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Abstract The assignment of students to sections has always seemed different
from the rest of timetabling. Courses demand times, teachers, and rooms,
but not students; instead, students demand courses. This paper shows how to
remove this difference and integrate student sectioning with the rest.
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1 Introduction

When demand for some course is greater than the maximum class size, the
course has to be broken into sections: copies of the course. Each student who
enrols in the course must be assigned to a section, and this is the student

sectioning problem. It arises both in universities [1,7] and high schools [2,5].
Student sectioning has always seemed different from the rest of timetabling.

Courses demand times and resources (teachers, rooms, etc.), but not students;
instead, students demand courses. This point is clarified below (Sect. 2).

One negative effect of this perceived difference is that good ideas developed
on one side of the barrier may seem to be inapplicable on the other. For exam-
ple, the author works with a data structure he calls the global tixel matching

[4]. It keeps track of whether an instance’s resources are sufficient to satisfy
the demand for resources, both overall and at specific times. is useful when
assigning teachers and rooms in high school timetabling [4], so it might be
useful for students too—but not if student assignment is genuinely different.

Another negative effect is that solvers assign students in one way, and
teachers and rooms in another, encouraging these tasks to occur in separate
phases of the solver. The literature is divided on whether to assign students
to sections first [1], or to assign times first and then timetable each student.
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This paper breaks down the barrier by transforming student sectioning
into conventional timetabling. The author knows of no previous publication
of this transformation, but it is not likely to surprise researchers familiar with
student sectioning. This paper’s novelty lies more in its uncovering of the utility

of the transformation: it allows good ideas from conventional timetabling to be
applied to student sectioning, and it permits the whole timetable to be built
in an integrated way, bypassing the problems caused by separate phases.

2 The transformation

This section presents the transformation of student sectioning into ordinary
timetabling via an example. It will be clear that it works in general. A few
simple extensions are also presented. The transformation would be carried out
by software when preparing for solving, not by the end user.

A university has two Chemistry laboratories (rooms) for senior students. A
laboratory event occupies four hours, and may start at 9am or 2pm each week
day. This makes a total of 20 events per week (10 per week in each of the two
laboratories). Each laboratory can hold up to 20 students, giving capacity for
400 students. In fact, the university has decided to have only 17 events, the
minimum required to accommodate the 325 currently enrolled students.

A conventional representation consists entirely of 17 events of the form

Cj = 〈4 T92, 1 SenChemLab, 1 SenChemTeacher,≤ 20 SenChemStudent〉

The first item of the tuple is a demand for 4 consecutive hours beginning at
one of the elements of set T92, defined elsewhere to be the 9am and 2pm times;
the second is a demand for one laboratory from the set SenChemLab of senior
Chemistry laboratories (this set has two elements); and the third demands a
senior Chemistry teacher in the same way. The solver is required to assign an
appropriate starting time, lab, and teacher to this event. Various constraints
must be obeyed: the resources must have no clashes, be employed only when
available, and so on. These other constraints are not our focus here.

The fourth item allows up to 20 students from the set SenChemStudent to
attend. The ‘≤’ sign marks the difference from the other requests: it is a defect
if any of those are not met, but 20 students is just the maximum. Furthermore,
the same room or teacher may attend several of these events at different times;
but each student should attend exactly one. Clearly, the student assignments
are anomalous, and this is what motivates this paper.

The idea of the transformation is to create an event for each student si in
SenChemStudent in which si meets with a seat in a laboratory. A seat, quite
concretely, is a piece of furniture capable of holding only one student at any
one time. Each laboratory has 20 seats, making 40 seats altogether, and these
are the elements of set SenChemSeats. The event for student si is

Si = 〈4 T92, 1 SenChemSeat, si〉
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where si indicates a preassignment of si to this event. Preassignments are
standard in timetabling. If times and seats are assigned to these 325 events,
and no seat has a timetable clash, then no laboratory will be overfull.

The original events Cj are retained in modified form:

Ej = 〈4 T92, 1 SenChemLab, 1 SenChemTeacher〉

Assignments of students and teachers might occur in all 20 possible events,
whereas the university has decided to have only 17. So three events have to
be excluded, and this is done by adding three events of the form

Rk = 〈4 T92, 1 SenChemLab, 20 SenChemSeat〉

At the times occupied by these events, one fewer laboratory and 20 fewer seats
will be available. There is nothing to force the selected seats to come from the
selected laboratory, but if they don’t, a simple reassignment after solving ends
fixes that problem. (A specific laboratory and its 20 seats could be preassigned
to one Rk, but it is not clear whether to preassign them to several Rk.)

Several extensions can be added. If students work in preassigned pairs,
then each student event could request two seats and contain two students.
The seats may not be adjacent in the same laboratory, but that is easily fixed
during the seat reassignment after solving ends. At the author’s university,
senior Chemistry students attend two laboratory events each week. This can
be handled by creating two Si events per student.

There is a problem when there is no natural low limit to the number
of events that may occur simultaneously, as is imposed by having only two
laboratories in the example. Take a junior Mathematics course broken into
20 sections of 30 students each, held in ordinary rooms which are in plentiful
supply. A pure transformation would require 600 seats, the great majority of
which are unavailable. In practice, however, it would be safe (and perhaps
desirable) to arbitrarily limit the number of events that occur simultaneously,
coming close to the Chemistry example. It may be important to do this, to
ensure that the transformed instance is not too much larger than the original.

Additional constraints, such as that each event have at least some number
of students, or that students be distributed among the events as evenly as
possible, must be imposed separately, in both the original instance and the
transformed one. Representing them in the transformed instance is a potential
problem, because the transformation fragments one event into many.

3 Solving

Conventional solvers first construct a solution and then repair it. There may
be a first phase which assigns times, and a second which assigns resources.
What would such a solver make of a transformed student sectioning instance?

If, after every event is assigned a time, the global tixel matching reports
that sufficient resources are available at all times, then resource assignment for
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the transformed events is trivial and must succeed (except for unpreassigned
teachers, who may have constraints which make assignment difficult, with or
without the transformation). So the student sectioning part of the problem is
basically about constructing and repairing a time assignment which minimizes
the ‘insufficient resources’ defects reported by the global tixel matching.

If it is considered expedient to group students into initial sections before
solving [1], then this is hierarchical timetable construction [3]: placing the Si

into groups and constraining the elements of each group to be simultaneous.
Initial construction of a time assignment, with the global tixel matching as

a guide, should find a timetable which makes a reasonable starting point for
repair. Swapping a Cj with an Rk moves a section to a different time; moving
or swapping an Si moves a student to a different section. Both seem useful.
There are also some natural larger neighbourhoods, the kind used by VLSN
search [6]. An example is unassigning one student’s events, then reassigning
them using a tree search with intelligent backtracking. This has been done at
the author’s university for many years, but never published.

All this could go on at the same time as repairs are tried which improve
other aspects of the timetable, producing an integrated solve rather than a
series of separate phases. Doing it without the transformation is possible but
much clumsier, since special arrangements would then have to be made to
compute the equivalent of the current availability of seats at each time.
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