
Partially-Concurrent Open Shop Scheduling

Tal Grinshpoun · Hagai Ilani · Elad
Shufan

Abstract The partially-concurrent open shop scheduling problem is presented.
The standard open shop scheduling problem is generalized by allowing some
operations to be processed concurrently. This generalization is directly moti-
vated from a real-life timetabling project of assigning technicians to airplanes
in an airplane garage. A schedule for the partially-concurrent problem is rep-
resented by a digraph. We show that the scheduling problem is equivalent to
a problem of orienting a given undirected graph, called a conflict graph. The
schedule digraph is then modeled by a matrix, generalizing the rank matrix
representation. The problem is shown to be NP-Hard. The rank matrix rep-
resentation is also used in an algorithm that heuristically constructs an open
shop schedule.

Keywords Open Shop Scheduling · Concurrent machines · Technician
timetabling · Graph orientation

1 Introduction

An open shop scheduling (OSS) problem consists of n jobs that should be
processed on m machines. An operation (i, j) refers to the processing of job
i = 1, 2, . . . , n in machine j = 1, 2, . . . ,m. The processing time of operation

Tal Grinshpoun
Department of Industrial Engineering and Management, Ariel University, Ariel, Israel
E-mail: talgr@ariel.ac.il

Hagai Ilani
Department of Industrial Engineering and Management, SCE – Shamoon College of Engi-
neering, Ashdod, Israel
E-mail: hagai@sce.ac.il

Elad Shufan
Physics Department, SCE – Shamoon College of Engineering, Beer-Sheva, Israel
E-mail: elads@sce.ac.il

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

188

(i, j) is denoted by pij . In a standard OSS every job visits one machine at a
time, and every machine hosts only one job at a time.

Shop scheduling problems were originally designed for machines. Never-
theless, there are many task scheduling applications in which employees are
represented as the machines; hence the resulting solution is a set of timetables
(schedules) for the employees.

An important aspect of OSS concerns the mathematical representation of a
given schedule. Bräsel and Kleinau have introduced the rank matrix represen-
tation [7,5], which is significant for both theory and practice. A major advan-
tage of the rank matrix representation when compared to its alternative [16]
is the one-to-one correspondence between a matrix and a schedule, provided
that the schedule is semi-active [18], for which operations are performed as
early as possible once the order of processing is known. Constructive heuristic
algorithms were suggested, based on rank matrices [10]. Rank matrix proce-
dures were applied to neighbourhood definitions in local search algorithms,
including those of crossover and mutations in genetic algorithms [1]. Among
the theoretical achievements that are based on the idea of rank matrix are the
irreducibility theory [2,8] as well as complexity analysis of some special OSS
problems [9].

In this work we extend the rank matrix representation to a problem of
partially-concurrent open shop scheduling (PCOSS). In a PCOSS problem
some operations are allowed to be processed concurrently, while some are not.
In the PCOSS presented herein preemption is not allowed, and no due or
release dates are given. A variety of previously discussed issues can be extended
by the more general PCOSS matrix representation. Several such extensions are
discussed in this article.

A related problem previously presented in the literature is that of con-
current open shop scheduling [21,17,15]. It is also referred to as a parallel
machine environment with m fully dedicated machines [14], denoted PDm.
In a PDm, a job can be split to be simultaneously processed on several ma-
chines. The two extremes of PCOSS are the standard OSS, where operations of
the same job are never processed concurrently, and the fully-concurrent open
problem, where all the operations of a given job are allowed to be processed
concurrently. The PDm notation does not reflect the connection between the
concurrent open shop and the standard one. We suggest that for all the dis-
cussed types of an OSS, the machine environment field α of Graham’s α|β|γ
classification scheme [12] will include O (or Om when the number of machines
should be specified explicitly). Concurrency issues will be included in the β
field, with the ”conc” entry for the concurrent open shop case, and ”pconc”
when a partially concurrent open shop is considered.

Roemer discusses the complexity of O|conc|
∑
wiCi [19], where Ci is the

completion time of job i, and wi the corresponding weight. It is shown that
the general problem is NP-hard in the strong sense. Minimizing the makespan
Cmax = max{Ci | 1 ≤ i ≤ n}, which is commonly considered in a
standard OSS, is not considered in the concurrent version. This is due to
its over simplicity: any semi-active schedule will be optimal with Cmax =

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

189

max{
∑n

k=1 pkj | 1 ≤ j ≤ m}. For the general PCOSS problem the complex-
ity of a schedule designed to minimize the makespan should be discussed,
with O|conc|Cmax being trivially polynomial, and a general O||Cmax being
NP-Hard.

The PCOSS problem is more general than the standard OSS and can there-
fore describe a large variety of real-life scenarios. In fact, the present study
is directly motivated from a timetabling project of assigning technicians to
airplanes in an airplane garage. The airplane garage task scheduling prob-
lem is mentioned in the literature with respect to both the standard [8] and
the concurrent [21] OSS versions. Consider a fleet of airplanes. A set of tasks
should be performed on each plane in order to prepare it for action. Every
task is done by a technician who has the expertise to do this task alone. In
reality, some tasks can be performed simultaneously on a plane, e.g., while one
technician checks the engine, another technician can check the wing. But other
tasks exist that disturb each other, and therefore cannot be performed concur-
rently, which is similar to the standard open shop. Indeed, in the timetabling
project that inspired the present research, some of the technicians’ tasks could
be performed in parallel. The O|pconc|fobj , with any objective function fobj ,
naturally describes this scenario, with airplanes corresponding to jobs, and
tasks (or technicians) corresponding to machines.

In section 2 the generalization of the rank matrix representation is given.
Section 3 deals with the complexity of PCOSS. A constructive algorithm, first
suggested with respect to the standard OSS [10], is extended to the PCOSS
problem in section 4, followed by experiments (section 5). A discussion is given
in section 6.

2 Matrix representation of Partially-Concurrent Open Shop
Scheduling

The standard OSS is reviewed first. A scheduling problem consists of a set
of n jobs Ji, where i ∈ I = {1, 2, . . . , n}, which should be processed on a set
of m machines Mj , j ∈ J = {1, 2, . . . ,m}. In addition, the processing times
of the operations are listed as elements of an n ×m matrix PT = [pij], with
pij denoting the processing time of an operation (i, j). In a general scenario
the jobs might visit only a partial set of machines. For clarity of presentation
we assume that every job visits all the machines, i.e., pij > 0 for every i ∈ I
and j ∈ J . In the discussion (Section 6) we explain how to treat the general
scenario. In a non-concurrent OSS two operations of the same job cannot be
processed concurrently. Therefore, a given schedule necessarily defines an order
between operations of the same job (machine order). Similarly, a schedule sets
an order between operations of the same machine (job order). Operations that
do not share either a job or a machine can obviously be processed concurrently.
Therefore, the schedule does not imply any order between such operations.
This is illustrated in the following OSS example.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

190

Example 1 In this example we consider n = 3 jobs and m = 4 machines, and
the following processing times matrix:

PT =

23 21 40 6
15 30 18 35
28 8 25 24

 (1)

A possible schedule for this instance is given in Figure 1(a) by its Gantt
chart. Jobs J1, J2, and J3 are recognized by their colours: dark red, white,
and light green, respectively. In the given schedule the machine order of Job
1, taken as an example, is M4 → M2 → M1 → M3. For machine 1, the job
order is J2 → J1 → J3. Both orders are easily read from the Gantt chart for
this compact example.

The machine and job orders can be represented by a non-cyclic digraph
called a sequence graph [7,6] – every operation is represented by a vertex (i, j)
and each pair of consecutive operations (vertices) are connected by an arrow.
The sequence graph that corresponds to the given schedule of example 1 is
shown in Figure 1(b).

(a) (b)

Fig. 1 A possible schedule for an OSS with 3 jobs and 4 machines is given by (a) a machine-
oriented Gantt chart, and (b) a sequence graph.

A convenient matrix representation for sequence graphs was suggested [7,
5]. The matrix, termed a rank matrix, is denoted by R. An entry rij is equal
to the number of vertices in the longest path from a source to the vertex (i, j).
A source is a vertex with zero indegree. It represents an operation that is
scheduled first. The rank matrix of the schedule given in Figure 1 is

R =

3 2 4 1
1 3 2 4
4 5 3 2

 (2)

The machine order or job order are both represented by the order of the
entries of the relevant row or column, respectively. If rij > 1, then in row
i or column j there exists an entry that equals (rij − 1). Operation (i, j) is
scheduled after the operation that corresponds to this entry. According to the
”Latin-rectangle theorem” [7], there is a one-to-one correspondence between

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

191

a unique Latin rectangle and a semi-active schedule: Consider a matrix of
size n×m whose elements are taken from the set {1, 2, . . . , q}. If in each row
and each column no entry appears more than once, the matrix is called a
Latin rectangle, denoted LR(n,m, q) = [lrij]. The Latin rectangle LR(n,m, q)
corresponds to a schedule of an open shop with n jobs and m machines, if for
every entry lrij 6= 1 there exists an entry (lrij − 1) in either row i or column
j.

In this article we show that the above ideas can be naturally extended to
the case of PCOSS. An instance of a PCOSS contains, in addition to PT , a
concurrence graph, or its complement, a conflict graph. These graphs describe
whether pairs of operations may be processed concurrently or not. More pre-
cisely, the concurrence graph, CG, has I × J as its vertex set, and two opera-
tions (i, j) and (k, l) are adjacent if they may be processed concurrently. In the
conflict graph, CG, (i, j) and (k, l) are adjacent if they may not be processed
concurrently.

To summarize, for any pair of operations:

– if they relate to different machines and different jobs the pair is an edge of
the concurrence graph.

– if they relate to the same machine and different jobs the pair is an edge of
the conflict graph.

– if they relate to different machines and to the same job the pair can be
either an edge of the concurrence graph or the conflict graph, depending
on whether the pair can be processed concurrently or not (respectively).
A pair of operations that is an edge of the conflict graph will be called
a conflict pair. Given an operation (i, j), we say that operation (k, l) is a
conflicting operation if the pair {(i, j), (k, l)} is a conflict pair.

In Figure 2 we show an example of CG and CG for 3 jobs and 4 machines.
For clarity, arrows connecting two operations that do not share a machine or
a job are not shown in CG.

(a) (b)

Fig. 2 An instance of a PCOSS includes (a) a concurrence graph (only horizontal edges
are shown) or (b) its corresponding conflict graph.

A schedule for the PCOSS is given by the n × m matrix ST = [stij], of
the starting times of all the operations, or by the matrix CT = [ctij], of the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

192

completion times of all the operations. Obviously, CT = ST +PT . A schedule
is feasible if for any conflict pair, {(i, j), (k, l)}, either ctij ≤ stkl or ctkl ≤
stij . A given feasible schedule naturally defines an orientation of the conflict
graph: an edge {(i, j), (k, l)} will be oriented, (i, j)→ (k, l), if ctij ≤ stkl and
(k, l) → (i, j), if ctkl ≤ stij . The resulting digraph, DG, is acyclic, because a
cycle (i, j)→ (k, l)→ . . .→ (i, j) in DG means ctij ≤ stkl < ctkl ≤ . . . ≤ stij ,
which is impossible – an operation cannot be completed before it starts.

An acyclic orientation of the conflict graph will be called a partial-sequence
graph. It generalizes the sequence graph representation.

Lemma 1 A partial-sequence graph defines a schedule with the property that
{(i, j), (k, l)} implies ctij ≤ stkl. The schedule defined is unique, assuming
semi-activeness.

Proof Given a partial-sequence graph, DG, a schedule is defined inductively
step by step as follows: For each stage i we define Ai to be the set of operations
that have already been scheduled up to stage i. Initially A0 = ∅. In the first
stage (i = 1), we schedule at t = 0 all the operations that have indegree 0.
Because DG is acyclic, at least one operation with indegree 0 exists. At stage i
we schedule all the operations that have indegree 0 in DG\Ai−1. An operation
(i, j) will start at stij = max{ctkl|(k, l) → (i, j)}. The uniqueness is forced
by semi-activeness; i.e., each operation is scheduled as early as possible while
keeping the order defined by DG. �

Corollary 1 Solving O|pconc|Cmax is equivalent to the problem of orienting
the edges of the conflict graph so that the digraph obtained will be acyclic and
the maximally-weighted path will be minimal.

The weight of a path is the sum of all the processing times of operations
(vertices) in that path.

Example 2 A PCOSS instance is composed of a matrix PT and a graph CG,
or CG. We take PT of Example 1 and CG of Figure 2(b). A possible schedule
for this PCOSS instance is shown in Figure 3 by its Gantt chart and the
corresponding orientation of the conflict graph, i.e., the partial-sequence graph
DG.

The rank matrix representation follows. We define the rank rij of an op-
eration (i, j) as the number of vertices in a longest path in DG from a source
vertex to the operation (i, j). The rank matrix is denoted R = [rij].

The rank matrix of Example 2 is

R =

3 2 4 1
1 3 1 3
4 1 3 2

 (3)

The rank matrix R has the following two properties:

1. rij 6= rkl for each conflict pair (i, j) and (k, l).

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

193

(a) (b)

Fig. 3 A possible PCOSS schedule is given by its (a) Gantt chart, or its corresponding (b)
partial-sequence graph. Dashed arcs can be removed due to transitive closure.

2. For any operation (i, j) with rij > 1 there exists a conflicting operation
(k, l) with rkl = rij − 1.

Given a concurrence graph for a PCOSS instance, we call a positive integer-
valued matrix n×m a CG-rectangle if it satisfies conditions 1 and 2. In the case
of a standard OSS the concurrence graph has only edges connecting operations
if they belong to different jobs and different machines. The CG-rectangle then
reduces to a Latin-rectangle. The following theorem generalizes the ”Latin-
rectangle theorem” [7].

Theorem 1 An n × m matrix A = [aij] is a CG-rectangle iff it is a rank
matrix of a semi-active schedule for a PCOSS problem with n jobs and m
machines.

Proof Given a semi-active schedule for a PCOSS problem, a rank matrix is
constructed as defined previously. On the other hand, given a CG-rectangle,
A, we construct an appropriate partial-sequence graph by orienting the edges
of the conflict graph as follows: an edge {(i, j), (k, l)} will be oriented (i, j)→
(k, l) if aij < akl and (k, l)→ (i, j) if akl < aij . The obtained graph is obviously
acyclic. The theorem’s assertion then follows from Lemma 1. �

3 Complexity issues

Concerning the complexity of O|pconc|Cmax, it is proved next that the problem
with only one job and unitary processing times, denoted O|pconc, n = 1, pij =
1|Cmax, is already NP-Hard. It immediately follows that a general PCOSS is
also NP-Hard. It is worth noting that with one job, minimizing the makespan
in both the standard OSS problem and the concurrent open shop is a trivial
task. For O|n = 1|Cmax, any order of the operations leads to a schedule with
Cmax =

∑m
j=1 p1j . For O|conc, n = 1|Cmax, any order of the operations leads

to a schedule with Cmax = max{p1j |1 ≤ j ≤ m}. Moreover, for the standard
open shop problem with unitary processing times, Bräsel et al. developed a
polynomial-time algorithm for minimizing the makespan for any number of
jobs [9].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

194

Theorem 2 The problem O|pconc, n = 1, pij = 1|Cmax is NP-Hard.

Proof In the case where there is only one job and all processing times equal
1, the makespan of any schedule S is the length of the longest path in the
sequence graph defined by S, which is the maximum rank in the matrix
defined by S. By Corollary 1 the opposite is also true – the length of the
longest path in any acyclic orientation of the conflict graph is the makespan of
a feasible schedule for the problem. Because the conflict graph can be any
arbitrary undirected graph on the set of the n operations, it follows that
O|pconc, n = 1, pij = 1|Cmax is equivalent to the problem of orienting an undi-
rected graph in order to minimize the size of the longest directed path. The
latter is polynomially equivalent to the Graph-Colouring problem by the proof
of the Gallai-Roy-Vitaver theorem [3], which asserts that the minimal size of
the longest directed path in an orientation of an undirected graph G is equal to
the chromatic number of G. Because the Graph-Colouring problem is NP-Hard
it follows that O|pconc, n = 1, pij = 1|Cmax is NP-Hard. �

Corollary 2 The general problem O|pconc|Cmax is NP-Hard.

4 Constructive heuristic

The constructive heuristic considered in this section is an adaptation to the
partially-concurrent case of the insertion algorithm that was proposed for stan-
dard OSS [10]. The algorithm builds a full schedule (rank matrix) in an it-
erative manner. At each iteration, the algorithm inserts one operation into
a partial schedule, until a full schedule is reached. The order at which the
operations are inserted is determined before the iterative process commences.

Following [10], the operation insertions are combined with beam search.
That is, only a limited number of solution paths within the complete search
space are investigated. During the search process, each partial schedule has
one parent and several children. The parent is the partial schedule, excluding
the last inserted operation. The children result from the insertion of the next
operation. The number of parallel solution paths is limited by the beamwidth
p.

We consider the following possibilities for the insertion of an operation
(i, j) into the partial rank matrix R:

1. rij = 1. This means that i is the first job in the job order on machine j
and j is (one of) the first machine(s) in the machine order of job i.

2. rij = rkj + 1, where rkj is any of the values that appear in column j of R.
This means that operation (i, j) becomes a direct successor of one of the
operations on machine j.

3. rij = ril + 1, where ril is any of the values that appear in row i of R that
correspond to an operation of Ji, which is in conflict with operation (i, j).
This means that operation (i, j) becomes a direct successor of one of the
operations of job i, with which it has conflict.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

195

These possibilities correspond to the cases (c1) and (c2) in the original inser-
tion algorithm [10].

An insertion of rij to R results in a new (partial or full) matrix R′.
However, R′ may possibly not be a CG-rectangle. This happens when one
or more of the following conflicts occur: (I) ∃k 6= i • [rij = rkj]; (II) ∃l 6=
j • [rij = ril and (i, j) conflicts with (i, l)]. Note that there may possibly be
several instances of conflict (II) due to concurrent machines. All the conflicts
are resolved by incrementing by 1 all the conflicting entries. The entries with
incremented values may in turn be in conflict with a new set of entries. This
process continues until all conflicts in R′ are resolved.

The set of all obtained R′ matrices (each corresponding to a possible value
of rij) forms the list of children. In each iteration of the beam search, a list of
the most promising p children should be selected. Following [10], we consider
two variants:

– INSERT1: In each iteration we select the p-best children from the whole
set. This means that some selected children may have the same parent.

– INSERT2: For each of the p parents we select the best child. This means
that all children have different parents. The first variant is applied as long
as we do not have p parents.

We still must decide which children are considered the best in each step.
Similarly to [10], we assign to each child the cost of the longest path (cost-
wise) that goes through the newly inserted operation (i, j) in the relevant R′

matrix. A path in PCOSS is a series of adjacent operations in the conflict
graph CG. The children that are considered best are those with lowest costs.
A more detailed description of the insertion algorithm can be found in [10].

5 Experimental evaluation

The objective of the experimental evaluation of the present paper is twofold.
Naturally, one would like to evaluate the effectiveness of the proposed con-
structive heuristic in terms of the quality of the obtained solutions. Neverthe-
less, perhaps even more interesting is the question of how partial concurrency
affects the problems themselves, regardless of the chosen solution method.

In an attempt to shed light on these two issues, we turned to the commonly
used OSS problem instances that were proposed by Taillard [20]. We used the
entire set of Taillard’s OSS benchmark that consists of six problem sizes (4×4,
5×5, 7×7, 10×10, 15×15, 20×20), with 10 instances of each problem size. For
each of these 60 standard OSS problems we created 90 new PCOSS instances
with varying concurrency levels, where the concurrency level of a problem
relates to the percentage of non-conflicting operation pairs out of all operation
pairs sharing the same job. We used concurrency levels with 10% intervals,
varying from 10% to 90%. For each concurrency level we generated 10 problem
instances, each with a randomly chosen set of non-conflicting operation pairs.
For each problem in Taillard’s benchmark, we also considered the two PCOSS

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

196

extremes, which are the original (standard OSS) problem (0% concurrency)
and the fully-concurrent problem (100% concurrency).

Following [10], we consider three versions of the constructive heuristic: one
with beamwidth p = 1, and the two INSERT variants with beamwidth p = 2.
In order to evaluate the quality of the obtained solutions we relate to the
deviation of the corresponding Cmax from the machine lower bound. For each
problem, the machine lower bound is the maximal working time of any of the
machines, given by max{

∑
i pij |1 ≤ j ≤ m}.

Figure 4 presents the quality of obtained solutions for the PCOSS prob-
lems of size 4×4. The results shown for each concurrency level are the average
deviations of all the PCOSS problems of that level. The results in Figure 4
reveal interesting information regarding both issues of the evaluation’s objec-
tive. First, the obtained solutions of the heuristic are clearly of high quality,
even when using a very low beamwidth. These findings coincide with the re-
spective results for standard OSS [10]1. Second, the graph shows that as the
concurrency level increases the optimal Cmax gets closer to the machine lower
bound. This is not surprising, since more concurrency brings with it more effi-
cient scheduling possibilities that in turn reduce Cmax towards the bound set
by the machines.

æ

æ

æ

æ

æ
æ

æ

æ æ æ æ

à

à

à

à

à

à

à

à à à à

ì

ì

ì

ì

ì

ì

ì ì ì ì ì

0 20 40 60 80 100

0

2

4

6

8

Concurrency level H%L

D
ev

ia
ti

o
n

fr
o
m

lo
w

er
b
o
u
n
d

H%
L

ì INSERT2Hp=2L

à INSERT1Hp=2L

æ INSERT1Hp=1L

Fig. 4 The average deviation of Cmax from the machine lower bound as a function of the
concurrency level for problems of size 4 × 4.

For high levels of concurrency the heuristic algorithm gave the optimal solu-
tion. Therefore, in order to evaluate the scalability of the constructive heuristic
we focus on a low concurrency level (10%). Figure 5 presents the quality of ob-
tained solutions for PCOSS problems of different sizes. The displayed results

1 The results for 0% concurrency are worse than those presented in [10], since the machine
lower bound used herein is looser than the (machine and job) lower bound used in [10].

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

197

are the average deviations of 100 PCOSS problems of each problem size, with
the size ranging from 4 × 4 to 20 × 20 according to the Taillard benchmark.
Again, the obtained solutions of the heuristic are of very high quality. The
results also indicate that as the problems get larger the optimal Cmax gets
closer to the lower bound. A similar phenomenon was observed for standard
OSS problems [10].

æ

æ

æ

æ

æ æ

à

à

à

à
à à

ì

ì

ì

ì
ì ì

5 10 15 20

0

1

2

3

4

5

6

Problem size

D
ev

ia
ti

o
n

fr
o
m

lo
w

er
b
o
u
n
d

H%
L

ì INSERT2Hp=2L

à INSERT1Hp=2L

æ INSERT1Hp=1L

Fig. 5 The average deviation of Cmax from the machine lower bound as a function of the
problem size (n× n) for problems with 10% concurrency level.

Another aspect is the runtime of the constructive heuristic. The advances
in hardware capabilities enable us to run the above experiments in reasonable
time. In fact, even the hardest considered PCOSS problems (size 20 × 20)
were solved in less than half a second with beamwidth p = 2 on a hardware
comprised of Intel i5 4th generation and 8GB memory.

6 Discussion

The presented PCOSS is a general open shop problem, connecting two previ-
ously discussed scheduling problems – that of the standard open shop and its
concurrent version. PCOSS enables natural representation of various realistic
problems, such as that of the airplane garage that was mentioned in the in-
troduction section. By extending the rank matrix scheme to the more general
scenario of PCOSS, one may utilize efficient solving techniques, such as the
presented constructive heuristic.

Investigating this general problem has highlighted the fact that generating
an open shop schedule (whether concurrent or not) is equivalent to orienting a
conflict graph, i.e., generating an acyclic digraph DG. The digraphs formally

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

198

presented in the literature with respect to the non-concurrent OSS are basically
transitive reductions of the partial-sequence graphs presented herein. Existing
studies on the topic of generating acyclic orientations of a given undirected
graph [4] can shed light on problems of OSS.

In this article we assumed that jobs in a PCOSS can be split to be processed
on several machines simultaneously, but each machine hosts only one job at
a time. Consequently, all the vertical edges existed in the conflict graph. Our
proposed formalism enables the removal of this limitation, allowing also some
operations of a given machine to be processed concurrently. The obtained rank
matrix might then have several entries on a given column that are the same,
as long as the corresponding operations are not conflicting.

We have also assumed that pij > 0 for all i ∈ I and j ∈ J , i.e., that
all the vertices I × J represent real operations, with each job visiting all the
machines. In real life it often happens that some jobs visit only a partial set of
machines. It is possible to include these scenarios without changing the given
formalism: I × J vertices are considered as proposed before. A non-processing
operation, i.e., any operation of a job i that does not visit machine j, has zero
processing time. A vertex (i, j), which represent a non-processing operation
has concurrent edges to all the other vertices, i.e., in the conflict graph it is
not connected to any other vertex. The rank of non-processing operations will
then be rij = 1, because it has 0 indegree and is therefore, by definition, a
source. Note that this procedure can lead to several 1’s in a given column.
Nevertheless, the rank matrix remains a CG-rectangle.

PCOSS was shown to be NP-Hard. Yet, the heuristic algorithm proposed
in Section 4 reaches the optimum in many instances, even when using a narrow
beam. The examined instances are that of Taillard, with varying concurrency
levels. For these instances, increasing the concurrency level resulted in obtain-
ing Cmax values that are very close to the machine lower bound. These results
can be misleading, suggesting that increasing the concurrency level makes the
problem easier to solve. Taillard’s benchmark is a standard for non-concurrent
OSS, for which the most difficult problems are those of square PT , with n = m.
Contrary to that, the possibility of processing a given job in several machines
concurrently suggests that it might be harder to solve problems with m > n.
The logic behind this assertion is demonstrated by considering a uniform n×n
OSS instance (uniform in the sense that pij = 1 for all i and j). This is an
easy OSS problem – a schedule represented by any Latin rectangle LR(n, n, n)
is optimal with Cmax = n. A uniform OSS problem with m > n is still easy
– an optimal schedule is given by LR(n,m,m), with Cmax = m. However, in
uniform PCOSS problems things are more complicated. The squared problem
remains easy, because Cmax cannot be lower than the machine lower bound.
Nevertheless, a uniform PCOSS with m > n is completely non-trivial. Even
obtaining an appropriate job lower bound is NP-Hard, being equivalent to the
maximum independent set problem.

Further generalizations can be achieved considering PCOSS and its repre-
sentation. For example, it is possible to extend the definition of a reducible
sequence given in irreducibility theory [2,8]. The known benchmarks should

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

199

be extended to include PCOSS instances that describe the schedule difficulties
more appropriately. We leave these interesting issues for future research.

Another interesting direction for future work is to model and solve the
most general scenario of an airplane garage, which was the initial motivation
for the present study. In the general real-life problem the airplanes are lo-
cated in several hangars, and some of the tasks need teams of technicians. We
plan to additionally generalize the OSS model to include issues of technicians’
transportation and teaming, which were previously referred to in Workforce
Scheduling and Routing Problems [11]. Additionally, some real-life scenarios
are multi-mode (cf. [13]), i.e., some tasks may be performed in several ways
(modes) using different amounts of resources (technicians). The adaption of
PCOSS to enable multiple modes is another challenging prospect.

References

1. Andresen, M., Bräsel, H., Mörig, M., Tusch, J., Werner, F., Willenius, P.: Simulated
annealing and genetic algorithms for minimizing mean flow time in an open shop. Math-
ematical and Computer Modelling 48(7), 1279–1293 (2008)

2. Andresen, M., Dhamala, T.N.: New algorithms and complexity status of the reducibility
problem of sequences in open shop scheduling minimizing the makespan. Annals of
Operations Research 196(1), 1–26 (2012)

3. Bang-Jensen, J., Gutin, G.: Theory, algorithms and applications. Springer Monographs
in Mathematics, Springer-Verlag London Ltd., London (2007)

4. Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undirected
graph. Information Processing Letters 72(1), 71–74 (1999)

5. Bräsel, H.: Matrices in shop scheduling problems. In: Perspectives on Operations Re-
search, pp. 17–41. Springer (2006)

6. Brasel, H., Harborth, M., Willenius, P.: Isomorphism for digraphs and sequences of
shop scheduling problems. Journal of combinatorial mathematics and combinatorial
computing 37, 115–128 (2001)

7. Bräsel, H., Kleinau, M.: On the number of feasible schedules of the open-shop-problem-
an application of special latin rectangles. Optimization 23(3), 251–260 (1992)

8. Bräsel, H., Kleinau, M.: New steps in the amazing world of sequences and schedules.
Mathematical methods of operations research 43(2), 195–214 (1996)

9. Bräsel, H., Kluge, D., Werner, F.: A polynomial algorithm for an open shop problem
with unit processing times and tree constraints. Discrete Applied Mathematics 59(1),
11–21 (1995)

10. Bräsel, H., Tautenhahn, T., Werner, F.: Constructive heuristic algorithms for the open
shop problem. Computing 51(2), 95–110 (1993)

11. Castillo-Salazar, J.A., Landa-Silva, D., Qu, R.: A survey on workforce scheduling and
routing problems. In: Proceedings of the 9th international conference on the practice
and theory of automated timetabling, pp. 283–302 (2012)

12. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.: Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. Annals of Discrete
Mathematics. v5 pp. 287–326 (1977)

13. Kolisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource-constrained
project scheduling. IIE transactions 29(11), 987–999 (1997)

14. Leung, J.Y.T., Li, H., Pinedo, M.: Order scheduling in an environment with dedicated
resources in parallel. Journal of Scheduling 8(5), 355–386 (2005)

15. Mastrolilli, M., Queyranne, M., Schulz, A.S., Svensson, O., Uhan, N.A.: Minimizing the
sum of weighted completion times in a concurrent open shop. Operations Research
Letters 38(5), 390–395 (2010)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

200

16. Naderi, B., Fatemi Ghomi, S., Aminnayeri, M., Zandieh, M.: A contribution and new
heuristics for open shop scheduling. Computers & Operations Research 37(1), 213–221
(2010)

17. Ng, C., Cheng, T.C.E., Yuan, J.: Concurrent open shop scheduling to minimize the
weighted number of tardy jobs. Journal of Scheduling 6(4), 405–412 (2003)

18. Pinedo, M.: Scheduling: theory, algorithms, and systems. Springer (2012)
19. Roemer, T.A.: A note on the complexity of the concurrent open shop problem. Journal

of scheduling 9(4), 389–396 (2006)
20. Taillard, E.: Benchmarks for basic scheduling problems. European Journal of Opera-

tional Research 64(2), 278–285 (1993)
21. Wagneur, E., Sriskandarajah, C.: Openshops with jobs overlap. European Journal of

Operational Research 71(3), 366–378 (1993)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

201

