
A model and fast heuristics for the multiple depot
bus rescheduling problem

Balázs Dávid · Miklós Krész

Abstract The daily schedule of a transportation company is often disrupted
by unforseen events. As a result, a new schedule has to be produced as soon as
possible to restore the order. In this paper, we consider the bus rescheduling
problem for solving such a scenario. We present a mathematical model for
the problem, and also introduce fast solution methods that give efficient solu-
tions with short running time. These methods are tested on different random
and real-life instances, and their results are compared to that of the optimal
solution of the mathematical model.

Keywords Disruption management · Vehicle scheduling · Heuristic

1 Introduction

Public transportation companies create their daily schedules in advance for
a longer planning period. This planning process is carried out by a complex
system, an example for which can be seen in [1]. However, several events (the
most common of which are vehicle breakdown and lateness) can render the
pre-planned schedules infeasible. In most of these cases, companies want to
restore the order as soon as possible, and need a new feasbile schedule where
all of their tasks are carried out in a feasible manner once again.

Such an unforseen event is called a disruption, and is defined by Clausen et
al. in [7] as ”an event or a series of events that renders the planned schedules
for aircraft, crew, etc. infeasible”. Although the above definition was given in
a technical paper about airline disruptions, this could be generalized for any

B. Dávid
University of Szeged, Gyula Juhász Faculty of Education
E-mail: davidb@jgypk.u-szeged.hu

M. Krész
University of Szeged, Gyula Juhász Faculty of Education
E-mail: kresz@jgypk.u-szeged.hu

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

128

means of transportation. In our paper, we will be dealing specifically with the
rescheduling of disruptions arising in public bus transportation.

To our knowledge, there are only a handful of papers that deal with disrup-
tions in bus transportation [12–14]. In practice, the problem is solved by the
operators of the company who use their past experience for constructing the
new schedule. However, the problem size is large, and many feasible solutions
exist for a disruption. Not even the most skillful operator can see all the good
possible solutions.

Addressing such a disruption and restoring the order in public transporta-
tion should be done as quickly as possible. The reason for this is the fact
that if a disruption remains unresolved, it could result in several other dis-
ruptions. This is why we need to introduce fast methods for the problem that
also give good quality solutions. Instead of solving the problem to optimality,
these algorithms should give a number of good quality feasible solutions to the
operator as suggestions. Using these suggestions, the operator can make the
final decision on how to reschedule the disrupted trips.

In the following sections, we define the bus rescheduling problem (BRP),
and give a mathematical model for it. As the size of this mathematical model
is large even for smaller instances, we propose two fast algorithms to solve
the BRP: a recursive heuristic and a local search method. We analyze the
solutions of these algorithms, and compare their results on random instances
to the optimal solution of our mathematical model.

2 Disruption management and rescheduling

The structure of the bus rescheduling problem is similar to that of the vehicle
scheduling problem (VSP). We are given a set V of vehicles and set T of
service trips. Every trip has a departure and arrival time, a starting and ending
location, and a set of vehicles that are able to serve the trip. A (t, t′) pair of
trips are compatible if a vehicle can service both trips with respect to the
running time and distance between the arrival location of t and the departure
location of t′ (such a journey is called a deadhead trip).

The VSP assigns the trips of the given timetable to the vehicles, satisfying
certain conditions:

– Every trip in t ∈ T must be executed exactly once.
– For every vehicle v ∈ V , the trips assigned to v must be compatible with

each other.
– The cost of the assignment must be minimal. The cost of the VSP is usually

given by two components: a cost proportional to the distance travelled in
the solution, and a cost given by the number of buses used.

Furthermore, vehicles can be classified into depots depending on two char-
acteristics: the type of the vehicle (eg. solo or articulated bus), and its starting
location at the beginning of the day. In this case, every trip is also assigned a
depot-compatibility vector which corresponds to the depots that can feasibly
serve it. Moreover, the arising costs can be different from depot to depot.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

129

If the problem has only 1 depot, it is called a single depot vehicle scheduling
problem (SDVSP), and can be solved in polynomial time. A formulation for the
SDVSP can be seen in [3]. If the number of depots is at least 2, we get a multiple
depot vehicle scheduling problem (MDVSP). The MDVSP was introduced by
Bodin et al. in [4], and proven to be NP-hard by Bertossi et al. [2]. An overview
of different VSP models can be found in [5].

2.1 The bus rescheduling problem

The bus rescheduling problem considers a given daily bus schedule. The sched-
ule consits of several vehicle duties, each such duty corresponding to a unique
vehicle. A vehicle duty is a sequence of compatible trips, where compatible
means that they can legally be executed one after the other. When a dis-
ruption happens in the daily schedule of a company at time s, the current
schedule becomes infeasible, and as a result, a number of trips can no longer
be executed by their original vehicles.

As an input for the problem, we need to consider the disrupted daily sched-
ule DS, which contains all the vehicles and trips that are still executed ac-
cording to the original schedule. We also have the set DT of disrupted trips,
which contains the trips that cannot be served due to the disruption. The set
DT can contain timetabled trips that no longer have their assigned vehicle as
a result of the disruption, and it can also contain newly introduced trips that
were not part of the original daily schedule. Let T ′ ⊆ T be the subset of trips
that start later than s. The aim once again is to give a feasible solution to the
problem by executing the trips T ′ ∪DT and minimizing the arising costs.

The cost of the problem depends on the restrictions that are taken into
consideration. We introduced the following cost components:

– Operational costs: This cost is proportional to the distance covered by
the given vehicle. If a new vehicle is introduced, it also has a fixed daily
cost. This cost can be scaled with a penalty parameter for new vehicles if
we want to primarily use our current vehicles in service.

– Deviation from the original schedule: If a trip is carried out by a
different vehicle in the solution of the BRP than in the original schedule,
we introduce an extra penalty. If we take the physical needs of the drivers
into consideration, the solution should be as close to the original schedule
as possible, and as a result, this cost should be high.

– Lateness of the trips: It is possible for a trip to be shifted in time, thus
introducing lateness to its starting time. Each minute of lateness should
be penalized.

– Trip cancellation: We can allow trips to be cancelled, but its cost must
always be higher than the actual cost of the trip and its possible deadhead
trips, and it must also be higher than the cost introduced to the deviation
from the original schedule.

Figure 1 models a typical situation that can arise in the daily practice of a
transportation company. A schedule is disrupted, and 2 trips (coloured blue)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

130

have to be rescheduled using 3 remaining vehicle duties (part a)). We give 2
different solutions: in part b), a task is moved from the first duty to the third
one before the insertion of the disrupted trips, while part c) gives a solution
with trivial insertion into the duties. Note, that different solutions are also
possible, for example one where we introduce lateness to one of the trips.

Fig. 1 A typical example for the BRP: there are two disrupted trips in example a) that
have to be inserted into the given duties, b) and c) represent possible solutions

2.2 Related work

Literature usually addresses recoveries from disruptions under the field of dis-
ruption management. Depending on its effect, there are two main types of
disruptions:

– A short term disruption only affects the schedule of the given day, and can
be addressed quickly.

– A long term disruption has a more lasting effect, and can affect several
days of the companies long term plan.

In this paper, we only deal with short term disruptions, where a few trips of
the original daily schedule become infeasible, and must be rescheduled. This
is the typical case when a vehicle that is late with regards to its schedule, and
would only be able to start some of its service trips with significant lateness, or
a vehicle that can not carry out some of its trips due to technical difficulties.

The first research into disruption management was carried out in the air-
line industry. Clausen et al. give a thorough overview of this field in [6,7]. The
underlying network is somewhat similar to the problem of the BRP. However,
the methods used for airline disruptions are computationally intensive, and
have a long running time on the significantly larger bus transportation prob-
lems. This size difference comes from the smaller instances sizes of the airline
industry, and the limited deadheading possibilites of the aircraft.

Disruption management in railway transportation is covered in [10]. These
problems have a different structure, which mainly comes from the fixed rail-

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

131

way network, and the capacity limit of the tracks. Because of this, railway
disruptions are handled in a different manner than in the airline industry.

To our knowledge, bus rescheduling as we defined in the above section was
only considered by Li et al. In [13], they propose a quasi-assignment model and
an auction algorithm for the problem, while in [14] they introduce a network
flow model for the single depot BRP, which they solve using a lagrangean
method.

2.3 Mathematical model

In this section we give a multi-commodity network flow model for the BRP
described in subsection 2.1, which is similar to the network flow model reported
by Li et al. in [14]. While Li et. al presented a model for the single depot BRP
that allows trip cancellations, we propose a model for the multiple-depot BRP
with trip cancellations and lateness.

Our input is the schedule of the company for a given day, which is disrupted
at time point s. Let D be the set of depots, V be the set of vehicles currently
in service, and P = D ∪ V .

Let T ′ be the set of non-disrupted service trips of the given day that depart
after time s, and thus still need to be serviced, and let set DT contain the
disrupted trips. Let the set T = T ′∪DT represent all the trips of our problem.
Every trip t ∈ T has a departure time dt(t), arrival time at(t), starting location
sl(t) and ending location el(t). The set of depots and vehicles that can execute
a trip t is denoted by g(t). Let Td ⊆ T be the set of trips that can be executed
from depot d, and Tv ⊆ T the set of trips that can be carried out by vehicle v.

For every depot d ∈ D, we introduce notations sl(d) and el(d). A depot
d is represented by sl(d) when we consider it as the starting location of a
vehicle, while we use el(d) when it gives the ending location of the vehicle.
Similarly for every vehicle v ∈ V currently in service we define a starting
location sl(v) and ending location el(v). For a vehicle v, sl(v) corresponds to
the current geographical location of v at the time of the disruption, and el(v)
is the geographical location of its depot. The set of nodes of our network will
be the following:

N = {dt(t) ∪ at(t) ∪ sl(d) ∪ el(d) ∪ sl(v) ∪ el(v)|t ∈ T, d ∈ D, v ∈ V }.

Using the nodes above, we define the different edges of the network. Let

Jd = {(dt(t), at(t))|t ∈ Td}

be the set of trips that can be served by depot d, and let

Jv = {(dt(t), at(t))|t ∈ Tv}

be the set of trips that can be executed by vehicle v. Let

Kd = {(at(t), dt(t′))|t, t′ ∈ Td are compatible}

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

132

be the possible deadhead trips of a depot d and

Kv = {(at(t), dt(t′))|t, t′ ∈ Tv are compatible}

be the possible deadhead trips of a vehicle v.
Let

Ld = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Td}

be all the pull-in and pull-out edges of depot d, and let

Lv = {(sl(d), dt(t)), (at(t), el(d))|t ∈ Tv}

be the pull-in and pull-out edges of vehicle v. The above sets together with
circulation edges for every depot and vehicle give us the set of edges of our
network:

E = {Jd ∪ Jv ∪Kd ∪Kv ∪ Ld ∪ Lv ∪ {(el(d), sl(d))} ∪ {(el(v), sl(v))} for
every d ∈ D, v ∈ V }.

With the nodes and edges introduced above, a solution of the vehicle re-
scheduling problem can be determined by using the network (N,E). We define
an integer vector x for every edge of the network. Every p ∈ P defines a com-
ponent belonging to edge e, and is denoted by xpe. We also introduce a variable
wt for every t ∈ T , which allows the cancellation of t.

The difference between the original schedule and the resulting schedule
should also be modeled. For every vehicle v, and trip-edge e ∈ Jv, we introduce
a constant qe. The value of qe is 0, if the trip corresponding to edge e is carried
out by the same vehicle v as in the original schedule, and 1 otherwise. The cost
of a trip will depend on this constant, because αqe will be added to the each
such edge, where α is the penalty for deviation from the original schedule.

To allow lateness for trips, we introduce variable zt, which gives a new
departure time for every trip t. This value includes the added lateness, if any.
For the trips to remain compatible, a constraint has to be added that examines
trip compatibilities with respect to zt:

(zt + length(t) + deadheadt,t′ − z′t)
∑
p∈P

xpa(t),d(t′) ≤ 0,∀(t, t′) ∈ E, (1)

where length(t) gives the running time of service trip t, and deadheadt,t′

represents the running time of the deadhead trip between al(t) and dt(t′).
Constraint (1) is not a linear equation, but such a constraint can be rewritten
with the introduction of a large constant M , as seen in [9].

The IP model of the problem can be formalized in the following way:∑
p∈g(t)

xpdt(t),at(t) + wt = 1,∀t ∈ T (2)

∑
e:(sl(d),dt(t))∈Kd

xde ≤ k(d),∀d ∈ D (3)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

133

 ∑
e:(sl(v),dt(t))∈Kv

xve = 1,∀v ∈ V (4)

∑
e∈n+

xpe −
∑
e∈n−

xpe = 0, ∀p ∈ P,∀n ∈ N (5)

zt + length(t) + deadheadt,t′ − z′t ≤
∑
p∈P

1− xpa(t),d(t′)M,∀(t, t′) ∈ E (6)

zt ≥ start(t),∀t ∈ T (7)

zt ≤ start(t) + L, ∀t ∈ T (8)

xpe, wt ∈ {0, 1}, ∀e ∈ E, p ∈ P, t ∈ T (9)

Due to constraint (2), every trip is either executed exactly once, or can-
celled. Constraint (3) gives maximum capacities for the depots of the problem,
while vehicles in service are always given duties according to constraint (4).
Constraint (5) ensures flow conservation. Constraint (6) is the linear reformu-
lation of constraint (1). Constraints (7) and (8) limit the values of the trip
starting times. A trip t ∈ T will always depart in the [start(t), start(t) + L]
time window, where start(t) is the departure time of t and L is the maximum
allowed lateness. To solve the problem to optimality, we need to minimize∑

e∈E

∑
p∈P

cpex
p
e +

∑
t∈T

β(zt − start(t)) +
∑
t∈T

γwt, (10)

where β and γ are penalty parameters for lateness and cancelling trips
respectively. cpe gives the corresponding operational cost of edge xpe, along
with the possible added penalty of deviation from the original schedule given
by α.

2.4 Importance of the model

The size of the above model grows quickly with an increase in the number of
compatible trips. As each commodity layer of the model contains the possible
connections of the given depot or vehicle, its size will increase significantly
with every added commodity. We have to represent every bus currently in
service as a new commodity in the model, which results in a significantly
high number of vehicle layers. For example, the middle-sized city of Szeged,
Hungary has about 2700 trips on a regular workday, which is executed by 108
vehicles (belonging to 4 vehicle types). This would mean a network with over
110 commodities, which is taxing to solve both in memory and running time.

In a real life application, solutions for disruptions are needed in real time,
because the resolution of a disruption does not end with the solution of the
problem. After solving the BRP, operators still need to communicate with bus
drivers about the recent changes, which also takes time.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

134

However, the mathematical model is important because it allows us to
compare our results to the optimal solution for the problem. This way it can
provide us with a quality control for any heuristic method that we use for the
fast solution of the BRP.

3 Applying fast solution heuristics

As we mentioned in subsection 2.4, the size of the model will grow quickly with
the increase of the problem size. The number of commodities in the network
is given by the number of depots and vehicles, and this will be dominated by
vehicle commodities (except for small test-instances).

Exact solution of such a big problem would take a long running time,
which is not acceptable for a real life application of the method. Recovering
from a disruption needs to be done as quickly as possible, thus fast and efficient
solution heuristics are needed.

It might well be that the costwise optimal solution is not be the best one
regarding operations planning. However, a solution given by an algorithm can
help the operator decide faster about how to resolve the disruption. Integrating
fast algorithms into a decision support system that gives multiple suggestions
for the solution can speed up the decision of the operators.

In the following sections, we present fast solution methods that provide
multiple good quality solutions in a short running time. These methods can
easily be integrated into a decision support system for disruption management
in public transportation, which recommends possible solutions for the oper-
ators depending on their parameter settings. We will be dealing with such a
system in one of our future papers.

Li et al. also presented a prototype decision support system in [12] for the
single depot BRP. In this system, they were only dealing with the optimal
solution for the problem that the operators could change on an interactive
interface.

3.1 A recursive search algorithm

One of the algorithms we propose is a recursive search heuristic for the prob-
lem. Recursive search seems an ideal method because of the expectations de-
scribed above. This algorithm is able to find multiple solutions with a short
running time. Our method can be seen in Algorithm 1.

The input of the algorithm is the following:

– vDuties: The disrupted daily schedule. It includes all available vehicles
and the duties assigned to those vehicles that were not disrupted.

– dTrips: The set of disrupted trips, which have no assigned vehicle duties.
– depth: A non-negative integer parameter that limits the depth of the

search tree. Every time trips are removed from a schedule, the value of this
parameter is decreased.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

135

Algorithm 1 Recursive search for bus rescheduling.
1: procedure RecSearch(vDuties, dTrips, depth)
2: if depth = 0 then
3: return 0
4: end if
5: for i = 1 to Size(dTrips) do
6: Trip = dTrips[i]
7: for j = 1 to Size(vDuties) do
8: nDuties = vDuties
9: nTrips = dTrips

10: Duty = vDuties[j]
11: if Trip and duty are not compatible then
12: continue
13: end if
14: if Trip overlaps with trips in Duty then
15: if Possible solution with lateness then
16: Duty’ = Insert Trip into Duty with introducing lateness
17: nDuties’ = nDuties with Duty’ inserted into nDuties[j]
18: nTrips’ = nTrips without Trip
19: if Size(nTrips’) = 0 then
20: Add(Solutions, nDuties’)
21: else
22: RecSearch(nDuties’, nTrips’, depth)
23: end if
24: end if
25: tRemoved = overlapping trips from duty
26: end if
27: Insert Trip into Duty
28: Remove Trip from nTrips
29: nDuties[j] = Duty
30: if Size(nTrips) = 0 then
31: Add(Solutions, nDuties)
32: else if Size(tRemoved) > 0 then
33: Add(nTrips, tRemoved)
34: RecSearch(nDuties, nTrips, depth-1)
35: else
36: RecSearch(nDuties, nTrips, depth)
37: end if
38: end for
39: end for
40: return Best solution in Solutions
41: end procedure

The input for the heuristic is the set of feasible vehicle duties, and the set
of disrupted trips. Every function call chooses the disrupted trip dt with the
earliest departure time, and tries to fit it into every compatible vehicle duty
vd. There are three possibilities for every dt− vd pair:

– One or more trips have to be removed from vd. The removed trips are
flagged as temporary disrupted trips.

– Trip dt can be inserted into vd, but lateness has to be introduced for some
of the trips of vd.

– Trip dt can be inserted into vd without additional modifications.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

136

If the set of disrupted trips is empty after a modification, and there are no
temporary disrupted trips, the heuristic has found a feasible solution, which
is saved. Otherwise, the recursive function is called with new parameters:

– vDuties’: The original vDuties is updated with the modified duty.
– dTrips’: The temporary disrupted trips are inserted into dTrips, while dt

is removed.
– depth’: If the size of dTrips′ is smaller than the size of dTrips, depth′ =
depth. Otherwise, depth′ = depth− 1.

The algorithm will explore the solution space determined by the trips and
the schedules of the problem, examining every possible solution found during
its runtime. The depth of this search tree is limited by the parameter depth.
Further limitations can be introduced into the method to exclude visiting
similar configurations multiple times.

These limitations (especially the parameter for the depth) help to keep the
running time of the algorithm from exploding. Introduction of this parameter
was also based on a practical observation: each level of the recursive search
tree corresponds to a vehicle whose original duty is modified. Companies want
to keep the number of modified vehicle duties low. Because of the way depth is
decreased, its initial value also defines the maximum number of vehicle duties
from which the algorithm can remove trips. As we mentioned in Subsection
2.1, altering the original schedule of a driver should have a high cost, so it
is unlikely that the optimal schedule will be cut from the search tree by this
parameter.

The algorithm terminates after it has traversed the above defined search
tree. If it has found at least 1 solution, then the one with the lowest cost is
returned as a result.

3.2 A local search algorithm

The other proposed algorithm is a local search method for finding a feasible
solution for the BRP. A brief outline of the algorithm can be seen in Algorithm
2.

The input of the algorithm is the following:

– vDuties: The disrupted daily schedule. It includes all available vehicles
and the duties assigned to those vehicles that were not disrupted.

– dTrips: The set of disrupted trips. These are currently not executed by
vehicles, and have to be assigned to vehicle duties.

– tRange: Gives a time window in which the events are considered. The
time window begins at the start time of the disruption, and ends after the
ending time of the last disrupted trip.

The initial candidate solution of the algorithm is constructed from the
original vehicle schedule. A new vehicle duty is added to the schedule, that
contains all the disrupted trips, increasingly ordered by their departure time.

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

137

Algorithm 2 Local search for bus rescheduling.
1: procedure LocSearch(vDuties, dTrips, tRange)
2: Build infeasible duty dt from dTrips
3: Label dt temporary
4: Add(dt to vDuties)
5: tabuList = list of forbidden transformations
6: while notEmpty(dt) & !(terminatingConditions) do
7: tmpSchedules = empty container for vehicle schedules
8: for i = 1 to Size(vDuties) do
9: for j = i+1 to Size(vDuties) do

10: for each neighborhood transformation t do
11: if t(vDuties[i], vDuties[j]) is not forbidden then
12: newSchedule = apply t of vDuties
13: Add(newSchedule, tmpSchedules)
14: end if
15: end for
16: end for
17: end for
18: bSchedule = best schedule from tmpSchedules
19: tS = transformation that can reverse bSchedule
20: vDuties = bSchedule
21: Add(tabuList, tS)
22: end while
23: return vDuties
24: end procedure

If there is more than one disrupted trip, this new duty is more than likely
infeasible, which will make our initial solution also infeasible. This new duty
is labelled as a temporary duty.

In each iteration the algorithm will examine all (i, j) pairs of the duties. It
checks the trips of the duties that are in the given tRange time window, and
examines the following two neighborhood transformations:

– 1-move: Moves a trip from duty i to duty j. This transformation is not
carried out, if j is a temporary schedule.

– 1-change: Exchanges a trip from duty i with the corresponding trip(s)
from duty j. This transformation is not carried out, if any of the duties is
temporary.

All feasible neighbors given by the above transformations are assigned a
cost. This cost is computed from the operational cost of the duties and the
penalties introduced in subsection 2.1. If the transformation moves a trip from
a temporary schedule to another schedule, a high negative penalty is added
to decrease the cost, which will make it more likely to be chosen in an early
iteration of the local search.

The local search algorithm chooses the neighbor solution with the lowest
cost as its new candidate. If any trip t was removed from a duty D in the
process, the (t,D) pair is saved on a tabu list. For every (t,D) pair on the
tabu list, trip t cannot be moved to duty D with any of the transformations.

The algorithm terminates when at least one of the terminating conditions
is met. We use the following terminating conditions:

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

138

– Limit for the running time.
– If the difference in quality of the consecutive candidates is always below a

given gap for a fixed amount of iterations.

If the algorithm has found at least 1 feasible solution, then the one with
the lowest cost is returned by default. The number of solutions returned can
be set higher using a parameter, if the user wants to ask for more suggestions.

4 Test results

In this section we provide the test results of the heuristics presented in section
3. To analyze the quality of our results, we will compare them to the optimal
solution of the BRP model given in subsection 2.3.

As it was mentioned earlier, the size of the mathematical model can grow
quickly with the increase of the instance size. The model we presented in 2.3
represents all possible connection between pairs of trips with a unique dead-
head edge for every commodity. Because of the high number of deadhead con-
nections, Kliewer et al. introduced the time-space network in [11] to solve the
MDVSP. This model aggregates deadhead edges, resulting in a much smaller
problem that is easier to solve. The number of deadhead edges of the BRP
model in subsection 2.3 can be decreased in the same way.

In our test instances, we used a time-space network equivalent of our BRP
model. We generated our daily schedules by solving a time-space network
model on random instances given by a method described in [8]. The disruption
time was set to 0, which means that we considered the whole daily schedule
in every case. We modelled the scenario when a new trip is introduced to the
daily schedule at the beginning of the day. This new trip is our disrupted
trip, which is generated as a single short trip by the same random method
referenced above.

We tested the methods on different instances with 12, 100, 500 and 800
trips in their original schedule. Several different test cases were generated for
each instance. Table 1 shows the average results of 10 randomly generated
cases for every instance.

Table 1 Test results of the heuristic methods

Instance Trips Depots Opt.(s) Rec.(s) Gap (Rec.) Loc.(s) Gap(Loc.)

R1 13 2 1.03 0.02 0 % 0.001 0%
R2 101 4 1.12 0.05 0 % 0.004 0%
R3 501 4 132 0.08 0 % 0.01 0%
R4 801 4 801 0.08 0.04 % 0.05 0%

The number of trips and depots of the BRP can be seen in columns 2 and
3. The running time of the solution of the exact model is given in column 4.
The running time of the heuristics and their gap from the optimal solution are

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

139

represented in columns 5-6 and 7-8 respectively. All tests were carried out on
a PC with and Intel Core i5 2.80GHz CPU and 4 GB RAM. The IP model
was solved using the COIN-OR Symphony solver.

We could not solve the IP for instances with higher number of trips, be-
cause the model itself was too big to be contained in memory. The heuristics
provided results for significantly larger input as well. We tested the two heuris-
tic methods on both random and real-life instances, and both of them returned
multiple solution suggestions. The biggest real-life instance we used contained
2674 trips, while the biggest random instance had 3500 trips.

The solution time of the heuristics remained fast, and took at most around
15 seconds. We also hand-tailored some of the bigger test instances, in which
we knew the best solution from the point of view of operational planning (e.g.
trivial insertion of a trip to a duty, or a certain trip has to be moved/delayed
to insert the disrupted trip). The algorithms found the desired solutions in
every case.

The results of the heuristic algorithms are promising, as they give multiple
solutions even for larger instances in a short time, while the number of modified
schedules and moved trips stay low. Their good speed and solution quality, and
the multiple given solutions make them suitable for a decision support system
described in the previous sections.

5 Conclusions and future work

In this paper, we considered the multiple depot BRP, which deals with resche-
duling the disrupted daily schedule of a transportation company. This problem
is important, as disruptions happen in the daily schedules of every company,
and the order of transportation should be restored as soon as possible. We
described the restrictions of the problem, and defined a mathematical model
based on the arising needs.

Such a problem requires a real-time solution, because the results must be
processed by operators and communicated to the bus drivers, which also takes
time. As the size of the model is too big to be solved in such short time,
we proposed two fast heuristic algorithms to produce results in a couple of
seconds. Our tests on randomly generated instances showed that the heuristics
give a solution that is close to the optimum. While we could not measure
the quality of the algorithms on bigger real-life instances, the running time
still remained fast, and both methods gave the expected results for artifical
disruption scenarios for these inputs.

Because of their ability to produce multiple good quality solutions in a
short time, these algorithms seem suitable for a decision support system that
helps the operators of a transportation company in the rescheduling process
by giving them possible solution suggestions for the problem. However, there
are still questions for future research.

The size of the mathematical model is too big to be contained in memory
for bigger instances. To get exact solutions for real-life problems, we can use

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

140

decomposition methods (e.g. column generation), or heuristic size reduction
of the model. Both approaches should be investigated in future works.

References

1. Békési, J., Brodnik, A., Krész, M., Pas, D.: An integrated framework for bus logistics
management: Case studies. Logistik Management 5(1), 389–411 (2009)

2. Bertossi, A., Carraresi, P., Gallo, G.: On some matching problems arising in vehicle
scheduling models. Networks 17(1), 271–281 (1987)

3. Bodin, L., Golden, B.: Classification in vehicle routing and scheduling. Networks 11(1),
97–108 (1981)

4. Bodin, L., Golden, B., Assad, A., Ball, M.: Routing and scheduling of vehicles and
crews: The state of the art. Computers and Operations Research 10(1), 63–212 (1983)

5. Bunte, S., Kliewer, N.: An overview on vehicle scheduling models. Journal of Public
Transport 1(4), 299–317 (2009)

6. Clausen, J., Larsen, A., J. Larsen, J., Rezanova, N.J.: Disruption management in the
airline industry-concepts, models and methods. Computers & Operations Research
37(5), 809–821 (2010)

7. Clausen, J., Larsen, A., Larsen, J.: Disruption management in the airline industry -
concepts, models and methods. Tech. rep., Informatics and Mathematical Modelling,
Technical University of Denmark, DTU (2005)

8. Dávid, B., Krész, M.: Application oriented variable fixing methods for the multiple
depot vehicle scheduling problem. Acta Cybernetica 21(1), 53–73 (2013)

9. Desrochers, M., Lenstra, J., Savelsbergh, M., Soumis, F.: Vehicle routing with time
windows: Optimization and approximation. Vehicle routing: Methods and studies 16,
65–84 (1988)

10. Jespersen-Groth, J., Potthoff, D., Clausen, J., Huisman, D., Kroon, L.G., Maróti, G., ,
Nielsen, M.N.: Disruption management in passenger railway transportation. Tech. rep.,
Erasmus University Rotterdam (2007)

11. Kliewer, N., Mellouli, T., Suhl, L.: A time-space network based exact optimization model
for multi-depot bus scheduling. European Journal of Operational Research 175(3),
1616–1627 (2006)

12. Li, J.Q., Borenstein, D., Mirchandani, P.B.: A decision support system for the single-
depot vehicle rescheduling problem. Computers and Operations Research 34(4), 1008–
1032 (2007)

13. Li, J.Q., Mirchandani, P.B., Borenstein, D.: The vehicle rescheduling problem: Model
and algorithms. Networks 50(3), 211–229 (2007)

14. Li, J.Q., Mirchandani, P.B., Borenstein, D.: A lagrangan heuristic for the real-time vehi-
cle rescheduling problem. Transportation Research Part E: Logistics and Transportation
Review 45(3), 419–433 (2009)

10th International Conference of the Practice and Theory of Automated Timetabling
PATAT 2014, 26-29 August 2014, York, United Kingdom

141

Acknowledgements This work was partially supported by the European Union and co-
funded by the European Social Fund through project HPC (grant no.: TÁMOP-4.2.2.C-
11/1/KONV-2012-0010).

