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Abstract We consider an academic timetabling and rostering problem involv-
ing periodic retraining of large numbers of employees at an Australian electricity
distributor. This problem is different from traditional high-school and university
timetabling problems studied in the literature in several aspects. We propose a
three-stage heuristic consisting of timetable generation, timetable improvement,
and trainer rostering. Large-scale integer linear programming (ILP) models for
both the timetabling and the rostering components are proposed, and several
unique operational constraints are discussed. We show that this solution approach
is more flexible regarding constraints and objectives, and is able to generate solu-
tions of superior quality to the existing software system in use at the organisation.

Keywords Timetabling · Rostering · Integer Programming · Heuristic

O. Czibula
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142281
Fax: +61-2-95142260
E-mail: oliver.czibula@student.uts.edu.au

H. Gu
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142281
Fax: +61-2-95142260
E-mail: hanyu.gu@uts.edu.au

A. Russell
48-50 Holker Street
Silverwater, NSW 2128
Tel.: +61-2-87451569
Fax: +61-2-96486859
E-mail: ajrussell@ausgrid.com.au

Y. Zinder
School of Mathematical Sciences
University of Technology, Sydney
Tel.: +61-2-95142279
Fax: +61-2-95142260
E-mail: yakov.zinder@uts.edu.au

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

102



 

1 Introduction

Ausgrid, Australia’s largest electricity distributor, is responsible for building, re-
pairing, and maintaining all the electrical substations, voltage transformers, and
overhead and underground cables that supply electricity to homes, businesses, and
industries within their operational area of 22,275km2. The voltages on Ausgrid’s
electricity network range from 230V to 132kV, and there is an extreme risk of
electrocution if works are not performed carefully and with strict safeguards in
place. In addition to electrocution, other hazards Ausgrid workers face include
falling from heights, having objects dropped on them from high above, working in
confined spaces, and working in the presence of hazardous materials such as toxic
gas, asbestos, or other harmful substances. Having such a hazardous working envi-
ronment and supplying such a vital utility to the population, it is among Ausgrid’s
highest priorities to deliver safety and technical training promptly and efficiently
to all people, including Ausgrid employees, contractors, and third parties, working
on or near the electricity network, as required by Australian industry law.

Most training delivered by Ausgrid has a limited validity period, after which it
is considered lapsed and no longer valid. Most courses have a validity period of 12
months from the date of successful completion. Others can last 3 or 5 years, and
a few have indefinite validity periods, and validity periods are subject to change
as the industry legislation related to training is occasionally revised. If a worker
does not successfully complete the required training again before it expires, they
will not be permitted to work on or near the electricity network until they do
successfully complete the training.

Ausgrid delivers many different training courses, and each course is composed of
one or more modules. All students enrolled in a course must complete all modules
together. Each module has a duration, and a maximum number of students that
it can have (some modules are better suited to be taught in large groups, whereas
others require more individual attention from the trainer, hence they should be run
in smaller groups). The modules of a course can be run in any order, however they
must be run back-to-back (Ausgrid does not permit gaps between the modules of
a course). The only exceptions are lunch time, which is fixed at 12:00 to 12:30,
and after-hours for courses that go for longer than a day. Courses may not start
at arbitrary times. If a course has a total duration of half a day or less, it may
start first thing in the morning, or right after lunch. Otherwise, if a course goes for
longer than half a day, it may only start first thing in the morning. Each course
can be run an arbitrary number of times, sometimes several times a day, and each
individual run is known as a course instance.

Ausgrid’s operational area can be divided into a number of disjoint and congruent
geographical regions, where each region contains one or more training facilities,
which we refer to as locations. Each location contains one or more rooms, which
come in various sizes and may contain certain equipment necessary for certain
modules. Some rooms have a built-in divider wall, which allows the room to be
split into two, separate, smaller rooms. The modules of courses are run in rooms.
Each room has a list of compatible modules, and a maximum number of students it
can accommodate. Since both modules and rooms have a limitation on the number
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of students, a module-room pair has a maximum number of students given by the
minimum of these two values. While different modules of a course can be assigned
to different rooms, it is important that all the modules of a course are assigned to
a single location.

Modules are taught by trainers, each of whom has a location to which they are
assigned by default. Trainers may, however, travel to other locations with their
company vehicle when required. All trainers work a standard work day from 07:30
to 16:00 with a half-hour lunch break from 12:00 to 12:30. In addition to their
training requirements, trainers are also required to perform administrative tasks
such as general paperwork and course development, therefore each trainer has a
target training workload utilisation depending on which type of trainer they are.
Trainers may be unavailable due to planned annual leave, or planned or unplanned
sick leave.

Certain groups of modules may require shared, mobile resources. For example,
there may be a number of different fire fighting modules, which belong to different
courses and which all require a large piece of fire fighting equipment of which Aus-
grid may only own a limited number. These pieces of fire fighting equipment can
be relocated from place to place, however pack-up, transportation, and unpacking
time must be considered. The total number of these fire fighting modules that can
run at any given time in any given place is limited by the quantity of the required
equipment present.

Because training is delivered not only to Ausgrid employees, but also contrac-
tors and third parties over whom Ausgrid has little influence, Ausgrid does not
currently schedule individual participants into classes in advance, as is the case
in most high school and university timetabling. Instead, Ausgrid schedules classes
to run in times and places where people are expected to need training, and those
people book themselves, or are booked by their supervisors, into a suitable class
around their existing duties. Since the courses have a known validity period, Aus-
grid is able to cross-reference the training records with the current staff details
to get a fairly accurate breakdown of how many people will require certain types
of training in particular locations at particular times. We call this the demand,
which is characterised by the number of participants expected for a course in a
given region and window of time. Ausgrid must schedule at least enough courses
of each type in each region across the planning horizon to cater for the expected
demand.

The robustness of the training plan is of paramount importance to Ausgrid. Since
people are expected to book themselves into classes when needed, a good timetable
should exhibit certain characteristics that maximise the likelihood that people will
be able to find a class at a suitable time and place. For example, it is desirable for
courses to be distributed uniformly throughout the planning horizon. Moreover, a
timetable should exhibit robustness by minimising the impact of unforeseen events
that may affect the running of courses. One undesirable element in a timetable, and
source of uncertainty, is a room swap which happens when consecutive modules
of the same course instance are assigned to different rooms. We consider it highly

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

104



 

desirable if all the modules of a course can be run in a single room allowing the
students and trainer to remain in one place, uninterrupted, for the whole duration
of the course. Conversely, requiring the students and trainer to pack up and migrate
to a nearby room is not only disruptive to the flow of the course, but it also detracts
from the robustness of the timetable as the room may be unexpectedly unavailable,
jeopardising the whole course if a substitute room cannot be found.

When rostering trainers it is desirable for trainers not to have to travel excessively,
and it is desirable not to have to change trainers often throughout a course. Both of
these factors play a role in the robustness of the overall solution. Ideally, a whole
course instance should be taught by a single trainer where possible. By having
more trainers allocated to a course than necessary, the robustness of the timetable
is compromised as each new trainer allocated to a course has the possibility of
being sick or otherwise unavailable, jeopardising the entire course instance if no
substitute can be found. As with swapping rooms, trainer swaps take time and
can delay the progress of a course if one trainer is late. Similarly, having trainers
travel longer distances more often not only incurs the cost of travel (travel cost is
not directly considered in this model), but also increases the likelihood that the
trainer will fail to arrive at their class on time due to traffic, roadwork, accident,
etc., detracting from the overall robustness of the timetable.

Rooms in certain locations can be rented out when not in use. If these rooms are
not required by Ausgrid for an extended period of time, they can be advertised
to be leased by third parties generating some revenue for Ausgrid. Currently,
due to poor timetable optimisation, not many rooms are available for third-party
rental, however if the quantity of revenue generated can be shown to be significant,
Ausgrid may expand their room rental program.

Currently Ausgrid uses a software heuristic to generate their training plans on
a month-by-month basis. This software is able to rapidly generate a timetable,
however does not contain any optimisation functionality. Due to rising electricity
prices and resulting government pressure, Ausgrid must minimise their operational
costs where possible. Due to changing industry regulations related to safety and
technical training, as well as long-term fluctuations of demand, Ausgrid needs a
tool to manage and optimise their training plan which is capable of handling these
changes. The current software tool is not sufficiently flexible to handle many of
the changes that have happened in the recent past.

In this paper we propose a three-stage heuristic procedure consisting of an initial
timetable generation stage, an iterative timetable improvement stage, and finally
a trainer rostering stage. Integer linear programming (ILP) models are developed
for each stage, which can deal with all the practical requirements flexibly. Different
algorithms are designed to achieve the balance of solution quality and computing
time.

The remainder of the paper is organised as follows: Section 2 gives an outline of
the current state of research in the area of academic timetabling. Section 3 de-
scribes the three-stage heuristic in detail. Section 4 describes the class timetabling
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ILP model, and section 5 describes the trainer rostering ILP model. Section 6 dis-
cusses some important details about the implementation of the approach. Section 7
describes our computational experimentation and results. Finally, our conclusions
are given in section 8.

2 Literature Review

The literature review in this section gives a brief overview of the types of problems
that have been solved in the field of academic timetabling. Ausgrid’s timetabling
problem is similar in certain ways to these problems and we can get some idea of
what approaches are likely to work well and what approaches may not.

Problems in the area of academic timetabling have attracted a great deal of re-
search attention over the last few decades[18]. In many cases the problem has been
shown to be NP-Hard[6], often by relating it to the graph colouring problem[11].
For the classroom assignment problem (CAP) — the problem problem of assigning
n classes to a set of m classrooms, in such a way that each class is run exactly
once and each room can be used at most once per period — Carter proposes in
[6] that there are three possible objectives: Feasibility, Satisfiability, and Optimi-
sation. Feasibility asks whether there is any feasible solution given the constraints
mentioned before, Satisfiability asks whether there is a feasible solution that puts
each class into a satisfactory room, and Optimisation is the objective of minimis-
ing some linear cost function. Carter showed that the interval CAP satisfiability
for even as little as two time periods, as well as the feasibility of the non-interval
CAP, are NP-Complete.

Researchers involved with large-scale timetabling generally do not attempt to find
optimal solutions to problems as they cannot be found in practically acceptable
time due to the computational complexity. Instead, much of the recent research
has been focused on approximation algorithms including metaheuristics[13][5],
and decomposition methods such as Lagrangian relaxation[8] and column gen-
eration[19][17]. Many different timetabling problems can be expressed as graph
colouring problems[14], and there has been some research activity in using graph
colouring heuristics to solve timetabling problems[16][15][21][4].

A recent trend has been to develop so-called “hybrid heuristics” that combine
certain features of one heuristic with another, with the aim of improving perfor-
mance by overcoming a weakness in one or both of the heuristics. In [9], attempts
were made to improve the convergence rate of SA by implementing the memory
characteristics of tabu search (TS) to solve a university course timetabling prob-
lem. The annealing rate in SA, given by the cooling function, can have dramatic
influence over the performance and success of an SA implementation[22]. It is not
uncommon for people to implement complex reheating rules to help the heuris-
tic avoid being trapped in local minima prematurely. A novel hybridisation was
presented in [3], where the authors propose a Genetic Program (GP) to optimise
the annealing schedule in simulated annealing. For several given problems, they
presented the dedicated cooling schedules found by GP that converge fastest, and
they also provided the cooling schedule that converges fastest across all problems.
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Despite the difficulty in modelling and solving large-scale IP-based models, sev-
eral researches have had some success. Perhaps the earliest examples are [12] from
1969 and [1] from 1973, where the authors increased tractability by grouping
students together and using layouts for each group, and by solving assignment
problems between sets of courses and time periods, respectively. A more recent
example of IP-based university course and examination timetabling is presented
in [7], where the authors augmented an IP with a heuristic improvement stage,
and high school timetabling is presented in [2], where the authors were able to
solve the IP directly with available computers. A full, integer linear programming
formulation was presented in [20], which had, amongst others, 99 teachers, 156
courses, and 181 teaching groups. The model had 35,611 rows, 91,767 binary or
integer variables, and 662,824 non-zeroes in the co-efficient matrix. An optimal
solution was obtained in just 10 seconds using IBM ILOG CPLEX 9.1.2, or about
2 minutes with Coin-OR Branch and Cut (CoinCbc).

The high school and university timetabling problems discussed in the literature
differ from Ausgrid’s timetabling problem in many ways. Generally, university and
high school timetabling is solved for just one or two weeks, that repeats throughout
the semester or year. Ausgrid, on the other hand, cannot solve for short periods
that will repeat; demand can fluctuate significantly from week to week or month
to month. This, alone, makes the Ausgrid problem size significantly larger and
existing solution approaches may not be suitable. In university and high school
scheduling, a fixed set of courses must be allocated to a fixed set of rooms, whereas
at Ausgrid, we do not know the number of times each course will run a priori. If
we choose to run all the instances of a course in large rooms, we may only have
to allocate very few instances. On the other hand, allocating the same course in
the same time window in smaller rooms may require many more instances. This
feature is unusual in the research area of academic timetabling. Courses in high
schools and universities can generally start at arbitrary time periods, whereas
courses at Ausgrid can start at permissible and, in certain cases, irregular periods.
While it may appear that restricting the times at which courses can start would
make the problem easier to solve, our analysis of scheduling problems with these
constraints suggests this may not be the case and that restricting the set of start-
ing times to irregular periods may actually be one of the sources of difficulty for
our problem. Ausgrid timetabling also contains “no-wait” constraints, as modules
within a course must run back-to-back; these constraints dramatically increase
the problem complexity and are rarely, if ever, seen in high school and university
timetabling. While splittable rooms do exist in many universities and high schools,
we did not find many papers that mentioned them. Ausgrid has several splittable
rooms and, especially in the high volume periods, efficient use of them is impor-
tant. Another difference arises with the objectives of university and high school
timetabling versus Ausgrid timetabling. The large majority of university and high
school timetabling models try to maximise student and teacher satisfaction, which
is given by how closely the solution meets their preferences. At Ausgrid we aim
to provide training to meet the local demands, with minimal complicating factors
in the courses (unnecessary swapping of rooms and/or trainers, etc.), and in ways
economically beneficial for Ausgrid (for example, maximising the potential to rent
out classrooms and auditoriums to third parties to bring extra revenue).
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Fig. 1 A high-level view of the three-stage approach.

We believe our research problem is novel, interesting, and relevant to many related
industrial applications as well. There are many electricity distributors worldwide
as well as other industries that engage in periodic safety and/or technical training.
Efficient solutions to timetabling problems like Ausgrid’s can be of benefit to many
organisations with similarly structured, periodic training requirements.

3 Optimisation Procedure

We have broken the main problem up into two sub-problems: a timetabling prob-
lem and a rostering problem. The timetabling problem is concerned only with the
movement of shared, mobile resources, how many times each course should be run
given the demand, and at what time and place their modules should be run. In
the timetabling problem, trainers are considered in a generalised and aggregated
way for capacity purposes only. The rostering problem is concerned with allocat-
ing individual trainers to individual modules, given a timetable of classes. The
solution to both these sub-problems will yield a complete, functional timetable
and roster. We have chosen to divide the main problem into these two components
to improve the tractability of the problem, as well as the understandability and
maintainability of the model.

To have a flexible tool that is able to solve these two complex sub-problems, we
have developed two Integer Programming (IP) models that represent each of the
two sub-problems. This approach, which is based on rigorous mathematical meth-
ods, guarantees, at least in principle, an optimal solution where one exists. IP is
flexible in the sense that one can simply add, remove, or substitute constraints
to modify the model in various ways; in contrast, problem specific computer al-
gorithms may need more convoluted modifications even for minor changes to the
problem. Even after dividing the problem, given Ausgrid’s data, the IP models for
the two sub-problems still have far too many variables and constraints to solve
them in practically acceptable time.

In order to produce a complete, usable timetable and roster in acceptable time,
we propose a three stage heuristic approach (see figure 1). The first stage produces
an initial feasible timetable, the second stage attempts to improve the timetable as
much as possible, and the third stage allocates individual trainers to the timetable.

3.1 First stage: Initial timetable construction

In the first stage, all course instances are placed in an ordered list and then ar-
ranged on the timetable one at a time. As more courses are placed on the timetable,
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rooms become unavailable at certain times, resources and trainers are consumed
in particular locations at particular times, and less decisions need to be made for
subsequent course instances, therefore the solving subsequent iterations becomes,
in general, much easier. The course instances can be considered in arbitrary order,
however certain rules may increase the likelihood of successfully finding a feasible
timetable at the end of the first stage. For example, some course instances are
considered easier to schedule if they have fewer modules and fewer resource re-
quirements. Considering the course instances in a different order will likely yield
a different timetable with a different cost, therefore we can generate several ini-
tial timetables by applying a different set of rules when constructing the course
instance list. Furthermore, if short courses are dotted around the timetable before
long courses are considered, then it is much more likely that there will not be a
sufficiently long gap to fit a long course instance. Conversely, if the longest courses
are considered first, then the shorter ones will have a greater chance of fitting into
the remaining gaps.

The individual course instances are assigned one at a time by solving the time-
tabling IP model. Only those variables and constraints that are related to the
course instance being assigned are included in the model. Any rooms unavailable
as a result of previously assigned course instances are also omitted from the model
during their periods of unavailability. The resulting IP model is much smaller
and easier to solve. To the best of our knowledge, even the single course instance
problem is quite challenging to solve and we know of no polynomial time algorithm
that will produce an optimal solution. We are not currently considered using a
heuristic approach for the single instance problem as allocating one instance at a
time is already heuristic at best.

To further reduce the size of the IP model, we consider a narrower planning
horizon for the course instance we wish to allocate. Knowing course instances
should be spread out uniformly in the ideal case, we can estimate when the course
instances should run. Since, however, we cannot guarantee that the course can be
scheduled at the times we expect, the set of considered time periods should have a
buffer at each end to allow some freedom in scheduling (see figure 2). The shorter
the buffer, the more control we have over the precise timing of the course, and
the less variables will be in the model, but the probability the solver will fail to
find a feasible solution will be increased. On the other hand, having longer buffers
requires more variables to be included in the model, allows greater freedom for the
solver in scheduling the courses, meaning it will be easier for the solver to find a
feasible placement given existing allocations. For a course instance c with duration
lc, we considered initial buffers of length lc meaning that, if we expect the course
to start at period τ , then the planning horizon initially contains periods τ − lc up
to τ + 2lc. If no feasible solution can be found, we gradually expanded the buffers
in both directions until a feasible solution is produced.

When scheduling course instances one-by-one, we need not consider all locations
at once either. It is possible to look at the demand information for a course and
the state of the current partial solution to decide in which region the next course
instance will be placed, and include only those locations which belong to that
region in the IP model.
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Fig. 2 A buffer added to either end of the reduced timeline.

The final IP model for each iteration of the first stage becomes substantially
smaller and can be solved in just a few seconds. It contains only one course instance
with a small number of modules (typically 1 to 5), only a short planning horizon
(typically 24 to 144 time periods), only one region with a small number of locations
and rooms (typically 1 to 4 locations with 1 to 15 rooms in total).

3.2 Second stage: Timetable improvement

While the first stage can produce an initial timetable relatively quickly, it is
unlikely to find the optimal solution to the whole timetabling problem. Poor de-
cisions made at the early stages of the process can have a compounding effect on
the remaining allocations, leading to poor quality timetables.

The second stage attempts to improve the timetable, using an iterative LNS
heuristic. At the beginning of each iteration, a computer algorithm specifically
tailored to the objective being considered scans the current solution and attempts
to identify the components which contribute most to the objective function. For
example, suppose one course instance contributes a lot to the objective function
because it contains several room swaps. In order for this iteration of the improve-
ment stage to remedy this, additional degrees of freedom must be created. A new
timetabling model is constructed for this iteration for the location of the course
instance, and for the day in which the course instance is currently allocated, op-
tionally with a buffer at either end. All course instances for this location in this
reduced planning horizon are removed from the timetable and re-solved simulta-
neously. A list of previous states must be stored in memory to prevent cycling,
much like a Tabu list.

A feasible solution is guaranteed at each iteration, which must be no worse than
that of the previous iteration. At iteration i− 1, most courses were considered as
constants in the model, while some were variables that were optimised over the
objective function to produce the solution S(i−1). In the subsequent iteration i, a
different set of courses are considered constants and a different set are variables,
however the model is optimised over the same objective function. Since the solution
S(i−1) is feasible (and optimal given the model at iteration i − 1), S(i−1) must
also be feasible at iteration i and will necessarily have the same objective value.
However, it is possible that S(i) 6= S(i−1) and then it is possible that the objective
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value at iteration i will be better than it was at i − 1, however it can never be
worse.

The features of timetables that stage 2 is currently set up to attempt improvement
over are:

– Course instances with excessive room swaps;
– Course instances using rooms larger than necessary when smaller rooms exist;
– Periods (or days) with unbalanced (too many or too few) allocations; and
– Courses with too many instances.

The IP model is again used at each iteration when attempting to improve the
timetable. At each iteration, after the scanning algorithm identifies a component of
the timetable that may be improved, a new IP model is set up in which the majority
of the timetable at the previous iteration are not included as decision variables,
only their student capacities, and room and trainer consumption is included as
constants in the model. The only decision variables included in the IP model are
the ones that pertain to the course instances being improved. Given the course
instances that are left as decision variables, the “large neighbourhood” in the large
neighbourhood search is the set of all feasible solutions to the IP model.

3.3 Third stage: Rostering

Once the first two stages have completed, the timetable is assumed to be finalised,
only requiring individual trainers to be allocated to specific modules. The third
and final stage constructs an IP model taking into consideration all the rostering
requirements. Given a typical monthly timetable from Ausgrid, the rostering IP
model can be solved directly by commercial IP solvers. The first two stages utilise
the timetabling IP model to generate solutions, whereas the third stage uses the
rostering IP model.

The objective of the rostering IP model is to minimise the flow cost along the
networks. The flow cost of each arc on the network is given by a linear combination
of the travel cost and trainer swap cost, either or both of which may be zero. While
worker pay is often a high cost component in many other problems, we do not
consider it in our rostering subproblem as Ausgrid trainers are paid a fixed salary
regardless of what courses the do or do not teach, although the case of considering
workforce pay may be a consideration in future research.

It is possible, though unlikely, that the timetable produced in the first two stages
has no feasible solution with respect to trainers in the third stage. If no feasible
solution can be found to the rostering IP model in the third stage, an algorithm
analyses the distribution of courses identifies which trainer capacity constraints are
violated. For instance, if there are n trainers capable of teaching a particular set of
modules, however there are m > n of those modules running at a particular time
period, then each of the course instances of those modules should be considered
for rescheduling. The algorithm briefly returns to stage two and solves the model
with the additional constraint that, at any given time, the total number of times
modules of this type can be run must not exceed n.
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4 Timetabling Model

4.1 Time Discretisation

In the timetabling model time is discretised into periods of half-hour blocks of
time. Periods that are not available for training are not considered, which include
the after-hours interval, lunch time and public holidays. Periods are grouped into
coarser intervals called days, each of which contain exactly 16 periods starting at
07:30 and ending at 16:00 with a break from 12:00 to 12:30. Many days are grouped
together into time windows, which represent longer durations such as a week or a
month. For practical purposes, we consider a window to start on the first working
day of the calendar month, end on the last working day of the calendar month, and
only include working days. This usually ends up being about 20 working days in a
calendar month. Finally, periods are grouped together into rental windows. Rental
windows can be as short as half a day, but can be as long as one or more days. A
rental window represents a set of periods in which a room can be rented out to a
third party. Once the room has been rented out, the room becomes unavailable for
Ausgrid. Renting out larger rooms brings in more revenue, as does renting them
out for longer periods of time.

4.2 Input Data Set-up

Once the raw problem instance data is imported, some pre-processing must first
be done. For the purpose of the timetabling model, we fix the number of instances
of each course to a practical estimation. In practice, one module can exist in many
different courses, for example, a basic first aid module may be a component in
several courses. For our model, however, each module must belong to exactly one
course instance - these are known as module instances.

Each location may have several rooms, however some rooms may be regarded as
identical - they have the same compatible list of modules, the same physical size,
the same number of seats, etc. In this case, we do not need to consider individual
rooms; instead we can consider room types, where each room type represents a set
of rooms in a given location which are functionally identical. Rooms in different
locations are not grouped together, and rooms that are in the same location but
are part of a compound room set (those rooms with removable dividers), cannot be
aggregated into room types; each piece of a compound room forms its own rooms
type with only one room.

Compound rooms can be modeled using a set of mutually exclusive room pairs.
Suppose room C can be split into two smaller rooms A and B. Rooms A and B
can be used simultaneously, however the use of A is mutually exclusive with that
of C, as is the the use of B with that of C.
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4.3 List of Symbols

Sets of primary objects:
P The indexed set of periods.
D The indexed set of days.
Ω The indexed set of time windows.
Λ The indexed set of rental windows.
L The set of locations.
Ξ The set of regions.

M̂ The indexed set of module instances.
C The set of courses.
R The set of room types.
T The set of resources types.

S(i) The ith element of an indexed set S.

Sets of derived objects:
Ic The indexed set of instances for course c ∈ C.

Bc,i The indexed set of modules instances for course c ∈ C instance
i ∈ Ic.

Pd The indexed set of periods in day d ∈ D.
Pω The indexed set of periods in time window ω ∈ Ω.
Pλ The indexed set of periods in rental window λ ∈ Λ.

P̂c The set of periods in which course c ∈ C may start.
Lξ The set of locations in region ξ ∈ Ξ.

R̃ The set of mutually exclusive room pairs.

R̃l The set of room types in location l ∈ L.

Rm The set of room types suitable for module m ∈ M̂ .

Primary decision variables:

Xm,r,p 1 if module m ∈ M̂ runs in a room of type r ∈ R starting at period
p ∈ P , or 0 otherwise.

Yc,i,p 1 if course c ∈ C instance i ∈ Ic starts at period p ∈ P , or 0
otherwise.

Ŷc,i,l 1 if course c ∈ C instance i ∈ Ic runs in location l ∈ L, or 0
otherwise.

ψt,l,k,p The quantity of resource t ∈ T moving from location l ∈ L to
location k ∈ L (l and k may be the same), starting at period p ∈ P .

ψ̂t,l,k,d The quantity of resource t ∈ T moving from location l ∈ L to
location k ∈ L (l and k may be the same), overnight at the end of
day d ∈ D.

φl,d The number of trainers assigned to location l ∈ L on day d ∈ D.

Auxiliary variables:

X̂m,r,p 1 if module m ∈ M̂ runs in a room of type r ∈ R during period
p ∈ P , or 0 otherwise.
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Ȳc,i 1 if course c ∈ C instance i ∈ Ic runs, or 0 otherwise.

Ỹc,i,ω,ξ The number of students expected to sit in course c ∈ C instance
i ∈ Ic during time window ω ∈ Ω in region ξ ∈ Ξ.

uc,ω,ξ The number of students not accommodated for course c ∈ C during
window ω ∈ Ω in region ξ ∈ Ξ.

tm The new room flag for module m ∈ M̂ . If the room type for this
module is that same type of room as for the previous module, if
applicable, then tm = 0, otherwise tm = 1.

ρr,λ The number of rooms of type r ∈ R occupied during rental window
λ ∈ Λ.

Zi The ith goal term in the objective function.

Constants:
σt The quantity available of resource t ∈ T .

δt,l,k The time required (in periods) for a unit of resource t ∈ T to move
from location l ∈ L to location k ∈ L.

θl,d The number of trainers normally allocated to location l ∈ L on day
d ∈ D.

θmax The maximum number of additional trainers permitted to any lo-
cation on any given day.

θmin The maximum number of subtracted trainers permitted from any
location on any given day.

Qr,p The quantity of room type r ∈ R available at period p ∈ P , or 0
otherwise.

dr,λ The expected revenue from renting out a unit of room type r ∈ R
during rental window λ ∈ Λ.

lc The length (in periods) of course c ∈ C.
bc The minimum class size (in students) required to justify running an

instance of course c ∈ C.
πc The length (in periods) of the rolling time window used to compute

the minimum and maximum number of times a course c ∈ C should
be run.

π+
c The maximum number of times a course c ∈ C should be run in

any given time window of length πc.
π−c The minimum number of times a course c ∈ C should be run in any

given time window of length πc.
sc,ω,ξ The demand (in students) for course c ∈ C during window ω ∈ Ω

in region ξ ∈ Ξ.
αi The coefficient of the ith goal in the objective function.
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4.4 Core Timetabling Constraints

The following constraints express the core requirements of the timetabling prob-
lem, and are likely to appear in many similar course timetabling problems:

X̂m,r,p =

dm−1∑
q=0

Xm,r,(p−q) ∀m ∈ M̂, r ∈ R̂m, p ∈ P (1)

∑
m∈M̂

X̂m,r,p ≤ Qr,p ∀r ∈ R, p ∈ P (2)

∑
m∈M̂

X̂m,r̃1,p +
∑
m∈M̂

X̂m,r̃2,p ≤ 1 ∀{r̃1, r̃2} ∈ R̃, p ∈ P (3)

∑
p∈P̂c

Yc,i,p ≤ 1 ∀c ∈ C, i ∈ Ic (4)

∑
r∈R

∑
p∈P

Xm,r,p = Ȳc,i ∀c ∈ C, i ∈ Ic,m ∈ Bc,i (5)

Ȳc,i =
∑
p∈P̂c

Yc,i,p ∀c ∈ C, i ∈ Ic (6)

The auxiliary variables X̂m,r,p are set up from Xm,r,p according to (1). The
constraints (2) express the requirement that rooms should not be double-booked,
however since identical rooms within a single location are aggregated together,
the right-hand-side is given by the quantities of the aggregated rooms. The con-
straints (3) also express the requirement that splittable rooms should not be
double-booked, however since splittable rooms are never aggregated together, the
right-hand-side remains 1. The constraints (4) ensures each course instance can
start at most once, and (5) ensure that each module of a course is run exactly
once if the course is run, or not at all. The expression (6) sets up the Ȳc,i variable,
which is a sum over all periods of Yc,i,p.

4.5 Characteristic Constraints

The remaining constraints express the operational requirements that are rarely
found in traditional timetabling problems.

4.5.1 Module Positioning Constraints

∑
m∈Bc,i

∑
r∈Rm

X̂m,r,p =

lc−1∑
q=0

Yc,i,(p−q) ∀c ∈ C, i ∈ Ic, p ∈ P (7)

∑
m∈Bc,i

∑
r∈R̃l

∑
p∈P

Xm,r,p = |Bc,i| × Ŷc,i,l ∀c ∈ C, i ∈ Ic, l ∈ L (8)

The constraints (7) expresses the requirement that the modules for a course run
back-to-back, and (8) expresses the requirement that all the modules for a course
must be run in exactly one location.
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4.5.2 Capacity Constraints

The following constraints determine the capacity of each course instance in each
time window and region based on the values of the X and Y variables:

Ỹc,i,ω,ξ ≤
∑

r∈Rm

⋂
Rl

∑
p∈P̄w

(min{um, vr} ×Xm,r,p) ∀c ∈ C, i ∈ Ic, ω ∈ Ω, ξ ∈ Ξ

(9)

bc × Ȳc,i ≤
∑
ξinΞ

∑
ω∈Ω

Ỹc,i,ω,ξ ∀c ∈ C, i ∈ Ic (10)

The constraints (9) set up the Ỹc,i,ω,ξ variables, and (10) ensure the capacity of
a course is at least as great as the minimum allowable class size.

4.6 Trainer Movement Constraints

Trainers are considered in a generalised, aggregated way for capacity purposes
only. Nevertheless, we permit the quantity of these generalised trainers to change
per location per day to give a coarse representation of trainer movements. Each
trainer has a location where they are normally based, however they may be required
to travel to other locations. The total quantity of trainers at location l ∈ L on day
d ∈ D, by default, is given by the constant θl,d (we have specified a subscript for
days so we can subtract trainers who are unavailable, such as trainers on annual
leave, etc.).

φl,d ≤ θl,d + θmax ∀l ∈ L, d ∈ D (11)

φl,d ≥ θl,d − θmin ∀l ∈ L, d ∈ D (12)∑
l∈L

φl,d =
∑
l∈L

θl,d ∀d ∈ D (13)

∑
m∈M̂

∑
r∈R̃l

X̂m,r,p ≤ φl,d ∀l ∈ L, d ∈ D, p ∈ Pd (14)

The constraints (11) and (12) establish the minimum and maximum number of
trainers permitted to be at a given location on a given day, and the constraints
(13) ensures that the total number of trainers allocated to each location is equal
to the total number of trainers expected to be working company-wide on that day.
The constraints (14) express the requirement that, at any given time, the total
number of modules run in a location concurrently must not exceed the number of
generalised trainers we have chosen to allocate there.

4.7 Resource Movement Constraints

A network formulation can be leveraged to represent the flow of resources between
locations across time in a convenient way. Resources, in this context, refer to mobile
pieces of equipment that are required for teaching particular modules. One such
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example mentioned in section 1 is that of a set of different fire fighting modules
which require some fire fighting equipment in order to run; in this case we can use
a flow network to represent the movement of the fire fighting equipment between
the training facilities across time. For each type of resource and for each day, we
construct a flow network with the nodes arranged in a rectangular lattice (See
figure 3). The horizontal axis represents time, and the vertical axis represents
the various locations. Each node represents the end points of a time period at a
given location (note that the end of one time period is equivalent to the beginning
of the next, consecutive time period). Adjacent nodes are connected by directed
arcs horizontally and pointing forward in time, with the flow along those arcs
representing the quantity of the resource available at a particular location at a
particular time. Nodes are also connected between different locations by directed
arcs in such a way that the time interval from the source node to the destination
node is given by the time required to move the resource from the source to the
destination locations.

We permit any resource to move from any location to any other other location
overnight at no cost, therefore the initial condition for each resource network on
each day is simply that the sum across all location must equal the quantity of the
particular resource in Ausgrid’s possession.

Period p− 1 Period p Period p+ 1

ψt,2,2,p−1 ψt,2,2,p ψt,2,2,p+1

ψt,1,1,p−1 ψt,1,1,p ψt,1,1,p+1

Location 2: · · · · · ·

Location 1: · · · · · ·

ψ t
,2
,1
,p
−1

ψ t
,2
,1
,p

ψ
t,1,2,p−

1

ψ
t,1,2,p

Fig. 3 A sample flow network for some resource t about period p with 2 locations.

If l = k, the variables ψt,l,k,p represents the quantity of resource t ∈ T available
at location l ∈ L during time period p ∈ P . If l 6= k, the variable represents the
quantity of the resource moving from location l ∈ L to location k ∈ L starting its
journey at p ∈ P . Since the transport time of resource t ∈ T from l ∈ L to k ∈ K
is given by δt,l,k, the arc represented by ψt,l,k,p will be connected to the node that
represents the start of period p+ δt,l,k.
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The flow balance equations for the resource movement network are expressed as
follows:∑

l∈L

∑
k∈L

ψ
t,l,k,P

(1)
d

= σt ∀t ∈ T, d ∈ D (15)

∑
k∈L

ψt,k,l,(p−δt,k,l) =
∑
k∈L

ψt,l,k,p ∀t ∈ T, l ∈ L, d ∈ D, p ∈ (Pd \ P (1)
d ) (16)

Now that we have constraints that govern the movement resources between loca-
tions across time, we ensure that the number of times we run modules is limited
by these quantities:∑

m∈M̂t

∑
r∈R̃l

X̂m,r,p ≤ ψt,l,l,p ∀l ∈ L, t ∈ T, p ∈ P (17)

4.8 Spreading Constraints

For each course, we have a defined minimum and maximum number of instances
that may be run in any arbitrary set of consecutive periods of a predetermined
length:

∑
i∈Ic

πc∑
q=0

Yc,i,p+q ≥ π−c ∀c ∈ C, p ∈ P̂c (18)

∑
i∈Ic

πc∑
q=0

Yc,i,p+q ≤ π+
c ∀c ∈ C, p ∈ P̂c (19)

The constraints (18) and (19) establish the minimum and maximum number of
instances, respectively, that must be run across all regions for each course. Selection
of the πc and the π−c and π+

c constants is made given the problem data.

4.9 Objective Function

Being a large-scale industrial problem, there are many potential objectives we
can consider. In this paper, we consider three objectives:

– Minimise the number of students not accommodated;
– Maximise the rental revenue;
– Minimise the number of room swaps in the timetable;

The objective function is the weighted linear combination of these three objective.
The weight for the first objective, which is to minimise the number of students for
whom there are no spots in any classes, has a much higher weight than the weights
for the remaining objectives, because it is extremely undesirable if this happens.
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The first objective, denoted by Z1, is to minimise the number of students not
accommodated:∑

i∈Ic

Ỹc,i,ω,ξ + uc,ω,ξ − oc,ω,ξ = sc,ω,ξ ∀c ∈ C,ω ∈ Ω, ξ ∈ Ξ (20)

uc,ω,ξ ≥ 0 ∀c ∈ C,ω ∈ Ω (21)

oc,ω,ξ ≥ 0 ∀c ∈ C,ω ∈ Ω (22)∑
c∈C

∑
ω∈Ω

∑
ξ∈Ξ

uc,ω,ξ = Z1 (23)

The second objective, denoted by Z2, is to maximise the rental revenue:

∑
m∈M̂

X̂m,r,p ≤ ρr,λ ∀r ∈ R, λ ∈ Λ, p ∈ P̂λ (24)

Z2 =
∑
r∈R

∑
λ∈Λ

[−dr,λ × (Q̂r,λ − ρr,λ)] (25)

where Q̂r,λ is the smallest value of Qr,p, ∀p ∈ P̂λ for each λ ∈ Λ.

The last objective, denoted by Z3, is to minimise the number of room swaps
across all courses:

Xm,r,p −
∑

n∈Bc,i,m 6=n

X̂n,r,(p−1) ≤ tm ∀c ∈ C, i ∈ Ic,m ∈ Bc,i, r ∈ Rm, p ∈ P

(26)

Z3 =
∑
m∈M̂

tm (27)

The objective function is a weighted linear sum of the the individual objectives:

minimise: Z = α1Z1 + α2Z2 + α3Z3 (28)

with weights α1 >> α2 and α1 >> α3.

5 Rostering Model

Given a solution to the class timetabling problem from section 4, the roster-
ing model describes the task of allocating specific trainers to modules to form a
complete, usable timetable and roster. A minimum cost network flow approach,
together with some side constraints, can be utilised to give a simple, convenient
representation of the rostering problem.
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Location 3

Location 2

Location 1

Day 1 Day 2 Day 3 Day 4

Course 3
Module 1

Course 2
Module 1

Course 1
Module 1

Crs 4
Mod 1

Crs 4
Mod 2

Crs 5
Mod 1

Crs 5
Mod 2

Crs 6
Mod 1

Crs 7
Mod 1

Crs 6
Mod 2

Fig. 4 A sample timetable, simplified for viewing in this format, showing 4 days, 3 locations,
and 7 courses each with 1 or 2 modules.

1:1

2:1

3:1

4:1 4:2

5:1 5:2

6:1 6:2

7:1

Time

Day 1 Day 2 Day 3 Day 4

Fig. 5 The flow network corresponding to the sample timetable shown in figure 4. (Home
nodes are hatched, and activity nodes are solid)

Given a timetable, a flow network is constructed for each trainer, which is referred
to as a trainer allocation network. There are two different types of nodes in the
trainer allocation network: home nodes and activity nodes. Home nodes can rep-
resent either the trainer’s own home, or their usual place of work. Activity nodes
represent specific modules that can be taught by the trainer. There are four differ-
ent types of arcs in the trainer allocation network: commencement arcs, transition
arcs, return arcs, and bypass arcs. Commencement arcs are those that originate
from the home nodes and end at the activity nodes; they are called commencement
arcs because they represent the first module the trainer will teach on a particular
day. Transition arcs are those that originate from activity nodes and end at activ-
ity nodes; they represent a trainer completing one module and starting another,
although trainers do not need to be allocated to modules back-to-back—they may
have a gap after teaching one module and before teaching the next. Return arcs
are those that originate from activity nodes and end at home nodes; they represent
the last module a trainer will teach on a particular day. Bypass arcs are those that
originate at home nodes and end at home nodes; they represent a trainer having
no allocations on a particular day.

As an example, Figure 4 shows a simplified view of a timetable with 7 courses,
with 1, 1, 1, 2, 2, 2, and 1 modules, respectively, and the corresponding flow
network is shown in Figure 5.
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Costs on the arcs of the network are determined by two factors. The first factor is
determined by the distance the trainer needs to travel for the allocation, including
travel to the first module taught in a day, travel from the last module taught in a
day, and also travel from module to module. The second factor is the trainer swap
cost. A trainer swap happens if the arc starts with an activity node which is not
the last module of a course instance, but ends with a home node or an activity
node from a different course instance.

We introduce the following symbols for the rostering model:

Set Description
D The indexed set of days.

M̂ The indexed set of module instances.
Md The set of modules that run within day d ∈ D

T The set of trainers.

Tm The set of trainers capable of teach module m ∈ M̂ .

pred(m) The set of predecessors of module m ∈ M̂ .

succ(m) The set of successors of module m ∈ M̂ .

Variable Description
ψ̄τ,m 1 if trainer τ teaches module m as their first module on that

day, or 0 otherwise.
ψτ,m,n 1 if trainer τ teaches module m followed by module n, or 0

otherwise.

ψ̃τ,m 1 if trainer τ teaches module m as their last module on that
day, or 0 otherwise.

ψ̂τ,d 1 if trainer τ doesn’t teach any modules on day d, or 0 otherwise.

The flow balance equations for the network are as follows:

ψ̂τ,d +
∑
m∈Md

ψ̄τ,m = 1 ∀τ ∈ T, d ∈ D (29)

ψ̄τ,m +
∑

n∈pred(m)

ψτ,n,m =
∑

n∈succ(m)

ψτ,m,n + ψ̃τ,m ∀τ ∈ T,m ∈ M̂ (30)

where (29) ensures that, at the start of each day, the trainer either teaches one or
more modules or does not teach any modules; and (30) conserves flow throughout
the day. Since the flow for each day is implicitly conserved by (29) and (30), we
do not require any additional equations to balance the flow from day to day.

It is important to note that any integral flow is always a feasible line of work for
a single trainer, i.e. the network is constructed in such a way the trainer will never
be required to be in two places at once, nor will the trainer be required to teach
a module they are not capable of teaching.
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The individual trainer networks on their own are not sufficient to guarantee a
feasible solution to the rostering problem as multiple trainers may be allocated
to the same module, or modules may be left with no trainer at all. We introduce
some side constraints that integrate the many trainer networks into a single IP
model.

ψ̄τ,m +
∑

n∈pred(m)

ψτ,n,m = Xm,τ ∀m ∈ M̂, τ ∈ T (31)

∑
τ∈Tm

Xm,τ = 1 ∀m ∈ M̂ (32)

where (31) sets up the auxiliary variable Xm,t, which is 1 if trainer t teaches
module m or 0 otherwise, and (32) ensures that every scheduled module is taught
be exactly one trainer.

Fairness is important when rostering at Ausgrid, and we wish to avoid, wherever
possible, the situation where one trainer is scheduled to train more or less than
their peers.

U−τ ≤
∑
m∈M̂

(wm ×Xm,τ ) ≤ U+
τ ∀τ ∈ T (33)

where U−t and U+
t are the minimum and maximum number of periods, respectively,

that we permit trainer t ∈ T to teach.

The objective of the rostering problem is to minimise the flow cost all networks
simultaneously.

min
∑
τ∈T

∑
m∈M̂

[c1(τ,m)× ψ̃τ,m] +
∑
τ∈T

∑
m∈M̂

∑
n∈M̂

[c2(τ,m, n)× ψτ,m,n]+

∑
τ∈T

∑
m∈M̂

[c3(τ,m)× ψ̄τ,m] +
∑
τ∈T

∑
d∈D

[c4(τ, d)× ψ̂τ,d]
(34)

where c1(·), c2(·), c3(·), and c4(·) give the flow costs of the commencement, tran-
sition, return, and bypass arcs, respectively, where the flow costs are characterised
by any applicable trainer travel costs and trainer swap costs.

6 Implementation

6.1 Pre-Processing

In order to increase the tractability of our model, we wish to eliminate as many
variables and constraints as possible. We can reduce the set of permissible start
times for each module in a given course by identifying all the possible times the
module can start relative to the start time of the course. Since each of those
modules belongs to a particular course instance which does have a set of permissible
start times, the modules implicitly inherit a restriction on when they may start.
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Suppose a course c instance i has a set of modules {m1,m2, . . . ,m|Bc,i|}. Since
the order of the modules is unrestricted, there are Bc,i! possible permutations we
can choose to run the modules. For each permutation, each module has a starting
offset—the amount of time, in periods, between the course start time and the
module start time. If, for each permutation and for each module, we identify the
unique starting offsets, we can apply those offsets (which are in relative time,
relative to the time in which the course starts), to each permissible start time of
the parent course in order to enumerate the complete set of time periods in which
the modules may start.

6.2 Symmetry Breaking

One weakness of the timetabling model is the symmetry present in the solution
space. In many cases, objects can be arranged in a variety of ways, where each
configuration has no dominance over the rest. Suppose we start with a timetable
where course c instance 1 is run on Monday and instance 2 is run on Wednesday. If
we keep all practical aspects about the timetable the same, however we now refer
to the Monday course as instance 2 and the Wednesday course as instance 1, then
there is no difference in terms of solution cost. There are n! ways of indexing the
n instances of a single course across an existing timetable.

We may eliminate many symmetric solutions by introducing the following con-
straints:

p∑
q=0

Yc,i,q ≥ Yc,(i+1),p ∀c ∈ C, i ∈ Ic, p ∈ Pc (35)

which ensures that, for any given course, instance i must be run in order to run
instance i+ 1, and also that instance i must be run no later than instance i+ 1.

There are many other sources of symmetry in the model, however we will not
discuss these in this paper.

7 Computational Experiments

Ausgrid’s training department supplied both current and historical data. We
worked with their 8 most frequently run courses with module numbers ranging
from 1 to 4, and instance numbers ranging from 1 to 26. The planning horizon
we considered was 1 month, with a total of 23 working days. Across 5 regions,
there were 15 locations with room counts ranging from 1 to 8, and 12 composite
rooms. With 8 working hours per day, not including meal breaks, the planning
horizon was divided into 368 half-hour time periods, 69 rental windows, and 1
demand window. There were 21 trainers spread across 11 of the 15 locations,
and each trainer was qualified to teach between 8 and 14 modules. Two trainers
had physical disabilities that prevented them from travelling longer distances, and
we enforced this requirement by removing those arcs from the trainer allocation
networks that would require them to travel further.

10th International Conference of the Practice and Theory of Automated Timetabling 
PATAT 2014, 26-29 August 2014, York, United Kingdom

123



 

We used IBM ILOG CPLEX 12.5.0.0[10] on an Intel i7-2640M dual-core 2.8Ghz
system with 4GB DDR3 RAM, running Windows 7 Professional 64-bit, Service
Pack 1. The model was dynamically constructed from data files supplied by Aus-
grid using a program we developed in C# 4.0, interacting with CPLEX using
the IBM ILOG Concert API. Setting up the timetabling model directly for all
courses for the entire month resulted in, on average, over 3 million variables and
we were unable to obtain solutions at all. Setting up the timetabling model di-
rectly for all courses for a planning horizon of 5 days resulted in, on average,
about 600, 000 variables and it took 88 hours to arrive at the optimal solution.
Our prior experimentation with smaller test cases indicated that disabling all au-
tomatic cut generation and using CPLEX’s aggressive probing yielded the fastest
solution times.

Prior to investigating a mathematical programming approach to Ausgrid’s schedul-
ing problem, a list-based constructive software system was developed to auto-
mate the generation of timetables on a month-by-month basis. The software does
not perform any optimisation directly, focusing instead on producing a feasible
timetable quickly, with a “good” use of resources where possible. The problem
being solved in the existing system has some tighter assumptions based on current
practice, whereas the model discussed in this paper is more general. The existing
software system is written in in C# 4.0 running on the same machine. It is a col-
lection of algorithms that constructs a full timetable including trainer roster for a
given month.

We chose the objective weights to be α1 = 106, α2 = 1, and α3 = 6, based on
empirical testing and inspection of the produced timetables.

Table 6 shows the results for a timetable based on a one-year data set from 2012,
generated by the existing software system. From left-to-right, the columns show
the month of the year solved, the number of courses placed on the timetable,
the partial cost of the timetable contributed by the first, second, and third goals
respectively, the weighted linear sum of the three timetabling optimisation goals,
the cost of the trainer roster, and the combined cost of the timetable and roster.

Num. Courses Z1 Z2 Z3 Timetable Roster Total
Jan 47 0 -22.58 6 13.42 1580.61 1594.03
Feb 61 0 -6.30 7 35.70 1791.57 1827.27
Mar 49 0 -10.68 9 43.32 1908.55 1951.87
Apr 38 0 -32.78 5 -2.78 1170.40 1167.62
May 33 0 -26.55 3 -8.55 853.71 845.16
Jun 31 0 -14.27 5 15.73 789.33 805.06
Jul 58 0 -8.73 9 45.27 1607.18 1652.45
Aug 51 0 -9.73 7 32.27 1254.27 1286.54
Sep 44 0 -17.10 3 0.90 1146.64 1147.54
Oct 42 0 -22.10 6 13.90 1141.56 1155.46
Nov 47 0 -11.96 8 36.04 1945.33 1981.37
Dec 34 0 -30.80 4 -6.80 1238.28 1231.48

Table 6 Results for the existing software system.
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The existing system is able to produce a solution for one month in between 3.196
and 7.603 seconds, depending on the density of courses in the month. The system
was able to produce a feasible solution (where all students are accommodated) for
all months in all regions that we tested.

Table 7 shows the results for a timetable based on the same data set, generated by
the 3-stage heuristic. From left-to-right, the columns show the month of 2012 that
was solved, the number of courses placed on the timetable, the cost of the timetable
after initial timetable generation, the partial cost of the improved timetable con-
tributed by the first, second, and third goals respectively, the weighted linear sum
of the three timetabling goals after the improvement stage, the cost of the trainer
roster, and the combined cost of the timetable and roster.

Num. Courses Stage 1 Z1 Z2 Z3 Stage 2 Stage 3 Total
Jan 47 -22.81 0 -66.38 5 -36.38 977.6 941.22
Feb 61 35.57 0 -15.26 6 20.74 1509.75 1530.49
Mar 49 -13.02 0 -66.95 7 -24.95 1465.59 1440.64
Apr 38 -62.96 0 -99.12 4 -75.12 970.52 895.4
May 33 -61.56 0 -93.17 3 -75.17 596.64 521.47
Jun 31 -86.42 0 -125.54 4 -101.54 781.51 679.97
Jul 58 16.67 0 -28.96 6 7.04 1520.18 1527.22
Aug 51 -14.72 0 -66.62 6 -30.62 1241.85 1211.23
Sep 44 -57.59 0 -86.83 3 -68.83 639.32 570.49
Oct 42 -35.26 0 -72.22 4 -48.22 886.2 837.98
Nov 47 -21.83 0 -69.85 6 -33.85 1261.95 1228.1
Dec 34 -70.42 0 -109.23 4 -85.23 710.6 625.37

Table 7 Results for the three-stage heuristic.

For all twelve months, it took the three-stage heuristic in total 1 hour, 42 minutes,
and 39 seconds to complete stage 1, 13 hours, 18 minutes, 47 seconds to complete
stage two, and 2 hours 35 minutes, 7 seconds to complete stage 3. On average, it
takes the three-stage heuristic about 8.6 minutes per month for stage 1, and 12.9
minutes for stage 3, depending on the volume of courses being run. Stage 2 will
run until some stopping criterion is met, which we defined as being 2 hours for
each timetabled month. There is a slight overrun in time for stage 2 of about 6.6
minutes on average per timetabled month due to the time it takes to complete an
iteration.

Both the existing software system and the three-stage heuristic were able to
satisfy all demand for each month (Z1). Compared with the existing system, the
three-stage heuristic was able to produce a significantly improved solution with
respect to the room rental goal (Z2), and an improved solution with respect to
the room swap goal (Z3). It should be noted, however, that the existing system
does not give the same priority to the room rental objective as is given in our
model, as this was not a priority for Ausgrid when the original system was under
development. Stage 2 of the three-stage heuristic was able to improve on the initial
(stage 1) timetable by, on average, 13.15 units.
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This improvement comes at a significant time difference, with the three-stage
heuristic taking much longer to produce a solution than the existing software. It
should be noted, however, that the time taken by this system is still significantly
less than a human constructing a timetable, manually, which generally takes about
two uninterrupted working days for a one-month timetable and trainer roster. For
longer-term strategic planning purposes, these solution times are acceptable, how-
ever for day-to-day timetabling, these solution times are generally not practically
acceptable and it is a matter of ongoing research to further improve the process.

8 Conclusion(s)

In this paper we studied an academic timetabling and rostering problem involv-
ing periodic retraining of large numbers of employees at an Australian electricity
distributor. A three-stage heuristic framework has been presented which consists
of an initial timetable generation stage, an iterative timetable improvement stage,
and a trainer rostering stage. Integer linear programming (ILP) models were de-
veloped for each stage, which can deal with all the practical requirements flexibly.
Different algorithms are designed to achieve the balance of solution quality and
computation time. The preliminary computational results show that this approach
can generate solutions with lower trainer movement and swap costs, lower room
swap costs, and increased revenue from room rentals compared with the existing
software system in this organisation. More work needs to be done to further reduce
the computation time.
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