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We present a dual-objective course-timetabling system designed to construct course schedules for 

the Science Division at Rollins College. Our work builds on the system described in [Wehrer and 

Yellen (2013)], which models the timetabling problem as a vertex-coloring problem in a weighted 

graph. The weighted graph model allows the system to incorporate both hard and soft constraints 

by assigning a 2-component weight to each edge that reflects the undesirability of assigning 

various pairs of timeslots to its endpoints. An earlier version, using single-component penalty 

weights, was initially developed in [Kiaer and Yellen (1992)]. The two objectives of our system 

are: (1) minimize the number and severity of conflicts resulting from the schedule; and (2) create 

compact schedules for students and faculty. Accordingly, the two edge-weight components are: the 

conflict penalty, incurred when the endpoints are assigned overlapping timeslots (colors); and the 

proximity penalty, incurred when the endpoints are assigned timeslots with a large gap between 

them on the same day. The overall objective is to minimize the total penalty of the completed 

graph coloring. 

Wehrer and Yellen used a one-pass algorithm to color the graph. Heuristics adapted from 

[Carrington, Pham, et al (2007)] were used to select the most “troublesome” uncolored vertex (a 

troublesome vertex is one that is likely to create problems if its coloring is deferred), and then to 

select the best color for that vertex. The process repeats until all vertices are colored. Vertex-

selection and color-selection both used linear combinations of a few “primitive” heuristics, as 

introduced in [Burke, Pham, et al (2008)].  

Our system uses a new algorithm that incorporates artificial intelligence techniques via a search-

tree representation. The root node is the original uncolored weighted graph, and the nodes at level 

k correspond to the (partial) colorings for which k of the vertices have been colored. Each child of 

a node is the result of assigning a color to an uncolored vertex (see Figure 1). The leaf nodes of the 

search tree represent complete colorings, and our objective is to find a leaf node of minimum total 

penalty. Our system performs a best-first search by maintaining a priority queue to determine 

which nodes to expand. Each node generated is placed in the priority queue according to how 

“promising” it is. 
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Figure 1: The search tree of 3-colorings of a 4-vertex graph. 

 

Promising nodes are those that appear likely to be the ancestors of low-cost complete colorings. A 

heuristic evaluation of how promising a node is uses various properties of the partial coloring, 

including its total penalty and its relation to the rest of the (uncolored) graph. The most promising 

node is removed from the queue and expanded (i.e., its children are generated) in an iterative 

process that ends with a complete coloring. The priority queue enables backtracking: if the 

children of a node have high penalties, they will move towards the back of the queue, and the 

algorithm will attempt a different branch of the tree. As the number of vertices in the graph 

increases, the size of the search tree grows exponentially, making a search of the entire solution 

space intractable. Therefore, we restrict the number of children generated when expanding a node 

(i.e., the branching factor). We do so by adapting the vertex- and color-selection heuristics to 

generate a small subset of promising children. 

For the purposes of testing, we have developed software that randomly generates course-

timetabling problems using a seed problem. The procedure makes random changes to the seed 

problem, via genetic techniques of mutation and recombination, resulting in a set of problems with 

similar characteristics. For our seed problem, we use the set of Rollins Science Division courses 

offered in Fall 2011. We evaluate the effectiveness of various branching and priority-queue 

strategies by testing them on these randomly generated problems.  Currently, we manually adjust 

various parameters for the branching strategy and the priority queue’s heuristic evaluation 

function, based on their performance on these problems.  Our framework will eventually enable us 

to apply machine learning to adjust these parameters. 

Preliminary results on the Fall 2011 problem and 10 randomly generated problems show that even 

with some simple priority functions and a small branching factor, our search-tree approach 

produces timetables slightly better to those produced by the old one-pass algorithm. Table 1 

compares the performance of the old one-pass algorithm to four different versions of our new 

algorithm (labeled PQ1, …, PQ4). For the Fall 2011 problem, the table displays the total penalty 

and its two primary components, conflict penalty and proximity penalty. For the 10 random 
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problems, the values are averaged over the 10 resulting timetables. As we refine our priority 

function, we expect that our algorithm’s performance will continue to improve. 

Table 1:  Comparison of One-Pass to Priority-Queue Algorithm 

Algorithm Fall 2011 Averages on 10 Random Problems 

 Total 
Penalty  

Conflict  
Penalty 

Proximity  
Penalty 

Total 
Penalty  

Conflict  
Penalty 

Proximity  
Penalty 

One-Pass 7366 83 5291 16364 456 4754 

PQ1 7224 100 4724 11601 278 4646 

PQ2 7338 85 5213 12594 310 4654 

PQ3 7322 99 4847 13974 364 4784 

PQ4 7345 86 5195 12149 297 4714 
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