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Abstract 

Task Scheduling is an important problem having many practical applications. More often than not, 

precedence constraints exist between tasks, and a common way to capture them is through 

Directed Acyclic Graphs (DAGs). A DAG might contain a great number of tasks representing 

complex real life scenarios. It might be the case that logical groupings of tasks exist giving a 

hierarchical nature to the graph. Such Hierarchical Task Graphs (HTGs) have nodes that are 

further analyzed to DAGs or to other HTGs. In this paper a method of solving an HTG problem is 

presented based on the idea of gradually solving the problem by replacing subgraphs with virtual 

nodes. Integer Programming is used to generate virtual nodes that replace a subgraph, results from 

solving the subgraph problem using. So a series of subproblems are solved and starting from the 

deeper levels of the HTG a solution to the full problem emerges. 

Introduction 

Hierarchical task graphs (HTG) are directed graphs where nodes can either be 

simple or composite activities. Each hierarchy level is a set of interconnected 

directed acyclic graphs (DAG). Simple tasks are considered atomic, requiring a 

single resource to be used for their execution while a composite activity can use 

multiple resources at different hierarchical levels. Each composite activity can be 

represented as a subtree in the HTG. HTG is a typical high level representation of 

computer program kernels, but they can also be used in the scheduling of multiple 

development teams that are involved in multiple concurrent projects where each 
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activity generates results that are used by other activities or involve recurring 

activities. The usual goal of these problems is to reduce the global makespan of 

the presented problem.  

In this paper, we present a method that uses a MIP model to solve individual DAG 

sub-problems to optimality and a heuristic approach to solve the whole problem 

using a bottom up traversal of the HTG tree. The example is derived from the 

solution of an HTG for the assignment and scheduling of computational kernels to 

embedded multicore architectures. In the example presented in Figure 1, a two 

level HTG with 6 nodes at the top level is presented. Three resources are available 

to perform the tasks, in our case they are heterogeneous processors. The top level 

is presented on the left side, where node 5 is a composite activity and all other 

nodes are atomic ones. Node 5 is a DAG only containing simple nodes and is 

presented on the right side of the same figure.  

Table 2. After the execution of activity, the result has to be “communicated” to 

the dependent tasks if these tasks are not performed by the same resource. This 

can be perceived as the communication time of variable values in our example, or 

the transportation time between two sites in a production example, or the 

collaboration time between two individuals that work on the same problem. In this 

simplified example, the “communication” cost is depicted by the values on the 

arcs of the DAGs. In the more general case, it can be the result of a function that 

involves the communicating resources, the time that this communication occurs, 

other available resources that help to perform the communication, etc. The 

required processing time to perform composite task 5 contains currently contains 

no values as it may be executed by different processors in parallel. Which 

processors and for how long task 5 will occupy will be the result of solving the 

sub-problem represented by the DAG at the lower level of HTG.  

Two approaches to solve the problem of scheduling a Hierarchical Task Graph 

will be presented. The first approach embeds each subgraph to the graph that 

contains it. This process can occur recursively until no more composite tasks 

exist. Then the resulting flat DAG can be assigned and scheduled at the available 

resources using either a heuristic method like HEFT or if the size of the problem 

permits it using an ILP solver. The second approach uses an ILP formulation in 

order to solve each subgraph in turn and uses the generated subgraph schedule as 
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a resource based clustering of the contained tasks to form the schedule of the 

graph that contains the subgraph. 
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Figure 1: Example of a Hierarchical Task Graph 

 

Table 1: Execution Times for Tasks of the HTG 

 Tasks 

Resources 1 2 3 4 5 6 

R0 15 16 38 19 - 17 

R1 22 31 40 20 - 25 

R2 37 42 51 30 - 22 

 

Table 2: Execution Times for Tasks of the Subgraph 

 Tasks 

Resources 5_1 5_2 5_3 5_4 5_5 5_6 5_7 

R0 10 29 38 19 20 15 29 

R1 15 32 40 25 28 36 31 

R2 37 27 26 32 47 30 42 
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DAG makespan optimization  

DAG scheduling is a well-studied subject [1],[2]. Several methods exist that can 

be used in order to assign tasks to resources and create individual schedules for 

each resource. What is interesting is that the individual resource schedules cannot 

be decided in isolation due to task dependencies and the “communication” cost 

they imply. Heuristics based methods are able to efficiently solve DAGs with 

several hundreds of nodes. These methods either belong to the category of list 

scheduling with prominent examples being Earliest Time First (ETF) [3], 

Heterogeneous Earliest Finish Time (HEFT) [4],[5] and Critical Path on a 

Processor (CPOP) [6] or to the category of clustering where examples of such 

algorithms are Dominant Sequence Clustering (DSC) [7] and Linear Clustering 

Method (LCM) [8]. Mathematical programming based methods exhibit much 

bigger execution time and do not scale well for bigger instances, but are able to 

find high quality solutions [9],[10],[11],[12].  

ILP Model for solving a task DAG 

As our test case is part of a compiler tool chain and each execution requires the 

solution of 100 - 10000 DAG it was a requirement that each DAG formulation 

and solution should take no more that some seconds. A practical observation was 

that if the total number of nodes for each DAG is less than 30 then the problem 

can be efficiently solved using an ILP solver within the available time budget. In 

our experiments this restriction has been satisfied using the open source IP solver 

COIN-CBC running on a current PC. The topography of the DAG seems to have 

little impact on the execution time of the approach due to the fact that equations 

are effectively generated for all pairs of nodes.  

The mathematical model uses the set of tasks T and the set of available resources 

P. Each resource can process a given task at different time horizon, i.e. that the 

problem model is heterogeneous which in our example means that the processors 

are not identical. For project planning problems this would mean that the worker 

will have different skills and could handle the same task with a different execution 

duration. The execution time of each task t by each resource p is given by the 

parameter wtp. The “communication” cost between task t and task t’, when they 

are not assigned at the same resource is given by ctt’, 0 otherwise. We have two 

sets of decision variables. The binary variables ytp depict an assignment of task t  
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T to resource p  P and take the value 1 if task t is assigned at processor p and 0 

otherwise.  The integer variables xt are defined over each t  T and their value 

represents the start time of task t by the resource corresponding to the ytp variable 

with value 1. Since the problem is described as a DAG with a set of nodes V and a 

set of edges E, it should be noted that the set of tasks and the set of nodes are 

conceptually identical, while the set of edges represents precedence constraints 

between tasks with weights of edges associated with communication costs. 

The objective function of the model is shown in equation (1) representing the 

target of minimizing the total schedule length, which is also known as makespan.  

 (1) 

Three groups of constraints are defined. The first one ensures that each task 

should be assigned at exactly one resource (2).  

    (2) 

For each task t let Tt be the set of tasks that have to be completed before t starts 

execution. The second group of constraints states that for each task t the 

corresponding start time should be greater than all the finish times of tasks that 

belong to Tt. In addition, when task t is scheduled to a different resource than a 

task t’ that it depends on, the “communication” cost between them should also be 

considered. In order to model this constraint three new variables are introduced 

ett, ztt’ and kptt’. ett is an integer variable and corresponds to the execution time of 

task t derived from equation (3). Variable ztt’ is binary and equals 1 when both 

tasks t and t’ are assigned at the same resource and 0 otherwise. It is defined by 

variable kptt’ which corresponds to the product of binary variables yt’p and yt’p. 

Since the product between variables violates the linearity of the model variable 

kptt’ assumes its value indirectly through inequalities (4), (5) and (6).  ztt’ is defined 

by equation (7) as the sum of products between variables yt’p and yt’p. Finally, 

inequality (8) states that the difference between execution times for task t and task 

t’ provided that t depends on t’ should be no less than the processing time of task t 

on the designated resource plus the extra communication time needed when tasks 

are not assigned at the same resource.  

    (3) 

   (4) 
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   (5) 

  (6) 

    (7) 

  (8) 

For each task t, let T’t be the set of tasks for which there is no path in the graph 

that connects then to task t. Two tasks t and t’ are considered to be independent if 

by starting from t (or t’) and then recursively examining all predecessors of this 

task, the entry node is met before node t’ (or t). The third group of constraints 

guarantees that when two independent tasks are assigned at the same resource, 

they will not overlap. Given that two independent tasks t and t’ are are assigned at 

the same resource then ztt’=1. If xt, the start time of task t, is less than xt’, the start 

time of task t’, then xt plus the execution time of task t (ett) should be less than xt’ 

(9). Likewise, when xt’ is less than xt inequality (10) assures that no execution 

overlap occurs. Binary variable mtt’ ensures that exactly one of inequalities (9) and 

(10) should hold. 

 (9) 

 (10) 

The proposed model is adequate to solve real world problems that arise during the 

mapping and scheduling of sequential Scilab code in an automatic parallelizing 

compiler toolflow that targets embedded multicore architectures in the context of 

the EU founded FP7 ICT ALMA project. 

In the case where an HTG does not contain-subgraphs that represent recurring 

events (loops), it is possible to embed these subgraphs that are deeper in the 

hierarchy of the HTG to the subgraph that contains them. In a computer program 

this can be perceived as function inlining, as each subgraph is a DAG of tasks. In 

a project schedule this can be perceived as including the activities of each 

department in the global scheduling of a store and then the produced solution will 

be embedded in the assignment and scheduling problem of the firm, where staff 
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members (resources) that perform the tasks do not work for a single department or 

store. After flattening, the resulting graphs will be a DAG. For example, Figure 2 

represents the HTG of Figure 1 after the flattening transformation is performed. 
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Figure 2: Flattened DAG of Figure 1 HTG 

 

At the lowest level of an HTG most subgraphs will be DAGs that contain only 

simple tasks. After solving such a subgraph, the emerged solution will specify the 

assigned resource that each task should be scheduled on and for each task the 

sequence and the estimated time that it will start executing relative to the 

execution start time of the initial task. For example, when the subgraph of Figure 

1 is solved, the solution presented in Figure 3 may arise. This solution schedules 

tasks 5_1, 5_2, 5_5, 5_4 and 5_7 in resource 0, schedules no tasks to resource 1 

and schedules tasks 5_3 and 5_6 on resource 2. The makespan of the given 

schedule is 124 time units. If the generated graph can be efficiently solved by the 

ILP model, the ILP formulation is passed to an ILP solver and the optimal 

solution is produced.  

Bottom-up solution of HTG by subgraph 

replacement with virtual nodes 

With or without flattening at the lower levels, most large problems that are 

represented by an HTG cannot be totally converted to a DAG. In order to use the 
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subgraphs solutions in the solution process of the enclosing subgraph, the 

following procedure is applied. The HTG is traversed bottom up and the 

subgraphs that can be solved without any modification, i.e. they only contain 

simple tasks or their subgraphs can be flattened, are solved applying a DAG 

algorithm. The selection of the solution algorithm is done based on characteristics 

of the graph. If the graph is small an ILP solver is used, if the graph is large a 

heuristic is applied. For the graphs that contain composite tasks that we  have a 

solution for their subgraph the following transformation is performed. The 

composite task is replaced by a number of virtual tasks that are equal to the 

number of the used resources in the solution found. Each virtual task has an 

execution time of the combined work of the assigned tasks on the associated 

resource. All incoming and outgoing dependency arcs of the composite resource 

are replicated and the outer DAG is solved in a similar manner. This process 

continues iteratively until the top HTG layer is solved. For example, in Figure 4, 

pseudo task 5_R0 is a task that has an execution duration of 124 and should be 

executed in processor R0 and pseudo task 5_R2 is a task that has an execution 

duration of 56 and should be executed on processor R2. Theoretically, a pseudo 

task 5_R1 could have been created, but since it contains no tasks on the 

subgraph’s schedule, it can be neglected. It is important to note that by specifying 

the schedule start time of the pseudo task that contains the root node of the 

subgraph, all other pseudo tasks are relatively positioned based on the solution of 

the subgraph.  If for example pseudo task 5_R0 is scheduled to start at time point 

100 then pseudo task 5_R2 should start at 130 and should finish at 186. If any of 

the virtual tasks is delayed to start compared to the offset of the subgraph solution, 

a new makespan for the subgraph solution should be calculated. 

The virtual task that contains the root node of the subgraph (5_R0 in the example, 

since node 5_1 is scheduled on processor R0) should inherit the incoming edges 

of the nodes that were immediate predecessors (node 3 and node 4) of the 

composite task that was removed. Likewise the pseudo task that contains the sink 

node of the subgraph (5_R0 in the example, since node 5_7 is scheduled on 

processor R0) should inherit the outgoing edges to the nodes that were immediate 

successors (node 6) of the composite task that was removed. 

The graph shown in Figure 4 is solved using the mathematical module using 

execution information included in Table 3. The information about the resource 
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that each pseudo task should be assigned is implicitly included in the model and 

the only variable about the subgraph that remains to be decided is the start time of 

the pseudo task containing the root node of the subgraph. A natural extension is to 

calculate the total execution time of the assigned tasks of each virtual task for all 

the available resource and constraints that only one resource should be assigned at 

a virtual task and that no two virtual tasks that belong to a virtual task group 

should be assigned at the same resource. This will provide the required flexibility 

to exchange the assigned work to a resource when the surrounding tasks 

information is available during the solution of the outer subgraph. 

 

 

Figure 3: Schedule of subgraph 
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Figure 4: HTG with Composite Task 5 Replaced by Pseudo Tasks 5_R0, 5R1 and 5R2. Task 5_R1 

is immediately dropped since no tasks of the subgraph are scheduled in processor R1. 
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A special case exists, when the subgraph represents the body of nested recurring 

events (loops). In this case, the subgraph solution represents a recurring task 

schedule that will be executed for each loop iteration and thus it is not possible to 

determine the exact makespan of the virtual tasks in the general case. In this case, 

for all the resources that are used in the solution of the subgraph, it is only 

possible to estimate the execution time of the assigned tasks before the execution 

of the virtual task. For all the other tasks that are assigned at the processor and 

scheduled after the virtual task, their start time can only be determined in relation 

to the finish time of the recurring virtual task.  

Table 3. Execution Times for Tasks and Pseudo Tasks of the HTG 

 Tasks 

Resources 1 2 3 4 5_R0 5_R2 6 

R0 15 16 38 19 124 X 17 

R1 22 31 40 20 X X 25 

R2 37 42 51 30 X 56 22 

 

Our current approach is to split the outer DAG scheduling problem into two sub 

problems, the “before” sub problem that determine tasks scheduling of all 

resources before the recurring event and the “after” subproblem for all the tasks 

after the  execution of the virtual tasks. This implies that tasks that depend on the 

virtual tasks will belong to “after” sub problem, tasks that the virtual tasks depend 

on will belong to the “before” sub problem and independent tasks can be assigned 

and scheduled before, after or in parallel to the virtual tasks using resources that 

are not used by the virtual tasks. The above process may lead to a possibly 

suboptimal solution. On the other hand, this approach guarantees that no 

prolonged wait time for tasks that require results generated during the execution 

of the virtual tasks will occur, thus preventing execution blocking on all the other 

resources. The side effect is that no deterministic execution makespan of the 

subgraph can be determined if the number of recurring events is not algebraically 

determined. For our application problem, the ALMA toolchain provides feedback 

from a platform simulator and thus the real execution time of the recurring task 

can be determined, irrelevant to the actual iterations number. In our use case, 

during the subsequent applications of the described optimization algorithm the 

estimation of the actual execution time of the recurring event will be used, 
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allowing the algorithm to improve resource utilization, as the whole DAG can be 

scheduled as in the case where the subgraph does not include loop nests. 

 

Figure 5: Schedule of the graph including pseudo tasks 

ILP model modifications  

A set of modification to the ILP model that was previously described are needed 

in order to recursively solve each subgraph until the original HTG is fully 

scheduled. The main modification that is necessary is the replacement of each 

composite task with a number of pseudo tasks, equal to the number of the 

resources used in the solution of the corresponding subgraph. These pseudo tasks 

have predefined values for their corresponding binary variables ytp since the 

assigned resource that each one of them will be scheduled to is known.  For each 

pseudo task group, the value of variable xt, which denotes the start time of pseudo 

task t, has to be determined only for the pseudo task that contains the root node of 

the subgraph. The values of variables xt for the remaining pseudo tasks in a group 

are determined based on the offset exposed in the solution of the subgraph. 

Regarding the constraints, only the pseudo task that contains the root node of the 

subgraph and the pseudo task that contains the sink node of the subgraph have to 
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be included in the set of tasks that participate in the generation of the second 

group of constraints. Pseudo tasks that neither contain the root nor the sink node 

of the subgraph only have to participate to the third group of constraints in order 

to prevent simultaneous execution of tasks by the same resource.  

This is required as no edges exist between the pseudo tasks and all the other tasks 

in the DAG, making them look independent. It should be noted that pseudo tasks 

share the same set of independent tasks with the composite task that they replace. 

Consequently, for each pseudo task, constraints belonging to the third group have 

to be generated with respect to all other tasks that have no direct or indirect path 

to the composite task that they replace. 

The final schedule of the graph of Figure 4 is presented in Figure 5. The HTG is 

finally scheduled, having a makespan of 218 time units. The proposed algorithms 

have been applied to code sources that are represented by HTGs with up to 15 

layers, 200 to 500 composite tasks and 1000 to 2000 leaf tasks that included 

recurring tasks and managed to produce parallel solutions in less than 1h using a 

typical PC.  

Conclusions and future work 

In this paper, a generic algorithmic approach to assign and schedule hierarchical 

task graphs to heterogeneous resources is presented. The proposed approach is 

currently applied to a parallelizing compiler tool chain for automatic 

parallelization of sequential SciLab programs to embedded multicore architectures 

but can be used in other application areas. We are currently working in supporting 

multiple solutions selection for the composite tasks during the bottom up solution 

process as well as the application of meta-heuristic local search optimization 

techniques for post processing of the generated solutions. We also plan the 

inclusion of a more detailed modeling of both the “communication” model 

between tasks as well as a more detailed modeling of the processing resources.  
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