
A Multi-Phase Hybrid Metaheuristics Approach for
the Exam Timetabling

Ali Hmer and Malek Mouhoub

Department of Computer Science
University of Regina

Regina, Canada
{hmer200a,mouhoubm}@cs.uregina.ca

Abstract. We propose a Multi-Phase Hybrid Metaheuristics approach for
solving the Exam Timetabling Problem (ETP). This approach includes a
pre-processing phase, a construction phase and an enhancement phase.
The pre-processing phase involves two stages: the propagation of order-
ing constraints and implicit constraints discovery stages. The construc-
tion phase uses a variant of the Tabu search with conflicts dictionary. The
enhancement phase includes Hill Climbing (HC), Simulated Annealing
(SA) and our updated version of the extended ”Great Deluge” algorithm.
In order to evaluate the performance of the different phases of our pro-
posed approach, we conducted several experiments on instances taken
from the ITC 2007 benchmarking datasets. The results are very promising
and competitive with the well known ETP solvers.

Keywords: Timetabling, Constraint Optimization, Metaheuristics.

1 Introduction

The examination timetabling [1, 2], is an annual or semi-annual problem for ed-
ucational institutions. Due to its complexity and practicality, it is extensively
studied by researchers in operational research and artificial intelligence. Many
approaches have been proposed and discussed for solving the problem [1–7]
using one or a combination of some of the following methods: graph-based, se-
quential techniques, clustering-based techniques, constraint-based techniques,
metaheuristics, hyper-heuristics, multi-criteria techniques, and case-based rea-
soning techniques. In this paper we propose a Multi-Phase Hybrid Metaheuris-
tics approach for solving the Exam Timetabling Problem (ETP). This approach
consists of the preprocessing, construction and enhancement stages; and in-
cludes Tabu Search, Hill Climbing, Simulated Annealing and a modified ver-
sion of Extended Great Deluge algorithms [8, 3] using metaheuristics techniques.
The preprocessing phase is needed to prepare the work for the remaining two
stages. During this phase, exams are sorted following the most constrained
variables first heuristic [9] and implicit constraints are discovered using a form
of transitive closure. During the construction stage a complete feasible solution

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

233

is found using a variant of Tabu search along with conflicts dictionary to reduce
cycling. In the enhancement phase a chosen metaheuristic is used. Once a solu-
tion can no longer be improved or reaches an idle state, another metaheuristic
kicks in and used. The following metaheuristics are considered: Hill Climbing
(HC) [10, 11], Simulated Annealing (SA) [12] and our updated version of the
extended ”Great Deluge” algorithm [8] which improves on the one proposed
in [3].

In order to evaluate the performance of the different phases of our proposed
approach we conducted several experiments on instances taken from the ITC
2007 benchmarking datasets [13]. The results are very promising and compet-
itive with the well known ETP solvers. The rest of the paper is structured as
follows. In the next section we will introduce the problem we are tackling. Sec-
tion 3 presents our proposed solving approach. Experimental tests evaluating
our solving method are then reported in Section 4. Finally, concluding remarks
and future works are listed in Section 5.

2 Problem Description

2.1 Problem Formulation

Following the common formulations to the exam timetabling [14, 15] we model
this problem as a constraint problem including the following.

Variable. Each exam is modeled as a problem variable defined over a domain
of all possible assignments to that exam. An assignment is composed of a
time period and a room.

Room Constraint. Exams are constrained by rooms seating capacity.
Student Constraint. This constraint prevents a student from being scheduled

for more than one exam during a given time period.
Order constraint. This constraint is about exam ordering and precedence be-

tween two or more exams.
Same Duration Constraint. This constraint is about two or more exams that

should/can (hard/soft) take place in the same time slot.
Different Duration Constraint. This constraint is about two or more exams

that should/can (hard/soft) take place in different time slots.
Same Room Constraint. This constraint is about two or more exams that should/can

(hard/soft) take place in the same room.
Different Room Constraint. This constraint is about two or more exams that

should/can (hard/soft) take place in different rooms.

2.2 Penalty Function

The penalty function is a problem dependent generic function to calculate the
total cost/value of a given solution. Each soft constraint involves a single or
multiple resources and violating it has its own penalty value that should be set
in the problem description. The total penalty value of any solution is the sum of

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

234

penalties of all violated soft constraints in the whole exam problem. Penalties
correspond to violating soft constraints including the following.

1. Two exams in a row.
2. Two exams in the same day.
3. Mixed durations where two or more exams are taking place in the same

room but have different durations.
4. Room penalty where using certain rooms implies specific penalty to dis-

courage scheduling exam to them.
5. Period penalty where assigning exam to certain periods implies specific

penalty.

3 Proposed Solving Approach

Our proposed solving approach consists of the following three main phases. A
pre-processing phase followed by a construction and an enhancement phases.

3.1 Pre-processing phase

The difficulty of any exam timetabling depends on three factors; the number of
students that enroll in it, direct student conflicts in that exam and its schedul-
ing priority constraint, if any, among all exams scheduling. Following the idea
of most constrained variables first [9], exams with most scheduling difficulty
are scheduled first. The reason for this is that if scheduled late, they would
most likely increase the potential of the un-assignment process of other exams
that violate some constraints which eventually causes a backtracking. The pre-
processing phase consists of following two stages.

1. Exam timetabling problem collections ordering.
2. The discovery of un-specified (implicit) hard constraints.

In the following we provide the details for each stage.

3.1.1 Problem collections ordering

In this stage a process takes place for the different collections that the exam
problem consists of. These collections are exams, rooms, periods and students.
Exams and students are usually large collections and pre-ordering those leads
to a better performance and efficient results during search. In [16, 17] two of the
well-known common techniques have been proposed to describe the ordering
of exams based on difficulty criteria preceding their assignment to time slots.
Our approach is slightly different from these techniques. It depends on a dif-
ferent concept revolving around our knowledge that large exam timetabling
problems contain large exams, students and resources collections, and enhanc-
ing the way that we retrieve and lookup any element in these collections is a
key in any efficient search algorithm. Indeed, the time complexity of looking

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

235

up or retrieving an element from unsorted large collection is O(n) whereas the
time complexity of the same process in a sorted collection is O(log n).

Our approach of collections ordering pre-processing stage involves the cre-
ation of four ordered collections at the time of building problem variables,
values and facts collections based on the efficient Microsoft .NET framework
which implements the quicksort algorithm. It is worth mentioning that quick-
sort makes O(n log n) comparisons in average to sort n items. Prior to our de-
cision on whether to perform this stage or not, we thought of two issues; the
time needed to build large sorted collections and the time required to lookup
or retrieve any element in these collections. After examining the different types
of collections that Microsoft .NET framework provides, we made the decision
to use Sorted Generic Lists for all variables, values and constraints collections.
There are two reasons for that. First, we only need to build them once at the
beginning of the problem modeling and hence we produce them in a sorted
manner. This is the only time we spent to sort them. They also do not consume
a lot of memory as other types of collections. In fact, they are the least memory
consuming collection. The second reason is that after building any of the prob-
lem collections, we only need to do lookups which a generic list is good at and
one of the fastest collections for that matter and its time complexity is O(log n).
Table 1 shows the time complexity for adding an element and for looking up or
retrieving an element from both unordered and ordered collections. Although,
we include the cost of removing an element as in all large collections, as we
only build any collection once and lookup or retrieve afterward and there is no
need for removals. In the case of collections that need items removals we use
hash sets as the cost of removing an item is considerably small.

Table 1. Time Complexity for Ordered and Unordered Collections

Adding elt Lookup/Retrieval Removing elt
Unordered Collection O(1) O(n) O(n)

Ordered Collection O(n) O(log n) O(n)

3.1.2 Discovery of implicit hard constraints

In this stage we have developed a technique to discover all hard constraints
that were not explicitly defined in the problem. In any large COP problem that
contains a large collection of variables, values and constraints, there is always
the possibility of missing some of the hard constraints that depend on some of
the declared ones. Our approach is to provide a pre-processing stage that dis-
covers these unspecified constraints and add them to the problem constraints
collection. In fact our goal is to add other constraints that should be known
before assigning a value to a variable which in essence might eliminate some
of the variables domain values and hence preventing a backtracking process,
which would occur later on, if these additional constraints were not specified.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

236

The exam timetabling problem usually contains the following three types of
exam based constraints [14, 15].

Exam Ordering. Two or more exams scheduling should appear in a particular
order. For example: exam 1 should take place after exam 2.

Exam Coincidence. Two or more exams should take place at the same time.
Exam Exclusion. Two or more exams should take place at different times.

This pre-processing stage is based on creating three full graphs for each type
of these constraints where nodes represent the exams and edges are the hard
constraints between exams. Then by traversing each graph, we try to discover
same or different type of constraints between other exams in the same graph.
The following are the four steps we use to achieve such discovery.

1. Propagating ordering constraints that belong to concurrent exams. For ex-
ample, if a coincidence constraint declares that exam 1 must take place at
the same time as exam 2 and another ordering constraint states that exam
2 must take place after exam 3. In this case, we need to add a new ordering
constraint stating that exam 1 must take place after exam 3.

2. Propagating ordering constraints by transitive closure. For example, if exam
1 must be scheduled after exam 2 and exam 2 must be scheduled after exam
3 then this implies adding a new ordering constraint which states that exam
1 must be scheduled after exam 3.

3. Propagating coincidence and exclusion constraints. For example, if there is
a coincidence constraint stating that exam 1 must take place in the same pe-
riod as exam 2 and another distinct constraint stating that exam 2 must
take place in a different period than exam 3 then a new exclusion constraint
must be added to state that exam 1 and exam 3 must take place in different
periods.

4. Propagating the largest exam period of the same exam set to all other exams.
This happens when all exams are involved in the same coincidence con-
straint. For example, if there is a coincidence constraint involving three ex-
ams, exam 1, exam 2, and exam3, with a respective periods of 3 hours, 2 and
half hours and 2 hours. Then all three exams anticipated periods should be
updated to be equal to the largest (3 hours). It should be mentioned that
any penalty cost that involves periods, when calculated, uses the original
period and not the updated one.

3.2 Construction phase

In the construction phase a complete feasible solution is found using Tabu
search metaheuristic along with conflicts dictionary to reduce cycling. Con-
flicts dictionary essentially is a dictionary data structure based consisting of
a key and value and is used for its performance capability. Each entry in the
conflicts dictionary represents a count for the number of conflicts that an as-
signment causes during search. In future search iterations, the entry with the

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

237

highest counts are avoided and regarded as tabu. Utilizing Tabu search meta-
heuristics with conflicts dictionary can be further detailed as follows. As the
search is only considered by variable and value selection criteria, the algorithm
initially tries to find those variables that are most problematic to assign. Usu-
ally, a variable is randomly selected from unassigned variables that have the
smallest domain size and less number of hard constraints. It then attempts to
select the best value to assign to the selected variable using conflicts dictio-
nary. A best value is one where its assignment improves the overall value of
the solution. Also, any value that violates a fewer number of hard constraints is
considered. In other words, when assigning a value to a given variable, the al-
gorithm is looking to minimize the number of conflicting variables that need to
be unassigned in order to reach or keep a solution feasible after assignment. A
value is selected randomly if there is more than one value with such conditions.
Soft constraints violations are totally ignored in this phase as they might affect
the algorithm performance when searching for complete feasible solutions.

3.3 Enhancement phase

In the enhancement phase, a combination of three metaheuristics is employed
and we can select just one, two or three out of theses metaheuristics. What-
ever a metaheuristic is used, a local optimum is found. Once a solution can no
longer be improved or reaches an idle state, another metaheuristic technique
kicks in and is used. In our algorithm we used three of the well-known meta-
heuristics. These are Hill Climbing (HC) [10, 11], Simulated Annealing (SA) [12]
and our Modified Extended Great Deluge (MEGD). MEGD is altered to allow
some alternations of the bound that is imposed on the overall solution value.
The search ends after a predetermined time limit has been reached. The best
solution found within that limit is returned. Our MEGD is based on the Ex-
tended Great Deluge (EGD) [8] method which in turn is based on the original
Great Deluge (GD). GD was introduced by Dueck [18] as a cure to SA require-
ment to find a cooling schedule for a particular instance of a given problem. GD
algorithm starts with a ”water level” equal to the initial solution value, and a
preconfigured rate usually named ”tolerance rate” to decrease that water level.
The predetermined rate is the only parameter for this algorithm and this is one
of this algorithm’s advantages. GD accepts worsening solutions if the penalty
cost is less than the water level. This latter is decreased by the pre-determined
rate set for every iteration. Due to the advantage of using less parameters, GD
has been used in several other implementations of metaheuristics.

The Extended Great Deluge (EGD) [8] has a construction phase followed
by an improvement phase. The construction phase is applied using the exist-
ing adaptive ordering heuristic search method [19]. This latter ordering uses
a weighted order list of the examinations which is to be scheduled based on
soft constraints as well as the ”difficulty to schedule” constraint. Once an exam
is scheduled, its weight is increased based on the localized penalties it came
across. The unscheduled examinations are given a considerably larger increase,

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

238

based on a formulation that is based on the maximum general penalty encoun-
tered from [19]. The improvement phase starts when feasibility is achieved in
the construction phase and tries to provide an improved solution. Unlike EGD,
our approach is only concerned with the enhancement phase and it only tries
to improve the overall value of the current feasible complete solution. Our ap-
proach is different from EGD as follows.

1. In the original GD, the tolerance value starts with the initial solution’s value
and decreases by a preconfigured rate. It tries to range within all neigh-
bours of the current solution in each iteration. However, in our approach,
tolerance rate ranges between values that are percentage of the current
solution value; one above and one below. In our approach, we use two
preconfigured values, namely tolerance lower bound and tolerance upper
bound. Tolerance upper bound is a preconfigured value that defaults to
(108%)iteridle of the initial solution. iteridle is a counter that starts with 1
and is incremented by 1 each time the tolerance rate is reset. Tolerance
lower bound is also a preconfigured value that defaults to 92% of the ini-
tial solution. The tolerance decay rate is a predetermined rate that defaults
to 99.99995%. At the beginning a tolerance rate t is assigned to a value of
the initial solution. It is decreased by tolerance decay rate in each iteration.
Likewise, in every iteration, a new neighbour is selected and tested against
the current t and the best solution value. If it is better than either one of
them, the current solution becomes the best solution and t is decayed by
tolerance rate.

2. The second difference occurs at the time of taking the decision to reset the
tolerance value t. Tolerance value t is reset as follows. t reaches the toler-
ance lower bound which as we discussed is equal to 92% (or predetermined
value) of the best solution so far. We can as well reset t based on the last n
(defaulted to 40) solutions if they happen to be consistent and carry the
same value. This means that we are stuck in a local optimum and there is
no need to complete the full cycle and reach the lower bound. Rather, we
decrease the current tolerance decay rate by half the rate and restart.

Figure 1 presents the pseudo code of MEGD.
Neighbourhood selection variation is by far the most influential technique

that affects rapid local search. Using more than one neighbourhood within a
search provides a very effective technique of escaping from a local optimum. It
is notable that if the current solution is in a local optimum in one neighbour-
hood, it might escape the local optimum, if assigned a different neighbourhood
and can consequently be more improved using a good feasible approach. In
exam timetabling, the neighbourhoods used in local search techniques largely
involve moving some exams from their current time slot and/or rooms to a new
time slot and/or rooms. Based on that, our implementation (corresponding to
the function selectNeighbour() in Figure 1) uses the following seven neigh-
bourhoods.

1. Exam Duration Move: selects a single exam randomly and move it to a dif-
ferent feasible time slot randomly.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

239

Fig. 1. Procedure Modified Extended Great Deluge (MEGD).

2. Exam Duration Swap Move: selects two exams randomly and swaps their
assigned time slots.

3. Non Conflicting Assignment Move: selects an exam randomly and assigns
it to a non-conflicting assignment (time slot and room) randomly.

4. Room Move: selects a single exam randomly and moves it to a different
feasible room randomly.

5. Room Swap Move: selects two exams randomly and swaps their assigned
rooms.

6. Exam Swap Move: selects two exams randomly and swaps their assign-
ments (i.e. time slots and rooms).

7. Random Move: selects an exam randomly and assigns a new assignment
to it randomly. The assignment consists of a room and time slot and might
cause conflicts.

4 Experimentation

This section reports the experiments conducted on the well-known benchmark-
ing datasets of the International Timetabling Competition (ITC 2007) [13]. This
benchmarking datasets consists of 12 basic real world examination time tabling
problems obtained from different anonymous universities around the world.
The detailed properties of the 12 benchmark instances are summarized in Table
2.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

240

Table 2. ITC 2007 Exam Track Benchmarking Datasets.

Instance # of students # of # of Period & Room Constraints # of
students exams rooms Hard Constraints density time slots

1 7,891 607 7 12 5.04% 54
2 12,743 870 49 14 1.17% 40
3 16,439 934 48 184 2.62% 36
4 5,045 273 1 40 14.94% 21
5 9,253 1,018 3 27 0.87% 42
6 7,909 242 8 23 6.13% 16
7 14,676 1,096 15 28 1.93% 80
8 7,718 598 8 21 4.54% 80
9 655 169 3 10 7.79% 25
10 1,577 214 48 58 4.95% 32
11 16,439 934 40 185 2.62% 26
12 1,653 78 50 16 18.21% 12

As we will see, our proposed approach is successful in competing with
benchmarking results published in literature so far. We measure the general
behaviour and performance of our implementation in the two different phases
to solve the exam timetabling problem; construction phase and enhancement
phases. We also compare our approach to the well known exam timetabling
problem solvers. All the experiments are performed on an PC Intel Core 2-Duo
2.4 GHz processor with 8 GB of RAM.

4.1 Construction Phase Testing and Analysis

Our construction approach is based on Tabu Search with Dictionary Conflicts.
We set our goal to get a complete feasible solution as fast as possible so that the
enhancement phase can kick in and improve the overall solution value gradu-
ally. In order to measure the performance of Tabu with CD, we tested it against
standard Tabu search and in both cases preprocessing phase is done prior to
constructing complete solution. As known, standard Tabu algorithm prevents
cycling by using a tabu list, which determines the forbidden moves. This list
stores the most recently accepted moves. The inverses of the moves in the list
are forbidden. Our approach differs in that we sum all the accumulated num-
ber of conflicts that a move caused rather than just moves which are considered
as forbidden. We also implemented ”Iteration Distance” which excludes entries
that are far away from the current iteration based on configured setting for it-
eration distance. For the purpose of the construction phase testing, we selected
dataset 4 as it has a high conflict density (14.94%) along with high number of
students and exams which makes it as one of the toughest problem to solve in
our benchmarking datasets.

During the process of building a complete feasible solution, we record solu-
tion value in every iteration along with its time. This testing is only concerned

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

241

with the construction phase and so we set our testing to run for 10 times for
each method of the selected dataset. Then we select the trial with the best so-
lution value from the ten trials. We represent each point in the graph with the
corresponding penalty cost monitored after every iteration along with its time.
The last penalty cost is the cost of the first complete feasible solution and that
is where the construction phases stops.

Figure 2 illustrates the full snapshot of the best trial for standard TS on
dataset 1 while figure 3 shows the same pattern for TS with CD. Among 10
trials, using best run’s solution value, although standard TS shows better com-
plete solution (6041), it took 8.03 seconds and 1081 iterations to get it while TS
with CD with 6803, took 4.21 and 672 iterations. Also, standard TS algorithm
shows relatively higher number of fluctuations between lower penalty cost and
higher ones where TS with CD seems to have gradually been building the com-
plete solution with a minimum number of instability.

However, dataset 4 has shown a different pattern. Dataset 4 is one of the
most constrained problems. The top chart of Figure 4 illustrates the full snap-
shot of the best trial for standard TS on dataset 4 while the bottom chart shows
the same pattern for TS with CD. The top chart articulates how standard TS
struggled with finding the less penalty cost solutions in contrary to TS with CD
(bottom chart). Standard TS spent a total of 28.54 seconds (3281 iterations) to
find a best complete solution, amongst 10 trials, with a penalty cost of 31133
while TS with CD took only 2.03 seconds (567 iterations) to find one with a
penalty of 27633. That is a performance improvement of around 1400% with
solution value improvement of 112%.

Fig. 2. Dataset 1 Construction Phase using Standard TS.

Dataset 5 is the least constrained problem with only 0.87% but with rel-
atively high number of students and exams (9253 students and 1018 exams)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

242

Fig. 3. Dataset 1 Construction Phase using TS with CD.

which leads us to think that it should be one of the easiest problems to solve. We
can see that in the lack of any fluctuations between worse and better solutions
in the graphs for the datasets in figure 5. Nonetheless, TS with CD algorithm
performs slightly better than standard TS even though the problem itself tends
to be easy to solve. In ten trials, standard TS obtained 6530, as a best solution
value, in 2.58 seconds (1020 iterations) while TS with CD achieved 5030, as a
best solution value, in 2.21 seconds (1050 iterations).

4.2 Enhancement Phase Testing and Analysis

We compare 4 methods labeled method 1, method 2, method 3 and method 4
and respectively corresponding to HC+SA, SA, EGD and our MEGD. All these
methods use Tabu Search with Dictionary Conflicts in the construction phase.
In addition, only methods 2, 3 and 4 have a preprocessing phase.

Figures 6, 7 and 8 shows the enhancement phase best solution distribution
history for four methods against iteration in datasets 1, 6 and 8. From these fig-
ures, we can clearly notice that without preprocessing the first method tends to
improve solutions values within a relatively short time and keeps improving
almost very slowly. Another visible notice is that method 1 seems to use less
number of iterations which suggests that it employs these iterations cycles ei-
ther in backtracking or accessing non efficient collections. Method 2 which also
uses SA starts enhancing a complete solution very early but then ends with
slightly outperforming method 1. On the other hand, the last two methods, us-
ing GD flavours with preprocessing in place, spend some time to find the first
improving solution after the first complete solution which also tends to be of,
relatively, worse value than methods 1 and 2. This is due to the nature of great
deluge algorithm which only accepts an improving solution. Also, a bad solu-
tion is accepted if its quality is less than (for the case of a minimization problem)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

243

Fig. 4. Performance of the construction phase on dataset 4 with Tabu and Tabu together
with conflicts dictionary.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

244

Fig. 5. Dataset 5 using Standard TS (top chart) and TS with CD (bottom chart).

or equal to an upper bound or ”level” in which during the search process, the
”level” is iteratively updated by a constant decreasing rate. It also means that,
with the preprocessing phase in place, there will be more features. This means
that there are more effort to satisfy more constraints but also gaining better per-
formance when looking up the different collections in particular area as well
as a more careful exploration. For the inclusion of preprocessing phase, our
proposed search algorithm diversification of search to gather the whole search
space proved the importance of finding the global minimum quickly. We also
note that MEGD performs slightly better than EGD in 8 out of 12 of the datasets.
Figure 6 illustrates that methods 3 and 4 were close in terms of results in achiev-
ing the best solution. This is also the case for method 1 and 2 although method 2
outperformed to some extent method 1. Method 3 reached a best solution value

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

245

of 4185. The same pattern also appears in figures 7 and 8 where they show re-
sults for dataset 6 and dataset 8 where method 4 is marginally the winner in
finding the best solution.

Generally, the algorithms might behave differently due to the different mea-
surements enforced during the search process. However, the difference between
SA, GD, EGD and MEGD algorithms lies in the acceptance criteria functional-
ity that would make a difference on the limited solving time that was imposed
on our benchmarking datasets. This might not be the case if we have relatively
longer times for several hours or days as all these algorithms are based on the
stochastic local search and there will always be the possibility of achieving good
results.

Fig. 6. Performance on dataset 1 of the enhancement phase.

4.3 Comparative Tests Results

On the basis of results obtained by both construction and enhancement phases,
we decided to compare our four methods to the five well known ET solvers.
Each of the datasets used in our testing phase has a previously discovered best
known solution announced by ITC 2007. The five known solvers are the follow-
ing finalists of the examination track of the competition.

1. Müller [20] implemented a constraint-based solver, which constructs a com-
plete solution, followed by a hill climbing and a great deluge approach for
improving the solution.

2. Gogos et al. [21] used a Greedy Randomized Adaptive Search Procedure,
followed by simulated annealing, and integer programming.

3. Atsuta et al. [22] developed a constraint satisfaction solver combined with
Tabu search and iterated local search.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

246

Fig. 7. Performance on dataset 6 of the enhancement phase.

4. De Smet [23] has his own solver, namely Drools Solver, which is a combi-
nation of Tabu search and the JBoss Drools rules engine used for the evalu-
ation.

5. Finally, Pillay [24] used a heuristic method that is inspired by cell biology.

During experiment runs, we managed to achieve an outstanding 98% suc-
cess in reaching complete feasible solution on all instances in all attempts. The
remaining 2% were only in dataset 4 and 12.

For each method trials we performed 11 individual runs on each of the 12
competition instances, using the time limit specified by the competition bench-
marking program as our stopping criteria, which equated to 362 seconds. The
same timeout value on each machine is used for all of the 12 datasets. In all
cases, we logged out all best solution values history along with times and iter-
ations where these best solution values are discovered.

The settings of the algorithms have remained the same throughout the ex-
periment for the purpose of going in line with ITC 2007 rules. One of our ob-
jectives in testing phase is to represent different algorithm variations that are
composed of different algorithms and compare them to the performance of ITC
2007 results. The expectation was also set for the results to be reasonably com-
parable if not better than ITC 2007 exam track results.

Table 3 reports the comparative results including the best solution value
(lowest penalty cost) and average of best solution values for each variant. When
searching without preprocessing, performance degrades relatively to when us-
ing preprocessing phase. Only the first method did not use preprocessing and
if we look first at the performance of its algorithms in comparison to ITC 2007

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

247

Fig. 8. Performance on dataset 8 of the enhancement phase.

results we will notice that it comes in the second place in 10 out of 12. This is
the case for all datasets except datasets 10 and 12. TS with CD + HC+ SA with
no preprocessing is the worst algorithm variant in our testing and it comes in
the second place in most datasets in comparison to ITC 2007 results.

The other three algorithms variants performed better. Only when we used
GD algorithm extensions (EGD and MEGD), we started to see results that over-
take ITC 2007 results. Our approach gets 8 out of 12 datasets as best results.
These results are split between EGD and MEGD evenly with 4 best results each.

In order to obtain a fair comparison, it is worth noticing that the perfor-
mance loss is on average about 7% between SA with preprocessing and MEGD
with preprocessing, whereas it is about 10% if the preprocessing phase is not
implemented with SA. Moreover, one can also notice that the gap between the
two methods becomes smaller with higher conflicts density problems, and that
the behavior of the methods with pre-processing phase implemented is more
stable with respect to SA with no preprocessing phase. All in all, EGD and
MEGD performed much better than SA with preprocessing phase not to men-
tion SA with no preprocessing. Finally, all of our methods performed well in
comparison to ITC 2007 results in best solution values and in best average val-
ues.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

248

Table 3. Comparative results.

5 Conclusion and Future Work

We presented our proposed approach to solve exam timetabling problem using
four different metaheuristics search methods; tabu search, hill climbing, sim-
ulated annealing, and different flavours of great deluge. We also introduced a
pre-processing phase to enhance the overall search process. A Tabu metaheuris-
tic search method with conflict dictionary is proposed as a construction phase
to achieve a partial or complete initial feasible solution. The tabu list does not
contain operators or moves that are problem specific. It only needs to store the
conflicted moves along with the accumulated number of conflicts it caused.

A modified extended great deluge heuristic search method is used during
search to eliminate some of the time wasted in local optimum based on certain
conditions. The selected heuristics perform in sequence to produce a good solu-
tion for the current state of the problem. The whole hybrid heuristics approach
is configurable and able to manage and control its heuristics without having a
domain pre-knowledge of the exam timetabling problem.

In the near future we will investigate advanced variables ordering heuris-
tics [9] as weill as evolutionary techniques using a parallel architecture [25, 26].
We will also intend to explore path consistency algorithms [27] to discover tem-
poral constraints in the preprocessing phase.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

249

References

1. Qu, R., Burke, E., McCollum, B., Merlot, L., Lee, S.: A survey of search methodolo-
gies and automated system development for examination timetabling. Journal of
Scheduling 12(1) (2009) 55–90

2. Schaerf, A.: A survey of automated timetabling. Artificial Intelligence Review 13(2)
(2009) 86–127

3. McCollum, B., McMullan, P., Parkes, A., Burke, E., Abdullah, S.: An extended great
deluge approach to the examination timetabling problem. MISTA 2009, Multidisci-
plinary International Scheduling Conference: Theory and Applications (2009) 20–69

4. Gogos, C., Alefragis, P., Housos, E.: An improved multi-staged algorithmic pro-
cess for the solution of the examination timetabling problem. Annals of Operations
Research 194(1) (2012) 203–221

5. Abdullah, S., Turabieh, H.: On the use of multi neighbourhood structures within
a tabu-based memetic approach to university timetabling problems. Information
Sciences 191(0) (2012) 146 – 168 Data Mining for Software Trustworthiness.

6. Sabar, N., Ayob, M., Qu, R., Kendall, G.: A graph coloring constructive hyper-
heuristic for examination timetabling problems. Applied Intelligence 37(1) (2012)
1–11

7. Sabar, N., Ayob, M., Kendall, G., Qu, R.: Grammatical evolution hyper-heuristic
for combinatorial optimization problems. Evolutionary Computation, IEEE Trans-
actions on 17(6) (Dec 2013) 840–861

8. McCollum, B., McMullan, P., Parkes, A.J., Burke, E., Abdullah, S.: An extended great
deluge approach to the examination timetabling problem. in MISTA 2009, Multi-
disciplinary International Scheduling Conference: Theory and Applications, Dublin
(2010) 20–69

9. Mouhoub, M., Jashmi, B.J.: Heuristic techniques for variable and value ordering in
csps. [29] 457–464

10. Kendall, G., Hussin, N.M.: A tabu search hyper-heuristic approach to the examina-
tion timetabling problem at the mara university of technology. Practice and Theory
of Automated Timetabling 3616 (2005) 270–293

11. L. T. G. Merlot, N. Boland, B.D.H., Stuckey, P.J.: A hybrid algorithm for the exam-
ination timetabling problem. Practice and Theory of Automated Timetabling 2740
(2003) 207–231

12. Dowsland, K.A.: Simulate annealing. Modern heuristics techniques for combinato-
rial problems, ch. 2 (1995) 20–69

13. McCollum, B., McMullan, P.: The second international timetabling competition: Ex-
amination timetabling track. University of Nottingham, Queens University, Not-
ingham, Belfast, Technical Report: QUB/IEEE/Tech/ITC2007/Exam/v4.0/17 2007
(2009)

14. E.K. Burke, J.N., Weare, R.: A memetic algorithm for university exam timetabling.
Practice and Theory of Automated Timetabling 1153 (1996) 241–250

15. Chan, C.K., Gooi, H.B., Lim, M.H.: Co-evolutionary algorithm approach to a univer-
sity timetable system. in The 2002 congress on evolutionary computation, Honolulu
2 (2002) 19461951

16. E. K Burke, B. MacCathy, S.P., Qu: Knowledge discovery in a hyperheuristic for
course timetabling using case-based reasoning. Practice and theory of automated
timetabling (PATAT’02) (2002)

17. M. W. Carter, G.L., Lee, S.Y.: Examination timetabling: algorithmic strategies and
applications. Journal of the Operational Research Society 47 (1996) 373–383

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

250

18. Dueck, G.: New optimisation heuristics for the great deluge algorithm and the
record-torecord travel. Journal of Computational Physics 104 (1993) 86–92

19. Burke, E.K., Newall, J.P.: Solving examination timetabling problems through adap-
tion of heuristic orderings. Annals of Operations Research 129(1-4) (2004) 107–134

20. Müller, T.: Itc2007 solver description: A hybrid approach. in Proceedings of the 7th
international conference on the practice and theory of automated timetabling (2008)

21. E. Gogos, C.A., Housos, P.: Multi-staged algorithmic process for the solution of the
examination timetabling problem. Practice and theory of automated timetabling
(PATAT), 2008 (2008)

22. T. Atsuta, M.N., Ibaraki: An approach using a general csp solver. Technical report
(2008)

23. Smet, G.D.: ITC2007 examination track: Practice and theory of automated
timetabling. Technical report (2008)

24. Pillay, N.: A developmental approach to the examination timetabling problem. Tech-
nical report (2008)

25. Abbasian, R., Mouhoub, M.: An efficient hierarchical parallel genetic algorithm for
graph coloring problem. [29] 521–528

26. Abbasian, R., Mouhoub, M.: A hierarchical parallel genetic approach for the graph
coloring problem. Applied Intelligence 39(3) (2013) 510–528

27. Mouhoub, M.: Analysis of Approximation Algorithms for Maximal Temporal Con-
straint Satisfaction Problems. In: The 2001 International Conference on Artificial
Intelligence (IC-AI’2001), Las Vegas (2001) 165–171

28. Mouhoub, M.: Dynamic Path Consistency for Interval-based Temporal Reasoning.
In: 21st International Conference on Artificial Intelligence and Applications(AIA
’2003), ACTA Press (2003) 393–398

29. Krasnogor, N., Lanzi, P.L., eds.: 13th Annual Genetic and Evolutionary Computa-
tion Conference, GECCO 2011, Proceedings, Dublin, Ireland, July 12-16, 2011. In
Krasnogor, N., Lanzi, P.L., eds.: GECCO, ACM (2011)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

251

