10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Integer Programming for Minimal Perturbation Problems
in University Course Timetabling

Antony E. Phillips - Cameron G. Walker -
Matthias Ehrgott - David M. Ryan

Abstract In this paper we present a general integer programming-based approach
for the minimal perturbation problem in university course timetabling. This prob-
lem arises when an existing timetable contains hard constraint violations, or infea-
sibilities, which need to be resolved. The objective is to resolve these infeasibilities
while minimising the disruption or perturbation to the remainder of the timetable.
This situation commonly occurs in practical timetabling, for example when there
are unexpected changes to course enrolments or available rooms.

Our method attempts to resolve each infeasibility in the smallest neighbour-
hood possible, and utilises the exactness of integer programming. Operating within
a neighbourhood of minimal size keeps the computations fast, and does not permit
large movements of course events, which cause widespread disruption to timetable
structure. We demonstrate the application of this method using an example based
on real data from the University of Auckland.

Keywords University Course Timetabling - Integer Programming - Decision
Support Systems

1 Introduction

University course timetabling is a well-known problem in which a time period and a
room are determined for each course event (e.g. a lecture). This may be conducted
prior to the start of enrolment, or after enrolment data is known. The former case
is referred to as curriculum-based timetabling, because time clashes between courses
are determined by sets of courses known as curricula. The latter case is referred to

This research has been partially supported by the European Union Seventh Framework
Programme (FP7-PEOPLE-2009-IRSES) under grant agreement #246647 and by the New
Zealand Government as part of the OptALI project.

A. E. Phillips, C. G. Walker, D. M. Ryan
Department of Engineering Science, The University of Auckland
E-mail: antony.phillips@auckland.ac.nz

M. Ehrgott
Department of Management Science, Lancaster University

366

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

as enrolment-based timetabling because clashes can be determined and weighted by
known enrolments for each course.

In a practical setting, both of these problems are applicable to some extent
(Kingston, 2013a). The timetable is typically constructed significantly prior to
the start of enrolments, and it will commonly need to be modified as enrolments
take place. During each of these phases, the situation can arise where an existing
timetable becomes infeasible due to changes in the underlying data. The mini-
mal perturbation problem addresses how to modify an existing timetable so that
feasibility is found with a minimal amount of perturbation (or disruption) to the
structure of the timetable.

The minimal perturbation problem is first comprehensively addressed in the
context of general dynamic scheduling (El Sakkout, Richards, and Wallace, 1998;
El Sakkout and Wallace, 2000). El Sakkout and Wallace (2000) propose an algo-
rithm based on constraint programming techniques, which leverages the efficiency
of linear programming to solve part of the problem.

Bartak, Miiller, and Rudovd (2004) are the first to study minimal perturba-
tion problems in the context of university course timetabling, using a constraint
satisfaction heuristic combined with a branch-and-bound process. The authors
continue this work with a local search-based metaheuristic, known as “iterative
forward search”, which improves performance significantly (Miiller, Rudov4, and
Bartdk, 2005). Finally, Rudové, Miiller, and Murray (2011) present a summary
of this approach as part of a broader course timetabling process, which is imple-
mented at Purdue University, USA. This includes detailed results on the iterative
forward search algorithm as applied to minimal perturbation problems, and is
described in a practical setting.

Kingston (2013b) addresses a similar problem in the context of high school
timetabling, proposing an ejection chain heuristic method.

In this paper we present a new general method for solving minimal pertur-
bation problems which arise in practical timetabling. Around each infeasibility,
we define a small neighbourhood of events, time periods, and rooms, which we are
willing to perturb. Within this neighbourhood we solve an integer programme
which attempts to resolve the infeasibility with minimal disruption to existing
timetable structure. Utilising the exactness of integer programming, we will only
expand the size or scope of the neighbourhood when we have certainty that the
current neighbourhood is insufficient to resolve the infeasibility. This process aims
to ensure the computational tractability of each integer programme. Limiting the
neighbourhood size is also desirable because it prevents large movements of course
events, which are seen as disruptive to the timetable structure.

We demonstrate the application of this method using an example based on real
data from the University of Auckland. The expanding neighbourhood methodology
has been successfully demonstrated in other real-world applications (Rezanova and
Ryan, 2010).

2 Minimal Perturbation Problems in University Course Timetabling

A complete solution to the university course timetabling problem is a timetable
which specifies a time period and room for every course event. The solution can

367

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

be considered feasible if it does not include any violated hard constraints, or infea-
sibilities. Quality measures, or soft constraints, are desirable features of a feasible
solution which may also be considered. For a coverage of commonly used hard
and soft constraints we refer to the benchmarking paper by Bonutti, De Cesco,
Di Gaspero, and Schaerf (2012).

University course timetabling is widely accepted to be a dynamic problem in
practice, where data may continually change throughout construction and im-
plementation of a timetable (McCollum, 2007; Kingston, 2013a). For complex
timetabling at large universities, we broadly discuss how minimal perturbation
problems can arise in each stage of the timetabling process. We draw on our own
experiences at the University of Auckland, which bears many similarities to other
large universities considered in the timetabling literature.

The early construction phase of timetabling occurs when most of the data
has been gathered, and construction of a timetable is starting. Most time or room
assignments are considered tentative, and may be changed relatively freely. At this
stage, almost any changes to the data are possible e.g. new or removed courses,
changes to staff employment status, room availabilities etc. Some infeasibilities
may not need to be resolved until the data is more complete.

The late construction phase occurs when the timetable is close to being fi-
nalised for publication. This stage is the most similar to the curriculum-based
timetabling problem addressed in the literature. At the University of Auckland,
time assignments are determined in close collaboration with faculties, to satisfy
their specific and complex requirements. In this case, changing the time period for
an event would be disruptive, whereas the room assignment may be more freely
perturbed. Major changes to the data are less likely at this stage, and all infea-
sibilities should be resolved. We note that infeasibilities may also arise due to
the method of constructing a timetable, rather than solely due to changes in the
data. For example, if faculties choose their own time-assignments independently
(often “rolled-forward” from the previous year with changes), this can produce a
timetable for which there is no feasible room assignment.

The enrolment phase of timetabling begins once the timetable is published, and
students have started to select courses. At this stage, the most common changes to
the data involve adjusting the expected course enrolments to actual course enrol-
ments, which may cause some room assignments to be no longer suitable. In this
phase, it can be disruptive to change either the time period or the room assignment
for an event. However, the former is likely to be particularly disruptive, as students
and staff may have external obligations affecting their personal timetable. We note
that in the case of the University of Auckland, because of legal requirements it
is not possible to have any excess or overflow of students in a room. Although
not all events will be attended by every enrolled student (e.g. sickness, retention,
recorded lectures), the first events of a semester are typically well attended.

In practice, the specific timing and cause of an infeasibility can significantly
affect the choice of which perturbations we are willing to perform. The algorithm
we present in this paper was motivated by two particular practical situations.
The first arises in the late construction phase of timetabling, where faculties have
approved a high quality time assignment for all their events, but we require pertur-
bation in order for a feasible room assignment to exist. Secondly, we address the
ubiquitous problem in the enrolment phase of timetabling, where unpredictable
course enrolments have caused existing room assignments to become unsuitable.

368

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

3 Room Assignment

This section gives a brief overview of our room assignment algorithm. As men-
tioned in Section 2, many minimal perturbation problems in the construction
phase and particularly the enrolment phase of timetabling, involve an infeasible
room assignment. Although the room assignment algorithm is not the focus of
this paper, attempting to solve a room assignment for an infeasible timetable will
reveal important information about the nature of the infeasibilities. For a detailed
coverage of the room assignment process, we refer to Phillips, Waterer, Ehrgott,
and Ryan (2014).

The relationship between the room assignment and timetable perturbation
process is shown in Figure 1. Each rectangular box corresponds to solving an
integer programme to maximise the room assignment quality with respect to a
particular objective. We maximise each objective sequentially, and fix its value
in subsequent iterations, known as lezicographic optimisation (Ehrgott, 2005). A
lexicographic approach implies a strict precedence of the importance of quality
measures, which is appropriate in this case.

Firstly we would like to maximise the number of events which are assigned to
a feasible room, or event hours. Due to the exactness of integer programming, if we
do not find a room for all events, we can be certain that no such complete room
assignment exists. This means we will need to perform a timetable perturbation
in order to find a feasible room assignment.

However, we would first like to improve the value of other objectives. We next
maximise the seated student hours which aims to assign larger events to a room,
in preference to smaller events. This means the unassigned events will be of the
smallest size possible. Thirdly, we maximise the seat utilisation where events are
placed in rooms which “fit” well, i.e. most of the seats are occupied. This means
that any rooms which are left unused (in each time period) will be the largest
possible. Finally we maximise the building preference which favours holding events
in rooms which are geographically close to the associated teaching department.

The resulting partial room assignment provides us with essential information.
Firstly, it shows which time periods contain unassigned events (infeasibilities), and
therefore require solving the minimal perturbation problem. Secondly, the partial
room assignment contains information which helps to focus our neighbourhood
search to restore feasibility (see Section 4.4).

4 Minimal Perturbation
4.1 Expanding Neighbourhood Algorithm

Solving the minimal perturbation problem requires assigning both a time period
and a room for each event, rather than handling these problems separately. How-
ever, building a model with variables indexed over all events, time periods and
rooms could easily result in millions of variables (Burke, Marecek, Parkes, and
Rudovéd, 2008), which would be intractable. As a result, we would like to build
a model which resolves each infeasibility in as small a neighbourhood as possible.
The neighbourhood around an infeasibility is defined by a restricted set of events
which can be moved, and subsets of time periods and rooms to which events can

369

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Starting
Timetable
> T1metab‘le ==>-| Event Hours
Perturbation

Are all
events
assigned?

no yes

Seated Student Building
Hours Preference

C R
Seat Utilisation Oéltr:ebm:;m
Building Spare Seat
Preference Robustness

Fig. 1 University of Auckland Timetabling Process 2010

il

be moved. All events outside this neighbourhood are fized. Based on information
from the partial room assignment, the specific composition of a neighbourhood is
heavily customised to the nature of the infeasibility.

In many universities, it is common for rooms to be utilised in approximately
50% of available time periods (Beyrouthy, Burke, Landa-Silva, McCollum, McMul-
lan, and Parkes, 2007). Therefore, it is very likely that a feasible timetable will
exist where all events are held in a suitable time period and room. Furthermore,
whether the infeasibility arises from rolling forward an old timetable with changes,
or if there are unexpected post-enrolment changes, it is likely that the infeasible
timetable will be “close” to feasibility, i.e. only a small number of events will need
to change time period or room.

We will initially generate a very small neighbourhood, where we are only willing
to move events of a similar size to our unassigned event(s), and only to/from the
time periods one hour before and after their current time (for example). Within this
neighbourhood we solve an integer programme (IP) to reassign all neighbourhood
events in the least disruptive way that removes the infeasibility. If this is not
possible, we will expand the scope of the neighbourhood, and solve again until the
infeasibility can be resolved. Although several iterations of this process may be
required, each IP model will be relatively small due to the optimistic methodology
of starting with a small neighbourhood. Because we use an exact algorithm to
attempt resolving the infeasibility, we know with certainty whether a feasible re-
assignment exists in this neighbourhood or not. This is an advantage over using a

370

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

heuristic method, where it can be difficult to determine whether a given problem
is infeasible or whether this heuristic is unable to find a solution.

When we need to expand the neighbourhood, this is done in a similar way to
how the starting neighbourhood is constructed, in the sense that the expansion
rules will prioritise adding the most promising variables or options first. Once we
have found a feasible timetable and room assignment within this neighbourhood,
we can apply this solution to the timetable, and proceed to resolve any other
infeasibilities. This algorithm is presented as Algorithm 1.

Algorithm 1 Expanding Neighbourhood Algorithm

for all Infeasible Time Periods do
N <+ GeneratelnitialNeighbourhood|()
searching < True
while searching do
IP + BuildNeighbourhoodIP(N)
IP.Solve()
if IP is Feasible then
Timetable.Update()
searching < False
else
N .Expand()
end if
end while
end for

Finally, it is worth recalling that we are not only looking for a feasible so-
lution; we are also aiming to minimise the timetable disruption. Although the
latter is our objective function within the neighbourhood, in some cases a feasible
timetable and room assignment can be found within a given neighbourhood, but
only through significant disruption to the underlying timetable. In this case, it
may be possible to expand the neighbourhood further, and find a solution with a
lower disruption. This is desirable, if it is computationally feasible to explore the
larger neighbourhood size.

4.2 Event-based Neighbourhood 1P

Within a given neighbourhood, we solve an integer programme to attempt to find
a feasible and low disruption assignment of events to time periods and rooms. As
mentioned in Section 4.1, significant attention is paid to the scope of the neigh-
bourhood, in terms of which (re)assignments we will consider. All sets defining a
neighbourhood are listed in Table 1, where variables are generated over the sets F,
Te and Re:. Many of the complex constraints relating to either the time or room
assignments (e.g. clashes between courses, staff requirements etc.), are implicitly
represented by the variable generation.

Control over the neighbourhood sets offers significant modelling power. In par-
ticular, for many courses it is required that a maximum of one event is held per
day. If a fized event (i.e. a ‘non-neighbourhood’ event) from a course c is held on
day d, then time periods on this day will be excluded from T, for any other events
of this course e € E.. Similarly, a curriculum is a group of courses which cannot be

371

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

held in the same time period (as they are taken by a common group of students). If
an event from curriculum curr is fixed in a time period within the neighbourhood,
then no events from courses in this curriculum can be moved to this time period.
If we are solving a problem in the enrolment phase of timetabling, the curricula
can be determined by actual student enrolments. It is important that no enrolled
student has a timetable which becomes infeasible after the minimal perturbation
problem is solved.

Timetable elements which span multiple consecutive time periods (e.g. two-
hour lectures) are generalised as sets of events known as long events. If a long event
lies only partially in the neighbourhood, it is not permitted to be moved to ensure
the time stability. In many situations, it is also required to ensure room stability
across all time periods of a long event. In this case, if the long event is partially
in the neighbourhood and already has a room, it is excluded. If it is partially in
the neighbourhood but does not have a room assigned, the neighbourhood must
expand to include the full long event. In our model we have assumed that both
time and room stability are required.

FE events in neighbourhood T time periods suitable for event e
C courses T time periods in neighbourhood
cU curricula D days of neighbourhood time peri-
ods
E. events of course ¢ Ty time periods on day d
FEcurr events of courses in curriculum Ret rooms suitable for event e and
curr available in time period ¢t
Ep events which are single-period or
the first of a long event
B events suitable for assignment to

time period ¢ and room r

Table 1 Notation for Neighbourhood Sets

Using the notation defined in Table 1, we present an integer programming for-
mulation of an event-based neighbourhood perturbation model. In this formulation,
the binary variables z.: are indexed by suitable event-time-room assignments.
Specifically, let the variable x.¢r take the value 1 if event e € E is to be held at
time t € Te in room 7 € Ret. For a given weighting of penalties, vetr, an optimal
assignment of events to time periods and rooms can be determined by solving the
following integer programme (1)—(7). The formulation is considered event-based
because the penalty for reassigning an event is independent of the other neighbour-
hood events from the same course. The disruption penalties for an event can vary
depending on the number of time periods it moves, whether the room changes,
and how this relates to any fixed events from this course. With sufficient available
data, precise penalties can be specified for each disruption.

372

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

minimise Z Z Z Vetr * Tetr (1)

e€CEteT, r€ERet

subject to: Z Tetr < 1 teT,r e Ry (2)
e€Ey,
S Y =t cen ®
teTe 1€ Ry

> > > war<1 ceCdeD (4)
€

e t€E TERe
(E.NEF) (TeNTa)

Z Z Tetr < 1 curr e CU,t €T (5)
e€Ecurr TERt
Tetr — L(e—1)(t—1)r — 0 ec (E \ EF),t € Te,7 € Ret (6)
Zetr € {0,1} ecE,tcTe, v € Ret (7)

The objective function (1) minimises the total timetable disruption between
the proposed timetable solution, and the initial (infeasible) timetable.

Constraints (2) ensure that each room in each time period is occupied by a
maximum of one event, while constraints (3) ensure that all events are assigned
to exactly one room in one time period. Constraints (4) ensure that two events
from the same course cannot move to any time period on the same day. Because
long events are represented as more than one individual event e € E, only the first
event e in any long event is included in each constraint. Constraints (5) ensure
that two events from the same curriculum cannot move to the same time period.
Lastly, constraints (6) enforce the strict time stability and room stability on the
events of a long event.

If room stability is not required for a long event (i.e. it is acceptable to change
rooms between the individual event-hours), constraints (6) can be altered such
that each constraint is summed over all suitable rooms, rather than applied as one
constraint per room.

4.3 Course-based Neighbourhood IP

Although the event-based formulation is versatile in terms of representing penal-
ties, it is not able to model time stability for a course. This is a common quality
measure where it is considered desirable to schedule all weekly events from a course
at the same time of day. To build upon the simpler event-based formulation (1)—
(7), we define the following: Cy;,y is the set of courses which desire time stability,
H is the set of hours from all neighbourhood time periods, ce is the course with
which event e is associated, and h¢ is the hour of the day for time period ¢. Let
the variable y.j, take the value 1 if any event of course c is held in hour h in the
timetable.

For a given weighting of time stability penalties, w,;, we can solve the following
course-based integer programme.

373

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

minimise (1) + Z Z Weh * Yeh (8)

ceC heH
subject to: (2)—(7)
Tetr — Yehy <0 ecE,tcTe, 7 € Ret (9)
Yen € {0,1} c€ Cgap,h € H (10)

The additional term in the objective function (8) penalises each course for each
unique hour of the day it uses for any of its events. Constraints (9) appropriately
tie the values of the y,;, variables to the x4 variables.

This formulation requires a different starting neighbourhood and set of expan-
sion rules to the event-based model. Because entire courses are required to move
together, the initial neighbourhood should not focus around a single infeasible time
period, but rather all weekly infeasible time periods for an hour of the day.

4.4 Limiting the Neighbourhood

As mentioned in Section 4.1, it is desirable to keep the neighbourhood as small
as possible, as determined by the sizes of the sets in Table 1. This necessitates a
selective definition of the neighbourhood at each stage of expansion to include the
most promising variables (i.e. event-time-room allocations) in the model.

The initial definition and expansion rules for a neighbourhood are guided by
the existing partial room assignment, which can offer substantial insight into the
specific cause of the infeasibility. By maximising the seated student hours, we ensure
that any unassigned events will be as small as possible. Therefore, if we observe
that large events remain unassigned, we can infer that the associated time periods
are in shortage of large rooms. As a result, when expanding the neighbourhood
we know to focus on events which currently occupy large rooms, and ideally we
can expand into time periods with vacant large rooms. Without maximising the
seated student hours, unassigned large events could be due to a general lack of
rooms of any size.

The room assignment process also maximises the seat utilisation, where it is
favourable to assign events to rooms which are closely matched in size. This op-
timisation is important, particularly for time periods which do not contain an
unassigned event themselves, but are adjacent or near to time periods with unas-
signed events. In the case of a full room assignment for a particular time period,
the previous maximisations (of event hours and seated student hours) will permit
assigning small events in larger rooms than necessary, as long as it is still possible
to assign all events. Maximising the seat utilisation has two useful outcomes for the
neighbourhood search. Firstly, where possible, it will leave larger rooms vacant as
they are more flexible. Secondly, by assigning events into closely fitting rooms, the
neighbourhood expansion can delay incorporating an event and room assignment
which “fit” well, since the room is already well utilised. The last quality measure
in the room assignment is the building preference, which can also be useful when
prioritising which event-to-room assignments should enter the neighbourhood first.

Finally, we note that for some practical situations, infeasibilities may be caused
by a shortage of a particular type of room (e.g. computer laboratories) or room

374

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

attribute (e.g. piano, fume cupboard), rather than a specific size of room. In this
situation, the neighbourhood definition will include rooms from other time periods
with this specific feature, even if they are presently occupied by a closely fitting
event. The room assignment process may even be altered to include a quality
measure which favours assigning events with specific room requirements. This
helps identify which room features are in shortage, and is analogous to maximising
seated student hours to identify the critical room sizes.

5 Practical Example

To demonstrate our algorithm, we consider a scenario based on the University of
Auckland’s timetabling data from Semester 2 in 2010. The University of Auckland
timetable features 2131 events, 72 rooms, and 50 weekly time periods (8am to
6pm, from Monday to Friday). Like many universities, the average room is utilised
in approximately 60% of time periods. However, the utilisation is above 80% in
“peak” time periods, which are typically between 10am and 3pm. The utilisation
of the largest rooms is also above average, due to a long-term increase in student
enrolments.

Computational experiments are run using Gurobi 5.0 running on 32-bit Ubuntu
12.04, with a quad-core 3.33GHz processor (Intel i5-660).

5.1 Over-enrolment Example

In this example, we analyse the problem of unexpectedly high enrolment numbers
in the enrolment phase of timetabling. We assume that the revised enrolment
numbers are received prior to the start of semester, but clearly after the timetable
is originally constructed. As a result, it is considered disruptive to make changes
to the time at which events are held, although changing room assignments is more
acceptable. Specific penalties are given for each of the approaches in Sections 5.2
and 5.3.

The example scenario is given in Table 2, where the enrolment numbers for an
introductory sociology and law course are substantially larger than expected. The
courses have two and three events respectively, in the time periods listed. These
are the type of courses which are likely to have an unpredictable enrolment, as they
are available to new-entrant students and may be taken as electives by students
from many academic programmes. In cases when enrolments are only marginally
larger than expected, ideally the existing rooms will still be suitable. The room
assignment process (Figure 1) maximises the spare seat robustness objective, for
this purpose.

Course Name Time Periods Planned Enrolment Revised Enrolment
SOCIO 100 Mon 12pm, Thu 2pm 320 500
LAW 121G Mon 12pm, Wed 12pm, 269 500

Fri 12pm

Table 2 Scenario changes to course enrolments

375

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Initially, the state of having five events (from two courses) with no assigned
room is identified as the infeasibility in the timetable. In order to resolve this infea-
sibility, we will first re-solve the room assignment for this timetable, as explained
in Section 3. This will only change the room assignment for a very small number
of events, which are held in the same time periods as the infeasibilities. If there are
suitable vacant rooms in these time periods, or if it is possible to re-assign other
events to “free up” such rooms, we will have a feasible room assignment without
needing to perturb the time assignments at all. For this problem, maximising the
event hours proves it is not possible to leave fewer than five events unassigned,
without perturbing the timetable. This is because the events are held in highly
congested time periods where all large rooms are presently occupied. However,
by maximising the seated student hours, we are able to change our partial room
assignment so that the five unassigned events are those which have the smallest
number of students. The five events which remain unassigned are given in Table
3, where it can be seen that three of the events from the “SOCIO 100” and “LAW
121G” courses have been replaced by smaller events from other courses.

Time Period Course Name Enrolment

Mon 12pm SOCIO 100 500
Mon 12pm THEOL 101 490
Wed 12pm LAW 121G 500
Thu 2pm POLIT 113 347
Fri 12pm BIOSCI 203 360

Table 3 Events without a room after room assignment

5.2 Event-based Perturbation

We first attempt to solve the problem of unassigned events (Table 3) using an
event-based IP formulation (1)—(7) within the expanding neighbourhood algorithm
(Algorithm 1). Around each of the four time periods, we initialise a neighbour-
hood to include similar sized events in one time period before and after. If this
is insufficient to resolve the infeasibility, we expand the neighbourhood to include
events from two time periods before and after. We set a simple penalty (for each
event) of one unit for each hour moved and two units for each day moved from
the original time period. There is a very small penalty for moving rooms within
the same time period, so that this can occur, but only when necessary.

The solution to this problem is given in Table 4, where events are relocated
to nearby time periods as shown, for a total penalty of 7. The events for “SO-
CIO100”, “LAW121G” and “POLIT113” are able to move to other time periods
with suitable vacant rooms in their respective neighbourhoods. The events for
“THEOL101” and “BIOSCI203” are able to stay in their time periods and move
into the rooms vacated by “ECON151G” and “PSYCH204” respectively. This ma-
noeuvre commonly occurs in solutions to these problems, where one event changes
time periods to free its room for another event. This is because each event has a
unique set of time periods to which it can move, as determined by curricula and

376

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

other requirements. Some events inevitably have a greater flexibility or a different
set of suitable time periods.

Monday Tuesday ‘Wednesday Thursday Friday

10am

1lam

- sociow0 T T e

12pm< THEOL101 LAWI121G POLIT113
__gECONIEIG [A

1pm
7777777777777777777777777777 BIOSCI203 \
R e

3pm

Table 4 Event-based solution

Solving the 6 IPs required for this problem was very rapid, as they all featured
less than 500 binary variables, and terminated optimally in less than one second.

5.3 Course-based Perturbation

Because many faculties appreciate time stability for their courses, we also demon-
strate the course-based IP formulation (1)—(10). In the previous solution (Table 4),
perturbations to the events from several courses (e.g. “BCCON151G”, “LAW121G”,
and “POLIT113”) incurred an unmeasured disruption to time stability. For the
course-based model we use a different starting neighbourhood which includes all
time periods at this same time of day across the week. This neighbourhood then
expands to include all time periods one hour before and after. Because the first
expansion causes the neighbourhood to include a total of 15 time periods, it is
important to be selective about which events are included in each time period. To
keep the model size manageable, we only include large events and rooms.

The solution to this problem is given in Table 5, where events are relocated to
nearby time periods as shown for a total event-based penalty of 8. This is a greater
penalty than in the event-based solution, however we are now able to resolve the
infeasibility with no penalty incurred from disruption to the time stability.

Solving the 3 IPs required for this problem was again rapid, although there
were up to 5000 binary variables in the largest case. However, due to the near-
naturally integer property of these models, they still terminated optimally in less
than one second.

6 Conclusion and Future Work

We have proposed a general integer programming-based approach for minimal
perturbation problems which arise in practical university course timetabling. This

377

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

Monday Tuesday Wednesday Thursday Friday
10am
1lam
S SOCIO100 —— . «—— LAWI121G
12pm< THEOL101 < LAWI121G Z POLIT113
o gReoNmie gEONBIG
1pm
”””””””””””” «~—— BIOSCI203
2pm
3pm

Table 5 Course-based solution

approach is versatile, as there are substantial possibilities for customisation in
the way the neighbourhoods are constructed and expanded. We have shown an
example application of this process on real data from the University of Auckland.

An interesting extension to the proposed formulations would be the incorpora-
tion of multi-objective optimisation techniques, where additional quality measures
are considered explicitly rather than implicitly in terms of disruption. This also
leads to the question of whether it is possible (and desirable) to disrupt a given fea-
sible timetable in order to improve the room assignment. Finally, we would like to
consider equity and fairness across faculties and courses when making timetabling
perturbations.

References

Bartdk R, Miiller T, Rudovd H (2004) A new approach to modeling and solving
minimal perturbation problems. In: Apt KR, Fages F, Rossi F, Szeredi P, Vncza
J (eds) Recent Advances in Constraints, Lecture Notes in Computer Science,
vol 3010, Springer Berlin, pp 233-249

Beyrouthy C, Burke EK, Landa-Silva D, McCollum B, McMullan P, Parkes AJ
(2007) Towards improving the utilization of university teaching space. Journal
of the Operational Research Society 60(1):130-143

Bonutti A, De Cesco F, Di Gaspero L, Schaerf A (2012) Benchmarking curriculum-
based course timetabling: formulations, data formats, instances, validation, vi-
sualization, and results. Annals of Operations Research 194(1):59-70

Burke EK, Marecek J, Parkes AJ, Rudovd H (2008) Uses and abuses of MIP
in course timetabling. Poster at the workshop on mixed integer program-
ming, MIP2007, Montréal, 2008, available online at http://cs.nott.ac.uk/jxm/
timetabling/mip2007-poster.pdf

Ehrgott M (2005) Multicriteria optimization, 2nd edn. Springer Berlin

El Sakkout H, Wallace M (2000) Probe backtrack search for minimal perturbation
in dynamic scheduling. Constraints 5(4):359-388

378

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

El Sakkout H, Richards T, Wallace M (1998) Minimal perturbation in dynamic
scheduling. In: Prade H (ed) Proceedings of the 13th European Conference on
Artifical Intelligence, ECAI-98

Kingston JH (2013a) Educational timetabling. In: Uyar AS, Ozcan E, Urquhart
N (eds) Automated Scheduling and Planning, Studies in Computational Intelli-
gence, vol 505, Springer Berlin, pp 91-108

Kingston JH (2013b) Repairing high school timetables with polymorphic ejection
chains. Annals of Operations Research pp 1-16

McCollum B (2007) A perspective on bridging the gap between theory and practice
in university timetabling. In: Burke EK, Rudovd H (eds) Practice and Theory
of Automated Timetabling VI, Lecture Notes in Computer Science, vol 3867,
Springer Berlin, pp 3-23

Miiller T, Rudova H, Bartdk R (2005) Minimal perturbation problem in course
timetabling. In: Burke EK, Trick M (eds) Practice and Theory of Automated
Timetabling V, Lecture Notes in Computer Science, vol 3616, Springer Berlin,
pp 126-146

Phillips A, Waterer H, Ehrgott M, Ryan DM (2014) Integer programming methods
for large scale practical classroom assignment problems. Submitted to Comput-
ers & Operations Research

Rezanova NJ, Ryan DM (2010) The train driver recovery problem - a set parti-
tioning based model and solution method. Computers & Operations Research
37(5):845-856

Rudovd H, Miiller T, Murray K (2011) Complex university course timetabling.
Journal of Scheduling 14(2):187-207

379

