameters vary in line with the number of

locations visited.

The following section presents a high-level overview of the system operation:

- Load all bookings from system database for required day

- Split bookings into groups or journeys

o Based upon the start and perceived end times of each booking in the

system, any bookings running concurrently are grouped together.

- For each journey determine optimal journey pattern a (s1)

o If unique location <=5 Use Combinetrics

o If unique locations > 5 Use Simulated Annealing

 If unique locations > 8 decrease cooling temperature

- Acquire required journey information (s2)

- determine optimal journey pattern b (including new locations)

o If unique location <=5 Use Combinetrics

o If unique locations > 5 Use Simulated Annealing

 If unique locations > 8 decrease cooling temperature

- Validate optimal journey pattern b based on effects on pattern a

o If b is valid add to list

- Check if journey can be made as a standalone trip, separate to others using

journey pattern a as a constraint model.

o If possible Add to list

The highlighted sections (s1 and s2) in the high-level overview may be operated

independently of each other. That is to say when acquiring information required to

make a new booking the system is optimizing an existing days journeys using

multi threading. By the time the acquisition process is complete the schedule for

that day will have been optimised ready to attempt the integration of the new

booking.

The system operates in a number of modes, dependant on the end users and uses

Web Services to enable the interrogation of a central database (located in South

East Wales). Where the user is a ‘scheme manager’ located in the local authority

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

586

(West Wales) the system enables the modification of existing bookings, such as

swapping the bus a booking takes place on, or the time, location and number of

people travelling. Call centre users (located in North Wales) who take requests for

bookings from end users face a wizard based interface as shown in Figure 1.

Figure 1 – Call Centre User Interface

Details of the journeys a bus is required to make can also be viewed via a web

page, as shown in Figure 2. Mobile communication technologies are used to send

the details of the schedule directly to each bus twice a day.

Figure 2 – Schedule Web View

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

587

Results

Over 2300 members have registered to use Bwcabus since August 2009. Table 1

presents a breakdown of the membership profile and highlights the popularity of

the scheme with users under 25 years of age and users over 60 years old.

Table 1 – Bwcabus Registered members Profile

 Number Percentage

of Total

Membership

Total Registered Users 2334

Active Users in last 12 months 528 23%

Members who have never used the service 1052 45%

Female members 1548 66%

Male Members 786 34%

Members under 25 511 22%

Members 25-44 414 18%

Members 45-59 349 15%

Members 60 or over 1060 45%

Members with a mobility impairment 168 7%

Figure 3 shows that Bwcabus membership levels are continuing to increase

despite the maturity of the scheme. On average 32 new members register each

month (2013-14 figures).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

588

Figure 3 – Growth of Registered Bwcabus members from August 2009 – May 2014

*The service area and number of vehicles was doubled in December 2011

In total 90,118 passenger journeys have been completed. Table 2 shows the yearly

breakdown of passenger numbers. 2013 was a record year for the Bwcabus

service, with 26,947 passenger journeys completed. 2014 data indicates a

continued growth in passenger journeys, an 11.5% increase recorded from January

– April 2014 as compared to the same period in 2013.

Table 2 – Bwcabus Passenger Journeys by Year of Operation (December 2009 – April 2014)

Year Passenger

Journeys

Number of

Operating Days

Average number

of passengers

per day

2009 4,544 109 41

2010 12,586 301 42

2011 13,246 304 44

2012 23,771 309 77

2013 26,947 306 88

2014** 9,024 101 89

Total 90,118 1405 63

*The service area and number of vehicles was doubled in December 2011

**Data for January to April 2014 only

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

589

The booking system performance is measured by the number of referrals

generated for manual scheduling as a proportion of the total number of demand

responsive bookings made. A referral is generated by the system, when it cannot

offer the passenger a time and a manual scheduler takes over to see if the journey

can be accommodated. Table 3 shows the system performance between1
st
 May

2013 – 30
th

 April 2014.

Table 3 – Bwcabus Booking System Performance: Booking Referrals by Month (1
st
 May 2013 –

30
th

 April 2014)

Month Number of Referrals Booking Rate (%)

May 285 77.63

June 194 83.12

July 210 81.01

Aug 283 78.47

Sep 202 85.11

Oct 194 85.48

Nov 225 86.13

Dec 176 84.87

Jan 208 82.51

Feb 243 82.25

Mar 362 77.69

Apr 213 83.24

Average 233 82.29

A survey of 100 Bwcabus passengers undertaken in July 2013 highlighted:

• 70% either agreed or strongly agreed that they are now making trips

that they would not have been able to make prior to the Bwcabus

• 74% of respondents agreed or agreed strongly that the Bwcabus has

provided them with better opportunities to access travel

• 42% either agreed or strongly agreed that they have reduced the

number of trips made by car since using the Bwcabus

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

590

Conclusions

The Bwcabus system overcomes a number of design challenges:

- Optimisation: how the system would optimise journeys to form the

schedule vs. the demands of passengers, who expect the bus to be

available when they want to travel.

- Manual Intervention: coping with manual [human] input which can

introduce journeys onto the schedule that break system rules and would

result in the system being unable to make logical sense of the journey

ordering.

- Operational Efficiency: joining up similar journeys (based on origin,

destination, direction of travel, journey time), so that passengers travel

together on a fewer number of bus trips, with constraints to ensure

maximum detour values (a factor of the original journey time) are not

exceeded.

The implementation of the Bwcabus scheduling system demonstrates a solution to

providing ‘dynamic’ demand responsive transport scheduling in rural areas. This

approach has proven that providing rural communities with an integrated rural

public transport network can increase the frequency of public transport use,

improve accessible by public transport, and encourage a reduction in car use.

References

Baugh, J ., G. K akiva ya, and J . Stone (1998) . Intractabili ty of the dia l-a-ride

problem and a mul tiobjec tive sol ution usi ng sim ulate d anne aling. Engineering

Optim ization 30 ,91 –123 .

Gerrard, M. (1974). Com parison of tax i and dia l-a-bus ser vice s. Transport ation

Scienc e 8, 85–101

Hall, C., H. An dersson, J . Lund gren, a nd P . Varbrand (2 009). Th e int egrated dial -

a-ride probl em. Publi c Transport 1, 39 –54

Uchim ura, K., H . Takahashi, and T. Saitoh (2002) . Demand r esponsi ve services in

hier archica l publ ic tra nsp ortation s ystem. IEEE Transac tions on Ve hicul ar

Technolo gy 51, 760 –766 .

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

591

Bullet TimeTabler Education – System demonstration

Pedro Fernandes · Armando Barbosa · Luis
Moreira

Keywords Automatic timetabling · Higher Education · Decision support system ·
Heuristics · Combinatorial optimization · Timetables

1 Introduction

The problem of creating timetables for Educational Institutions is typically defined
as the scheduling of a set of lessons involving teachers and students, on a set of
classrooms, in certain time slots, considering a number of constraints (Schaerf 1999;
Bonutti et al. 2012).

Throughout an academic year, in every Educational Institution, a considerable
number of days and human resources are spent trying to find, manually, a solution
that respects all the existing rules (a feasible solution) and that, at the same time, can
meet the expectations of all participants (a quality solution).

Due to its combinatorial nature and associated complexity, this is one of the most
studied problems by the scientific community and by the Operational Research area
in particular (Schaerf 1999; Murray et al. 2007).

This paper presents the product Bullet TimeTabler Education (BTTE), an auto-
matic and optimized generator of timetables. This software application is the result
of the work carried out by Bullet Solutions since 2005. BTTE has been updated and
improved over the years with the contributions from almost all the Portuguese Higher

Pedro Fernandes (�)
Bullet Solutions, Porto, Portugal
E-mail: pedro.fernandes@bulletsolutions.com

Armando Barbosa
Bullet Solutions, Porto, Portugal
E-mail: armando.barbosa@bulletsolutions.com

Luis Moreira
Bullet Solutions, Porto, Portugal
E-mail: luis.moreira@bulletsolutions.com

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

592

Education Schools (Universities and Polytechnic Institutes), as well as some foreign
institutions.

The BTTE software is successfully used in more than half of the Portuguese
Higher Education Schools, including the 10 major ones.

2 Bullet TimeTabler Education

2.1 Application suite

The Application Suite consists of software modules that exchange data with each
other. In this paper only two of them are mentioned: BTTE − automated generation
of timetables; and Bullet Calendar (BC) − edition of timetables and management of
events and resources.

BTTE is the intelligent centrepiece of the system, the calculation engine and
therefore it is the main focus of this paper.

Figure 1 shows the application diagram.

Fig. 1 Application diagram

BTTE is an innovative software application that automatically generates timeta-
bles for Higher Education Institutions. It combines and optimizes several objectives
in accordance with the interests of the Institution, optimizing schedules for teachers
and students as well as the classrooms’ occupation, among other goals.

BC is a module that allows an efficient daily management of all activities and
resources in an Educational Institution, through a decision support tool. This appli-
cation can work independently or integrated with BTTE.

Figure 2 shows the Application Suite’s workflow.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

593

In
st

itu
tio

n'
s

IS

Start

Export Data
to BTTE

Final
 Timetables ready
to be Published

B
TT

E

Data Insertion and
Configuration

Definition
of Hard and

 Soft Constraints

Automatic
Generation of an
Initial Feasible

Solution

Automatic
Optimization of the

Initial Solution

Send
Timetables to BC

Use BC?

Send
Timetables

 to the
Institution's IS

Use BC to Publish
Timetables?

B
C

Start
 (Manual Editions)

Creation of
Timetables

Edit
Timetables and Daily

Management of
Events

 and Resources
Publish Timetables

Send
Timetables

 to the
 Institution's IS

No

No

Fig. 2 Application Suite’s workflow

2.2 Model definition

BTTE does not schedule individual students, only groups. The assignment of stu-
dents to groups occurs in a separate process, where the students apply for the existing
timetables, choosing the most suitable ones. In some cases, the Institution itself de-
fines the association of students to the groups. The conflicts are based on the curric-
ula structure and the Portuguese situation can be included in the Curriculum-Based
Course Timetabling problem (Bonutti et al. 2012).

A complete analysis of the proposed model, the fundamental concepts and the
constraints (hard and soft) involved in the problem, can be found in our previous
work (Fernandes et al. 2013).

2.3 Building the timetable

A sequential heuristic is used to build an initial timetable from an empty timesheet.
Once the initial solution to the problem is found (the starting point), the optimiza-
tion phase is initiated; based on appropriate methods, better solutions are progres-
sively searched. In BTTE, the search for new solutions is based on neighbourhood
structures. Besides the different construction methods of neighbourhoods, the im-
plemented optimization algorithms go through three major phases: normal, intensi-
fication and diversification. Each of these phases is specified to achieve a particular
purpose, and their joint operation is the key to a final optimized outcome.

The heuristics were fully developed from scratch, adapted to the existing problem
and created model.

Figure 3 shows a screenshot of the optimization phase.
A complete description of the proposed algorithms (construction heuristics and

improvement heuristics) can be found in our previous work (Fernandes et al. 2013).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

594

Fig. 3 BTTE – Optimization phase

2.4 Editing the timetable

When the automatic generation stage ends, BTTE sends the timetables to BC, where
the user can edit timetables and manage events and resources.

BC is a module that is used continually, since it can easily respond to all the
changes that inevitably occur during the year. If, at any time, profound changes are
needed, the user can get back to BTTE and generate a complete solution from scratch,
or just generate the affected events keeping the rest of the solution untouched in BC.

Figure 4 shows a screenshot of a swap operation using BC.

Fig. 4 BC – Swap operation

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

595

Some of the main features of BC are: totally flexible agenda, with easy config-
uration of time slots and working hours; real-time information about the occupation
of the Institution’s resources; quick editing of timetables with several views; quick
analysis of all the possibilities and limitations of swapping a specific event; total flex-
ibility for changing any resource associated with any event; fast Web publishing of
timetables; exporting and printing schedules and dozens of different reports.

3 Conclusions

The main conclusions that can be extracted from the work developed are closely
linked with the commercial success of the BTTE application.

In our previous work (Fernandes et al. 2013), twenty real cases of Portuguese
institutions, users of BTTE, were analysed. The fact that results with good quality,
with savings of 85% on the time spent in the process, were obtained in all analysed
cases, leads to the conclusion that the algorithms used in the BTTE application have
a considerable level of robustness and ease of adaptation to the quite diverse real
scenarios that were used for their evaluation.

Recently, after testing different parametrisation of the heuristics and with the im-
provement of the data structures that support the product, very interesting results were
obtained. In some cases, optimized timetables were produced 10 times faster when
compared with the results presented in Fernandes et al. (2013). These results will be
published in the short term.

The implementation and use of the BTTE application allowed significant im-
provements in processes directly and indirectly related with the creation of timeta-
bles, resulting in additional productivity gains.

It was possible to observe the organization and centralization of information in
most of the institutions and the elimination of redundant information. An increase in
speed and efficiency in the workflow and in the information flow was also observed.

There is a better control of the process by top management, particularly the
real needs of the distribution of teaching service. Scenarios where the generation of
timetables was far from top management and dispersed by various departments, were
common in the past, resulting in the recruitment of resources that later on proved to
be unnecessary. There have been considerable savings in hiring teachers, after using
the BTTE application.

References

Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, visualization, and results. Annals of
Operations Research, 194(1), 59-70.

Fernandes, P., Pereira, C. S., & Barbosa, A. (2013). Automatic timetabling in Higher Education Institu-
tions: a real scenario and solution. In Proceedings of the 6th Multidisciplinary International Confer-
ence on Scheduling: Theory and Applications, 151-170.

Murray, K., Müller, T., & Rudová, H. (2007). Modeling and Solution of a Complex University Course
Timetabling Problem. Practice and Theory of Automated Timetabling VI, E. K. Burke and H. Rudová,
Eds. Springer-Verlag Berlin, 189-209.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review, 13(2), 87-127.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

596

Bullet TimeTabler Education: latest improvements towards
a more efficient timetabling

Pedro Fernandes · Carla Sofia Pereira ·
Armando Barbosa

Keywords Automatic timetabling · Higher Education · Decision support system ·
Heuristics · Combinatorial optimization · Timetables

1 Introduction

In a time where the need to reduce costs has become part of day to day reality of
all Educational Institutions, it is unthinkable to continue manually performing those
tasks that can be automated and optimized − the creation of timetables.

The problem of creating timetables for Educational Institutions is typically de-
fined as the scheduling of a set of lessons involving teachers and students, on a set of
classrooms, in certain time slots, considering a number of constraints (Schaerf 1999;
Bonutti et al. 2012).

Due to its combinatorial nature and associated complexity, the automatic creation
of timetables for Educational Institutions is a problem studied by the scientific com-
munity since the decade of 1960, and by the Operational Research area in particular
(Schaerf 1999; Murray et al. 2007). Over almost 50 years, hundreds of studies were
published, with many different formulations of the problem and solving techniques.

In our previous work (Fernandes et al. 2013), a new automatic and optimized
generator of timetables for Higher Education Institutions was presented − the prod-
uct Bullet TimeTabler Education (BTTE), which is successfully used in more than

Pedro Fernandes (�)
Bullet Solutions, Porto, Portugal
E-mail: pedro.fernandes@bulletsolutions.com

Carla Sofia Pereira
CIICESI-ESTGF, Instituto Politécnico do Porto, Felgueiras, Portugal
INESC TEC (formerly INESC Porto), Porto, Portugal
E-mail: carla.pereira@eu.ipp.pt

Armando Barbosa
Bullet Solutions, Porto, Portugal
E-mail: armando.barbosa@bulletsolutions.com

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

597

half of the Portuguese Higher Education Schools, including the 10 major ones. In
Fernandes et al. (2013), among other things, we describe a new model of the prob-
lem, the algorithms developed for solving it, and we also analyse twenty real cases of
Portuguese institutions, users of BTTE.

This paper presents important updates to the aforementioned previous work (Fer-
nandes et al. 2013) and the next research directions that were chosen by Bullet Solu-
tions to improve the BTTE software.

2 Recent work and achievements

2.1 Information structure

As indicated in Fernandes et al. (2013), the data structure created for BTTE allows
updating and manipulating all the existing data maps in real time. These data maps
are crucial to the developed heuristics (both constructive and improvement), because
they can, at any time, provide a clear view of the existing possibilities. They support
the classification of the most urgent event in each moment, they help defining which
is the best slot to place it, what is the impact of placing the event in other slots, which
are the best events to swap or move, just to name a few possibilities.

A deep reformulation of this data structure was made. Tests and validations that
proved to be redundant were eliminated, and the storage of the data maps was also
improved. All these changes were made keeping the same quality control.

In the end, the preliminary tests showed that the speed performance of the system
was improved by about 50%.

2.2 Algorithms

Besides the reformulation of the data structure, several improvements were made on
the heuristics.

As showed in Fernandes et al. (2013), there are two different calculation phases
in BTTE. First, a sequential heuristic is used to build an initial timetable from an
empty timesheet (construction heuristics). Once the initial solution to the problem is
found (the starting point), the optimization phase is initiated (improvement heuris-
tics); based on appropriate methods, better solutions are progressively searched. In
BTTE, the search for new solutions is based on neighbourhood structures.

In the construction phase, after the gains with the reformulation of the data struc-
ture were obtained, the focus of the research was directed to the implemented es-
cape methods (crucial to achieve feasible solutions in very restricted problems). After
analysing the critical points of the methods with the help of a performance profiling
software, it was clear that almost all of the calculation effort was concentrated on the
search for new possible allocations of the events previously placed. It was also pos-
sible to see that in the more complex cases, where some critical factors identified in
Fernandes et al. (2013) are involved, the calculation time needed to complete a single
move increased hugely. A new method to solve that type of cases was developed,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

598

with a performance about 5 times faster than the previous one (basically, for the very
complex cases, where speed is fundamental, a new possible move is now obtained 5
times faster than before).

In the improvement phase, a different parametrisation of the heuristics was tested.
In one of the attempts, by drastically reducing the number of neighbours created in
each iteration of the normal phase (the phase where it is supposed to explore the
solution space in a freer way), we found out that although the number of iterations
where the solution was not improved was much higher than before (as expected),
solutions of similar quality, in the end of the phase, were achieved 10 times faster.

2.3 Preliminary results

Besides the preliminary general tests made with some of the case studies presented
in Fernandes et al. (2013), Cases 18 and 20 were tested live with the clients. In the
two cases, this beta version of the heuristics needed respectively about 4 and 2 hours
to calculate an initial solution (half of the time than before); moreover, the first big
boost in the optimization phase ended about 5 times faster (about 4 hours for Case
18 and 24 hours for Case 20). These first live results, together with the other general
tests performed, confirmed that very promising results were already achieved.

3 Future work

Currently, we are finishing the development of a logging framework that will be at-
tached to the heuristics, which will provide access to crucial information. BTTE is
used by dozens of heterogeneous clients and the potential of the information that will
be collected, in real diverse scenarios, is huge, since it will allow much quicker adap-
tations in the future and the incorporation of additional intelligence in the critical
points of the heuristics: urgency criterion of the events, escape methods, neighbour-
hood structures and the right parametrisation of all the variables involved.

Soon, we will be able to analyse new indicators, such as the type of moves that
are more appropriated to restore the path of a feasible solution (escape methods), the
number of iterations where a best solution is found in each of the phases and in each
of the runs of the improvement heuristics, between many others. With the additional
knowledge that will be obtained from this data, crossing with other information al-
ready known such as the critical factors that introduce complexity into the problem
(Fernandes et al. 2013), we believe that it will be possible to place BTTE in an even
higher level of quality.

We expect to present the results and conclusions of our current work in the Con-
ference, not only the results obtained with the new heuristics after the conclusion of
the tests, but also, at least, some preliminary analysis of the information collected
with the logging framework, that we believe will provide precious information to
future research directions.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

599

References

Bonutti, A., De Cesco, F., Di Gaspero, L., & Schaerf, A. (2012). Benchmarking curriculum-based course
timetabling: formulations, data formats, instances, validation, visualization, and results. Annals of
Operations Research, 194(1), 59-70.

Fernandes, P., Pereira, C. S., & Barbosa, A. (2013). Automatic timetabling in Higher Education Institu-
tions: a real scenario and solution. In Proceedings of the 6th Multidisciplinary International Confer-
ence on Scheduling: Theory and Applications, 151-170.

Murray, K., Müller, T., & Rudová, H. (2007). Modeling and Solution of a Complex University Course
Timetabling Problem. Practice and Theory of Automated Timetabling VI, E. K. Burke and H. Rudová,
Eds. Springer-Verlag Berlin, 189-209.

Schaerf, A. (1999). A Survey of Automated Timetabling. Artificial Intelligence Review, 13(2), 87-127.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

600

A Web-Software to handle XHSTT Timetabling
Problems

Abstract This work presents a Web-Software to handle XHSTT timetabling
problems. The XHSTT format is complex and virtually only timetabling re-
searchers are able to work with this file format. The software goal is to ab-
stract the user from XHSTT knowledge and make any person able to specify
and solve timetabling problems through XHSTT format. This software may
popularize this file format and aid the new real world instances specification.

Keywords Timetabling · XHSTT format · Web-Software

1 Introduction

The diversity of School Timetabling models encountered around the world mo-
tivated the definition of an XML format (XHSTT) to express different entities
and constraints considered when building timetables [6]. Based in this format
definition and aiming to stimulated the research in this area, the Third Interna-
tional Timetabling Competition (ITC2011) occurred in 2012 [5]. It motivated
the development of several efficient algorithms for Timetabling problems [2,7,
1].

A problem faced in timetabling research is the gap between research and
practice - many algorithms are proposed and validated in fictitious instances of
the problem. Additionally, many of these algorithms as the ones developed for
ITC2011 does not implement an intuitive user interaction mode. This makes it
difficult to apply these algorithms to solve real problems. Thus, the objective
of this paper is to describe a Web-Software developed to assist the specification
of XHSTT timetabling problems and the solution of these problems through
recognized quality solvers.

Systems and Computing Department
Federal University of Ouro Preto
Ouro Preto, Minas Gerais, Brazil 35400-000

George H.G. Fonseca · Thaise D.
Delfino · Haroldo G. Santos

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

601

2 XHSTT format

XHSTT format was proposed by Post et al. [6] to specify timetabling problems.
It is split into four main entities:

Times
Set of timeslots available for assignments;

Resources
Set of resources involved in the problem (usually teachers, classes and
rooms);

Events
Set of events that must be scheduled (usually lessons);

Constraints
Set of constraints that must be satisfied to a solution be feasible and/or
good.

A solution of an XHSTT specified problem consists in an assignment of
timeslots and resources to the events respecting the given mandatory cons-
traints and maximizing the attendance of desirable constraints. A detailed
explanation of the file format is presented by Kingston [3].

3 Software User Interface

The developed software provides a HTML interface for the user to specify any
instance of timetabling problem in XHSTT format. The interface design of
the software was made intending to find an equilibrium point between lear-
ning curve and similarity to the XHSTT format. After specified, the XHSTT
modeled problem may be submitted to the ITC2011 winner solver [2]. Figure 1
presents the general interface of our software and the automatically generated
entities of XHSTT file in the instance creation.

Note that some entities creation were automated intending to make easier
for the user to operate the software. As one can see in Figure 1, the ele-
ments TimeGroups, ResourceGroups and EventGroups are created automat-
ically. The Times specification is made based only on the number of days in
the schedule and the number of timeslots by day. The concept of Role was
also abstracted from the user. Our software only allows the user to create two
roles for an event: Teacher and Room, denoted respectively as 0 and 1.

After initializing an instance, the user should specify the time-slots availa-
ble for the assignment. Figure 2 presents the automated Times entity creation
through our software.

The next step in XHSTT instance generation through our software is the
available resources input. The resource creation through our system is quite
easy. We consider only three types of resource: classes, teachers and rooms. To
create any of them, the user interface is similar as follows at Figure 3.

Defined the available time-slots and resources, one needs to specify the
events to be scheduled. Figure 4 presents the automated Event entity creation
through our software.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

602

Fig. 1 Main user interface of software and XHSTT tags generated when a new instance is
created.

Fig. 2 Times entity through our software.

Fig. 3 Resource entity creation through our software.

After specify the time-slots, resources and events, the user should input
the constraints to his problem. To handle the constraints entities, we create
one window for each constraint from XHSTT format. Figure 5 presents the
automated Constraint entity creation with our software, specifically an Avoid
Unavailable Times Constraint.

At this point the whole instance is specified and ready to be solved. The
user may also change any information at any moment. Now the user should
specify the execution time limit and the solver for the instance as Figure 6
points out. After the specified running time the software will automatically
generate a HTML page containing the planning timetables by resource and by
event as well as the violated constraints.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

603

Fig. 4 Event entity creation through our software.

Fig. 5 Constraint entity creation through our software.

Fig. 6 Instance solution through our software.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

604

4 Concluding Remarks

This paper presented a Web-Software for handling XHSTT timetabling prob-
lems. The software is available at https://sites.google.com/site/georgeh
gfonseca/software/timetabler. We invite the interested reader to use and
contribute to our software. The proposed software aims to be easy to use, even
by people who does not know about the XHSTT format. Indeed the great ma-
jority of people responsible by the timetabling in schools does not know yet
about this format. In this sense the software may also help to popularize this
file format to express timetabling problems.

The software may also assists researchers and practitioners to contribute
with new real instances of the problem from their institutions.

As future research we suggest to:

– Introduce more solvers to the software;
– Evaluate the user experience with the software;
– Improve the usability of the software;
– Integrate this software with HSEval evaluator software [4].

References

1. Fonseca, G., Santos, H.: Variable neighborhood search based algotihms for high school
timetabling. Computers and Operational Research (2014)

2. Fonseca, G., Santos, H., Toffolo, T., Brito, S., Souza, M.: A sa-ils approach for the high
school timetabling problem. Proceedings of the ninth international conference on the
practice and theory of automated timetabling (PATAT 2012) pp. 493–496 (2012)

3. Kingston, J.H.: A software library for school timetabling (2012). Available at http:

//sydney.edu.au/engineering/it/~jeff/khe/, May 2012
4. Kingston, J.H.: The hseval high school timetable evaluator (2014). Available at http:

//sydney.edu.au/engineering/it/~jeff/hseval.cgi, February 2014
5. Post, G., Di Gaspero, L., Kingston, J.H., McCollum, B., Schaerf, A.: The third interna-

tional timetabling competition. In: Proceedings of the 9th International Conference on
the Practice and Theory of Automated Timetabling (2012)

6. Post, G., Kingston, J., Ahmadi, S., Daskalaki, S., Gogos, C., Kyngas, J., Nurmi, C.,
Musliu, N., Pillay, N., Santos, H., Schaerf, A.: XHSTT: an XML archive for high school
timetabling problems in different countries. Annals of Operations Research pp. 1–7

7. Sorensen, M., Kristiansen, S., Stidsen, T.: International Timetabling Competition 2011:
An Adaptive Large Neighborhood Search algorithm, pp. 489–492 (2012)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

605

https://sites.google.com/site/georgeh
gfonseca/software/timetabler
http://sydney.edu.au/engineering/it/~jeff/khe/
http://sydney.edu.au/engineering/it/~jeff/khe/
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi

A
Salwani Abdullah, 568

Marco Aldinucci, 472

Panayiotis Alefragis, 40, 495

Cevriye Altıntaş, 434

Olinto C. B. Araújo, 469

Taha Arbaoui, 438

Shahriar Asta, 434, 442

Jason A. D. Atkin, 62, 446, 462, 485

Masri Ayob 544

B
Niels-Christian Fink Bagger, , 454
Armando Barbosa, 592, 597

Thomas Anung Basuki, 179

Michele Battistutta, 53

Christopher Bayliss, 62

Bernard Beitz, 252

Una Benlic, 462

Lisa Katharina Bergmann, 82

Alex Bonutti, 459

Jean-Paul Boufflet, 438

Andrea Bracciali, 472

Christos Braziotis, 579

Alexander E. I. Brownlee, 462

Peter Brucker, 408

Luciana S. Buriol, 469

Edmund K. Burke, 446, 462, 465, 472, 516

Yuri Bykov, 579

C
Matilda Camitz,

Juan Castro-Gutierrez, 485

Sebastián Cea, 470

Sara Ceschia, 554

Owen Clark, 584

Santiago E. Conant-Pablos, 505

Richard Conniss, 465

Tim Curtois, 465

Oliver Czibula, 102

D
Balázs Dávid, 128

Patrick De Causmaecker, 408, 554

Fabio De Cesco, 459

Tim De Feyter, 292

Geert De Maere, 62, 446

Thaise D. Delfino, 601

Emir Demirović, 142

Mohamad Djahanbakhsh, 2

Árton P. Dorneles, 469

Guillermo Durán, 470

E
Matthias Ehrgott, 366

Michael G. Epitropakis, 472

F
Pedro Fernandes, 592, 597

Kathrin Fischer, 82

George H.G. Fonseca, 601

Geoffrey Forster, 2

G
Christos Gogos, 40, 495

Dries Goossens, 167

George Goulas, 40, 495

Alfian Akbar Gozali, 179

Tal Grinshpoun, 188

Hanyu Gu, 102

Mario Guajardo, 470

Marie-Anne Guerry, 292

Aldy Gunawan, 202

H
Ryan Hamilton-Bryce, 218

Zdeněk Hanzálek, 561

Paul Harper, 539

Stefaan Haspeslagh, 554

Ali Hmer, 233

Han Hoogeveen, 476

Efthymios Housos, 40, 495

Kewei Hu, 438

I
Hagai Ilani, 188

Author Index .

450

450

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

606

Jonas Ingels, 479

J
Christian John, 252

K
Daniel Karapetyan, 485

Graham Kendall, 544

Jeffrey H. Kingston, 269, 489

Andreas Klinkert, 493

Vasileios Kolonias, 495

Komarudin, 292

Miklós Krész, 128

Simon Kristiansen, 498

Leo G. Kroon, 11

Jari Kyngäs, 309

Nico Kyngäs, 309

L
Jesper Larsen, 454, 533

Hoong Chuin Lau, 202, 318

Thomas Lepich, 252

Rhyd Lewis, 539

George Lilley, 309

Richard Martin Lusby, 533

M
Broos Maenhout, 479, 502

Dulce J. Magaña-Lozano, 505

Gábor Maróti, 11

Barry McCollum, 218, 512

David McGillicuddy, 508

Paul McMullan, 218

Mustafa Mısır, 318

István Módos, 561

Reinhard Möller, 252

Luis Moreira, 592

Aziz Moukrim, 438

Malek Mouhoub, 233

Ahmad Muklason, 512

Nysret Musliu, 142, 459

Moritz Mühlenthaler, 330

N
Henrik Nilsson, 508

Nina Nöth, 347

Kimmo Nurmi, 309

O
Gabriela Ochoa, 516

Andrew Olden, 584

Johannes Ostler, 359

Ender Özcan, 434, 442, 505, 512

P
Ben Paechter, 8

Marc Paelinck, 62

Andrew J. Parkes, 485, 508, 512

Carla Sofia Pereira, 597

Sanja Petrovic, 465, 579

Antony E. Phillips, 366

Nelishia Pillay, 380, 527

Gerhard Post, 521

Emily Potts, 472

R
Christopher Rae, 527

Troels Martin Range, 533

Jordan Rickman, 536

Jǐŕı Rousek, 541

Elizabeth Rowse, 539

Hana Rudová, 541

Aaron Russell, 102

David M. Ryan, 366

S
Nasser R. Sabar, 544, 568

Guillaume Sagnol, 565

Thea Salter, 309

Carlos Sánchez, 549

Haroldo Gambini Santos, 397, 601

Denis Sauré, 470

Andrea Schaerf, 53, 459, 554

Thomas Schlechte, 565

Martin Schoenmaker, 521

Elad Shufan, 188

Jan Smejkal, 561

Pieter Smet, 292, 408

Katie Smith-Miles, 10

Janniele Soares, 397

Matias Sørensen, 498, 557

Frits Spieksma, 167

Radoslav Štefánik, 541

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

607

Thomas R. Stidsen, , 454, 498, 557
Premysl Šucha, 561

Elmar Swarat, 565

T
Nguyen Thi Thanh Dang, 554

Jonathan Thompson, 539

Jimmy Tirtawangsa, 179

Túlio A. M. Toffolo, 397, 420

Ayad Turky, 568

Dietmar Tutsch, 252

U
Tommaso Urli, 53

V
Roman Václav́ık, 561

Christos Valouxis,40

Egbert van der Veen, 574

Sam Van Malderen, 420

Tim van Weelden, 476

Greet Vanden Berghe, 292, 408, 420

Mario Vanhoucke, 502

Lucas P. Veelendurf, 11

Nikolaos Voros, 40

W
Cameron G. Walker, 366

Rolf Wanka, 330

Tony Wauters, 420

Peter Wilke, 347, 359

John R. Woodward, 462

Y
Jay Yellen, 536

Tuncay Yiğit, 434

Zhi Yuan, 202

Z
Gonzalo Zamorano, 470

Yakov Zinder, 102

Konstantinos G. Zografos, 35

Sebastian Zurheide, 82
450

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

608

exo
Stamp

	Insert from: "All_5_Plenary.pdf"
	Insert from: "All_4_SystemDemos.pdf"
	Insert from: "5_29.pdf"
	Introduction
	XHSTT format
	Software User Interface
	Concluding Remarks

	Insert from: "All_38_ExtendedAbstracts.pdf"
	Insert from: "15_62.pdf"
	Introduction
	Designing an Automated Pre-Departure Sequencer
	Conclusions

	Insert from: "All_2_FullPapers.pdf"
	Insert from: "25_58.pdf"
	Introduction
	Integer Programming Formulation for the TUP Problem
	Dantzig-Wolfe Reformulation
	Branch-and-Price
	Computational Experiments
	Conclusions and future work
	Acknowledgements

	Insert from: "23_59.pdf"
	Introduction
	The Multi-Mode Resource-Constrained Multi-Project Scheduling Problem
	The Proposed Algorithm : Overall Working
	Computational Experiments
	Conclusions and Future Works

	Insert from: "18_25.pdf"
	Introduction
	Background
	The Connectedness of Clash-free Timetables
	Results
	Conclusions

	Insert from: "16_15.pdf"
	New Bookmark

	Insert from: "15_48.pdf"
	Introduction
	The personnel rostering model and three examination criteria
	The algorithm
	Experimental results
	Conclusion and future research

	Insert from: "04_37.pdf"
	Introduction to exam timetabling at universities
	Literature review on examination timetabling
	A new linear mixed-integer model for exam timetabling
	Experimental results
	Summary and outlook

	Insert from: "1b_14.pdf"
	The System

	New Bookmark

