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Abstract The present paper proposes a branch-and-price approach to the Traveling
Umpire Problem (TUP). In this hard combinatorial optimization problem, umpires
(or referees) have to be assigned to games in a double round robin tournament. The
objective is to obtain a solution with minimum total travel distance over all umpires,
while respecting several hard constraints. Dantzig-Wolfe decomposition is applied to
an existing Integer Programming formulation to be used in a branch-and-price frame-
work. The pricing problems are solved using a specialized branch-and-bound algo-
rithm, which applies multiple pruning techniques. Two branching strategies (best-first
and depth-first) were employed and result in many improved lower bounds compared
to the previous best known. In addition, five new best solutions were found and four
instances with 16 teams were proven to be infeasible.

Keywords Traveling Umpire Problem · Branch and Price · Column Generation ·
Decomposition Strategies · Integer Programming

1 Introduction

The Traveling Umpire Problem (TUP) is a sports timetabling problem that considers
the assignment of n umpires (or referees) to games in a double round robin tourna-
ment (e.g. a baseball championship). The tournament schedule is given as input with
4n − 2 rounds (or slots), where the 2n teams play twice against each other; once in
their home venue and once away. The objective is to minimize the total travel dis-
tance of all umpires. In order to obtain a fair assignment, several hard constraints are
imposed:

a) every game in the tournament is officiated by exactly one umpire.
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b) every umpire must work in every round.
c) every umpire should visit the home of every team at least once.
d) no umpire is in the same venue more than once in any q1 = n − d1 consecutive

rounds.
e) no umpire officiates a game with the same team more than once in any q2 =
bn
2 c − d2 consecutive rounds (this constraint is similar to the previous one, but

also takes the ‘away team’ into consideration).

The values d1 and d2 range from 0 to n and 0 to bn2 c, respectively.
The Traveling Umpire Problem (TUP) was first introduced by Trick and Yildiz

(2007). Their work was extended by Trick and Yildiz (2011), where a Benders cuts
guided large neighborhood search is proposed. These papers also provide an Integer
Programming (IP) and Constraint Programming (CP) formulation for the problem. A
greedy matching heuristic and a simulated annealing approach with a two-exchange
neighbourhood are described by Trick et al (2012). Trick and Yildiz (2012) present
a Genetic Algorithm (GA) with a locally optimized crossover procedure. A stronger
IP formulation and a relax-and-fix heuristic are proposed in (de Oliveira et al, 2013),
which improve both lower and upper bounds. Wauters et al (2014) present an en-
hanced iterative deepening search with leaf node improvements (IDLI), an iterated
local search (ILS) and a new decomposition based lower bound methodology. Many
improved solutions and lower bounds were found.

In this work, we present a branch-and-price approach to the TUP. By applying the
Dantzig-Wolfe decomposition on an existing formulation of the problem, we obtain a
Restricted Master Problem (RMP) and pricing subproblems. The RMP is a set parti-
tion problem, and its relaxation can be solved by linear programming algorithms such
as Simplex. The pricing subproblems are solved by a specialized branch-and-bound.
The branch-and-price can be seen as a branch-and-bound employing a column gen-
eration scheme to solve the relaxation in each node. We considered two branching
and node selection strategies, one for improving the lower bounds and another for
obtaining feasible solutions.

The following section presents the formulation introduced by de Oliveira et al
(2013) for the TUP. Section 3 details the reformulation of the original model. The
strategies considered in the branch-and-price framework are discussed in Section
4. Section 5 presents computational experiments considering both lower and upper
bounds and, finally, Section 6 summarizes the conclusions and proposes future work.

2 Integer Programming Formulation for the TUP Problem

The first formulation for the TUP was proposed by Trick and Yildiz (2007). This
formulation was then improved by de Oliveira et al (2013). We apply the Dantzig-
Wolfe decomposition on the latter model. Following, we present this formulation. For
that, consider the following input data:

U : set of umpires, such that U = {1, ..., n};
T : set of teams, such that T = {1, ..., 2n};
R : set of rounds, such that R = {1, ..., 4n− 2};
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H(r) : set of teams i hosting a game in round r;
δ(i) : set of rounds r ∈ R in which the team i is hosting a game;

A(i, r) : function that returns the team playing against team i in round r;
dij : distance between the home of teams i and j;

CV (r) : set of rounds {r, . . . , r + q1 − 1} ∈ R defined for r ∈ {1, . . . , |R| −
q1 − 1};

CT (r) : set of rounds {r, . . . , r + q2 − 1} ∈ R defined for r ∈ {1, . . . , |R| −
q2 − 1};

The decision variables are:

xijru =

{
1 if umpire u is assigned to venue i in round r and to j in round r + 1

0 otherwise

The formulation is presented by constraints (1)-(9).

min
∑
i∈T

∑
j∈T

∑
r∈R

∑
u∈U

dijxijru (1)

s.t.
∑
u∈U

∑
j∈T

x(i, j, r, u) = 1 ∀i ∈ T, r ∈ δ(i) (2)

∑
i∈H(r)

∑
j∈T

x(i, j, r, u) = 1 ∀r ∈ R, u ∈ U (3)

∑
r∈δ(i)

∑
j∈T

x(i, j, r, u) ≥ 1 ∀i ∈ T, u ∈ U (4)

∑
c∈CV (r):
c∈δ(i)

∑
j∈T

x(i, j, c, u) ≤ 1
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − q1 − 1

(5)

∑
c∈CT (r)

∑
j∈T

x(i, j, c, u) +
∑
k∈T :

A(k,c)=i

x(k, j, c, u)

 ≤ 1
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − q2 − 1

(6)

∑
j∈T

x(i, j, r, u) = 0
∀i ∈ T, u ∈ U,
r ∈ R\δ(i) (7)

∑
j∈T

xjiru −
∑
j∈T

xij(r+1)u = 0
∀i ∈ T, u ∈ U, r ∈ R :
r < |R| − 1

(8)

xijru ∈ {0, 1}
∀i ∈ T, j ∈ T, r ∈ R,
u ∈ U (9)

where

x(i, j, r, u) =

{
xijru if r = 1

xji(r−1)u otherwise
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Constraints (2) and (3) ascertain that every game can be officiated by only one
umpire and that every umpire may officiate only one game per round, respectively.
Constraints (4) state that every umpire should visit every team at least once during
the season. Constraints (5) and (6) specify that every umpire must wait q1−1 days to
revisit the same home location and that every umpire must wait q2 − 1 days to revisit
the same team, respectively. Constraints (7) enforce that an umpire can only travel
to the home location of a team if that team hosts a game in that certain round. If an
umpire is at the location of a team in round r, the umpire must leave from the same
location in round r+1 as specified by constraints (8). Finally, the objective function,
given by equation (1), is to minimize the total travel distances of the umpires.

3 Dantzig-Wolfe Reformulation

In order to obtain stronger bounds, we reformulate the model presented in the pre-
vious section by applying the Dantzig-Wolfe decomposition (Dantzig and Wolfe,
1960). The original problem is decomposed into a master problem and n pricing
problems, one for each umpire.

Figure 1 shows the structure of the linear program (LP) of a TUP instance con-
sidering the formulation presented in Section 2. This figure presents the coefficient
matrix of the original LP (left image) and the same LP after sorting the rows and
columns by umpire (right image). The dots indicate non-zero coefficients in the con-
straint matrix. The required block structure for the Dantzig-Wolfe decomposition is
easily identified in the right image (sorted model). In this image, each square block
forms a pricing problem containing the constraints and variables corresponding to a
single umpire.

In formulation (1)-(9), constraints (3)-(9) are umpire-oriented and form the pric-
ing problems. The remaining constraints, given by equation (2), are the coupling (or
linking) constraints. These constraints correspond to the wide block at the bottom of
the sorted LP in Figure 1.

The pricing problem can be stated as the problem of finding the optimal schedule
for one umpire with the consideration of dual costs.

The master problem is a set partition problem, whose formulation is given by
equations (10)-(13). In this formulation, Ω is the set of columns (possible schedules
for the umpires), Ωu represents the subset of Ω containing all columns of umpire
u ∈ U , ds is the cost (travel distance) of column s ∈ Ω, λs is a binary variable that
indicates whether the column s ∈ Ω is selected or not and, finally, airs is a binary
coefficient denoting whether the umpire is assigned to game hosted by team i ∈ T in
round r ∈ R in column s ∈ Ω. Constraints (11) guarantee that only one column is
chosen per umpire while constraints (12) are the coupling constraints inherited from
the original problem (2), and ensure that each game in each round is officiated by
exactly one umpire.
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Fig. 1 Representation of the applied decomposition

min
∑
u∈U

∑
s∈Ωu

dsλs (10)

s.t.
∑
s∈Ωu

λs = 1 ∀u ∈ U (11)

∑
u∈U

∑
s∈Ωu

airsλs = 1 ∀i ∈ T, ∀r ∈ R (12)

λs ∈ {0, 1} ∀u ∈ U, ∀s ∈ Ωu (13)

The column generation approach (Lübbecke and Desrosiers, 2005; Vanderbeck
and Wolsey, 2010) is solved iteratively. The linear relaxation of the master problem
is solved first. In every iterations, the pricing problems are solved to obtain reduced
cost columns. A reduced cost column for umpire u is a column s ∈ Ωu for which
vu +

∑
i∈T

∑
r∈R airswir > ds, where vu and wir represent the dual variables

corresponding to constraints (11) and (12), respectively. If such columns are found,
they are added to the master problem, which is subsequently re-solved. The algorithm
continues until no reduced cost columns exists, in which case the relaxation of the
reduced master problem is solved.

3.1 Symmetry breaking

In order to speed up the pricing solver, we preallocate the games assigned to the um-
pires in the first round. This reduces symmetry (Yildiz, 2008) in the original problem,
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as otherwise the umpires would have similar coefficients in the constraint matrix. Pre-
allocation can be easily achieved by adding constraints (14) to the formulation (1)-(9).
In these constraints, we use the notationHk(r) to represent the home team of the k-th
game of round r, with the games in lexicographical order.

∑
j∈T

xij1u = 1 ∀u ∈ U, i = Hu(1) (14)

Constraints (14) are umpire-oriented and can be included in the pricing problems
of the column generation scheme. Adding these constraints results in a reduction of
the pricing problem size by one round.

3.2 Specialized pricing problem solver

A branch-and-bound pricing solver is used to generate a predefined maximum num-
ber c of reduced cost columns. Starting in the first round, the algorithm assigns games
to the umpire, round after round until the last round. An assigment of a game to an
umpire in a round is feasible if (i) the umpire did not visit the same location in the
previous q1 − 1 rounds and (ii) the umpire did not officiate any of the teams during
the previous q2 − 1 rounds. Whenever multiple games can be assigned in a round,
the algorithm chooses the assignment incurring the smallest increase in the travel
distance.

Figure 2 shows an example of the branch-and-bound procedure for an 8-team
(4-umpire) problem instance. The table inside the figure shows the considered game
schedule (opponents matrix). The example considers the pricing for the first umpire
using parameter values q1 = 4 and q2 = 2. As detailed in section 3.1, the assignment
in the first round is fixed.

The umpire can neither officiate game [5,3] nor game [1,6] in the second
round due to constraint e (presented in section 1), since a game played by teams 1
and 5 has already been officiated by the umpire during the first round. Moreover, the
umpire cannot officiate game [1,6] due to constraint d, since the home location
of team 1 has already been visited in the previous round. The only possibilities left
in round two are game [2,8] and game [4,7]. The branch-and-bound prefers
to assign the umpire to game [2,8] because the travel distance between the home
location of teams one and two is smaller than the distance between the home locations
of teams one and four.

If no valid assignment can be found in a certain round, the procedure returns to
the previous round and chooses the game with the second smallest travel distance.
This procedure continues until a valid assignment has been found in the last round.
If the resulting solution does not violate constraint c, it is feasible and serves as an
upper bound for pruning when exploring the rest of the search tree.

We implemented several extensions to improve the performance of the branch-
and-bound algorithm. In section 3.2.1, we explain these pruning strategies.
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e
745 929

[1, 4] [2, 7] [3, 8] [5, 6]

1090

[6, 1] [8, 2] [3, 7] [5, 4]

1190 1020

[8, 1] [7, 2]  [3, 4] [6, 5]

664 257

[7, 1] [2, 3]  [4, 6] [8, 5]

253 315

d&e

d e

e d

e d&e

ee

Round 2

Round 1

Round 3

Round 4

Round 5

Round 6

 1   [1 5] [6 2] [7 3] [4 8]
 2   [1 6] [2 8] [5 3] [4 7]
 3   [1 4] [2 7] [3 8] [5 6]
 4   [6 1] [8 2] [3 7] [5 4]
 5   [8 1] [7 2] [3 4] [6 5]
 6   [7 1] [2 3] [4 6] [8 5]
 7   [1 8] [2 6] [4 3] [7 5]
 8   [1 7] [2 4] [3 6] [5 8]
 9   [4 1] [3 2] [5 7] [6 8]
10   [2 1] [6 3] [4 5] [8 7]
11   [3 1] [2 5] [8 4] [7 6]
12   [1 2] [3 5] [7 4] [8 6]
13   [1 3] [5 2] [6 4] [8 7]
14   [5 1] [4 2] [8 3] [6 7]

Round Game [Home Away]

OPPONENTS MATRIX

Fig. 2 Specialized branch-and-bound example for a 8-team (4-umpire) problem instance.

3.2.1 Pruning the search tree

Multiple strategies exist to prune unfavorable parts of the search tree. First of all,
the branch-and-bound algorithm prunes the parts of the search tree where no optimal
solution can reside based on the lower and upper bound on the travel distance. Once
the branch-and-bound algorithm has obtained a feasible solution, it can be used as an
upper bound on the minimum travel distance of the umpire.

For each game in every round, a shortest path exists to any of the games in the
last round. The shortest path serves as a lower bound for the branch-and-bound pro-
cedure.When trying to assign a game in a round, the algorithm evaluates whether
the current travel distance together with the lower bound exceeds the currently best
known upper bound. If so, the branch-and-bound need not consider that assignment
anymore, since it will not improve the current upper bound.

It is impossible to evaluate constraint c before a complete path has been gen-
erated for the umpire. Nevertheless, a second pruning strategy is possible. If in a
certain round, the number of unvisited home locations exceeds the remaining number
of rounds, it is impossible to obtain a solution satisfying constraint c, given the as-
signments in the previous rounds. The branch-and- bound algorithm should therefore
return to a previous round and explore other assigments.
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4 Branch-and-Price

Section 3 presented the column generation scheme. Since this algorithm only solves
the LP-relaxed version of the problem, it may be necessary to branch on the vari-
ables to find an integer solution. In that case, we apply branch-and-price (Barnhart
et al, 1998; Vanderbeck, 2000), which is a variant of branch-and-bound where the
relaxation is solved by column generation in each node of the search tree.

The branch-and-price algorithm branches on the variables xijru from the original
formulation. Since the branching tree is too large, we consider two different strategies
for branching, each one pursuing a different goal. The first branching strategy aims at
providing good lower bounds by conducting a best-first search (BFS) in the branching
tree. The second strategy executes depth-first search (DFS) and focuses on finding
integral solutions.

In each iteration, the BFS strategy selects variables for branching based on the
following criterion: variables with the most fractional value of the earliest available
round are selected first. Fixing variables of the earliest available round impacts the
performance of the pricing solver considerably. The specialized branch-and-bound
constructs the solution from the first to the last round, in lexicographical order. Hence,
if a variable of the last round were selected first, processing time may be wasted
searching in infeasible subtrees. Since the fixation of a variable renders several sub-
trees infeasible, it is better to detect the infeasibility as soon as possible during the
branching process. If this strategy were not used, the detection of infeasible subtrees
would be delayed, consuming a considerable amount of processing time.

The DFS strategy aims to obtain feasible solutions as soon as possible. Therefore,
in each node the variable with least fractional value of the earliest possible round is
selected to be branched first. By doing so in a depth-first search manner, the fixations
are directed to iteratively build a feasible solution using the information provided by
the column generation.

5 Computational Experiments

The approach applies SCIP/GCG (Achterberg, 2009). This open source framework
provides a well structured platform for developing branch-and-price algorithms. The
branching scheme, node rules and pricing solver were coded in Java, using Java Na-
tive Interface to exchange information between Java and C. CPLEX was used to solve
the linear relaxation of the Restricted Master Problem.

The experiments were executed on a Intel(R) Xeon(R) CPU E5-2650 @ 2.60GHz
computer with 128Gb of RAM memory running Linux Mint 16. CPLEX version 12.6
and Java Virtual Machine 1.7 were used.

The benchmark set used within the experiments is available online 1, together
with the currently best known solution values in literature. We also consider the most
recent bounds found by Wauters et al (2014) for comparison. Further information
about the instances can be found in (Trick et al, 2012).

1 http://mat.gsia.cmu.edu/TUP/, last accessed June 8, 2014
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The discussion of experiments focuses on two evaluations. First we consider the
dual bounds obtained by the BFS branching scheme in the branch-and-price. After-
wards we present the feasible solutions obtained by the DFS branching strategy. In
both situations, we compare our results with the best known in the literature.

5.1 BFS Strategy

The results of the branch-and-price with the BFS strategy are presented in Table 1.
This table shows the lower bound (LB0) obtained with the column generation (in the
root node), the best lower bound obtained (LB) and the best lower bound found in
the literature. The table also shows the time in which the lower bound was found
by the branch-and-price algorithm. The last column presents the gap between the
best known bound and the obtained bound. The cells marked with ~ indicate some
improvement over the best known bound. Considering the imposed time limit of 3
hours, no feasible solutions were found for any of the instances with more than 10
teams with the BFS strategy. We omitted the results for the small instances, as they
can be easily solved to optimality in few seconds.

Table 1 shows that the column generation approach already improves 8 best
known lower bounds. By applying the branch-and-price with BFS, 15 other instances
have their best known dual bound improved. This result corroborates the expected
strong bound from column generation.

Table 1 also shows the influence of the pricing solver on the total processing
time of the column generation approach. Consider, for example, the difference in
time required for solving the column generation in the root bound (given by column
LB0) for instances ‘16A-7,2’ and ‘16A-7,3’. Column generation for instance ‘16A-
7,2’ required much more computation time than for ‘16-A-7,3’. This is mainly due to
the value q2 = 2 in the first instance, which is less constrained than the second one,
with q2 = 3. Small values of q2 negatively impact the performance of our specialized
branch-and-bound, since it provides fewer pruning opportunities.

5.2 DFS Strategy

The results of the branch-and-price with the DFS strategy are presented in Table 2.
This table shows the value of the first feasible solution found (UB0), the best solution
found by the branch-and-price (UB) and the best solution in the literature. The table
also shows the total runtime to find the solutions with the branch-and-price and the
gap between the best known solution and the obtained solution. The experiments
were restricted to 3 hours of processing time. As in Table 1, cells marked with ~
indicate some improvement over the best known solution. It is important to note that
the bounds for these instances have been updated repeatedly over the years. Best
bounds were hard to trace.

Table 2 shows that the DFS strategy provides feasible solutions in a small amount
of time for most instances. Even considering the total available runtime, the branch-
and-price was able to improve five upper bounds. For 7 instances, the branch-and-
price was not able to produce feasible solutions within the time limit.
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Table 1 Experiments with the BFS strategy in branch-and-price

Inst. q1, q2
Bounds Time (seconds) LB* gap(%)LB0 LB LB0 LB

14 7, 3 156439.3 157812.8 42.1 10500.0 159797 1.24
14 6, 3 154439.9 155570.4 40.8 10560.0 156551 0.63
14 5, 3 152941.3 ~ 153759.6 50.3 10740.0 153066 -0.45
14A 7, 3 149992.7 151243.5 40.7 10740.0 153199 1.28
14A 6, 3 148168.7 149285.4 45.5 10680.0 150998 1.13
14A 5, 3 147097.5 147966.4 47.8 10620.0 148299 0.22
14B 7, 3 149767.0 ~ 151165.8 43.5 10620.0 151059 -0.07
14B 6, 3 148243.9 149208.6 49.6 10620.0 149267 0.04
14B 5, 3 146846.2 ~ 147638.3 55.7 10800.0 147534 -0.07
14C 7, 3 148613.2 150101.6 44.6 10380.0 151581 0.98
14C 6, 3 146774.6 147820.0 47.7 10320.0 148728 0.61
14C 5, 3 145794.4 146622.1 49.5 10620.0 146764 0.10
16 8, 4 184187.6 ~ 193457.1 172.0 10260.0 185939 -3.89
16 8, 2 ~ 155045.2 ~ 155045.2 7092.0 7092.0 151481 -2.82
16 7, 3 158257.4 ~ 158586.0 10500.0 10500.0 158480 -0.07
16 7, 2 ~ 148341.8 ~ 148341.8 10102.0 10102.0 147138 -0.81
16A 8, 4 ~ 198969.7 ~ 200648.5 172.0 10260.0 185119 -11.28
16A 8, 2 ~ 166575.5 ~ 166624.1 5403.0 10410.0 162788 -2.77
16A 7, 3 170575.1 172420.1 371.0 10560.0 172964 0.31
16A 7, 2 161571.2 161571.2 7476.0 7476.0 161640 0.04
16B 8, 4 207505.4 ~ 209346.5 202.0 10440.0 208418 -4.55
16B 8, 2 ~ 169363.4 ~ 170092.6 5162.0 10162.0 167768 -1.37
16B 7, 3 170632.5 172058.0 880.0 10560.0 173023 0.56
16B 7, 2 163539.7 163649.6 9021.2 11298.3 164012 0.29
16C 8, 4 ~ 200682.6 ~ 205643.8 234.0 10380.0 188561 -8.31
16C 8, 2 ~ 168783.6 ~ 168783.6 7380.0 7380.0 166001 -1.77
16C 7, 3 171216.0 ~ 171767.6 449.0 10740.0 171377 -0.23
16C 7, 2 ~ 163850.8 ~ 163850.8 10578.0 10578.0 163305 -0.33

Considering that the developed approach tends to perform better on more con-
strained instances, one would probably expect better results for the very constrained
‘16-8,4’, ‘16A-8,4’, ‘16B-8,4’ and ‘16C-8,4’ instances. The branch-and-price was
not able to find any feasible solution after several hours of processing time. This
result, coupled with the fact that there are no known solution for these instances, mo-
tivated us to investigate the strong indication that they may be infeasible. In the next
section we discuss over the infeasibility of these instances.

5.3 A note on the feasibility of TUP instances

It was already shown that TUP instances with q1 > n and q2 > bn2 c are infeasible
(Yildiz, 2008). Instance ‘12-6,3’ was also proven infeasible. This instance belongs
to the special class of TUP instances with constraint values q1 = n and q2 = bn2 c,
further denoted as TUP0

0, referring to TUPd1

d2
with d1 = 0 and d2 = 0. Other in-

stances from TUP0
0 with n ≤ 7 were shown to contain at least one feasible solution.

No feasible solution was found for TUP0
0 instances with n > 7.

An adapted version of the branch-and-bound procedure presented in Section 3.2,
considering all umpires simultaneously, enables proving that instance ‘16-8,4’, be-
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Table 2 Experiments with the DFS strategy in branch-and-price

Inst. q1, q2
Bounds Time (seconds) UB* gap(%)UB0 UB UB0 UB

6 3, 1 14077 14077 2.0 2.0 14077 0.00
6A 3, 1 16918 15457 1.3 1.8 15457 0.00
6B 3, 1 16716 16716 2.2 2.2 16716 0.00
6C 3, 1 14396 14396 1.8 1.8 14396 0.00
10 5, 2 49154 48942 7.6 8.1 48942 0.00
10A 5, 2 46551 46551 7.6 7.6 46551 0.00
10B 5, 2 45609 45609 5.7 5.7 45609 0.00
10C 5, 2 43149 43149 6.9 6.9 43149 0.00
14 7, 3 174373 166942 84.0 546.6 164440 1.50
14 6, 3 163488 159808 88.7 2462.4 159505 1.67
14 5, 3 156406 ~ 155392 99.9 1214.8 155439 -0.03
14A 7, 3 172737 160856 91.4 7500.1 158760 1.30
14A 6, 3 160599 154637 89.7 2813.5 153216 0.92
14A 5, 3 157249 150386 933.6 4110.2 149331 0.07
14B 7, 3 170180 162677 88.3 1560.1 157884 2.95
14B 6, 3 164212 155817 94.0 5662.4 152740 1.97
14B 5, 3 154425 149866 100.8 1579.2 149621 0.16
14C 7, 3 173962 159815 87.2 6071.9 154913 3.07
14C 6, 3 155918 152696 93.2 6877.4 150858 1.20
14C 5, 3 155218 ~ 149482 108.6 9218.9 149662 -0.12
16 8, 4 - - - - - -
16 8, 2 162720 161999 6612.6 9918.9 160705 0.80
16 7, 3 176576 170293 950.8 7799.8 168860 0.84
16 7, 2 - - - - 153978 -
16A 8, 4 - - - - - -
16A 8, 2 175796 ~ 171882 7065.8 8016.7 172966 -0.63
16A 7, 3 190715 187686 1020.5 2979.9 179960 4.12
16A 7, 2 165931 165766 9562.6 9759.0 164620 0.69
16B 8, 4 - - - - - -
16B 8, 2 189564 ~ 180728 9283.3 10717.5 180888 -0.09
16B 7, 3 192188 186429 1176.3 1378.1 181565 2.61
16B 7, 2 - - - - 170194 -
16C 8, 4 - - - - - -
16C 8, 2 191461 ~ 179939 8949.0 9285.8 180221 -0.16
16C 7, 3 191859 187310 822.4 2234.5 184181 1.67
16C 7, 2 - - - - 169184 -

longing to TUP0
0, has no feasible solution. At the same time, instance ‘16A-8,4’,

instance ‘16B-8,4’ and instance ‘16C-8,4’ are proven to be infeasible since their op-
ponents matrix is equal to that of ‘16-8,4’. Table 3 summarizes the feasibility of the
instances from TUP0

0 up to n = 10. The table reports for each instance, the feasibil-
ity, the number of nodes and time (in milliseconds) needed by the branch-and-bound
to prove (in)feasibility. The feasibility of instances from TUP0

0 with n > 8 remains
unknown after 48 hours of running time of the branch-and-bound algorithm.

6 Conclusions and future work

This work introduced a branch-and-price approach to the Traveling Umpire Problem,
devoting attention to both computation of strong dual bounds and production of good
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Table 3 Feasibility of instances from TUP0
0 up to n = 10, and the number of nodes and time (ms)

needed to prove (in)feasiblity.

Inst. q1, q2 Feasibility Nodes Time(ms)
4 2,1 feasible 12 1
6 3,1 feasible 35 2
8 4,2 feasible 1, 129 5
10 5,2 feasible 27, 179 63
12 6,3 infeasible 901, 228 309
14 7,3 feasible 172, 552 77
16 8,4 infeasible 35, 696× 106 3h
18 9,4 unknown - 48h
20 10,5 unknown - 48h

feasible solutions. We presented a pricing solver and branching rules, optimized to
speed up the resolution of the pricing problem.

We were able to improve several lower bounds. In addition, five improved solu-
tions have been obtained. We also employed a modified version of the pricing solver
to prove infeasibility of some instances. Tight runtime limits are sufficient for the
branch-and-price to generate competitive feasible solutions for the most constrained
problem instances.

As suggestions for future work, we point at the development of heuristics that
use the information from the column generation approach to produce good solutions.
In addition, other branching rules and approaches to speed up the resolution of the
pricing problem may yield further improvements.
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