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Abstract We investigate the connectedness of clash-free timetables with respect to the
Kempe-exchange operation. This investigation is related to the connectedness of the search
space of timetabling problem instances, which is a desirable property, for example for two-
step algorithms using the Kempe-exchange during the optimization step. The theoretical
framework for our investigations is based on the study of reconfiguration graphs, which
model the search space of timetabling problems. We contribute to this framework by in-
cluding period availability requirements in the analysis and we derive improved conditions
for the connectedness of clash-free timetables in this setting. We further show that the di-
ameter of the reconfiguration graphs increases only linearly due to the period availability
requirements. We apply the theoretical insights to establish the connectedness of clash-free
timetables for a number of benchmark instances.

1 Introduction

According to the classification of heuristic optimization algorithms for timetabling prob-
lems in [17], many approaches in the literature fall in the category of two-step optimization
algorithms. The general procedure is the following: In the first step, the underlying search
problem is solved and the resulting feasible solution is used as a starting point for the second
step, during which the optimization is performed. In the second step only feasible solutions
are considered. A recent example of a state-of-the-art two-step approach is [19], numerous
other examples can be found in [17]. During the optimization step, feasible timetables are
modified using Kempe-exchanges or similar operations that preserve their feasibility. It is
natural to ask whether any feasible timetable, in particular an optimal one, can be reached
from an initial feasible timetable. We give a partial answer to this question by investigating
conditions that establish the connectedness of the search space of clash-free timetables.

A timetable is clash-free, if no two conflicting events are scheduled simultaneously. In
our analysis, we model the structure of the search space of clash-free timetables in terms

Research funded in parts by the School of Engineering of the University of Erlangen-Nuremberg.
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of reconfiguration graphs. Such graphs have been studied in the context of reconfigura-
tion problems. Given an instance I of a combinatorial search problem, the correspond-
ing reconfiguration problem asks whether one feasible solution to I can be transformed
into another feasible solution in a step-by-step manner by making local changes, such that
each intermediate solution is also feasible. Reconfiguration variants of classical combina-
torial problems have been studied for example in [4, 13, 14, 15]. The heart of the matter
of timetabling problems in the academic context is the vertex coloring problem: A clash-
free timetable corresponds to a proper coloring of the event conflict graph, see e.g. [9]. The
connectedness of the (proper) vertex colorings of a graph has been investigated for example
in [5, 8, 2]. The local change applied to a coloring in these works is an elementary recol-
oring, which changes the color of an individual node of the graph. In [16], Las Vergas and
Meyniel establish conditions for the connectedness of vertex colorings using on a more gen-
eral local change, the Kempe-exchange. The Kempe-exchange is a popular operation used
by algorithms for timetabling problems for exploring the search space, including many of
the two-step algorithms cited above. Therefore, their results can be applied in the timetabling
context. Clash-freeness is typically necessary but not sufficient for a timetable to be feasible.

In many timetabling problem formulations (see e.g. [7, 27, 6]) a set of available time
periods is given for each event, and all events are required to be placed strictly in their
available time periods. We extend the techniques from [16] to derive conditions for the con-
nectedness of clash-free timetables that satisfy period availability requirements. We further
show that the diameter of the corresponding reconfiguration graphs increases only linearly
(in the number of events) due to the period availability requirements. Our evaluation indi-
cates the connectedness of clash-free timetables for a number of benchmark instance sets,
with and without period availability requirements.

The remainder of this work is organized as follows: In Section 2 we provide the basic
formalisms required for our analysis of the connectedness of clash-free timetables presented
in Section 3. In Section 4 we investigate the connectedness of the clash-free timetables for
number of standard benchmarking instance sets.

2 Background

2.1 The University Timetabling Problem

The University Timetabling Problem (UTP) formalizes in terms of a search problem the task
of creating a course or examination schedule at a university.

Definition 1 (University Timetabling Problem (UTP))
INSTANCE:

– a set of events E = {e1, . . . ,en}
– a set of rooms R = {r1, . . . ,r`}
– a set of time periods P = {p1, . . . , pk}
– a graph G = (E,L) with nodes E and edges L⊆ {{u,v} | u,v ∈ E}

The graph G is referred to as the conflict graph. Two events are called conflicting if they
are adjacent in G. The set P×R contains the resources. A timetable τ is an assignment
τ : E → P×R. Two events e,e′ are overlapping, if e 6= e′ and τ(e) = τ(e′). A timetable is
called overlap-free if no two events overlap. Two events e,e′ are clashing in τ , if they are
conflicting and they are assigned to the same period. A timetable is feasible, if it is clash-free
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and overlap-free.
TASK: Find a feasible timetable.

The UTP as defined above is equivalent to the problem given in [9, Section 3.4]. The
clash-freeness requirement and its relation to the vertex coloring problem is the heart of the
matter of timetabling problems in the academic context, see generally [9, 26]. Other kinds of
requirements such as availability requirements and precedence requirements often occur in
practice, see e.g. [7, 27], and in the benchmarking problem models, see e.g. [6, 12, 22]. Later,
we will consider the UTP above with additional period availability requirements. These
requirements mandate that only specific periods can be assigned to an event. We formalize
period availability requirements in terms of an availability function α , which determines for
each event the set of available periods:

α : E→P(P) .

An important subproblem of the UTP is the room assignment problem. Given a period
p ∈ P, then events E ′ ⊆ E admit a room assignment, if there is an assignment ρ : E ′ → R
such that (p,ρ(e)) is available for each e ∈ E ′.

2.2 Vertex Coloring

A graph G = (V (G),E(G)), for short G = (V,E), consists of a set of vertices V and a set of
edges E ⊆ {{u,v} | u,v ∈ V}. Unless stated otherwise, we assume that graphs are loopless
and finite. We denote by u v that the vertices u and v are adjacent, i.e., {u,v} ∈ E. The
graph G[U ] denotes the subgraph of G induced by the vertices U ⊆ V (G). G is a mapping
c : V → {1, . . . ,k} that assigns one of the colors {1, . . . ,k} to each vertex of G. A coloring
is called proper, if no two adjacent nodes have the same color. Unless stated otherwise, we
will use the term coloring as a shorthand for proper coloring. The vertex coloring problem
asks, whether a graph admits a k-coloring. A k-coloring c of G decomposes the vertices of G
into k independent sets called color classes. A color class a∈ {1, . . . ,k} contains all vertices
of color a. We denote by G(a,b) the bipartite subgraph induced by the color classes a and
b. A connected component in G(a,b) is referred to as Kempe-component.

Given a set L(v) (called list) of available colors for each v ∈ V , a list coloring c : V →⋃
v∈V L(v) of G is a coloring of G such that c(v) ∈ L(v) for each v ∈V . Graph coloring is a

special case of list coloring, where all colors are available for each node. By using a standard
technique, see e.g. [9, Proposition 3.2], list coloring can be reduced to vertex coloring: Let
the colors be labeled 1, . . . ,k, where k = |

⋃
v∈V L(v)|. Now, let the graph G′ be a copy of G

to which we add a clique C on k (new) nodes v1, . . . ,vk. For each v ∈V (G), we add an edge
v vi to G′, whenever i /∈ L(v). Clearly, G′ admits a k-coloring if and only if G admits a
list coloring. The problem of deciding if a given UTP instance admits a clash-free timetable
that satisfies period availability requirements is equivalent to deciding if the conflict graph
admits a list coloring, where the L(e) = α(e) for each event e.

2.3 The Vertex Coloring Reconfiguration Problem

Reconfiguration problems formalize the question, if a solution to a problem instance can
be transformed into another solution in a step-by-step manner by some reconfiguration op-
eration, such that each intermediate solution is feasible [14]. Reconfiguration variants of
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Fig. 1: The (Kempe-)3-coloring graph of the graph K2. Solid edges correspond to elementary
recolorings. Dashed edges correspond to Kempe-exchanges that are not equivalent to an
elementary recoloring.

the vertex coloring problem have been studied for example in [5, 2, 23, 3]. In this context,
elementary recolorings and Kempe-exchanges have been considered as reconfiguration op-
erations. Given a coloring c of a graph G, an elementary recoloring changes the color of
a single vertex of G. Two k-colorings c1 and c2 of G are adjacent, c1 ∼E c2, if there is an
elementary recoloring that transforms c1 into c2. The Kempe-exchange is a generalization of
the elementary recoloring operation. Given two colors a and b, a Kempe-exchange switches
the colors of a Kempe-component, i.e., a connected component in G(a,b). The result of this
operation is a new coloring, such that, within the Kempe-component, all vertices of the of
color a are assigned to color b and vice versa. Two colorings c1 and c2 of G are adjacent
with respect to the Kempe-exchange, c1 ∼K c2, if there is a Kempe-exchange that transforms
c1 into c2. Each of the two adjacency relations ∼E and ∼K gives rise to a graph structure on
the set of k-colorings of G.

Definition 2 ((Kempe-)k-coloring graph) For a graph G = (V,E) and k ∈ N let

V := {c : V →{1, . . . ,k} | c is a k-coloring of G}
EE := {{c1,c2} | c1,c2 ∈ V and c1 ∼E c2}
EK := {{c1,c2} | c1,c2 ∈ V and c1 ∼K c2} .

Then the k-coloring graph is the graph Ck(G) = (V ,EE). The Kempe-k-coloring graph is
the graph Kk(G) = (V ,EK).

Figure 1 shows C3(K2) and K3(K2), where K2 is the graph consisting of two vertices
connected by an edge. The diameter and the connectedness of (Kempe-)k-coloring graphs
have been investigated in [23, 2, 3]. The analysis of the UTP search space will follow this
line of research. A graph G is called k-degenerate, if its vertices can be ordered such that
each vertex has at most k neighbors preceding it. The smallest k for which G admits such
an ordering is the degeneracy deg(G). A witness vertex ordering of the degeneracy deg(G)
can be found by repeatedly removing vertices of minimal degree [21, 28]. Equivalently, the
degeneracy is the largest minimum degree of any subgraph. Let S(G) be the set of permu-
tations of the vertices of G and let pred(v,σ) denote the number of neighbors of the vertex
v∈V (G) that precede v in the ordering σ ∈ S(G). In formal terms, the two characterizations
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Algorithm 1: KEMPERECONFIGURATION

input : graph G, labeling v1, . . . ,vn of the vertices, k-colorings c1, c2 of G
output: list of Kempe-exchanges transforming c1 into c2
data : array c of length n storing the current color of each vertex, list K of Kempe-exchanges

K ←− empty list;
for i←− 1 to n:

c[i]←− c1(vi)

for i←− 1 to n:
H←− G[v1, . . . ,vi];
/* Kempe-exchange κ = (a,b,u), where a,b are colors and u ∈V (H) */
for κ = (a,b,u) ∈ K:

without loss of generality c[i] 6= a;
1 if c[i] = b and vi has exactly one neighbor of color a in H:

c[i]←− a;

2 else if c[i] = b and vi has at least two neighbors of color a in H:
choose color b′ 6= b, which is not used by any neighbor of vi in H;
insert Kempe-exchange (b,b′,vi) right before κ in K;
c[i]←− b′;

3 append Kempe-exchange (c2(vi),c[i],vi) to K;

return K;

of deg(G) can be stated as follows:

deg(G) := max
H⊆G

min
v∈V (H)

{dH(v)}= min
σ∈S(G)

max
v∈V (G)

pred(v,σ) , (1)

where dH(v) denotes the degree of v in H. The degeneracy of a graph is an upper bound on
its chromatic number. Furthermore, the degeneracy has been used to establish the connect-
edness of Kempe-k-coloring graphs:

Theorem 1 ([16, Proposition 2.1]) For any graph G, the Kempe-k-coloring graph Kk(G)
is connected if k > deg(G). ut

The proofs given in [16, 23] are essentially an analysis of the algorithm KEMPERE-
CONFIGURATION shown in Algorithm 1. This algorithm transforms a source coloring c1
into a destination coloring c2 by a sequence of Kempe-exchanges, provided that a sufficient
number of colors is available. The vertices are processed one-by-one according to the given
labelling. The general idea is to prevent the current vertex from interfering with the Kempe-
exchanges dealing with the previously processed vertices.

3 The Connectedness of Clash-free Timetables

In the following, let G be the conflict graph G of a UTP instance I with periods {1, . . . , p}
and let α be the period availability function. Further, let G′ be the graph derived from G
by the reduction from list coloring to vertex coloring from Section 2.2. In our analysis, we
consider timetables that differ only with respect to how rooms are assigned as equivalent.
Each p-coloring of G corresponds to an equivalence class of clash-free timetables. Thus,
the adjacency relation ∼K on the p-colorings of G induces an adjacency relation on the
clash-free timetables and therefore, Kp(G) models the search space of clash-free timetables
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connected by Kempe-exchanges. If Kp(G) is connected, then a two-step algorithm that uses
Kempe-exchanges in order to explore the search space can reach an optimal solution from
any starting point. If not, then the algorithm may fail to find an optimal solution due to the
structure of the search space.

In most applications, clash-freeness is not the only requirement a timetable needs to sat-
isfy. Additional types of requirements such as period availability requirements, room avail-
ability requirements, and overlap-freeness requirements restrict the set of feasible timeta-
bles, and, as a consequence, an equivalence class corresponding to a coloring may be empty.
Let C be the set of colorings of G that correspond to non-empty equivalence classes of
timetables. Then the search space of I is connected if Kp(G)[C] is connected. In particu-
lar, for the additional requirements above, the corresponding reconfiguration graphs are the
subgraphs of Kp(G) induced by the following sets of nodes:

1. period availability requirements:

Cπ = {c ∈V (Kp(G)) | ∀v ∈V (G) : c(v) is available for event v}

2. overlap freeness and room availability requirements:

Cρ = {c ∈V (Kp(G)) | ∀i ∈ P : color class i admits a room assignment}

Conditions establishing the connectedness of Kp(G) result directly from Theorem 1.

Corollary 1 The search space of clash-free timetables is connected if p > deg(G). ut

Regarding overlap freeness and room availability requirements, to the best of our knowl-
edge, the properties of the corresponding reconfiguration graphs have not been studied so
far. The bounded vertex k-coloring problem with bound b ∈ N is the problem of coloring a
graph with k colors such that each color is used at most b times. The bounded vertex color-
ing problem has been studied for example by Lucarelli [20], and Baker and Coffmann [1]
in the setting of unit-time task scheduling on multiple processors and by de Werra in the
timetabling context [10]. If overlap freeness is required and no particular room availabil-
ity requirements are present, then the graph KP(G)[Cρ ] is the reconfiguration graph of a
bounded vertex coloring instance. The reconfiguration variant of the bounded vertex color-
ing problem seems to be an interesting problem which deserves further investigation. The
situation gets more involved if room availability requirements are present. Checking if the k
events in a color class admit a room assignment is equivalent to checking if a bipartite graph
admits a matching of cardinality k.

We will now focus on structural properties of Kp(G)[Cπ ]. First, we show that Kp(G)[Cπ ]
is connected if and only if Kp(G′) is connected. The main obstacle is that there is no Kempe-
exchange on Kp(G)[Cπ ] corresponding to a Kempe-exchange on G′ involving any of the
nodes v1, . . . ,vp. We construct a graph K, which is a copy of Kp(G)[Cπ ] with a self loop
added to each node. Additionally, we add to K an edge between two colorings u,v ∈V (K),
if there are two colors i and j such that u can be transformed into v by swapping the colors
in all except a single connected component of G(i, j). These additional edges are merely
shortcuts for several individual Kempe-exchanges. Therefore, Kp(G)[Cπ ] is connected if
and only if K is connected. Figure 2 shows the various graphs under consideration for a
list-coloring instance consisting of a graph G = ({u,v},{u v}) and color lists L(u) = {1}
and L(v) = {2}. The nodes 1 and 2 of G′ were added by the reduction from list to graph
coloring.

Lemma 1 There is a graph homomorphism f : Kp(G′)→ K.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

335



u v

G
L(u) = {1}
L(v) = {2}

u v

v1 v2

G′

1 2

K

1 2

1 2

2 1

2 1

K2(G′)

list coloring to
graph coloring graph homo-
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Fig. 2: Relations between the graphs G, G′, K and Kp(G′). The choice of G and the avail-
able colors determines the other graphs as described in the text. The existence of the graph
homomorphism f is established by Lemma 1.

Proof We construct the mapping f : V (Kp(G′))→ V (K). Let c ∈ V (Kp(G′)). First, we
swap the colors of the p color classes such that vi has color i for each i ∈ {1, . . . , p}. This
can be achieved by applying a sequence of Kempe-exchanges to the coloring c: For each
color j ∈ {1, . . . , p}, if the current color of v j is i 6= j we swap the colors in G′(i, j). One
Kempe-exchange is required for each Kempe-component of G′(i, j). Let c′ be the resulting
coloring. Except for the vertices v1, . . . ,vp and their incident edges, G′ is just a copy of G.
Now, pick f (c) = c̃, where c̃ is equivalent to c′ restricted to the vertices V (G) ⊂ V (G′).
Clearly, c̃ is a coloring of G. Due to the construction of G′, c̃ satisfies the list coloring
requirements for G, i.e., for each v ∈V (G) we have c(v) ∈ α(v). Therefore, c̃ ∈V (K).

We show that the mapping f is a graph homomorphism as required. Let c, d be colorings
of G′ such that c d in Kp(G′). Further, let κ be a witness of c∼K d. There are two cases
to consider:

1. The Kempe-exchange κ does not involve any of the nodes v1, . . . ,vp. Then f renames
the color classes of the colorings c and d if required and there is a Kempe-exchange
corresponding to κ that establishes f (c) f (d) in K.

2. The Kempe-exchange κ involves two nodes u,v ∈ {v1, . . . ,vp}. We need to consider
following two subcases. If G′(c(u),c(v)) is connected then f (c) = f (d) and therefore,
f (c) f (d), since each node of K has a self-loop. Otherwise, f (c) and f (d) differ with
respect to the color classes a(u) and c(v). We show that f (c) and f (d) are connected
by a sequence of Kempe-exchanges that swaps the colors in all except a single Kempe-
component of G′(c(u),c(v)) and thus f (c) f (d) by the construction of K above. To
obtain f (b), we first apply κ to c on G′ and then apply f to the resulting coloring.
The Kempe-exchange κ swaps the colors of the connected component of G′(c(u),c(v))
containing u and v, and then f swaps the colors in G′(c(u),c(v)). As a result, f (d) can be
obtained from f (c) by swapping the colors in G′(c(u),d(v)) except the one containing
u and v in the preimage f−1(V (G(c(u),d(v)))).

In summary, for all c,d ∈V (Kp(G′)) : c c implies f (c) f (d). ut
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The graph homomorphism f induces the equivalence relation ∼ f on V (Kp(G′)): for
a,b ∈V (Kp(G′)) : a∼ f b if f (a) = f (b).

Theorem 2 Kp(G)[Cπ ] is connected if and only if Kp(G′) is connected.

Proof We noted above that Kp(G)[Cπ ] is connected if and only if K is connected. Let
f : Kp(G′)→ K be the graph homomorphism from Lemma 1.
“Only if” part: Let Kp(G′) be connected. Then K is connected since there is a graph ho-
momorphism Kp(G′)→ K, and graph homomorphisms preserve connectedness. Therefore,
Kp(G)[Cπ ] is connected.
“If” part: Let Kp(G)[Cπ ] be connected. Then K is connected. Due to the first isomorphism
theorem, K ∼= Kp(G′)/∼ f and thus, Kp(G′)/∼ f is also connected. Any two colorings u, v of
G′ such that u∼ f v are connected by Kempe-exchanges since one can be obtained from the
other by permuting the colors of the color classes. ut

For general graphs, not much is known about the diameter of their corresponding Kempe-
k-coloring graphs. Using the graph homomorphism from Lemma 1, we show that the reduc-
tion from list to graph coloring increases the (possibly unknown) diameter only moderately:

Theorem 3 diam(Kp(G)[Cπ ])≤ b |V (G)|−1
2 c ·diam(Kp(G′)).

Proof For any adjacent nodes c,d ∈ Kp(G′), we count how many Kempe-exchanges are
required to get from f (c) to f (d) in Kp(G)[Cπ ]. Let κ be the Kempe-exchange that is
a witness of c d, and let i and j be the involved color classes. If c ∼ f d then, in the
worst case, all except one connected component of G(i, j) need to be switched to get from
c to d for the reasons stated in cases 1 and 2 in the proof of Lemma 1. There are at most
b(|V (G)| − 1)/2c components and at most one Kempe-exchange is required for each of
them. If c 6∼ f d then there is a single Kempe-exchange on G that establishes f (c) f (d).
Thus, a shortest path of maximum length t in Kp(G′) corresponds to a path of length at
most t · b(|V (G)|−1)/2c in Kp(G)[Cπ ]. ut

Given two colorings c and c′ of G′, the algorithm KEMPERECONFIGURATION trans-
forms c into c′ as long as there is a sufficient number of colors available. However, G′

contains Kp as a subgraph therefore deg(G′) ≥ p. According to Theorem 1, at least p+ 1
colors are needed by KEMPERECONFIGURATION and therefore Theorem 1 is not useful
for proving the connectedness of clash-free timetables in the presence of period availabil-
ity requirements. To overcome the limitations of Theorem 1, we fix the colors of the clique
vertices v1, . . . ,vp of G′. As a consequence, if we exclude the clique from the recoloring pro-
cess, the number of colors required by KEMPERECONFIGURATION is no longer dominated
by the clique.

We will first consider the general case, where the colors of some vertices F ⊆ V (G)
are assumed to be fixed. We denote by F =V (G)\F be the remaining vertices. Further, let
S′ ⊂ S(G) be the vertex orderings satisfying

∀u,v ∈ F ,w ∈ F : u < v∧u v∧ v w⇒ w < v . (2)

That is, if v is a successor of u and they are adjacent, then all neighbors of v in F must
precede v. Figure 3 shows two examples of vertex orderings of the graph u v w. For
F = {w}, ordering 3a satisfies the condition in Eq. 2 and 3b does not. We will prove next
that KEMPERECONFIGURATION does not change the color of any vertex in F if the vertices
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u < w < v

(a) Ordering compatible with Eq. (2)

u < v < w

(b) Ordering incompatible with Eq. (2)

Fig. 3: Two vertex orderings of the graph u v w, F = {w}.

V (G) are processed according to an ordering in S′. In order to bound the number of colors
required for our analysis, we introduce the following generalization of the degeneracy of a
graph:

Definition 3 (Subdegeneracy) Let G be a graph and let F ⊆ V (G). The subdegeneracy
subdeg(F,G) of G relative to F is defined as:

subdeg(F,G) = min
σ∈S′

max
v∈V (G)\F

pred(v,σ)

Note that subdeg(F,G) = deg(G) if F is empty. If F is not empty then subdeg(F,G) ≤
deg(G). Intuitively, we are looking for a vertex ordering in S′ that minimmizes the maximum
number of adjacent predecessors of any vertex, however, the number of predecessors of any
vertex in F is irrelevant.

Theorem 4 Let c, c′ be k-colorings of G that agree on F. Then KEMPERECONFIGURATION

returns a sequence of Kempe-exchanges such that

1. all intermediate colorings also agree on F, and
2. no more than subdeg(F,G)+1 colors are required.

Proof We first show that the colors of the vertices F are not changed by KEMPERECON-
FIGURATION. Assume for a contradiction that in some intermediate coloring a vertex w ∈ F
has a color different from c(w). Then w has been recolored because a neighbor u of w
preceding it in σ received color c(w). There are two possible reasons: Either u was recolored
to c(w) because c′(u) = c(w), but then c′(w) 6= c(w), a contradiction. If this is not the case,
then u was recolored in case 1 or 2 of KEMPERECONFIGURATION, because of a neighbor v
preceding it. But this is a contradiction to σ ∈ S′.

We now show that subdeg(F,G) + 1 colors are sufficient. Since the vertices in F are
never recolored, we consider only the vertices F . An unused color may be picked for a vertex
v ∈ F in case 2 of Algorithm 1. For each v ∈ F , there are at most subdeg(F,G) neighbors
of v preceding it, and there are at most subdeg(F,G)−1 colors different from the color of v
present among these vertices. Thus, there is at least one other color available for v. ut

We propose a heuristic approach to finding a witness vertex ordering of subdeg(F,G).
Let S̃ ⊆ S′ be the vertex orderings such that the vertices F precede all other vertices. Recall
that for any graph G a witness vertex ordering of the degeneracy deg(G) can be found by
repeatedly removing vertices of minimal degree. In a similar fashion, we can determine an
optimal solution to:

λ (F,G) := min
σ∈S̃

max
v∈F

pred(v,σ)

Moreover, λ (F,G) is equivalently characterized by a max-min expression and the min-max
expression above, analogous to the characterizations of the degeneracy shown in Eq. (1):
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Algorithm 2: VERTEXELIMINATION

input : graph G, vertices F ⊆V (G)
output: ordering v1, . . . ,v|F | of the vertices F =V (G)\F

G|D|←− G ;
for i←− |F | downto 1 do

choose vi from argminv∈F{δ (v,Gi)} ;
Gi−1←− Gi− vi.

return v1, . . . ,v|F |;

Theorem 5 For any graph G and F ⊆V (G),

λ (F,G) = min
σ∈S̃

max
v∈V (G)\F

pred(v,σ) = max
G[F ]⊆H⊆G

min
v∈V (H)\F

{dH(v)} .

Furthermore, VERTEXELIMINATION produces a witness vertex ordering for the min-max
expression.

Proof The proof is based on the remark on the optimality of VERTEXELIMINATION in [21].
Let `= |F | and for an ordering v1, . . . ,v` of F let Gi = G[F ∪{v1, . . . ,v`}]. Further, let

δ̂ := max
G[F ]⊆H⊆G

min
v∈V (H)\F

{d(v,H)} .

Intuitively, δ̂ is analogous to the degeneracy of G, but the vertices F are irrelevant. If an
ordering σ = v1, . . . ,v` of F is an output of VERTEXELIMINATION then

max
1≤i≤`

pred(vi,σ) = max
1≤i≤`

{d(vi,Gi)}

= max
1≤i≤`

min
v∈V (Gi)\F

{d(v,Gi)} ≤ δ̂ .

The graphs Gi coincide with those in Algorithm 2.
Now let H∗ be a graph such that G[F ]⊆ H∗ ⊆ G and

min
v∈V (H∗)\F

{d(v,H)}= δ̂ .

Let v1, . . . ,v` be any ordering of F and let i be the smallest index such that H∗ ⊆ Gi. Then
vi must be a vertex of H∗ and d(vi,Gi) ≥ δ̂ . Therefore, for any ordering v1, . . . ,v` of F ,
max1≤ j≤`{d(v j,G j)} ≥ δ̂ , with equality if the vertex ordering is an output of VERTEX-
ELIMINATION. ut

Certainly, the optimality of VERTEXELIMINATION is only established with respect to
the subset S̃ ⊆ S′. The vertex ordering obtained from the algorithm can potentially be im-
proved by the following post-processing step: Let v1, . . . ,v|F | be an output of VERTEX-
ELIMINATION and let k be the largest number such that v1, . . . ,vk are independent. Then
the vertices v1, . . . ,vk can be moved before the vertices F in the ordering without violating
condition (2). The resulting ordering σ ′ ∈ S′ is not in S̃ and can thus not be generated by
VERTEXELIMINATION. There is a potential advantage because the construction guarantees
that maxv∈F pred(v,σ ′)≤maxv∈F pred(v,σ).

In summary, the heuristic for computing a vertex ordering σ ∈ S′(G) such that the value
maxv∈F pred(v,σ) is close to subdeg(F,G) performs the following two steps:
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1. Run VERTEXELIMINATION to generate an ordering v1, . . . ,v|F | of the vertices F .
2. Let k ∈ N be the largest number such that v1, . . . ,vk are independent in G. Move the

vertices v1, . . . ,vk before the vertices F in the ordering.

We apply this heuristic to prove the connectedness of the clash-free timetables that sat-
isfy the availability constraint for a number of benchmark instances. First, we use the re-
duction from list to graph coloring described above to construct from a conflict graph G the
graph G′, which contains a clique v1, . . . ,vp. Then we choose F ⊆ V (G′) to include every
vertex with p−1 neighbors in {v1, . . . ,vp}, that is

F = {v ∈V (G′) | |Γ (v)∩{v1, . . . ,vp}|= p−1} . (3)

Now we can apply the heuristic to obtain an orderign σ ∈ S′ and thus an upper bound
subdeg′(F,G′) = maxv∈V (G′)\F pred(v,σ) ≥ subdeg(F,G′). If p ≥ subdeg′(F,G′) + 1 then
Theorem 4 implies that the clash-free timetables are connected.

4 Results

We use the theory developed in the previous section to establish the connectedness of clash-
free timetables for a range of UTP benchmark instances. By Theorem 1, reconfiguration
graphs of clash-free timetables are connected if p > deg(G) and by Theorem 4, the recon-
figuration graphs of the clash-free timetables that satisfy availability requirements are con-
nected if p > subdeg(F,G′) for a suitably chosen C ⊆V (G′). We use the heuristic from the
previous section to determine a bound subdeg′(F,G′)≥ subdeg(F,G′). The set F of “fixed”
vertices is chosen as shown in Eq. (3).

Table 1 indicates the connectedness of the clash-free timetables according to theorems 1
and 4 for instances from the CB-CTT, PE-CTT benchmark sets, as well as instances from the
University of Erlangen-Nürnberg. All instances can be obtained from the SaTT group web-
site at the University of Udine [11]. The instances comp01,. . . ,comp21 are from the CB-CTT
track of the International Timetabling Competition 2007 (ITC2007) competition. The in-
stances ITC2 i01,. . . ,ITC2 i24 are from the PE-CTT track of the same competition. The
erlangen instances are large real-world instances from the engineering department of the
University of Erlangen-Nürnberg. The toy instance is a small example instance from the
website [11]. For each instance we give the number of periods p, the degeneracy of the con-
flict graph deg(G), and the bound subdeg′(F,G′)≥ subdeg(F,G′). Table entries in bold face
indicate that the corresponding value deg(G) or subdeg′(F,G′) certifies the connectedness
of the clash-free timetables.

According to the data in Table 1 the clash-free timetables for all CB-CTT and erlangen

instances are connected, while the conditions imposed by Theorem 1 are not satisfied for any
of the PE-CTT instances. For eight CB-CTT instances, the upper bound on subdeg(F,G′)
is sufficient to show that the reconfiguration graphs are connected in the presence of avail-
ability constraints. The situation is quite different for the PE-CTT instances, since neither
deg(G) nor subdeg′(C,G′) is sufficient to show the connectedness of the reconfiguration
graphs, better bounds on subdeg(F,G′) are of no use here since subdeg(F,G′) ≥ deg(G).
Therefore, new techniques are needed for proving the connectedness (or disconnectedness)
of the reconfiguration graphs for these instances.

In Tables 2 and 3, the degeneracy values of the corresponding conflict graphs are given
for the Lewis/Paechter [18] and the Metaheuristic Network [24] instance sets. On these
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Table 1: For each instance from the CB-CTT, PE-CTT, and Erlangen instance sets, we give
the number p of periods, deg(G′) and an upper bound subdeg′(C,G′) ≥ subdeg(F,G′) pro-
duced by the heuristic. All instances are available from the website [11].

instance p deg(G) subdeg′(C,G′) instance p deg(G) subdeg′(C,G′)

comp01 30 23 24 ITC2 i01 45 91 109
comp02 25 23 30 ITC2 i02 45 99 119
comp03 25 22 27 ITC2 i03 45 73 92
comp04 25 17 25 ITC2 i04 45 78 100
comp05 36 26 43 ITC2 i05 45 81 99
comp06 25 17 28 ITC2 i06 45 80 100
comp07 25 20 24 ITC2 i07 45 80 106
comp08 25 20 24 ITC2 i08 45 69 97
comp09 25 22 25 ITC2 i09 45 89 108
comp10 25 18 27 ITC2 i10 45 97 116
comp11 45 27 27 ITC2 i11 45 75 93
comp12 36 22 40 ITC2 i12 45 91 109
comp13 25 17 22 ITC2 i13 45 87 106
comp14 25 17 23 ITC2 i14 45 87 107
comp15 25 22 27 ITC2 i15 45 79 106
comp16 25 18 25 ITC2 i16 45 55 83
comp17 25 17 25 ITC2 i17 45 50 71
comp18 36 14 32 ITC2 i18 45 91 112
comp19 25 23 27 ITC2 i19 45 101 120
comp20 25 19 23 ITC2 i20 45 73 92
comp21 25 23 28 ITC2 i21 45 72 90
erl.2011-2 30 22 32 ITC2 i22 45 98 118
erl.2012-1 30 14 31 ITC2 i23 45 117 128
erl.2012-2 30 20 32 ITC2 i24 45 77 97
erl.2013-1 30 16 30 toy 20 10 11

instances, each period is available for each event. Values in bold face indicate the connect-
edness of clash-free timetables is established by Theorem 1.

Finally, we will show that for the instance toy, the proposed heuristic yields a vertex
ordering that is a witness for subdeg(F,G′). Let G be the conflict graph for this instance and
let G′ be the graph that results from the reduction from list to graph coloring. In the CB-CTT
formulation, the events are grouped into courses and for each course, events of the course are
a clique in G and G′. Similarly, if two courses are in conflict, then the events of both courses
are a clique in G and G′. If certain periods are unavailable for a course, then the events of
the course and the periods are a clique in G′. In the toy instance, there are four courses
which consist of 16 events in total. Figure 4 shows a succinct representation of an optimal
vertex ordering of the graph G′. Each node of the shown graph is a clique, as noted below
the nodes, and the cliques are ordered from left to right. Two nodes of the shown graph are
connected if all nodes of the corresponding cliques are connected. The nodes T , A, S and G
correspond to the courses labeled SceCosC, ArcTec, TecCos and Geotec, respectively. The
node P1 represents to the periods marked unavailable for course ArcTec and the node P2
represents the periods unavailable for SceCosC. Any two conflicting courses are connected.
Let C =V (P1)∪V (P2).

Let σ ∈ S(G′) such that the cliques are arranged in the order P1,P2,T,A,S,G with some
arbitrary choice of the relative ordering of the vertices within each clique. This ordering is a
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Table 2: The connectedness of the clash-free timetables for the Lewis/Paechter in-
stances [18]. For each instance we give the degeneracy deg(G) of the conflict graph G.
Values in bold face indicate the connectedness of clash-free timetables is established by
Theorem 1.

instance deg(G) instance deg(G) instance deg(G)

small 1 54 med 1 59 big 1 60
small 2 41 med 2 67 big 2 68
small 3 98 med 3 67 big 3 64
small 4 69 med 4 69 big 4 80
small 5 84 med 5 87 big 5 75
small 6 24 med 6 101 big 6 93
small 7 68 med 7 120 big 7 111
small 8 84 med 8 98 big 8 82
small 9 124 med 9 121 big 9 77
small 10 136 med 10 64 big 10 77
small 11 34 med 11 97 big 11 76
small 12 22 med 12 78 big 12 76
small 13 146 med 13 105 big 13 84
small 14 100 med 14 92 big 14 74
small 15 79 med 15 101 big 15 127
small 16 118 med 16 145 big 16 115
small 17 120 med 17 126 big 17 184
small 18 60 med 18 188 big 18 131
small 19 141 med 19 173 big 19 159
small 20 28 med 20 153 big 20 144

Table 3: The connectedness of the clash-free timetables for the Metaheuristic Network in-
stances [24]. For each instance we give the degeneracy deg(G) of the conflict graph G.
Values in bold face indicate the connectedness of clash-free timetables is established by
Theorem 1.

instance deg(G) instance deg(G) instance deg(G)

easy01 15 medium01 49 hard01 68
easy02 19 medium02 53 hard02 67
easy03 13 medium03 52
easy04 12 medium04 51
easy05 20 medium05 47

P1

K4

P2

K4

T

K5

A

K3

S

K3

G

K5

Fig. 4: Succinct representation of an optimal vertex ordering of the graph G′ obtained from
the conflict graph of the instance toy by the reduction to graph coloring. All nodes represent
cliques as denoted below the nodes.
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possible output of the algorithm VERTEXELIMINATION. From

max
v∈V (G′)\C

pred(v,σ) = 11 ,

we can conclude that subdeg(F,G′)≤ 11.

Proposition 1 For the instance toy, subdeg(F,G′) = 11.

Proof Let σ be an ordering of V (G′) and V ′ ⊆V (G′)\C. The maximum number of prede-
cessors adjacent to any vertex of V ′ in G′ is denoted by

p(V ′,σ) = max
v∈V ′

pred(v,σ) .

Note that for a clique K ∈ {T,A,S,G}, the value p(K,σ) is determined by the last vertex of
K in σ . Thus, the value of p(K,σ) depends only on the relative order of the last vertices of
the cliques {T,A,S,G} in σ . Let S̃ be the vertex orderings of G′ such the vertices C precede
all other vertices of G′ and let Ŝ be the total orderings of {T,A,S,G}. For each ordering
σ ′ ∈ Ŝ we can pick an ordering `(σ ′) of G′ that is compatible with σ ′ in the sense that the
relative ordering of the last vertices of the cliques is in accordance with σ ′. We have,

subdeg(F,G′) = min
σ∈S̃

max
K∈{T,A,S,G}

p(K,σ) = min
σ ′∈Ŝ

max
K∈{T,A,S,G}

p(K, `(σ ′)) .

For any ordering σ ′ ∈ Ŝ such that G< T , we have p(T, `(σ ′))≥ 13, because the last vertex of
T has at least 13 adjacent predecessors in G′. Thus, we only need to consider orderings such
that G > T . Furthermore, since no vertex of G is adjacent to any vertex of A or S, changing
the relative order of A and G or S and G does not change the number of adjacent predeces-
sors. Hence, we can assume G is a maximum in any ordering of interest. We enumerate the
values of p(K, `(σ ′)) all for K ∈ {T,A,S,G} for the 6 permutations of {T,A,S}:

clique ordering σ ′ ∈ Ŝ p(T, `(σ ′)) p(A, `(σ ′)) p(S, `(σ ′)) p(G, `(σ ′))

T,A,S,G 8 11 10 9
T,S,A,G 8 14 7 9
A,T,S,G 11 6 10 9
S,T,A,G 11 11 2 9
A,S,T,G 14 6 5 9
S,A,T,G 14 9 2 9

Thus,

subdeg(F,G′) = min
σ ′∈Ŝ

max
K∈{T,A,S,G}

p(K, `(σ ′)) = 11

We can conclude that the proposed heuristic produces a witness of subdeg(F,G′) = 11
on the instance toy.
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5 Conclusions

We investigated the connectedness of clash-free timetables with respect to the Kempe-
exchange operation. This investigation is related to the connectedness of the search space of
timetabling problem instances, which is a desirable property, for example for two-step al-
gorithms using the Kempe-exchange during the optimization step. We include period avail-
ability requirements in our analysis and derive improved conditions for the connectedness
of clash-free timetables in this setting. We further show that the diameter of the reconfigu-
ration graphs increases only linearly due to the period availability requirements. Our results
indicate the connectedness of the clash-free timetables for a number of benchmark instances.

For future research, other properties of feasible timetables such as overlap-freeness may
be considered as well. Furthermore, two kinds of possible improvements may be considered
with respect to establishing the connectedness of clash-free timetables in the presence of
period availability requirements: Both, a better analysis of Algorithm 1 and a better heuris-
tic approach (or exact algorithm) for determining the subdegeneracy may lead to a lower
number of periods required to certify the connectedness of clash-free timetables.
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