10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

A Criteria Transformation Approach to Timetabling
based on Non-Linear Parameter Optimization

Christian John - Dietmar Tutsch -
Reinhard Modller - Thomas Lepich -
Bernard Beitz

Abstract This paper presents a concept for timetabling based on a parameter
optimization system for approximative numerical calculation of some parame-
ter combination under soft and hard constraints. The concept uses a non-linear
parameter optimization method with an iterative variation of parameters. The
paper focuses on the transformation process to migrate problem-domain spe-
cific criteria into optimization-compatible objects suitable for a standardized
parameter optimization procedure. A framework for use in other problem do-
mains is presented. The method is applicable to a wide range of timetabling
problems due to its dynamically parametrized restrictions. Timetabling is in-
tegrated in educational context in various university and scholastic scopes.

Keywords Timetabling - Non-Linear Parameter - Optimization

1 Introduction

Timetabling is used in a vast variety of applications, such as in examina-
tion, curricula and courses, scheduling and assigning rooms or in general time
management applications. This paper describes a new concept for deriving
algorithmic criteria from generalized timetabling ”stories”, the set of fuzzily
given conditions and constraints of a timetabling task, in order to calculate
appropriate time slots under complex conditions. The general idea is to use a

Christian John

Bergische Universitat Wuppertal
Faculty E Rainer-Gruenter-Strasse 21
D-42119 Wuppertal

Building FC, Room 2.07

Tel.: +49-202-4391186

Fax: +49-202-4391944

E-mail: chjohn@uni-wuppertal.de

252

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

probabilistic, iterative algorithm avoiding the well-known issues and problems
of commonly used timetabling algorithms. Thus, the transformation of gen-
eral problem-describing ”criteria” to ” parameters”, ” constraints”, and ” condi-
tions” in terms of optimization is in our special focus. Today’s timetabling solu-
tions are mostly based on ”syntactic”, ”statistic”, or ”structural” approaches.
There are several disadvantages like preprocessing tasks, stochastic methods
with deterministic tasks, fuzziness, clipping, exhaustive search, etc. [1-5]. Our
concept is to avoid most of these disadvantages and to develop a more general
and extensible solution for timetabling. The conceptual idea is based on a non-
linear parameter optimization method, as considered by many authors before,
consisting of an objective or target function, restrictions and constraints, and
a set of parameters describing the problem domain [6-14].

In addition to existing approaches of this kind, our focus is on conveniently
pre-processing the conditions and constraints.

2 Foundation

While typical combinatorial problems can easily be described in form of spoken
or written text, their solution depends on the qualified extraction of the cri-
teria governing the problem. Thinking of well-known optimization algorithms,
we have to provide parameters, boundary conditions, constraints and an ap-
propriate evaluator to be used as target or objective function. To glue these
two sides together, we have to translate some informal criteria description into
a syntactically correct formal expression with scalar parameters and explicit
boundary conditions such as restrictions and constraints. These expressions
can then be used to iteratively find a best-fitting solution - to achieve a goal,
meaning to minimize or maximize the evaluation function based on some set
of parameters while taking the boundary conditions into account [15,16].

Here the problem arises to transform problem-specific criteria descendent
from some real-life problem domain into terms of optimization. Regarding the
problem-specific criteria as issues or dimensions in an n-dimensional euclidean
space, we have to find an isomorphic transformation of the form:

I~ 1

with IT being the domain-specific problem space and {2 being the optimization
search space.

Fig. 1 shows this bijective transformation with the problem space criteria
C; and the search space parameters P; and restrictions R;_;.

This transformation mirrors the need for numerical solution of a non-linear
system of equations. Several specialized approaches can be found to solve
specific optimization problems (Fig. 2). The most general and non-limiting
approach is to think of optimization in terms of non-linear parameter opti-
mization.

253

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Ci Pi

Cint > Ry

Cj > R;.i

I
=]

n

Fig. 1 Bijective criteria transformation

Convex programs 1

. Flow
Linear programs
olynomial) and
@ matching

Integer programming

Non-Linear programs

Fig. 2 Optimization problem classes (corresponding to [16])

Non-linear parameter optimization works by an iterative variation of pa-
rameters [16-19]. The variation may follow a stochastic and/or deterministic
approach and normally comprises some sort of step-width control. While a
parameter combination describes the problem domain of the specific given
problem, the target function is expressed as f(parameters) and gives an esti-
mation value for the grade of optimum fitting and thus the approach of the
solution in question. Boundary conditions act as constraints that limit the
valid parameter combinations. The optimum may be described as a minimum
or maximum of the target function [20-22].

In general, parameter optimization in terms of a target function can be
expressed as

X={zeQNz' € 2: f(x)> f(2)|f: 2 >R, > {<,>}}

with
(0} the search space
>e {<,>} the comparative relation
XCcn the set of global optima

where z is the n-dimensional set of scalar parameters with values fitting
into the n-dimensional search space {2 and X is the best-fitting parameter set
as the result of the optimization. We are free in the decision to choose the
minimum or maximum approach for optimization, here we have chosen the
minimum approach.

254

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

The iterative variation of parameters can be done in a stochastic or a de-
terministic manner or a mix of both. Deterministic parameter variation tries
to find the best way towards the optimum in search by taking target func-
tion differentiations into account, while for stochastic parameter variation the
need for a continuously differentiable target function does not arise. Typical
representations for deterministic optimization are any forms of gradient proce-
dures, whereas several stochastic procedures have been developed in the past,
the evolutionary procedure being one of the most prominent ones.

The decision for deterministic or stochastic procedures in general or for
some gradient procedure or evolutionary procedure in detail will have some
impact on the overall performance of the optimization, but the main concepts
are the same in both cases, so the decision for one of these algorhithms does
not infringe the general timetabling procedure described below.

3 Timetabling as a Multi-Criteria Story

Encountering a real-life timetabling problem we are normally confronted with
a diffuse informal description of conditions and goals to be met with the solu-
tion. We call this the ”timetabling story”. The first solution step is the need
for semantically understanding the story details, rather than an algorithmic
question. The meaning of understanding the timetabling story is to identify
the events, limitations, desires and the time line. Then we transform these
characteristic parts into formal definitions of prarameters, restrictions, con-
straints, the target function and the definition area. Some parts (see Fig. 3)
have to be configured before the optimization is started.

Story
informal description of conditions and goals

v v '

:

[Time] [Listot] [” mtttlf] [Lstof dsires]
Il] ! : v
[D"'::::“"] [Parameters] [Constraints] [Reslrictions] [J:L?i‘::n]
! Il i

v

Configuration

‘ !

Calculation
(Optimization)

v

(Solution

Fig. 3 Timetabling story transformation

255

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Giving a definition of the term timetabling, we think of timetabling as some
kind of time management for events, determining ideal time slot combinations
or structured schedule based on a time line and restricted to a time interval.
A timetable consists of distinct time slots, each having a start and end time,
often denoted as "arrival” and ”departure”, and they need to be arranged
or combined on the time line. The timeline is given as a one-dimensional
definition region of time, restricted by a distinct start and end timestamp.
Unfortunately the given time space is perforated by unavailable periods, e.g.
weekends, holidays and night times. The remaining free time spaces then can
be filled with the time slots.

While these aspects are concerning the timeline as a whole, more criteria
have to be derived from the story, concerning inner relations and dependencies
between time slots. Time slots may have a prescribed order, some or all time
slots must not overlap, distance preferences may occur as well as daytime
preferences.

Additionally, in almost all cases we have to ensure that all time slots find
accommodation in the timeline because time slots must not be skipped.

In this paper, our goal is to create a generalized approach to all of these
timetabling issues - or at least to a vast majority of them. Looking at the
timetabling tasks in a more abstract way, we can name a number of general
principles that can be found in all of the above-mentioned conditions:

— definition of time line, start and end time

— definition of blocked time spans

— recognition of free time spans

— observing relations, distances and dependencies
— observing allowed or forbidden overlapping

— observing orders and preferences.

These principles lead to the generalized criteria:

— time and duration

— relations and grouping
— delay and distance

— order and preferences
— overlapping

Other criteria may arise as well. Thus timetabling can be described as a multi-
criteria problem. While some standard approach might think of criteria in
terms of unilateral, bilateral and multilateral event relations, our solution
handles these criteria classes (and any other criteria) in a unified manner.
Even real-world knowledge may be integrated into this approach by defining
customized optimization conditions.

Our generalized timetabling solution is based on a non-linear parameter
optimization procedure (as described above), while the different criteria are
implemented as sets of parameters and restrictions.

256

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Fig. 4 shows the schematic user-interface for the ”configuration” part in
Fig. 3 where arbitary criteria may be added and parametrized by selecting pre-
defined criteria classes from a given criteria catalogue and assigning appropiate
values.

Constraints Values +| - |
TimeSpanBlocking 12 | 18
WeekEndBlocking all
HolidayBlocking 20

NoCollision all
TimeSpanBlocking 23 | 43
HolidayBlocking 50

Fig. 4 Schematic User-Interface for Configuration and value assignment

Fig. 5 shows an example of a specific dynamically configured non-linear
parameter optimization application with a combination of several different cri-
teria principles, a target function, a set of restrictions and parameters. Thus
the concept yields the following advantages: a dynamic selection of criteria,
parametrizable constraint values, reusable restrictions, and enabling or dis-
abling of conditions. As a result, we obtain a highly reconfigurable general
solution system.

While this is the conceptual approach, the question arises, how to imple-
ment the named timetabling principles in a real-life dynamically configurable
software application, allowing for adding any principle known and upcoming.

\

('s ™
Dynamically configured
X non-inear
= parameter optimization

O
target function
X

)

o D
I:I restrictions

0

———
K |)

~
(- OO \))

Fig. 5 Dynamically configured non-linear parameter optimization

257

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

4 Dynamic Multi-Criteria Transformation in OOP

After describing the conceptual structure of our problem domain the imple-
mentation starts with the technical realization in form of a three-layer OOP
system (see Fig. 6).

In the top-down approach for analyzing the timetabling problem domain
described above we have generalized typical timetabling questions, including
event relations and real-world knowledge, into abstract criteria. The Object-
Oriented Programming (OOP) design principle is the best-fitting paradigm
to implement generalizable problem structures with concrete algorithm im-
plementations. Following the standard OOP nomenclature, object classes are
ruled by interfaces to encapsulate implementation details and realize inheri-
tance and polymorphy.

We use OOP with classes and interfaces to implement the basic non-linear
parameter optimization [16,21] as our general problem solver and we provide
interfaces to embed concrete parameters, restrictions, constraints, and target
functions to meet the above-mentioned timetabling requirements.

Following this flexible and expandable design, we have structured our so-
lution into a three-layer scheme, of which the first two layers contain the
predefined parts of the software solution, while the third layer is the place
for the implementation details of the particular problem (which, in our case,
is the timetabling problem). This expandable layer has to be implemented
individually with program code to match the problem’s requirements.

4.1 First layer: Optimization

This is the basic layer forming the general foundation for our solution: the op-
timization layer. It generalizes the non-linear parameter optimization, defining
the interfaces IOptimizer (for the optimizing algorithm as such) and a suitable
IVariator (implementing the parameter variations and step-width control).
The IOptimizer interface in particular is the hook for the real optimization al-
gorithm’s implementation. In general, we can differentiate between stochastic
and deterministic optimization algorithms. In our implementation, a simple
gradient program represents the deterministic algorithm class, where we de-
cided to use a simple evolution program as representation of a stochastic algo-
rithm. The variators have been developed accordingly. The optimizers in this
basic layer may be used ”as-is” by the concrete optimization task, but more
sophisticated optimizers could be hooked in if estimated necessary, promising
possible performance gains.

4.2 Second layer: Interface

The second layer is situated between the optimization and the real-life task.
It defines the interfaces for linking the other layers together. The interface

258

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

layer provides several pre-conditions for the real-life task implementation to
be fulfilled.

4.3

IParameter: As described above, parameter optimization is equivalent to
finding the best-fitting parameter combination according to a given eval-
uation or target function. The IParameter interface defines the abstract
concepts for optimization parameters to be integrated into an optimization
procedure.

IConstraint: A constraint works as a boundary condition, hard-restricting
parameter values to represent a valid solution by ensuring parameters to
be contained in a valid range of values. Parameters violating a constraint
must not be used in further calculations, they will be rejected and a new
parameter variation will be triggered.

IRestriction: A restriction is similar to a constraint, but it is a weak con-
straint: it is allowed to be violated, but violation will be punished with
bad target values. Ideally, a restriction is implemented in a way such that
violating the restriction will force the optimization converge against the
optimum or at least against better values, expressed in parameter combi-
nations. It will not enforce a new parameter set. Complying the restriction
is a positive quality statement for the result - a valid and potentially better
parameter combination.

ITarget: This is the target function, evaluating and rating the current pa-
rameter combination. The target is the central place for defining the opti-
mization goal. It is important to state that for deterministic algorithms the
target function must be continuously differentiable, at least locally, i. e. it
must be possible to calculate a numeric differentiation for the current pa-
rameter combination. Non-deterministic and stochastic algorithms do not
rely on this precondition of differentiability.

ITask: This is the overall container defining the concrete problem and
binding the other parts together.

Third layer: Real-life task

This layer is the concrete implementation of all problem-specific parameters,
constraints, restrictions as well as the target function (see Fig. 7). To build up
a new problem we first define a Task and identify and implement the following
details:

The target function as implementation of ITarget

Identify the problem’s parameters and implement as set of IParameter,
while initializing with estimated start parameter values

Identify the constraints and implement as IConstraint subclasses

Identify the restrictions and their penalty behavior, implemented as set of
1Restriction

Now we can start the calculation. The optimization will begin with the

start parameter set and iteratively vary the parameters and rate the current

259

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

result by evaluating the target function. The calculation will stop as soon as
some termination condition is met. Using the evolutionary procedure [22], ter-
mination may simply be defined in terms of iteration steps, thus increasing
the number of steps can give the chance for better results while deteriorating
the runtime needed. In a more general approach, optimization procedures may
have more sophisticated termination conditions in form of convergence crite-
ria, promising more effective termination conditions. In this case, convergence
has to be defined in the context of the problem domain. For deterministic
optimization procedures, the target function’s differentiability can help find-
ing convergence criteria while running the risk of being stuck in some local
optimum. For non-deterministic and stochastic procedures, the local optimum
problem is reduced, but convergence criteria must be defined in some supple-
mentary way.

4 Real Life Task I
TimetablingTask 1 Target Function
Restrictions N
Constraints '

Parameters '

4 Interfaces
IRestriction v ITask
IConstraint , ITarget
IParameter ')

'
I0ptimizer Optimizing
Optimizer

Variator (EvolutionOptimizer (EvolutionVariator)

(GradientOptimizer (Gradienwariato r)

C -~ -)

\- /

Fig. 6 Full three layer scheme

The whole three-layer scheme is outlined in Fig. 6, showing the OOP trans-
formation of the dynamic multi-criteria timetabling algorithm.

4.4 Multi-Criteria Framework

We have seen that for solving a concrete task using this generalized OOP and
optimization approach at least some programming is involved, implement-
ing the scheme’s interfaces appropriately. To facilitate this we have created a
framework outlined below (see Fig. 7).

260

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

ITask

getParameters()

getConstraints()

getRestrictions()
getTarget()

-

IRestriction

IConstraint

calcPenalty(...)

isParametersValid(...)

ITarget

IParameter

calcEvaluation(...)
calcDifferentiation(...)

clone()
getValue()

setValue(...)
getName()

\ .

Fig. 7 Class Model

5 Scaling Effects in Transformation

Transforming the n-dimensional problem domain criteria into an optimization-
based numerical solution, the problem of different parameter dimensions in
terms of measure arises. In general, we can distinguish parameters in the di-
mensions

— time and date

— order and relation

— length and angle

— force, mass and weight

— color and brightness

— elasticity

— temperature

— and potentially many other dimensions.

Especially for timetabling, the time and order dimensions will become im-
portant. Both types of parameters have different definition ranges and cannot
be handled equally without normalization. It is clear that those parameters
must be submitted to normalization using their specific definition range. As
a result, all normalized parameters may be treated equivalently in variation
during optimization. We apply normalization in a strictly local manner, such
that the IParameters internally encapsulate their true values while parameter
variations apply normalized variation steps to them.

While IConstraints, if violated, decline our parameter set as a whole, IRe-
strictions provide a calculated penalty value representing the grade of non-
compliance of the corresponding condition. A simple restriction may calculate
its penalty value using a linear function. The linear function’s slope can be

261

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

used as a weight factor for restrictions with different significance. More sophis-
ticated penalty functions may be formulated as exponential functions.
As a result, we have to observe that

— parameters have to be normalized according their definition range
— restrictions have to be provided with an appropriate rating factor.

6 Example: Examination Planning at BUW

Paradigmatically, we show the conceptual approach to probabilistic timetabling
for our institute at BUW Bergische Universitat Wuppertal.

In the examination period we set our exams time slots, taking into consid-
eration all constraints and relations between exams.

First we have to define a start-time constraint and an end-time constraint
reflecting the examination period as a whole. Then we add more constraints:

— No exam should be written on a weekend - a WeekendConstraint arises

— Furthermore no exam should be written in an inconvenient time, for ex-
ample in the night or too early in the morning - a NightConstraint

— Holidays are inconvenient as well as exam date - giving a HolidayConstraint

The constraints’ goal is to find valid exam dates - our parameter set - in the
resulting free time slots. Fig. 8 shows the constraints for the given timeline,
limited to the constraints declared. Zooming into the timeline focusses a section
of the timeline, in this example it is a typical week. Further zooming leads
into the monday section. Obviously, applying all constraints gives a valid time
span between 8:00 AM and 4:00 PM. In this idle time period on monday the
algorithm might place five exams belonging to three different exam groups and
thus partially overlapping. As we only consider the constraints at this point,
the exam time slot distribution shown is valid, but not yet necessarily optimal.
Further optimization steps will variate the time slot positions in the gaps of
idle times, until eventually the optimum distribution is found.

7 OOP Transformation Framework

The OOP transformation implies the identification of the parameters describ-
ing this example task, the constraints and restrictions to be applied and the
target function definition.

Running the optimization procedure, it will hopefully give a solution in
form of the best-fitting parameter combination for our target function after n
iterations. Here it would be a parameter set of ¢; for the start of each time span.
The number n of iterations needed to find the solution depends on several
conditions: the arbitrary distribution of the exams start points, the kind of
step-width control, the local-vs.-global optimum bias, and the selected fitting
tolerance of the target function (the latter is equivalent to the algorithm’s
termination condition).

262

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

timeline constraints

p ™~
nights
[|
| N
weekends .\ . . .
“‘C& - - "/ \\\‘\“
period [- [
, _‘ _ \ l'
S
/ AN
,x/ l | | |
' -
|]
| ////// - .
T I > e

Fig. 8 Overwiew of the timeline constraints and free time spans

The number n of iterations can be estimated as being far lower than the
steps we would need for an exhaustive search or any Monte-Carlo approach,
but we can expect performance loss in comparison to conventional, direct
timetabling algorithms. The performance loss will be compensated by the abil-
ity to dynamically parametrize and alter the set of constraints and restrictions.

8 Constraints and Restrictions

According to the previous examination timetabling example we limit the time-
line by the period’s start and end time defining these limits as two constraints:
a startConstraint for the start or departure and an endConstraint for the end
or arrival. The idea of constraints is to describe general conditions for a prob-
lem forcibly limiting the allowed parameter values. In this case, we have two
boundary constraints because the time region has two limiting sides. E.g., the
left side constraint checks the current parameter ¢ against the region limit on
the left side (see implementation: Listing 1). The result of these tests mark the
actual given parameters to be valid or invalid. In case of invalid parameters
the optimization procedure will trigger a new parameter variation, after which
the parameters will again be submitted to constraint checks. In case of valid

263

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

parameters the target function will be evaluated using the current parameter
set.

public class StartConstraint implements IConstraint
{

public boolean isParametersValid(ParamSet params)

{
for (IParameter : params)
if (p.value < startTime)
return false;
return true;
}

}

Listing 1 Start constraint

While we understand constraints to be mandatory limitations for the prob-
lem’s parameters, we describe restrictions to be weak constraints. Violating a
restriction results in a bad target function value due to calculated penalty
values from the restriction. In the context of our example the condition ”two
exams have to be a distance of seven days apart” would be a restriction (see
implementation: Listing 2).

public class DistanceRestriction extends TimeRestriction
{

private double dist;

private int il;

private int 1i2;

private double factor = 1.0;

public DistanceRestriction(double factor, double dist,
int i1, int i2)

{
super (factor);
this.dist = dist;
this.il = i1l;
this.i2 = i2;
}
public double calcPenalty(ParamSet params)
{
double tl1 = params.get(il).value;
double t2 = params.get(i2).value;
double delta = Math.abs(t1-t2);
if (delta >= dist)
return 0.0;
return factor * (dist - delta);
}

}

Listing 2 Restriction for distance check

264

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

9 Target Function

Regarding the requirements described so far, our target function must fulfill
two goals:

1. penalty values must lead back into the allowed time slots

2. when all restrictions are fulfilled, the time-span distribution must be sub-
mitted to a rating function, so that the optimization can converge towards
the desired ideal distribution.

While goal (1) is handled by the restriction’s penalty function values, fulfill-
ment of goal (2) depends on programming the rating. The actual rating is
formulated in terms of ”distribute all time spans equally”, ”prefer gathering
the time spans at the beginning of the period” or any other goal for the specific
problem given.

While the start conditions

— set of start parameters
— start step width of the variation (i.e. search radius)

are crucial for a converging algorithm, the target function must reflect the
optimization goal by rating the current parameter values according to the
selected goal.

10 Dynamic configuration

The perception we have experienced by working with the timetabling is that
a principal solution appears to be generalizable but specific timetabling tasks
need specific ways of solution in detail. So we decided to provide a dynamically
configurable solution process to represent the solution details.

Fig. 8 shows a configurable timetabling task and appropriate target func-
tion with optional settings for management of constraints and restrictions; we
can turn on and off constraints and restrictions as needed, and in case of a
missing condition, we can simply define a new constraint and/or restriction.

According to Fig. 9, adding a holiday would result in adding a new time-
locking constraint for this day. As an example for a completely new condition
we could introduce the idea of two time spans requiring to be in a defined
order. In this case we implement a new IRestriction class and insert it into
the timetabling task.

Applying the described procedure to real-life timetabling problems, short-
term occurrences (e.g. teacher’s illness) are omitted because they are not pre-
dictable.

11 Implementation

The software has been implemented in Java using the Eclipse RCP frame-
work. The RCP framework and its plug-in mechanism allow to conveniently

265

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Timetabling task

Target function

Constraint 1 Restriction 1

Constraint 2 Restriction 2
Constraint 3 Restriction 3

Constraint 4 Restriction 4

Constraint 5 Restriction 5

XOOOX

Constraint 6

OOXOXKXKX

Constraint 7

O
O

Constraint i Restriction j

.

Fig. 9 Dynamic configuration of algorithm

expand the software for adapting to the current specific problem domain by
implementing the basic framework interfaces. The core optimization algorithm
is implemented as a basic plug-in (OSGi bundle) using the well-known evolu-
tionary procedure. For performance enhancement purposes other optimization
procedures may be implemented as well, no matter if following the stochastic
or the deterministic approach. Any constraints, restrictions and target func-
tions can be realized as additional plug-ins, thus making the whole package
very flexible and expandable for other optimization domains.

12 Real-Life Applications

The main aspect for this work descended from the need for examination plan-
ning. Different kinds of exam constraints and exam restrictions lead to a non-
linear parameter optimization approach. Before we built up this system, the
planning was performed manually and with rather high error rate. The idea
arose to create an automatic exam planning system and avoiding error rates.

We used the optimized exam dates for an extended application for room
management. This includes a room list together with the room seat capacities
and assigns exams to rooms, taking into consideration the expected numbers
of participants.

After calculating the exam dates and appropriate rooms we provided this
informations for another project: We developed an application for helping stu-
dents and visitors navigating through and locating at the Wuppertal University
Campus. Our students will use their smartphone and its integrated camera to
take a picture from their current environment, and a server-based application
will identify their position and locate them on the campus. Together with the
timetabling information, students and exam candidates can be guided to their
target exam rooms using smartphones and web browsers. This procedure is an
extension of our eCampus project [eCampus] [23].

266

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

13 Conclusion

A new, flexible and configurable framework for transforming timetabling crite-
ria stories was presented, using standardized condition classes for an iterative
approach via non-linear parameter optimization. The concepts for transform-
ing the different timetabling criteria into objects to be applied in an optimiza-
tion procedure were shown and a simple framework for creating optimization-
oriented subclasses and end-user applications has been presented. Scaling ef-
fects for parameters and restrictions have been discussed. The method uses
constraints and restrictions to integrate arbitrary boundary conditions to rep-
resent timetabling specifics for a wide range of applications. An example
demonstrated the basic ideas behind the transformation method and discussed
some oncoming problems and their solutions.

References

1. Toméas Miiller, Real-life Examination Timetabling, in MISTA 2013 - Proceedings of the
6th Multidisciplinary International Scheduling Conference, 2013.

2. Tom&s Miiller, H. Rudovd, Real-life Curriculum-based Timetabling In PATAT 2012 -
Proceedings of the 9th international conference on the Practice And Theory of Automated
Timetabling, 2012.

3. Rui Li, Michael T.M. Emmerich et al.: Mixed Integer Evolution Strategies for Parameter
Optimization. MIT 2013.

4. Alberto Colorni , Marco Dorigo , Vittorio Maniezzo, A Genetic Algorithm To Solve The
Timetable Problem, Computational Optimization and Applications Journal, 2013

5. Tanguy Lapégue, Damien Prot, Odile Bellenguez-Morineau, A Tour Scheduling Problem
with Fixed Jobs: use of Constraint Programming, Practice and Theory of Automated
Timetabling, 2012.

6. Moritz Miihlenthaler, Rolf Wanka, Fairness in Academic Course Timetabling, Practice
and Theory of Automated Timetabling, 2012.

7. Gilles Pesant, A Constraint Programming Approach to the Traveling Tournament
Problem with Predefined Venues, Timetabling, Practice and Theory of Automated
Timetabling, 2012.

8. Benny Raphael, Ian F. C. Smith, Engineering Informatics: Fundamentals of Computer-
Aided Engineering, Second Edition, John Wiley and Sons, 2013

9. Wil Michiels, Emile Aarts,Jan Korst, Theoretical Aspects of Local Search, Springer 2007

10. Francesca Rossi; Peter Van Beek; Toby Walsh, Handbook of constraint programming.
Elsevier 2006

11. Burke E.K., Landa Silva J.D., Soubeiga E., Multi-objective Hyper-heuristic Approaches
for Space Allocation and Timetabling, In Meta-heuristics: Progress as Real Problem
Solvers, Selected Papers from the 5th Metaheuristics International Conference (MIC 2003),
pp 129-158, 2005

12. Kalyanmoy Deb, Multi-Objective Optimization Using Evolutionary Algorithms, Wiley
Paperback 2009

13. Kaisa Miettinen, Nonlinear Multiobjective Optimization, Springer 2012

14. Matthias Ehrgott, Multicriteria Optimization, Springer 2010

15. Christian John, Reinhard Méller, A Probabilistic Approach to Pattern-Matching Based
on a Dynamic Rule-Driven System, 2013 IEEE GHTCE, Shenzhen 18.11.2013

16. Christos H. Papadimitriou, Kenneth Steiglitz, Combinatorial Optimization - Algorithms
and Complexity. 1998 Dover, New Jersey

17. Jorn Schmidt, Christina Kliiver, Jiirgen Kliiver: Programmierung naturanaloger Ver-
fahren. Vieweg+Teubner. Wiesbaden 2010.

18. Juraj Hromkovic. Randomisierte Algorithmen. Teubner. Wiesbaden 2004.

267

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

19. Rolf Wanka. Approximationsalgorithmen. Teubner. Wiesbaden 2006.

20. Christian John, Thomas Lepich, Bernhard Beitz, Reinhard Moller, Dietmar Tutsch, A
Probabilistic Approach to Pattern-Matching Based on Non-Linear Parameter Optimiza-
tion, 2014 IEEE WCCAIS ICCIS, Sousse 17.02.2014

21. Walter Alt, Nichtlineare Optimierung, 2011, Vieweg+Teubner Verlag, Wiesbaden

22. Karsten Weicker: Evolutionre Algorithmen.Vieweg, Berlin 2007.

23. http://www.gds.uni-wuppertal.de/gds/service/veranstaltungen/projekt-icampus.html
(2013-07-02,15:00)

268

