
FlexMatch - A Matching Algorithm with linear
Time and Space Complexity

Nina Nöth · Peter Wilke

Abstract FlexMatch, a new matching algorithm with linear time and space
complexity is introduced.

FlexMatch is based on a self organizing cell structure yielding next neigh-
bour candidates for optimized matching.Results obtained when applying the
FlexMatch algorithm on a real world problem are presented.

Keywords Matching Algorithm · Linear Time and Space Complexity · Self
Organizing Cell Structure

1 Introduction

Our research group also acts as competence centre at our university regarding
multi-criteria optimization problems. Recently we have been approached to
implement a matching portal for students looking for hands-on training outside
our faculty labs. The duration and extent depend on the degree and subject. As
the metropolitan region of Nuremberg and especially the City of Erlangen is a
national centre for medical engineering and technology numerous companies,
ranging from very small business to major players, are offering this type of
off-campus training.

The matching problem consists of a facts based part and a political com-
ponent. Of course all companies would prefer to hire the best students, and
of course most students would prefer a major company. But from a regional

Nina Noeth
E-mail: Nina.Noeth@Studium.Informatik.Uni-Erlangen.DE

Peter Wilke
University of Erlangen-Nuernberg
Computer Science Department
Multi Criteria Optimisation Group
Snail-mail: Martensstrasse 3, 91058 Erlangen, Germany
E-mail: Peter.Wilke@FAU.DE

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

347

developer’s view students should get familiar with small but highly special-
ized companies even though they might not be widely known. And from an
university’s point of view all these training opportunities should be offered to
all students.

2 The Problem

The problem to be solved consists of matching students with companies’ train-
ing offers, where their constraints reflect the student’s resp. companies’ require-
ments.

It should be obvious that this optimization problems has contradictory
constraints.

The initial situation consists of supply (companies’ offers) and demand
(students’ requirements) which are both entered in a form with several cat-
egories. The values entered are either single numerical values, ranges or bi-
nary/boolean values.

In the context of this paper the concrete nature of the constraints or data
is of no interest. It is sufficient to regard the data as a multidimensional vector
and to presume the existence of a cost function to evaluate the current solution.

The solution should reflect the policy that students should be introduced
to all kinds of companies and that companies should be offered students of all
performance levels. But of course the individual requirements on both sides
are the most significant matching criteria.

The solution consist of one company for each student and one student for
each training opportunity offered. If this matching doesn’t lead to a acceptance
each party can request additional suggestions.

3 The FlexMap- and FlexMatch-Algorithms

On the top level abstraction layer solving the problem is divided into the
following steps:

1. Building two separate ring structures: one connecting requirements and the
other connecting requirements and offers having a preferable small distance
to each other,

2. Matching the requirements and offer by using the resulting neighbourhood
relation of the ring structures.

3. Improving the single matches by looking for better partners in a deeper
neighbourhood.

3.1 FlexMap

FlexMap [Fritzke and Wilke(1991)] is a self-organizing neural network, which
is linear in its time and space complexity. Problems similar to the Travelling

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

348

Salesman Problem can be solved using the growing ring structure yielding
the round-trip we’re looking for. I.e. the FlexMap algorithm connects each
city with it’s next – with respect to the length of the Hamiltonian cycle –
neighbours, inducing some kind of a topology order on the nodes.

The basic idea is a growing cell structure. The initial structure consists
of three cells. Repeated insertion and distribution steps extends the structure
until all cells can be matched with its corresponding node, e.g. the city (Fig.
2). A node (e.g. a city) is chosen randomly and it next neighbour edge is
calculated, a new cell is inserted in the middle of that edge and the cells are
moved towards the chosen node (Fig. 1).

Table 1 shows the O(n)-version of the FlexMap algorithms in detail, fol-
lowed by it’s structogram.

Fig. 1: Example of a distribution step: inserting a bmu in the neighbouring edge and moving
three cells towards the node C . [Fritzke and Wilke(1991)]

Fig. 2: Local search for the best matching unit: the previous bmu is shown as shaded circle
and the local neighbours (here up to degree 4) as white circles. [Fritzke and Wilke(1991)]

Some remarks regarding it’s complexity:

Step 1 kneighbour is a constant, so the neighbourhood search can be done in
constant time O(1).

Step 2 A cell becomes a member of the set of high error cells when is often
becomes the bmu and therefore its error variable is increased quite often. As

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

349

4 Nina Nöth, Peter Wilke

there are only ndistribution steps, so the search can be performed in constant
time O(n). Obviously we can’t guarantee to find the global maximum but
most likely a cell with a high error value.

Step 3 All bookkeeping and pinning operations can be performed in constant
time O(1).

Steps 1 -3 The loop is performed n-times, all steps require only constant time,
therefore the time complexity is linear to n, i.e. O(n). The required space
consists of memory space for the nodes and the cells. The maximum number
of cells is equal to the number of nodes, i.e. O(2∗n) = O(n), which is linear
in n too.

Step Action

Init Start with a ring structure consisting of three cells at randomly chosen posi-
tions.
Initialize all error variables with 0.0.

Step 1 Perform a constant number ndistribution of distribution steps.
Update the error variable of the bmu (best matching unit) after every step.
Keep a reference from each cell to the cell, which was most recently its bmu.
When the cell is chosen again the search of its bmu is restricted to its last bmu
and its neighbourhood up to kneighbour in each direction.
kneighbour is a constant

Step 2 Find the edge eworst in the set of high error cells connecting two cells v1 and
v2, such that the edgeerror

err(eworst) := err(v1) + err(v2)

is a maximum for all edges in the ring structure.
Insert a new cell cnew in the centre of eworst .
Initialize the error variable of the new cell with

err(cnew) :=
1

3
err(v1)

1

3
err(v2)

Adjust the error variables of v1 and v2 such that the total error of v1, v2 and
cnew stays constant:

err(v1) :=
2

3
err(v1) +

2

3
err(v2)

Step 3 If a cell has been bmu to a node threshold times the cell is pinned to that node
and removed from the set of free cells.
When every node has an associated cell, a solution is found.
Otherwise continue with Step 1

Table 1: The O(n) version of Flexmap [Fritzke and Wilke(1991)]

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

350

3.2 FlexMap Description

global variables:
unripe { MatchingObject -List, set of all elements, which

should be part of the ring structure to be gener-
ated}

firstCell { Cell -variable}
tmp { MatchingObject -variable}

constants:
D CONS=50

{ int -variable, specifying the number of distribu-
tion steps}

N CONS=20

{ int -variable, specifying the number of neighbours,
that should be examined while looking for a better
bmu}

E BMU=0.05

{ double -variable}
initialize three random Cells

firstCell ← one of the Cells

unripe is not empty

i ← 0

i < D CONS

tmp ← random object of unripe

tmp has already a bmu?

true false

search bmu for tmp by re-
searching the N CONS next
and previous neighbours of
the current bmu of tmp

search the bmu in the whole
structure of Cells

∅

update the error of the new bmu by adding the distance
between bmu and tmp

update the position of the bmu and its two direct neigh-
bours by moving them to the direction of tmp by the
fraction E BMU of the distance from each to tmp

put the new bmu of tmp a list of the last used bmus

has the new bmu of tmp a final object

true false

bmu counter of
tmp ← 0

was the current bmu of tmp

the bmu for D CONS

times
true false

set tmp to the final ob-
ject of its bmu

remove tmp from unripe

∅
∅

find the edge with the largest error in the set of the D CONS

th last visited bmus

insert a new Cell in the middle of the two vertices v1 and v2
of the worst edge

the error of the new Cell ← (error((v1) + error(v2))*(1/3)

the error of v1 ← error(v1)*(2/3)

the error of v2 ← error(v1)*(2/3)

step over the Cell structure in one direction and take out all final
MatchingObject . Put them into a double linked list in the order of
removing them from the Cell structure

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

351

After the FlexMap algorithm is applied to the original matching problem
we have two circular structures. One req linking the requirements and the
other all linking all requirements and offers in a ring.

3.3 FlexMatch

The next step is to calculate the matching. Again we apply a growing cell
structure algorithm, this time it’s called FlexMatch[Nth(2014)].

Table 2 shows the O(n)-version of the FlexMatch algorithms in detail,
followed by it’s structogram. The structogram does not include step 5.

Step Action

Step 1 Step over the circular structure all linking all objects.
Take out all requirements having an offer as direct neighbour in the structure.
and insert the pair of requirement and offer into a linked list requested .
If one requirement has two direct neighboured offers take the one with the
smaller distance.

Step 2 Step through the requested list and research if there are better offers for re-
quirements.
Take a pair of the list and check if the current offer of the requirement has an
offer with smaller distance to the requirement in its direct neighbourhood.
If this is the case swap the current offer with the better one.

Step 3 Extract the requirement of the first pair of the requested list as left restricting
object and the requirement of the next pair in the list as right restricting
object.
Use only linking requirements to navigate through the list.
Take the next requirement of the requirement list of the left restricting object.

Step 4 Test whether the euclidean distance to the offer of the left or of the right
restricting object is smaller to the current requirement.
Put the pair of the researched requirement and the smaller offer in a linked
list of pairs matchingList .
Take the next element of the current requirement of the requirement list.
If this element is the right restricting object set the left restricting object to
the right one and for the left one take the next element of the requested list.
Continue with step 3.
Otherwise continue with step 4.
Go to step 5 when all elements of the requirement list have be processed.

Step 5 Take the structure req and choose one requirement tmp (is linked in both ring
structures) .
Research if the nbetter

1 neighbours of tmp in both direction include a offer
having a smaller distance to tmp then the current offer of tmp.
If there is a better one exchange it with the current one of tmp.
Take the next requirement of the structure req and repeat step 5 until you get
to the first choosen requirement of step 5.

Table 2: The FlexMatch

1 In the current implementation nbetter hast the value 20.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

352

3.4 FlexMatch Description

local variables:
requirement

{ MatchingObject -List}
all { MatchingObject -List}
matchingList

{ MatchingPair -List}
requested

{ MatchingObject -List}
tmp { MatchingObject }

i ← 0

i < sizeof(all)

i ← i + 1

tmp is a requirement element?

true false

tmp has a offer element as direct
neighbour?

true false

set the offer neighbour with
the smaller distance to tmp

to the offer of tmp

put tmp into requested

∅

∅

tmp ← i -th element of all

i ← 0

i < sizeof(requested)

tmp ← i -th element of requested

has previous or next element of tmp a offer with a
smaller distance to tmp

true false

put the better offer to the offer
of tmp and put them into the
matchingList

put tmp and its offer into the
matchingList

i ← i + 1

i ← 0

tmp ← the first element of requirement

requirement is not empty

a ← i -th element of requested

b ← i+1 -th element of requested

the offer of a has a smaller distance to tmp

true false

put the offer of a to the offer of tmp and put
them into the matchingList

put the offer of b

to the offer of tmp

and put them into the
matchingList

∅

remove tmp from requirement

tmp ← the next element of tmp in requirement

i ← i + 1

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

353

4 Difference to other matching algorithms

The most significant differences between the FlexMatch-Algorithm and non
approximative matching algorithms is the cardinality of mapping and the run-
time behaviour. The Gale-Shapley-Algorithm(GSA) [Gusfield and Irving(1989)]
allows only a 1:1-mapping. This means every element of the entry set gets
matched to one other element. The FlexMatch allows a 1:n-mapping. One ele-
ment of the offering set can be proposed to one or more elements of the request-
ing set. The aim of algorithms like the GSA or the Hungarian Algorithm (HA)
is the common weal. The FlexMatch however tries to find a solution having the
priority of the individual satisfation for every element of the requesting set. The
runtime complexity of the GSA is in O(n2) [Gusfield and Irving(1989), page 8]
and of the HA it is O(n3) [James Munkres(1957)]. Some approximative match-
ing algorithms[Vinkemeier and Hougardy(2005)] [Duan and Pettie(2010)] have
a linear or nearly linear runtime, but they also do not permit 1:n mappings in
their solutions.

5 Results

System

– CPU: Intel(R) Core(TM) i3-2350M CPU @ 2.30GHz
– Memory: 4GiB
– Compiler: Java version 1.7.0 25
– Runtime environment: OpenJDK Runtime Environment (IcedTea 2.3.10)

(7u25-2.3.10-1ubuntu0.12.10.2)
– VM: OpenJDK 64-Bit Server VM (build 23.7-b01, mixed mode)

The test data sets were generated randomly. The single elements of a test
set belong to two subsets having the same size. One is the set of requirements
and one is the set of offers. The test sets have three different characteristics:

Randomness All elements of both sets are randomly distributed in a defined
area

Independency The sets of the requirements and the offers have no overlapping
area.

Overlapping The elements of the requirements lie inside the area of elements
of the offers.

Fig. 3 shows how the characteristics of the sets would look like in the two
dimensional space. The varying problem sizes were 100, 300, 500, 700, 1000,
3000, 4000, 5000, 6000, 8000 and 10000. For each size and characteristic 25
sets were generated. So there are 10*25*3 = 750 test sets. The FlexMatch was
run five times for every set.

Fig. 4 shows the different runtime behaviour of the FlexMatch and of the
brute force algorithm testing a element of a subset with all elements of the
other subset. The computation of the runtime was done by taking the average

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

354

Fig. 3: Characteristics of the sets

Fig. 4: Runtime behaviour

execution time per test set. The bottom line is that the FlexMatch algorithm
shows a linear complexity and outperforms the brute force algorithm when the
problem size exceeds the break even point at approx. 5000 elements.

Fig. 5 shows that most tests have a relative error smaller than 20%. The
relative error = (sumFM

sumOpt −1)∗100% was computed by summing up the distance

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

355

between all matched pairs being found by the brute force algorithm (sumOpt)
and the FlexMatch (sumFM).

Fig. 5: Error statistics

Fig. 6 shows quintessential how the cell ring structure over all elements
of the two sets generated by the FlexMap based part of the FlexMatch could
behave in a two dimensional space with a problem size of 20. Fig. 7 and 8
represent the ring structures req linking all requirements and all linking all
requirements and offers. Fig. 9 Shows the suggested matching pairs as a result
of using the neighbourhood relation of the two ring structures.

6 Summary and outlook

In this paper we have shown how a matching algorithm with linear time and
space complexity using a self organising map is designed and implemented.
The matching algorithm yields results of sufficient quality but some artefacts
have to be investigated as their costs are beyond the statistical expectations.

Currently we are running experiments using different data sets, initial sit-
uations and problem size and would like to improve the results and runtime
behaviour further more.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

356

Fig. 6: Cell-Structure

Fig. 7: Requirements and offers linked in a structure

The next steps would be the deployment of the software in the web-based
matching portal and analysis of the real world problem behaviour.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

357

Fig. 8: Requirements linked in a structure

Fig. 9: Linked matchingpairs

References

[Duan and Pettie(2010)] Duan R, Pettie S (2010) Approximating maximum weight match-
ing in near-linear time. In: Proceedings 51st IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp 673–682

[Fritzke and Wilke(1991)] Fritzke B, Wilke P (1991) FLEXMAP - A neural network with
linear time and space complexity forthe travelling salesman problem. In: Proceedings
IJCNN Int. Joint Conf. Neural Networks, Singapore

[Gusfield and Irving(1989)] Gusfield D, Irving RW (1989) The stable marriage problem:
Structure and algorithms. Foundations of computing, MIT Press, Cambridge and Mass

[James Munkres(1957)] James Munkres (1957) Algorithms for the assignment and trans-
portation problems. Journal of the Society for Industrial and Applied Mathematics
5(1):32–38

[Noeth(2014)] Noeth N (2014) Optimierte Vergabe von Praktikumsplaetzen
[Vinkemeier and Hougardy(2005)] Vinkemeier DED, Hougardy S (2005) A linear-time ap-

proximation algorithm for weighted matchings in graphs. ACM TRANSACTIONS ON
ALGORITHMS 1(1):107–122

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

358

