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Abstract We propose a single-stage Simulated Annealing procedure for the
Examination Timetabling problem (as formulated in the 2nd International
Timetabling Competition). Over our approach, we perform a statistically prin-
cipled experimental analysis, in order to understand the effect of parameters
and to devise a feature-based parameter tuning strategy. The outcome of this
work (which is still ongoing) is that this rather straightforward search method,
if properly tuned, is able to compete with all the state-of-the-art specialized
solvers.
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1 Introduction

We consider the Examination Timetabling problem in the version used in
the 2nd International Timetabling Competition (ITC2007 [16], Track 1). For
this problem (see [15] for the detailed formulation), we propose a single-stage
Simulated Annealing (SA) procedure, along the lines of our previous work on
the other two tracks of ITC2007 [2, 3, 6].

We perform an experimental analysis of our solver on the 12 public in-
stances released for the ITC2007, which are, up to now, the only available
ones. Specifically, we propose a parameter tuning procedure to obtain a good
configuration of the solver for the general case. The tuning procedure works
in two steps. In the first step, we identify the most important parameters and
we fix the value for all the other ones. In the second one, we develop, through
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a regression model, a linear function that correlates the value of the most
important parameters to the features of the instances.

The outcome of this work (which is still ongoing) is that this rather straight-
forward search method, properly tuned with a statistically-principled proce-
dure, is able to compete with all state-of-the-art specialized solvers, producing
also the best results for a few instances.

2 Search method

Our search method is based on local search. To this regard, we use the following
features:

Search Space: The search space is composed by all the assignments of exams
to periods and rooms. States that violate hard constraints (e.g., precedences
and conflicts) are included in the search space, and they are penalized in
the cost function with a high weight (called wH).

Neighborhood Relation: The neighborhood relation is composed by the
union of two basic moves: 1) Reschedule a single exam to a new period
and/or new room 2) Swap both period and room of two exams. The random
selection of the candidate neighbor is performed in two steps: First select
the neighborhood (Reschedule or Swap) according to a non-uniform distri-
bution that selects Swap with probability sr and Reschedule with proba-
bility 1 − sr (where sr stands for swap rate, and is a parameter of the
method). Second, perform a uniform selection of the specific move within
the corresponding neighborhood.

Stop Criterion: The stop criterion is based on the total number of iterations,
so as to have approximately a constant running time independently of the
other parameters of the method.

Initial Solution: The initial solution is totally random, and is obtained by
assigning a random period and a random room to each exam.

We employ a Simulated Annealing method that uses a cutoff-based non-
geometric cooling scheme[11], that speeds up the search in the initial phase.
Specifically, the temperature is decreased (multiplying it by the cooling rate
α) when the first of the following two conditions holds: a) the allotted number
of iterations (nS) has been expired or b) the allotted number of accepted moves
(nA) have been performed.

The stopping condition of the method is based on the total number of
iterations itmax, rather than explicitly on the final temperature. For the sake
of comparability, itmax is set to a fixed value such that the running time is
approximately the one prescribed by the ITC2007 benchmarking tool (324s on
our machine). The resulting value is itmax = 5 × 108.

The final temperature tmin is passed to the solver and it is used along with
itmax and the cooling rate α to compute the number of neighbors sampled at
each temperature (nS). More precisely, we pass to it the ratio tr = t0/tmin

between the initial and the final one.
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nS = itmax

/(
− log (tr)

logα

)
(1)

Actually, the final temperature tmin is different for each run due to cut-
offs, but we consider the one that is reached in case of a standard cut-off-free
execution.

Similarly, instead of using directly the parameter nA, we replace it with its
ratio ρ = nS/nA with the neighbors sampled nS .

The use of the ratios (tr and ρ) instead of absolute values prevents from
including meaningless configurations in the analysis, such as those in which
the final temperature is greater than the initial one.

Summarizing, the search procedure relies on the following six parameters:

– starting temperature (t0),
– temperature range (tr),
– ratio between neighbors accepted and neighbors sampled at each temper-

ature (ρ),
– cooling rate (α),
– hard constraints weight (wH),
– swap rate (sr)

that have to be tuned as explained in the following section.

3 Experimental analysis

In order to tune the parameters of our method, we have carried out a statisti-
cally principled experimental analysis over the 12 available instances from the
ITC2007 competition.

3.1 Preliminary tuning

For the tuning phase, without resorting to any “premature commitment” [10],
we have assigned meaningful ranges to the six parameters described in Section
2, and we have sampled 100 alternative configurations from the Hammersley
point set [9] based upon such ranges. The Hammersley point set is scalable,
both with respect to the number of sampled points, and to the dimensions
of the sampling space. Moreover, the sampled points exhibit low discrepancy,
i.e., they are space-filling, despite being random-like, and are thus particularly
indicated for parameter tuning applications. The sampled configurations were
then tuned through an automated F-Race(RSD) [4] with confidence 95 (p-value
< 0.05). The considered parameters are summarized in Table 1, together with
the values identified by the tuning.

All the experiments were generated and executed automatically using the
tool json2run [18] on an Ubuntu Linux 13.04 machine with 16 Intel R© Xeon R©
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Parameter Symbol Tuned value
Starting temperature t0 900
Temperature range tr 1000
Cooling rate α 0.99
Neighbors sampled / neighbors accepted ratio ρ 0.08
Hard constraints weight wH 30
Swap rate sr 0.8
Final temperature tmin 0.9 (derived)
Neighbors sampled at each temperature nS 727467 (derived)
Neighbors accepted at each temperature nA 58197 (derived)

Table 1 Parameters identified by automatic tuning through F-Race(RSD).

CPU E5-2660 (2.20 GHz) physical cores, hyper-threaded to 32 virtual cores.
A single virtual core has been dedicated to each experiment.

3.2 Feature-based tuning

The results attained by our tuned algorithm were good on some instances, but
not on all of them. We therefore decided to investigate the origin of this effect,
by looking closely at the instances that failed. The outcome of the analysis was
that the overall best parameter configuration (see Table 1) was actually sub-
optimal for the failing instances, and yielded violations of the hard constraints.
A subsequent F-Race(RSD) limited to those instances, revealed that, while for
most parameters the winning values found in the preliminary race were also
good for the failing instances, t0 and wH had to be tuned differently. Since
F-Race(RSD) is based on ranks, and not directly on the obtained costs, the
failing instances were only seen as instances with low statistical significance.

We thus ran an exploratory set of experiments on all the instances, and
with 100 repetitions for each experiment, by varying t0 and wH together. The
experiments revealed that, because of the geometric-like temperature update
scheme, which is based on α and ρ, the time spent at high temperature is very
short, and thus setting a high value for t0 is always a reasonably safe choice.
We thus set t0 = 1000, and ran another set of experiments to study the effect
of wH , which appeared to be much more relevant.

This second set of experiments revealed a recurrent correlation between
the value of wH and the distributions of costs, which is depicted in Figure 1
for one specific instance (no. 4).

As it is visible from the plot, when approaching low values of wH , the cost
increases very steeply because of the increase in the hard constraint violations.
This is expected, as a low wH makes it more likely to choose a neighboring
solution with hard constraint violations. On the other hand, as wH gets farther
from the danger zone, the number of solutions with hard constraint violations
decreases, but the costs related to soft constraints increases, because the search
procedure is not able to exploit the possibility to cross the feasibility boundary.

Ideally, the goal of a good tuning would be to find the parameter configura-
tion that yields the best cost related to soft constraints, while also minimizing
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Fig. 1 Correlation between wH and cost distribution (in logarithmic scale) on instance 3.

the number of violations of the hard constraints. However, since the ideal wH

can differ significantly from instance to instance, we decided to drop the choice
of single-point tuning, i.e., one parameter configuration for all instances, and
explored a way to compute the ideal wH “on-the-fly”, based on the features
of the instance at hand.

3.2.1 Per-instance tuning

First, we observed that a robust strategy to reduce the number of hard con-
straint violations without increasing too much the cost related to soft con-
straints, consisted in choosing, for each instance, the value of wH that mini-
mized the 95th percentile, of the cost distributions (highlighted by the vertical
red line in Figure 1).

3.2.2 Feature-based parameter regression

Once an ideal value for wH was identified for each instance, we looked at the
instance features to see whether it was possible predict this value dynamically
based on them.

We have considered the set of features described in [14], and a number
of additional ones. The features that turned out more useful in our case are
summarized in Table 2.

Given the feature values, we built a linear regression model in R [17] based
on the 100 repetitions of the experiments with varying wH . The model selection
procedure works as follows. First, a model without any variable is generated,
this model generates a constant wH for all the instances and, as expected, has
a bad approximation of the ideal wH . Then, we add one feature at a time,
always choosing the one that, if added to the model, minimizes the Akaike
information criterion (AIC) [12], which is known to have good performances
for prediction. The procedure stops when adding one more feature would not
lead to a model with a better approximation.
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I Exams Students Periods Rooms Two Two Period Frontload Frontload
in a row in a day spread (Exams) (Periods)

1 607 7891 54 7 7 5 5 100 30
2 870 12743 40 49 15 5 1 250 30
3 934 16439 36 48 15 10 4 200 20
4 273 5045 21 1 9 5 2 50 10
5 1018 9253 42 3 40 15 5 250 30
6 242 7909 16 8 20 5 20 25 30
7 1096 14676 80 15 25 5 10 250 30
8 598 7718 80 8 150 0 15 250 30
9 169 655 25 3 25 10 5 100 10
10 214 1577 32 48 50 0 20 100 10
11 934 16349 26 40 10 50 4 400 20
12 78 1653 12 50 35 10 5 25 5

Table 2 Instance features for the ITC2007 benchmark instances.

Component Symbol Coefficient (Cumulative) R2

Intercept — 18.356988 —
Period Spread Penalty PS 2.311492 0.26

Frontload Periods FlP -1.7743 0.509
Periods P 1.322 0.824

Two In a Day TiD 1.005 0.894
Students S -0.0027 0.943
Rooms R 0.292 0.975

Table 3 Coefficients and correlation of the linear predictor for wH .

Table 3 shows, in order, the features added to the model, with their coef-
ficient and cumulative coefficient of correlation (R2) which measures its pre-
diction quality. Therefore, the linear model corresponds to computing the fol-
lowing formula

wH = 18.356988 + 2.311492 ×PS− 1.7743 × FlP

+1.322 ×P + 1.005 ×TiD− 0.0027 × S + 0.292 ×R,

which can thus be used to obtain a per-instance tuning of the wH , which
should ideally generalize also to instances outside of the training set.

We have validated the effectiveness of this tuning for our approach over
the 12 instances of the ITC2007 competition. The results of the comparison
are described in the next section.

4 Comparison of results

Table 4 reports the comparison with the 5 finalists of ITC2007. Specifically,
we add our solver as a further competitor, and rerun the competition adjudi-
cation by applying the ranking procedure on 10 runs for each of the 6 solvers.
According to Table 4 our solver has the lowest sum of ranks (8.58), and thus
would have won the competition if submitted at that time.

Table 5 shows our average results (for 100 runs), in comparison with sub-
sequent results available from the literature. We include in Table 5 only those
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I Müller Gogos Atsuna et al De Smet Pillay Us
1 15.5 25.5 45.5 35.5 55.5 5.5
2 14.8 35.5 48.8 25.5 52.2 6.2
3 28.7 20.5 34.9 53 36.1 9.8
4 30.1 31.95 38.55 48.5 28.4 5.5
5 15.3 35.5 45.5 25.5 55.5 5.7
6 20.1 28.95 35.6 45.9 46.95 5.5
7 15.4 35.5 46.5 25.5 54.5 5.6
8 14.7 25.5 35.5 55.5 45.5 6.3
8 15 31.4 43.6 33.5 53.4 6.1
10 35.9 54.5 21.8 9.5 40.9 20.4
11 41.4 22.5 45 45 16.5 12.6
12 24.8 50 9.7 50 34.7 13.8
avg 22.64 33.11 37.58 37.74 43.34 8.58

Table 4 Comparison with the competition finalists.

I McCollum et al [14] Bykov & Petrovic [5] Hamilton-Bryce [8] Alzaqebah [1] Us
f̄ F% f̄ F% f̄ F% f̄ F% f̄ F%

1 4799 100 4008 100 5469 100 5517 100 4004 100
2 425 100 404 100 450 100 538 100 399 100
3 9251 100 8012 100 10444 100 10325 100 9033 98
4 15821 100 13312 100 20241 100 16589 100 15132 100
5 3072 100 2582 100 3185 100 3632 100 2876 100
6 25935 100 25448 100 26150 100 26275 100 25912 100
7 4185 100 3893 100 4568 100 4592 100 3747 100
8 7599 100 6944 100 8081 100 8328 100 7711 100
9 1071 100 949 100 1061 100 — — 994 100
10 14552 100 12985 100 15294 100 — — 14956 96
11 29358 100 25194 100 44820 100 — — 28773 89
12 5699 100 5181 100 5464 100 — — 5648 98

Table 5 Comparison of available results.

results that are compliant with ITC2007 rules, in terms of timeout. The col-
umn F% reports the percentage of feasible solutions obtained. Average costs
are computed on feasible solutions only.

Table 5 shows that our results are outperformed by the ones of Bykov and
Petrovic [5] in 9 out of 12 instances, and they are superior on the 3 remaining
ones. With respect to all the other researchers, our results are globally superior.

We acknowledge that our solver does not find feasible solutions more often
than the other solvers. This is inherent to the choice of using a single-stage
approach that does not solve the feasibility in advance, but rather tries to
optimize the objective function and to satisfy the hard constraints all at once.

5 Conclusions

Our solver turned out to have complementary characteristics with respect to
previous research. Specifically, it is able to improve the costs on the easier
instances (in terms of hard constraints), but it is not always able to find a
feasible solution for the hard ones.
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Admittedly, the results of Bykov and Petrovic [5], that rely on the Kempe-
chain neighborhood, are superior. Nevertheless, we consider these results, which
are still preliminary, quite encouraging for further improvements.

Given that wH turned out to be the most critical parameter, current work
involves the use of a strategic oscillation approach [7] that adaptively changes
the value of wH , depending on the current number of violations. This seems to
be a promising approach to improve our performances on the harder instances.

Regarding the experimental analysis, one of the main obstacles to our study
was the scarcity of instances to use for training the linear regression model.
In order for the model to attain better generalization properties, i.e., to work
well on instances outside of the training set, the size of the training set should
ideally be much larger. To deal with this aspect, we are working on an instance
generator, in the spirit of the one developed by Lopes and Smith-Miles [13],
that will be able to create realistic instances with diverse features.

References

1. M Alzaqebah and S Abdullah. An adaptive artificial bee colony and late-
acceptance hill-climbing algorithm for examination timetabling. Journal
of Scheduling, pages 1–14, 2013.

2. Ruggero Bellio, Sara Ceschia, Luca Di Gaspero, Andrea Schaerf, and Tom-
maso Urli. A simulated annealing approach to the curriculum-based course
timetabling problem. In Proc. of the 6th Multidisciplinary International
Conference on Scheduling : Theory and Applications (MISTA-13), 2013.

3. Ruggero Bellio, Luca Di Gaspero, and Andrea Schaerf. Design and sta-
tistical analysis of a hybrid local search algorithm for course timetabling.
Journal of Scheduling, 15(1):49–61, 2012.

4. Mauro Birattari, Z. Yuan, P. Balaprakash, and Thomas Stützle. F-Race
and iterated F-race: An overview. Springer, Berlin, 2010.

5. Yuri Bykov and Sanja Petrovic. An initial study of a novel step counting
hill climbing heuristic applied to timetabling problems. In Proc. of the 6th
Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA-13), pages 691–693, 2013.

6. Sara Ceschia, Luca Di Gaspero, and Andrea Schaerf. Design, engineering,
and experimental analysis of a simulated annealing approach to the post-
enrolment course timetabling problem. Computers & Operations Research,
39:1615–1624, 2012.

7. Fred Glover and Manuel Laguna. Tabu search. Kluwer Academic Publish-
ers, 1997.

8. R Hamilton-Bryce, P McMullan, and B McCollum. Directing selection
within an extended great deluge optimization algorithm. In Proc. of the
6th Multidisciplinary International Conference on Scheduling : Theory and
Applications (MISTA-13), pages 499–508, 2013.

9. John Michael Hammersley, David Christopher Handscomb, and George
Weiss. Monte Carlo methods. Physics today, 18:55, 1965.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

60



10. Holger H. Hoos. Programming by optimization. Communications of the
ACM, 55(2):70–80, 2012.

11. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimiza-
tion by simulated annealing: an experimental evaluation; part I, graph
partitioning. Operations Research, 37(6):865–892, 1989.

12. Roger Koenker. Quantile regression. Cambridge University Press, Cam-
bridge, 2005.

13. Leo Lopes and Kate Smith-Miles. Pitfalls in instance generation for Udine
timetabling. In Learning and Intelligent Optimization (LION4), pages
299–302. Springer, 2010.

14. B McCollum, PJ McMullan, AJ Parkes, EK Burke, and S Abdullah. An
extended great deluge approach to the examination timetabling problem.
In Proc. of the 4th Multidisciplinary International Conference on Schedul-
ing : Theory and Applications (MISTA-09), pages 424–434, 2009.

15. Barry McCollum, Paul McMullan, Edmund K. Burke, Andrew J.
Parkes, and Rong Qu. The second international timetabling
competition: Examination timetabling track. Technical Report
QUB/IEEE/Tech/ITC2007/Exam/v4.0/17, Queen’s University, Belfast
(UK), September 2007.

16. Barry McCollum, Andrea Schaerf, Ben Paechter, Paul McMullan, Rhyd
Lewis, Andrew J. Parkes, Luca Di Gaspero, Rong Qu, and Edmund K.
Burke. Setting the research agenda in automated timetabling: The second
international timetabling competition. INFORMS Journal on Computing,
22(1):120–130, 2010.

17. R Development Core Team. R: A Language and Environment for Statisti-
cal Computing. R Foundation for Statistical Computing, Vienna, Austria,
2008.

18. Tommaso Urli. json2run: a tool for experiment design & analysis. CoRR,
abs/1305.1112, 2013.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

61


