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Passenger Oriented Railway Disruption Management
By Adapting Timetables and Rolling Stock Schedules
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Abstract In passenger railway operations, unforeseen events require railway
operators to adjust their timetable and their resource schedules. The passen-
gers will also adapt their routes to their destinations. When determining the
new timetable and rolling stock schedule, the railway operator has to take
passenger behavior into account. The capacity of trains for which the operator
expects more demand than on a regular day should increase. Furthermore, at
locations with additional demand, the frequencies of trains serving that station
could be increased.

This paper describes a real-time disruption management approach which
integrates the rescheduling of the rolling stock and the timetable by taking the
changed passenger demand into account. The timetable decisions are limited
to additional stops of trains at stations at which they normally would not call.
Several variants of the approach are suggested, with the difference in how to
determine which additional stops should be executed.

Real-time rescheduling requires fast solutions. Therefore a heuristic ap-
proach is used. We demonstrate the performance of the several variants of our
algorithm on realistic instances of Netherlands Railways, the major railway
operator in the Netherlands.
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1 Introduction

In passenger railway operations, unforeseen events (such as infrastructure mal-
functions, accidents or rolling stock breakdowns) can make parts of the railway
infrastructure temporarily unavailable. Then it is not possible to operate the
timetable, rolling stock schedule and crew schedule as planned. Within min-
utes, or even better, seconds, a new timetable and new resource (rolling stock
and crew) schedules must be available. In Cacchiani et al. [2] an overview is
given of recovering models and algorithms to solve these rescheduling steps. In
this overview it becomes clear that, although the schedules are interdependent,
most research focuses on rescheduling one of the schedules at a time. By the
complexity of the rescheduling problems, there is not enough time to solve the
integrated problem. In this paper we partly integrate the rescheduling of the
rolling stock plan and the timetable. Our particular focus lies on passenger
service, and we take passenger behavior explicitly into account.

We propose a fast passenger oriented rolling stock rescheduling approach
which allows to slightly adapt the timetable. Current literature on integrated
rescheduling of the timetable and the rolling stock schedule is scarce. Adenso-
Diaz et al. [1] and Cadarso et al. [3] did research on integrated rescheduling
of the timetable and rolling stock on cases of the Spanish railway operator
RENFE. Like the main focus of our paper, Cadarso et al. [3] take the dynam-
ics of the passenger behavior into account. However, the fundaments of the
approach in the current paper are from Kroon et al. [8]. In Kroon et al. [§]
the focus is on improving passenger service by considering passenger behavior
while rescheduling the rolling stock. Kroon et al. [8] use an iterative proce-
dure for rescheduling the rolling stock and evaluating the resulting passenger
behavior which is inspired by the iterative framework of Dumas and Soumis
[5]. Changing the timetable can also improve the passenger service. Therefore
we extend the approach of Kroon et al. [8] by allowing the timetable to be
slightly adapted as well.

It is important to focus on the passenger service since a disruption does not
only affect the timetable and the resource schedules, but also the passengers.
However, for railway operators without a seat reservation system it is difficult
to reschedule the passengers. The passengers will make their new travel plan
by themselves. If they had planned to take a train which is canceled due
to the disruption, they will decide not to travel or to reroute themselves.
Rerouting of passengers means that they take other trains to their destination
than originally planned. This does not necessarily require the passengers to
take a detour: They can also take a later train on the same line.

By the changed passenger flows, the disruption causes changes in the de-
mand for seats. Therefore, a rolling stock rescheduling approach to handle a
disruption must take the modified passenger flows into account dynamically,
and not the passenger flows of a regular day. For example, since some passen-
gers will take a detour, additional capacity on the detour routes is necessary.
One way to handle this is to increase the capacity of the trains on this route.
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Another option is to increase the capacity by inserting more train services or
by letting trains make additional stops.

The consequences of the timetable adaptations may not turn out to be
advantageous for all passengers. For example, an additional stop of a train will
delay the train with a few minutes. As a consequence, the original passengers
of the train will get an additional delay in favor of reducing the delay of the
passengers at the station at which an additional stop is made. The small delay
of the train can even lead to a large delay for the passengers if they miss
their transfer at a later station. The railway operator has to make trade-offs
between the different consequences for the passengers.

In this research we limit the timetable decisions to adapting the stopping
patterns. Other timetable decisions to influence the passenger flows, for ex-
ample by inserting additional trains, are left out since an additional train
requires the railway operator also to adapt the crew schedules. By adapting
the stopping patterns only, the crew schedule remains feasible.

Delay management, which consist of deciding on whether or not trains
have to wait for delayed connecting trains, is another problem in which slight
timetable adaptations influence the passenger flows. Delay management is a
hard problem on its own and thereby not considered in our approach. We refer
the interested reader to Schachtebeck and Schoébel [10], Kanai et al. [7] and
Dollevoet et al. [4] for recent work on delay management approaches.

The framework of our rolling stock rescheduling approach is discussed in
Section 2. In Section 3 we show a relaxation of the model discussed in Section
2. Instead of solving the relaxation, we make use of an iterative procedure of
which in Section 4 up to Section 7 the components are explained. Results of
different variants of our approach, based on a scenario in the Netherlands are
discussed in Section 8, and Section 9 concludes this paper.

2 Rolling stock and timetable rescheduling with dynamic passenger
flows

The performance of the disruption management process investigated in this
paper arises from the interaction of 3 factors: (i) the timetable, (ii) the rolling
stock schedule (seat capacity), and (iii) the passenger behavior.

We consider disruptions where passenger behavior has a large impact on the
performance of the railway system if the timetable and rolling stock schedule
are not changed. Examples are disruptions where certain tracks are blocked for
a number of hours. Passengers react to these disruptions by finding alternative
routes to their destinations. However, the capacity on these alternative routes
can be limited, resulting in overcrowded trains and thereby longer dwell times
and delays.

Two ways to handle the increased demand on the alternative routes are
to enlarge the capacity of the trains and to adapt the timetable. Adapting
the capacity of the trains alone is not always enough. For example, it can be
impossible to increase the capacity of a train by lack of time and/or reserve
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rolling stock or due to limited platform lengths. Therefore, timetable adap-
tations such as adding extra train services, rerouting trains or adding extra
stops for trains are worthwhile as well.

By adapting the timetable, the railway operator can influence the passenger
flows by providing new alternative travel routes and by influencing the demand
for certain trains. For example, a train can make an additional stop at a station
to give passengers at that station an additional, earlier, travel option to their
destination and to decrease the demand for the next train calling at that
station and travelling in the same direction.

In this research we limit the timetable adaptations to adaptations of the
stopping patterns of trains. A stopping pattern of a train indicates the stations
where the train makes a stop. A stopping pattern can contain, next to the
scheduled stops, also new stops at stations where the train did not have a
scheduled call.

To make a new rolling stock schedule and timetable for the remainder of
the day, we assume that the complete characteristics of the disruption are
revealed at the moment the disruption starts. For example, at that time, the
exact duration of the disruption is known.

Then, a general framework for rescheduling the rolling stock and timetable
by considering the passenger behavior based on the model of Kroon et al. [§],
with the difference that now also decision variables for the timetable decisions
are included, can be stated as follows:

min ¢(z) + d(y) + e(2) (1)
subject to z € Z (2)
T e X, 3)
y=flz,2)€y (4)

Here Z is the set of all possible timetables given the disruption, X, is the set of
all possible rolling stock schedules matching with timetable z, and Y is the set
of feasible passenger flows. The function f(x, z) returns the emerging passenger
flow for a given timetable z € Z and rolling stock schedule x € &,. Note that
the chosen timetable z and rolling stock schedule z uniquely determine the
passenger flow y by the function f. This means that the only real decision
variables are the rolling stock schedule x and the timetable z.

The objective function consists of three terms. The function ¢(z) gives the
system related costs of a rolling stock schedule, which can also be seen as the
rolling stock rescheduling costs. The function d(y) gives the service related
costs of a passenger flow. The function e(z) that gives the system related costs
of a timetable, so the timetable rescheduling costs. The highest priority is
given to assigning at least one rolling stock unit to each train, to prevent the
train to be cancelled by lack of rolling stock. Such cancellations will not only
have a large negative influence on the passenger flows, but also make the crew
schedule infeasible.
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Fig. 1 Iterative procedure for solving the rolling stock rescheduling problem with dynamic
passenger flows.

2.1 Iterative Procedure

The optimization model (1)-(4) is very difficult to solve directly, mainly due
to the complex structure of the objective function f. We are not aware of
any algorithmic framework that would be able to handle realistic instances of
(1)-(4). Therefore we propose an extension to the iterative heuristic of Dumas
and Soumis [5] and Kroon et al. [8]; the approach is sketched in Figure 1.

The input of our algorithm consists of the original (i.e., undisrupted) time-
table, the original rolling stock schedule as well as a list of train services that
must be cancelled as an immediate reaction to the disruption. The removal of
these inevitably cancelled services gives the initially modified timetable.

In each iteration, we evaluate the passenger flows by using a simulation
algorithm. The simulation is based on the previous iteration’s timetable and
rolling stock schedule. Here the rolling stock schedule is only needed because it
determines the capacities of the trains. We use the simulation model introduced
by Kroon et al. [8]. The details of this simulation model are summarized in
Section 4. Note that the first iteration uses the initially modified timetable,
and assumes that each train has the same capacity as in the original schedule.

The passenger simulation pinpoints the trains with insufficient capacities.
The rolling stock rescheduling model computes a new schedule based on these
findings, balancing it with other criteria, such as operational costs. For details
we refer to Section 5.

After another round of passenger simulation, we evaluate which adapta-
tions of the timetable could potentially improve the service quality. Each indi-
vidual adaptation is a minor change, such as requiring a train to make an extra
stop. Therefore we can assume that the just computed rolling stock schedule
remains feasible. We describe several variants for finding the most promising
timetable adaptation in Section 6. Having decided on the timetable, the next
iteration will start by launching a passenger simulation.

Our method differs from the framework of Kroon et al. [8] by adding the
timetable adaptation step to the loop. Since the passenger flows can be heavily
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impacted both by a new rolling stock schedule and by an adapted timetable,
we carry out passenger simulations after each of them.

The iterative approach is purely heuristic; it does not necessarily converge,
and has no optimality guarantee. Motivated by the limited time in real-life
applications, we terminate our algorithm after a certain number of iterations,
and we report the best solution found. In addition, we compute lower bounds,
described in Section 7, in order to be able to judge the quality of the solution.

3 Operator control

The rescheduling process may result in a better outcome if the operator can
directly influence the passengers’ behavior by appropriately assigning them to
the train services (rather than letting the passengers choose their routes). We
call this situation operator control. In this section we describe an optimization
model for operator control which is a relaxation of the model (1)-(4). We are
not going to use this model in our computational tests, since it is a computa-
tionally large model and we do not want to assume operator control. However,
we still want to present this relaxation of the model to give an idea about its
complexity, and thereby justifying our use of an iterative procedure.

We split all timetable services into trips ¢t € T representing a movement of a
train between two consecutive planned stops. The main decision for the rolling
stock schedule is to assign compositions to trips, where a composition consists
of one or more combined train units. Let G; be the set of all compositions g
which can be assigned to trip ¢, and the capacity of composition g is denoted by
Cap,. Binary variables x; 4, indicate whether composition g is used (x4 = 1)
for trip ¢ or not (x4 = 0).

For the timetable decisions every trip t € T has a set J; of possible stop-
ping patterns for calls at the intermediate stations. Here a stopping pattern
indicates a sequence of intermediate stations at which the train makes an ad-
ditional stop. Binary variables z; indicate whether stopping pattern j is used
(zj = 1) or not (z; = 0).

A passenger p € P should take a path from its origin to its destination
within his/her proposed deadline, where a path itself is a sequence of rides
on trains between two stations. Let KP be the set of all paths that passenger
p € P could take and let K? C KP? be all paths which passenger p could take
with (part of) trip ¢ in it. Note that the paths in K? and K? can be based on
every possible stopping pattern. Let Ji be the set of all stopping patterns j
matching with path k. The binary variable y;f is 1 if passenger p picks path
k and 0 otherwise. The parameter d’; indicates the associated cost (delay) of
passenger p taking path k.
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Then, in case of operator control, the model of (1)-(4) can be relaxed by:

min o)+ Y Y yhdh +e(z) (5)

pEP kEKP

s.t. T € X, (6)
Z zj = Ve T (7)

JET:
dou=1 ¥p € P (8)

keKP
yp —2; <0 VpeP,Vke KP andVj€ Jp  (9)
Z Z yh < Z zygCapy, YVLET (10)

PEP keKP 9€G:

yr €{0,1} Vp € P and Vk € KP (11)
zj € {0,1} YVt e T and Vj € J; (12)

The objective function (5) is to minimize the total costs of the rolling stock
rescheduling, the passenger flows (sum of delays) and the timetable reschedul-
ing. Constraints (6) compactly summarize the constraints on the underlying
rolling stock rescheduling problem. These rolling stock decisions are influenced
by the chosen timetable z since there are some minimum process times required
in the rolling stock schedule. So, if some trips take longer than planned cer-
tain processes can become infeasible. Constraints (7) determine that for every
trip exactly one stopping pattern must be selected. Every passenger must pick
exactly one path, which is modeled by Constraints (8). Constraints (9) ensure
that only matching paths and stopping patterns can be chosen. The chosen
paths by the passengers should also match with the available capacity in the
trains which is modeled by Constraints (10).

Even this relaxation of the model of (1)-(4) is a complex model to solve
in a real-time environment by the interdependence between the rolling stock
and the timetable via the passenger flows. Therefore, we will solve the model
in (1)-(4) by an iterative procedure as discussed in Section 2.1.

4 Passenger flow simulation

The iterative procedure starts with a simulation of the passenger flows, and
each time the timetable or rolling stock schedule is updated a new simulation
of the passenger flow is necessary.

To keep the simulation tractable, all passengers with the same character-
istics (origin, destination and arrival time at the origin) are aggregated into
passenger groups.

To simulate the passenger flows we use the simulation algorithm as de-
scribed in Kroon et al. [8]. It is important to mention that this is a deter-
ministic simulation algorithm to calculate the emerging passenger flows. This
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means that, given a timetable and rolling stock schedule, there is a uniquely
defined resulting passenger flow. Here we shortly summarize the assumptions
of the model as described in Kroon et al. [8]. For more details we refer to that
paper. We emphasize that the approach is modular, which allows us to replace
the simulation model by any other simulation model to model the passenger
behavior.

4.1 Assumptions

For the simulation of passenger behavior, Kroon et al. [8] make assumptions on
three fundamental issues: (¢) What information is available to the passengers?
(1) Which traveling strategy do passengers apply to the available information?
and (4#¢) How do passengers interact?

Information available for the passengers

It is assumed that passengers always know the most recent timetable. This
means that if the timetable is updated due to a disruption, they know which
trains are canceled, which trains make additional stops, and which trains are
delayed. Passengers do not know the future timetables, so they cannot antici-
pate on cancellations, delays and additional stops before the disruption occurs.
Furthermore, they do not know anything about whether or not they fit in the
trains they would like to take.

Strategy of the passengers

Each passenger has a traveling strategy. This strategy decides for the passenger
what will be the preferred path to the destination given the most recent time-
table. In Kroon et al. [8] all passengers have the same strategy. In our research
we also use this single strategy. The used strategy is that passengers want
to reach their destination as early as possible. If several paths have the same
earliest arrival time, the passengers prefer the path with the least transfers
between trains. If we have multiple paths with the same earliest arrival time
and the same minimum number of transfers, the passengers will take the path
with the earliest departure time. It is worthwhile to mention that in practice
there is a more balanced trade off between transfers and travel time. It seems
to be highly unrealistic that passengers are willing to transfer 2 times to save
1 minute of travel time. Note that one could easily include other strategies as
well.

Each passenger wants to reach his destination before a certain deadline. If a
passenger is not able to reach his destination before the deadline, it is assumed
that the passenger gives up travelling by train. In this way it is modeled that
passengers are not willing to wait endlessly.
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Interaction between the passengers

If a train arrives, first passengers who want to leave the train get the option
to do so, then the passengers waiting at the platform who want to enter the
train compete for the available capacity in the train. It can happen that there
is not enough capacity for all passengers. Then it is assumed that the number
of passengers from each passenger group who actually board a train is relative
to the size of the group. This could lead to a fractional number of passengers
but it is assumed that the contribution of fractional flows are neglectable.

It is possible that not all members of a passenger group are able to board
the train: Some of them have to stay behind. We say that these passengers
are rejected by the train. In case of rejections, the passenger group is split
into two: those passenger who were able to board the train and those who
were not. The rejected passengers must find a new preferred path from their
current location, while the boarded passengers can just follow their previously
computed preferred path.

4.2 Evaluating the passenger flow

In this research we evaluate the passenger flows by the delays which passengers
face in comparison with their original expected arrival times and by the num-
ber of passengers who did not reach their destination within their set deadline.
In our experiments we try different ways to penalize delay minutes. In one set-
ting the delay minutes are penalized uniformly and in another setting longer
delays are penalized more, since one may argue that longer delays are worse
than several small delays. For passengers who are not able to reach their desti-
nation within their deadline we penalize passengers leaving the system by the
difference between the deadline and the expected arrival time of the intended
traveling path. For each passenger, his delay or penalty for not reaching his
destination within his deadline is called his inconvenience.

5 Rolling stock rescheduling

The rescheduling of rolling stock follows the procedure of Kroon et al. [8]. In
this procedure the rolling stock is rescheduled based on the model described in
Nielsen et al. [9] (which is an extension of Fioole et al. [6]). The basic decisions
in the model are to assign a rolling stock composition to each trip such that as
many of the passengers are accommodated. The difficulty of the rolling stock
rescheduling is that a composition consists of multiple combined train units.

During operations the operator can change the compositions by decoupling
or coupling units in the front or the back of the train. These operations are
called shunting operations. Shunting personnel must be arranged to facilitate
these operations. Therefore, changing the shunting operations also includes
new tasks for the shunting personnel, which is not preferred.
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Since a composition can consist of different types of train units, the order
in which they are combined within a composition matters (i.e. one could not
decouple a unit in the middle).

As discussed, the main objective of our approach is to prevent cancellations
caused by lack of rolling stock. Therefore we once determine how many trains
need to be cancelled due to lack of rollings stock. To do this we run the rolling
stock rescheduling approach on the initially modified timetable with the single
goal to find a feasible rolling stock schedule by minimizing the number of trains
without rolling stock. This means that we have only a penalty for trains which
do no get rolling stock assigned to them. All other penalties are set equal
to 0. The result shows how many trains need to be cancelled inevitably by
lack of rolling stock. In the rolling stock rescheduling steps we enforce the
number of cancelled trains to be equal to this to ensure that no more trains
than necessary are cancelled. Still the rolling stock rescheduling approach has
freedom in which trains it does not assign rolling stock to.

For all remaining rolling stock rescheduling steps, the model has two objec-
tives: It consists of a trade of between minimizing the rolling stock rescheduling
costs and the inconvenience for the passengers. The rolling stock rescheduling
costs are mostly based on how much the rolling stock schedule is changed.
For example one does not want to make too many new shunting operations,
since these new shunting operations must be communicated (with a certain
probability of miscommunication) and it requires personnel to perform them.

The inconvenience for passengers is based on the latest simulation run
with the timetable and rolling stock schedule of the last iteration. Penalties
are defined for assigning a certain composition to a trip. The penalties are de-
termined by estimating the effect of the train capacities on the total passenger
inconvenience measured as discussed in Section 4.2.

Per trip the average inconvenience per passenger who was not able to
board the train is computed. To do this, per passenger group the difference in
inconvenience between passengers who were not able to board and passengers
who were able to board is determined. Then, the weighted (based on group
size) average of these differences is considered as the average inconvenience
per passenger who is not able to board the train. In the objective function
the number of seat shortages is multiplied with this average inconvenience per
rejected passenger. For more details we refer to Kroon et al. [8].

Kroon et al. [8] reported that the approach of updating the objective func-
tion could lead to cyclical behavior if the feedback from earlier iterations is
ignored. We follow the described exponential smoothing procedure in Kroon et
al. [8] (which is based on Dumas and Soumis [5]) to take feedback from earlier
iterations into account as well. We use the setting which performed best in
their case. This setting means that feedback from earlier iterations is weighted
for 35 percent.
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6 Timetable adaptations

The disruption management process admits timetable decisions in order to
better facilitate the passenger flows. In this paper we limit the allowed time-
table modifications to adding stops to timetable services.

In this paper, adapting the stopping patterns means that trains may call
at stations where they normally just pass through. Making an additional stop
results in new traveling options for some passengers but also in an increased
travel time for others. Therefore it is necessary to make a trade off between the
positive and negative effects of the changed stopping pattern. The objective of
this research is to minimize the sum of the delays of all passengers. Therefore,
we only allow timetable changes that do not increase the total delay of all
passengers. We assume that an additional stop will delay all further trips of
a train by a fixed number of minutes and that those delays will not influence
other train traffic.

The (greedy) procedure to adapt the stopping patterns goes as follows: (i)
we have a list of candidate timetable adaptations, (ii) we evaluate for each
candidate the consequences, (iii) we apply the timetable adaptation with the
most positive consequences.

First of all, this approach requires that in step (i) a list of candidate time-
table adaptations is given. The dispatchers can give this as input to the ap-
proach. In the extreme case, every timetable service is allowed to make an
additional stop at every station it passes.

The effect measured in step (ii) indicates how much the total delay of
the passenger will change if only that single timetable adaptation will be ap-
plied. Therefore, in step (iii) we limit ourselves to allow only one timetable
adaptation per iteration of the solution approach. If no candidate timetable
adaptation reduces the total delay of the passengers, no timetable change is
made.

For all candidate timetable adaptations, the consequences of applying the
adaptation needs to be computed. In Sections 6.1-6.4 we discuss several meth-
ods and approximations to compute these consequences. In Section 6.1 we
discuss a method to compute the exact effect of the additional stop. The exact
effect can be computed since we use a deterministic passenger flow simulation.
However, computing the exact effect can be time consuming. Therefore, we
also suggest a faster approximation algorithm in Section 6.2. Furthermore, we
introduce two heuristics in Sections 6.3 and 6.4 which are more transparent
for use in practice.

In the different variants we evaluate the effects of different candidate time-
table adaptations. We refer to train ¢ as the train of which the stopping pattern
an be adapated within the candidate timetable adaptation. Furthermore, the
station at which train ¢ will make the additional stop within the candidate
timetable adaptation is called station b.

21



10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

6.1 Exact effect of an additional stop (EXACT)

To determine the exact consequences of an additional stop, we need to run
the simulation algorithm which is discussed in Section 4 twice. First the sim-
ulation is performed with the current timetable and then the simulation is
performed with the timetable which results from the timetable adaptation.
From both simulations we get the total delay minutes of the passengers. The
difference between these two total delay minutes shows the consequences of
the candidate timetable adaptation. This approach measures the exact effect
of the additional stop and is called EXACT.

A variant of EXACT, denoted by EXACT¥*, will not use the current ca-
pacity of train ¢ in the simulation but the capacity of the largest possible
composition allowed for train i. The difference between this simulation and
the simulation of the current timetable will then not measure the exact effect
of the extra stop but the potential (which can be larger) effect of the addi-
tional stop. In this case it is left to the rolling stock rescheduling phase to
check whether it is possible to increase the capacity of train 1.

6.2 Estimated effect of an additional stop (EST)

In this section we introduce an approach to estimate the effect of an additional
stop. In this variant, both the positive and the negative effects of the additional
stop are considered. For all passengers their preferred path to their destination
is known. If we change the timetable by including an additional stop, some
passengers might get another preferred path to their destination.

Some passengers arrive earlier at their destination due to an additional
stop at their origin or destination. Other passengers might profit from the
delay of the train caused by the additional stop, since due to the delay they
were able to catch this train which departs earlier than the train they were
intending to take. All these passengers originally did not have train ¢ on their
preferred path, but in case the additional stop is executed they have train i
on their preferred path.

However, since the additional stop takes some time it also causes some
delays for passengers who had train 7 on their preferred path in the current
timetable. Due to the delay of train ¢ it can be that their preferred path
changes. Also if the preferred path does not change it can still mean that the
passengers are delayed if the trip on train ¢ was the final trip in their path.

To estimate the effect of the additional stop we compute for each passen-
ger his preferred path in the current timetable and the preferred path in the
timetable in which train ¢ makes an additional stop. The sum of all these dif-
ferences is our estimate of the consequences of the additional stop. Note that
this is an estimate since this method assumes that every passenger can take
his preferred path which might not be true by the capacity of the rolling stock.

We make variants of this approach by assuming different durations of the
additional stop in the determination of the shortest path. This means that
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we can use for the estimation of the effect another duration of the additional
stop than the real duration of the additional stop. For example, if we assume
a shorter duration of the additional stop, we over-estimate the potential effect
of the additional stop. However, maybe this will lead to a good optimization
direction. The duration of the extra stop used in the estimation approach will
be called the extra stop penalty.

6.3 Rule of thumb: Do not pass passengers who did not fit in a previous train
(PRACT?I)

If passengers did not fit in a train, then they have to wait for the next train
in the same direction. Especially for these passengers, since they were already
rejected, it is very frustrating if a train in their direction passes them without
stopping. A rule in practice could be that it is not allowed to pass a group
of passengers who were rejected by a previous train. This is an easy to use
rule of thumb. We will evaluate the performance of this rule which is called
PRACT1I.

To decide whether or not train ¢ needs to make an additional stop we have
to consider two other trains. The first considered train & is the last train which
arrived at station b before the passing time of train i at station b. If there were
passengers with destination b rejected to board train h at the departure from
the last station a before station b, train ¢ will make an additional stop at
station b to let these rejected passengers travel from station a to b.

The second considered train j (which is in most cases the same as train h),
is the last train which departed from station b in the same direction as train %
before train i passes station b. If there were passengers rejected to board train
7 at station b, train ¢ will make an additional stop at station b to let these
rejected passengers in.

Since we allow one timetable adaptation per iteration we have to make a
comparison on how effective the additional stop will be: Therefore, we sum
up the advantages for all passengers who were rejected to board train A in
station a or train j in station b. For the passengers rejected to board train h in
station a the advantage is measured by the difference between the arrival time
of train i at station b and the arrival time of the first train from a to b after
train ¢. For the passengers rejected to board train j in station b the advantage
is estimated by the arrival time of train ¢ at the first station after station b
where both trains h and ¢ call and the arrival time at the same station of the
first train departing after train ¢ from station b.

In this measurement we assume that all passengers are able to board train
1, so that train i is assumed to have infinite capacity. We do not use the actual
capacity since in the rolling stock rescheduling phase the capacity of train &
could be increased.
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6.4 Rule of thumb: including the negative effects PRACT2

The approach PRACT! based on a rule of thumb only considers the positive
effects of an additional stop. This results in a situation that even if only one
passenger may profit from the additional stop, the stop will be executed. In
another rule of thumb, PRACT2, the delay for passengers traveling by train
¢ caused by the additional stop is included. In this approach, the advantages
for passengers are measured in the same way as approach PRACTI, and the
inconvenience per passenger who travels by train ¢ at the moment train ¢
makes an additional stop at station b will be equal to a fixed parameter. This
parameter is equal to the duration of the extra stop plus an eventual penalty.
Note that for practitioners this rule requires more knowledge. In PRACT1 the
dispatchers only need monitor whether there are trains where some passengers
did not fit in the train. In PRACT?2 the dispatchers also need to know how
many passengers did not fit in the train, and how many passengers are in the
next train passing station b.

7 Lower bound

The proposed approach does not guarantee to converge to an optimal solution.
To consider the quality of our solutions, we check the gap between a lower
bound and the value of our solution. Depending on the nature of the disruption,
the lower bound on the rolling stock rescheduling costs will not differ that much
from 0, but the lower bound on the passenger delays can be quite interesting.
In this section we come up with a lower bound which takes the positive effects
of an additional stop into account.

This lower bound can be reached by assuming infinite capacity on all trains,
together with assuming that all extra stops are executed and that an extra
stop does not cause any arrival delay.

To be more precise, in this lower bound all extra stops are executed and
the departure times at stations after the additional stop are delayed by the
time an extra stop will take, and all arrival times are kept the same. This way
we ensure that no passenger faces an arrival delay caused by the additional
stop and that passengers who may profit from a delayed train caused by an
additional stop still have the opportunity to enter the train. Then a simulation
run with infinite capacity on the trains and with the timetable as described
above gives a lower bound on the total passenger delay.

It can happen that passengers have an advantage by a delayed train since
they can pick a train earlier than their planned train. This must be considered
in the lower bound. Therefore we cannot just add the extra stops and leave
all departure and arrival times the same.

By delaying the departure times we have a lower bound which is valid for
both cases, with and without the extra stop. No one gets an arrival delay, and
some passengers arrive earlier since they have an extra travel opportunity by
the extra stop.
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This lower bound represents the delay of the passengers which the operator
cannot prevent by increasing the rolling stock capacities or adapting the time-
table. This delay is caused by the train services that are inevitably cancelled
due to the unavailability of infrastructure caused by the disruption.

8 Computational Results

We tested the proposed approach on instances based on cases of Netherlands
Railways (NS) which is the major railway operator in the Netherlands. In
these instances, a disruption, due to some blocked switches, caused that fewer
trains than normally can be operated on certain tracks.

8.1 Detailed case description

The instances take the busiest part the Dutch railway network into account
which is represented in Figure 2. The original passenger flows are constructed
conform a regular weekday of Netherlands Railways, which resulted in 15064
passenger groups with a total of about 450,000 passengers.

In almost each of the trajectories we have four Intercity trains per hour in
each direction. A Intercity train is a train which only calls at the larger sta-
tions. All intercity trains in this network are considered, furthermore the re-
gtonal trains, that stop at every station, between The Hague (Gv) and Utrecht
(Ut) are also considered.

For the rolling stock rescheduling, four types of rolling stock are available;
two types for regional trains and two types for intercity trains. The regional
train types can be coupled together, which leads to 5 possible compositions,
and the Intercity train types can also be coupled together in 10 different com-
positions.

In Figure 2 the dotted line represents the disrupted area. On those tracks
on a normal day each hour 4 Intercity trains and 4 regional trains run in each
direction. We constructed two instances with a disruption in the rush hours
between 7:00 A.M. and 10:00 A.M. In the first instance (ZTM1), 2 regional
trains per hour per direction are canceled. In the second instance (ZTM2)
also 2 Intercity trains per hour per direction are canceled. This means that in
instance ZTM1 in each direction 6 trains per hour still run between Gouda
(Gd) and The Hague (Gv), and only 4 trains per hour in each direction in
instance ZTM2.

8.2 Parameter settings

The objective function consists of system related costs for the timetable adap-
tation and the rolling stock rescheduling, and costs for the passenger delays.
For the timetable adaptations we do not consider any penalties other than
that we assume that an additional stop will delay a train by 3 minutes.

25



10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Fig. 2 Part of the Dutch railway network

Table 1 Rolling stock rescheduling costs

Type of costs value
New shunting operation 500
Changed shunting operation 500
Canceled shunting operation 100
Off balances at the end of the day, per unit 200
Seat shortage per seat per kilometer 0.1
Carriage Kilometers 0.0001

The rolling stock rescheduling costs are given in Table 1. Most important
is that the rolling stock schedule should not change too much from the original
plan, since changed plans require communication between the dispatchers and
the personnel, and a failure in this communication is easily made. Therefore we
introduce costs for having other shunting operations than planned. Changing
the shunting operations also includes new tasks for the shunting personnel,
which is not preferred. We consider the carriage kilometers as least important.

The passenger service costs consist of the passenger delay minutes as dis-
cussed in Section 4.2, where the penalties for passengers who left the system
because of not reaching their end station within their deadline are also mea-
sured in delay minutes.

The approach will make at maximum 15 iterations.

To solve the composition model of the rolling stock rescheduling we used
CPLEX 12.5. The test instances are run on a laptop with a Intel(R) Core(TM)
i7-3517U 1.9/2.4 Ghz and 4.0 GB RAM.
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Table 2 Results

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time
minutes costs solution (sec)

Instance ZTM1

(EXACT) 33526 55927 55874 53 4 4 563
(EXACT™) 33526 55927 55874 53 4 9 573
(EST Omin) 33526 57372 56818 554 3 3 349
(EST 1min) 33526 58857 58304 554 4 4 352
(EST 2min) 33526 57372 57318 53 5 9 352
(EST 3min) 33526 91534 90980 554 0 1 291
(PRACT1) 33526 64304 64251 53 3 4 282
(PRACT?2) 33526 64304 64251 53 3 4 307
(NO_STOP) 49626 91534 90980 554 - 1 235
Instance ZTM2
(EXACT) 110848 139588 136527 3061 3 3 456
(EXACT*) 110848 139588 136527 3061 3 8 427
(EST Omin) 110848 139630 136368 3262 3 4 352
(EST 1min) 110848 139630 136368 3262 3 4 315
(EST 2min) 110848 162228 159167 3061 2 6 351
(EST 3min) 110848 177123 173861 3262 0 1 291
(PRACT1) 110848 152062 149000 3061 4 4 320
(PRACT2) 110848 166356 163295 3061 3 7 326
(NO_STOP) 120373 177123 173861 3262 - 1 249
8.3 Results

This section provides the results of the two test instances. For the timetable
rescheduling part we had different approaches to decide which Intercity trains
should make an additional stop. We compare the effect of the different ap-
proaches on the final solution. We also compare our approach (which includes
the option to adapt the timetable) with the method of Kroon et al. [8] (which
does not have an option to adapt the timetable) referred to as (NO_STOP).
In the approach (EST) we estimated in the timetable rescheduling step the
effect of an additional stop. Within this estimation we discussed that we could
assume different lengths of the additional stops. This assumed length of the
additional stop is also called the extra stop penalty. In our experiments we
used 0, 1, 2 and 3 minutes for the extra stop penalty. Note that an extra stop
penalty of 0 minutes means that it is assumed that nobody faces negative
effects of the additional stop. Furthermore, note that the realized timetable
adaptation always includes a 3 minute delay caused by the additional stop.
In Table 2 we provide the best result found in the iterative procedure for
each of the variants of the approach. Note that the iterative procedure does
not necessarily converge to an optimal solution and thus the best solution can
be found at any iteration. Therefore, we included the number of the iteration
where the best solution was found. For each approach the lower bound as dis-
cussed in Section 7 is given. Furthermore, the table contains the value of the
objective function which consist of the sum of the rolling stock rescheduling
costs (by considering the parameters in Table 1) and the passenger inconve-
nience (measured in passenger delay minutes as discussed in 4.2). We also

27



10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

report how many extra stops are included in the timetable of the best result.
The computation time is measured in seconds and reports the computation
time over all 15 iterations, and not just the computation time up to the mo-
ment the best solution is found. The latter would not be fair, since beforehand
it is not known at which iteration the best solution will be found.

Performance

In the approach NO_-STOP based on Kroon et al. [8], timetable adaptations
were not allowed. Our results show that allowing the stopping patterns to
be adapted can reduce the passenger delays dramatically by about 25 to 35
percent.

From Table 2 we can deduce that the approach EXACT led in both cases
to the lowest passenger delay minutes and the lowest rolling stock reschedul-
ing costs. EXACT¥, the variant of the approach EXACT, reaches the same
solutions, but it takes longer to get there. The estimation approach works well
as long as we overestimate the positive effects of the additional stop by having
a lower extra stop penalty (0 or 1 min) than the realized delay (3 min).

The performance of the approach EST Omin is surprising. It underesti-
mates the negative effects and overestimates the positive effects of the addi-
tional stop but it is still able to reach solutions which do not differ much from
the solutions reached by the approach EXACT. In deciding on which train
should make an additional stop, the approach EST Omin assumes that an ad-
ditional stop does not cause any delay and thereby no one faces negative effects
of the additional stop. In every iteration an additional stop is introduced (by
assuming that every additional stop has at least some positive effect).

On the other hand, the bad performance of the approach EST 3min is also
surprising. Especially since in this approach the duration of the additional stop
in the estimation approach matches the realized duration of an additional stop.
However, this approach finds it never worthwhile to make an additional stop.
Since this approach does not consider the capacities of the trains, it does not
take rejected passengers into account. The EST approaches, thereby underesti-
mate the positive effect the additional stop could have for rejected passengers.
It seems that in EST Omin and EST Imin this underestimation is balanced by
the overestimation of the other positive effects, but in the EST 3min approach
the underestimation is not corrected by another overestimation.

The rules of thumb approaches PRACTI and PRACT?2 are outperformed
by our exact approach EXACT and by our estimation approaches EST Omin
and EST Imin. This shows that our more complex approaches are able to
come to better solutions.

Iterative behavior

In Figures 3 - 8 we show for six of the variants how the solution of the case
ZTM1 changes over the iterations. The black dot indicates the first solution
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and by arrows we indicate how the solution evolves. On the horizontal axis we
have the rolling stock rescheduling costs and on the vertical axis we have the
passenger delays. With the rolling stock rescheduling both the rolling stock
rescheduling costs and the passenger delays can change. However a timetable
adaptation only influences the passenger delays, and therefore, a vertical drop
or increase in the figure can most of the time be associated with a timetable
adaptation.

The EXACT approach has a quite clear converging path to its best solu-
tion by decreasing passenger delays and rolling stock rescheduling costs. The
solution of the approaches EST Omin and EST Imin first goes to solutions
with low passenger delays and low rolling stock rescheduling costs, but from
a certain moment, the passenger delays are increasing again. The approaches
EST 2min and PRACTI1 converge like the EXACT approach to their best
solution, but especially the solution of PRACT1 does not come close to the
solution of EXACT. The approach EST 8min has in every iteration the same
solution.

In Figures 9 and 10 the iterative behavior of our best performing variants
(EXACT and EST Omin) on case ZTM2 are given. All variants did not show
converging behavior for this case. The figures demonstrate that the EXACT
approach explores a smaller region of solutions. The approach EST Omin first
goes to solutions with large passenger delays, then gets to solutions with low
passenger delays and in the end it goes again into the direction of solutions
with high passenger delays.

Computation time

Our approach added a module which adapts the timetable to the iterative
procedure of the approach NO_STOP of Kroon et al. [8]. This means that we
assume that by the additional computations our approach cannot be faster
than the NO_STOP approach.
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Table 3 Results with passenger flow costs times 10

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method bound delay rescheduling stops of best time
minutes costs solution (sec)

Instance ZTM1

(EXACT) 335260 558793 55874 53 4 7 568
(EXACT™) 335260 558793 55874 53 4 14 541
(EST Omin) 335260 568737 56818 554 3 3 346
(EST 1min) 335260 583589 58304 554 4 4 351
(EST 2min) 335260 568737 56818 554 3 6 350
(EST 3min) 335260 910355 90980 554 0 1 363
(PRACT1) 335260 642566 64251 53 3 7 297
(PRACT?2) 335260 642566 64251 53 3 7 296
(NO_STOP) 496260 910355 90980 554 - 1 210
Instance ZTM2

(EXACT) 1108480 1363686 135920 4064 3 11 431
(EXACT*) 1108480 1363686 135920 4064 3 5 430
(EST Omin) 1108480 1375949 137189 3262 4 4 346
(EST 1min) 1108480 1366944 136368 3262 3 4 298
(EST 2min) 1108480 1593181 158992 3262 2 4 331
(EST 3min) 1108480 1741873 173861 3262 0 1 359
(PRACT1) 1108480 1473060 146900 4064 2 2 313
(PRACT?2) 1108480 1628519 162446 4064 3 12 293
(NO_STOP) 1203730 1741873 173861 3262 - 1 237

If we use the EXACT approach, an instance is solved in about double the
time of the NO_STOP approach. The other variants of the approach solve the
instances faster (within 6 minutes).

The first rolling stock rescheduling step, to determine the number of trains
without rolling stock, is carried out in about 80 seconds. Then, next rolling
stock rescheduling steps take 4 to 5 seconds per iteration. The timetable
rescheduling phase takes 8 to 15 seconds per iteration within the EXACT
approach, since multiple simulations must be carried out. The computation
time of the timetable rescheduling phase drops to 1 to 6 seconds per iter-
ation for the estimation approaches EST and to less than 1 second for the
approaches PRACT1 and PRACT2.

8.4 Additional tests

To see what happens with the solutions if we put more weight on the passenger
delays, we run all approaches also with an objective in which the costs of the
passenger flow is multiplied by 10. The results are presented in Table 3. The
results and the performance are almost similar to the results in Table 2. In
one third of the cases the rolling stock rescheduling costs are slightly higher
to reach lower passenger delays.

In a third test we experiment on how the approaches behave if we give
additional penalties to longer delays. In these tests we penalize delays between
15 and 30 minutes with an additional 5 minutes delay and delays longer than
30 minutes with an additional 10 minutes delay. Again one can see from the
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Table 4 Results with 5 minutes additional penalty for delays larger than 15 minutes and
10 minutes additional penalty for delays larger than 30 minutes

Solution Lower Objective Passenger Rolling stock Extra Iteration Computation
Method  bound delay rescheduling  stops of best time
minutes costs solution (sec)

Instance ZTM1

(EXACT) 36171 59342 55874 53 4 8 572
(EXACT™) 36171 59342 55874 53 4 8 563
(EST Omin) 36171 60777 56818 554 3 3 341
(EST 1min) 36171 62297 58304 554 4 4 348
(EST 2min) 36171 60777 56818 554 3 3 361
(EST 3min) 36171 94969 90980 554 0 1 360
(PRACT1) 36171 67684 64251 53 3 8 290
(PRACT?2) 36171 67683 64251 53 3 8 273
(NO_STOP) 52741 94969 90980 554 - 1 214
Instance ZTM2
(EXACT) 114988 144513 136527 3061 3 5 417
(EXACT*) 114988 144513 136527 3061 3 5 492
(EST Omin) 114988 144540 136368 3262 3 4 312
(EST 1min) 114988 144540 136368 3262 3 4 331
(EST 2min) 114988 167383 159167 3061 2 5 344
(EST 3min) 114988 182073 173861 3262 0 1 339
(PRACT1) 114988 155026 146930 3061 4 4 324
(PRACT2) 114988 167639 159563 3061 2 5 309
(NO_STOP) 124813 182073 173861 3262 - 1 201

results in Table 4 that these additional penalties do not influence the solutions.
In more than half of the cases, the best solution found is the same as in the
situation without these additional penalties (as presented in Table 2). For the
other cases the differences were not large.

These two additional tests show that our approach is not sensitive to
changes in the evaluation of the passenger inconvenience.

9 Conclusions and further research

In this paper we proposed a disruption management approach which integrates
the rescheduling of rolling stock and the adaptation of stopping patterns with
the aim of improving passenger service.

Computational tests are performed on realistic large scale instances of the
Dutch railway network. The two tested instances show that allowing the time-
table to be adapted can reduce the total delay of passengers by more than 20
percent without increasing the rolling stock rescheduling costs. We suggested
several variants of the approach, with the difference lying in the way of how the
timetable changes are evaluated. These variants lead to different results and
different computation times, but the results per variant are not quite sensitive
to the exact cost parameter settings.

Our solution approach does not necessarily converge to an optimal solution.
The lower bounds indicate that the gap between the solution and the lower
bound is decreased by allowing stopping pattern adaptations. However the gap
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is still significant, which is probably caused by the weak lower bound. This is
a topic for future research.

In future research we will incorporate other timetable decisions as well, for
example reroutings of trains. Furthermore we want to proceed with integrating
delay management decisions into the model, which will be quite challenging
since the delay management approach is already a difficult problem to solve
on its own.
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