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Abstract A fair allocation of workload to people is crucial for securing job satis-
faction. Researchers have introduced numerous objectives and algorithms to rep-
resent and improve fairness in personnel rostering problems. These approaches
should not ignore the roster quality that is influenced by personnel rostering con-
straints, such as maximum working times, minimum rest times, etc. The present
paper proposes a new fairness objective and an effective two-phase heuristic for
optimizing rosters, taking into consideration the established personnel rostering
constraints and the fairness. The new fairness objective is based on a lexicographic
rule that offers a beneficial trade-off between roster quality and fairness. The new
heuristic is tested on real world data and the results show that fair rosters can be
obtained without significantly decreasing the roster quality.

Keywords Personnel rostering · roster quality · fairness · two-phase heuristic ·
lexicographic evaluation

1 Introduction

Personnel rostering aims to produce a timetable for personnel that satisfies the
coverage requirements in a predefined time period. Furthermore, the generated
timetable should meet a variety of contractual and personal constraints. Generally,
each constraint is specified with a certain weight, denoting its penalty value when
violated. The individual penalty refers to the sum of penalties that can be associ-
ated with one member of personnel. The objective of the problem is to improve the
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roster quality by minimizing the total penalty (see e.g. Smet et al (2013)). This
kind of personnel rostering problem arises in several domains, including health
care, transportation, and security (Ernst et al, 2004).

In addition to the roster quality, Stolletz and Brunner (2012) advocate to also
consider fairness of work assignment. Fairness can be seen as the degree to which
individual penalties are balanced over all employees. An unfair roster is likely to
result in larger differences in e.g. workload among employees, which could induce
job dissatisfaction (Larrabee et al, 2003). It is thus important that a solution has
both a high roster quality and a high fairness.

Several approaches have been proposed to improve fairness of personnel rosters.
Bard and Purnomo (2005) consider fairness by specifying an upper limit on the
individual penalty for each employee, determined by the individual penalty that
he/she collected in the previous planning period. This approach does not actually
balance work assignments over all employees in a certain period. Rather it allows to
compensate for a low quality roster (i.e. low individual penalty) from the previous
planning period.

Chiaramonte and Chiaramonte (2008) represent fairness by a ratio that is
based on the standard deviation of the individual penalties. Similarly, Stolletz
and Brunner (2012) use the range (the difference between the maximum and the
minimum) of the individual penalties to balance the number of working times and
work assignments over all employees. Several other objectives have been defined
for improving both the roster quality and the fairness. Smet et al (2012b) compare
three objectives: (1) the maximum individual penalty, (2) the absolute deviation
of the individual penalties, and (3) the range of the individual penalties. Martin
et al (2013) in addition introduce the sum of squared penalties.

The objectives defined by Smet et al (2012b) are generalizations of Chiara-
monte and Chiaramonte (2008)’s and Stolletz and Brunner (2012)’s objectives,
which can be used to improve fairness over different rostering periods. They are
not restricted to specific constraints only, but they can be used to balance penalties
for all types of constraints associated with an individual employee. They provide
a general way to extend the established personnel rostering models with a fair-
ness aspect. Furthermore they have the advantage that they preserve the value of
weights that represent the degree of importance of the rostering constraints.

All previous studies consider fairness by aggregating the individual penalties.
In contrast, the current paper introduces a new objective that employs a differ-
ent methodology. The new objective is represented by a vector of all individual
penalties. It facilitates high fairness through beneficial penalty trade-off between
employees. Moreover, the new objective does not strive to level the individual
penalties over all employees, since this is not always appropriate due to the het-
erogeneous nature of a workforce in terms of contractual and personal constraints
(Komarudin et al, 2013).

In Section 2, we describe the personnel rostering problem in general and discuss
examination criteria of the roster quality and the fairness. Martin et al (2013)
compared different objectives in an optimization algorithm using Jain’s fairness
index (Jain et al, 1984). This index may not suitable since it depends on the
magnitude of individual penalties. We show that if the difference between two
individual penalties is kept the same, the index is likely to improve as the individual
penalties increase. A good Jain’s index value is thus not always the result of a fair
roster, but it can also be caused by high individual penalties.
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Therefore, similar to Bard and Purnomo (2005), we suggest to use three exam-
ination criteria that provide quantitative information for comparing rosters: (1)
the total penalty, (2) the standard deviation of the individual penalties, and (3)
the maximum individual penalty. These criteria provide a comprehensive assess-
ment of a roster since they examine the roster quality, the fairness, and the most
unattractive individual rosters. We will use these examination criteria to compare
the different objectives.

In Section 3, we discuss several local search moves that are used for solving
a personnel rostering problem with a fairness objective. These local search moves
were introduced by Smet et al (2012b) and used by Martin et al (2013). When
optimizing fairness, such moves may hinder the exploration for finding high quality
rosters, since the use of a fairness objective may ignore a local search move that
improves the roster quality but does not improve the fairness. For example, when
the maximum individual penalty is used as the objective, a local search move that
does not decrease the maximum individual penalty is likely to be rejected.

In order to deal with the contradictory objectives, we propose a two-phase
heuristic. The first phase ignores the fairness and uses only the total penalty as the
objective of the heuristic. In the second phase, one of the fairness objectives is used
in order to obtain balanced work assignments. This approach allows the heuristic
to reach high quality rosters in the search space before considering fairness.

In Section 4, we describe and analyze a series of computational experiments in
order to investigate the effectiveness of the two-phase heuristic compared to the
one-phase heuristic. Moreover, the roster quality and the fairness resulting from
the experiments with different objectives are compared. The heuristics are applied
to the personnel rostering model of Bilgin et al (2012) and they are evaluated on
data from six hospital wards (Smet et al, 2012a).

Finally, the conclusion and suggestions for further research are discussed in
Section 5.

2 The personnel rostering model and three examination criteria

The personnel rostering model is based on the work by Smet et al (2012a). A
number of objectives that can be used for improving fairness are presented. We
also discuss the limitations of the objectives and then propose a new objective
that has several advantages. Furthermore, we explain three examination criteria
for assessing the roster quality and the fairness.

2.1 The personnel rostering model

The personnel rostering problem has been formulated in several models (Ernst
et al, 2004), which vary in formulation of the objective and the rostering con-
straints. This paper considers the model of Smet et al (2012a) which is formulated
in a general way such that it can take into account a large set of rostering con-
straints. Due to this flexibility in modeling, it has been implemented in several
Belgian hospitals.

The personnel rostering problem is defined as the problem of assigning person-
nel to shifts, subject to hard and soft constraints. The hard constraints define the
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feasibility of a solution while the soft constraints determine the quality of a solu-
tion. The hard and soft constraints of Smet et al (2012a)’s model are summarized
in Table 1. A weight is associated with each soft constraint, denoting its penalty
value for a violation. The objective of the problem is to satisfy all hard constraints
and to minimize the total penalty.

Table 1 Hard and soft constraints of Smet et al (2012a)’s personnel rostering model

Hard constraints Soft constraints
Single assignment per day Coverage requirements
Assignment of defined requirements only Training requirements
No overlapping assignments Collaboration restriction
Assignment requires specific skill type Rest time between two consecutive assignments
Fixed assignments Skill type priorties

Absence requests
Counter restrictions on assignments
Specific series pattern assignment

Smet et al (2012a) divide rostering constraints in two categories: the horizon-
tal constraints and the vertical constraints. A horizontal constraint corresponds to
a specific employee. Satisfaction of a horizontal constraint solely depends on the
employee’s roster and not on other employees. Meanwhile, a vertical constraint
is defined according to general characteristics that apply to a group of employ-
ees. Satisfaction of a vertical constraint is subject to the shift assignments of the
employees in the group. For example, satisfaction of a training requirement con-
straint depends on the shift assignments of the trainer and the trainee. In Table 1,
the first three soft constraints (coverage requirements, training requirements and
collaboration restriction) are vertical constraints, while the other soft constraints
are horizontal constraints.

Assume the personnel is indexed i = 1 . . . n, the individual penalty PH,i is
the sum of penalties from the horizontal constraints of employee i. The vertical
penalty PV is the sum of penalties from the vertical constraints. The calculation of
PV and PH,i follows the formulation of Smet et al (2012a). When we only consider
the roster quality, the objective of the personnel rostering problem is to minimize
the total penalty PWS (defined in Eq. 1) while obeying all hard constraints.

minimize PWS ;

with PWS = PV +
∑n

i=1 PH,i;

(1)

2.2 The fairness objectives

Eq. 1 only optimizes the roster quality but does not pay attention to improving
fairness. In the literature, four alternative objectives have been presented to take
into account the roster quality as well as the fairness (Smet et al, 2012b; Martin
et al, 2013). They are:

1. The vertical and the maximum individual penalty PMax (Eq. 2),
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2. The total penalty and the absolute deviation of the individual penalties PDev

(Eq. 3),
3. The total penalty and the range of individual penalties PError (Eq. 4), and
4. The sum of squared penalties PSS (Eq. 5).

PMax = PV + n. max
i∈{1..n}

PH,i; (2)

PDev = PWS +

n∑
i=1

|PH,i −
1

n

n∑
i=1

PH,i|; (3)

PError = PWS + n.( max
i∈{1..n}

PH,i − min
i∈{1..n}

PH,i); (4)

PSS =

√√√√(PV )2 +

n∑
i=1

(PH,i)2; (5)

Objective functions 2-5 target improvements both in terms of roster quality
and fairness. Minimizing PMax expresses minimization of the worst individual
penalty. In this way, the other individual penalties cannot be higher than the
worst one. Minimizing PDev implies improving the roster quality and minimizing
the individual penalty differences among employees. On the other hand, PError

improves fairness by decreasing the difference between individual penalties among
employees. The quadratic expression in PSS prevents one individual penalty to be
too high compared to other.

It should be noted that objective PSS modifies the surface of the solution space
of the original objective PWS to a large extent, due to the quadratic operation.
This effect is noteworthy since the relative importance of the constraints changes.
Martin et al (2013), therefore, introduced weights for PV and PH,i to reformulate
PSS . Many trial-and-error experiments may be needed to find appropriate weights
that can restore the importance degrees of the constraints. The surface of the
solution space also changes for PMax, PDev and PError. However, the effect will
not be as large as it is for PSS , since in the former objectives, the weights of the
constraints are preserved. That is, Pv and PH,i are included instead of (Pv)2 and
(PH,i)

2.

In order to provide a more accurate representation of the fairness, we intro-
duce a new objective: PLexi. This objective is similar to the decomposition fair-
ness model for course timetabling problems proposed by Mühlenthaler and Wanka
(2013). PLexi is defined as a permutation of all individual penalties, sorted in a
non-increasing order (represented in Eq. 6).

PLexi = (P ′
H,1, P

′
H,2, .., P

′
H,n) s.t. P ′

H,1 ≥ P ′
H,2 ≥ ... ≥ P ′

H,n (6)

For PLexi, fairness can then be defined as follows.

Definition 1 Roster p is considered to be more fair than roster q if PLexi(p)<L PLexi(q),
i.e. PLexi(p) is lexicographically smaller than PLexi(q).
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In other words, we say that roster p is more fair than roster q if the first non-zero
component of the vector PLexi(p)− PLexi(q) is negative.

The objective PLexi offers several advantages. Similar to the use of PMax, the
use of PLexi minimizes the maximum individual penalty. In fact, the individual
penalty of each employee is minimized when PLexi is used since all individual
penalties are represented. This is realized by minimizing the next maximum indi-
vidual penalty in stages over all employees. The individual penalty for all employee
is minimized step by step, starting with the employee having the maximum penalty
up to the employee having the minimum penalty. This behavior differs from the
behavior of PDev that tries to minimize the individual penalty differences.

Minimizing PLexi involves a trade-off mechanism that has an intuitive mean-
ing. A trade-off between two employees is said to be beneficial if it results in a
situation that is better for both employees. For example, moving workload from
employee i to employee j is beneficial if max{PH,i, PH,j} becomes smaller. That
is, two employees can help to alleviate of each other’s workload as long as the
maximum of their individual penalties decreases. In addition, the objective PLexi

does not favor negative trade-off. This is in contrast with PDev or PError that
can favor to increase an individual penalty without decreasing other individual
penalties.

The main disadvantage of PLexi is that it is only suitable for rostering problems
without vertical soft constraints, since PV is not considered in Eq. 6. If there are
vertical soft constraints, PLexi could be used by adding a new hard constraint
to the model which specifies an upper bound on the vertical penalty PV . A less
restrictive approach would be to incorporate PV in PLexi, as is shown in Eqs. 7-8.
Eq. 7 combines the objectives PWS and PLexi and prioritizes the former against
the latter. Eq. 8 combines the objectives PWS and PLexi and tries to find a good
balance between the roster quality and the fairness.

PModLexi1 = (PWS , P ′
H,1, P

′
H,2, .., P

′
H,n) s.t. P ′

H,1 ≥ P ′
H,2 ≥ ... ≥ P ′

H,n (7)

PModLexi2 = (P ′
H,1 + PWS , P ′

H,2 + PWS , .., P ′
H,n + PWS)

s.t. P ′
H,1 ≥ P ′

H,2 ≥ ... ≥ P ′
H,n

(8)

PLexi should be applied with care. Objective PLexi in a rostering problem
with vertical hard constraints can produce a higher total penalty than the objective
PWS . When optimizing PLexi, a beneficial trade-off may increase the total penalty
PWS .

2.3 Criteria to compare the roster quality and the fairness

The objectives PMax, PDev, PError, and PSS integrate the roster quality and the
fairness in their respective way. Comparing the qualities of several rosters based
on these objectives can produce biased results. Furthermore, the objectives PLexi,
PModLexi1, PModLexi2 can be used to obtain the order of the fairness of two or
more rosters. However, it cannot provide quantitative differences in roster quality.
Similar to Bard and Purnomo (2005), we suggest to calculate three examination
criteria that can be used for comparing the quality of two or more rosters:
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1. The total penalty PWS

2. The standard deviation of the individual penalties σ(PH)
3. The maximum individual penalty PH,max = max

i∈{1..n}
PH,i

with PH = {PH,1, ..., PH,n}.
The first examination criterion corresponds to the roster quality, the second one

represents the fairness, and the third relates to the most unattractive individual
rosters.

Contrary to Martin et al (2013), we do not recommend Jain’s index to compare
the quality of rosters based on the following consideration. Let J(p) be Jain’s
index of roster p, and let the individual roster quality of employee i in roster p be
PH,i(p). J(p) can be calculated as shown in Eq. 9. When the difference between
individual penalties decreases, Jain’s index increases. Therefore, a high value of
J(p) indicates high fairness. The maximum value of J(p) is one, which indicates
that all employees receive the same individual penalty.

J(p) =
(
∑n

i=1 PH,i(p))
2

n.
∑n

i=1(PH,i(p))2
(9)

Unfortunately, Jain’s index can also be improved by increasing the individ-
ual penalties while keeping the differences fixed, as stated in Proposition 1. The
proposition compares two rosters that have individual penalties differing by the
same amount d > 0. In this situation, both rosters have the same value of σ(PH).
However, the roster with the higher total penalty has a better Jain’s index. There-
fore, a high value of Jain’s index may not always refer to high fairness since it may
also be the result of an increase of the individual penalties. Jain’s index is still
suitable when the total horizontal penalty is fixed, or when the objective is to be
maximized.

Proposition 1 Suppose there are two rosters p and q. If J(p) < 1 and PH,i(q) =
PH,i(p) + d, ∀i ∈ {1, .., n}, d > 0, then J(q) > J(p).

Proof Substituting PH,i(q) = PH,i(p) + d into Eq. 9, results in

J(q) =
(
∑n

i=1 PH,i(p))
2 +M

n.
∑n

i=1(PH,i(p))2 +M

with M = 2nd
∑n

i=1 PH,i(p) + n2d2. Since d > 0 and J(p) < 1, then J(q) >
J(p). ut

3 The algorithm

We implemented a tabu search algorithm for solving the rostering problems. Tabu
search is a well known local search heuristic that has a mechanism to prevent
the search from returning to already visited solutions. Algorithm 1 outlines the
procedure. The algorithm starts from a random feasible solution, which is improved
by exploring neighborhoods through local search moves. The local search moves
used for the current personnel rostering problem are Bilgin et al (2012):

– Make or delete an assignment of an employee at a specific day
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– Change a shift assignment of an employee at a specific day
– Change a skill assignment of an employee at a specific day
– Swap shift assignments of two employees at a specific day

The algorithm accepts the best neighboring solution that improves upon the
best solution obtained so far. If there is no such solution, it accepts the best
neighboring solution that results from a non-tabu move. A local search move is
considered non-tabu if it does not match with any element in the tabu list. The
tabu list keeps record of the characteristics of the recently executed moves. Specifi-
cally, it keeps track of the task assignments that have been changed by performing
a move. In each record, four variables are maintained: the day index, the employee
index, the skill assignment, and the shift assignment. In case a local search move
involves two employees, two records are saved in the tabu list.

A greedy local search is applied to every new best solution found in order to
intensify the search.

1 Input: Tabu search parameters, initial solution n0;
2 Best solution := initial solution;
3 Current solution := initial solution;
4 while stopping condition not met do
5 Generate k neighboring solutions from the current solution;
6 if A new best solution found then
7 Improve the new best solution through greedy local search;
8 Update best solution and current solution;
9 Update tabu list;

10 end
11 else if Non-tabu solution(s) found then
12 Update current solution with best non-tabu solution;
13 Update tabu list;

14 end

15 end
16 Output: best solution;

Algorithm 1: The tabu search algorithm

The local search moves from Bilgin et al (2012) may not be suitable for mini-
mizing PMax. The value of the objective PMax can be decreased by decreasing PV

and/or PH,max. In this way, local search moves that do not decrease PV or PH,max

are not useful in the search. Meanwhile, improving individual rosters that do not
correspond to PH,max can be beneficial at later iterations when these individual
rosters become the worst ones.

For minimizing PDev, the local search moves from Bilgin et al (2012) are also
not always effective. Consider a situation where PH,i = PH,j , ∀i, j ∈ {1..n}. In this
situation, the roster can be improved by decreasing PV . Decreasing one or two
individual penalties (assume that n > 4) can only make PDev increase since the
absolute deviation increases more than the gained improvement. This situation
can indicate the search is trapped in a local optimum. In other words, a local
search move that makes an individual penalty to deviate largely from the average
is usually not beneficial for improving PDev. Similarly, a heuristic minimizing
PError can face the same issue.
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Considering that the local search moves may not be effective to minimize
PMax, PDev and PError, we propose a two-phase approach. The first phase op-
timizes objective PWS while the second phase uses one of the fairness objectives.
The first phase is intended to obtain a roster with few constraint violations. The
second phase aims to improve the fairness. In order to show the advantage of a
two-phase heuristic, we tested the different algorithmic configurations shown in
Table 2.

Table 2 Overview of algorithms

Heuristic method Type Objective function

MinWS (base method) one-phase PWS

OP-MinMax one-phase PMax

OP-MinDev one-phase PDev

OP-MinError one-phase PError

OP-MinSS one-phase PSS

OP-MinModLexi1 one-phase PModLexi1

OP-MinModLexi2 one-phase PModLexi2

TP-MinMax two-phase first phase PWS , second phase PMax

TP-MinDev two-phase first phase PWS , second phase PDev

TP-MinError two-phase first phase PWS , second phase PError

TP-MinSS two-phase first phase PWS , second phase PSS

TP-MinModLexi1 two-phase first phase PWS , second phase PModLexi1

TP-MinModLexi2 two-phase first phase PWS , second phase PModLexi2

4 Experimental results

4.1 Experimental setup

The algorithms are evaluated using instances based on data from six wards (Smet
et al, 2012a). Table 3 provides an overview of the instance characteristics. Note
that we simplified the problem by omitting the continuity constraints that consider
assignments before and after the rostering period.

Table 3 Instance characteristics of Smet et al (2012a)

No Ward Abbr. No of skill
types

No of shift
types

No of em-
ployees

No of days

1 Emergency Em 4 27 27 28
2 Geriatrics Gr 2 9 21 28
3 Meal Preparations MP 2 9 32 31
4 Psychiatry Ps 3 14 19 31
5 Reception Re 4 19 19 42
6 Palliative Care PC 4 23 27 91

The tabu search algorithm was parametrized with a tabu list length of 1000
and a maximum neighborhood size of 1000. If a new best solution is found, 1000
greedy local search iterations are executed. A time limit of 600 seconds is imposed.
It should be noted that the computation time for each phase in the two-phase
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heuristic, is half of the maximum computation time. For each problem instance,
five repeated runs were executed. The algorithm was coded in C++ and the ex-
periments were performed on a PC with a 2.7 GHz Intel processor operating on
Windows 7.

In the following sections, two experiments are analyzed. Section 4.2 discusses
the results for the base experiment, while Section 4.3 presents results for the slack
experiment.

4.2 Base experiment

The first experiment evaluates the effectiveness of the two-phase approach and the
one-phase approach. The instances are solved using one of the heuristic methods
from Table 2. First, we compare the resulting objective values obtained with the
two approaches. Then, the resulting rosters are compared in terms of the three
examination criteria discussed in Section 2.3.

The objective values obtained with the one-phase approach (OP) and two-
phase approach (TP) are shown in Figures 1-2. The horizontal axis corresponds
to different heuristic methods. The objective values are obtained by evaluating
the final rosters produced by each heuristic method according to the respective
fairness objective. The vertical axis in Figure 1 is a ratio obtained by dividing
the objective value by the minimum one for each problem instance. This allows
to collect several problem instances that have different magnitudes of the weight
values into one figure. In Figure 2, the vertical axis represents an index that is
obtained as follows. For each problem instance, the vectors PLexi of the rosters
are sorted using<L (lexicographic sorting). Then, the index represents the position
of a roster in the sorted list.

When comparing MinWS with the heuristic methods with a fairness objective,
the latter generally perform better. Figure 1 shows that the medians of the ratios
obtained with MinWS are always higher than those obtained with the heuristic
fairness methods. Figure 2 shows that the median of the index obtained using
TP-MinModLexi1 is slightly higher than the one obtained with MinWS. Both
methods try to optimize the objective PWS , which is the first criterion when
lexicographically sorting the results. TP-MinModLexi1 has the advantage that the
range of the results is significantly smaller than the range obtained with MinWS.

The results show that the two-phase heuristics always perform better than
the one-phase heuristics, when optimizing PMax, PDev, PError, PModLexi1 and
PModLexi2. There is no difference between the one-phase and two-phase heuristics
when applying PSS .

Now, we compare the performance of the heuristics from Table 2 using the three
examination criteria discussed in Section 2.3. Computational results are presented
in Tables 4-6. The values of PWS , PH,max and σ(PH) are the averages over five
runs. The last two rows of each table summarize the performance of each heuristic.
# with 5% gap denotes the number of instances for which the heuristic obtained
results within 5% from the best result. Results that differ no more than 5% from
the best of all heuristics are indicated in bold. The average ratio represents the
average difference between the best obtained PWS , PH,max, σ(PH) and the results
obtained with heuristics with a fairness objective.
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Fig. 1 Comparison of heuristics (a) MinWS, OP-MinMax and TP-MinMax, (b) MinWS,
OP-MinDev and TP-MinDev, (c) MinWS, OP-MinError and TP-MinError, (d) MinWS, OP-
MinSS and TP-MinSS

Fig. 2 Comparison of heuristics (a) MinWS, OP-MinModLexi1 and TP-MinModLexi1, (b)
MinWS, OP-MinModLexi2 and TP-MinModLexi2
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With respect to PWS , the heuristics MinWS, TP-MinDev, TP-MinError, TP-
MinModLexi1 and TP-MinModLexi2 all produce good results; i.e. four out of six
instances within 5% of the best. This is to be expected, since their objectives
all contain PWS . PMax only considers the total vertical penalty and the worst
individual penalty. Improving PMax can be achieved by moving (if possible) the
vertical penalty to the non-worst individual penalty. This explains the results of
TP-MinMax, which deviate largely from the results of MinWS. The objective used
in TP-MinSS is different from PWS because of the quadratic operation. Regarding
PH,max and σ(PH), most two-phase heuristics with fairness objectives achieve
better results than MinWS.

In general, the one-phase heuristics with fairness objectives perform worse than
MinWS for all three examination criteria. In Section 3, we argued that the use
of fairness objectives can result in ineffective search. PMax and PError guide the
search mainly based on the local search moves that reduce the maximum individual
penalty. PDev has the disadvantage that it does not accept an improvement of one
or two individual penalties that largely deviate from the average of all individual
penalties.

Except for TP-MinSS, the two-phase heuristic generally performs better than
the one-phase heuristic on the three examination criteria, as can be noted by their
lower average ratio values. Among the two-phase methods, TP-MinSS produces
the worst results for all three examination criteria, because, as mentioned in Sec-
tion 2.2, the objective surface of the solution space can be quite different.
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Overall, TP-MinDev and TP-MinError are shown to perform best as they
can balance PWS , PH,max and σ(PH). TP-MinDev results in an increase of 2
percentage points over MinWS for PWS , but it manages to reduce PH,max and
σ(PH) with 21 and 28 percentage points, respectively. TP-MinError results in
an increase of 11 percentage points over MinWS for PWS , while PH,max and
σ(PH) improve with 24 and 26 percentage points, respectively. However, it should
be noted that for some instances, the results of TP-MinDev and TP-MinError
differ largely from the results of MinWS. TP-MinDev produces a PWS value 15
percentage points higher than MinWS for the Geriatrics ward, and TP-MinError
produces PWS 42 percentage points higher than MinWS for the Psychiatry ward.

TP-MinModLexi1 and TP-MinModLexi2 present a more balanced result, i.e.
these methods are capable of producing both rosters with few violations and high
fairness. For PWS , the values are comparable to those produced by MinWS, how-
ever, for PH,max and σ(PH), the lexicographic heuristics produce significantly
lower values. TP-MinModLexi1 improves 13 and 19 percentage points on PH,max

and σ(PH), while TP-MinModLexi2 improves 17 and 22 percentage points on
PH,max and σ(PH).

4.3 Slack experiment

The second experiment compares the fairness resulting from the two-phase heuris-
tic methods with different objectives. First, the algorithms are modified such that
they behave similar to goal programming, i.e. the value of the objective PWS

obtained in the first phase is added as a hard constraint to the model for the
second phase. This new constraint ensures that new solutions in the second phase
are only accepted if their total penalty PWS is less than or equal to the value
obtained in the first phase, allowing some level of slack β. Three values for β are
considered: 0%, 5%, and 10%. In the second phase, one of the following objectives
is optimized: PMax, PDev, PError, PSS or PLexi. Algorithm 1 is still used in
both phases. Note that in the experiments, the first phase is only run once (for
each problem instance, each replication) such that the second phase always starts
from the same initial solution.

Table 7 shows that the final total penalty PWS for the two-phase heuristic
is indeed always within (100 + β)% of MinWS. TP-MinDev and TP-Minerror
seemingly do not make much use of the allowed slack as their PWS values are
close to 100%. TP-MinLexi on the other hand, takes much more advantage of the
allowed slack.

In general, the results show that the additional slack can help the heuristics
to improve fairness. An increase of PWS is usually accompanied by a decrease of
PH,max and σ(PH). This behavior is true for all the two-phase heuristics except
for the heuristics with objective PSS .

Figures 3-5 show the heuristics ordered by fairness. Similar with Figure 2, the
order index in Figures 3-5 is obtained by lexicographically sorting (<L) the vectors
PLexi. The results show that TP-MinLexi generally produces vectors PLexi that
are lexicographically smaller than the ones produced by other heuristics. This
shows that TP-MinLexi minimizes the penalty of each employee by allowing a
positive trade-off among them, which is a significant advantage and makes this
heuristic suitable for practical applications.
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Fig. 3 Comparison of two-phase heuristics with 0% slack

Fig. 4 Comparison of two-phase heuristics with 5% slack

Fig. 5 Comparison of two-phase heuristics with 10% slack
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Table 7 Comparison of PWS , PH,max and σ(PH) results obtained by two-phase heuristics
and the slack approach

Index Slack MinWS TP-
MinMax

TP-
MinDev

TP-
MinError

TP-
MinSS

TP-
MinLexi

PWS 0% 100.0% 99.9% 99.0% 99.3% 99.6% 99.7%
5% 100.0% 102.8% 99.3% 100.2% 102.4% 104.4%

10% 100.0% 105.4% 100.9% 100.9% 103.5% 108.6%
PH,max 0% 100.0% 87.5% 87.3% 85.0% 98.6% 85.1%

5% 100.0% 83.5% 86.2% 81.0% 118.7% 83.5%
10% 100.0% 78.4% 82.8% 77.5% 121.8% 76.3%

σ(PH) 0% 100.0% 92.8% 79.4% 89.3% 88.4% 80.2%
5% 100.0% 91.7% 75.9% 86.5% 107.6% 77.5%

10% 100.0% 88.5% 74.2% 86.0% 117.6% 74.8%

5 Conclusion and future research

The present paper introduced methodologies to improve fairness in personnel ros-
tering. First, a new lexicographic objective was described. Second, a two-phase
heuristic approach, which makes use of the lexicographic evaluation, was presented.
Finally, an extension of the two-phase approach was introduced which allows for
some slack on the total penalty in order to enable fairness improvements in the
second phase.

Computational experiments have been analyzed to identify the effectiveness of
the new contributions. Three examination criteria from the academic literature
were used to asses the roster quality and the fairness. The computational results
showed that fair rosters can be produced, without significantly decreasing the
roster quality.

This research can be extended in several ways. We argued that the existing
local search moves may not be effective for optimizing the objectives representing
fairness. A chain of local search moves as described by Burke et al (2013), may be
beneficial. An algorithm that directly optimizes the three examination criteria in
an aggregated manner can be investigated. Possible directions may be to consider
a multi-objective approach or several iterative phases.
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